1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and 4 * Shaohua Li <shli@fb.com> 5 */ 6 #include <linux/module.h> 7 8 #include <linux/moduleparam.h> 9 #include <linux/sched.h> 10 #include <linux/fs.h> 11 #include <linux/init.h> 12 #include "null_blk.h" 13 14 #undef pr_fmt 15 #define pr_fmt(fmt) "null_blk: " fmt 16 17 #define FREE_BATCH 16 18 19 #define TICKS_PER_SEC 50ULL 20 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC) 21 22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 23 static DECLARE_FAULT_ATTR(null_timeout_attr); 24 static DECLARE_FAULT_ATTR(null_requeue_attr); 25 static DECLARE_FAULT_ATTR(null_init_hctx_attr); 26 #endif 27 28 static inline u64 mb_per_tick(int mbps) 29 { 30 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps); 31 } 32 33 /* 34 * Status flags for nullb_device. 35 * 36 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure. 37 * UP: Device is currently on and visible in userspace. 38 * THROTTLED: Device is being throttled. 39 * CACHE: Device is using a write-back cache. 40 */ 41 enum nullb_device_flags { 42 NULLB_DEV_FL_CONFIGURED = 0, 43 NULLB_DEV_FL_UP = 1, 44 NULLB_DEV_FL_THROTTLED = 2, 45 NULLB_DEV_FL_CACHE = 3, 46 }; 47 48 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2) 49 /* 50 * nullb_page is a page in memory for nullb devices. 51 * 52 * @page: The page holding the data. 53 * @bitmap: The bitmap represents which sector in the page has data. 54 * Each bit represents one block size. For example, sector 8 55 * will use the 7th bit 56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache 57 * page is being flushing to storage. FREE means the cache page is freed and 58 * should be skipped from flushing to storage. Please see 59 * null_make_cache_space 60 */ 61 struct nullb_page { 62 struct page *page; 63 DECLARE_BITMAP(bitmap, MAP_SZ); 64 }; 65 #define NULLB_PAGE_LOCK (MAP_SZ - 1) 66 #define NULLB_PAGE_FREE (MAP_SZ - 2) 67 68 static LIST_HEAD(nullb_list); 69 static struct mutex lock; 70 static int null_major; 71 static DEFINE_IDA(nullb_indexes); 72 static struct blk_mq_tag_set tag_set; 73 74 enum { 75 NULL_IRQ_NONE = 0, 76 NULL_IRQ_SOFTIRQ = 1, 77 NULL_IRQ_TIMER = 2, 78 }; 79 80 static bool g_virt_boundary; 81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444); 82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False"); 83 84 static int g_no_sched; 85 module_param_named(no_sched, g_no_sched, int, 0444); 86 MODULE_PARM_DESC(no_sched, "No io scheduler"); 87 88 static int g_submit_queues = 1; 89 module_param_named(submit_queues, g_submit_queues, int, 0444); 90 MODULE_PARM_DESC(submit_queues, "Number of submission queues"); 91 92 static int g_poll_queues = 1; 93 module_param_named(poll_queues, g_poll_queues, int, 0444); 94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues"); 95 96 static int g_home_node = NUMA_NO_NODE; 97 module_param_named(home_node, g_home_node, int, 0444); 98 MODULE_PARM_DESC(home_node, "Home node for the device"); 99 100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 101 /* 102 * For more details about fault injection, please refer to 103 * Documentation/fault-injection/fault-injection.rst. 104 */ 105 static char g_timeout_str[80]; 106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444); 107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>"); 108 109 static char g_requeue_str[80]; 110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444); 111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>"); 112 113 static char g_init_hctx_str[80]; 114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444); 115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>"); 116 #endif 117 118 /* 119 * Historic queue modes. 120 * 121 * These days nothing but NULL_Q_MQ is actually supported, but we keep it the 122 * enum for error reporting. 123 */ 124 enum { 125 NULL_Q_BIO = 0, 126 NULL_Q_RQ = 1, 127 NULL_Q_MQ = 2, 128 }; 129 130 static int g_queue_mode = NULL_Q_MQ; 131 132 static int null_param_store_val(const char *str, int *val, int min, int max) 133 { 134 int ret, new_val; 135 136 ret = kstrtoint(str, 10, &new_val); 137 if (ret) 138 return -EINVAL; 139 140 if (new_val < min || new_val > max) 141 return -EINVAL; 142 143 *val = new_val; 144 return 0; 145 } 146 147 static int null_set_queue_mode(const char *str, const struct kernel_param *kp) 148 { 149 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ); 150 } 151 152 static const struct kernel_param_ops null_queue_mode_param_ops = { 153 .set = null_set_queue_mode, 154 .get = param_get_int, 155 }; 156 157 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444); 158 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)"); 159 160 static int g_gb = 250; 161 module_param_named(gb, g_gb, int, 0444); 162 MODULE_PARM_DESC(gb, "Size in GB"); 163 164 static int g_bs = 512; 165 module_param_named(bs, g_bs, int, 0444); 166 MODULE_PARM_DESC(bs, "Block size (in bytes)"); 167 168 static int g_max_sectors; 169 module_param_named(max_sectors, g_max_sectors, int, 0444); 170 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)"); 171 172 static unsigned int nr_devices = 1; 173 module_param(nr_devices, uint, 0444); 174 MODULE_PARM_DESC(nr_devices, "Number of devices to register"); 175 176 static bool g_blocking; 177 module_param_named(blocking, g_blocking, bool, 0444); 178 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device"); 179 180 static bool g_shared_tags; 181 module_param_named(shared_tags, g_shared_tags, bool, 0444); 182 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq"); 183 184 static bool g_shared_tag_bitmap; 185 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444); 186 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq"); 187 188 static int g_irqmode = NULL_IRQ_SOFTIRQ; 189 190 static int null_set_irqmode(const char *str, const struct kernel_param *kp) 191 { 192 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE, 193 NULL_IRQ_TIMER); 194 } 195 196 static const struct kernel_param_ops null_irqmode_param_ops = { 197 .set = null_set_irqmode, 198 .get = param_get_int, 199 }; 200 201 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444); 202 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer"); 203 204 static unsigned long g_completion_nsec = 10000; 205 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444); 206 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns"); 207 208 static int g_hw_queue_depth = 64; 209 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444); 210 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64"); 211 212 static bool g_use_per_node_hctx; 213 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444); 214 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false"); 215 216 static bool g_memory_backed; 217 module_param_named(memory_backed, g_memory_backed, bool, 0444); 218 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false"); 219 220 static bool g_discard; 221 module_param_named(discard, g_discard, bool, 0444); 222 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false"); 223 224 static unsigned long g_cache_size; 225 module_param_named(cache_size, g_cache_size, ulong, 0444); 226 MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)"); 227 228 static bool g_fua = true; 229 module_param_named(fua, g_fua, bool, 0444); 230 MODULE_PARM_DESC(fua, "Enable/disable FUA support when cache_size is used. Default: true"); 231 232 static unsigned int g_mbps; 233 module_param_named(mbps, g_mbps, uint, 0444); 234 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)"); 235 236 static bool g_zoned; 237 module_param_named(zoned, g_zoned, bool, S_IRUGO); 238 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false"); 239 240 static unsigned long g_zone_size = 256; 241 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO); 242 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256"); 243 244 static unsigned long g_zone_capacity; 245 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444); 246 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size"); 247 248 static unsigned int g_zone_nr_conv; 249 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444); 250 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0"); 251 252 static unsigned int g_zone_max_open; 253 module_param_named(zone_max_open, g_zone_max_open, uint, 0444); 254 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)"); 255 256 static unsigned int g_zone_max_active; 257 module_param_named(zone_max_active, g_zone_max_active, uint, 0444); 258 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)"); 259 260 static int g_zone_append_max_sectors = INT_MAX; 261 module_param_named(zone_append_max_sectors, g_zone_append_max_sectors, int, 0444); 262 MODULE_PARM_DESC(zone_append_max_sectors, 263 "Maximum size of a zone append command (in 512B sectors). Specify 0 for zone append emulation"); 264 265 static bool g_zone_full; 266 module_param_named(zone_full, g_zone_full, bool, S_IRUGO); 267 MODULE_PARM_DESC(zone_full, "Initialize the sequential write required zones of a zoned device to be full. Default: false"); 268 269 static bool g_rotational; 270 module_param_named(rotational, g_rotational, bool, S_IRUGO); 271 MODULE_PARM_DESC(rotational, "Set the rotational feature for the device. Default: false"); 272 273 static struct nullb_device *null_alloc_dev(void); 274 static void null_free_dev(struct nullb_device *dev); 275 static void null_del_dev(struct nullb *nullb); 276 static int null_add_dev(struct nullb_device *dev); 277 static struct nullb *null_find_dev_by_name(const char *name); 278 static void null_free_device_storage(struct nullb_device *dev, bool is_cache); 279 280 static inline struct nullb_device *to_nullb_device(struct config_item *item) 281 { 282 return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL; 283 } 284 285 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page) 286 { 287 return snprintf(page, PAGE_SIZE, "%u\n", val); 288 } 289 290 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val, 291 char *page) 292 { 293 return snprintf(page, PAGE_SIZE, "%lu\n", val); 294 } 295 296 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page) 297 { 298 return snprintf(page, PAGE_SIZE, "%u\n", val); 299 } 300 301 static ssize_t nullb_device_uint_attr_store(unsigned int *val, 302 const char *page, size_t count) 303 { 304 unsigned int tmp; 305 int result; 306 307 result = kstrtouint(page, 0, &tmp); 308 if (result < 0) 309 return result; 310 311 *val = tmp; 312 return count; 313 } 314 315 static ssize_t nullb_device_ulong_attr_store(unsigned long *val, 316 const char *page, size_t count) 317 { 318 int result; 319 unsigned long tmp; 320 321 result = kstrtoul(page, 0, &tmp); 322 if (result < 0) 323 return result; 324 325 *val = tmp; 326 return count; 327 } 328 329 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page, 330 size_t count) 331 { 332 bool tmp; 333 int result; 334 335 result = kstrtobool(page, &tmp); 336 if (result < 0) 337 return result; 338 339 *val = tmp; 340 return count; 341 } 342 343 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */ 344 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \ 345 static ssize_t \ 346 nullb_device_##NAME##_show(struct config_item *item, char *page) \ 347 { \ 348 return nullb_device_##TYPE##_attr_show( \ 349 to_nullb_device(item)->NAME, page); \ 350 } \ 351 static ssize_t \ 352 nullb_device_##NAME##_store(struct config_item *item, const char *page, \ 353 size_t count) \ 354 { \ 355 int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\ 356 struct nullb_device *dev = to_nullb_device(item); \ 357 TYPE new_value = 0; \ 358 int ret; \ 359 \ 360 ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\ 361 if (ret < 0) \ 362 return ret; \ 363 if (apply_fn) \ 364 ret = apply_fn(dev, new_value); \ 365 else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \ 366 ret = -EBUSY; \ 367 if (ret < 0) \ 368 return ret; \ 369 dev->NAME = new_value; \ 370 return count; \ 371 } \ 372 CONFIGFS_ATTR(nullb_device_, NAME); 373 374 static int nullb_update_nr_hw_queues(struct nullb_device *dev, 375 unsigned int submit_queues, 376 unsigned int poll_queues) 377 378 { 379 struct blk_mq_tag_set *set; 380 int ret, nr_hw_queues; 381 382 if (!dev->nullb) 383 return 0; 384 385 /* 386 * Make sure at least one submit queue exists. 387 */ 388 if (!submit_queues) 389 return -EINVAL; 390 391 /* 392 * Make sure that null_init_hctx() does not access nullb->queues[] past 393 * the end of that array. 394 */ 395 if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues) 396 return -EINVAL; 397 398 /* 399 * Keep previous and new queue numbers in nullb_device for reference in 400 * the call back function null_map_queues(). 401 */ 402 dev->prev_submit_queues = dev->submit_queues; 403 dev->prev_poll_queues = dev->poll_queues; 404 dev->submit_queues = submit_queues; 405 dev->poll_queues = poll_queues; 406 407 set = dev->nullb->tag_set; 408 nr_hw_queues = submit_queues + poll_queues; 409 blk_mq_update_nr_hw_queues(set, nr_hw_queues); 410 ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM; 411 412 if (ret) { 413 /* on error, revert the queue numbers */ 414 dev->submit_queues = dev->prev_submit_queues; 415 dev->poll_queues = dev->prev_poll_queues; 416 } 417 418 return ret; 419 } 420 421 static int nullb_apply_submit_queues(struct nullb_device *dev, 422 unsigned int submit_queues) 423 { 424 int ret; 425 426 mutex_lock(&lock); 427 ret = nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues); 428 mutex_unlock(&lock); 429 430 return ret; 431 } 432 433 static int nullb_apply_poll_queues(struct nullb_device *dev, 434 unsigned int poll_queues) 435 { 436 int ret; 437 438 mutex_lock(&lock); 439 ret = nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues); 440 mutex_unlock(&lock); 441 442 return ret; 443 } 444 445 NULLB_DEVICE_ATTR(size, ulong, NULL); 446 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL); 447 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues); 448 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues); 449 NULLB_DEVICE_ATTR(home_node, uint, NULL); 450 NULLB_DEVICE_ATTR(queue_mode, uint, NULL); 451 NULLB_DEVICE_ATTR(blocksize, uint, NULL); 452 NULLB_DEVICE_ATTR(max_sectors, uint, NULL); 453 NULLB_DEVICE_ATTR(irqmode, uint, NULL); 454 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL); 455 NULLB_DEVICE_ATTR(index, uint, NULL); 456 NULLB_DEVICE_ATTR(blocking, bool, NULL); 457 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL); 458 NULLB_DEVICE_ATTR(memory_backed, bool, NULL); 459 NULLB_DEVICE_ATTR(discard, bool, NULL); 460 NULLB_DEVICE_ATTR(mbps, uint, NULL); 461 NULLB_DEVICE_ATTR(cache_size, ulong, NULL); 462 NULLB_DEVICE_ATTR(zoned, bool, NULL); 463 NULLB_DEVICE_ATTR(zone_size, ulong, NULL); 464 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL); 465 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL); 466 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL); 467 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL); 468 NULLB_DEVICE_ATTR(zone_append_max_sectors, uint, NULL); 469 NULLB_DEVICE_ATTR(zone_full, bool, NULL); 470 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL); 471 NULLB_DEVICE_ATTR(no_sched, bool, NULL); 472 NULLB_DEVICE_ATTR(shared_tags, bool, NULL); 473 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL); 474 NULLB_DEVICE_ATTR(fua, bool, NULL); 475 NULLB_DEVICE_ATTR(rotational, bool, NULL); 476 NULLB_DEVICE_ATTR(badblocks_once, bool, NULL); 477 NULLB_DEVICE_ATTR(badblocks_partial_io, bool, NULL); 478 479 static ssize_t nullb_device_power_show(struct config_item *item, char *page) 480 { 481 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page); 482 } 483 484 static ssize_t nullb_device_power_store(struct config_item *item, 485 const char *page, size_t count) 486 { 487 struct nullb_device *dev = to_nullb_device(item); 488 bool newp = false; 489 ssize_t ret; 490 491 ret = nullb_device_bool_attr_store(&newp, page, count); 492 if (ret < 0) 493 return ret; 494 495 ret = count; 496 mutex_lock(&lock); 497 if (!dev->power && newp) { 498 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags)) 499 goto out; 500 501 ret = null_add_dev(dev); 502 if (ret) { 503 clear_bit(NULLB_DEV_FL_UP, &dev->flags); 504 goto out; 505 } 506 507 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); 508 dev->power = newp; 509 ret = count; 510 } else if (dev->power && !newp) { 511 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { 512 dev->power = newp; 513 null_del_dev(dev->nullb); 514 } 515 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); 516 } 517 518 out: 519 mutex_unlock(&lock); 520 return ret; 521 } 522 523 CONFIGFS_ATTR(nullb_device_, power); 524 525 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page) 526 { 527 struct nullb_device *t_dev = to_nullb_device(item); 528 529 return badblocks_show(&t_dev->badblocks, page, 0); 530 } 531 532 static ssize_t nullb_device_badblocks_store(struct config_item *item, 533 const char *page, size_t count) 534 { 535 struct nullb_device *t_dev = to_nullb_device(item); 536 char *orig, *buf, *tmp; 537 u64 start, end; 538 int ret; 539 540 orig = kstrndup(page, count, GFP_KERNEL); 541 if (!orig) 542 return -ENOMEM; 543 544 buf = strstrip(orig); 545 546 ret = -EINVAL; 547 if (buf[0] != '+' && buf[0] != '-') 548 goto out; 549 tmp = strchr(&buf[1], '-'); 550 if (!tmp) 551 goto out; 552 *tmp = '\0'; 553 ret = kstrtoull(buf + 1, 0, &start); 554 if (ret) 555 goto out; 556 ret = kstrtoull(tmp + 1, 0, &end); 557 if (ret) 558 goto out; 559 ret = -EINVAL; 560 if (start > end) 561 goto out; 562 /* enable badblocks */ 563 cmpxchg(&t_dev->badblocks.shift, -1, 0); 564 if (buf[0] == '+') { 565 if (badblocks_set(&t_dev->badblocks, start, 566 end - start + 1, 1)) 567 ret = count; 568 } else if (badblocks_clear(&t_dev->badblocks, start, 569 end - start + 1)) { 570 ret = count; 571 } 572 out: 573 kfree(orig); 574 return ret; 575 } 576 CONFIGFS_ATTR(nullb_device_, badblocks); 577 578 static ssize_t nullb_device_zone_readonly_store(struct config_item *item, 579 const char *page, size_t count) 580 { 581 struct nullb_device *dev = to_nullb_device(item); 582 583 return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY); 584 } 585 CONFIGFS_ATTR_WO(nullb_device_, zone_readonly); 586 587 static ssize_t nullb_device_zone_offline_store(struct config_item *item, 588 const char *page, size_t count) 589 { 590 struct nullb_device *dev = to_nullb_device(item); 591 592 return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE); 593 } 594 CONFIGFS_ATTR_WO(nullb_device_, zone_offline); 595 596 static struct configfs_attribute *nullb_device_attrs[] = { 597 &nullb_device_attr_badblocks, 598 &nullb_device_attr_badblocks_once, 599 &nullb_device_attr_badblocks_partial_io, 600 &nullb_device_attr_blocking, 601 &nullb_device_attr_blocksize, 602 &nullb_device_attr_cache_size, 603 &nullb_device_attr_completion_nsec, 604 &nullb_device_attr_discard, 605 &nullb_device_attr_fua, 606 &nullb_device_attr_home_node, 607 &nullb_device_attr_hw_queue_depth, 608 &nullb_device_attr_index, 609 &nullb_device_attr_irqmode, 610 &nullb_device_attr_max_sectors, 611 &nullb_device_attr_mbps, 612 &nullb_device_attr_memory_backed, 613 &nullb_device_attr_no_sched, 614 &nullb_device_attr_poll_queues, 615 &nullb_device_attr_power, 616 &nullb_device_attr_queue_mode, 617 &nullb_device_attr_rotational, 618 &nullb_device_attr_shared_tag_bitmap, 619 &nullb_device_attr_shared_tags, 620 &nullb_device_attr_size, 621 &nullb_device_attr_submit_queues, 622 &nullb_device_attr_use_per_node_hctx, 623 &nullb_device_attr_virt_boundary, 624 &nullb_device_attr_zone_append_max_sectors, 625 &nullb_device_attr_zone_capacity, 626 &nullb_device_attr_zone_full, 627 &nullb_device_attr_zone_max_active, 628 &nullb_device_attr_zone_max_open, 629 &nullb_device_attr_zone_nr_conv, 630 &nullb_device_attr_zone_offline, 631 &nullb_device_attr_zone_readonly, 632 &nullb_device_attr_zone_size, 633 &nullb_device_attr_zoned, 634 NULL, 635 }; 636 637 static void nullb_device_release(struct config_item *item) 638 { 639 struct nullb_device *dev = to_nullb_device(item); 640 641 null_free_device_storage(dev, false); 642 null_free_dev(dev); 643 } 644 645 static struct configfs_item_operations nullb_device_ops = { 646 .release = nullb_device_release, 647 }; 648 649 static const struct config_item_type nullb_device_type = { 650 .ct_item_ops = &nullb_device_ops, 651 .ct_attrs = nullb_device_attrs, 652 .ct_owner = THIS_MODULE, 653 }; 654 655 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 656 657 static void nullb_add_fault_config(struct nullb_device *dev) 658 { 659 fault_config_init(&dev->timeout_config, "timeout_inject"); 660 fault_config_init(&dev->requeue_config, "requeue_inject"); 661 fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject"); 662 663 configfs_add_default_group(&dev->timeout_config.group, &dev->group); 664 configfs_add_default_group(&dev->requeue_config.group, &dev->group); 665 configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group); 666 } 667 668 #else 669 670 static void nullb_add_fault_config(struct nullb_device *dev) 671 { 672 } 673 674 #endif 675 676 static struct 677 config_group *nullb_group_make_group(struct config_group *group, const char *name) 678 { 679 struct nullb_device *dev; 680 681 if (null_find_dev_by_name(name)) 682 return ERR_PTR(-EEXIST); 683 684 dev = null_alloc_dev(); 685 if (!dev) 686 return ERR_PTR(-ENOMEM); 687 688 config_group_init_type_name(&dev->group, name, &nullb_device_type); 689 nullb_add_fault_config(dev); 690 691 return &dev->group; 692 } 693 694 static void 695 nullb_group_drop_item(struct config_group *group, struct config_item *item) 696 { 697 struct nullb_device *dev = to_nullb_device(item); 698 699 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { 700 mutex_lock(&lock); 701 dev->power = false; 702 null_del_dev(dev->nullb); 703 mutex_unlock(&lock); 704 } 705 706 config_item_put(item); 707 } 708 709 static ssize_t memb_group_features_show(struct config_item *item, char *page) 710 { 711 712 struct configfs_attribute **entry; 713 char delimiter = ','; 714 size_t left = PAGE_SIZE; 715 size_t written = 0; 716 int ret; 717 718 for (entry = &nullb_device_attrs[0]; *entry && left > 0; entry++) { 719 if (!*(entry + 1)) 720 delimiter = '\n'; 721 ret = snprintf(page + written, left, "%s%c", (*entry)->ca_name, 722 delimiter); 723 if (ret >= left) { 724 WARN_ONCE(1, "Too many null_blk features to print\n"); 725 memzero_explicit(page, PAGE_SIZE); 726 return -ENOBUFS; 727 } 728 left -= ret; 729 written += ret; 730 } 731 732 return written; 733 } 734 735 CONFIGFS_ATTR_RO(memb_group_, features); 736 737 static struct configfs_attribute *nullb_group_attrs[] = { 738 &memb_group_attr_features, 739 NULL, 740 }; 741 742 static struct configfs_group_operations nullb_group_ops = { 743 .make_group = nullb_group_make_group, 744 .drop_item = nullb_group_drop_item, 745 }; 746 747 static const struct config_item_type nullb_group_type = { 748 .ct_group_ops = &nullb_group_ops, 749 .ct_attrs = nullb_group_attrs, 750 .ct_owner = THIS_MODULE, 751 }; 752 753 static struct configfs_subsystem nullb_subsys = { 754 .su_group = { 755 .cg_item = { 756 .ci_namebuf = "nullb", 757 .ci_type = &nullb_group_type, 758 }, 759 }, 760 }; 761 762 static inline int null_cache_active(struct nullb *nullb) 763 { 764 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); 765 } 766 767 static struct nullb_device *null_alloc_dev(void) 768 { 769 struct nullb_device *dev; 770 771 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 772 if (!dev) 773 return NULL; 774 775 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 776 dev->timeout_config.attr = null_timeout_attr; 777 dev->requeue_config.attr = null_requeue_attr; 778 dev->init_hctx_fault_config.attr = null_init_hctx_attr; 779 #endif 780 781 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC); 782 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC); 783 if (badblocks_init(&dev->badblocks, 0)) { 784 kfree(dev); 785 return NULL; 786 } 787 788 dev->size = g_gb * 1024; 789 dev->completion_nsec = g_completion_nsec; 790 dev->submit_queues = g_submit_queues; 791 dev->prev_submit_queues = g_submit_queues; 792 dev->poll_queues = g_poll_queues; 793 dev->prev_poll_queues = g_poll_queues; 794 dev->home_node = g_home_node; 795 dev->queue_mode = g_queue_mode; 796 dev->blocksize = g_bs; 797 dev->max_sectors = g_max_sectors; 798 dev->irqmode = g_irqmode; 799 dev->hw_queue_depth = g_hw_queue_depth; 800 dev->blocking = g_blocking; 801 dev->memory_backed = g_memory_backed; 802 dev->discard = g_discard; 803 dev->cache_size = g_cache_size; 804 dev->mbps = g_mbps; 805 dev->use_per_node_hctx = g_use_per_node_hctx; 806 dev->zoned = g_zoned; 807 dev->zone_size = g_zone_size; 808 dev->zone_capacity = g_zone_capacity; 809 dev->zone_nr_conv = g_zone_nr_conv; 810 dev->zone_max_open = g_zone_max_open; 811 dev->zone_max_active = g_zone_max_active; 812 dev->zone_append_max_sectors = g_zone_append_max_sectors; 813 dev->zone_full = g_zone_full; 814 dev->virt_boundary = g_virt_boundary; 815 dev->no_sched = g_no_sched; 816 dev->shared_tags = g_shared_tags; 817 dev->shared_tag_bitmap = g_shared_tag_bitmap; 818 dev->fua = g_fua; 819 dev->rotational = g_rotational; 820 821 return dev; 822 } 823 824 static void null_free_dev(struct nullb_device *dev) 825 { 826 if (!dev) 827 return; 828 829 null_free_zoned_dev(dev); 830 badblocks_exit(&dev->badblocks); 831 kfree(dev); 832 } 833 834 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer) 835 { 836 struct nullb_cmd *cmd = container_of(timer, struct nullb_cmd, timer); 837 838 blk_mq_end_request(blk_mq_rq_from_pdu(cmd), cmd->error); 839 return HRTIMER_NORESTART; 840 } 841 842 static void null_cmd_end_timer(struct nullb_cmd *cmd) 843 { 844 ktime_t kt = cmd->nq->dev->completion_nsec; 845 846 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL); 847 } 848 849 static void null_complete_rq(struct request *rq) 850 { 851 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 852 853 blk_mq_end_request(rq, cmd->error); 854 } 855 856 static struct nullb_page *null_alloc_page(void) 857 { 858 struct nullb_page *t_page; 859 860 t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO); 861 if (!t_page) 862 return NULL; 863 864 t_page->page = alloc_pages(GFP_NOIO, 0); 865 if (!t_page->page) { 866 kfree(t_page); 867 return NULL; 868 } 869 870 memset(t_page->bitmap, 0, sizeof(t_page->bitmap)); 871 return t_page; 872 } 873 874 static void null_free_page(struct nullb_page *t_page) 875 { 876 __set_bit(NULLB_PAGE_FREE, t_page->bitmap); 877 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap)) 878 return; 879 __free_page(t_page->page); 880 kfree(t_page); 881 } 882 883 static bool null_page_empty(struct nullb_page *page) 884 { 885 int size = MAP_SZ - 2; 886 887 return find_first_bit(page->bitmap, size) == size; 888 } 889 890 static void null_free_sector(struct nullb *nullb, sector_t sector, 891 bool is_cache) 892 { 893 unsigned int sector_bit; 894 u64 idx; 895 struct nullb_page *t_page, *ret; 896 struct radix_tree_root *root; 897 898 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 899 idx = sector >> PAGE_SECTORS_SHIFT; 900 sector_bit = (sector & SECTOR_MASK); 901 902 t_page = radix_tree_lookup(root, idx); 903 if (t_page) { 904 __clear_bit(sector_bit, t_page->bitmap); 905 906 if (null_page_empty(t_page)) { 907 ret = radix_tree_delete_item(root, idx, t_page); 908 WARN_ON(ret != t_page); 909 null_free_page(ret); 910 if (is_cache) 911 nullb->dev->curr_cache -= PAGE_SIZE; 912 } 913 } 914 } 915 916 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx, 917 struct nullb_page *t_page, bool is_cache) 918 { 919 struct radix_tree_root *root; 920 921 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 922 923 if (radix_tree_insert(root, idx, t_page)) { 924 null_free_page(t_page); 925 t_page = radix_tree_lookup(root, idx); 926 WARN_ON(!t_page || t_page->page->private != idx); 927 } else if (is_cache) 928 nullb->dev->curr_cache += PAGE_SIZE; 929 930 return t_page; 931 } 932 933 static void null_free_device_storage(struct nullb_device *dev, bool is_cache) 934 { 935 unsigned long pos = 0; 936 int nr_pages; 937 struct nullb_page *ret, *t_pages[FREE_BATCH]; 938 struct radix_tree_root *root; 939 940 root = is_cache ? &dev->cache : &dev->data; 941 942 do { 943 int i; 944 945 nr_pages = radix_tree_gang_lookup(root, 946 (void **)t_pages, pos, FREE_BATCH); 947 948 for (i = 0; i < nr_pages; i++) { 949 pos = t_pages[i]->page->private; 950 ret = radix_tree_delete_item(root, pos, t_pages[i]); 951 WARN_ON(ret != t_pages[i]); 952 null_free_page(ret); 953 } 954 955 pos++; 956 } while (nr_pages == FREE_BATCH); 957 958 if (is_cache) 959 dev->curr_cache = 0; 960 } 961 962 static struct nullb_page *__null_lookup_page(struct nullb *nullb, 963 sector_t sector, bool for_write, bool is_cache) 964 { 965 unsigned int sector_bit; 966 u64 idx; 967 struct nullb_page *t_page; 968 struct radix_tree_root *root; 969 970 idx = sector >> PAGE_SECTORS_SHIFT; 971 sector_bit = (sector & SECTOR_MASK); 972 973 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 974 t_page = radix_tree_lookup(root, idx); 975 WARN_ON(t_page && t_page->page->private != idx); 976 977 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap))) 978 return t_page; 979 980 return NULL; 981 } 982 983 static struct nullb_page *null_lookup_page(struct nullb *nullb, 984 sector_t sector, bool for_write, bool ignore_cache) 985 { 986 struct nullb_page *page = NULL; 987 988 if (!ignore_cache) 989 page = __null_lookup_page(nullb, sector, for_write, true); 990 if (page) 991 return page; 992 return __null_lookup_page(nullb, sector, for_write, false); 993 } 994 995 static struct nullb_page *null_insert_page(struct nullb *nullb, 996 sector_t sector, bool ignore_cache) 997 __releases(&nullb->lock) 998 __acquires(&nullb->lock) 999 { 1000 u64 idx; 1001 struct nullb_page *t_page; 1002 1003 t_page = null_lookup_page(nullb, sector, true, ignore_cache); 1004 if (t_page) 1005 return t_page; 1006 1007 spin_unlock_irq(&nullb->lock); 1008 1009 t_page = null_alloc_page(); 1010 if (!t_page) 1011 goto out_lock; 1012 1013 if (radix_tree_preload(GFP_NOIO)) 1014 goto out_freepage; 1015 1016 spin_lock_irq(&nullb->lock); 1017 idx = sector >> PAGE_SECTORS_SHIFT; 1018 t_page->page->private = idx; 1019 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache); 1020 radix_tree_preload_end(); 1021 1022 return t_page; 1023 out_freepage: 1024 null_free_page(t_page); 1025 out_lock: 1026 spin_lock_irq(&nullb->lock); 1027 return null_lookup_page(nullb, sector, true, ignore_cache); 1028 } 1029 1030 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page) 1031 { 1032 int i; 1033 unsigned int offset; 1034 u64 idx; 1035 struct nullb_page *t_page, *ret; 1036 void *dst, *src; 1037 1038 idx = c_page->page->private; 1039 1040 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true); 1041 1042 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap); 1043 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) { 1044 null_free_page(c_page); 1045 if (t_page && null_page_empty(t_page)) { 1046 ret = radix_tree_delete_item(&nullb->dev->data, 1047 idx, t_page); 1048 null_free_page(t_page); 1049 } 1050 return 0; 1051 } 1052 1053 if (!t_page) 1054 return -ENOMEM; 1055 1056 src = kmap_local_page(c_page->page); 1057 dst = kmap_local_page(t_page->page); 1058 1059 for (i = 0; i < PAGE_SECTORS; 1060 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) { 1061 if (test_bit(i, c_page->bitmap)) { 1062 offset = (i << SECTOR_SHIFT); 1063 memcpy(dst + offset, src + offset, 1064 nullb->dev->blocksize); 1065 __set_bit(i, t_page->bitmap); 1066 } 1067 } 1068 1069 kunmap_local(dst); 1070 kunmap_local(src); 1071 1072 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page); 1073 null_free_page(ret); 1074 nullb->dev->curr_cache -= PAGE_SIZE; 1075 1076 return 0; 1077 } 1078 1079 static int null_make_cache_space(struct nullb *nullb, unsigned long n) 1080 { 1081 int i, err, nr_pages; 1082 struct nullb_page *c_pages[FREE_BATCH]; 1083 unsigned long flushed = 0, one_round; 1084 1085 again: 1086 if ((nullb->dev->cache_size * 1024 * 1024) > 1087 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0) 1088 return 0; 1089 1090 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache, 1091 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH); 1092 /* 1093 * nullb_flush_cache_page could unlock before using the c_pages. To 1094 * avoid race, we don't allow page free 1095 */ 1096 for (i = 0; i < nr_pages; i++) { 1097 nullb->cache_flush_pos = c_pages[i]->page->private; 1098 /* 1099 * We found the page which is being flushed to disk by other 1100 * threads 1101 */ 1102 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap)) 1103 c_pages[i] = NULL; 1104 else 1105 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap); 1106 } 1107 1108 one_round = 0; 1109 for (i = 0; i < nr_pages; i++) { 1110 if (c_pages[i] == NULL) 1111 continue; 1112 err = null_flush_cache_page(nullb, c_pages[i]); 1113 if (err) 1114 return err; 1115 one_round++; 1116 } 1117 flushed += one_round << PAGE_SHIFT; 1118 1119 if (n > flushed) { 1120 if (nr_pages == 0) 1121 nullb->cache_flush_pos = 0; 1122 if (one_round == 0) { 1123 /* give other threads a chance */ 1124 spin_unlock_irq(&nullb->lock); 1125 spin_lock_irq(&nullb->lock); 1126 } 1127 goto again; 1128 } 1129 return 0; 1130 } 1131 1132 static int copy_to_nullb(struct nullb *nullb, struct page *source, 1133 unsigned int off, sector_t sector, size_t n, bool is_fua) 1134 { 1135 size_t temp, count = 0; 1136 unsigned int offset; 1137 struct nullb_page *t_page; 1138 1139 while (count < n) { 1140 temp = min_t(size_t, nullb->dev->blocksize, n - count); 1141 1142 if (null_cache_active(nullb) && !is_fua) 1143 null_make_cache_space(nullb, PAGE_SIZE); 1144 1145 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT; 1146 t_page = null_insert_page(nullb, sector, 1147 !null_cache_active(nullb) || is_fua); 1148 if (!t_page) 1149 return -ENOSPC; 1150 1151 memcpy_page(t_page->page, offset, source, off + count, temp); 1152 1153 __set_bit(sector & SECTOR_MASK, t_page->bitmap); 1154 1155 if (is_fua) 1156 null_free_sector(nullb, sector, true); 1157 1158 count += temp; 1159 sector += temp >> SECTOR_SHIFT; 1160 } 1161 return 0; 1162 } 1163 1164 static int copy_from_nullb(struct nullb *nullb, struct page *dest, 1165 unsigned int off, sector_t sector, size_t n) 1166 { 1167 size_t temp, count = 0; 1168 unsigned int offset; 1169 struct nullb_page *t_page; 1170 1171 while (count < n) { 1172 temp = min_t(size_t, nullb->dev->blocksize, n - count); 1173 1174 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT; 1175 t_page = null_lookup_page(nullb, sector, false, 1176 !null_cache_active(nullb)); 1177 1178 if (t_page) 1179 memcpy_page(dest, off + count, t_page->page, offset, 1180 temp); 1181 else 1182 zero_user(dest, off + count, temp); 1183 1184 count += temp; 1185 sector += temp >> SECTOR_SHIFT; 1186 } 1187 return 0; 1188 } 1189 1190 static void nullb_fill_pattern(struct nullb *nullb, struct page *page, 1191 unsigned int len, unsigned int off) 1192 { 1193 memset_page(page, off, 0xff, len); 1194 } 1195 1196 blk_status_t null_handle_discard(struct nullb_device *dev, 1197 sector_t sector, sector_t nr_sectors) 1198 { 1199 struct nullb *nullb = dev->nullb; 1200 size_t n = nr_sectors << SECTOR_SHIFT; 1201 size_t temp; 1202 1203 spin_lock_irq(&nullb->lock); 1204 while (n > 0) { 1205 temp = min_t(size_t, n, dev->blocksize); 1206 null_free_sector(nullb, sector, false); 1207 if (null_cache_active(nullb)) 1208 null_free_sector(nullb, sector, true); 1209 sector += temp >> SECTOR_SHIFT; 1210 n -= temp; 1211 } 1212 spin_unlock_irq(&nullb->lock); 1213 1214 return BLK_STS_OK; 1215 } 1216 1217 static blk_status_t null_handle_flush(struct nullb *nullb) 1218 { 1219 int err; 1220 1221 if (!null_cache_active(nullb)) 1222 return 0; 1223 1224 spin_lock_irq(&nullb->lock); 1225 while (true) { 1226 err = null_make_cache_space(nullb, 1227 nullb->dev->cache_size * 1024 * 1024); 1228 if (err || nullb->dev->curr_cache == 0) 1229 break; 1230 } 1231 1232 WARN_ON(!radix_tree_empty(&nullb->dev->cache)); 1233 spin_unlock_irq(&nullb->lock); 1234 return errno_to_blk_status(err); 1235 } 1236 1237 static int null_transfer(struct nullb *nullb, struct page *page, 1238 unsigned int len, unsigned int off, bool is_write, sector_t sector, 1239 bool is_fua) 1240 { 1241 struct nullb_device *dev = nullb->dev; 1242 unsigned int valid_len = len; 1243 int err = 0; 1244 1245 if (!is_write) { 1246 if (dev->zoned) 1247 valid_len = null_zone_valid_read_len(nullb, 1248 sector, len); 1249 1250 if (valid_len) { 1251 err = copy_from_nullb(nullb, page, off, 1252 sector, valid_len); 1253 off += valid_len; 1254 len -= valid_len; 1255 } 1256 1257 if (len) 1258 nullb_fill_pattern(nullb, page, len, off); 1259 flush_dcache_page(page); 1260 } else { 1261 flush_dcache_page(page); 1262 err = copy_to_nullb(nullb, page, off, sector, len, is_fua); 1263 } 1264 1265 return err; 1266 } 1267 1268 /* 1269 * Transfer data for the given request. The transfer size is capped with the 1270 * nr_sectors argument. 1271 */ 1272 static blk_status_t null_handle_data_transfer(struct nullb_cmd *cmd, 1273 sector_t nr_sectors) 1274 { 1275 struct request *rq = blk_mq_rq_from_pdu(cmd); 1276 struct nullb *nullb = cmd->nq->dev->nullb; 1277 int err = 0; 1278 unsigned int len; 1279 sector_t sector = blk_rq_pos(rq); 1280 unsigned int max_bytes = nr_sectors << SECTOR_SHIFT; 1281 unsigned int transferred_bytes = 0; 1282 struct req_iterator iter; 1283 struct bio_vec bvec; 1284 1285 spin_lock_irq(&nullb->lock); 1286 rq_for_each_segment(bvec, rq, iter) { 1287 len = bvec.bv_len; 1288 if (transferred_bytes + len > max_bytes) 1289 len = max_bytes - transferred_bytes; 1290 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset, 1291 op_is_write(req_op(rq)), sector, 1292 rq->cmd_flags & REQ_FUA); 1293 if (err) 1294 break; 1295 sector += len >> SECTOR_SHIFT; 1296 transferred_bytes += len; 1297 if (transferred_bytes >= max_bytes) 1298 break; 1299 } 1300 spin_unlock_irq(&nullb->lock); 1301 1302 return errno_to_blk_status(err); 1303 } 1304 1305 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd) 1306 { 1307 struct nullb_device *dev = cmd->nq->dev; 1308 struct nullb *nullb = dev->nullb; 1309 blk_status_t sts = BLK_STS_OK; 1310 struct request *rq = blk_mq_rq_from_pdu(cmd); 1311 1312 if (!hrtimer_active(&nullb->bw_timer)) 1313 hrtimer_restart(&nullb->bw_timer); 1314 1315 if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) { 1316 blk_mq_stop_hw_queues(nullb->q); 1317 /* race with timer */ 1318 if (atomic_long_read(&nullb->cur_bytes) > 0) 1319 blk_mq_start_stopped_hw_queues(nullb->q, true); 1320 /* requeue request */ 1321 sts = BLK_STS_DEV_RESOURCE; 1322 } 1323 return sts; 1324 } 1325 1326 /* 1327 * Check if the command should fail for the badblocks. If so, return 1328 * BLK_STS_IOERR and return number of partial I/O sectors to be written or read, 1329 * which may be less than the requested number of sectors. 1330 * 1331 * @cmd: The command to handle. 1332 * @sector: The start sector for I/O. 1333 * @nr_sectors: Specifies number of sectors to write or read, and returns the 1334 * number of sectors to be written or read. 1335 */ 1336 blk_status_t null_handle_badblocks(struct nullb_cmd *cmd, sector_t sector, 1337 unsigned int *nr_sectors) 1338 { 1339 struct badblocks *bb = &cmd->nq->dev->badblocks; 1340 struct nullb_device *dev = cmd->nq->dev; 1341 unsigned int block_sectors = dev->blocksize >> SECTOR_SHIFT; 1342 sector_t first_bad, bad_sectors; 1343 unsigned int partial_io_sectors = 0; 1344 1345 if (!badblocks_check(bb, sector, *nr_sectors, &first_bad, &bad_sectors)) 1346 return BLK_STS_OK; 1347 1348 if (cmd->nq->dev->badblocks_once) 1349 badblocks_clear(bb, first_bad, bad_sectors); 1350 1351 if (cmd->nq->dev->badblocks_partial_io) { 1352 if (!IS_ALIGNED(first_bad, block_sectors)) 1353 first_bad = ALIGN_DOWN(first_bad, block_sectors); 1354 if (sector < first_bad) 1355 partial_io_sectors = first_bad - sector; 1356 } 1357 *nr_sectors = partial_io_sectors; 1358 1359 return BLK_STS_IOERR; 1360 } 1361 1362 blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd, enum req_op op, 1363 sector_t sector, sector_t nr_sectors) 1364 { 1365 struct nullb_device *dev = cmd->nq->dev; 1366 1367 if (op == REQ_OP_DISCARD) 1368 return null_handle_discard(dev, sector, nr_sectors); 1369 1370 return null_handle_data_transfer(cmd, nr_sectors); 1371 } 1372 1373 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd) 1374 { 1375 struct request *rq = blk_mq_rq_from_pdu(cmd); 1376 struct nullb_device *dev = cmd->nq->dev; 1377 struct bio *bio; 1378 1379 if (!dev->memory_backed && req_op(rq) == REQ_OP_READ) { 1380 __rq_for_each_bio(bio, rq) 1381 zero_fill_bio(bio); 1382 } 1383 } 1384 1385 static inline void nullb_complete_cmd(struct nullb_cmd *cmd) 1386 { 1387 struct request *rq = blk_mq_rq_from_pdu(cmd); 1388 1389 /* 1390 * Since root privileges are required to configure the null_blk 1391 * driver, it is fine that this driver does not initialize the 1392 * data buffers of read commands. Zero-initialize these buffers 1393 * anyway if KMSAN is enabled to prevent that KMSAN complains 1394 * about null_blk not initializing read data buffers. 1395 */ 1396 if (IS_ENABLED(CONFIG_KMSAN)) 1397 nullb_zero_read_cmd_buffer(cmd); 1398 1399 /* Complete IO by inline, softirq or timer */ 1400 switch (cmd->nq->dev->irqmode) { 1401 case NULL_IRQ_SOFTIRQ: 1402 blk_mq_complete_request(rq); 1403 break; 1404 case NULL_IRQ_NONE: 1405 blk_mq_end_request(rq, cmd->error); 1406 break; 1407 case NULL_IRQ_TIMER: 1408 null_cmd_end_timer(cmd); 1409 break; 1410 } 1411 } 1412 1413 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op, 1414 sector_t sector, unsigned int nr_sectors) 1415 { 1416 struct nullb_device *dev = cmd->nq->dev; 1417 blk_status_t badblocks_ret = BLK_STS_OK; 1418 blk_status_t ret; 1419 1420 if (dev->badblocks.shift != -1) 1421 badblocks_ret = null_handle_badblocks(cmd, sector, &nr_sectors); 1422 1423 if (dev->memory_backed && nr_sectors) { 1424 ret = null_handle_memory_backed(cmd, op, sector, nr_sectors); 1425 if (ret != BLK_STS_OK) 1426 return ret; 1427 } 1428 1429 return badblocks_ret; 1430 } 1431 1432 static void null_handle_cmd(struct nullb_cmd *cmd, sector_t sector, 1433 sector_t nr_sectors, enum req_op op) 1434 { 1435 struct nullb_device *dev = cmd->nq->dev; 1436 struct nullb *nullb = dev->nullb; 1437 blk_status_t sts; 1438 1439 if (op == REQ_OP_FLUSH) { 1440 cmd->error = null_handle_flush(nullb); 1441 goto out; 1442 } 1443 1444 if (dev->zoned) 1445 sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors); 1446 else 1447 sts = null_process_cmd(cmd, op, sector, nr_sectors); 1448 1449 /* Do not overwrite errors (e.g. timeout errors) */ 1450 if (cmd->error == BLK_STS_OK) 1451 cmd->error = sts; 1452 1453 out: 1454 nullb_complete_cmd(cmd); 1455 } 1456 1457 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer) 1458 { 1459 struct nullb *nullb = container_of(timer, struct nullb, bw_timer); 1460 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); 1461 unsigned int mbps = nullb->dev->mbps; 1462 1463 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps)) 1464 return HRTIMER_NORESTART; 1465 1466 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps)); 1467 blk_mq_start_stopped_hw_queues(nullb->q, true); 1468 1469 hrtimer_forward_now(&nullb->bw_timer, timer_interval); 1470 1471 return HRTIMER_RESTART; 1472 } 1473 1474 static void nullb_setup_bwtimer(struct nullb *nullb) 1475 { 1476 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); 1477 1478 hrtimer_setup(&nullb->bw_timer, nullb_bwtimer_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1479 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps)); 1480 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL); 1481 } 1482 1483 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1484 1485 static bool should_timeout_request(struct request *rq) 1486 { 1487 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1488 struct nullb_device *dev = cmd->nq->dev; 1489 1490 return should_fail(&dev->timeout_config.attr, 1); 1491 } 1492 1493 static bool should_requeue_request(struct request *rq) 1494 { 1495 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1496 struct nullb_device *dev = cmd->nq->dev; 1497 1498 return should_fail(&dev->requeue_config.attr, 1); 1499 } 1500 1501 static bool should_init_hctx_fail(struct nullb_device *dev) 1502 { 1503 return should_fail(&dev->init_hctx_fault_config.attr, 1); 1504 } 1505 1506 #else 1507 1508 static bool should_timeout_request(struct request *rq) 1509 { 1510 return false; 1511 } 1512 1513 static bool should_requeue_request(struct request *rq) 1514 { 1515 return false; 1516 } 1517 1518 static bool should_init_hctx_fail(struct nullb_device *dev) 1519 { 1520 return false; 1521 } 1522 1523 #endif 1524 1525 static void null_map_queues(struct blk_mq_tag_set *set) 1526 { 1527 struct nullb *nullb = set->driver_data; 1528 int i, qoff; 1529 unsigned int submit_queues = g_submit_queues; 1530 unsigned int poll_queues = g_poll_queues; 1531 1532 if (nullb) { 1533 struct nullb_device *dev = nullb->dev; 1534 1535 /* 1536 * Refer nr_hw_queues of the tag set to check if the expected 1537 * number of hardware queues are prepared. If block layer failed 1538 * to prepare them, use previous numbers of submit queues and 1539 * poll queues to map queues. 1540 */ 1541 if (set->nr_hw_queues == 1542 dev->submit_queues + dev->poll_queues) { 1543 submit_queues = dev->submit_queues; 1544 poll_queues = dev->poll_queues; 1545 } else if (set->nr_hw_queues == 1546 dev->prev_submit_queues + dev->prev_poll_queues) { 1547 submit_queues = dev->prev_submit_queues; 1548 poll_queues = dev->prev_poll_queues; 1549 } else { 1550 pr_warn("tag set has unexpected nr_hw_queues: %d\n", 1551 set->nr_hw_queues); 1552 WARN_ON_ONCE(true); 1553 submit_queues = 1; 1554 poll_queues = 0; 1555 } 1556 } 1557 1558 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 1559 struct blk_mq_queue_map *map = &set->map[i]; 1560 1561 switch (i) { 1562 case HCTX_TYPE_DEFAULT: 1563 map->nr_queues = submit_queues; 1564 break; 1565 case HCTX_TYPE_READ: 1566 map->nr_queues = 0; 1567 continue; 1568 case HCTX_TYPE_POLL: 1569 map->nr_queues = poll_queues; 1570 break; 1571 } 1572 map->queue_offset = qoff; 1573 qoff += map->nr_queues; 1574 blk_mq_map_queues(map); 1575 } 1576 } 1577 1578 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1579 { 1580 struct nullb_queue *nq = hctx->driver_data; 1581 LIST_HEAD(list); 1582 int nr = 0; 1583 struct request *rq; 1584 1585 spin_lock(&nq->poll_lock); 1586 list_splice_init(&nq->poll_list, &list); 1587 list_for_each_entry(rq, &list, queuelist) 1588 blk_mq_set_request_complete(rq); 1589 spin_unlock(&nq->poll_lock); 1590 1591 while (!list_empty(&list)) { 1592 struct nullb_cmd *cmd; 1593 struct request *req; 1594 1595 req = list_first_entry(&list, struct request, queuelist); 1596 list_del_init(&req->queuelist); 1597 cmd = blk_mq_rq_to_pdu(req); 1598 cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req), 1599 blk_rq_sectors(req)); 1600 if (!blk_mq_add_to_batch(req, iob, cmd->error != BLK_STS_OK, 1601 blk_mq_end_request_batch)) 1602 blk_mq_end_request(req, cmd->error); 1603 nr++; 1604 } 1605 1606 return nr; 1607 } 1608 1609 static enum blk_eh_timer_return null_timeout_rq(struct request *rq) 1610 { 1611 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1612 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1613 1614 if (hctx->type == HCTX_TYPE_POLL) { 1615 struct nullb_queue *nq = hctx->driver_data; 1616 1617 spin_lock(&nq->poll_lock); 1618 /* The request may have completed meanwhile. */ 1619 if (blk_mq_request_completed(rq)) { 1620 spin_unlock(&nq->poll_lock); 1621 return BLK_EH_DONE; 1622 } 1623 list_del_init(&rq->queuelist); 1624 spin_unlock(&nq->poll_lock); 1625 } 1626 1627 pr_info("rq %p timed out\n", rq); 1628 1629 /* 1630 * If the device is marked as blocking (i.e. memory backed or zoned 1631 * device), the submission path may be blocked waiting for resources 1632 * and cause real timeouts. For these real timeouts, the submission 1633 * path will complete the request using blk_mq_complete_request(). 1634 * Only fake timeouts need to execute blk_mq_complete_request() here. 1635 */ 1636 cmd->error = BLK_STS_TIMEOUT; 1637 if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL) 1638 blk_mq_complete_request(rq); 1639 return BLK_EH_DONE; 1640 } 1641 1642 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx, 1643 const struct blk_mq_queue_data *bd) 1644 { 1645 struct request *rq = bd->rq; 1646 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1647 struct nullb_queue *nq = hctx->driver_data; 1648 sector_t nr_sectors = blk_rq_sectors(rq); 1649 sector_t sector = blk_rq_pos(rq); 1650 const bool is_poll = hctx->type == HCTX_TYPE_POLL; 1651 1652 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1653 1654 if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) { 1655 hrtimer_setup(&cmd->timer, null_cmd_timer_expired, CLOCK_MONOTONIC, 1656 HRTIMER_MODE_REL); 1657 } 1658 cmd->error = BLK_STS_OK; 1659 cmd->nq = nq; 1660 cmd->fake_timeout = should_timeout_request(rq) || 1661 blk_should_fake_timeout(rq->q); 1662 1663 if (should_requeue_request(rq)) { 1664 /* 1665 * Alternate between hitting the core BUSY path, and the 1666 * driver driven requeue path 1667 */ 1668 nq->requeue_selection++; 1669 if (nq->requeue_selection & 1) 1670 return BLK_STS_RESOURCE; 1671 blk_mq_requeue_request(rq, true); 1672 return BLK_STS_OK; 1673 } 1674 1675 if (test_bit(NULLB_DEV_FL_THROTTLED, &nq->dev->flags)) { 1676 blk_status_t sts = null_handle_throttled(cmd); 1677 1678 if (sts != BLK_STS_OK) 1679 return sts; 1680 } 1681 1682 blk_mq_start_request(rq); 1683 1684 if (is_poll) { 1685 spin_lock(&nq->poll_lock); 1686 list_add_tail(&rq->queuelist, &nq->poll_list); 1687 spin_unlock(&nq->poll_lock); 1688 return BLK_STS_OK; 1689 } 1690 if (cmd->fake_timeout) 1691 return BLK_STS_OK; 1692 1693 null_handle_cmd(cmd, sector, nr_sectors, req_op(rq)); 1694 return BLK_STS_OK; 1695 } 1696 1697 static void null_queue_rqs(struct rq_list *rqlist) 1698 { 1699 struct rq_list requeue_list = {}; 1700 struct blk_mq_queue_data bd = { }; 1701 blk_status_t ret; 1702 1703 do { 1704 struct request *rq = rq_list_pop(rqlist); 1705 1706 bd.rq = rq; 1707 ret = null_queue_rq(rq->mq_hctx, &bd); 1708 if (ret != BLK_STS_OK) 1709 rq_list_add_tail(&requeue_list, rq); 1710 } while (!rq_list_empty(rqlist)); 1711 1712 *rqlist = requeue_list; 1713 } 1714 1715 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq) 1716 { 1717 nq->dev = nullb->dev; 1718 INIT_LIST_HEAD(&nq->poll_list); 1719 spin_lock_init(&nq->poll_lock); 1720 } 1721 1722 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data, 1723 unsigned int hctx_idx) 1724 { 1725 struct nullb *nullb = hctx->queue->queuedata; 1726 struct nullb_queue *nq; 1727 1728 if (should_init_hctx_fail(nullb->dev)) 1729 return -EFAULT; 1730 1731 nq = &nullb->queues[hctx_idx]; 1732 hctx->driver_data = nq; 1733 null_init_queue(nullb, nq); 1734 1735 return 0; 1736 } 1737 1738 static const struct blk_mq_ops null_mq_ops = { 1739 .queue_rq = null_queue_rq, 1740 .queue_rqs = null_queue_rqs, 1741 .complete = null_complete_rq, 1742 .timeout = null_timeout_rq, 1743 .poll = null_poll, 1744 .map_queues = null_map_queues, 1745 .init_hctx = null_init_hctx, 1746 }; 1747 1748 static void null_del_dev(struct nullb *nullb) 1749 { 1750 struct nullb_device *dev; 1751 1752 if (!nullb) 1753 return; 1754 1755 dev = nullb->dev; 1756 1757 ida_free(&nullb_indexes, nullb->index); 1758 1759 list_del_init(&nullb->list); 1760 1761 del_gendisk(nullb->disk); 1762 1763 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) { 1764 hrtimer_cancel(&nullb->bw_timer); 1765 atomic_long_set(&nullb->cur_bytes, LONG_MAX); 1766 blk_mq_start_stopped_hw_queues(nullb->q, true); 1767 } 1768 1769 put_disk(nullb->disk); 1770 if (nullb->tag_set == &nullb->__tag_set) 1771 blk_mq_free_tag_set(nullb->tag_set); 1772 kfree(nullb->queues); 1773 if (null_cache_active(nullb)) 1774 null_free_device_storage(nullb->dev, true); 1775 kfree(nullb); 1776 dev->nullb = NULL; 1777 } 1778 1779 static void null_config_discard(struct nullb *nullb, struct queue_limits *lim) 1780 { 1781 if (nullb->dev->discard == false) 1782 return; 1783 1784 if (!nullb->dev->memory_backed) { 1785 nullb->dev->discard = false; 1786 pr_info("discard option is ignored without memory backing\n"); 1787 return; 1788 } 1789 1790 if (nullb->dev->zoned) { 1791 nullb->dev->discard = false; 1792 pr_info("discard option is ignored in zoned mode\n"); 1793 return; 1794 } 1795 1796 lim->max_hw_discard_sectors = UINT_MAX >> 9; 1797 } 1798 1799 static const struct block_device_operations null_ops = { 1800 .owner = THIS_MODULE, 1801 .report_zones = null_report_zones, 1802 }; 1803 1804 static int setup_queues(struct nullb *nullb) 1805 { 1806 int nqueues = nr_cpu_ids; 1807 1808 if (g_poll_queues) 1809 nqueues += g_poll_queues; 1810 1811 nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue), 1812 GFP_KERNEL); 1813 if (!nullb->queues) 1814 return -ENOMEM; 1815 1816 return 0; 1817 } 1818 1819 static int null_init_tag_set(struct blk_mq_tag_set *set, int poll_queues) 1820 { 1821 set->ops = &null_mq_ops; 1822 set->cmd_size = sizeof(struct nullb_cmd); 1823 set->timeout = 5 * HZ; 1824 set->nr_maps = 1; 1825 if (poll_queues) { 1826 set->nr_hw_queues += poll_queues; 1827 set->nr_maps += 2; 1828 } 1829 return blk_mq_alloc_tag_set(set); 1830 } 1831 1832 static int null_init_global_tag_set(void) 1833 { 1834 int error; 1835 1836 if (tag_set.ops) 1837 return 0; 1838 1839 tag_set.nr_hw_queues = g_submit_queues; 1840 tag_set.queue_depth = g_hw_queue_depth; 1841 tag_set.numa_node = g_home_node; 1842 if (g_no_sched) 1843 tag_set.flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT; 1844 if (g_shared_tag_bitmap) 1845 tag_set.flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1846 if (g_blocking) 1847 tag_set.flags |= BLK_MQ_F_BLOCKING; 1848 1849 error = null_init_tag_set(&tag_set, g_poll_queues); 1850 if (error) 1851 tag_set.ops = NULL; 1852 return error; 1853 } 1854 1855 static int null_setup_tagset(struct nullb *nullb) 1856 { 1857 if (nullb->dev->shared_tags) { 1858 nullb->tag_set = &tag_set; 1859 return null_init_global_tag_set(); 1860 } 1861 1862 nullb->tag_set = &nullb->__tag_set; 1863 nullb->tag_set->driver_data = nullb; 1864 nullb->tag_set->nr_hw_queues = nullb->dev->submit_queues; 1865 nullb->tag_set->queue_depth = nullb->dev->hw_queue_depth; 1866 nullb->tag_set->numa_node = nullb->dev->home_node; 1867 if (nullb->dev->no_sched) 1868 nullb->tag_set->flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT; 1869 if (nullb->dev->shared_tag_bitmap) 1870 nullb->tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1871 if (nullb->dev->blocking) 1872 nullb->tag_set->flags |= BLK_MQ_F_BLOCKING; 1873 return null_init_tag_set(nullb->tag_set, nullb->dev->poll_queues); 1874 } 1875 1876 static int null_validate_conf(struct nullb_device *dev) 1877 { 1878 if (dev->queue_mode == NULL_Q_RQ) { 1879 pr_err("legacy IO path is no longer available\n"); 1880 return -EINVAL; 1881 } 1882 if (dev->queue_mode == NULL_Q_BIO) { 1883 pr_err("BIO-based IO path is no longer available, using blk-mq instead.\n"); 1884 dev->queue_mode = NULL_Q_MQ; 1885 } 1886 1887 if (dev->use_per_node_hctx) { 1888 if (dev->submit_queues != nr_online_nodes) 1889 dev->submit_queues = nr_online_nodes; 1890 } else if (dev->submit_queues > nr_cpu_ids) 1891 dev->submit_queues = nr_cpu_ids; 1892 else if (dev->submit_queues == 0) 1893 dev->submit_queues = 1; 1894 dev->prev_submit_queues = dev->submit_queues; 1895 1896 if (dev->poll_queues > g_poll_queues) 1897 dev->poll_queues = g_poll_queues; 1898 dev->prev_poll_queues = dev->poll_queues; 1899 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER); 1900 1901 /* Do memory allocation, so set blocking */ 1902 if (dev->memory_backed) 1903 dev->blocking = true; 1904 else /* cache is meaningless */ 1905 dev->cache_size = 0; 1906 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024, 1907 dev->cache_size); 1908 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps); 1909 1910 if (dev->zoned && 1911 (!dev->zone_size || !is_power_of_2(dev->zone_size))) { 1912 pr_err("zone_size must be power-of-two\n"); 1913 return -EINVAL; 1914 } 1915 1916 return 0; 1917 } 1918 1919 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1920 static bool __null_setup_fault(struct fault_attr *attr, char *str) 1921 { 1922 if (!str[0]) 1923 return true; 1924 1925 if (!setup_fault_attr(attr, str)) 1926 return false; 1927 1928 attr->verbose = 0; 1929 return true; 1930 } 1931 #endif 1932 1933 static bool null_setup_fault(void) 1934 { 1935 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1936 if (!__null_setup_fault(&null_timeout_attr, g_timeout_str)) 1937 return false; 1938 if (!__null_setup_fault(&null_requeue_attr, g_requeue_str)) 1939 return false; 1940 if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str)) 1941 return false; 1942 #endif 1943 return true; 1944 } 1945 1946 static int null_add_dev(struct nullb_device *dev) 1947 { 1948 struct queue_limits lim = { 1949 .logical_block_size = dev->blocksize, 1950 .physical_block_size = dev->blocksize, 1951 .max_hw_sectors = dev->max_sectors, 1952 }; 1953 1954 struct nullb *nullb; 1955 int rv; 1956 1957 rv = null_validate_conf(dev); 1958 if (rv) 1959 return rv; 1960 1961 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node); 1962 if (!nullb) { 1963 rv = -ENOMEM; 1964 goto out; 1965 } 1966 nullb->dev = dev; 1967 dev->nullb = nullb; 1968 1969 spin_lock_init(&nullb->lock); 1970 1971 rv = setup_queues(nullb); 1972 if (rv) 1973 goto out_free_nullb; 1974 1975 rv = null_setup_tagset(nullb); 1976 if (rv) 1977 goto out_cleanup_queues; 1978 1979 if (dev->virt_boundary) 1980 lim.virt_boundary_mask = PAGE_SIZE - 1; 1981 null_config_discard(nullb, &lim); 1982 if (dev->zoned) { 1983 rv = null_init_zoned_dev(dev, &lim); 1984 if (rv) 1985 goto out_cleanup_tags; 1986 } 1987 1988 if (dev->cache_size > 0) { 1989 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); 1990 lim.features |= BLK_FEAT_WRITE_CACHE; 1991 if (dev->fua) 1992 lim.features |= BLK_FEAT_FUA; 1993 } 1994 1995 if (dev->rotational) 1996 lim.features |= BLK_FEAT_ROTATIONAL; 1997 1998 nullb->disk = blk_mq_alloc_disk(nullb->tag_set, &lim, nullb); 1999 if (IS_ERR(nullb->disk)) { 2000 rv = PTR_ERR(nullb->disk); 2001 goto out_cleanup_zone; 2002 } 2003 nullb->q = nullb->disk->queue; 2004 2005 if (dev->mbps) { 2006 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags); 2007 nullb_setup_bwtimer(nullb); 2008 } 2009 2010 nullb->q->queuedata = nullb; 2011 2012 rv = ida_alloc(&nullb_indexes, GFP_KERNEL); 2013 if (rv < 0) 2014 goto out_cleanup_disk; 2015 2016 nullb->index = rv; 2017 dev->index = rv; 2018 2019 if (config_item_name(&dev->group.cg_item)) { 2020 /* Use configfs dir name as the device name */ 2021 snprintf(nullb->disk_name, sizeof(nullb->disk_name), 2022 "%s", config_item_name(&dev->group.cg_item)); 2023 } else { 2024 sprintf(nullb->disk_name, "nullb%d", nullb->index); 2025 } 2026 2027 set_capacity(nullb->disk, 2028 ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT); 2029 nullb->disk->major = null_major; 2030 nullb->disk->first_minor = nullb->index; 2031 nullb->disk->minors = 1; 2032 nullb->disk->fops = &null_ops; 2033 nullb->disk->private_data = nullb; 2034 strscpy_pad(nullb->disk->disk_name, nullb->disk_name, DISK_NAME_LEN); 2035 2036 if (nullb->dev->zoned) { 2037 rv = null_register_zoned_dev(nullb); 2038 if (rv) 2039 goto out_ida_free; 2040 } 2041 2042 rv = add_disk(nullb->disk); 2043 if (rv) 2044 goto out_ida_free; 2045 2046 list_add_tail(&nullb->list, &nullb_list); 2047 2048 pr_info("disk %s created\n", nullb->disk_name); 2049 2050 return 0; 2051 2052 out_ida_free: 2053 ida_free(&nullb_indexes, nullb->index); 2054 out_cleanup_disk: 2055 put_disk(nullb->disk); 2056 out_cleanup_zone: 2057 null_free_zoned_dev(dev); 2058 out_cleanup_tags: 2059 if (nullb->tag_set == &nullb->__tag_set) 2060 blk_mq_free_tag_set(nullb->tag_set); 2061 out_cleanup_queues: 2062 kfree(nullb->queues); 2063 out_free_nullb: 2064 kfree(nullb); 2065 dev->nullb = NULL; 2066 out: 2067 return rv; 2068 } 2069 2070 static struct nullb *null_find_dev_by_name(const char *name) 2071 { 2072 struct nullb *nullb = NULL, *nb; 2073 2074 mutex_lock(&lock); 2075 list_for_each_entry(nb, &nullb_list, list) { 2076 if (strcmp(nb->disk_name, name) == 0) { 2077 nullb = nb; 2078 break; 2079 } 2080 } 2081 mutex_unlock(&lock); 2082 2083 return nullb; 2084 } 2085 2086 static int null_create_dev(void) 2087 { 2088 struct nullb_device *dev; 2089 int ret; 2090 2091 dev = null_alloc_dev(); 2092 if (!dev) 2093 return -ENOMEM; 2094 2095 mutex_lock(&lock); 2096 ret = null_add_dev(dev); 2097 mutex_unlock(&lock); 2098 if (ret) { 2099 null_free_dev(dev); 2100 return ret; 2101 } 2102 2103 return 0; 2104 } 2105 2106 static void null_destroy_dev(struct nullb *nullb) 2107 { 2108 struct nullb_device *dev = nullb->dev; 2109 2110 null_del_dev(nullb); 2111 null_free_device_storage(dev, false); 2112 null_free_dev(dev); 2113 } 2114 2115 static int __init null_init(void) 2116 { 2117 int ret = 0; 2118 unsigned int i; 2119 struct nullb *nullb; 2120 2121 if (g_bs > PAGE_SIZE) { 2122 pr_warn("invalid block size\n"); 2123 pr_warn("defaults block size to %lu\n", PAGE_SIZE); 2124 g_bs = PAGE_SIZE; 2125 } 2126 2127 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) { 2128 pr_err("invalid home_node value\n"); 2129 g_home_node = NUMA_NO_NODE; 2130 } 2131 2132 if (!null_setup_fault()) 2133 return -EINVAL; 2134 2135 if (g_queue_mode == NULL_Q_RQ) { 2136 pr_err("legacy IO path is no longer available\n"); 2137 return -EINVAL; 2138 } 2139 2140 if (g_use_per_node_hctx) { 2141 if (g_submit_queues != nr_online_nodes) { 2142 pr_warn("submit_queues param is set to %u.\n", 2143 nr_online_nodes); 2144 g_submit_queues = nr_online_nodes; 2145 } 2146 } else if (g_submit_queues > nr_cpu_ids) { 2147 g_submit_queues = nr_cpu_ids; 2148 } else if (g_submit_queues <= 0) { 2149 g_submit_queues = 1; 2150 } 2151 2152 config_group_init(&nullb_subsys.su_group); 2153 mutex_init(&nullb_subsys.su_mutex); 2154 2155 ret = configfs_register_subsystem(&nullb_subsys); 2156 if (ret) 2157 return ret; 2158 2159 mutex_init(&lock); 2160 2161 null_major = register_blkdev(0, "nullb"); 2162 if (null_major < 0) { 2163 ret = null_major; 2164 goto err_conf; 2165 } 2166 2167 for (i = 0; i < nr_devices; i++) { 2168 ret = null_create_dev(); 2169 if (ret) 2170 goto err_dev; 2171 } 2172 2173 pr_info("module loaded\n"); 2174 return 0; 2175 2176 err_dev: 2177 while (!list_empty(&nullb_list)) { 2178 nullb = list_entry(nullb_list.next, struct nullb, list); 2179 null_destroy_dev(nullb); 2180 } 2181 unregister_blkdev(null_major, "nullb"); 2182 err_conf: 2183 configfs_unregister_subsystem(&nullb_subsys); 2184 return ret; 2185 } 2186 2187 static void __exit null_exit(void) 2188 { 2189 struct nullb *nullb; 2190 2191 configfs_unregister_subsystem(&nullb_subsys); 2192 2193 unregister_blkdev(null_major, "nullb"); 2194 2195 mutex_lock(&lock); 2196 while (!list_empty(&nullb_list)) { 2197 nullb = list_entry(nullb_list.next, struct nullb, list); 2198 null_destroy_dev(nullb); 2199 } 2200 mutex_unlock(&lock); 2201 2202 if (tag_set.ops) 2203 blk_mq_free_tag_set(&tag_set); 2204 2205 mutex_destroy(&lock); 2206 } 2207 2208 module_init(null_init); 2209 module_exit(null_exit); 2210 2211 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>"); 2212 MODULE_DESCRIPTION("multi queue aware block test driver"); 2213 MODULE_LICENSE("GPL"); 2214