1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_device { 49 int lo_number; 50 loff_t lo_offset; 51 loff_t lo_sizelimit; 52 int lo_flags; 53 char lo_file_name[LO_NAME_SIZE]; 54 55 struct file *lo_backing_file; 56 unsigned int lo_min_dio_size; 57 struct block_device *lo_device; 58 59 gfp_t old_gfp_mask; 60 61 spinlock_t lo_lock; 62 int lo_state; 63 spinlock_t lo_work_lock; 64 struct workqueue_struct *workqueue; 65 struct work_struct rootcg_work; 66 struct list_head rootcg_cmd_list; 67 struct list_head idle_worker_list; 68 struct rb_root worker_tree; 69 struct timer_list timer; 70 bool sysfs_inited; 71 72 struct request_queue *lo_queue; 73 struct blk_mq_tag_set tag_set; 74 struct gendisk *lo_disk; 75 struct mutex lo_mutex; 76 bool idr_visible; 77 }; 78 79 struct loop_cmd { 80 struct list_head list_entry; 81 bool use_aio; /* use AIO interface to handle I/O */ 82 atomic_t ref; /* only for aio */ 83 long ret; 84 struct kiocb iocb; 85 struct bio_vec *bvec; 86 struct cgroup_subsys_state *blkcg_css; 87 struct cgroup_subsys_state *memcg_css; 88 }; 89 90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 91 #define LOOP_DEFAULT_HW_Q_DEPTH 128 92 93 static DEFINE_IDR(loop_index_idr); 94 static DEFINE_MUTEX(loop_ctl_mutex); 95 static DEFINE_MUTEX(loop_validate_mutex); 96 97 /** 98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 99 * 100 * @lo: struct loop_device 101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 102 * 103 * Returns 0 on success, -EINTR otherwise. 104 * 105 * Since loop_validate_file() traverses on other "struct loop_device" if 106 * is_loop_device() is true, we need a global lock for serializing concurrent 107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 108 */ 109 static int loop_global_lock_killable(struct loop_device *lo, bool global) 110 { 111 int err; 112 113 if (global) { 114 err = mutex_lock_killable(&loop_validate_mutex); 115 if (err) 116 return err; 117 } 118 err = mutex_lock_killable(&lo->lo_mutex); 119 if (err && global) 120 mutex_unlock(&loop_validate_mutex); 121 return err; 122 } 123 124 /** 125 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 126 * 127 * @lo: struct loop_device 128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 129 */ 130 static void loop_global_unlock(struct loop_device *lo, bool global) 131 { 132 mutex_unlock(&lo->lo_mutex); 133 if (global) 134 mutex_unlock(&loop_validate_mutex); 135 } 136 137 static int max_part; 138 static int part_shift; 139 140 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 141 { 142 loff_t loopsize; 143 144 /* Compute loopsize in bytes */ 145 loopsize = i_size_read(file->f_mapping->host); 146 if (offset > 0) 147 loopsize -= offset; 148 /* offset is beyond i_size, weird but possible */ 149 if (loopsize < 0) 150 return 0; 151 152 if (sizelimit > 0 && sizelimit < loopsize) 153 loopsize = sizelimit; 154 /* 155 * Unfortunately, if we want to do I/O on the device, 156 * the number of 512-byte sectors has to fit into a sector_t. 157 */ 158 return loopsize >> 9; 159 } 160 161 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 162 { 163 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 164 } 165 166 /* 167 * We support direct I/O only if lo_offset is aligned with the logical I/O size 168 * of backing device, and the logical block size of loop is bigger than that of 169 * the backing device. 170 */ 171 static bool lo_can_use_dio(struct loop_device *lo) 172 { 173 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) 174 return false; 175 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size) 176 return false; 177 if (lo->lo_offset & (lo->lo_min_dio_size - 1)) 178 return false; 179 return true; 180 } 181 182 /* 183 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by 184 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently 185 * disabled when the device block size is too small or the offset is unaligned. 186 * 187 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and 188 * not the originally passed in one. 189 */ 190 static inline void loop_update_dio(struct loop_device *lo) 191 { 192 lockdep_assert_held(&lo->lo_mutex); 193 WARN_ON_ONCE(lo->lo_state == Lo_bound && 194 lo->lo_queue->mq_freeze_depth == 0); 195 196 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo)) 197 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 198 } 199 200 /** 201 * loop_set_size() - sets device size and notifies userspace 202 * @lo: struct loop_device to set the size for 203 * @size: new size of the loop device 204 * 205 * Callers must validate that the size passed into this function fits into 206 * a sector_t, eg using loop_validate_size() 207 */ 208 static void loop_set_size(struct loop_device *lo, loff_t size) 209 { 210 if (!set_capacity_and_notify(lo->lo_disk, size)) 211 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 212 } 213 214 static void loop_clear_limits(struct loop_device *lo, int mode) 215 { 216 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 217 218 if (mode & FALLOC_FL_ZERO_RANGE) 219 lim.max_write_zeroes_sectors = 0; 220 221 if (mode & FALLOC_FL_PUNCH_HOLE) { 222 lim.max_hw_discard_sectors = 0; 223 lim.discard_granularity = 0; 224 } 225 226 /* 227 * XXX: this updates the queue limits without freezing the queue, which 228 * is against the locking protocol and dangerous. But we can't just 229 * freeze the queue as we're inside the ->queue_rq method here. So this 230 * should move out into a workqueue unless we get the file operations to 231 * advertise if they support specific fallocate operations. 232 */ 233 queue_limits_commit_update(lo->lo_queue, &lim); 234 } 235 236 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 237 int mode) 238 { 239 /* 240 * We use fallocate to manipulate the space mappings used by the image 241 * a.k.a. discard/zerorange. 242 */ 243 struct file *file = lo->lo_backing_file; 244 int ret; 245 246 mode |= FALLOC_FL_KEEP_SIZE; 247 248 if (!bdev_max_discard_sectors(lo->lo_device)) 249 return -EOPNOTSUPP; 250 251 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 252 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 253 return -EIO; 254 255 /* 256 * We initially configure the limits in a hope that fallocate is 257 * supported and clear them here if that turns out not to be true. 258 */ 259 if (unlikely(ret == -EOPNOTSUPP)) 260 loop_clear_limits(lo, mode); 261 262 return ret; 263 } 264 265 static int lo_req_flush(struct loop_device *lo, struct request *rq) 266 { 267 int ret = vfs_fsync(lo->lo_backing_file, 0); 268 if (unlikely(ret && ret != -EINVAL)) 269 ret = -EIO; 270 271 return ret; 272 } 273 274 static void lo_complete_rq(struct request *rq) 275 { 276 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 277 blk_status_t ret = BLK_STS_OK; 278 279 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 280 req_op(rq) != REQ_OP_READ) { 281 if (cmd->ret < 0) 282 ret = errno_to_blk_status(cmd->ret); 283 goto end_io; 284 } 285 286 /* 287 * Short READ - if we got some data, advance our request and 288 * retry it. If we got no data, end the rest with EIO. 289 */ 290 if (cmd->ret) { 291 blk_update_request(rq, BLK_STS_OK, cmd->ret); 292 cmd->ret = 0; 293 blk_mq_requeue_request(rq, true); 294 } else { 295 struct bio *bio = rq->bio; 296 297 while (bio) { 298 zero_fill_bio(bio); 299 bio = bio->bi_next; 300 } 301 302 ret = BLK_STS_IOERR; 303 end_io: 304 blk_mq_end_request(rq, ret); 305 } 306 } 307 308 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 309 { 310 struct request *rq = blk_mq_rq_from_pdu(cmd); 311 struct loop_device *lo = rq->q->queuedata; 312 313 if (!atomic_dec_and_test(&cmd->ref)) 314 return; 315 kfree(cmd->bvec); 316 cmd->bvec = NULL; 317 if (req_op(rq) == REQ_OP_WRITE) 318 file_end_write(lo->lo_backing_file); 319 if (likely(!blk_should_fake_timeout(rq->q))) 320 blk_mq_complete_request(rq); 321 } 322 323 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 324 { 325 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 326 327 cmd->ret = ret; 328 lo_rw_aio_do_completion(cmd); 329 } 330 331 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 332 loff_t pos, int rw) 333 { 334 struct iov_iter iter; 335 struct req_iterator rq_iter; 336 struct bio_vec *bvec; 337 struct request *rq = blk_mq_rq_from_pdu(cmd); 338 struct bio *bio = rq->bio; 339 struct file *file = lo->lo_backing_file; 340 struct bio_vec tmp; 341 unsigned int offset; 342 int nr_bvec = 0; 343 int ret; 344 345 rq_for_each_bvec(tmp, rq, rq_iter) 346 nr_bvec++; 347 348 if (rq->bio != rq->biotail) { 349 350 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 351 GFP_NOIO); 352 if (!bvec) 353 return -EIO; 354 cmd->bvec = bvec; 355 356 /* 357 * The bios of the request may be started from the middle of 358 * the 'bvec' because of bio splitting, so we can't directly 359 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 360 * API will take care of all details for us. 361 */ 362 rq_for_each_bvec(tmp, rq, rq_iter) { 363 *bvec = tmp; 364 bvec++; 365 } 366 bvec = cmd->bvec; 367 offset = 0; 368 } else { 369 /* 370 * Same here, this bio may be started from the middle of the 371 * 'bvec' because of bio splitting, so offset from the bvec 372 * must be passed to iov iterator 373 */ 374 offset = bio->bi_iter.bi_bvec_done; 375 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 376 } 377 atomic_set(&cmd->ref, 2); 378 379 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 380 iter.iov_offset = offset; 381 382 cmd->iocb.ki_pos = pos; 383 cmd->iocb.ki_filp = file; 384 cmd->iocb.ki_ioprio = req_get_ioprio(rq); 385 if (cmd->use_aio) { 386 cmd->iocb.ki_complete = lo_rw_aio_complete; 387 cmd->iocb.ki_flags = IOCB_DIRECT; 388 } else { 389 cmd->iocb.ki_complete = NULL; 390 cmd->iocb.ki_flags = 0; 391 } 392 393 if (rw == ITER_SOURCE) { 394 file_start_write(lo->lo_backing_file); 395 ret = file->f_op->write_iter(&cmd->iocb, &iter); 396 } else 397 ret = file->f_op->read_iter(&cmd->iocb, &iter); 398 399 lo_rw_aio_do_completion(cmd); 400 401 if (ret != -EIOCBQUEUED) 402 lo_rw_aio_complete(&cmd->iocb, ret); 403 return -EIOCBQUEUED; 404 } 405 406 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 407 { 408 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 409 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 410 411 switch (req_op(rq)) { 412 case REQ_OP_FLUSH: 413 return lo_req_flush(lo, rq); 414 case REQ_OP_WRITE_ZEROES: 415 /* 416 * If the caller doesn't want deallocation, call zeroout to 417 * write zeroes the range. Otherwise, punch them out. 418 */ 419 return lo_fallocate(lo, rq, pos, 420 (rq->cmd_flags & REQ_NOUNMAP) ? 421 FALLOC_FL_ZERO_RANGE : 422 FALLOC_FL_PUNCH_HOLE); 423 case REQ_OP_DISCARD: 424 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 425 case REQ_OP_WRITE: 426 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 427 case REQ_OP_READ: 428 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 429 default: 430 WARN_ON_ONCE(1); 431 return -EIO; 432 } 433 } 434 435 static void loop_reread_partitions(struct loop_device *lo) 436 { 437 int rc; 438 439 mutex_lock(&lo->lo_disk->open_mutex); 440 rc = bdev_disk_changed(lo->lo_disk, false); 441 mutex_unlock(&lo->lo_disk->open_mutex); 442 if (rc) 443 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 444 __func__, lo->lo_number, lo->lo_file_name, rc); 445 } 446 447 static unsigned int loop_query_min_dio_size(struct loop_device *lo) 448 { 449 struct file *file = lo->lo_backing_file; 450 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev; 451 struct kstat st; 452 453 /* 454 * Use the minimal dio alignment of the file system if provided. 455 */ 456 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) && 457 (st.result_mask & STATX_DIOALIGN)) 458 return st.dio_offset_align; 459 460 /* 461 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only 462 * a handful of file systems support the STATX_DIOALIGN flag. 463 */ 464 if (sb_bdev) 465 return bdev_logical_block_size(sb_bdev); 466 return SECTOR_SIZE; 467 } 468 469 static inline int is_loop_device(struct file *file) 470 { 471 struct inode *i = file->f_mapping->host; 472 473 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 474 } 475 476 static int loop_validate_file(struct file *file, struct block_device *bdev) 477 { 478 struct inode *inode = file->f_mapping->host; 479 struct file *f = file; 480 481 /* Avoid recursion */ 482 while (is_loop_device(f)) { 483 struct loop_device *l; 484 485 lockdep_assert_held(&loop_validate_mutex); 486 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 487 return -EBADF; 488 489 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 490 if (l->lo_state != Lo_bound) 491 return -EINVAL; 492 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 493 rmb(); 494 f = l->lo_backing_file; 495 } 496 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 497 return -EINVAL; 498 return 0; 499 } 500 501 static void loop_assign_backing_file(struct loop_device *lo, struct file *file) 502 { 503 lo->lo_backing_file = file; 504 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 505 mapping_set_gfp_mask(file->f_mapping, 506 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS)); 507 if (lo->lo_backing_file->f_flags & O_DIRECT) 508 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 509 lo->lo_min_dio_size = loop_query_min_dio_size(lo); 510 } 511 512 static int loop_check_backing_file(struct file *file) 513 { 514 if (!file->f_op->read_iter) 515 return -EINVAL; 516 517 if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter) 518 return -EINVAL; 519 520 return 0; 521 } 522 523 /* 524 * loop_change_fd switched the backing store of a loopback device to 525 * a new file. This is useful for operating system installers to free up 526 * the original file and in High Availability environments to switch to 527 * an alternative location for the content in case of server meltdown. 528 * This can only work if the loop device is used read-only, and if the 529 * new backing store is the same size and type as the old backing store. 530 */ 531 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 532 unsigned int arg) 533 { 534 struct file *file = fget(arg); 535 struct file *old_file; 536 unsigned int memflags; 537 int error; 538 bool partscan; 539 bool is_loop; 540 541 if (!file) 542 return -EBADF; 543 544 error = loop_check_backing_file(file); 545 if (error) 546 return error; 547 548 /* suppress uevents while reconfiguring the device */ 549 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 550 551 is_loop = is_loop_device(file); 552 error = loop_global_lock_killable(lo, is_loop); 553 if (error) 554 goto out_putf; 555 error = -ENXIO; 556 if (lo->lo_state != Lo_bound) 557 goto out_err; 558 559 /* the loop device has to be read-only */ 560 error = -EINVAL; 561 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 562 goto out_err; 563 564 error = loop_validate_file(file, bdev); 565 if (error) 566 goto out_err; 567 568 old_file = lo->lo_backing_file; 569 570 error = -EINVAL; 571 572 /* size of the new backing store needs to be the same */ 573 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 574 goto out_err; 575 576 /* 577 * We might switch to direct I/O mode for the loop device, write back 578 * all dirty data the page cache now that so that the individual I/O 579 * operations don't have to do that. 580 */ 581 vfs_fsync(file, 0); 582 583 /* and ... switch */ 584 disk_force_media_change(lo->lo_disk); 585 memflags = blk_mq_freeze_queue(lo->lo_queue); 586 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 587 loop_assign_backing_file(lo, file); 588 loop_update_dio(lo); 589 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 590 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 591 loop_global_unlock(lo, is_loop); 592 593 /* 594 * Flush loop_validate_file() before fput(), for l->lo_backing_file 595 * might be pointing at old_file which might be the last reference. 596 */ 597 if (!is_loop) { 598 mutex_lock(&loop_validate_mutex); 599 mutex_unlock(&loop_validate_mutex); 600 } 601 /* 602 * We must drop file reference outside of lo_mutex as dropping 603 * the file ref can take open_mutex which creates circular locking 604 * dependency. 605 */ 606 fput(old_file); 607 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 608 if (partscan) 609 loop_reread_partitions(lo); 610 611 error = 0; 612 done: 613 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 614 return error; 615 616 out_err: 617 loop_global_unlock(lo, is_loop); 618 out_putf: 619 fput(file); 620 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 621 goto done; 622 } 623 624 /* loop sysfs attributes */ 625 626 static ssize_t loop_attr_show(struct device *dev, char *page, 627 ssize_t (*callback)(struct loop_device *, char *)) 628 { 629 struct gendisk *disk = dev_to_disk(dev); 630 struct loop_device *lo = disk->private_data; 631 632 return callback(lo, page); 633 } 634 635 #define LOOP_ATTR_RO(_name) \ 636 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 637 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 638 struct device_attribute *attr, char *b) \ 639 { \ 640 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 641 } \ 642 static struct device_attribute loop_attr_##_name = \ 643 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 644 645 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 646 { 647 ssize_t ret; 648 char *p = NULL; 649 650 spin_lock_irq(&lo->lo_lock); 651 if (lo->lo_backing_file) 652 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 653 spin_unlock_irq(&lo->lo_lock); 654 655 if (IS_ERR_OR_NULL(p)) 656 ret = PTR_ERR(p); 657 else { 658 ret = strlen(p); 659 memmove(buf, p, ret); 660 buf[ret++] = '\n'; 661 buf[ret] = 0; 662 } 663 664 return ret; 665 } 666 667 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 668 { 669 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 670 } 671 672 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 673 { 674 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 675 } 676 677 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 678 { 679 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 680 681 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 682 } 683 684 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 685 { 686 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 687 688 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 689 } 690 691 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 692 { 693 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 694 695 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 696 } 697 698 LOOP_ATTR_RO(backing_file); 699 LOOP_ATTR_RO(offset); 700 LOOP_ATTR_RO(sizelimit); 701 LOOP_ATTR_RO(autoclear); 702 LOOP_ATTR_RO(partscan); 703 LOOP_ATTR_RO(dio); 704 705 static struct attribute *loop_attrs[] = { 706 &loop_attr_backing_file.attr, 707 &loop_attr_offset.attr, 708 &loop_attr_sizelimit.attr, 709 &loop_attr_autoclear.attr, 710 &loop_attr_partscan.attr, 711 &loop_attr_dio.attr, 712 NULL, 713 }; 714 715 static struct attribute_group loop_attribute_group = { 716 .name = "loop", 717 .attrs= loop_attrs, 718 }; 719 720 static void loop_sysfs_init(struct loop_device *lo) 721 { 722 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 723 &loop_attribute_group); 724 } 725 726 static void loop_sysfs_exit(struct loop_device *lo) 727 { 728 if (lo->sysfs_inited) 729 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 730 &loop_attribute_group); 731 } 732 733 static void loop_get_discard_config(struct loop_device *lo, 734 u32 *granularity, u32 *max_discard_sectors) 735 { 736 struct file *file = lo->lo_backing_file; 737 struct inode *inode = file->f_mapping->host; 738 struct kstatfs sbuf; 739 740 /* 741 * If the backing device is a block device, mirror its zeroing 742 * capability. Set the discard sectors to the block device's zeroing 743 * capabilities because loop discards result in blkdev_issue_zeroout(), 744 * not blkdev_issue_discard(). This maintains consistent behavior with 745 * file-backed loop devices: discarded regions read back as zero. 746 */ 747 if (S_ISBLK(inode->i_mode)) { 748 struct block_device *bdev = I_BDEV(inode); 749 750 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 751 *granularity = bdev_discard_granularity(bdev); 752 753 /* 754 * We use punch hole to reclaim the free space used by the 755 * image a.k.a. discard. 756 */ 757 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 758 *max_discard_sectors = UINT_MAX >> 9; 759 *granularity = sbuf.f_bsize; 760 } 761 } 762 763 struct loop_worker { 764 struct rb_node rb_node; 765 struct work_struct work; 766 struct list_head cmd_list; 767 struct list_head idle_list; 768 struct loop_device *lo; 769 struct cgroup_subsys_state *blkcg_css; 770 unsigned long last_ran_at; 771 }; 772 773 static void loop_workfn(struct work_struct *work); 774 775 #ifdef CONFIG_BLK_CGROUP 776 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 777 { 778 return !css || css == blkcg_root_css; 779 } 780 #else 781 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 782 { 783 return !css; 784 } 785 #endif 786 787 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 788 { 789 struct rb_node **node, *parent = NULL; 790 struct loop_worker *cur_worker, *worker = NULL; 791 struct work_struct *work; 792 struct list_head *cmd_list; 793 794 spin_lock_irq(&lo->lo_work_lock); 795 796 if (queue_on_root_worker(cmd->blkcg_css)) 797 goto queue_work; 798 799 node = &lo->worker_tree.rb_node; 800 801 while (*node) { 802 parent = *node; 803 cur_worker = container_of(*node, struct loop_worker, rb_node); 804 if (cur_worker->blkcg_css == cmd->blkcg_css) { 805 worker = cur_worker; 806 break; 807 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 808 node = &(*node)->rb_left; 809 } else { 810 node = &(*node)->rb_right; 811 } 812 } 813 if (worker) 814 goto queue_work; 815 816 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 817 /* 818 * In the event we cannot allocate a worker, just queue on the 819 * rootcg worker and issue the I/O as the rootcg 820 */ 821 if (!worker) { 822 cmd->blkcg_css = NULL; 823 if (cmd->memcg_css) 824 css_put(cmd->memcg_css); 825 cmd->memcg_css = NULL; 826 goto queue_work; 827 } 828 829 worker->blkcg_css = cmd->blkcg_css; 830 css_get(worker->blkcg_css); 831 INIT_WORK(&worker->work, loop_workfn); 832 INIT_LIST_HEAD(&worker->cmd_list); 833 INIT_LIST_HEAD(&worker->idle_list); 834 worker->lo = lo; 835 rb_link_node(&worker->rb_node, parent, node); 836 rb_insert_color(&worker->rb_node, &lo->worker_tree); 837 queue_work: 838 if (worker) { 839 /* 840 * We need to remove from the idle list here while 841 * holding the lock so that the idle timer doesn't 842 * free the worker 843 */ 844 if (!list_empty(&worker->idle_list)) 845 list_del_init(&worker->idle_list); 846 work = &worker->work; 847 cmd_list = &worker->cmd_list; 848 } else { 849 work = &lo->rootcg_work; 850 cmd_list = &lo->rootcg_cmd_list; 851 } 852 list_add_tail(&cmd->list_entry, cmd_list); 853 queue_work(lo->workqueue, work); 854 spin_unlock_irq(&lo->lo_work_lock); 855 } 856 857 static void loop_set_timer(struct loop_device *lo) 858 { 859 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 860 } 861 862 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 863 { 864 struct loop_worker *pos, *worker; 865 866 spin_lock_irq(&lo->lo_work_lock); 867 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 868 idle_list) { 869 if (!delete_all && 870 time_is_after_jiffies(worker->last_ran_at + 871 LOOP_IDLE_WORKER_TIMEOUT)) 872 break; 873 list_del(&worker->idle_list); 874 rb_erase(&worker->rb_node, &lo->worker_tree); 875 css_put(worker->blkcg_css); 876 kfree(worker); 877 } 878 if (!list_empty(&lo->idle_worker_list)) 879 loop_set_timer(lo); 880 spin_unlock_irq(&lo->lo_work_lock); 881 } 882 883 static void loop_free_idle_workers_timer(struct timer_list *timer) 884 { 885 struct loop_device *lo = container_of(timer, struct loop_device, timer); 886 887 return loop_free_idle_workers(lo, false); 888 } 889 890 /** 891 * loop_set_status_from_info - configure device from loop_info 892 * @lo: struct loop_device to configure 893 * @info: struct loop_info64 to configure the device with 894 * 895 * Configures the loop device parameters according to the passed 896 * in loop_info64 configuration. 897 */ 898 static int 899 loop_set_status_from_info(struct loop_device *lo, 900 const struct loop_info64 *info) 901 { 902 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 903 return -EINVAL; 904 905 switch (info->lo_encrypt_type) { 906 case LO_CRYPT_NONE: 907 break; 908 case LO_CRYPT_XOR: 909 pr_warn("support for the xor transformation has been removed.\n"); 910 return -EINVAL; 911 case LO_CRYPT_CRYPTOAPI: 912 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 913 return -EINVAL; 914 default: 915 return -EINVAL; 916 } 917 918 /* Avoid assigning overflow values */ 919 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 920 return -EOVERFLOW; 921 922 lo->lo_offset = info->lo_offset; 923 lo->lo_sizelimit = info->lo_sizelimit; 924 925 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 926 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 927 return 0; 928 } 929 930 static unsigned int loop_default_blocksize(struct loop_device *lo) 931 { 932 /* In case of direct I/O, match underlying minimum I/O size */ 933 if (lo->lo_flags & LO_FLAGS_DIRECT_IO) 934 return lo->lo_min_dio_size; 935 return SECTOR_SIZE; 936 } 937 938 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, 939 unsigned int bsize) 940 { 941 struct file *file = lo->lo_backing_file; 942 struct inode *inode = file->f_mapping->host; 943 struct block_device *backing_bdev = NULL; 944 u32 granularity = 0, max_discard_sectors = 0; 945 946 if (S_ISBLK(inode->i_mode)) 947 backing_bdev = I_BDEV(inode); 948 else if (inode->i_sb->s_bdev) 949 backing_bdev = inode->i_sb->s_bdev; 950 951 if (!bsize) 952 bsize = loop_default_blocksize(lo); 953 954 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 955 956 lim->logical_block_size = bsize; 957 lim->physical_block_size = bsize; 958 lim->io_min = bsize; 959 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 960 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 961 lim->features |= BLK_FEAT_WRITE_CACHE; 962 if (backing_bdev && !bdev_nonrot(backing_bdev)) 963 lim->features |= BLK_FEAT_ROTATIONAL; 964 lim->max_hw_discard_sectors = max_discard_sectors; 965 lim->max_write_zeroes_sectors = max_discard_sectors; 966 if (max_discard_sectors) 967 lim->discard_granularity = granularity; 968 else 969 lim->discard_granularity = 0; 970 } 971 972 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 973 struct block_device *bdev, 974 const struct loop_config *config) 975 { 976 struct file *file = fget(config->fd); 977 struct queue_limits lim; 978 int error; 979 loff_t size; 980 bool partscan; 981 bool is_loop; 982 983 if (!file) 984 return -EBADF; 985 986 error = loop_check_backing_file(file); 987 if (error) 988 return error; 989 990 is_loop = is_loop_device(file); 991 992 /* This is safe, since we have a reference from open(). */ 993 __module_get(THIS_MODULE); 994 995 /* 996 * If we don't hold exclusive handle for the device, upgrade to it 997 * here to avoid changing device under exclusive owner. 998 */ 999 if (!(mode & BLK_OPEN_EXCL)) { 1000 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1001 if (error) 1002 goto out_putf; 1003 } 1004 1005 error = loop_global_lock_killable(lo, is_loop); 1006 if (error) 1007 goto out_bdev; 1008 1009 error = -EBUSY; 1010 if (lo->lo_state != Lo_unbound) 1011 goto out_unlock; 1012 1013 error = loop_validate_file(file, bdev); 1014 if (error) 1015 goto out_unlock; 1016 1017 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1018 error = -EINVAL; 1019 goto out_unlock; 1020 } 1021 1022 error = loop_set_status_from_info(lo, &config->info); 1023 if (error) 1024 goto out_unlock; 1025 lo->lo_flags = config->info.lo_flags; 1026 1027 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1028 !file->f_op->write_iter) 1029 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1030 1031 if (!lo->workqueue) { 1032 lo->workqueue = alloc_workqueue("loop%d", 1033 WQ_UNBOUND | WQ_FREEZABLE, 1034 0, lo->lo_number); 1035 if (!lo->workqueue) { 1036 error = -ENOMEM; 1037 goto out_unlock; 1038 } 1039 } 1040 1041 /* suppress uevents while reconfiguring the device */ 1042 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1043 1044 disk_force_media_change(lo->lo_disk); 1045 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1046 1047 lo->lo_device = bdev; 1048 loop_assign_backing_file(lo, file); 1049 1050 lim = queue_limits_start_update(lo->lo_queue); 1051 loop_update_limits(lo, &lim, config->block_size); 1052 /* No need to freeze the queue as the device isn't bound yet. */ 1053 error = queue_limits_commit_update(lo->lo_queue, &lim); 1054 if (error) 1055 goto out_unlock; 1056 1057 /* 1058 * We might switch to direct I/O mode for the loop device, write back 1059 * all dirty data the page cache now that so that the individual I/O 1060 * operations don't have to do that. 1061 */ 1062 vfs_fsync(file, 0); 1063 1064 loop_update_dio(lo); 1065 loop_sysfs_init(lo); 1066 1067 size = get_loop_size(lo, file); 1068 loop_set_size(lo, size); 1069 1070 /* Order wrt reading lo_state in loop_validate_file(). */ 1071 wmb(); 1072 1073 lo->lo_state = Lo_bound; 1074 if (part_shift) 1075 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1076 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1077 if (partscan) 1078 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1079 1080 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1081 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1082 1083 loop_global_unlock(lo, is_loop); 1084 if (partscan) 1085 loop_reread_partitions(lo); 1086 1087 if (!(mode & BLK_OPEN_EXCL)) 1088 bd_abort_claiming(bdev, loop_configure); 1089 1090 return 0; 1091 1092 out_unlock: 1093 loop_global_unlock(lo, is_loop); 1094 out_bdev: 1095 if (!(mode & BLK_OPEN_EXCL)) 1096 bd_abort_claiming(bdev, loop_configure); 1097 out_putf: 1098 fput(file); 1099 /* This is safe: open() is still holding a reference. */ 1100 module_put(THIS_MODULE); 1101 return error; 1102 } 1103 1104 static void __loop_clr_fd(struct loop_device *lo) 1105 { 1106 struct queue_limits lim; 1107 struct file *filp; 1108 gfp_t gfp = lo->old_gfp_mask; 1109 1110 spin_lock_irq(&lo->lo_lock); 1111 filp = lo->lo_backing_file; 1112 lo->lo_backing_file = NULL; 1113 spin_unlock_irq(&lo->lo_lock); 1114 1115 lo->lo_device = NULL; 1116 lo->lo_offset = 0; 1117 lo->lo_sizelimit = 0; 1118 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1119 1120 /* 1121 * Reset the block size to the default. 1122 * 1123 * No queue freezing needed because this is called from the final 1124 * ->release call only, so there can't be any outstanding I/O. 1125 */ 1126 lim = queue_limits_start_update(lo->lo_queue); 1127 lim.logical_block_size = SECTOR_SIZE; 1128 lim.physical_block_size = SECTOR_SIZE; 1129 lim.io_min = SECTOR_SIZE; 1130 queue_limits_commit_update(lo->lo_queue, &lim); 1131 1132 invalidate_disk(lo->lo_disk); 1133 loop_sysfs_exit(lo); 1134 /* let user-space know about this change */ 1135 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1136 mapping_set_gfp_mask(filp->f_mapping, gfp); 1137 /* This is safe: open() is still holding a reference. */ 1138 module_put(THIS_MODULE); 1139 1140 disk_force_media_change(lo->lo_disk); 1141 1142 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1143 int err; 1144 1145 /* 1146 * open_mutex has been held already in release path, so don't 1147 * acquire it if this function is called in such case. 1148 * 1149 * If the reread partition isn't from release path, lo_refcnt 1150 * must be at least one and it can only become zero when the 1151 * current holder is released. 1152 */ 1153 err = bdev_disk_changed(lo->lo_disk, false); 1154 if (err) 1155 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1156 __func__, lo->lo_number, err); 1157 /* Device is gone, no point in returning error */ 1158 } 1159 1160 /* 1161 * lo->lo_state is set to Lo_unbound here after above partscan has 1162 * finished. There cannot be anybody else entering __loop_clr_fd() as 1163 * Lo_rundown state protects us from all the other places trying to 1164 * change the 'lo' device. 1165 */ 1166 lo->lo_flags = 0; 1167 if (!part_shift) 1168 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1169 mutex_lock(&lo->lo_mutex); 1170 lo->lo_state = Lo_unbound; 1171 mutex_unlock(&lo->lo_mutex); 1172 1173 /* 1174 * Need not hold lo_mutex to fput backing file. Calling fput holding 1175 * lo_mutex triggers a circular lock dependency possibility warning as 1176 * fput can take open_mutex which is usually taken before lo_mutex. 1177 */ 1178 fput(filp); 1179 } 1180 1181 static int loop_clr_fd(struct loop_device *lo) 1182 { 1183 int err; 1184 1185 /* 1186 * Since lo_ioctl() is called without locks held, it is possible that 1187 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1188 * 1189 * Therefore, use global lock when setting Lo_rundown state in order to 1190 * make sure that loop_validate_file() will fail if the "struct file" 1191 * which loop_configure()/loop_change_fd() found via fget() was this 1192 * loop device. 1193 */ 1194 err = loop_global_lock_killable(lo, true); 1195 if (err) 1196 return err; 1197 if (lo->lo_state != Lo_bound) { 1198 loop_global_unlock(lo, true); 1199 return -ENXIO; 1200 } 1201 /* 1202 * Mark the device for removing the backing device on last close. 1203 * If we are the only opener, also switch the state to roundown here to 1204 * prevent new openers from coming in. 1205 */ 1206 1207 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1208 if (disk_openers(lo->lo_disk) == 1) 1209 lo->lo_state = Lo_rundown; 1210 loop_global_unlock(lo, true); 1211 1212 return 0; 1213 } 1214 1215 static int 1216 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1217 { 1218 int err; 1219 bool partscan = false; 1220 bool size_changed = false; 1221 unsigned int memflags; 1222 1223 err = mutex_lock_killable(&lo->lo_mutex); 1224 if (err) 1225 return err; 1226 if (lo->lo_state != Lo_bound) { 1227 err = -ENXIO; 1228 goto out_unlock; 1229 } 1230 1231 if (lo->lo_offset != info->lo_offset || 1232 lo->lo_sizelimit != info->lo_sizelimit) { 1233 size_changed = true; 1234 sync_blockdev(lo->lo_device); 1235 invalidate_bdev(lo->lo_device); 1236 } 1237 1238 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ 1239 memflags = blk_mq_freeze_queue(lo->lo_queue); 1240 1241 err = loop_set_status_from_info(lo, info); 1242 if (err) 1243 goto out_unfreeze; 1244 1245 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && 1246 (info->lo_flags & LO_FLAGS_PARTSCAN); 1247 1248 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1249 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); 1250 1251 /* update the direct I/O flag if lo_offset changed */ 1252 loop_update_dio(lo); 1253 1254 out_unfreeze: 1255 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1256 if (partscan) 1257 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1258 if (!err && size_changed) { 1259 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1260 lo->lo_backing_file); 1261 loop_set_size(lo, new_size); 1262 } 1263 out_unlock: 1264 mutex_unlock(&lo->lo_mutex); 1265 if (partscan) 1266 loop_reread_partitions(lo); 1267 1268 return err; 1269 } 1270 1271 static int 1272 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1273 { 1274 struct path path; 1275 struct kstat stat; 1276 int ret; 1277 1278 ret = mutex_lock_killable(&lo->lo_mutex); 1279 if (ret) 1280 return ret; 1281 if (lo->lo_state != Lo_bound) { 1282 mutex_unlock(&lo->lo_mutex); 1283 return -ENXIO; 1284 } 1285 1286 memset(info, 0, sizeof(*info)); 1287 info->lo_number = lo->lo_number; 1288 info->lo_offset = lo->lo_offset; 1289 info->lo_sizelimit = lo->lo_sizelimit; 1290 info->lo_flags = lo->lo_flags; 1291 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1292 1293 /* Drop lo_mutex while we call into the filesystem. */ 1294 path = lo->lo_backing_file->f_path; 1295 path_get(&path); 1296 mutex_unlock(&lo->lo_mutex); 1297 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1298 if (!ret) { 1299 info->lo_device = huge_encode_dev(stat.dev); 1300 info->lo_inode = stat.ino; 1301 info->lo_rdevice = huge_encode_dev(stat.rdev); 1302 } 1303 path_put(&path); 1304 return ret; 1305 } 1306 1307 static void 1308 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1309 { 1310 memset(info64, 0, sizeof(*info64)); 1311 info64->lo_number = info->lo_number; 1312 info64->lo_device = info->lo_device; 1313 info64->lo_inode = info->lo_inode; 1314 info64->lo_rdevice = info->lo_rdevice; 1315 info64->lo_offset = info->lo_offset; 1316 info64->lo_sizelimit = 0; 1317 info64->lo_flags = info->lo_flags; 1318 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1319 } 1320 1321 static int 1322 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1323 { 1324 memset(info, 0, sizeof(*info)); 1325 info->lo_number = info64->lo_number; 1326 info->lo_device = info64->lo_device; 1327 info->lo_inode = info64->lo_inode; 1328 info->lo_rdevice = info64->lo_rdevice; 1329 info->lo_offset = info64->lo_offset; 1330 info->lo_flags = info64->lo_flags; 1331 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1332 1333 /* error in case values were truncated */ 1334 if (info->lo_device != info64->lo_device || 1335 info->lo_rdevice != info64->lo_rdevice || 1336 info->lo_inode != info64->lo_inode || 1337 info->lo_offset != info64->lo_offset) 1338 return -EOVERFLOW; 1339 1340 return 0; 1341 } 1342 1343 static int 1344 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1345 { 1346 struct loop_info info; 1347 struct loop_info64 info64; 1348 1349 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1350 return -EFAULT; 1351 loop_info64_from_old(&info, &info64); 1352 return loop_set_status(lo, &info64); 1353 } 1354 1355 static int 1356 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1357 { 1358 struct loop_info64 info64; 1359 1360 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1361 return -EFAULT; 1362 return loop_set_status(lo, &info64); 1363 } 1364 1365 static int 1366 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1367 struct loop_info info; 1368 struct loop_info64 info64; 1369 int err; 1370 1371 if (!arg) 1372 return -EINVAL; 1373 err = loop_get_status(lo, &info64); 1374 if (!err) 1375 err = loop_info64_to_old(&info64, &info); 1376 if (!err && copy_to_user(arg, &info, sizeof(info))) 1377 err = -EFAULT; 1378 1379 return err; 1380 } 1381 1382 static int 1383 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1384 struct loop_info64 info64; 1385 int err; 1386 1387 if (!arg) 1388 return -EINVAL; 1389 err = loop_get_status(lo, &info64); 1390 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1391 err = -EFAULT; 1392 1393 return err; 1394 } 1395 1396 static int loop_set_capacity(struct loop_device *lo) 1397 { 1398 loff_t size; 1399 1400 if (unlikely(lo->lo_state != Lo_bound)) 1401 return -ENXIO; 1402 1403 size = get_loop_size(lo, lo->lo_backing_file); 1404 loop_set_size(lo, size); 1405 1406 return 0; 1407 } 1408 1409 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1410 { 1411 bool use_dio = !!arg; 1412 unsigned int memflags; 1413 1414 if (lo->lo_state != Lo_bound) 1415 return -ENXIO; 1416 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO)) 1417 return 0; 1418 1419 if (use_dio) { 1420 if (!lo_can_use_dio(lo)) 1421 return -EINVAL; 1422 /* flush dirty pages before starting to use direct I/O */ 1423 vfs_fsync(lo->lo_backing_file, 0); 1424 } 1425 1426 memflags = blk_mq_freeze_queue(lo->lo_queue); 1427 if (use_dio) 1428 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 1429 else 1430 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 1431 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1432 return 0; 1433 } 1434 1435 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1436 { 1437 struct queue_limits lim; 1438 unsigned int memflags; 1439 int err = 0; 1440 1441 if (lo->lo_state != Lo_bound) 1442 return -ENXIO; 1443 1444 if (lo->lo_queue->limits.logical_block_size == arg) 1445 return 0; 1446 1447 sync_blockdev(lo->lo_device); 1448 invalidate_bdev(lo->lo_device); 1449 1450 lim = queue_limits_start_update(lo->lo_queue); 1451 loop_update_limits(lo, &lim, arg); 1452 1453 memflags = blk_mq_freeze_queue(lo->lo_queue); 1454 err = queue_limits_commit_update(lo->lo_queue, &lim); 1455 loop_update_dio(lo); 1456 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1457 1458 return err; 1459 } 1460 1461 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1462 unsigned long arg) 1463 { 1464 int err; 1465 1466 err = mutex_lock_killable(&lo->lo_mutex); 1467 if (err) 1468 return err; 1469 switch (cmd) { 1470 case LOOP_SET_CAPACITY: 1471 err = loop_set_capacity(lo); 1472 break; 1473 case LOOP_SET_DIRECT_IO: 1474 err = loop_set_dio(lo, arg); 1475 break; 1476 case LOOP_SET_BLOCK_SIZE: 1477 err = loop_set_block_size(lo, arg); 1478 break; 1479 default: 1480 err = -EINVAL; 1481 } 1482 mutex_unlock(&lo->lo_mutex); 1483 return err; 1484 } 1485 1486 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1487 unsigned int cmd, unsigned long arg) 1488 { 1489 struct loop_device *lo = bdev->bd_disk->private_data; 1490 void __user *argp = (void __user *) arg; 1491 int err; 1492 1493 switch (cmd) { 1494 case LOOP_SET_FD: { 1495 /* 1496 * Legacy case - pass in a zeroed out struct loop_config with 1497 * only the file descriptor set , which corresponds with the 1498 * default parameters we'd have used otherwise. 1499 */ 1500 struct loop_config config; 1501 1502 memset(&config, 0, sizeof(config)); 1503 config.fd = arg; 1504 1505 return loop_configure(lo, mode, bdev, &config); 1506 } 1507 case LOOP_CONFIGURE: { 1508 struct loop_config config; 1509 1510 if (copy_from_user(&config, argp, sizeof(config))) 1511 return -EFAULT; 1512 1513 return loop_configure(lo, mode, bdev, &config); 1514 } 1515 case LOOP_CHANGE_FD: 1516 return loop_change_fd(lo, bdev, arg); 1517 case LOOP_CLR_FD: 1518 return loop_clr_fd(lo); 1519 case LOOP_SET_STATUS: 1520 err = -EPERM; 1521 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1522 err = loop_set_status_old(lo, argp); 1523 break; 1524 case LOOP_GET_STATUS: 1525 return loop_get_status_old(lo, argp); 1526 case LOOP_SET_STATUS64: 1527 err = -EPERM; 1528 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1529 err = loop_set_status64(lo, argp); 1530 break; 1531 case LOOP_GET_STATUS64: 1532 return loop_get_status64(lo, argp); 1533 case LOOP_SET_CAPACITY: 1534 case LOOP_SET_DIRECT_IO: 1535 case LOOP_SET_BLOCK_SIZE: 1536 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1537 return -EPERM; 1538 fallthrough; 1539 default: 1540 err = lo_simple_ioctl(lo, cmd, arg); 1541 break; 1542 } 1543 1544 return err; 1545 } 1546 1547 #ifdef CONFIG_COMPAT 1548 struct compat_loop_info { 1549 compat_int_t lo_number; /* ioctl r/o */ 1550 compat_dev_t lo_device; /* ioctl r/o */ 1551 compat_ulong_t lo_inode; /* ioctl r/o */ 1552 compat_dev_t lo_rdevice; /* ioctl r/o */ 1553 compat_int_t lo_offset; 1554 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1555 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1556 compat_int_t lo_flags; /* ioctl r/o */ 1557 char lo_name[LO_NAME_SIZE]; 1558 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1559 compat_ulong_t lo_init[2]; 1560 char reserved[4]; 1561 }; 1562 1563 /* 1564 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1565 * - noinlined to reduce stack space usage in main part of driver 1566 */ 1567 static noinline int 1568 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1569 struct loop_info64 *info64) 1570 { 1571 struct compat_loop_info info; 1572 1573 if (copy_from_user(&info, arg, sizeof(info))) 1574 return -EFAULT; 1575 1576 memset(info64, 0, sizeof(*info64)); 1577 info64->lo_number = info.lo_number; 1578 info64->lo_device = info.lo_device; 1579 info64->lo_inode = info.lo_inode; 1580 info64->lo_rdevice = info.lo_rdevice; 1581 info64->lo_offset = info.lo_offset; 1582 info64->lo_sizelimit = 0; 1583 info64->lo_flags = info.lo_flags; 1584 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1585 return 0; 1586 } 1587 1588 /* 1589 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1590 * - noinlined to reduce stack space usage in main part of driver 1591 */ 1592 static noinline int 1593 loop_info64_to_compat(const struct loop_info64 *info64, 1594 struct compat_loop_info __user *arg) 1595 { 1596 struct compat_loop_info info; 1597 1598 memset(&info, 0, sizeof(info)); 1599 info.lo_number = info64->lo_number; 1600 info.lo_device = info64->lo_device; 1601 info.lo_inode = info64->lo_inode; 1602 info.lo_rdevice = info64->lo_rdevice; 1603 info.lo_offset = info64->lo_offset; 1604 info.lo_flags = info64->lo_flags; 1605 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1606 1607 /* error in case values were truncated */ 1608 if (info.lo_device != info64->lo_device || 1609 info.lo_rdevice != info64->lo_rdevice || 1610 info.lo_inode != info64->lo_inode || 1611 info.lo_offset != info64->lo_offset) 1612 return -EOVERFLOW; 1613 1614 if (copy_to_user(arg, &info, sizeof(info))) 1615 return -EFAULT; 1616 return 0; 1617 } 1618 1619 static int 1620 loop_set_status_compat(struct loop_device *lo, 1621 const struct compat_loop_info __user *arg) 1622 { 1623 struct loop_info64 info64; 1624 int ret; 1625 1626 ret = loop_info64_from_compat(arg, &info64); 1627 if (ret < 0) 1628 return ret; 1629 return loop_set_status(lo, &info64); 1630 } 1631 1632 static int 1633 loop_get_status_compat(struct loop_device *lo, 1634 struct compat_loop_info __user *arg) 1635 { 1636 struct loop_info64 info64; 1637 int err; 1638 1639 if (!arg) 1640 return -EINVAL; 1641 err = loop_get_status(lo, &info64); 1642 if (!err) 1643 err = loop_info64_to_compat(&info64, arg); 1644 return err; 1645 } 1646 1647 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1648 unsigned int cmd, unsigned long arg) 1649 { 1650 struct loop_device *lo = bdev->bd_disk->private_data; 1651 int err; 1652 1653 switch(cmd) { 1654 case LOOP_SET_STATUS: 1655 err = loop_set_status_compat(lo, 1656 (const struct compat_loop_info __user *)arg); 1657 break; 1658 case LOOP_GET_STATUS: 1659 err = loop_get_status_compat(lo, 1660 (struct compat_loop_info __user *)arg); 1661 break; 1662 case LOOP_SET_CAPACITY: 1663 case LOOP_CLR_FD: 1664 case LOOP_GET_STATUS64: 1665 case LOOP_SET_STATUS64: 1666 case LOOP_CONFIGURE: 1667 arg = (unsigned long) compat_ptr(arg); 1668 fallthrough; 1669 case LOOP_SET_FD: 1670 case LOOP_CHANGE_FD: 1671 case LOOP_SET_BLOCK_SIZE: 1672 case LOOP_SET_DIRECT_IO: 1673 err = lo_ioctl(bdev, mode, cmd, arg); 1674 break; 1675 default: 1676 err = -ENOIOCTLCMD; 1677 break; 1678 } 1679 return err; 1680 } 1681 #endif 1682 1683 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1684 { 1685 struct loop_device *lo = disk->private_data; 1686 int err; 1687 1688 err = mutex_lock_killable(&lo->lo_mutex); 1689 if (err) 1690 return err; 1691 1692 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1693 err = -ENXIO; 1694 mutex_unlock(&lo->lo_mutex); 1695 return err; 1696 } 1697 1698 static void lo_release(struct gendisk *disk) 1699 { 1700 struct loop_device *lo = disk->private_data; 1701 bool need_clear = false; 1702 1703 if (disk_openers(disk) > 0) 1704 return; 1705 /* 1706 * Clear the backing device information if this is the last close of 1707 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1708 * has been called. 1709 */ 1710 1711 mutex_lock(&lo->lo_mutex); 1712 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1713 lo->lo_state = Lo_rundown; 1714 1715 need_clear = (lo->lo_state == Lo_rundown); 1716 mutex_unlock(&lo->lo_mutex); 1717 1718 if (need_clear) 1719 __loop_clr_fd(lo); 1720 } 1721 1722 static void lo_free_disk(struct gendisk *disk) 1723 { 1724 struct loop_device *lo = disk->private_data; 1725 1726 if (lo->workqueue) 1727 destroy_workqueue(lo->workqueue); 1728 loop_free_idle_workers(lo, true); 1729 timer_shutdown_sync(&lo->timer); 1730 mutex_destroy(&lo->lo_mutex); 1731 kfree(lo); 1732 } 1733 1734 static const struct block_device_operations lo_fops = { 1735 .owner = THIS_MODULE, 1736 .open = lo_open, 1737 .release = lo_release, 1738 .ioctl = lo_ioctl, 1739 #ifdef CONFIG_COMPAT 1740 .compat_ioctl = lo_compat_ioctl, 1741 #endif 1742 .free_disk = lo_free_disk, 1743 }; 1744 1745 /* 1746 * And now the modules code and kernel interface. 1747 */ 1748 1749 /* 1750 * If max_loop is specified, create that many devices upfront. 1751 * This also becomes a hard limit. If max_loop is not specified, 1752 * the default isn't a hard limit (as before commit 85c50197716c 1753 * changed the default value from 0 for max_loop=0 reasons), just 1754 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1755 * init time. Loop devices can be requested on-demand with the 1756 * /dev/loop-control interface, or be instantiated by accessing 1757 * a 'dead' device node. 1758 */ 1759 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1760 1761 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1762 static bool max_loop_specified; 1763 1764 static int max_loop_param_set_int(const char *val, 1765 const struct kernel_param *kp) 1766 { 1767 int ret; 1768 1769 ret = param_set_int(val, kp); 1770 if (ret < 0) 1771 return ret; 1772 1773 max_loop_specified = true; 1774 return 0; 1775 } 1776 1777 static const struct kernel_param_ops max_loop_param_ops = { 1778 .set = max_loop_param_set_int, 1779 .get = param_get_int, 1780 }; 1781 1782 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1783 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1784 #else 1785 module_param(max_loop, int, 0444); 1786 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1787 #endif 1788 1789 module_param(max_part, int, 0444); 1790 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1791 1792 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1793 1794 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1795 { 1796 int qd, ret; 1797 1798 ret = kstrtoint(s, 0, &qd); 1799 if (ret < 0) 1800 return ret; 1801 if (qd < 1) 1802 return -EINVAL; 1803 hw_queue_depth = qd; 1804 return 0; 1805 } 1806 1807 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1808 .set = loop_set_hw_queue_depth, 1809 .get = param_get_int, 1810 }; 1811 1812 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1813 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1814 1815 MODULE_DESCRIPTION("Loopback device support"); 1816 MODULE_LICENSE("GPL"); 1817 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1818 1819 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1820 const struct blk_mq_queue_data *bd) 1821 { 1822 struct request *rq = bd->rq; 1823 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1824 struct loop_device *lo = rq->q->queuedata; 1825 1826 blk_mq_start_request(rq); 1827 1828 if (lo->lo_state != Lo_bound) 1829 return BLK_STS_IOERR; 1830 1831 switch (req_op(rq)) { 1832 case REQ_OP_FLUSH: 1833 case REQ_OP_DISCARD: 1834 case REQ_OP_WRITE_ZEROES: 1835 cmd->use_aio = false; 1836 break; 1837 default: 1838 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1839 break; 1840 } 1841 1842 /* always use the first bio's css */ 1843 cmd->blkcg_css = NULL; 1844 cmd->memcg_css = NULL; 1845 #ifdef CONFIG_BLK_CGROUP 1846 if (rq->bio) { 1847 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1848 #ifdef CONFIG_MEMCG 1849 if (cmd->blkcg_css) { 1850 cmd->memcg_css = 1851 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1852 &memory_cgrp_subsys); 1853 } 1854 #endif 1855 } 1856 #endif 1857 loop_queue_work(lo, cmd); 1858 1859 return BLK_STS_OK; 1860 } 1861 1862 static void loop_handle_cmd(struct loop_cmd *cmd) 1863 { 1864 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1865 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1866 struct request *rq = blk_mq_rq_from_pdu(cmd); 1867 const bool write = op_is_write(req_op(rq)); 1868 struct loop_device *lo = rq->q->queuedata; 1869 int ret = 0; 1870 struct mem_cgroup *old_memcg = NULL; 1871 1872 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1873 ret = -EIO; 1874 goto failed; 1875 } 1876 1877 if (cmd_blkcg_css) 1878 kthread_associate_blkcg(cmd_blkcg_css); 1879 if (cmd_memcg_css) 1880 old_memcg = set_active_memcg( 1881 mem_cgroup_from_css(cmd_memcg_css)); 1882 1883 /* 1884 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1885 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1886 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1887 * not yet been completed. 1888 */ 1889 ret = do_req_filebacked(lo, rq); 1890 1891 if (cmd_blkcg_css) 1892 kthread_associate_blkcg(NULL); 1893 1894 if (cmd_memcg_css) { 1895 set_active_memcg(old_memcg); 1896 css_put(cmd_memcg_css); 1897 } 1898 failed: 1899 /* complete non-aio request */ 1900 if (ret != -EIOCBQUEUED) { 1901 if (ret == -EOPNOTSUPP) 1902 cmd->ret = ret; 1903 else 1904 cmd->ret = ret ? -EIO : 0; 1905 if (likely(!blk_should_fake_timeout(rq->q))) 1906 blk_mq_complete_request(rq); 1907 } 1908 } 1909 1910 static void loop_process_work(struct loop_worker *worker, 1911 struct list_head *cmd_list, struct loop_device *lo) 1912 { 1913 int orig_flags = current->flags; 1914 struct loop_cmd *cmd; 1915 1916 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1917 spin_lock_irq(&lo->lo_work_lock); 1918 while (!list_empty(cmd_list)) { 1919 cmd = container_of( 1920 cmd_list->next, struct loop_cmd, list_entry); 1921 list_del(cmd_list->next); 1922 spin_unlock_irq(&lo->lo_work_lock); 1923 1924 loop_handle_cmd(cmd); 1925 cond_resched(); 1926 1927 spin_lock_irq(&lo->lo_work_lock); 1928 } 1929 1930 /* 1931 * We only add to the idle list if there are no pending cmds 1932 * *and* the worker will not run again which ensures that it 1933 * is safe to free any worker on the idle list 1934 */ 1935 if (worker && !work_pending(&worker->work)) { 1936 worker->last_ran_at = jiffies; 1937 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1938 loop_set_timer(lo); 1939 } 1940 spin_unlock_irq(&lo->lo_work_lock); 1941 current->flags = orig_flags; 1942 } 1943 1944 static void loop_workfn(struct work_struct *work) 1945 { 1946 struct loop_worker *worker = 1947 container_of(work, struct loop_worker, work); 1948 loop_process_work(worker, &worker->cmd_list, worker->lo); 1949 } 1950 1951 static void loop_rootcg_workfn(struct work_struct *work) 1952 { 1953 struct loop_device *lo = 1954 container_of(work, struct loop_device, rootcg_work); 1955 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1956 } 1957 1958 static const struct blk_mq_ops loop_mq_ops = { 1959 .queue_rq = loop_queue_rq, 1960 .complete = lo_complete_rq, 1961 }; 1962 1963 static int loop_add(int i) 1964 { 1965 struct queue_limits lim = { 1966 /* 1967 * Random number picked from the historic block max_sectors cap. 1968 */ 1969 .max_hw_sectors = 2560u, 1970 }; 1971 struct loop_device *lo; 1972 struct gendisk *disk; 1973 int err; 1974 1975 err = -ENOMEM; 1976 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1977 if (!lo) 1978 goto out; 1979 lo->worker_tree = RB_ROOT; 1980 INIT_LIST_HEAD(&lo->idle_worker_list); 1981 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 1982 lo->lo_state = Lo_unbound; 1983 1984 err = mutex_lock_killable(&loop_ctl_mutex); 1985 if (err) 1986 goto out_free_dev; 1987 1988 /* allocate id, if @id >= 0, we're requesting that specific id */ 1989 if (i >= 0) { 1990 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1991 if (err == -ENOSPC) 1992 err = -EEXIST; 1993 } else { 1994 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1995 } 1996 mutex_unlock(&loop_ctl_mutex); 1997 if (err < 0) 1998 goto out_free_dev; 1999 i = err; 2000 2001 lo->tag_set.ops = &loop_mq_ops; 2002 lo->tag_set.nr_hw_queues = 1; 2003 lo->tag_set.queue_depth = hw_queue_depth; 2004 lo->tag_set.numa_node = NUMA_NO_NODE; 2005 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2006 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2007 lo->tag_set.driver_data = lo; 2008 2009 err = blk_mq_alloc_tag_set(&lo->tag_set); 2010 if (err) 2011 goto out_free_idr; 2012 2013 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2014 if (IS_ERR(disk)) { 2015 err = PTR_ERR(disk); 2016 goto out_cleanup_tags; 2017 } 2018 lo->lo_queue = lo->lo_disk->queue; 2019 2020 /* 2021 * Disable partition scanning by default. The in-kernel partition 2022 * scanning can be requested individually per-device during its 2023 * setup. Userspace can always add and remove partitions from all 2024 * devices. The needed partition minors are allocated from the 2025 * extended minor space, the main loop device numbers will continue 2026 * to match the loop minors, regardless of the number of partitions 2027 * used. 2028 * 2029 * If max_part is given, partition scanning is globally enabled for 2030 * all loop devices. The minors for the main loop devices will be 2031 * multiples of max_part. 2032 * 2033 * Note: Global-for-all-devices, set-only-at-init, read-only module 2034 * parameteters like 'max_loop' and 'max_part' make things needlessly 2035 * complicated, are too static, inflexible and may surprise 2036 * userspace tools. Parameters like this in general should be avoided. 2037 */ 2038 if (!part_shift) 2039 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2040 mutex_init(&lo->lo_mutex); 2041 lo->lo_number = i; 2042 spin_lock_init(&lo->lo_lock); 2043 spin_lock_init(&lo->lo_work_lock); 2044 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2045 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2046 disk->major = LOOP_MAJOR; 2047 disk->first_minor = i << part_shift; 2048 disk->minors = 1 << part_shift; 2049 disk->fops = &lo_fops; 2050 disk->private_data = lo; 2051 disk->queue = lo->lo_queue; 2052 disk->events = DISK_EVENT_MEDIA_CHANGE; 2053 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2054 sprintf(disk->disk_name, "loop%d", i); 2055 /* Make this loop device reachable from pathname. */ 2056 err = add_disk(disk); 2057 if (err) 2058 goto out_cleanup_disk; 2059 2060 /* Show this loop device. */ 2061 mutex_lock(&loop_ctl_mutex); 2062 lo->idr_visible = true; 2063 mutex_unlock(&loop_ctl_mutex); 2064 2065 return i; 2066 2067 out_cleanup_disk: 2068 put_disk(disk); 2069 out_cleanup_tags: 2070 blk_mq_free_tag_set(&lo->tag_set); 2071 out_free_idr: 2072 mutex_lock(&loop_ctl_mutex); 2073 idr_remove(&loop_index_idr, i); 2074 mutex_unlock(&loop_ctl_mutex); 2075 out_free_dev: 2076 kfree(lo); 2077 out: 2078 return err; 2079 } 2080 2081 static void loop_remove(struct loop_device *lo) 2082 { 2083 /* Make this loop device unreachable from pathname. */ 2084 del_gendisk(lo->lo_disk); 2085 blk_mq_free_tag_set(&lo->tag_set); 2086 2087 mutex_lock(&loop_ctl_mutex); 2088 idr_remove(&loop_index_idr, lo->lo_number); 2089 mutex_unlock(&loop_ctl_mutex); 2090 2091 put_disk(lo->lo_disk); 2092 } 2093 2094 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2095 static void loop_probe(dev_t dev) 2096 { 2097 int idx = MINOR(dev) >> part_shift; 2098 2099 if (max_loop_specified && max_loop && idx >= max_loop) 2100 return; 2101 loop_add(idx); 2102 } 2103 #else 2104 #define loop_probe NULL 2105 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2106 2107 static int loop_control_remove(int idx) 2108 { 2109 struct loop_device *lo; 2110 int ret; 2111 2112 if (idx < 0) { 2113 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2114 return -EINVAL; 2115 } 2116 2117 /* Hide this loop device for serialization. */ 2118 ret = mutex_lock_killable(&loop_ctl_mutex); 2119 if (ret) 2120 return ret; 2121 lo = idr_find(&loop_index_idr, idx); 2122 if (!lo || !lo->idr_visible) 2123 ret = -ENODEV; 2124 else 2125 lo->idr_visible = false; 2126 mutex_unlock(&loop_ctl_mutex); 2127 if (ret) 2128 return ret; 2129 2130 /* Check whether this loop device can be removed. */ 2131 ret = mutex_lock_killable(&lo->lo_mutex); 2132 if (ret) 2133 goto mark_visible; 2134 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2135 mutex_unlock(&lo->lo_mutex); 2136 ret = -EBUSY; 2137 goto mark_visible; 2138 } 2139 /* Mark this loop device as no more bound, but not quite unbound yet */ 2140 lo->lo_state = Lo_deleting; 2141 mutex_unlock(&lo->lo_mutex); 2142 2143 loop_remove(lo); 2144 return 0; 2145 2146 mark_visible: 2147 /* Show this loop device again. */ 2148 mutex_lock(&loop_ctl_mutex); 2149 lo->idr_visible = true; 2150 mutex_unlock(&loop_ctl_mutex); 2151 return ret; 2152 } 2153 2154 static int loop_control_get_free(int idx) 2155 { 2156 struct loop_device *lo; 2157 int id, ret; 2158 2159 ret = mutex_lock_killable(&loop_ctl_mutex); 2160 if (ret) 2161 return ret; 2162 idr_for_each_entry(&loop_index_idr, lo, id) { 2163 /* Hitting a race results in creating a new loop device which is harmless. */ 2164 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2165 goto found; 2166 } 2167 mutex_unlock(&loop_ctl_mutex); 2168 return loop_add(-1); 2169 found: 2170 mutex_unlock(&loop_ctl_mutex); 2171 return id; 2172 } 2173 2174 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2175 unsigned long parm) 2176 { 2177 switch (cmd) { 2178 case LOOP_CTL_ADD: 2179 return loop_add(parm); 2180 case LOOP_CTL_REMOVE: 2181 return loop_control_remove(parm); 2182 case LOOP_CTL_GET_FREE: 2183 return loop_control_get_free(parm); 2184 default: 2185 return -ENOSYS; 2186 } 2187 } 2188 2189 static const struct file_operations loop_ctl_fops = { 2190 .open = nonseekable_open, 2191 .unlocked_ioctl = loop_control_ioctl, 2192 .compat_ioctl = loop_control_ioctl, 2193 .owner = THIS_MODULE, 2194 .llseek = noop_llseek, 2195 }; 2196 2197 static struct miscdevice loop_misc = { 2198 .minor = LOOP_CTRL_MINOR, 2199 .name = "loop-control", 2200 .fops = &loop_ctl_fops, 2201 }; 2202 2203 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2204 MODULE_ALIAS("devname:loop-control"); 2205 2206 static int __init loop_init(void) 2207 { 2208 int i; 2209 int err; 2210 2211 part_shift = 0; 2212 if (max_part > 0) { 2213 part_shift = fls(max_part); 2214 2215 /* 2216 * Adjust max_part according to part_shift as it is exported 2217 * to user space so that user can decide correct minor number 2218 * if [s]he want to create more devices. 2219 * 2220 * Note that -1 is required because partition 0 is reserved 2221 * for the whole disk. 2222 */ 2223 max_part = (1UL << part_shift) - 1; 2224 } 2225 2226 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2227 err = -EINVAL; 2228 goto err_out; 2229 } 2230 2231 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2232 err = -EINVAL; 2233 goto err_out; 2234 } 2235 2236 err = misc_register(&loop_misc); 2237 if (err < 0) 2238 goto err_out; 2239 2240 2241 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2242 err = -EIO; 2243 goto misc_out; 2244 } 2245 2246 /* pre-create number of devices given by config or max_loop */ 2247 for (i = 0; i < max_loop; i++) 2248 loop_add(i); 2249 2250 printk(KERN_INFO "loop: module loaded\n"); 2251 return 0; 2252 2253 misc_out: 2254 misc_deregister(&loop_misc); 2255 err_out: 2256 return err; 2257 } 2258 2259 static void __exit loop_exit(void) 2260 { 2261 struct loop_device *lo; 2262 int id; 2263 2264 unregister_blkdev(LOOP_MAJOR, "loop"); 2265 misc_deregister(&loop_misc); 2266 2267 /* 2268 * There is no need to use loop_ctl_mutex here, for nobody else can 2269 * access loop_index_idr when this module is unloading (unless forced 2270 * module unloading is requested). If this is not a clean unloading, 2271 * we have no means to avoid kernel crash. 2272 */ 2273 idr_for_each_entry(&loop_index_idr, lo, id) 2274 loop_remove(lo); 2275 2276 idr_destroy(&loop_index_idr); 2277 } 2278 2279 module_init(loop_init); 2280 module_exit(loop_exit); 2281 2282 #ifndef MODULE 2283 static int __init max_loop_setup(char *str) 2284 { 2285 max_loop = simple_strtol(str, NULL, 0); 2286 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2287 max_loop_specified = true; 2288 #endif 2289 return 1; 2290 } 2291 2292 __setup("max_loop=", max_loop_setup); 2293 #endif 2294