1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory subsystem support 4 * 5 * Written by Matt Tolentino <matthew.e.tolentino@intel.com> 6 * Dave Hansen <haveblue@us.ibm.com> 7 * 8 * This file provides the necessary infrastructure to represent 9 * a SPARSEMEM-memory-model system's physical memory in /sysfs. 10 * All arch-independent code that assumes MEMORY_HOTPLUG requires 11 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/topology.h> 17 #include <linux/capability.h> 18 #include <linux/device.h> 19 #include <linux/memory.h> 20 #include <linux/memory_hotplug.h> 21 #include <linux/mm.h> 22 #include <linux/stat.h> 23 #include <linux/slab.h> 24 #include <linux/xarray.h> 25 26 #include <linux/atomic.h> 27 #include <linux/uaccess.h> 28 29 #define MEMORY_CLASS_NAME "memory" 30 31 static const char *const online_type_to_str[] = { 32 [MMOP_OFFLINE] = "offline", 33 [MMOP_ONLINE] = "online", 34 [MMOP_ONLINE_KERNEL] = "online_kernel", 35 [MMOP_ONLINE_MOVABLE] = "online_movable", 36 }; 37 38 int mhp_online_type_from_str(const char *str) 39 { 40 int i; 41 42 for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) { 43 if (sysfs_streq(str, online_type_to_str[i])) 44 return i; 45 } 46 return -EINVAL; 47 } 48 49 #define to_memory_block(dev) container_of(dev, struct memory_block, dev) 50 51 static int sections_per_block; 52 53 static inline unsigned long memory_block_id(unsigned long section_nr) 54 { 55 return section_nr / sections_per_block; 56 } 57 58 static inline unsigned long pfn_to_block_id(unsigned long pfn) 59 { 60 return memory_block_id(pfn_to_section_nr(pfn)); 61 } 62 63 static inline unsigned long phys_to_block_id(unsigned long phys) 64 { 65 return pfn_to_block_id(PFN_DOWN(phys)); 66 } 67 68 static int memory_subsys_online(struct device *dev); 69 static int memory_subsys_offline(struct device *dev); 70 71 static const struct bus_type memory_subsys = { 72 .name = MEMORY_CLASS_NAME, 73 .dev_name = MEMORY_CLASS_NAME, 74 .online = memory_subsys_online, 75 .offline = memory_subsys_offline, 76 }; 77 78 /* 79 * Memory blocks are cached in a local radix tree to avoid 80 * a costly linear search for the corresponding device on 81 * the subsystem bus. 82 */ 83 static DEFINE_XARRAY(memory_blocks); 84 85 /* 86 * Memory groups, indexed by memory group id (mgid). 87 */ 88 static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC); 89 #define MEMORY_GROUP_MARK_DYNAMIC XA_MARK_1 90 91 static BLOCKING_NOTIFIER_HEAD(memory_chain); 92 93 int register_memory_notifier(struct notifier_block *nb) 94 { 95 return blocking_notifier_chain_register(&memory_chain, nb); 96 } 97 EXPORT_SYMBOL(register_memory_notifier); 98 99 void unregister_memory_notifier(struct notifier_block *nb) 100 { 101 blocking_notifier_chain_unregister(&memory_chain, nb); 102 } 103 EXPORT_SYMBOL(unregister_memory_notifier); 104 105 static void memory_block_release(struct device *dev) 106 { 107 struct memory_block *mem = to_memory_block(dev); 108 /* Verify that the altmap is freed */ 109 WARN_ON(mem->altmap); 110 kfree(mem); 111 } 112 113 unsigned long __weak memory_block_size_bytes(void) 114 { 115 return MIN_MEMORY_BLOCK_SIZE; 116 } 117 EXPORT_SYMBOL_GPL(memory_block_size_bytes); 118 119 /* Show the memory block ID, relative to the memory block size */ 120 static ssize_t phys_index_show(struct device *dev, 121 struct device_attribute *attr, char *buf) 122 { 123 struct memory_block *mem = to_memory_block(dev); 124 125 return sysfs_emit(buf, "%08lx\n", memory_block_id(mem->start_section_nr)); 126 } 127 128 /* 129 * Legacy interface that we cannot remove. Always indicate "removable" 130 * with CONFIG_MEMORY_HOTREMOVE - bad heuristic. 131 */ 132 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 133 char *buf) 134 { 135 return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)); 136 } 137 138 /* 139 * online, offline, going offline, etc. 140 */ 141 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 142 char *buf) 143 { 144 struct memory_block *mem = to_memory_block(dev); 145 const char *output; 146 147 /* 148 * We can probably put these states in a nice little array 149 * so that they're not open-coded 150 */ 151 switch (mem->state) { 152 case MEM_ONLINE: 153 output = "online"; 154 break; 155 case MEM_OFFLINE: 156 output = "offline"; 157 break; 158 case MEM_GOING_OFFLINE: 159 output = "going-offline"; 160 break; 161 default: 162 WARN_ON(1); 163 return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state); 164 } 165 166 return sysfs_emit(buf, "%s\n", output); 167 } 168 169 int memory_notify(unsigned long val, void *v) 170 { 171 return blocking_notifier_call_chain(&memory_chain, val, v); 172 } 173 174 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 175 static unsigned long memblk_nr_poison(struct memory_block *mem); 176 #else 177 static inline unsigned long memblk_nr_poison(struct memory_block *mem) 178 { 179 return 0; 180 } 181 #endif 182 183 /* 184 * Must acquire mem_hotplug_lock in write mode. 185 */ 186 static int memory_block_online(struct memory_block *mem) 187 { 188 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 189 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 190 unsigned long nr_vmemmap_pages = 0; 191 struct memory_notify arg; 192 struct zone *zone; 193 int ret; 194 195 if (memblk_nr_poison(mem)) 196 return -EHWPOISON; 197 198 zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group, 199 start_pfn, nr_pages); 200 201 /* 202 * Although vmemmap pages have a different lifecycle than the pages 203 * they describe (they remain until the memory is unplugged), doing 204 * their initialization and accounting at memory onlining/offlining 205 * stage helps to keep accounting easier to follow - e.g vmemmaps 206 * belong to the same zone as the memory they backed. 207 */ 208 if (mem->altmap) 209 nr_vmemmap_pages = mem->altmap->free; 210 211 arg.altmap_start_pfn = start_pfn; 212 arg.altmap_nr_pages = nr_vmemmap_pages; 213 arg.start_pfn = start_pfn + nr_vmemmap_pages; 214 arg.nr_pages = nr_pages - nr_vmemmap_pages; 215 mem_hotplug_begin(); 216 ret = memory_notify(MEM_PREPARE_ONLINE, &arg); 217 ret = notifier_to_errno(ret); 218 if (ret) 219 goto out_notifier; 220 221 if (nr_vmemmap_pages) { 222 ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, 223 zone, mem->altmap->inaccessible); 224 if (ret) 225 goto out; 226 } 227 228 ret = online_pages(start_pfn + nr_vmemmap_pages, 229 nr_pages - nr_vmemmap_pages, zone, mem->group); 230 if (ret) { 231 if (nr_vmemmap_pages) 232 mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages); 233 goto out; 234 } 235 236 /* 237 * Account once onlining succeeded. If the zone was unpopulated, it is 238 * now already properly populated. 239 */ 240 if (nr_vmemmap_pages) 241 adjust_present_page_count(pfn_to_page(start_pfn), mem->group, 242 nr_vmemmap_pages); 243 244 mem->zone = zone; 245 mem_hotplug_done(); 246 return ret; 247 out: 248 memory_notify(MEM_FINISH_OFFLINE, &arg); 249 out_notifier: 250 mem_hotplug_done(); 251 return ret; 252 } 253 254 /* 255 * Must acquire mem_hotplug_lock in write mode. 256 */ 257 static int memory_block_offline(struct memory_block *mem) 258 { 259 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 260 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 261 unsigned long nr_vmemmap_pages = 0; 262 struct memory_notify arg; 263 int ret; 264 265 if (!mem->zone) 266 return -EINVAL; 267 268 /* 269 * Unaccount before offlining, such that unpopulated zone and kthreads 270 * can properly be torn down in offline_pages(). 271 */ 272 if (mem->altmap) 273 nr_vmemmap_pages = mem->altmap->free; 274 275 mem_hotplug_begin(); 276 if (nr_vmemmap_pages) 277 adjust_present_page_count(pfn_to_page(start_pfn), mem->group, 278 -nr_vmemmap_pages); 279 280 ret = offline_pages(start_pfn + nr_vmemmap_pages, 281 nr_pages - nr_vmemmap_pages, mem->zone, mem->group); 282 if (ret) { 283 /* offline_pages() failed. Account back. */ 284 if (nr_vmemmap_pages) 285 adjust_present_page_count(pfn_to_page(start_pfn), 286 mem->group, nr_vmemmap_pages); 287 goto out; 288 } 289 290 if (nr_vmemmap_pages) 291 mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages); 292 293 mem->zone = NULL; 294 arg.altmap_start_pfn = start_pfn; 295 arg.altmap_nr_pages = nr_vmemmap_pages; 296 arg.start_pfn = start_pfn + nr_vmemmap_pages; 297 arg.nr_pages = nr_pages - nr_vmemmap_pages; 298 memory_notify(MEM_FINISH_OFFLINE, &arg); 299 out: 300 mem_hotplug_done(); 301 return ret; 302 } 303 304 /* 305 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is 306 * OK to have direct references to sparsemem variables in here. 307 */ 308 static int 309 memory_block_action(struct memory_block *mem, unsigned long action) 310 { 311 int ret; 312 313 switch (action) { 314 case MEM_ONLINE: 315 ret = memory_block_online(mem); 316 break; 317 case MEM_OFFLINE: 318 ret = memory_block_offline(mem); 319 break; 320 default: 321 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: " 322 "%ld\n", __func__, mem->start_section_nr, action, action); 323 ret = -EINVAL; 324 } 325 326 return ret; 327 } 328 329 static int memory_block_change_state(struct memory_block *mem, 330 unsigned long to_state, unsigned long from_state_req) 331 { 332 int ret = 0; 333 334 if (mem->state != from_state_req) 335 return -EINVAL; 336 337 if (to_state == MEM_OFFLINE) 338 mem->state = MEM_GOING_OFFLINE; 339 340 ret = memory_block_action(mem, to_state); 341 mem->state = ret ? from_state_req : to_state; 342 343 return ret; 344 } 345 346 /* The device lock serializes operations on memory_subsys_[online|offline] */ 347 static int memory_subsys_online(struct device *dev) 348 { 349 struct memory_block *mem = to_memory_block(dev); 350 int ret; 351 352 if (mem->state == MEM_ONLINE) 353 return 0; 354 355 /* 356 * When called via device_online() without configuring the online_type, 357 * we want to default to MMOP_ONLINE. 358 */ 359 if (mem->online_type == MMOP_OFFLINE) 360 mem->online_type = MMOP_ONLINE; 361 362 ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE); 363 mem->online_type = MMOP_OFFLINE; 364 365 return ret; 366 } 367 368 static int memory_subsys_offline(struct device *dev) 369 { 370 struct memory_block *mem = to_memory_block(dev); 371 372 if (mem->state == MEM_OFFLINE) 373 return 0; 374 375 return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE); 376 } 377 378 static ssize_t state_store(struct device *dev, struct device_attribute *attr, 379 const char *buf, size_t count) 380 { 381 const int online_type = mhp_online_type_from_str(buf); 382 struct memory_block *mem = to_memory_block(dev); 383 int ret; 384 385 if (online_type < 0) 386 return -EINVAL; 387 388 ret = lock_device_hotplug_sysfs(); 389 if (ret) 390 return ret; 391 392 switch (online_type) { 393 case MMOP_ONLINE_KERNEL: 394 case MMOP_ONLINE_MOVABLE: 395 case MMOP_ONLINE: 396 /* mem->online_type is protected by device_hotplug_lock */ 397 mem->online_type = online_type; 398 ret = device_online(&mem->dev); 399 break; 400 case MMOP_OFFLINE: 401 ret = device_offline(&mem->dev); 402 break; 403 default: 404 ret = -EINVAL; /* should never happen */ 405 } 406 407 unlock_device_hotplug(); 408 409 if (ret < 0) 410 return ret; 411 if (ret) 412 return -EINVAL; 413 414 return count; 415 } 416 417 /* 418 * Legacy interface that we cannot remove: s390x exposes the storage increment 419 * covered by a memory block, allowing for identifying which memory blocks 420 * comprise a storage increment. Since a memory block spans complete 421 * storage increments nowadays, this interface is basically unused. Other 422 * archs never exposed != 0. 423 */ 424 static ssize_t phys_device_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 struct memory_block *mem = to_memory_block(dev); 428 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 429 430 return sysfs_emit(buf, "%d\n", 431 arch_get_memory_phys_device(start_pfn)); 432 } 433 434 #ifdef CONFIG_MEMORY_HOTREMOVE 435 static int print_allowed_zone(char *buf, int len, int nid, 436 struct memory_group *group, 437 unsigned long start_pfn, unsigned long nr_pages, 438 int online_type, struct zone *default_zone) 439 { 440 struct zone *zone; 441 442 zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages); 443 if (zone == default_zone) 444 return 0; 445 446 return sysfs_emit_at(buf, len, " %s", zone->name); 447 } 448 449 static ssize_t valid_zones_show(struct device *dev, 450 struct device_attribute *attr, char *buf) 451 { 452 struct memory_block *mem = to_memory_block(dev); 453 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 454 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 455 struct memory_group *group = mem->group; 456 struct zone *default_zone; 457 int nid = mem->nid; 458 int len; 459 460 /* 461 * Check the existing zone. Make sure that we do that only on the 462 * online nodes otherwise the page_zone is not reliable 463 */ 464 if (mem->state == MEM_ONLINE) { 465 /* 466 * If !mem->zone, the memory block spans multiple zones and 467 * cannot get offlined. 468 */ 469 return sysfs_emit(buf, "%s\n", 470 mem->zone ? mem->zone->name : "none"); 471 } 472 473 default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group, 474 start_pfn, nr_pages); 475 476 len = sysfs_emit(buf, "%s", default_zone->name); 477 len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages, 478 MMOP_ONLINE_KERNEL, default_zone); 479 len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages, 480 MMOP_ONLINE_MOVABLE, default_zone); 481 len += sysfs_emit_at(buf, len, "\n"); 482 return len; 483 } 484 static DEVICE_ATTR_RO(valid_zones); 485 #endif 486 487 static DEVICE_ATTR_RO(phys_index); 488 static DEVICE_ATTR_RW(state); 489 static DEVICE_ATTR_RO(phys_device); 490 static DEVICE_ATTR_RO(removable); 491 492 /* 493 * Show the memory block size (shared by all memory blocks). 494 */ 495 static ssize_t block_size_bytes_show(struct device *dev, 496 struct device_attribute *attr, char *buf) 497 { 498 return sysfs_emit(buf, "%lx\n", memory_block_size_bytes()); 499 } 500 501 static DEVICE_ATTR_RO(block_size_bytes); 502 503 /* 504 * Memory auto online policy. 505 */ 506 507 static ssize_t auto_online_blocks_show(struct device *dev, 508 struct device_attribute *attr, char *buf) 509 { 510 return sysfs_emit(buf, "%s\n", 511 online_type_to_str[mhp_get_default_online_type()]); 512 } 513 514 static ssize_t auto_online_blocks_store(struct device *dev, 515 struct device_attribute *attr, 516 const char *buf, size_t count) 517 { 518 const int online_type = mhp_online_type_from_str(buf); 519 520 if (online_type < 0) 521 return -EINVAL; 522 523 mhp_set_default_online_type(online_type); 524 return count; 525 } 526 527 static DEVICE_ATTR_RW(auto_online_blocks); 528 529 #ifdef CONFIG_CRASH_HOTPLUG 530 #include <linux/kexec.h> 531 static ssize_t crash_hotplug_show(struct device *dev, 532 struct device_attribute *attr, char *buf) 533 { 534 return sysfs_emit(buf, "%d\n", crash_check_hotplug_support()); 535 } 536 static DEVICE_ATTR_RO(crash_hotplug); 537 #endif 538 539 /* 540 * Some architectures will have custom drivers to do this, and 541 * will not need to do it from userspace. The fake hot-add code 542 * as well as ppc64 will do all of their discovery in userspace 543 * and will require this interface. 544 */ 545 #ifdef CONFIG_ARCH_MEMORY_PROBE 546 static ssize_t probe_store(struct device *dev, struct device_attribute *attr, 547 const char *buf, size_t count) 548 { 549 u64 phys_addr; 550 int nid, ret; 551 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block; 552 553 ret = kstrtoull(buf, 0, &phys_addr); 554 if (ret) 555 return ret; 556 557 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1)) 558 return -EINVAL; 559 560 ret = lock_device_hotplug_sysfs(); 561 if (ret) 562 return ret; 563 564 nid = memory_add_physaddr_to_nid(phys_addr); 565 ret = __add_memory(nid, phys_addr, 566 MIN_MEMORY_BLOCK_SIZE * sections_per_block, 567 MHP_NONE); 568 569 if (ret) 570 goto out; 571 572 ret = count; 573 out: 574 unlock_device_hotplug(); 575 return ret; 576 } 577 578 static DEVICE_ATTR_WO(probe); 579 #endif 580 581 #ifdef CONFIG_MEMORY_FAILURE 582 /* 583 * Support for offlining pages of memory 584 */ 585 586 /* Soft offline a page */ 587 static ssize_t soft_offline_page_store(struct device *dev, 588 struct device_attribute *attr, 589 const char *buf, size_t count) 590 { 591 int ret; 592 u64 pfn; 593 if (!capable(CAP_SYS_ADMIN)) 594 return -EPERM; 595 if (kstrtoull(buf, 0, &pfn) < 0) 596 return -EINVAL; 597 pfn >>= PAGE_SHIFT; 598 ret = soft_offline_page(pfn, 0); 599 return ret == 0 ? count : ret; 600 } 601 602 /* Forcibly offline a page, including killing processes. */ 603 static ssize_t hard_offline_page_store(struct device *dev, 604 struct device_attribute *attr, 605 const char *buf, size_t count) 606 { 607 int ret; 608 u64 pfn; 609 if (!capable(CAP_SYS_ADMIN)) 610 return -EPERM; 611 if (kstrtoull(buf, 0, &pfn) < 0) 612 return -EINVAL; 613 pfn >>= PAGE_SHIFT; 614 ret = memory_failure(pfn, MF_SW_SIMULATED); 615 if (ret == -EOPNOTSUPP) 616 ret = 0; 617 return ret ? ret : count; 618 } 619 620 static DEVICE_ATTR_WO(soft_offline_page); 621 static DEVICE_ATTR_WO(hard_offline_page); 622 #endif 623 624 /* See phys_device_show(). */ 625 int __weak arch_get_memory_phys_device(unsigned long start_pfn) 626 { 627 return 0; 628 } 629 630 /* 631 * A reference for the returned memory block device is acquired. 632 * 633 * Called under device_hotplug_lock. 634 */ 635 static struct memory_block *find_memory_block_by_id(unsigned long block_id) 636 { 637 struct memory_block *mem; 638 639 mem = xa_load(&memory_blocks, block_id); 640 if (mem) 641 get_device(&mem->dev); 642 return mem; 643 } 644 645 /* 646 * Called under device_hotplug_lock. 647 */ 648 struct memory_block *find_memory_block(unsigned long section_nr) 649 { 650 unsigned long block_id = memory_block_id(section_nr); 651 652 return find_memory_block_by_id(block_id); 653 } 654 655 static struct attribute *memory_memblk_attrs[] = { 656 &dev_attr_phys_index.attr, 657 &dev_attr_state.attr, 658 &dev_attr_phys_device.attr, 659 &dev_attr_removable.attr, 660 #ifdef CONFIG_MEMORY_HOTREMOVE 661 &dev_attr_valid_zones.attr, 662 #endif 663 NULL 664 }; 665 666 static const struct attribute_group memory_memblk_attr_group = { 667 .attrs = memory_memblk_attrs, 668 }; 669 670 static const struct attribute_group *memory_memblk_attr_groups[] = { 671 &memory_memblk_attr_group, 672 NULL, 673 }; 674 675 static int __add_memory_block(struct memory_block *memory) 676 { 677 int ret; 678 679 memory->dev.bus = &memory_subsys; 680 memory->dev.id = memory->start_section_nr / sections_per_block; 681 memory->dev.release = memory_block_release; 682 memory->dev.groups = memory_memblk_attr_groups; 683 memory->dev.offline = memory->state == MEM_OFFLINE; 684 685 ret = device_register(&memory->dev); 686 if (ret) { 687 put_device(&memory->dev); 688 return ret; 689 } 690 ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory, 691 GFP_KERNEL)); 692 if (ret) 693 device_unregister(&memory->dev); 694 695 return ret; 696 } 697 698 static struct zone *early_node_zone_for_memory_block(struct memory_block *mem, 699 int nid) 700 { 701 const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 702 const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 703 struct zone *zone, *matching_zone = NULL; 704 pg_data_t *pgdat = NODE_DATA(nid); 705 int i; 706 707 /* 708 * This logic only works for early memory, when the applicable zones 709 * already span the memory block. We don't expect overlapping zones on 710 * a single node for early memory. So if we're told that some PFNs 711 * of a node fall into this memory block, we can assume that all node 712 * zones that intersect with the memory block are actually applicable. 713 * No need to look at the memmap. 714 */ 715 for (i = 0; i < MAX_NR_ZONES; i++) { 716 zone = pgdat->node_zones + i; 717 if (!populated_zone(zone)) 718 continue; 719 if (!zone_intersects(zone, start_pfn, nr_pages)) 720 continue; 721 if (!matching_zone) { 722 matching_zone = zone; 723 continue; 724 } 725 /* Spans multiple zones ... */ 726 matching_zone = NULL; 727 break; 728 } 729 return matching_zone; 730 } 731 732 #ifdef CONFIG_NUMA 733 /** 734 * memory_block_add_nid() - Indicate that system RAM falling into this memory 735 * block device (partially) belongs to the given node. 736 * @mem: The memory block device. 737 * @nid: The node id. 738 * @context: The memory initialization context. 739 * 740 * Indicate that system RAM falling into this memory block (partially) belongs 741 * to the given node. If the context indicates ("early") that we are adding the 742 * node during node device subsystem initialization, this will also properly 743 * set/adjust mem->zone based on the zone ranges of the given node. 744 */ 745 void memory_block_add_nid(struct memory_block *mem, int nid, 746 enum meminit_context context) 747 { 748 if (context == MEMINIT_EARLY && mem->nid != nid) { 749 /* 750 * For early memory we have to determine the zone when setting 751 * the node id and handle multiple nodes spanning a single 752 * memory block by indicate via zone == NULL that we're not 753 * dealing with a single zone. So if we're setting the node id 754 * the first time, determine if there is a single zone. If we're 755 * setting the node id a second time to a different node, 756 * invalidate the single detected zone. 757 */ 758 if (mem->nid == NUMA_NO_NODE) 759 mem->zone = early_node_zone_for_memory_block(mem, nid); 760 else 761 mem->zone = NULL; 762 } 763 764 /* 765 * If this memory block spans multiple nodes, we only indicate 766 * the last processed node. If we span multiple nodes (not applicable 767 * to hotplugged memory), zone == NULL will prohibit memory offlining 768 * and consequently unplug. 769 */ 770 mem->nid = nid; 771 } 772 #endif 773 774 static int add_memory_block(unsigned long block_id, unsigned long state, 775 struct vmem_altmap *altmap, 776 struct memory_group *group) 777 { 778 struct memory_block *mem; 779 int ret = 0; 780 781 mem = find_memory_block_by_id(block_id); 782 if (mem) { 783 put_device(&mem->dev); 784 return -EEXIST; 785 } 786 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 787 if (!mem) 788 return -ENOMEM; 789 790 mem->start_section_nr = block_id * sections_per_block; 791 mem->state = state; 792 mem->nid = NUMA_NO_NODE; 793 mem->altmap = altmap; 794 INIT_LIST_HEAD(&mem->group_next); 795 796 #ifndef CONFIG_NUMA 797 if (state == MEM_ONLINE) 798 /* 799 * MEM_ONLINE at this point implies early memory. With NUMA, 800 * we'll determine the zone when setting the node id via 801 * memory_block_add_nid(). Memory hotplug updated the zone 802 * manually when memory onlining/offlining succeeds. 803 */ 804 mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE); 805 #endif /* CONFIG_NUMA */ 806 807 ret = __add_memory_block(mem); 808 if (ret) 809 return ret; 810 811 if (group) { 812 mem->group = group; 813 list_add(&mem->group_next, &group->memory_blocks); 814 } 815 816 return 0; 817 } 818 819 static int add_hotplug_memory_block(unsigned long block_id, 820 struct vmem_altmap *altmap, 821 struct memory_group *group) 822 { 823 return add_memory_block(block_id, MEM_OFFLINE, altmap, group); 824 } 825 826 static void remove_memory_block(struct memory_block *memory) 827 { 828 if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys)) 829 return; 830 831 WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL); 832 833 if (memory->group) { 834 list_del(&memory->group_next); 835 memory->group = NULL; 836 } 837 838 /* drop the ref. we got via find_memory_block() */ 839 put_device(&memory->dev); 840 device_unregister(&memory->dev); 841 } 842 843 /* 844 * Create memory block devices for the given memory area. Start and size 845 * have to be aligned to memory block granularity. Memory block devices 846 * will be initialized as offline. 847 * 848 * Called under device_hotplug_lock. 849 */ 850 int create_memory_block_devices(unsigned long start, unsigned long size, 851 struct vmem_altmap *altmap, 852 struct memory_group *group) 853 { 854 const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start)); 855 unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size)); 856 struct memory_block *mem; 857 unsigned long block_id; 858 int ret = 0; 859 860 if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) || 861 !IS_ALIGNED(size, memory_block_size_bytes()))) 862 return -EINVAL; 863 864 for (block_id = start_block_id; block_id != end_block_id; block_id++) { 865 ret = add_hotplug_memory_block(block_id, altmap, group); 866 if (ret) 867 break; 868 } 869 if (ret) { 870 end_block_id = block_id; 871 for (block_id = start_block_id; block_id != end_block_id; 872 block_id++) { 873 mem = find_memory_block_by_id(block_id); 874 if (WARN_ON_ONCE(!mem)) 875 continue; 876 remove_memory_block(mem); 877 } 878 } 879 return ret; 880 } 881 882 /* 883 * Remove memory block devices for the given memory area. Start and size 884 * have to be aligned to memory block granularity. Memory block devices 885 * have to be offline. 886 * 887 * Called under device_hotplug_lock. 888 */ 889 void remove_memory_block_devices(unsigned long start, unsigned long size) 890 { 891 const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start)); 892 const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size)); 893 struct memory_block *mem; 894 unsigned long block_id; 895 896 if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) || 897 !IS_ALIGNED(size, memory_block_size_bytes()))) 898 return; 899 900 for (block_id = start_block_id; block_id != end_block_id; block_id++) { 901 mem = find_memory_block_by_id(block_id); 902 if (WARN_ON_ONCE(!mem)) 903 continue; 904 num_poisoned_pages_sub(-1UL, memblk_nr_poison(mem)); 905 unregister_memory_block_under_nodes(mem); 906 remove_memory_block(mem); 907 } 908 } 909 910 static struct attribute *memory_root_attrs[] = { 911 #ifdef CONFIG_ARCH_MEMORY_PROBE 912 &dev_attr_probe.attr, 913 #endif 914 915 #ifdef CONFIG_MEMORY_FAILURE 916 &dev_attr_soft_offline_page.attr, 917 &dev_attr_hard_offline_page.attr, 918 #endif 919 920 &dev_attr_block_size_bytes.attr, 921 &dev_attr_auto_online_blocks.attr, 922 #ifdef CONFIG_CRASH_HOTPLUG 923 &dev_attr_crash_hotplug.attr, 924 #endif 925 NULL 926 }; 927 928 static const struct attribute_group memory_root_attr_group = { 929 .attrs = memory_root_attrs, 930 }; 931 932 static const struct attribute_group *memory_root_attr_groups[] = { 933 &memory_root_attr_group, 934 NULL, 935 }; 936 937 /* 938 * Initialize the sysfs support for memory devices. At the time this function 939 * is called, we cannot have concurrent creation/deletion of memory block 940 * devices, the device_hotplug_lock is not needed. 941 */ 942 void __init memory_dev_init(void) 943 { 944 int ret; 945 unsigned long block_sz, block_id, nr; 946 947 /* Validate the configured memory block size */ 948 block_sz = memory_block_size_bytes(); 949 if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE) 950 panic("Memory block size not suitable: 0x%lx\n", block_sz); 951 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE; 952 953 ret = subsys_system_register(&memory_subsys, memory_root_attr_groups); 954 if (ret) 955 panic("%s() failed to register subsystem: %d\n", __func__, ret); 956 957 /* 958 * Create entries for memory sections that were found during boot 959 * and have been initialized. Use @block_id to track the last 960 * handled block and initialize it to an invalid value (ULONG_MAX) 961 * to bypass the block ID matching check for the first present 962 * block so that it can be covered. 963 */ 964 block_id = ULONG_MAX; 965 for_each_present_section_nr(0, nr) { 966 if (block_id != ULONG_MAX && memory_block_id(nr) == block_id) 967 continue; 968 969 block_id = memory_block_id(nr); 970 ret = add_memory_block(block_id, MEM_ONLINE, NULL, NULL); 971 if (ret) { 972 panic("%s() failed to add memory block: %d\n", 973 __func__, ret); 974 } 975 } 976 } 977 978 /** 979 * walk_memory_blocks - walk through all present memory blocks overlapped 980 * by the range [start, start + size) 981 * 982 * @start: start address of the memory range 983 * @size: size of the memory range 984 * @arg: argument passed to func 985 * @func: callback for each memory section walked 986 * 987 * This function walks through all present memory blocks overlapped by the 988 * range [start, start + size), calling func on each memory block. 989 * 990 * In case func() returns an error, walking is aborted and the error is 991 * returned. 992 * 993 * Called under device_hotplug_lock. 994 */ 995 int walk_memory_blocks(unsigned long start, unsigned long size, 996 void *arg, walk_memory_blocks_func_t func) 997 { 998 const unsigned long start_block_id = phys_to_block_id(start); 999 const unsigned long end_block_id = phys_to_block_id(start + size - 1); 1000 struct memory_block *mem; 1001 unsigned long block_id; 1002 int ret = 0; 1003 1004 if (!size) 1005 return 0; 1006 1007 for (block_id = start_block_id; block_id <= end_block_id; block_id++) { 1008 mem = find_memory_block_by_id(block_id); 1009 if (!mem) 1010 continue; 1011 1012 ret = func(mem, arg); 1013 put_device(&mem->dev); 1014 if (ret) 1015 break; 1016 } 1017 return ret; 1018 } 1019 1020 struct for_each_memory_block_cb_data { 1021 walk_memory_blocks_func_t func; 1022 void *arg; 1023 }; 1024 1025 static int for_each_memory_block_cb(struct device *dev, void *data) 1026 { 1027 struct memory_block *mem = to_memory_block(dev); 1028 struct for_each_memory_block_cb_data *cb_data = data; 1029 1030 return cb_data->func(mem, cb_data->arg); 1031 } 1032 1033 /** 1034 * for_each_memory_block - walk through all present memory blocks 1035 * 1036 * @arg: argument passed to func 1037 * @func: callback for each memory block walked 1038 * 1039 * This function walks through all present memory blocks, calling func on 1040 * each memory block. 1041 * 1042 * In case func() returns an error, walking is aborted and the error is 1043 * returned. 1044 */ 1045 int for_each_memory_block(void *arg, walk_memory_blocks_func_t func) 1046 { 1047 struct for_each_memory_block_cb_data cb_data = { 1048 .func = func, 1049 .arg = arg, 1050 }; 1051 1052 return bus_for_each_dev(&memory_subsys, NULL, &cb_data, 1053 for_each_memory_block_cb); 1054 } 1055 1056 /* 1057 * This is an internal helper to unify allocation and initialization of 1058 * memory groups. Note that the passed memory group will be copied to a 1059 * dynamically allocated memory group. After this call, the passed 1060 * memory group should no longer be used. 1061 */ 1062 static int memory_group_register(struct memory_group group) 1063 { 1064 struct memory_group *new_group; 1065 uint32_t mgid; 1066 int ret; 1067 1068 if (!node_possible(group.nid)) 1069 return -EINVAL; 1070 1071 new_group = kzalloc(sizeof(group), GFP_KERNEL); 1072 if (!new_group) 1073 return -ENOMEM; 1074 *new_group = group; 1075 INIT_LIST_HEAD(&new_group->memory_blocks); 1076 1077 ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b, 1078 GFP_KERNEL); 1079 if (ret) { 1080 kfree(new_group); 1081 return ret; 1082 } else if (group.is_dynamic) { 1083 xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC); 1084 } 1085 return mgid; 1086 } 1087 1088 /** 1089 * memory_group_register_static() - Register a static memory group. 1090 * @nid: The node id. 1091 * @max_pages: The maximum number of pages we'll have in this static memory 1092 * group. 1093 * 1094 * Register a new static memory group and return the memory group id. 1095 * All memory in the group belongs to a single unit, such as a DIMM. All 1096 * memory belonging to a static memory group is added in one go to be removed 1097 * in one go -- it's static. 1098 * 1099 * Returns an error if out of memory, if the node id is invalid, if no new 1100 * memory groups can be registered, or if max_pages is invalid (0). Otherwise, 1101 * returns the new memory group id. 1102 */ 1103 int memory_group_register_static(int nid, unsigned long max_pages) 1104 { 1105 struct memory_group group = { 1106 .nid = nid, 1107 .s = { 1108 .max_pages = max_pages, 1109 }, 1110 }; 1111 1112 if (!max_pages) 1113 return -EINVAL; 1114 return memory_group_register(group); 1115 } 1116 EXPORT_SYMBOL_GPL(memory_group_register_static); 1117 1118 /** 1119 * memory_group_register_dynamic() - Register a dynamic memory group. 1120 * @nid: The node id. 1121 * @unit_pages: Unit in pages in which is memory added/removed in this dynamic 1122 * memory group. 1123 * 1124 * Register a new dynamic memory group and return the memory group id. 1125 * Memory within a dynamic memory group is added/removed dynamically 1126 * in unit_pages. 1127 * 1128 * Returns an error if out of memory, if the node id is invalid, if no new 1129 * memory groups can be registered, or if unit_pages is invalid (0, not a 1130 * power of two, smaller than a single memory block). Otherwise, returns the 1131 * new memory group id. 1132 */ 1133 int memory_group_register_dynamic(int nid, unsigned long unit_pages) 1134 { 1135 struct memory_group group = { 1136 .nid = nid, 1137 .is_dynamic = true, 1138 .d = { 1139 .unit_pages = unit_pages, 1140 }, 1141 }; 1142 1143 if (!unit_pages || !is_power_of_2(unit_pages) || 1144 unit_pages < PHYS_PFN(memory_block_size_bytes())) 1145 return -EINVAL; 1146 return memory_group_register(group); 1147 } 1148 EXPORT_SYMBOL_GPL(memory_group_register_dynamic); 1149 1150 /** 1151 * memory_group_unregister() - Unregister a memory group. 1152 * @mgid: the memory group id 1153 * 1154 * Unregister a memory group. If any memory block still belongs to this 1155 * memory group, unregistering will fail. 1156 * 1157 * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some 1158 * memory blocks still belong to this memory group and returns 0 if 1159 * unregistering succeeded. 1160 */ 1161 int memory_group_unregister(int mgid) 1162 { 1163 struct memory_group *group; 1164 1165 if (mgid < 0) 1166 return -EINVAL; 1167 1168 group = xa_load(&memory_groups, mgid); 1169 if (!group) 1170 return -EINVAL; 1171 if (!list_empty(&group->memory_blocks)) 1172 return -EBUSY; 1173 xa_erase(&memory_groups, mgid); 1174 kfree(group); 1175 return 0; 1176 } 1177 EXPORT_SYMBOL_GPL(memory_group_unregister); 1178 1179 /* 1180 * This is an internal helper only to be used in core memory hotplug code to 1181 * lookup a memory group. We don't care about locking, as we don't expect a 1182 * memory group to get unregistered while adding memory to it -- because 1183 * the group and the memory is managed by the same driver. 1184 */ 1185 struct memory_group *memory_group_find_by_id(int mgid) 1186 { 1187 return xa_load(&memory_groups, mgid); 1188 } 1189 1190 /* 1191 * This is an internal helper only to be used in core memory hotplug code to 1192 * walk all dynamic memory groups excluding a given memory group, either 1193 * belonging to a specific node, or belonging to any node. 1194 */ 1195 int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func, 1196 struct memory_group *excluded, void *arg) 1197 { 1198 struct memory_group *group; 1199 unsigned long index; 1200 int ret = 0; 1201 1202 xa_for_each_marked(&memory_groups, index, group, 1203 MEMORY_GROUP_MARK_DYNAMIC) { 1204 if (group == excluded) 1205 continue; 1206 #ifdef CONFIG_NUMA 1207 if (nid != NUMA_NO_NODE && group->nid != nid) 1208 continue; 1209 #endif /* CONFIG_NUMA */ 1210 ret = func(group, arg); 1211 if (ret) 1212 break; 1213 } 1214 return ret; 1215 } 1216 1217 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 1218 void memblk_nr_poison_inc(unsigned long pfn) 1219 { 1220 const unsigned long block_id = pfn_to_block_id(pfn); 1221 struct memory_block *mem = find_memory_block_by_id(block_id); 1222 1223 if (mem) 1224 atomic_long_inc(&mem->nr_hwpoison); 1225 } 1226 1227 void memblk_nr_poison_sub(unsigned long pfn, long i) 1228 { 1229 const unsigned long block_id = pfn_to_block_id(pfn); 1230 struct memory_block *mem = find_memory_block_by_id(block_id); 1231 1232 if (mem) 1233 atomic_long_sub(i, &mem->nr_hwpoison); 1234 } 1235 1236 static unsigned long memblk_nr_poison(struct memory_block *mem) 1237 { 1238 return atomic_long_read(&mem->nr_hwpoison); 1239 } 1240 #endif 1241