1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/blkdev.h> 13 #include <linux/cleanup.h> 14 #include <linux/cpufreq.h> 15 #include <linux/device.h> 16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 17 #include <linux/err.h> 18 #include <linux/fwnode.h> 19 #include <linux/init.h> 20 #include <linux/kdev_t.h> 21 #include <linux/kstrtox.h> 22 #include <linux/module.h> 23 #include <linux/mutex.h> 24 #include <linux/netdevice.h> 25 #include <linux/notifier.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/sched/mm.h> 30 #include <linux/sched/signal.h> 31 #include <linux/slab.h> 32 #include <linux/string_helpers.h> 33 #include <linux/swiotlb.h> 34 #include <linux/sysfs.h> 35 36 #include "base.h" 37 #include "physical_location.h" 38 #include "power/power.h" 39 40 /* Device links support. */ 41 static LIST_HEAD(deferred_sync); 42 static unsigned int defer_sync_state_count = 1; 43 static DEFINE_MUTEX(fwnode_link_lock); 44 static bool fw_devlink_is_permissive(void); 45 static void __fw_devlink_link_to_consumers(struct device *dev); 46 static bool fw_devlink_drv_reg_done; 47 static bool fw_devlink_best_effort; 48 static struct workqueue_struct *device_link_wq; 49 50 /** 51 * __fwnode_link_add - Create a link between two fwnode_handles. 52 * @con: Consumer end of the link. 53 * @sup: Supplier end of the link. 54 * @flags: Link flags. 55 * 56 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 57 * represents the detail that the firmware lists @sup fwnode as supplying a 58 * resource to @con. 59 * 60 * The driver core will use the fwnode link to create a device link between the 61 * two device objects corresponding to @con and @sup when they are created. The 62 * driver core will automatically delete the fwnode link between @con and @sup 63 * after doing that. 64 * 65 * Attempts to create duplicate links between the same pair of fwnode handles 66 * are ignored and there is no reference counting. 67 */ 68 static int __fwnode_link_add(struct fwnode_handle *con, 69 struct fwnode_handle *sup, u8 flags) 70 { 71 struct fwnode_link *link; 72 73 list_for_each_entry(link, &sup->consumers, s_hook) 74 if (link->consumer == con) { 75 link->flags |= flags; 76 return 0; 77 } 78 79 link = kzalloc(sizeof(*link), GFP_KERNEL); 80 if (!link) 81 return -ENOMEM; 82 83 link->supplier = sup; 84 INIT_LIST_HEAD(&link->s_hook); 85 link->consumer = con; 86 INIT_LIST_HEAD(&link->c_hook); 87 link->flags = flags; 88 89 list_add(&link->s_hook, &sup->consumers); 90 list_add(&link->c_hook, &con->suppliers); 91 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 92 con, sup); 93 94 return 0; 95 } 96 97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup, 98 u8 flags) 99 { 100 guard(mutex)(&fwnode_link_lock); 101 102 return __fwnode_link_add(con, sup, flags); 103 } 104 105 /** 106 * __fwnode_link_del - Delete a link between two fwnode_handles. 107 * @link: the fwnode_link to be deleted 108 * 109 * The fwnode_link_lock needs to be held when this function is called. 110 */ 111 static void __fwnode_link_del(struct fwnode_link *link) 112 { 113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 114 link->consumer, link->supplier); 115 list_del(&link->s_hook); 116 list_del(&link->c_hook); 117 kfree(link); 118 } 119 120 /** 121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 122 * @link: the fwnode_link to be marked 123 * 124 * The fwnode_link_lock needs to be held when this function is called. 125 */ 126 static void __fwnode_link_cycle(struct fwnode_link *link) 127 { 128 pr_debug("%pfwf: cycle: depends on %pfwf\n", 129 link->consumer, link->supplier); 130 link->flags |= FWLINK_FLAG_CYCLE; 131 } 132 133 /** 134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 135 * @fwnode: fwnode whose supplier links need to be deleted 136 * 137 * Deletes all supplier links connecting directly to @fwnode. 138 */ 139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 140 { 141 struct fwnode_link *link, *tmp; 142 143 guard(mutex)(&fwnode_link_lock); 144 145 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 146 __fwnode_link_del(link); 147 } 148 149 /** 150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 151 * @fwnode: fwnode whose consumer links need to be deleted 152 * 153 * Deletes all consumer links connecting directly to @fwnode. 154 */ 155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 156 { 157 struct fwnode_link *link, *tmp; 158 159 guard(mutex)(&fwnode_link_lock); 160 161 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 162 __fwnode_link_del(link); 163 } 164 165 /** 166 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 167 * @fwnode: fwnode whose links needs to be deleted 168 * 169 * Deletes all links connecting directly to a fwnode. 170 */ 171 void fwnode_links_purge(struct fwnode_handle *fwnode) 172 { 173 fwnode_links_purge_suppliers(fwnode); 174 fwnode_links_purge_consumers(fwnode); 175 } 176 177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 178 { 179 struct fwnode_handle *child; 180 181 /* Don't purge consumer links of an added child */ 182 if (fwnode->dev) 183 return; 184 185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 186 fwnode_links_purge_consumers(fwnode); 187 188 fwnode_for_each_available_child_node(fwnode, child) 189 fw_devlink_purge_absent_suppliers(child); 190 } 191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 192 193 /** 194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 195 * @from: move consumers away from this fwnode 196 * @to: move consumers to this fwnode 197 * 198 * Move all consumer links from @from fwnode to @to fwnode. 199 */ 200 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 201 struct fwnode_handle *to) 202 { 203 struct fwnode_link *link, *tmp; 204 205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 206 __fwnode_link_add(link->consumer, to, link->flags); 207 __fwnode_link_del(link); 208 } 209 } 210 211 /** 212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 213 * @fwnode: fwnode from which to pick up dangling consumers 214 * @new_sup: fwnode of new supplier 215 * 216 * If the @fwnode has a corresponding struct device and the device supports 217 * probing (that is, added to a bus), then we want to let fw_devlink create 218 * MANAGED device links to this device, so leave @fwnode and its descendant's 219 * fwnode links alone. 220 * 221 * Otherwise, move its consumers to the new supplier @new_sup. 222 */ 223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 224 struct fwnode_handle *new_sup) 225 { 226 struct fwnode_handle *child; 227 228 if (fwnode->dev && fwnode->dev->bus) 229 return; 230 231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 232 __fwnode_links_move_consumers(fwnode, new_sup); 233 234 fwnode_for_each_available_child_node(fwnode, child) 235 __fw_devlink_pickup_dangling_consumers(child, new_sup); 236 } 237 238 static DEFINE_MUTEX(device_links_lock); 239 DEFINE_STATIC_SRCU(device_links_srcu); 240 241 static inline void device_links_write_lock(void) 242 { 243 mutex_lock(&device_links_lock); 244 } 245 246 static inline void device_links_write_unlock(void) 247 { 248 mutex_unlock(&device_links_lock); 249 } 250 251 int device_links_read_lock(void) __acquires(&device_links_srcu) 252 { 253 return srcu_read_lock(&device_links_srcu); 254 } 255 256 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 257 { 258 srcu_read_unlock(&device_links_srcu, idx); 259 } 260 261 int device_links_read_lock_held(void) 262 { 263 return srcu_read_lock_held(&device_links_srcu); 264 } 265 266 static void device_link_synchronize_removal(void) 267 { 268 synchronize_srcu(&device_links_srcu); 269 } 270 271 static void device_link_remove_from_lists(struct device_link *link) 272 { 273 list_del_rcu(&link->s_node); 274 list_del_rcu(&link->c_node); 275 } 276 277 static bool device_is_ancestor(struct device *dev, struct device *target) 278 { 279 while (target->parent) { 280 target = target->parent; 281 if (dev == target) 282 return true; 283 } 284 return false; 285 } 286 287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 288 DL_FLAG_CYCLE | \ 289 DL_FLAG_MANAGED) 290 static inline bool device_link_flag_is_sync_state_only(u32 flags) 291 { 292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 293 } 294 295 /** 296 * device_is_dependent - Check if one device depends on another one 297 * @dev: Device to check dependencies for. 298 * @target: Device to check against. 299 * 300 * Check if @target depends on @dev or any device dependent on it (its child or 301 * its consumer etc). Return 1 if that is the case or 0 otherwise. 302 */ 303 static int device_is_dependent(struct device *dev, void *target) 304 { 305 struct device_link *link; 306 int ret; 307 308 /* 309 * The "ancestors" check is needed to catch the case when the target 310 * device has not been completely initialized yet and it is still 311 * missing from the list of children of its parent device. 312 */ 313 if (dev == target || device_is_ancestor(dev, target)) 314 return 1; 315 316 ret = device_for_each_child(dev, target, device_is_dependent); 317 if (ret) 318 return ret; 319 320 list_for_each_entry(link, &dev->links.consumers, s_node) { 321 if (device_link_flag_is_sync_state_only(link->flags)) 322 continue; 323 324 if (link->consumer == target) 325 return 1; 326 327 ret = device_is_dependent(link->consumer, target); 328 if (ret) 329 break; 330 } 331 return ret; 332 } 333 334 static void device_link_init_status(struct device_link *link, 335 struct device *consumer, 336 struct device *supplier) 337 { 338 switch (supplier->links.status) { 339 case DL_DEV_PROBING: 340 switch (consumer->links.status) { 341 case DL_DEV_PROBING: 342 /* 343 * A consumer driver can create a link to a supplier 344 * that has not completed its probing yet as long as it 345 * knows that the supplier is already functional (for 346 * example, it has just acquired some resources from the 347 * supplier). 348 */ 349 link->status = DL_STATE_CONSUMER_PROBE; 350 break; 351 default: 352 link->status = DL_STATE_DORMANT; 353 break; 354 } 355 break; 356 case DL_DEV_DRIVER_BOUND: 357 switch (consumer->links.status) { 358 case DL_DEV_PROBING: 359 link->status = DL_STATE_CONSUMER_PROBE; 360 break; 361 case DL_DEV_DRIVER_BOUND: 362 link->status = DL_STATE_ACTIVE; 363 break; 364 default: 365 link->status = DL_STATE_AVAILABLE; 366 break; 367 } 368 break; 369 case DL_DEV_UNBINDING: 370 link->status = DL_STATE_SUPPLIER_UNBIND; 371 break; 372 default: 373 link->status = DL_STATE_DORMANT; 374 break; 375 } 376 } 377 378 static int device_reorder_to_tail(struct device *dev, void *not_used) 379 { 380 struct device_link *link; 381 382 /* 383 * Devices that have not been registered yet will be put to the ends 384 * of the lists during the registration, so skip them here. 385 */ 386 if (device_is_registered(dev)) 387 devices_kset_move_last(dev); 388 389 if (device_pm_initialized(dev)) 390 device_pm_move_last(dev); 391 392 device_for_each_child(dev, NULL, device_reorder_to_tail); 393 list_for_each_entry(link, &dev->links.consumers, s_node) { 394 if (device_link_flag_is_sync_state_only(link->flags)) 395 continue; 396 device_reorder_to_tail(link->consumer, NULL); 397 } 398 399 return 0; 400 } 401 402 /** 403 * device_pm_move_to_tail - Move set of devices to the end of device lists 404 * @dev: Device to move 405 * 406 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 407 * 408 * It moves the @dev along with all of its children and all of its consumers 409 * to the ends of the device_kset and dpm_list, recursively. 410 */ 411 void device_pm_move_to_tail(struct device *dev) 412 { 413 int idx; 414 415 idx = device_links_read_lock(); 416 device_pm_lock(); 417 device_reorder_to_tail(dev, NULL); 418 device_pm_unlock(); 419 device_links_read_unlock(idx); 420 } 421 422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 423 424 static ssize_t status_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 const char *output; 428 429 switch (to_devlink(dev)->status) { 430 case DL_STATE_NONE: 431 output = "not tracked"; 432 break; 433 case DL_STATE_DORMANT: 434 output = "dormant"; 435 break; 436 case DL_STATE_AVAILABLE: 437 output = "available"; 438 break; 439 case DL_STATE_CONSUMER_PROBE: 440 output = "consumer probing"; 441 break; 442 case DL_STATE_ACTIVE: 443 output = "active"; 444 break; 445 case DL_STATE_SUPPLIER_UNBIND: 446 output = "supplier unbinding"; 447 break; 448 default: 449 output = "unknown"; 450 break; 451 } 452 453 return sysfs_emit(buf, "%s\n", output); 454 } 455 static DEVICE_ATTR_RO(status); 456 457 static ssize_t auto_remove_on_show(struct device *dev, 458 struct device_attribute *attr, char *buf) 459 { 460 struct device_link *link = to_devlink(dev); 461 const char *output; 462 463 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 464 output = "supplier unbind"; 465 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 466 output = "consumer unbind"; 467 else 468 output = "never"; 469 470 return sysfs_emit(buf, "%s\n", output); 471 } 472 static DEVICE_ATTR_RO(auto_remove_on); 473 474 static ssize_t runtime_pm_show(struct device *dev, 475 struct device_attribute *attr, char *buf) 476 { 477 struct device_link *link = to_devlink(dev); 478 479 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 480 } 481 static DEVICE_ATTR_RO(runtime_pm); 482 483 static ssize_t sync_state_only_show(struct device *dev, 484 struct device_attribute *attr, char *buf) 485 { 486 struct device_link *link = to_devlink(dev); 487 488 return sysfs_emit(buf, "%d\n", 489 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 490 } 491 static DEVICE_ATTR_RO(sync_state_only); 492 493 static struct attribute *devlink_attrs[] = { 494 &dev_attr_status.attr, 495 &dev_attr_auto_remove_on.attr, 496 &dev_attr_runtime_pm.attr, 497 &dev_attr_sync_state_only.attr, 498 NULL, 499 }; 500 ATTRIBUTE_GROUPS(devlink); 501 502 static void device_link_release_fn(struct work_struct *work) 503 { 504 struct device_link *link = container_of(work, struct device_link, rm_work); 505 506 /* Ensure that all references to the link object have been dropped. */ 507 device_link_synchronize_removal(); 508 509 pm_runtime_release_supplier(link); 510 /* 511 * If supplier_preactivated is set, the link has been dropped between 512 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 513 * in __driver_probe_device(). In that case, drop the supplier's 514 * PM-runtime usage counter to remove the reference taken by 515 * pm_runtime_get_suppliers(). 516 */ 517 if (link->supplier_preactivated) 518 pm_runtime_put_noidle(link->supplier); 519 520 pm_request_idle(link->supplier); 521 522 put_device(link->consumer); 523 put_device(link->supplier); 524 kfree(link); 525 } 526 527 static void devlink_dev_release(struct device *dev) 528 { 529 struct device_link *link = to_devlink(dev); 530 531 INIT_WORK(&link->rm_work, device_link_release_fn); 532 /* 533 * It may take a while to complete this work because of the SRCU 534 * synchronization in device_link_release_fn() and if the consumer or 535 * supplier devices get deleted when it runs, so put it into the 536 * dedicated workqueue. 537 */ 538 queue_work(device_link_wq, &link->rm_work); 539 } 540 541 /** 542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate 543 */ 544 void device_link_wait_removal(void) 545 { 546 /* 547 * devlink removal jobs are queued in the dedicated work queue. 548 * To be sure that all removal jobs are terminated, ensure that any 549 * scheduled work has run to completion. 550 */ 551 flush_workqueue(device_link_wq); 552 } 553 EXPORT_SYMBOL_GPL(device_link_wait_removal); 554 555 static const struct class devlink_class = { 556 .name = "devlink", 557 .dev_groups = devlink_groups, 558 .dev_release = devlink_dev_release, 559 }; 560 561 static int devlink_add_symlinks(struct device *dev) 562 { 563 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL; 564 int ret; 565 struct device_link *link = to_devlink(dev); 566 struct device *sup = link->supplier; 567 struct device *con = link->consumer; 568 569 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 570 if (ret) 571 goto out; 572 573 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 574 if (ret) 575 goto err_con; 576 577 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 578 if (!buf_con) { 579 ret = -ENOMEM; 580 goto err_con_dev; 581 } 582 583 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con); 584 if (ret) 585 goto err_con_dev; 586 587 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 588 if (!buf_sup) { 589 ret = -ENOMEM; 590 goto err_sup_dev; 591 } 592 593 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup); 594 if (ret) 595 goto err_sup_dev; 596 597 goto out; 598 599 err_sup_dev: 600 sysfs_remove_link(&sup->kobj, buf_con); 601 err_con_dev: 602 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 603 err_con: 604 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 605 out: 606 return ret; 607 } 608 609 static void devlink_remove_symlinks(struct device *dev) 610 { 611 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL; 612 struct device_link *link = to_devlink(dev); 613 struct device *sup = link->supplier; 614 struct device *con = link->consumer; 615 616 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 617 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 618 619 if (device_is_registered(con)) { 620 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 621 if (!buf_sup) 622 goto out; 623 sysfs_remove_link(&con->kobj, buf_sup); 624 } 625 626 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 627 if (!buf_con) 628 goto out; 629 sysfs_remove_link(&sup->kobj, buf_con); 630 631 return; 632 633 out: 634 WARN(1, "Unable to properly free device link symlinks!\n"); 635 } 636 637 static struct class_interface devlink_class_intf = { 638 .class = &devlink_class, 639 .add_dev = devlink_add_symlinks, 640 .remove_dev = devlink_remove_symlinks, 641 }; 642 643 static int __init devlink_class_init(void) 644 { 645 int ret; 646 647 ret = class_register(&devlink_class); 648 if (ret) 649 return ret; 650 651 ret = class_interface_register(&devlink_class_intf); 652 if (ret) 653 class_unregister(&devlink_class); 654 655 return ret; 656 } 657 postcore_initcall(devlink_class_init); 658 659 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 660 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 661 DL_FLAG_AUTOPROBE_CONSUMER | \ 662 DL_FLAG_SYNC_STATE_ONLY | \ 663 DL_FLAG_INFERRED | \ 664 DL_FLAG_CYCLE) 665 666 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 667 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 668 669 /** 670 * device_link_add - Create a link between two devices. 671 * @consumer: Consumer end of the link. 672 * @supplier: Supplier end of the link. 673 * @flags: Link flags. 674 * 675 * Return: On success, a device_link struct will be returned. 676 * On error or invalid flag settings, NULL will be returned. 677 * 678 * The caller is responsible for the proper synchronization of the link creation 679 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 680 * runtime PM framework to take the link into account. Second, if the 681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 682 * be forced into the active meta state and reference-counted upon the creation 683 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 684 * ignored. 685 * 686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 687 * expected to release the link returned by it directly with the help of either 688 * device_link_del() or device_link_remove(). 689 * 690 * If that flag is not set, however, the caller of this function is handing the 691 * management of the link over to the driver core entirely and its return value 692 * can only be used to check whether or not the link is present. In that case, 693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 694 * flags can be used to indicate to the driver core when the link can be safely 695 * deleted. Namely, setting one of them in @flags indicates to the driver core 696 * that the link is not going to be used (by the given caller of this function) 697 * after unbinding the consumer or supplier driver, respectively, from its 698 * device, so the link can be deleted at that point. If none of them is set, 699 * the link will be maintained until one of the devices pointed to by it (either 700 * the consumer or the supplier) is unregistered. 701 * 702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 705 * be used to request the driver core to automatically probe for a consumer 706 * driver after successfully binding a driver to the supplier device. 707 * 708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 710 * the same time is invalid and will cause NULL to be returned upfront. 711 * However, if a device link between the given @consumer and @supplier pair 712 * exists already when this function is called for them, the existing link will 713 * be returned regardless of its current type and status (the link's flags may 714 * be modified then). The caller of this function is then expected to treat 715 * the link as though it has just been created, so (in particular) if 716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 717 * explicitly when not needed any more (as stated above). 718 * 719 * A side effect of the link creation is re-ordering of dpm_list and the 720 * devices_kset list by moving the consumer device and all devices depending 721 * on it to the ends of these lists (that does not happen to devices that have 722 * not been registered when this function is called). 723 * 724 * The supplier device is required to be registered when this function is called 725 * and NULL will be returned if that is not the case. The consumer device need 726 * not be registered, however. 727 */ 728 struct device_link *device_link_add(struct device *consumer, 729 struct device *supplier, u32 flags) 730 { 731 struct device_link *link; 732 733 if (!consumer || !supplier || consumer == supplier || 734 flags & ~DL_ADD_VALID_FLAGS || 735 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 736 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 737 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 738 DL_FLAG_AUTOREMOVE_SUPPLIER))) 739 return NULL; 740 741 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 742 if (pm_runtime_get_sync(supplier) < 0) { 743 pm_runtime_put_noidle(supplier); 744 return NULL; 745 } 746 } 747 748 if (!(flags & DL_FLAG_STATELESS)) 749 flags |= DL_FLAG_MANAGED; 750 751 if (flags & DL_FLAG_SYNC_STATE_ONLY && 752 !device_link_flag_is_sync_state_only(flags)) 753 return NULL; 754 755 device_links_write_lock(); 756 device_pm_lock(); 757 758 /* 759 * If the supplier has not been fully registered yet or there is a 760 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 761 * the supplier already in the graph, return NULL. If the link is a 762 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 763 * because it only affects sync_state() callbacks. 764 */ 765 if (!device_pm_initialized(supplier) 766 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 767 device_is_dependent(consumer, supplier))) { 768 link = NULL; 769 goto out; 770 } 771 772 /* 773 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 774 * So, only create it if the consumer hasn't probed yet. 775 */ 776 if (flags & DL_FLAG_SYNC_STATE_ONLY && 777 consumer->links.status != DL_DEV_NO_DRIVER && 778 consumer->links.status != DL_DEV_PROBING) { 779 link = NULL; 780 goto out; 781 } 782 783 /* 784 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 785 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 786 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 787 */ 788 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 789 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 790 791 list_for_each_entry(link, &supplier->links.consumers, s_node) { 792 if (link->consumer != consumer) 793 continue; 794 795 if (link->flags & DL_FLAG_INFERRED && 796 !(flags & DL_FLAG_INFERRED)) 797 link->flags &= ~DL_FLAG_INFERRED; 798 799 if (flags & DL_FLAG_PM_RUNTIME) { 800 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 801 pm_runtime_new_link(consumer); 802 link->flags |= DL_FLAG_PM_RUNTIME; 803 } 804 if (flags & DL_FLAG_RPM_ACTIVE) 805 refcount_inc(&link->rpm_active); 806 } 807 808 if (flags & DL_FLAG_STATELESS) { 809 kref_get(&link->kref); 810 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 811 !(link->flags & DL_FLAG_STATELESS)) { 812 link->flags |= DL_FLAG_STATELESS; 813 goto reorder; 814 } else { 815 link->flags |= DL_FLAG_STATELESS; 816 goto out; 817 } 818 } 819 820 /* 821 * If the life time of the link following from the new flags is 822 * longer than indicated by the flags of the existing link, 823 * update the existing link to stay around longer. 824 */ 825 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 826 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 827 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 828 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 829 } 830 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 831 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 832 DL_FLAG_AUTOREMOVE_SUPPLIER); 833 } 834 if (!(link->flags & DL_FLAG_MANAGED)) { 835 kref_get(&link->kref); 836 link->flags |= DL_FLAG_MANAGED; 837 device_link_init_status(link, consumer, supplier); 838 } 839 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 840 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 841 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 842 goto reorder; 843 } 844 845 goto out; 846 } 847 848 link = kzalloc(sizeof(*link), GFP_KERNEL); 849 if (!link) 850 goto out; 851 852 refcount_set(&link->rpm_active, 1); 853 854 get_device(supplier); 855 link->supplier = supplier; 856 INIT_LIST_HEAD(&link->s_node); 857 get_device(consumer); 858 link->consumer = consumer; 859 INIT_LIST_HEAD(&link->c_node); 860 link->flags = flags; 861 kref_init(&link->kref); 862 863 link->link_dev.class = &devlink_class; 864 device_set_pm_not_required(&link->link_dev); 865 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 866 dev_bus_name(supplier), dev_name(supplier), 867 dev_bus_name(consumer), dev_name(consumer)); 868 if (device_register(&link->link_dev)) { 869 put_device(&link->link_dev); 870 link = NULL; 871 goto out; 872 } 873 874 if (flags & DL_FLAG_PM_RUNTIME) { 875 if (flags & DL_FLAG_RPM_ACTIVE) 876 refcount_inc(&link->rpm_active); 877 878 pm_runtime_new_link(consumer); 879 } 880 881 /* Determine the initial link state. */ 882 if (flags & DL_FLAG_STATELESS) 883 link->status = DL_STATE_NONE; 884 else 885 device_link_init_status(link, consumer, supplier); 886 887 /* 888 * Some callers expect the link creation during consumer driver probe to 889 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 890 */ 891 if (link->status == DL_STATE_CONSUMER_PROBE && 892 flags & DL_FLAG_PM_RUNTIME) 893 pm_runtime_resume(supplier); 894 895 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 896 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 897 898 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 899 dev_dbg(consumer, 900 "Linked as a sync state only consumer to %s\n", 901 dev_name(supplier)); 902 goto out; 903 } 904 905 reorder: 906 /* 907 * Move the consumer and all of the devices depending on it to the end 908 * of dpm_list and the devices_kset list. 909 * 910 * It is necessary to hold dpm_list locked throughout all that or else 911 * we may end up suspending with a wrong ordering of it. 912 */ 913 device_reorder_to_tail(consumer, NULL); 914 915 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 916 917 out: 918 device_pm_unlock(); 919 device_links_write_unlock(); 920 921 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 922 pm_runtime_put(supplier); 923 924 return link; 925 } 926 EXPORT_SYMBOL_GPL(device_link_add); 927 928 static void __device_link_del(struct kref *kref) 929 { 930 struct device_link *link = container_of(kref, struct device_link, kref); 931 932 dev_dbg(link->consumer, "Dropping the link to %s\n", 933 dev_name(link->supplier)); 934 935 pm_runtime_drop_link(link); 936 937 device_link_remove_from_lists(link); 938 device_unregister(&link->link_dev); 939 } 940 941 static void device_link_put_kref(struct device_link *link) 942 { 943 if (link->flags & DL_FLAG_STATELESS) 944 kref_put(&link->kref, __device_link_del); 945 else if (!device_is_registered(link->consumer)) 946 __device_link_del(&link->kref); 947 else 948 WARN(1, "Unable to drop a managed device link reference\n"); 949 } 950 951 /** 952 * device_link_del - Delete a stateless link between two devices. 953 * @link: Device link to delete. 954 * 955 * The caller must ensure proper synchronization of this function with runtime 956 * PM. If the link was added multiple times, it needs to be deleted as often. 957 * Care is required for hotplugged devices: Their links are purged on removal 958 * and calling device_link_del() is then no longer allowed. 959 */ 960 void device_link_del(struct device_link *link) 961 { 962 device_links_write_lock(); 963 device_link_put_kref(link); 964 device_links_write_unlock(); 965 } 966 EXPORT_SYMBOL_GPL(device_link_del); 967 968 /** 969 * device_link_remove - Delete a stateless link between two devices. 970 * @consumer: Consumer end of the link. 971 * @supplier: Supplier end of the link. 972 * 973 * The caller must ensure proper synchronization of this function with runtime 974 * PM. 975 */ 976 void device_link_remove(void *consumer, struct device *supplier) 977 { 978 struct device_link *link; 979 980 if (WARN_ON(consumer == supplier)) 981 return; 982 983 device_links_write_lock(); 984 985 list_for_each_entry(link, &supplier->links.consumers, s_node) { 986 if (link->consumer == consumer) { 987 device_link_put_kref(link); 988 break; 989 } 990 } 991 992 device_links_write_unlock(); 993 } 994 EXPORT_SYMBOL_GPL(device_link_remove); 995 996 static void device_links_missing_supplier(struct device *dev) 997 { 998 struct device_link *link; 999 1000 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1001 if (link->status != DL_STATE_CONSUMER_PROBE) 1002 continue; 1003 1004 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1005 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1006 } else { 1007 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1008 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1009 } 1010 } 1011 } 1012 1013 static bool dev_is_best_effort(struct device *dev) 1014 { 1015 return (fw_devlink_best_effort && dev->can_match) || 1016 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1017 } 1018 1019 static struct fwnode_handle *fwnode_links_check_suppliers( 1020 struct fwnode_handle *fwnode) 1021 { 1022 struct fwnode_link *link; 1023 1024 if (!fwnode || fw_devlink_is_permissive()) 1025 return NULL; 1026 1027 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1028 if (!(link->flags & 1029 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE))) 1030 return link->supplier; 1031 1032 return NULL; 1033 } 1034 1035 /** 1036 * device_links_check_suppliers - Check presence of supplier drivers. 1037 * @dev: Consumer device. 1038 * 1039 * Check links from this device to any suppliers. Walk the list of the device's 1040 * links to suppliers and see if all of them are available. If not, simply 1041 * return -EPROBE_DEFER. 1042 * 1043 * We need to guarantee that the supplier will not go away after the check has 1044 * been positive here. It only can go away in __device_release_driver() and 1045 * that function checks the device's links to consumers. This means we need to 1046 * mark the link as "consumer probe in progress" to make the supplier removal 1047 * wait for us to complete (or bad things may happen). 1048 * 1049 * Links without the DL_FLAG_MANAGED flag set are ignored. 1050 */ 1051 int device_links_check_suppliers(struct device *dev) 1052 { 1053 struct device_link *link; 1054 int ret = 0, fwnode_ret = 0; 1055 struct fwnode_handle *sup_fw; 1056 1057 /* 1058 * Device waiting for supplier to become available is not allowed to 1059 * probe. 1060 */ 1061 scoped_guard(mutex, &fwnode_link_lock) { 1062 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1063 if (sup_fw) { 1064 if (dev_is_best_effort(dev)) 1065 fwnode_ret = -EAGAIN; 1066 else 1067 return dev_err_probe(dev, -EPROBE_DEFER, 1068 "wait for supplier %pfwf\n", sup_fw); 1069 } 1070 } 1071 1072 device_links_write_lock(); 1073 1074 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1075 if (!(link->flags & DL_FLAG_MANAGED)) 1076 continue; 1077 1078 if (link->status != DL_STATE_AVAILABLE && 1079 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1080 1081 if (dev_is_best_effort(dev) && 1082 link->flags & DL_FLAG_INFERRED && 1083 !link->supplier->can_match) { 1084 ret = -EAGAIN; 1085 continue; 1086 } 1087 1088 device_links_missing_supplier(dev); 1089 ret = dev_err_probe(dev, -EPROBE_DEFER, 1090 "supplier %s not ready\n", dev_name(link->supplier)); 1091 break; 1092 } 1093 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1094 } 1095 dev->links.status = DL_DEV_PROBING; 1096 1097 device_links_write_unlock(); 1098 1099 return ret ? ret : fwnode_ret; 1100 } 1101 1102 /** 1103 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1104 * @dev: Device to call sync_state() on 1105 * @list: List head to queue the @dev on 1106 * 1107 * Queues a device for a sync_state() callback when the device links write lock 1108 * isn't held. This allows the sync_state() execution flow to use device links 1109 * APIs. The caller must ensure this function is called with 1110 * device_links_write_lock() held. 1111 * 1112 * This function does a get_device() to make sure the device is not freed while 1113 * on this list. 1114 * 1115 * So the caller must also ensure that device_links_flush_sync_list() is called 1116 * as soon as the caller releases device_links_write_lock(). This is necessary 1117 * to make sure the sync_state() is called in a timely fashion and the 1118 * put_device() is called on this device. 1119 */ 1120 static void __device_links_queue_sync_state(struct device *dev, 1121 struct list_head *list) 1122 { 1123 struct device_link *link; 1124 1125 if (!dev_has_sync_state(dev)) 1126 return; 1127 if (dev->state_synced) 1128 return; 1129 1130 list_for_each_entry(link, &dev->links.consumers, s_node) { 1131 if (!(link->flags & DL_FLAG_MANAGED)) 1132 continue; 1133 if (link->status != DL_STATE_ACTIVE) 1134 return; 1135 } 1136 1137 /* 1138 * Set the flag here to avoid adding the same device to a list more 1139 * than once. This can happen if new consumers get added to the device 1140 * and probed before the list is flushed. 1141 */ 1142 dev->state_synced = true; 1143 1144 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1145 return; 1146 1147 get_device(dev); 1148 list_add_tail(&dev->links.defer_sync, list); 1149 } 1150 1151 /** 1152 * device_links_flush_sync_list - Call sync_state() on a list of devices 1153 * @list: List of devices to call sync_state() on 1154 * @dont_lock_dev: Device for which lock is already held by the caller 1155 * 1156 * Calls sync_state() on all the devices that have been queued for it. This 1157 * function is used in conjunction with __device_links_queue_sync_state(). The 1158 * @dont_lock_dev parameter is useful when this function is called from a 1159 * context where a device lock is already held. 1160 */ 1161 static void device_links_flush_sync_list(struct list_head *list, 1162 struct device *dont_lock_dev) 1163 { 1164 struct device *dev, *tmp; 1165 1166 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1167 list_del_init(&dev->links.defer_sync); 1168 1169 if (dev != dont_lock_dev) 1170 device_lock(dev); 1171 1172 dev_sync_state(dev); 1173 1174 if (dev != dont_lock_dev) 1175 device_unlock(dev); 1176 1177 put_device(dev); 1178 } 1179 } 1180 1181 void device_links_supplier_sync_state_pause(void) 1182 { 1183 device_links_write_lock(); 1184 defer_sync_state_count++; 1185 device_links_write_unlock(); 1186 } 1187 1188 void device_links_supplier_sync_state_resume(void) 1189 { 1190 struct device *dev, *tmp; 1191 LIST_HEAD(sync_list); 1192 1193 device_links_write_lock(); 1194 if (!defer_sync_state_count) { 1195 WARN(true, "Unmatched sync_state pause/resume!"); 1196 goto out; 1197 } 1198 defer_sync_state_count--; 1199 if (defer_sync_state_count) 1200 goto out; 1201 1202 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1203 /* 1204 * Delete from deferred_sync list before queuing it to 1205 * sync_list because defer_sync is used for both lists. 1206 */ 1207 list_del_init(&dev->links.defer_sync); 1208 __device_links_queue_sync_state(dev, &sync_list); 1209 } 1210 out: 1211 device_links_write_unlock(); 1212 1213 device_links_flush_sync_list(&sync_list, NULL); 1214 } 1215 1216 static int sync_state_resume_initcall(void) 1217 { 1218 device_links_supplier_sync_state_resume(); 1219 return 0; 1220 } 1221 late_initcall(sync_state_resume_initcall); 1222 1223 static void __device_links_supplier_defer_sync(struct device *sup) 1224 { 1225 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1226 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1227 } 1228 1229 static void device_link_drop_managed(struct device_link *link) 1230 { 1231 link->flags &= ~DL_FLAG_MANAGED; 1232 WRITE_ONCE(link->status, DL_STATE_NONE); 1233 kref_put(&link->kref, __device_link_del); 1234 } 1235 1236 static ssize_t waiting_for_supplier_show(struct device *dev, 1237 struct device_attribute *attr, 1238 char *buf) 1239 { 1240 bool val; 1241 1242 device_lock(dev); 1243 scoped_guard(mutex, &fwnode_link_lock) 1244 val = !!fwnode_links_check_suppliers(dev->fwnode); 1245 device_unlock(dev); 1246 return sysfs_emit(buf, "%u\n", val); 1247 } 1248 static DEVICE_ATTR_RO(waiting_for_supplier); 1249 1250 /** 1251 * device_links_force_bind - Prepares device to be force bound 1252 * @dev: Consumer device. 1253 * 1254 * device_bind_driver() force binds a device to a driver without calling any 1255 * driver probe functions. So the consumer really isn't going to wait for any 1256 * supplier before it's bound to the driver. We still want the device link 1257 * states to be sensible when this happens. 1258 * 1259 * In preparation for device_bind_driver(), this function goes through each 1260 * supplier device links and checks if the supplier is bound. If it is, then 1261 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1262 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1263 */ 1264 void device_links_force_bind(struct device *dev) 1265 { 1266 struct device_link *link, *ln; 1267 1268 device_links_write_lock(); 1269 1270 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1271 if (!(link->flags & DL_FLAG_MANAGED)) 1272 continue; 1273 1274 if (link->status != DL_STATE_AVAILABLE) { 1275 device_link_drop_managed(link); 1276 continue; 1277 } 1278 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1279 } 1280 dev->links.status = DL_DEV_PROBING; 1281 1282 device_links_write_unlock(); 1283 } 1284 1285 /** 1286 * device_links_driver_bound - Update device links after probing its driver. 1287 * @dev: Device to update the links for. 1288 * 1289 * The probe has been successful, so update links from this device to any 1290 * consumers by changing their status to "available". 1291 * 1292 * Also change the status of @dev's links to suppliers to "active". 1293 * 1294 * Links without the DL_FLAG_MANAGED flag set are ignored. 1295 */ 1296 void device_links_driver_bound(struct device *dev) 1297 { 1298 struct device_link *link, *ln; 1299 LIST_HEAD(sync_list); 1300 1301 /* 1302 * If a device binds successfully, it's expected to have created all 1303 * the device links it needs to or make new device links as it needs 1304 * them. So, fw_devlink no longer needs to create device links to any 1305 * of the device's suppliers. 1306 * 1307 * Also, if a child firmware node of this bound device is not added as a 1308 * device by now, assume it is never going to be added. Make this bound 1309 * device the fallback supplier to the dangling consumers of the child 1310 * firmware node because this bound device is probably implementing the 1311 * child firmware node functionality and we don't want the dangling 1312 * consumers to defer probe indefinitely waiting for a device for the 1313 * child firmware node. 1314 */ 1315 if (dev->fwnode && dev->fwnode->dev == dev) { 1316 struct fwnode_handle *child; 1317 1318 fwnode_links_purge_suppliers(dev->fwnode); 1319 1320 guard(mutex)(&fwnode_link_lock); 1321 1322 fwnode_for_each_available_child_node(dev->fwnode, child) 1323 __fw_devlink_pickup_dangling_consumers(child, 1324 dev->fwnode); 1325 __fw_devlink_link_to_consumers(dev); 1326 } 1327 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1328 1329 device_links_write_lock(); 1330 1331 list_for_each_entry(link, &dev->links.consumers, s_node) { 1332 if (!(link->flags & DL_FLAG_MANAGED)) 1333 continue; 1334 1335 /* 1336 * Links created during consumer probe may be in the "consumer 1337 * probe" state to start with if the supplier is still probing 1338 * when they are created and they may become "active" if the 1339 * consumer probe returns first. Skip them here. 1340 */ 1341 if (link->status == DL_STATE_CONSUMER_PROBE || 1342 link->status == DL_STATE_ACTIVE) 1343 continue; 1344 1345 WARN_ON(link->status != DL_STATE_DORMANT); 1346 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1347 1348 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1349 driver_deferred_probe_add(link->consumer); 1350 } 1351 1352 if (defer_sync_state_count) 1353 __device_links_supplier_defer_sync(dev); 1354 else 1355 __device_links_queue_sync_state(dev, &sync_list); 1356 1357 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1358 struct device *supplier; 1359 1360 if (!(link->flags & DL_FLAG_MANAGED)) 1361 continue; 1362 1363 supplier = link->supplier; 1364 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1365 /* 1366 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1367 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1368 * save to drop the managed link completely. 1369 */ 1370 device_link_drop_managed(link); 1371 } else if (dev_is_best_effort(dev) && 1372 link->flags & DL_FLAG_INFERRED && 1373 link->status != DL_STATE_CONSUMER_PROBE && 1374 !link->supplier->can_match) { 1375 /* 1376 * When dev_is_best_effort() is true, we ignore device 1377 * links to suppliers that don't have a driver. If the 1378 * consumer device still managed to probe, there's no 1379 * point in maintaining a device link in a weird state 1380 * (consumer probed before supplier). So delete it. 1381 */ 1382 device_link_drop_managed(link); 1383 } else { 1384 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1385 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1386 } 1387 1388 /* 1389 * This needs to be done even for the deleted 1390 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1391 * device link that was preventing the supplier from getting a 1392 * sync_state() call. 1393 */ 1394 if (defer_sync_state_count) 1395 __device_links_supplier_defer_sync(supplier); 1396 else 1397 __device_links_queue_sync_state(supplier, &sync_list); 1398 } 1399 1400 dev->links.status = DL_DEV_DRIVER_BOUND; 1401 1402 device_links_write_unlock(); 1403 1404 device_links_flush_sync_list(&sync_list, dev); 1405 } 1406 1407 /** 1408 * __device_links_no_driver - Update links of a device without a driver. 1409 * @dev: Device without a drvier. 1410 * 1411 * Delete all non-persistent links from this device to any suppliers. 1412 * 1413 * Persistent links stay around, but their status is changed to "available", 1414 * unless they already are in the "supplier unbind in progress" state in which 1415 * case they need not be updated. 1416 * 1417 * Links without the DL_FLAG_MANAGED flag set are ignored. 1418 */ 1419 static void __device_links_no_driver(struct device *dev) 1420 { 1421 struct device_link *link, *ln; 1422 1423 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1424 if (!(link->flags & DL_FLAG_MANAGED)) 1425 continue; 1426 1427 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1428 device_link_drop_managed(link); 1429 continue; 1430 } 1431 1432 if (link->status != DL_STATE_CONSUMER_PROBE && 1433 link->status != DL_STATE_ACTIVE) 1434 continue; 1435 1436 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1437 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1438 } else { 1439 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1440 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1441 } 1442 } 1443 1444 dev->links.status = DL_DEV_NO_DRIVER; 1445 } 1446 1447 /** 1448 * device_links_no_driver - Update links after failing driver probe. 1449 * @dev: Device whose driver has just failed to probe. 1450 * 1451 * Clean up leftover links to consumers for @dev and invoke 1452 * %__device_links_no_driver() to update links to suppliers for it as 1453 * appropriate. 1454 * 1455 * Links without the DL_FLAG_MANAGED flag set are ignored. 1456 */ 1457 void device_links_no_driver(struct device *dev) 1458 { 1459 struct device_link *link; 1460 1461 device_links_write_lock(); 1462 1463 list_for_each_entry(link, &dev->links.consumers, s_node) { 1464 if (!(link->flags & DL_FLAG_MANAGED)) 1465 continue; 1466 1467 /* 1468 * The probe has failed, so if the status of the link is 1469 * "consumer probe" or "active", it must have been added by 1470 * a probing consumer while this device was still probing. 1471 * Change its state to "dormant", as it represents a valid 1472 * relationship, but it is not functionally meaningful. 1473 */ 1474 if (link->status == DL_STATE_CONSUMER_PROBE || 1475 link->status == DL_STATE_ACTIVE) 1476 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1477 } 1478 1479 __device_links_no_driver(dev); 1480 1481 device_links_write_unlock(); 1482 } 1483 1484 /** 1485 * device_links_driver_cleanup - Update links after driver removal. 1486 * @dev: Device whose driver has just gone away. 1487 * 1488 * Update links to consumers for @dev by changing their status to "dormant" and 1489 * invoke %__device_links_no_driver() to update links to suppliers for it as 1490 * appropriate. 1491 * 1492 * Links without the DL_FLAG_MANAGED flag set are ignored. 1493 */ 1494 void device_links_driver_cleanup(struct device *dev) 1495 { 1496 struct device_link *link, *ln; 1497 1498 device_links_write_lock(); 1499 1500 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1501 if (!(link->flags & DL_FLAG_MANAGED)) 1502 continue; 1503 1504 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1505 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1506 1507 /* 1508 * autoremove the links between this @dev and its consumer 1509 * devices that are not active, i.e. where the link state 1510 * has moved to DL_STATE_SUPPLIER_UNBIND. 1511 */ 1512 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1513 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1514 device_link_drop_managed(link); 1515 1516 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1517 } 1518 1519 list_del_init(&dev->links.defer_sync); 1520 __device_links_no_driver(dev); 1521 1522 device_links_write_unlock(); 1523 } 1524 1525 /** 1526 * device_links_busy - Check if there are any busy links to consumers. 1527 * @dev: Device to check. 1528 * 1529 * Check each consumer of the device and return 'true' if its link's status 1530 * is one of "consumer probe" or "active" (meaning that the given consumer is 1531 * probing right now or its driver is present). Otherwise, change the link 1532 * state to "supplier unbind" to prevent the consumer from being probed 1533 * successfully going forward. 1534 * 1535 * Return 'false' if there are no probing or active consumers. 1536 * 1537 * Links without the DL_FLAG_MANAGED flag set are ignored. 1538 */ 1539 bool device_links_busy(struct device *dev) 1540 { 1541 struct device_link *link; 1542 bool ret = false; 1543 1544 device_links_write_lock(); 1545 1546 list_for_each_entry(link, &dev->links.consumers, s_node) { 1547 if (!(link->flags & DL_FLAG_MANAGED)) 1548 continue; 1549 1550 if (link->status == DL_STATE_CONSUMER_PROBE 1551 || link->status == DL_STATE_ACTIVE) { 1552 ret = true; 1553 break; 1554 } 1555 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1556 } 1557 1558 dev->links.status = DL_DEV_UNBINDING; 1559 1560 device_links_write_unlock(); 1561 return ret; 1562 } 1563 1564 /** 1565 * device_links_unbind_consumers - Force unbind consumers of the given device. 1566 * @dev: Device to unbind the consumers of. 1567 * 1568 * Walk the list of links to consumers for @dev and if any of them is in the 1569 * "consumer probe" state, wait for all device probes in progress to complete 1570 * and start over. 1571 * 1572 * If that's not the case, change the status of the link to "supplier unbind" 1573 * and check if the link was in the "active" state. If so, force the consumer 1574 * driver to unbind and start over (the consumer will not re-probe as we have 1575 * changed the state of the link already). 1576 * 1577 * Links without the DL_FLAG_MANAGED flag set are ignored. 1578 */ 1579 void device_links_unbind_consumers(struct device *dev) 1580 { 1581 struct device_link *link; 1582 1583 start: 1584 device_links_write_lock(); 1585 1586 list_for_each_entry(link, &dev->links.consumers, s_node) { 1587 enum device_link_state status; 1588 1589 if (!(link->flags & DL_FLAG_MANAGED) || 1590 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1591 continue; 1592 1593 status = link->status; 1594 if (status == DL_STATE_CONSUMER_PROBE) { 1595 device_links_write_unlock(); 1596 1597 wait_for_device_probe(); 1598 goto start; 1599 } 1600 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1601 if (status == DL_STATE_ACTIVE) { 1602 struct device *consumer = link->consumer; 1603 1604 get_device(consumer); 1605 1606 device_links_write_unlock(); 1607 1608 device_release_driver_internal(consumer, NULL, 1609 consumer->parent); 1610 put_device(consumer); 1611 goto start; 1612 } 1613 } 1614 1615 device_links_write_unlock(); 1616 } 1617 1618 /** 1619 * device_links_purge - Delete existing links to other devices. 1620 * @dev: Target device. 1621 */ 1622 static void device_links_purge(struct device *dev) 1623 { 1624 struct device_link *link, *ln; 1625 1626 if (dev->class == &devlink_class) 1627 return; 1628 1629 /* 1630 * Delete all of the remaining links from this device to any other 1631 * devices (either consumers or suppliers). 1632 */ 1633 device_links_write_lock(); 1634 1635 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1636 WARN_ON(link->status == DL_STATE_ACTIVE); 1637 __device_link_del(&link->kref); 1638 } 1639 1640 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1641 WARN_ON(link->status != DL_STATE_DORMANT && 1642 link->status != DL_STATE_NONE); 1643 __device_link_del(&link->kref); 1644 } 1645 1646 device_links_write_unlock(); 1647 } 1648 1649 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1650 DL_FLAG_SYNC_STATE_ONLY) 1651 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1652 DL_FLAG_AUTOPROBE_CONSUMER) 1653 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1654 DL_FLAG_PM_RUNTIME) 1655 1656 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1657 static int __init fw_devlink_setup(char *arg) 1658 { 1659 if (!arg) 1660 return -EINVAL; 1661 1662 if (strcmp(arg, "off") == 0) { 1663 fw_devlink_flags = 0; 1664 } else if (strcmp(arg, "permissive") == 0) { 1665 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1666 } else if (strcmp(arg, "on") == 0) { 1667 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1668 } else if (strcmp(arg, "rpm") == 0) { 1669 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1670 } 1671 return 0; 1672 } 1673 early_param("fw_devlink", fw_devlink_setup); 1674 1675 static bool fw_devlink_strict; 1676 static int __init fw_devlink_strict_setup(char *arg) 1677 { 1678 return kstrtobool(arg, &fw_devlink_strict); 1679 } 1680 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1681 1682 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1683 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1684 1685 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1686 static int fw_devlink_sync_state; 1687 #else 1688 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1689 #endif 1690 1691 static int __init fw_devlink_sync_state_setup(char *arg) 1692 { 1693 if (!arg) 1694 return -EINVAL; 1695 1696 if (strcmp(arg, "strict") == 0) { 1697 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1698 return 0; 1699 } else if (strcmp(arg, "timeout") == 0) { 1700 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1701 return 0; 1702 } 1703 return -EINVAL; 1704 } 1705 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1706 1707 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1708 { 1709 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1710 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1711 1712 return fw_devlink_flags; 1713 } 1714 1715 static bool fw_devlink_is_permissive(void) 1716 { 1717 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1718 } 1719 1720 bool fw_devlink_is_strict(void) 1721 { 1722 return fw_devlink_strict && !fw_devlink_is_permissive(); 1723 } 1724 1725 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1726 { 1727 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1728 return; 1729 1730 fwnode_call_int_op(fwnode, add_links); 1731 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1732 } 1733 1734 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1735 { 1736 struct fwnode_handle *child = NULL; 1737 1738 fw_devlink_parse_fwnode(fwnode); 1739 1740 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1741 fw_devlink_parse_fwtree(child); 1742 } 1743 1744 static void fw_devlink_relax_link(struct device_link *link) 1745 { 1746 if (!(link->flags & DL_FLAG_INFERRED)) 1747 return; 1748 1749 if (device_link_flag_is_sync_state_only(link->flags)) 1750 return; 1751 1752 pm_runtime_drop_link(link); 1753 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1754 dev_dbg(link->consumer, "Relaxing link with %s\n", 1755 dev_name(link->supplier)); 1756 } 1757 1758 static int fw_devlink_no_driver(struct device *dev, void *data) 1759 { 1760 struct device_link *link = to_devlink(dev); 1761 1762 if (!link->supplier->can_match) 1763 fw_devlink_relax_link(link); 1764 1765 return 0; 1766 } 1767 1768 void fw_devlink_drivers_done(void) 1769 { 1770 fw_devlink_drv_reg_done = true; 1771 device_links_write_lock(); 1772 class_for_each_device(&devlink_class, NULL, NULL, 1773 fw_devlink_no_driver); 1774 device_links_write_unlock(); 1775 } 1776 1777 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1778 { 1779 struct device_link *link = to_devlink(dev); 1780 struct device *sup = link->supplier; 1781 1782 if (!(link->flags & DL_FLAG_MANAGED) || 1783 link->status == DL_STATE_ACTIVE || sup->state_synced || 1784 !dev_has_sync_state(sup)) 1785 return 0; 1786 1787 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1788 dev_warn(sup, "sync_state() pending due to %s\n", 1789 dev_name(link->consumer)); 1790 return 0; 1791 } 1792 1793 if (!list_empty(&sup->links.defer_sync)) 1794 return 0; 1795 1796 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1797 sup->state_synced = true; 1798 get_device(sup); 1799 list_add_tail(&sup->links.defer_sync, data); 1800 1801 return 0; 1802 } 1803 1804 void fw_devlink_probing_done(void) 1805 { 1806 LIST_HEAD(sync_list); 1807 1808 device_links_write_lock(); 1809 class_for_each_device(&devlink_class, NULL, &sync_list, 1810 fw_devlink_dev_sync_state); 1811 device_links_write_unlock(); 1812 device_links_flush_sync_list(&sync_list, NULL); 1813 } 1814 1815 /** 1816 * wait_for_init_devices_probe - Try to probe any device needed for init 1817 * 1818 * Some devices might need to be probed and bound successfully before the kernel 1819 * boot sequence can finish and move on to init/userspace. For example, a 1820 * network interface might need to be bound to be able to mount a NFS rootfs. 1821 * 1822 * With fw_devlink=on by default, some of these devices might be blocked from 1823 * probing because they are waiting on a optional supplier that doesn't have a 1824 * driver. While fw_devlink will eventually identify such devices and unblock 1825 * the probing automatically, it might be too late by the time it unblocks the 1826 * probing of devices. For example, the IP4 autoconfig might timeout before 1827 * fw_devlink unblocks probing of the network interface. 1828 * 1829 * This function is available to temporarily try and probe all devices that have 1830 * a driver even if some of their suppliers haven't been added or don't have 1831 * drivers. 1832 * 1833 * The drivers can then decide which of the suppliers are optional vs mandatory 1834 * and probe the device if possible. By the time this function returns, all such 1835 * "best effort" probes are guaranteed to be completed. If a device successfully 1836 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1837 * device where the supplier hasn't yet probed successfully because they have to 1838 * be optional dependencies. 1839 * 1840 * Any devices that didn't successfully probe go back to being treated as if 1841 * this function was never called. 1842 * 1843 * This also means that some devices that aren't needed for init and could have 1844 * waited for their optional supplier to probe (when the supplier's module is 1845 * loaded later on) would end up probing prematurely with limited functionality. 1846 * So call this function only when boot would fail without it. 1847 */ 1848 void __init wait_for_init_devices_probe(void) 1849 { 1850 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1851 return; 1852 1853 /* 1854 * Wait for all ongoing probes to finish so that the "best effort" is 1855 * only applied to devices that can't probe otherwise. 1856 */ 1857 wait_for_device_probe(); 1858 1859 pr_info("Trying to probe devices needed for running init ...\n"); 1860 fw_devlink_best_effort = true; 1861 driver_deferred_probe_trigger(); 1862 1863 /* 1864 * Wait for all "best effort" probes to finish before going back to 1865 * normal enforcement. 1866 */ 1867 wait_for_device_probe(); 1868 fw_devlink_best_effort = false; 1869 } 1870 1871 static void fw_devlink_unblock_consumers(struct device *dev) 1872 { 1873 struct device_link *link; 1874 1875 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1876 return; 1877 1878 device_links_write_lock(); 1879 list_for_each_entry(link, &dev->links.consumers, s_node) 1880 fw_devlink_relax_link(link); 1881 device_links_write_unlock(); 1882 } 1883 1884 #define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev) 1885 1886 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1887 { 1888 struct device *dev; 1889 bool ret; 1890 1891 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1892 return false; 1893 1894 dev = get_dev_from_fwnode(fwnode); 1895 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1896 put_device(dev); 1897 1898 return ret; 1899 } 1900 1901 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1902 { 1903 struct fwnode_handle *parent; 1904 1905 fwnode_for_each_parent_node(fwnode, parent) { 1906 if (fwnode_init_without_drv(parent)) { 1907 fwnode_handle_put(parent); 1908 return true; 1909 } 1910 } 1911 1912 return false; 1913 } 1914 1915 /** 1916 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child 1917 * @ancestor: Firmware which is tested for being an ancestor 1918 * @child: Firmware which is tested for being the child 1919 * 1920 * A node is considered an ancestor of itself too. 1921 * 1922 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false. 1923 */ 1924 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, 1925 const struct fwnode_handle *child) 1926 { 1927 struct fwnode_handle *parent; 1928 1929 if (IS_ERR_OR_NULL(ancestor)) 1930 return false; 1931 1932 if (child == ancestor) 1933 return true; 1934 1935 fwnode_for_each_parent_node(child, parent) { 1936 if (parent == ancestor) { 1937 fwnode_handle_put(parent); 1938 return true; 1939 } 1940 } 1941 return false; 1942 } 1943 1944 /** 1945 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode 1946 * @fwnode: firmware node 1947 * 1948 * Given a firmware node (@fwnode), this function finds its closest ancestor 1949 * firmware node that has a corresponding struct device and returns that struct 1950 * device. 1951 * 1952 * The caller is responsible for calling put_device() on the returned device 1953 * pointer. 1954 * 1955 * Return: a pointer to the device of the @fwnode's closest ancestor. 1956 */ 1957 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode) 1958 { 1959 struct fwnode_handle *parent; 1960 struct device *dev; 1961 1962 fwnode_for_each_parent_node(fwnode, parent) { 1963 dev = get_dev_from_fwnode(parent); 1964 if (dev) { 1965 fwnode_handle_put(parent); 1966 return dev; 1967 } 1968 } 1969 return NULL; 1970 } 1971 1972 /** 1973 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1974 * @con_handle: Potential consumer device fwnode. 1975 * @sup_handle: Potential supplier's fwnode. 1976 * 1977 * Needs to be called with fwnode_lock and device link lock held. 1978 * 1979 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1980 * depend on @con. This function can detect multiple cyles between @sup_handle 1981 * and @con. When such dependency cycles are found, convert all device links 1982 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1983 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1984 * converted into a device link in the future, they are created as 1985 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1986 * fw_devlink=permissive just between the devices in the cycle. We need to do 1987 * this because, at this point, fw_devlink can't tell which of these 1988 * dependencies is not a real dependency. 1989 * 1990 * Return true if one or more cycles were found. Otherwise, return false. 1991 */ 1992 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle, 1993 struct fwnode_handle *sup_handle) 1994 { 1995 struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL; 1996 struct fwnode_link *link; 1997 struct device_link *dev_link; 1998 bool ret = false; 1999 2000 if (!sup_handle) 2001 return false; 2002 2003 /* 2004 * We aren't trying to find all cycles. Just a cycle between con and 2005 * sup_handle. 2006 */ 2007 if (sup_handle->flags & FWNODE_FLAG_VISITED) 2008 return false; 2009 2010 sup_handle->flags |= FWNODE_FLAG_VISITED; 2011 2012 /* Termination condition. */ 2013 if (sup_handle == con_handle) { 2014 pr_debug("----- cycle: start -----\n"); 2015 ret = true; 2016 goto out; 2017 } 2018 2019 sup_dev = get_dev_from_fwnode(sup_handle); 2020 con_dev = get_dev_from_fwnode(con_handle); 2021 /* 2022 * If sup_dev is bound to a driver and @con hasn't started binding to a 2023 * driver, sup_dev can't be a consumer of @con. So, no need to check 2024 * further. 2025 */ 2026 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 2027 con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) { 2028 ret = false; 2029 goto out; 2030 } 2031 2032 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 2033 if (link->flags & FWLINK_FLAG_IGNORE) 2034 continue; 2035 2036 if (__fw_devlink_relax_cycles(con_handle, link->supplier)) { 2037 __fwnode_link_cycle(link); 2038 ret = true; 2039 } 2040 } 2041 2042 /* 2043 * Give priority to device parent over fwnode parent to account for any 2044 * quirks in how fwnodes are converted to devices. 2045 */ 2046 if (sup_dev) 2047 par_dev = get_device(sup_dev->parent); 2048 else 2049 par_dev = fwnode_get_next_parent_dev(sup_handle); 2050 2051 if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) { 2052 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle, 2053 par_dev->fwnode); 2054 ret = true; 2055 } 2056 2057 if (!sup_dev) 2058 goto out; 2059 2060 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 2061 /* 2062 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 2063 * such due to a cycle. 2064 */ 2065 if (device_link_flag_is_sync_state_only(dev_link->flags) && 2066 !(dev_link->flags & DL_FLAG_CYCLE)) 2067 continue; 2068 2069 if (__fw_devlink_relax_cycles(con_handle, 2070 dev_link->supplier->fwnode)) { 2071 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle, 2072 dev_link->supplier->fwnode); 2073 fw_devlink_relax_link(dev_link); 2074 dev_link->flags |= DL_FLAG_CYCLE; 2075 ret = true; 2076 } 2077 } 2078 2079 out: 2080 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2081 put_device(sup_dev); 2082 put_device(con_dev); 2083 put_device(par_dev); 2084 return ret; 2085 } 2086 2087 /** 2088 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2089 * @con: consumer device for the device link 2090 * @sup_handle: fwnode handle of supplier 2091 * @link: fwnode link that's being converted to a device link 2092 * 2093 * This function will try to create a device link between the consumer device 2094 * @con and the supplier device represented by @sup_handle. 2095 * 2096 * The supplier has to be provided as a fwnode because incorrect cycles in 2097 * fwnode links can sometimes cause the supplier device to never be created. 2098 * This function detects such cases and returns an error if it cannot create a 2099 * device link from the consumer to a missing supplier. 2100 * 2101 * Returns, 2102 * 0 on successfully creating a device link 2103 * -EINVAL if the device link cannot be created as expected 2104 * -EAGAIN if the device link cannot be created right now, but it may be 2105 * possible to do that in the future 2106 */ 2107 static int fw_devlink_create_devlink(struct device *con, 2108 struct fwnode_handle *sup_handle, 2109 struct fwnode_link *link) 2110 { 2111 struct device *sup_dev; 2112 int ret = 0; 2113 u32 flags; 2114 2115 if (link->flags & FWLINK_FLAG_IGNORE) 2116 return 0; 2117 2118 /* 2119 * In some cases, a device P might also be a supplier to its child node 2120 * C. However, this would defer the probe of C until the probe of P 2121 * completes successfully. This is perfectly fine in the device driver 2122 * model. device_add() doesn't guarantee probe completion of the device 2123 * by the time it returns. 2124 * 2125 * However, there are a few drivers that assume C will finish probing 2126 * as soon as it's added and before P finishes probing. So, we provide 2127 * a flag to let fw_devlink know not to delay the probe of C until the 2128 * probe of P completes successfully. 2129 * 2130 * When such a flag is set, we can't create device links where P is the 2131 * supplier of C as that would delay the probe of C. 2132 */ 2133 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2134 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2135 return -EINVAL; 2136 2137 /* 2138 * Don't try to optimize by not calling the cycle detection logic under 2139 * certain conditions. There's always some corner case that won't get 2140 * detected. 2141 */ 2142 device_links_write_lock(); 2143 if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) { 2144 __fwnode_link_cycle(link); 2145 pr_debug("----- cycle: end -----\n"); 2146 pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n", 2147 link->consumer, sup_handle); 2148 } 2149 device_links_write_unlock(); 2150 2151 if (con->fwnode == link->consumer) 2152 flags = fw_devlink_get_flags(link->flags); 2153 else 2154 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2155 2156 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2157 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2158 else 2159 sup_dev = get_dev_from_fwnode(sup_handle); 2160 2161 if (sup_dev) { 2162 /* 2163 * If it's one of those drivers that don't actually bind to 2164 * their device using driver core, then don't wait on this 2165 * supplier device indefinitely. 2166 */ 2167 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2168 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2169 dev_dbg(con, 2170 "Not linking %pfwf - dev might never probe\n", 2171 sup_handle); 2172 ret = -EINVAL; 2173 goto out; 2174 } 2175 2176 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2177 dev_err(con, "Failed to create device link (0x%x) with supplier %s for %pfwf\n", 2178 flags, dev_name(sup_dev), link->consumer); 2179 ret = -EINVAL; 2180 } 2181 2182 goto out; 2183 } 2184 2185 /* 2186 * Supplier or supplier's ancestor already initialized without a struct 2187 * device or being probed by a driver. 2188 */ 2189 if (fwnode_init_without_drv(sup_handle) || 2190 fwnode_ancestor_init_without_drv(sup_handle)) { 2191 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2192 sup_handle); 2193 return -EINVAL; 2194 } 2195 2196 ret = -EAGAIN; 2197 out: 2198 put_device(sup_dev); 2199 return ret; 2200 } 2201 2202 /** 2203 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2204 * @dev: Device that needs to be linked to its consumers 2205 * 2206 * This function looks at all the consumer fwnodes of @dev and creates device 2207 * links between the consumer device and @dev (supplier). 2208 * 2209 * If the consumer device has not been added yet, then this function creates a 2210 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2211 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2212 * sync_state() callback before the real consumer device gets to be added and 2213 * then probed. 2214 * 2215 * Once device links are created from the real consumer to @dev (supplier), the 2216 * fwnode links are deleted. 2217 */ 2218 static void __fw_devlink_link_to_consumers(struct device *dev) 2219 { 2220 struct fwnode_handle *fwnode = dev->fwnode; 2221 struct fwnode_link *link, *tmp; 2222 2223 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2224 struct device *con_dev; 2225 bool own_link = true; 2226 int ret; 2227 2228 con_dev = get_dev_from_fwnode(link->consumer); 2229 /* 2230 * If consumer device is not available yet, make a "proxy" 2231 * SYNC_STATE_ONLY link from the consumer's parent device to 2232 * the supplier device. This is necessary to make sure the 2233 * supplier doesn't get a sync_state() callback before the real 2234 * consumer can create a device link to the supplier. 2235 * 2236 * This proxy link step is needed to handle the case where the 2237 * consumer's parent device is added before the supplier. 2238 */ 2239 if (!con_dev) { 2240 con_dev = fwnode_get_next_parent_dev(link->consumer); 2241 /* 2242 * However, if the consumer's parent device is also the 2243 * parent of the supplier, don't create a 2244 * consumer-supplier link from the parent to its child 2245 * device. Such a dependency is impossible. 2246 */ 2247 if (con_dev && 2248 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2249 put_device(con_dev); 2250 con_dev = NULL; 2251 } else { 2252 own_link = false; 2253 } 2254 } 2255 2256 if (!con_dev) 2257 continue; 2258 2259 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2260 put_device(con_dev); 2261 if (!own_link || ret == -EAGAIN) 2262 continue; 2263 2264 __fwnode_link_del(link); 2265 } 2266 } 2267 2268 /** 2269 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2270 * @dev: The consumer device that needs to be linked to its suppliers 2271 * @fwnode: Root of the fwnode tree that is used to create device links 2272 * 2273 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2274 * @fwnode and creates device links between @dev (consumer) and all the 2275 * supplier devices of the entire fwnode tree at @fwnode. 2276 * 2277 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2278 * and the real suppliers of @dev. Once these device links are created, the 2279 * fwnode links are deleted. 2280 * 2281 * In addition, it also looks at all the suppliers of the entire fwnode tree 2282 * because some of the child devices of @dev that have not been added yet 2283 * (because @dev hasn't probed) might already have their suppliers added to 2284 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2285 * @dev (consumer) and these suppliers to make sure they don't execute their 2286 * sync_state() callbacks before these child devices have a chance to create 2287 * their device links. The fwnode links that correspond to the child devices 2288 * aren't delete because they are needed later to create the device links 2289 * between the real consumer and supplier devices. 2290 */ 2291 static void __fw_devlink_link_to_suppliers(struct device *dev, 2292 struct fwnode_handle *fwnode) 2293 { 2294 bool own_link = (dev->fwnode == fwnode); 2295 struct fwnode_link *link, *tmp; 2296 struct fwnode_handle *child = NULL; 2297 2298 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2299 int ret; 2300 struct fwnode_handle *sup = link->supplier; 2301 2302 ret = fw_devlink_create_devlink(dev, sup, link); 2303 if (!own_link || ret == -EAGAIN) 2304 continue; 2305 2306 __fwnode_link_del(link); 2307 } 2308 2309 /* 2310 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2311 * all the descendants. This proxy link step is needed to handle the 2312 * case where the supplier is added before the consumer's parent device 2313 * (@dev). 2314 */ 2315 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2316 __fw_devlink_link_to_suppliers(dev, child); 2317 } 2318 2319 static void fw_devlink_link_device(struct device *dev) 2320 { 2321 struct fwnode_handle *fwnode = dev->fwnode; 2322 2323 if (!fw_devlink_flags) 2324 return; 2325 2326 fw_devlink_parse_fwtree(fwnode); 2327 2328 guard(mutex)(&fwnode_link_lock); 2329 2330 __fw_devlink_link_to_consumers(dev); 2331 __fw_devlink_link_to_suppliers(dev, fwnode); 2332 } 2333 2334 /* Device links support end. */ 2335 2336 static struct kobject *dev_kobj; 2337 2338 /* /sys/dev/char */ 2339 static struct kobject *sysfs_dev_char_kobj; 2340 2341 /* /sys/dev/block */ 2342 static struct kobject *sysfs_dev_block_kobj; 2343 2344 static DEFINE_MUTEX(device_hotplug_lock); 2345 2346 void lock_device_hotplug(void) 2347 { 2348 mutex_lock(&device_hotplug_lock); 2349 } 2350 2351 void unlock_device_hotplug(void) 2352 { 2353 mutex_unlock(&device_hotplug_lock); 2354 } 2355 2356 int lock_device_hotplug_sysfs(void) 2357 { 2358 if (mutex_trylock(&device_hotplug_lock)) 2359 return 0; 2360 2361 /* Avoid busy looping (5 ms of sleep should do). */ 2362 msleep(5); 2363 return restart_syscall(); 2364 } 2365 2366 #ifdef CONFIG_BLOCK 2367 static inline int device_is_not_partition(struct device *dev) 2368 { 2369 return !(dev->type == &part_type); 2370 } 2371 #else 2372 static inline int device_is_not_partition(struct device *dev) 2373 { 2374 return 1; 2375 } 2376 #endif 2377 2378 static void device_platform_notify(struct device *dev) 2379 { 2380 acpi_device_notify(dev); 2381 2382 software_node_notify(dev); 2383 } 2384 2385 static void device_platform_notify_remove(struct device *dev) 2386 { 2387 software_node_notify_remove(dev); 2388 2389 acpi_device_notify_remove(dev); 2390 } 2391 2392 /** 2393 * dev_driver_string - Return a device's driver name, if at all possible 2394 * @dev: struct device to get the name of 2395 * 2396 * Will return the device's driver's name if it is bound to a device. If 2397 * the device is not bound to a driver, it will return the name of the bus 2398 * it is attached to. If it is not attached to a bus either, an empty 2399 * string will be returned. 2400 */ 2401 const char *dev_driver_string(const struct device *dev) 2402 { 2403 struct device_driver *drv; 2404 2405 /* dev->driver can change to NULL underneath us because of unbinding, 2406 * so be careful about accessing it. dev->bus and dev->class should 2407 * never change once they are set, so they don't need special care. 2408 */ 2409 drv = READ_ONCE(dev->driver); 2410 return drv ? drv->name : dev_bus_name(dev); 2411 } 2412 EXPORT_SYMBOL(dev_driver_string); 2413 2414 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2415 2416 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2417 char *buf) 2418 { 2419 struct device_attribute *dev_attr = to_dev_attr(attr); 2420 struct device *dev = kobj_to_dev(kobj); 2421 ssize_t ret = -EIO; 2422 2423 if (dev_attr->show) 2424 ret = dev_attr->show(dev, dev_attr, buf); 2425 if (ret >= (ssize_t)PAGE_SIZE) { 2426 printk("dev_attr_show: %pS returned bad count\n", 2427 dev_attr->show); 2428 } 2429 return ret; 2430 } 2431 2432 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2433 const char *buf, size_t count) 2434 { 2435 struct device_attribute *dev_attr = to_dev_attr(attr); 2436 struct device *dev = kobj_to_dev(kobj); 2437 ssize_t ret = -EIO; 2438 2439 if (dev_attr->store) 2440 ret = dev_attr->store(dev, dev_attr, buf, count); 2441 return ret; 2442 } 2443 2444 static const struct sysfs_ops dev_sysfs_ops = { 2445 .show = dev_attr_show, 2446 .store = dev_attr_store, 2447 }; 2448 2449 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2450 2451 ssize_t device_store_ulong(struct device *dev, 2452 struct device_attribute *attr, 2453 const char *buf, size_t size) 2454 { 2455 struct dev_ext_attribute *ea = to_ext_attr(attr); 2456 int ret; 2457 unsigned long new; 2458 2459 ret = kstrtoul(buf, 0, &new); 2460 if (ret) 2461 return ret; 2462 *(unsigned long *)(ea->var) = new; 2463 /* Always return full write size even if we didn't consume all */ 2464 return size; 2465 } 2466 EXPORT_SYMBOL_GPL(device_store_ulong); 2467 2468 ssize_t device_show_ulong(struct device *dev, 2469 struct device_attribute *attr, 2470 char *buf) 2471 { 2472 struct dev_ext_attribute *ea = to_ext_attr(attr); 2473 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2474 } 2475 EXPORT_SYMBOL_GPL(device_show_ulong); 2476 2477 ssize_t device_store_int(struct device *dev, 2478 struct device_attribute *attr, 2479 const char *buf, size_t size) 2480 { 2481 struct dev_ext_attribute *ea = to_ext_attr(attr); 2482 int ret; 2483 long new; 2484 2485 ret = kstrtol(buf, 0, &new); 2486 if (ret) 2487 return ret; 2488 2489 if (new > INT_MAX || new < INT_MIN) 2490 return -EINVAL; 2491 *(int *)(ea->var) = new; 2492 /* Always return full write size even if we didn't consume all */ 2493 return size; 2494 } 2495 EXPORT_SYMBOL_GPL(device_store_int); 2496 2497 ssize_t device_show_int(struct device *dev, 2498 struct device_attribute *attr, 2499 char *buf) 2500 { 2501 struct dev_ext_attribute *ea = to_ext_attr(attr); 2502 2503 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2504 } 2505 EXPORT_SYMBOL_GPL(device_show_int); 2506 2507 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2508 const char *buf, size_t size) 2509 { 2510 struct dev_ext_attribute *ea = to_ext_attr(attr); 2511 2512 if (kstrtobool(buf, ea->var) < 0) 2513 return -EINVAL; 2514 2515 return size; 2516 } 2517 EXPORT_SYMBOL_GPL(device_store_bool); 2518 2519 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2520 char *buf) 2521 { 2522 struct dev_ext_attribute *ea = to_ext_attr(attr); 2523 2524 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2525 } 2526 EXPORT_SYMBOL_GPL(device_show_bool); 2527 2528 ssize_t device_show_string(struct device *dev, 2529 struct device_attribute *attr, char *buf) 2530 { 2531 struct dev_ext_attribute *ea = to_ext_attr(attr); 2532 2533 return sysfs_emit(buf, "%s\n", (char *)ea->var); 2534 } 2535 EXPORT_SYMBOL_GPL(device_show_string); 2536 2537 /** 2538 * device_release - free device structure. 2539 * @kobj: device's kobject. 2540 * 2541 * This is called once the reference count for the object 2542 * reaches 0. We forward the call to the device's release 2543 * method, which should handle actually freeing the structure. 2544 */ 2545 static void device_release(struct kobject *kobj) 2546 { 2547 struct device *dev = kobj_to_dev(kobj); 2548 struct device_private *p = dev->p; 2549 2550 /* 2551 * Some platform devices are driven without driver attached 2552 * and managed resources may have been acquired. Make sure 2553 * all resources are released. 2554 * 2555 * Drivers still can add resources into device after device 2556 * is deleted but alive, so release devres here to avoid 2557 * possible memory leak. 2558 */ 2559 devres_release_all(dev); 2560 2561 kfree(dev->dma_range_map); 2562 2563 if (dev->release) 2564 dev->release(dev); 2565 else if (dev->type && dev->type->release) 2566 dev->type->release(dev); 2567 else if (dev->class && dev->class->dev_release) 2568 dev->class->dev_release(dev); 2569 else 2570 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2571 dev_name(dev)); 2572 kfree(p); 2573 } 2574 2575 static const void *device_namespace(const struct kobject *kobj) 2576 { 2577 const struct device *dev = kobj_to_dev(kobj); 2578 const void *ns = NULL; 2579 2580 if (dev->class && dev->class->namespace) 2581 ns = dev->class->namespace(dev); 2582 2583 return ns; 2584 } 2585 2586 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2587 { 2588 const struct device *dev = kobj_to_dev(kobj); 2589 2590 if (dev->class && dev->class->get_ownership) 2591 dev->class->get_ownership(dev, uid, gid); 2592 } 2593 2594 static const struct kobj_type device_ktype = { 2595 .release = device_release, 2596 .sysfs_ops = &dev_sysfs_ops, 2597 .namespace = device_namespace, 2598 .get_ownership = device_get_ownership, 2599 }; 2600 2601 2602 static int dev_uevent_filter(const struct kobject *kobj) 2603 { 2604 const struct kobj_type *ktype = get_ktype(kobj); 2605 2606 if (ktype == &device_ktype) { 2607 const struct device *dev = kobj_to_dev(kobj); 2608 if (dev->bus) 2609 return 1; 2610 if (dev->class) 2611 return 1; 2612 } 2613 return 0; 2614 } 2615 2616 static const char *dev_uevent_name(const struct kobject *kobj) 2617 { 2618 const struct device *dev = kobj_to_dev(kobj); 2619 2620 if (dev->bus) 2621 return dev->bus->name; 2622 if (dev->class) 2623 return dev->class->name; 2624 return NULL; 2625 } 2626 2627 /* 2628 * Try filling "DRIVER=<name>" uevent variable for a device. Because this 2629 * function may race with binding and unbinding the device from a driver, 2630 * we need to be careful. Binding is generally safe, at worst we miss the 2631 * fact that the device is already bound to a driver (but the driver 2632 * information that is delivered through uevents is best-effort, it may 2633 * become obsolete as soon as it is generated anyways). Unbinding is more 2634 * risky as driver pointer is transitioning to NULL, so READ_ONCE() should 2635 * be used to make sure we are dealing with the same pointer, and to 2636 * ensure that driver structure is not going to disappear from under us 2637 * we take bus' drivers klist lock. The assumption that only registered 2638 * driver can be bound to a device, and to unregister a driver bus code 2639 * will take the same lock. 2640 */ 2641 static void dev_driver_uevent(const struct device *dev, struct kobj_uevent_env *env) 2642 { 2643 struct subsys_private *sp = bus_to_subsys(dev->bus); 2644 2645 if (sp) { 2646 scoped_guard(spinlock, &sp->klist_drivers.k_lock) { 2647 struct device_driver *drv = READ_ONCE(dev->driver); 2648 if (drv) 2649 add_uevent_var(env, "DRIVER=%s", drv->name); 2650 } 2651 2652 subsys_put(sp); 2653 } 2654 } 2655 2656 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2657 { 2658 const struct device *dev = kobj_to_dev(kobj); 2659 int retval = 0; 2660 2661 /* add device node properties if present */ 2662 if (MAJOR(dev->devt)) { 2663 const char *tmp; 2664 const char *name; 2665 umode_t mode = 0; 2666 kuid_t uid = GLOBAL_ROOT_UID; 2667 kgid_t gid = GLOBAL_ROOT_GID; 2668 2669 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2670 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2671 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2672 if (name) { 2673 add_uevent_var(env, "DEVNAME=%s", name); 2674 if (mode) 2675 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2676 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2677 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2678 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2679 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2680 kfree(tmp); 2681 } 2682 } 2683 2684 if (dev->type && dev->type->name) 2685 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2686 2687 /* Add "DRIVER=%s" variable if the device is bound to a driver */ 2688 dev_driver_uevent(dev, env); 2689 2690 /* Add common DT information about the device */ 2691 of_device_uevent(dev, env); 2692 2693 /* have the bus specific function add its stuff */ 2694 if (dev->bus && dev->bus->uevent) { 2695 retval = dev->bus->uevent(dev, env); 2696 if (retval) 2697 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2698 dev_name(dev), __func__, retval); 2699 } 2700 2701 /* have the class specific function add its stuff */ 2702 if (dev->class && dev->class->dev_uevent) { 2703 retval = dev->class->dev_uevent(dev, env); 2704 if (retval) 2705 pr_debug("device: '%s': %s: class uevent() " 2706 "returned %d\n", dev_name(dev), 2707 __func__, retval); 2708 } 2709 2710 /* have the device type specific function add its stuff */ 2711 if (dev->type && dev->type->uevent) { 2712 retval = dev->type->uevent(dev, env); 2713 if (retval) 2714 pr_debug("device: '%s': %s: dev_type uevent() " 2715 "returned %d\n", dev_name(dev), 2716 __func__, retval); 2717 } 2718 2719 return retval; 2720 } 2721 2722 static const struct kset_uevent_ops device_uevent_ops = { 2723 .filter = dev_uevent_filter, 2724 .name = dev_uevent_name, 2725 .uevent = dev_uevent, 2726 }; 2727 2728 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2729 char *buf) 2730 { 2731 struct kobject *top_kobj; 2732 struct kset *kset; 2733 struct kobj_uevent_env *env = NULL; 2734 int i; 2735 int len = 0; 2736 int retval; 2737 2738 /* search the kset, the device belongs to */ 2739 top_kobj = &dev->kobj; 2740 while (!top_kobj->kset && top_kobj->parent) 2741 top_kobj = top_kobj->parent; 2742 if (!top_kobj->kset) 2743 goto out; 2744 2745 kset = top_kobj->kset; 2746 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2747 goto out; 2748 2749 /* respect filter */ 2750 if (kset->uevent_ops && kset->uevent_ops->filter) 2751 if (!kset->uevent_ops->filter(&dev->kobj)) 2752 goto out; 2753 2754 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2755 if (!env) 2756 return -ENOMEM; 2757 2758 /* let the kset specific function add its keys */ 2759 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2760 if (retval) 2761 goto out; 2762 2763 /* copy keys to file */ 2764 for (i = 0; i < env->envp_idx; i++) 2765 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2766 out: 2767 kfree(env); 2768 return len; 2769 } 2770 2771 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2772 const char *buf, size_t count) 2773 { 2774 int rc; 2775 2776 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2777 2778 if (rc) { 2779 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2780 return rc; 2781 } 2782 2783 return count; 2784 } 2785 static DEVICE_ATTR_RW(uevent); 2786 2787 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2788 char *buf) 2789 { 2790 bool val; 2791 2792 device_lock(dev); 2793 val = !dev->offline; 2794 device_unlock(dev); 2795 return sysfs_emit(buf, "%u\n", val); 2796 } 2797 2798 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2799 const char *buf, size_t count) 2800 { 2801 bool val; 2802 int ret; 2803 2804 ret = kstrtobool(buf, &val); 2805 if (ret < 0) 2806 return ret; 2807 2808 ret = lock_device_hotplug_sysfs(); 2809 if (ret) 2810 return ret; 2811 2812 ret = val ? device_online(dev) : device_offline(dev); 2813 unlock_device_hotplug(); 2814 return ret < 0 ? ret : count; 2815 } 2816 static DEVICE_ATTR_RW(online); 2817 2818 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2819 char *buf) 2820 { 2821 const char *loc; 2822 2823 switch (dev->removable) { 2824 case DEVICE_REMOVABLE: 2825 loc = "removable"; 2826 break; 2827 case DEVICE_FIXED: 2828 loc = "fixed"; 2829 break; 2830 default: 2831 loc = "unknown"; 2832 } 2833 return sysfs_emit(buf, "%s\n", loc); 2834 } 2835 static DEVICE_ATTR_RO(removable); 2836 2837 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2838 { 2839 return sysfs_create_groups(&dev->kobj, groups); 2840 } 2841 EXPORT_SYMBOL_GPL(device_add_groups); 2842 2843 void device_remove_groups(struct device *dev, 2844 const struct attribute_group **groups) 2845 { 2846 sysfs_remove_groups(&dev->kobj, groups); 2847 } 2848 EXPORT_SYMBOL_GPL(device_remove_groups); 2849 2850 union device_attr_group_devres { 2851 const struct attribute_group *group; 2852 const struct attribute_group **groups; 2853 }; 2854 2855 static void devm_attr_group_remove(struct device *dev, void *res) 2856 { 2857 union device_attr_group_devres *devres = res; 2858 const struct attribute_group *group = devres->group; 2859 2860 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2861 sysfs_remove_group(&dev->kobj, group); 2862 } 2863 2864 /** 2865 * devm_device_add_group - given a device, create a managed attribute group 2866 * @dev: The device to create the group for 2867 * @grp: The attribute group to create 2868 * 2869 * This function creates a group for the first time. It will explicitly 2870 * warn and error if any of the attribute files being created already exist. 2871 * 2872 * Returns 0 on success or error code on failure. 2873 */ 2874 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2875 { 2876 union device_attr_group_devres *devres; 2877 int error; 2878 2879 devres = devres_alloc(devm_attr_group_remove, 2880 sizeof(*devres), GFP_KERNEL); 2881 if (!devres) 2882 return -ENOMEM; 2883 2884 error = sysfs_create_group(&dev->kobj, grp); 2885 if (error) { 2886 devres_free(devres); 2887 return error; 2888 } 2889 2890 devres->group = grp; 2891 devres_add(dev, devres); 2892 return 0; 2893 } 2894 EXPORT_SYMBOL_GPL(devm_device_add_group); 2895 2896 static int device_add_attrs(struct device *dev) 2897 { 2898 const struct class *class = dev->class; 2899 const struct device_type *type = dev->type; 2900 int error; 2901 2902 if (class) { 2903 error = device_add_groups(dev, class->dev_groups); 2904 if (error) 2905 return error; 2906 } 2907 2908 if (type) { 2909 error = device_add_groups(dev, type->groups); 2910 if (error) 2911 goto err_remove_class_groups; 2912 } 2913 2914 error = device_add_groups(dev, dev->groups); 2915 if (error) 2916 goto err_remove_type_groups; 2917 2918 if (device_supports_offline(dev) && !dev->offline_disabled) { 2919 error = device_create_file(dev, &dev_attr_online); 2920 if (error) 2921 goto err_remove_dev_groups; 2922 } 2923 2924 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2925 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2926 if (error) 2927 goto err_remove_dev_online; 2928 } 2929 2930 if (dev_removable_is_valid(dev)) { 2931 error = device_create_file(dev, &dev_attr_removable); 2932 if (error) 2933 goto err_remove_dev_waiting_for_supplier; 2934 } 2935 2936 if (dev_add_physical_location(dev)) { 2937 error = device_add_group(dev, 2938 &dev_attr_physical_location_group); 2939 if (error) 2940 goto err_remove_dev_removable; 2941 } 2942 2943 return 0; 2944 2945 err_remove_dev_removable: 2946 device_remove_file(dev, &dev_attr_removable); 2947 err_remove_dev_waiting_for_supplier: 2948 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2949 err_remove_dev_online: 2950 device_remove_file(dev, &dev_attr_online); 2951 err_remove_dev_groups: 2952 device_remove_groups(dev, dev->groups); 2953 err_remove_type_groups: 2954 if (type) 2955 device_remove_groups(dev, type->groups); 2956 err_remove_class_groups: 2957 if (class) 2958 device_remove_groups(dev, class->dev_groups); 2959 2960 return error; 2961 } 2962 2963 static void device_remove_attrs(struct device *dev) 2964 { 2965 const struct class *class = dev->class; 2966 const struct device_type *type = dev->type; 2967 2968 if (dev->physical_location) { 2969 device_remove_group(dev, &dev_attr_physical_location_group); 2970 kfree(dev->physical_location); 2971 } 2972 2973 device_remove_file(dev, &dev_attr_removable); 2974 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2975 device_remove_file(dev, &dev_attr_online); 2976 device_remove_groups(dev, dev->groups); 2977 2978 if (type) 2979 device_remove_groups(dev, type->groups); 2980 2981 if (class) 2982 device_remove_groups(dev, class->dev_groups); 2983 } 2984 2985 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2986 char *buf) 2987 { 2988 return print_dev_t(buf, dev->devt); 2989 } 2990 static DEVICE_ATTR_RO(dev); 2991 2992 /* /sys/devices/ */ 2993 struct kset *devices_kset; 2994 2995 /** 2996 * devices_kset_move_before - Move device in the devices_kset's list. 2997 * @deva: Device to move. 2998 * @devb: Device @deva should come before. 2999 */ 3000 static void devices_kset_move_before(struct device *deva, struct device *devb) 3001 { 3002 if (!devices_kset) 3003 return; 3004 pr_debug("devices_kset: Moving %s before %s\n", 3005 dev_name(deva), dev_name(devb)); 3006 spin_lock(&devices_kset->list_lock); 3007 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 3008 spin_unlock(&devices_kset->list_lock); 3009 } 3010 3011 /** 3012 * devices_kset_move_after - Move device in the devices_kset's list. 3013 * @deva: Device to move 3014 * @devb: Device @deva should come after. 3015 */ 3016 static void devices_kset_move_after(struct device *deva, struct device *devb) 3017 { 3018 if (!devices_kset) 3019 return; 3020 pr_debug("devices_kset: Moving %s after %s\n", 3021 dev_name(deva), dev_name(devb)); 3022 spin_lock(&devices_kset->list_lock); 3023 list_move(&deva->kobj.entry, &devb->kobj.entry); 3024 spin_unlock(&devices_kset->list_lock); 3025 } 3026 3027 /** 3028 * devices_kset_move_last - move the device to the end of devices_kset's list. 3029 * @dev: device to move 3030 */ 3031 void devices_kset_move_last(struct device *dev) 3032 { 3033 if (!devices_kset) 3034 return; 3035 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 3036 spin_lock(&devices_kset->list_lock); 3037 list_move_tail(&dev->kobj.entry, &devices_kset->list); 3038 spin_unlock(&devices_kset->list_lock); 3039 } 3040 3041 /** 3042 * device_create_file - create sysfs attribute file for device. 3043 * @dev: device. 3044 * @attr: device attribute descriptor. 3045 */ 3046 int device_create_file(struct device *dev, 3047 const struct device_attribute *attr) 3048 { 3049 int error = 0; 3050 3051 if (dev) { 3052 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 3053 "Attribute %s: write permission without 'store'\n", 3054 attr->attr.name); 3055 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 3056 "Attribute %s: read permission without 'show'\n", 3057 attr->attr.name); 3058 error = sysfs_create_file(&dev->kobj, &attr->attr); 3059 } 3060 3061 return error; 3062 } 3063 EXPORT_SYMBOL_GPL(device_create_file); 3064 3065 /** 3066 * device_remove_file - remove sysfs attribute file. 3067 * @dev: device. 3068 * @attr: device attribute descriptor. 3069 */ 3070 void device_remove_file(struct device *dev, 3071 const struct device_attribute *attr) 3072 { 3073 if (dev) 3074 sysfs_remove_file(&dev->kobj, &attr->attr); 3075 } 3076 EXPORT_SYMBOL_GPL(device_remove_file); 3077 3078 /** 3079 * device_remove_file_self - remove sysfs attribute file from its own method. 3080 * @dev: device. 3081 * @attr: device attribute descriptor. 3082 * 3083 * See kernfs_remove_self() for details. 3084 */ 3085 bool device_remove_file_self(struct device *dev, 3086 const struct device_attribute *attr) 3087 { 3088 if (dev) 3089 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3090 else 3091 return false; 3092 } 3093 EXPORT_SYMBOL_GPL(device_remove_file_self); 3094 3095 /** 3096 * device_create_bin_file - create sysfs binary attribute file for device. 3097 * @dev: device. 3098 * @attr: device binary attribute descriptor. 3099 */ 3100 int device_create_bin_file(struct device *dev, 3101 const struct bin_attribute *attr) 3102 { 3103 int error = -EINVAL; 3104 if (dev) 3105 error = sysfs_create_bin_file(&dev->kobj, attr); 3106 return error; 3107 } 3108 EXPORT_SYMBOL_GPL(device_create_bin_file); 3109 3110 /** 3111 * device_remove_bin_file - remove sysfs binary attribute file 3112 * @dev: device. 3113 * @attr: device binary attribute descriptor. 3114 */ 3115 void device_remove_bin_file(struct device *dev, 3116 const struct bin_attribute *attr) 3117 { 3118 if (dev) 3119 sysfs_remove_bin_file(&dev->kobj, attr); 3120 } 3121 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3122 3123 static void klist_children_get(struct klist_node *n) 3124 { 3125 struct device_private *p = to_device_private_parent(n); 3126 struct device *dev = p->device; 3127 3128 get_device(dev); 3129 } 3130 3131 static void klist_children_put(struct klist_node *n) 3132 { 3133 struct device_private *p = to_device_private_parent(n); 3134 struct device *dev = p->device; 3135 3136 put_device(dev); 3137 } 3138 3139 /** 3140 * device_initialize - init device structure. 3141 * @dev: device. 3142 * 3143 * This prepares the device for use by other layers by initializing 3144 * its fields. 3145 * It is the first half of device_register(), if called by 3146 * that function, though it can also be called separately, so one 3147 * may use @dev's fields. In particular, get_device()/put_device() 3148 * may be used for reference counting of @dev after calling this 3149 * function. 3150 * 3151 * All fields in @dev must be initialized by the caller to 0, except 3152 * for those explicitly set to some other value. The simplest 3153 * approach is to use kzalloc() to allocate the structure containing 3154 * @dev. 3155 * 3156 * NOTE: Use put_device() to give up your reference instead of freeing 3157 * @dev directly once you have called this function. 3158 */ 3159 void device_initialize(struct device *dev) 3160 { 3161 dev->kobj.kset = devices_kset; 3162 kobject_init(&dev->kobj, &device_ktype); 3163 INIT_LIST_HEAD(&dev->dma_pools); 3164 mutex_init(&dev->mutex); 3165 lockdep_set_novalidate_class(&dev->mutex); 3166 spin_lock_init(&dev->devres_lock); 3167 INIT_LIST_HEAD(&dev->devres_head); 3168 device_pm_init(dev); 3169 set_dev_node(dev, NUMA_NO_NODE); 3170 INIT_LIST_HEAD(&dev->links.consumers); 3171 INIT_LIST_HEAD(&dev->links.suppliers); 3172 INIT_LIST_HEAD(&dev->links.defer_sync); 3173 dev->links.status = DL_DEV_NO_DRIVER; 3174 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3175 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3176 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3177 dev->dma_coherent = dma_default_coherent; 3178 #endif 3179 swiotlb_dev_init(dev); 3180 } 3181 EXPORT_SYMBOL_GPL(device_initialize); 3182 3183 struct kobject *virtual_device_parent(void) 3184 { 3185 static struct kobject *virtual_dir = NULL; 3186 3187 if (!virtual_dir) 3188 virtual_dir = kobject_create_and_add("virtual", 3189 &devices_kset->kobj); 3190 3191 return virtual_dir; 3192 } 3193 3194 struct class_dir { 3195 struct kobject kobj; 3196 const struct class *class; 3197 }; 3198 3199 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3200 3201 static void class_dir_release(struct kobject *kobj) 3202 { 3203 struct class_dir *dir = to_class_dir(kobj); 3204 kfree(dir); 3205 } 3206 3207 static const 3208 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3209 { 3210 const struct class_dir *dir = to_class_dir(kobj); 3211 return dir->class->ns_type; 3212 } 3213 3214 static const struct kobj_type class_dir_ktype = { 3215 .release = class_dir_release, 3216 .sysfs_ops = &kobj_sysfs_ops, 3217 .child_ns_type = class_dir_child_ns_type 3218 }; 3219 3220 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3221 struct kobject *parent_kobj) 3222 { 3223 struct class_dir *dir; 3224 int retval; 3225 3226 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3227 if (!dir) 3228 return ERR_PTR(-ENOMEM); 3229 3230 dir->class = sp->class; 3231 kobject_init(&dir->kobj, &class_dir_ktype); 3232 3233 dir->kobj.kset = &sp->glue_dirs; 3234 3235 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3236 if (retval < 0) { 3237 kobject_put(&dir->kobj); 3238 return ERR_PTR(retval); 3239 } 3240 return &dir->kobj; 3241 } 3242 3243 static DEFINE_MUTEX(gdp_mutex); 3244 3245 static struct kobject *get_device_parent(struct device *dev, 3246 struct device *parent) 3247 { 3248 struct subsys_private *sp = class_to_subsys(dev->class); 3249 struct kobject *kobj = NULL; 3250 3251 if (sp) { 3252 struct kobject *parent_kobj; 3253 struct kobject *k; 3254 3255 /* 3256 * If we have no parent, we live in "virtual". 3257 * Class-devices with a non class-device as parent, live 3258 * in a "glue" directory to prevent namespace collisions. 3259 */ 3260 if (parent == NULL) 3261 parent_kobj = virtual_device_parent(); 3262 else if (parent->class && !dev->class->ns_type) { 3263 subsys_put(sp); 3264 return &parent->kobj; 3265 } else { 3266 parent_kobj = &parent->kobj; 3267 } 3268 3269 mutex_lock(&gdp_mutex); 3270 3271 /* find our class-directory at the parent and reference it */ 3272 spin_lock(&sp->glue_dirs.list_lock); 3273 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3274 if (k->parent == parent_kobj) { 3275 kobj = kobject_get(k); 3276 break; 3277 } 3278 spin_unlock(&sp->glue_dirs.list_lock); 3279 if (kobj) { 3280 mutex_unlock(&gdp_mutex); 3281 subsys_put(sp); 3282 return kobj; 3283 } 3284 3285 /* or create a new class-directory at the parent device */ 3286 k = class_dir_create_and_add(sp, parent_kobj); 3287 /* do not emit an uevent for this simple "glue" directory */ 3288 mutex_unlock(&gdp_mutex); 3289 subsys_put(sp); 3290 return k; 3291 } 3292 3293 /* subsystems can specify a default root directory for their devices */ 3294 if (!parent && dev->bus) { 3295 struct device *dev_root = bus_get_dev_root(dev->bus); 3296 3297 if (dev_root) { 3298 kobj = &dev_root->kobj; 3299 put_device(dev_root); 3300 return kobj; 3301 } 3302 } 3303 3304 if (parent) 3305 return &parent->kobj; 3306 return NULL; 3307 } 3308 3309 static inline bool live_in_glue_dir(struct kobject *kobj, 3310 struct device *dev) 3311 { 3312 struct subsys_private *sp; 3313 bool retval; 3314 3315 if (!kobj || !dev->class) 3316 return false; 3317 3318 sp = class_to_subsys(dev->class); 3319 if (!sp) 3320 return false; 3321 3322 if (kobj->kset == &sp->glue_dirs) 3323 retval = true; 3324 else 3325 retval = false; 3326 3327 subsys_put(sp); 3328 return retval; 3329 } 3330 3331 static inline struct kobject *get_glue_dir(struct device *dev) 3332 { 3333 return dev->kobj.parent; 3334 } 3335 3336 /** 3337 * kobject_has_children - Returns whether a kobject has children. 3338 * @kobj: the object to test 3339 * 3340 * This will return whether a kobject has other kobjects as children. 3341 * 3342 * It does NOT account for the presence of attribute files, only sub 3343 * directories. It also assumes there is no concurrent addition or 3344 * removal of such children, and thus relies on external locking. 3345 */ 3346 static inline bool kobject_has_children(struct kobject *kobj) 3347 { 3348 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3349 3350 return kobj->sd && kobj->sd->dir.subdirs; 3351 } 3352 3353 /* 3354 * make sure cleaning up dir as the last step, we need to make 3355 * sure .release handler of kobject is run with holding the 3356 * global lock 3357 */ 3358 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3359 { 3360 unsigned int ref; 3361 3362 /* see if we live in a "glue" directory */ 3363 if (!live_in_glue_dir(glue_dir, dev)) 3364 return; 3365 3366 mutex_lock(&gdp_mutex); 3367 /** 3368 * There is a race condition between removing glue directory 3369 * and adding a new device under the glue directory. 3370 * 3371 * CPU1: CPU2: 3372 * 3373 * device_add() 3374 * get_device_parent() 3375 * class_dir_create_and_add() 3376 * kobject_add_internal() 3377 * create_dir() // create glue_dir 3378 * 3379 * device_add() 3380 * get_device_parent() 3381 * kobject_get() // get glue_dir 3382 * 3383 * device_del() 3384 * cleanup_glue_dir() 3385 * kobject_del(glue_dir) 3386 * 3387 * kobject_add() 3388 * kobject_add_internal() 3389 * create_dir() // in glue_dir 3390 * sysfs_create_dir_ns() 3391 * kernfs_create_dir_ns(sd) 3392 * 3393 * sysfs_remove_dir() // glue_dir->sd=NULL 3394 * sysfs_put() // free glue_dir->sd 3395 * 3396 * // sd is freed 3397 * kernfs_new_node(sd) 3398 * kernfs_get(glue_dir) 3399 * kernfs_add_one() 3400 * kernfs_put() 3401 * 3402 * Before CPU1 remove last child device under glue dir, if CPU2 add 3403 * a new device under glue dir, the glue_dir kobject reference count 3404 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3405 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3406 * and sysfs_put(). This result in glue_dir->sd is freed. 3407 * 3408 * Then the CPU2 will see a stale "empty" but still potentially used 3409 * glue dir around in kernfs_new_node(). 3410 * 3411 * In order to avoid this happening, we also should make sure that 3412 * kernfs_node for glue_dir is released in CPU1 only when refcount 3413 * for glue_dir kobj is 1. 3414 */ 3415 ref = kref_read(&glue_dir->kref); 3416 if (!kobject_has_children(glue_dir) && !--ref) 3417 kobject_del(glue_dir); 3418 kobject_put(glue_dir); 3419 mutex_unlock(&gdp_mutex); 3420 } 3421 3422 static int device_add_class_symlinks(struct device *dev) 3423 { 3424 struct device_node *of_node = dev_of_node(dev); 3425 struct subsys_private *sp; 3426 int error; 3427 3428 if (of_node) { 3429 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3430 if (error) 3431 dev_warn(dev, "Error %d creating of_node link\n",error); 3432 /* An error here doesn't warrant bringing down the device */ 3433 } 3434 3435 sp = class_to_subsys(dev->class); 3436 if (!sp) 3437 return 0; 3438 3439 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3440 if (error) 3441 goto out_devnode; 3442 3443 if (dev->parent && device_is_not_partition(dev)) { 3444 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3445 "device"); 3446 if (error) 3447 goto out_subsys; 3448 } 3449 3450 /* link in the class directory pointing to the device */ 3451 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3452 if (error) 3453 goto out_device; 3454 goto exit; 3455 3456 out_device: 3457 sysfs_remove_link(&dev->kobj, "device"); 3458 out_subsys: 3459 sysfs_remove_link(&dev->kobj, "subsystem"); 3460 out_devnode: 3461 sysfs_remove_link(&dev->kobj, "of_node"); 3462 exit: 3463 subsys_put(sp); 3464 return error; 3465 } 3466 3467 static void device_remove_class_symlinks(struct device *dev) 3468 { 3469 struct subsys_private *sp = class_to_subsys(dev->class); 3470 3471 if (dev_of_node(dev)) 3472 sysfs_remove_link(&dev->kobj, "of_node"); 3473 3474 if (!sp) 3475 return; 3476 3477 if (dev->parent && device_is_not_partition(dev)) 3478 sysfs_remove_link(&dev->kobj, "device"); 3479 sysfs_remove_link(&dev->kobj, "subsystem"); 3480 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3481 subsys_put(sp); 3482 } 3483 3484 /** 3485 * dev_set_name - set a device name 3486 * @dev: device 3487 * @fmt: format string for the device's name 3488 */ 3489 int dev_set_name(struct device *dev, const char *fmt, ...) 3490 { 3491 va_list vargs; 3492 int err; 3493 3494 va_start(vargs, fmt); 3495 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3496 va_end(vargs); 3497 return err; 3498 } 3499 EXPORT_SYMBOL_GPL(dev_set_name); 3500 3501 /* select a /sys/dev/ directory for the device */ 3502 static struct kobject *device_to_dev_kobj(struct device *dev) 3503 { 3504 if (is_blockdev(dev)) 3505 return sysfs_dev_block_kobj; 3506 else 3507 return sysfs_dev_char_kobj; 3508 } 3509 3510 static int device_create_sys_dev_entry(struct device *dev) 3511 { 3512 struct kobject *kobj = device_to_dev_kobj(dev); 3513 int error = 0; 3514 char devt_str[15]; 3515 3516 if (kobj) { 3517 format_dev_t(devt_str, dev->devt); 3518 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3519 } 3520 3521 return error; 3522 } 3523 3524 static void device_remove_sys_dev_entry(struct device *dev) 3525 { 3526 struct kobject *kobj = device_to_dev_kobj(dev); 3527 char devt_str[15]; 3528 3529 if (kobj) { 3530 format_dev_t(devt_str, dev->devt); 3531 sysfs_remove_link(kobj, devt_str); 3532 } 3533 } 3534 3535 static int device_private_init(struct device *dev) 3536 { 3537 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3538 if (!dev->p) 3539 return -ENOMEM; 3540 dev->p->device = dev; 3541 klist_init(&dev->p->klist_children, klist_children_get, 3542 klist_children_put); 3543 INIT_LIST_HEAD(&dev->p->deferred_probe); 3544 return 0; 3545 } 3546 3547 /** 3548 * device_add - add device to device hierarchy. 3549 * @dev: device. 3550 * 3551 * This is part 2 of device_register(), though may be called 3552 * separately _iff_ device_initialize() has been called separately. 3553 * 3554 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3555 * to the global and sibling lists for the device, then 3556 * adds it to the other relevant subsystems of the driver model. 3557 * 3558 * Do not call this routine or device_register() more than once for 3559 * any device structure. The driver model core is not designed to work 3560 * with devices that get unregistered and then spring back to life. 3561 * (Among other things, it's very hard to guarantee that all references 3562 * to the previous incarnation of @dev have been dropped.) Allocate 3563 * and register a fresh new struct device instead. 3564 * 3565 * NOTE: _Never_ directly free @dev after calling this function, even 3566 * if it returned an error! Always use put_device() to give up your 3567 * reference instead. 3568 * 3569 * Rule of thumb is: if device_add() succeeds, you should call 3570 * device_del() when you want to get rid of it. If device_add() has 3571 * *not* succeeded, use *only* put_device() to drop the reference 3572 * count. 3573 */ 3574 int device_add(struct device *dev) 3575 { 3576 struct subsys_private *sp; 3577 struct device *parent; 3578 struct kobject *kobj; 3579 struct class_interface *class_intf; 3580 int error = -EINVAL; 3581 struct kobject *glue_dir = NULL; 3582 3583 dev = get_device(dev); 3584 if (!dev) 3585 goto done; 3586 3587 if (!dev->p) { 3588 error = device_private_init(dev); 3589 if (error) 3590 goto done; 3591 } 3592 3593 /* 3594 * for statically allocated devices, which should all be converted 3595 * some day, we need to initialize the name. We prevent reading back 3596 * the name, and force the use of dev_name() 3597 */ 3598 if (dev->init_name) { 3599 error = dev_set_name(dev, "%s", dev->init_name); 3600 dev->init_name = NULL; 3601 } 3602 3603 if (dev_name(dev)) 3604 error = 0; 3605 /* subsystems can specify simple device enumeration */ 3606 else if (dev->bus && dev->bus->dev_name) 3607 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3608 else 3609 error = -EINVAL; 3610 if (error) 3611 goto name_error; 3612 3613 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3614 3615 parent = get_device(dev->parent); 3616 kobj = get_device_parent(dev, parent); 3617 if (IS_ERR(kobj)) { 3618 error = PTR_ERR(kobj); 3619 goto parent_error; 3620 } 3621 if (kobj) 3622 dev->kobj.parent = kobj; 3623 3624 /* use parent numa_node */ 3625 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3626 set_dev_node(dev, dev_to_node(parent)); 3627 3628 /* first, register with generic layer. */ 3629 /* we require the name to be set before, and pass NULL */ 3630 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3631 if (error) { 3632 glue_dir = kobj; 3633 goto Error; 3634 } 3635 3636 /* notify platform of device entry */ 3637 device_platform_notify(dev); 3638 3639 error = device_create_file(dev, &dev_attr_uevent); 3640 if (error) 3641 goto attrError; 3642 3643 error = device_add_class_symlinks(dev); 3644 if (error) 3645 goto SymlinkError; 3646 error = device_add_attrs(dev); 3647 if (error) 3648 goto AttrsError; 3649 error = bus_add_device(dev); 3650 if (error) 3651 goto BusError; 3652 error = dpm_sysfs_add(dev); 3653 if (error) 3654 goto DPMError; 3655 device_pm_add(dev); 3656 3657 if (MAJOR(dev->devt)) { 3658 error = device_create_file(dev, &dev_attr_dev); 3659 if (error) 3660 goto DevAttrError; 3661 3662 error = device_create_sys_dev_entry(dev); 3663 if (error) 3664 goto SysEntryError; 3665 3666 devtmpfs_create_node(dev); 3667 } 3668 3669 /* Notify clients of device addition. This call must come 3670 * after dpm_sysfs_add() and before kobject_uevent(). 3671 */ 3672 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3673 kobject_uevent(&dev->kobj, KOBJ_ADD); 3674 3675 /* 3676 * Check if any of the other devices (consumers) have been waiting for 3677 * this device (supplier) to be added so that they can create a device 3678 * link to it. 3679 * 3680 * This needs to happen after device_pm_add() because device_link_add() 3681 * requires the supplier be registered before it's called. 3682 * 3683 * But this also needs to happen before bus_probe_device() to make sure 3684 * waiting consumers can link to it before the driver is bound to the 3685 * device and the driver sync_state callback is called for this device. 3686 */ 3687 if (dev->fwnode && !dev->fwnode->dev) { 3688 dev->fwnode->dev = dev; 3689 fw_devlink_link_device(dev); 3690 } 3691 3692 bus_probe_device(dev); 3693 3694 /* 3695 * If all driver registration is done and a newly added device doesn't 3696 * match with any driver, don't block its consumers from probing in 3697 * case the consumer device is able to operate without this supplier. 3698 */ 3699 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3700 fw_devlink_unblock_consumers(dev); 3701 3702 if (parent) 3703 klist_add_tail(&dev->p->knode_parent, 3704 &parent->p->klist_children); 3705 3706 sp = class_to_subsys(dev->class); 3707 if (sp) { 3708 mutex_lock(&sp->mutex); 3709 /* tie the class to the device */ 3710 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3711 3712 /* notify any interfaces that the device is here */ 3713 list_for_each_entry(class_intf, &sp->interfaces, node) 3714 if (class_intf->add_dev) 3715 class_intf->add_dev(dev); 3716 mutex_unlock(&sp->mutex); 3717 subsys_put(sp); 3718 } 3719 done: 3720 put_device(dev); 3721 return error; 3722 SysEntryError: 3723 if (MAJOR(dev->devt)) 3724 device_remove_file(dev, &dev_attr_dev); 3725 DevAttrError: 3726 device_pm_remove(dev); 3727 dpm_sysfs_remove(dev); 3728 DPMError: 3729 device_set_driver(dev, NULL); 3730 bus_remove_device(dev); 3731 BusError: 3732 device_remove_attrs(dev); 3733 AttrsError: 3734 device_remove_class_symlinks(dev); 3735 SymlinkError: 3736 device_remove_file(dev, &dev_attr_uevent); 3737 attrError: 3738 device_platform_notify_remove(dev); 3739 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3740 glue_dir = get_glue_dir(dev); 3741 kobject_del(&dev->kobj); 3742 Error: 3743 cleanup_glue_dir(dev, glue_dir); 3744 parent_error: 3745 put_device(parent); 3746 name_error: 3747 kfree(dev->p); 3748 dev->p = NULL; 3749 goto done; 3750 } 3751 EXPORT_SYMBOL_GPL(device_add); 3752 3753 /** 3754 * device_register - register a device with the system. 3755 * @dev: pointer to the device structure 3756 * 3757 * This happens in two clean steps - initialize the device 3758 * and add it to the system. The two steps can be called 3759 * separately, but this is the easiest and most common. 3760 * I.e. you should only call the two helpers separately if 3761 * have a clearly defined need to use and refcount the device 3762 * before it is added to the hierarchy. 3763 * 3764 * For more information, see the kerneldoc for device_initialize() 3765 * and device_add(). 3766 * 3767 * NOTE: _Never_ directly free @dev after calling this function, even 3768 * if it returned an error! Always use put_device() to give up the 3769 * reference initialized in this function instead. 3770 */ 3771 int device_register(struct device *dev) 3772 { 3773 device_initialize(dev); 3774 return device_add(dev); 3775 } 3776 EXPORT_SYMBOL_GPL(device_register); 3777 3778 /** 3779 * get_device - increment reference count for device. 3780 * @dev: device. 3781 * 3782 * This simply forwards the call to kobject_get(), though 3783 * we do take care to provide for the case that we get a NULL 3784 * pointer passed in. 3785 */ 3786 struct device *get_device(struct device *dev) 3787 { 3788 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3789 } 3790 EXPORT_SYMBOL_GPL(get_device); 3791 3792 /** 3793 * put_device - decrement reference count. 3794 * @dev: device in question. 3795 */ 3796 void put_device(struct device *dev) 3797 { 3798 /* might_sleep(); */ 3799 if (dev) 3800 kobject_put(&dev->kobj); 3801 } 3802 EXPORT_SYMBOL_GPL(put_device); 3803 3804 bool kill_device(struct device *dev) 3805 { 3806 /* 3807 * Require the device lock and set the "dead" flag to guarantee that 3808 * the update behavior is consistent with the other bitfields near 3809 * it and that we cannot have an asynchronous probe routine trying 3810 * to run while we are tearing out the bus/class/sysfs from 3811 * underneath the device. 3812 */ 3813 device_lock_assert(dev); 3814 3815 if (dev->p->dead) 3816 return false; 3817 dev->p->dead = true; 3818 return true; 3819 } 3820 EXPORT_SYMBOL_GPL(kill_device); 3821 3822 /** 3823 * device_del - delete device from system. 3824 * @dev: device. 3825 * 3826 * This is the first part of the device unregistration 3827 * sequence. This removes the device from the lists we control 3828 * from here, has it removed from the other driver model 3829 * subsystems it was added to in device_add(), and removes it 3830 * from the kobject hierarchy. 3831 * 3832 * NOTE: this should be called manually _iff_ device_add() was 3833 * also called manually. 3834 */ 3835 void device_del(struct device *dev) 3836 { 3837 struct subsys_private *sp; 3838 struct device *parent = dev->parent; 3839 struct kobject *glue_dir = NULL; 3840 struct class_interface *class_intf; 3841 unsigned int noio_flag; 3842 3843 device_lock(dev); 3844 kill_device(dev); 3845 device_unlock(dev); 3846 3847 if (dev->fwnode && dev->fwnode->dev == dev) 3848 dev->fwnode->dev = NULL; 3849 3850 /* Notify clients of device removal. This call must come 3851 * before dpm_sysfs_remove(). 3852 */ 3853 noio_flag = memalloc_noio_save(); 3854 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3855 3856 dpm_sysfs_remove(dev); 3857 if (parent) 3858 klist_del(&dev->p->knode_parent); 3859 if (MAJOR(dev->devt)) { 3860 devtmpfs_delete_node(dev); 3861 device_remove_sys_dev_entry(dev); 3862 device_remove_file(dev, &dev_attr_dev); 3863 } 3864 3865 sp = class_to_subsys(dev->class); 3866 if (sp) { 3867 device_remove_class_symlinks(dev); 3868 3869 mutex_lock(&sp->mutex); 3870 /* notify any interfaces that the device is now gone */ 3871 list_for_each_entry(class_intf, &sp->interfaces, node) 3872 if (class_intf->remove_dev) 3873 class_intf->remove_dev(dev); 3874 /* remove the device from the class list */ 3875 klist_del(&dev->p->knode_class); 3876 mutex_unlock(&sp->mutex); 3877 subsys_put(sp); 3878 } 3879 device_remove_file(dev, &dev_attr_uevent); 3880 device_remove_attrs(dev); 3881 bus_remove_device(dev); 3882 device_pm_remove(dev); 3883 driver_deferred_probe_del(dev); 3884 device_platform_notify_remove(dev); 3885 device_links_purge(dev); 3886 3887 /* 3888 * If a device does not have a driver attached, we need to clean 3889 * up any managed resources. We do this in device_release(), but 3890 * it's never called (and we leak the device) if a managed 3891 * resource holds a reference to the device. So release all 3892 * managed resources here, like we do in driver_detach(). We 3893 * still need to do so again in device_release() in case someone 3894 * adds a new resource after this point, though. 3895 */ 3896 devres_release_all(dev); 3897 3898 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3899 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3900 glue_dir = get_glue_dir(dev); 3901 kobject_del(&dev->kobj); 3902 cleanup_glue_dir(dev, glue_dir); 3903 memalloc_noio_restore(noio_flag); 3904 put_device(parent); 3905 } 3906 EXPORT_SYMBOL_GPL(device_del); 3907 3908 /** 3909 * device_unregister - unregister device from system. 3910 * @dev: device going away. 3911 * 3912 * We do this in two parts, like we do device_register(). First, 3913 * we remove it from all the subsystems with device_del(), then 3914 * we decrement the reference count via put_device(). If that 3915 * is the final reference count, the device will be cleaned up 3916 * via device_release() above. Otherwise, the structure will 3917 * stick around until the final reference to the device is dropped. 3918 */ 3919 void device_unregister(struct device *dev) 3920 { 3921 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3922 device_del(dev); 3923 put_device(dev); 3924 } 3925 EXPORT_SYMBOL_GPL(device_unregister); 3926 3927 static struct device *prev_device(struct klist_iter *i) 3928 { 3929 struct klist_node *n = klist_prev(i); 3930 struct device *dev = NULL; 3931 struct device_private *p; 3932 3933 if (n) { 3934 p = to_device_private_parent(n); 3935 dev = p->device; 3936 } 3937 return dev; 3938 } 3939 3940 static struct device *next_device(struct klist_iter *i) 3941 { 3942 struct klist_node *n = klist_next(i); 3943 struct device *dev = NULL; 3944 struct device_private *p; 3945 3946 if (n) { 3947 p = to_device_private_parent(n); 3948 dev = p->device; 3949 } 3950 return dev; 3951 } 3952 3953 /** 3954 * device_get_devnode - path of device node file 3955 * @dev: device 3956 * @mode: returned file access mode 3957 * @uid: returned file owner 3958 * @gid: returned file group 3959 * @tmp: possibly allocated string 3960 * 3961 * Return the relative path of a possible device node. 3962 * Non-default names may need to allocate a memory to compose 3963 * a name. This memory is returned in tmp and needs to be 3964 * freed by the caller. 3965 */ 3966 const char *device_get_devnode(const struct device *dev, 3967 umode_t *mode, kuid_t *uid, kgid_t *gid, 3968 const char **tmp) 3969 { 3970 char *s; 3971 3972 *tmp = NULL; 3973 3974 /* the device type may provide a specific name */ 3975 if (dev->type && dev->type->devnode) 3976 *tmp = dev->type->devnode(dev, mode, uid, gid); 3977 if (*tmp) 3978 return *tmp; 3979 3980 /* the class may provide a specific name */ 3981 if (dev->class && dev->class->devnode) 3982 *tmp = dev->class->devnode(dev, mode); 3983 if (*tmp) 3984 return *tmp; 3985 3986 /* return name without allocation, tmp == NULL */ 3987 if (strchr(dev_name(dev), '!') == NULL) 3988 return dev_name(dev); 3989 3990 /* replace '!' in the name with '/' */ 3991 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 3992 if (!s) 3993 return NULL; 3994 return *tmp = s; 3995 } 3996 3997 /** 3998 * device_for_each_child - device child iterator. 3999 * @parent: parent struct device. 4000 * @fn: function to be called for each device. 4001 * @data: data for the callback. 4002 * 4003 * Iterate over @parent's child devices, and call @fn for each, 4004 * passing it @data. 4005 * 4006 * We check the return of @fn each time. If it returns anything 4007 * other than 0, we break out and return that value. 4008 */ 4009 int device_for_each_child(struct device *parent, void *data, 4010 device_iter_t fn) 4011 { 4012 struct klist_iter i; 4013 struct device *child; 4014 int error = 0; 4015 4016 if (!parent || !parent->p) 4017 return 0; 4018 4019 klist_iter_init(&parent->p->klist_children, &i); 4020 while (!error && (child = next_device(&i))) 4021 error = fn(child, data); 4022 klist_iter_exit(&i); 4023 return error; 4024 } 4025 EXPORT_SYMBOL_GPL(device_for_each_child); 4026 4027 /** 4028 * device_for_each_child_reverse - device child iterator in reversed order. 4029 * @parent: parent struct device. 4030 * @fn: function to be called for each device. 4031 * @data: data for the callback. 4032 * 4033 * Iterate over @parent's child devices, and call @fn for each, 4034 * passing it @data. 4035 * 4036 * We check the return of @fn each time. If it returns anything 4037 * other than 0, we break out and return that value. 4038 */ 4039 int device_for_each_child_reverse(struct device *parent, void *data, 4040 device_iter_t fn) 4041 { 4042 struct klist_iter i; 4043 struct device *child; 4044 int error = 0; 4045 4046 if (!parent || !parent->p) 4047 return 0; 4048 4049 klist_iter_init(&parent->p->klist_children, &i); 4050 while ((child = prev_device(&i)) && !error) 4051 error = fn(child, data); 4052 klist_iter_exit(&i); 4053 return error; 4054 } 4055 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 4056 4057 /** 4058 * device_for_each_child_reverse_from - device child iterator in reversed order. 4059 * @parent: parent struct device. 4060 * @from: optional starting point in child list 4061 * @fn: function to be called for each device. 4062 * @data: data for the callback. 4063 * 4064 * Iterate over @parent's child devices, starting at @from, and call @fn 4065 * for each, passing it @data. This helper is identical to 4066 * device_for_each_child_reverse() when @from is NULL. 4067 * 4068 * @fn is checked each iteration. If it returns anything other than 0, 4069 * iteration stop and that value is returned to the caller of 4070 * device_for_each_child_reverse_from(); 4071 */ 4072 int device_for_each_child_reverse_from(struct device *parent, 4073 struct device *from, void *data, 4074 device_iter_t fn) 4075 { 4076 struct klist_iter i; 4077 struct device *child; 4078 int error = 0; 4079 4080 if (!parent || !parent->p) 4081 return 0; 4082 4083 klist_iter_init_node(&parent->p->klist_children, &i, 4084 (from ? &from->p->knode_parent : NULL)); 4085 while ((child = prev_device(&i)) && !error) 4086 error = fn(child, data); 4087 klist_iter_exit(&i); 4088 return error; 4089 } 4090 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from); 4091 4092 /** 4093 * device_find_child - device iterator for locating a particular device. 4094 * @parent: parent struct device 4095 * @match: Callback function to check device 4096 * @data: Data to pass to match function 4097 * 4098 * This is similar to the device_for_each_child() function above, but it 4099 * returns a reference to a device that is 'found' for later use, as 4100 * determined by the @match callback. 4101 * 4102 * The callback should return 0 if the device doesn't match and non-zero 4103 * if it does. If the callback returns non-zero and a reference to the 4104 * current device can be obtained, this function will return to the caller 4105 * and not iterate over any more devices. 4106 * 4107 * NOTE: you will need to drop the reference with put_device() after use. 4108 */ 4109 struct device *device_find_child(struct device *parent, const void *data, 4110 device_match_t match) 4111 { 4112 struct klist_iter i; 4113 struct device *child; 4114 4115 if (!parent || !parent->p) 4116 return NULL; 4117 4118 klist_iter_init(&parent->p->klist_children, &i); 4119 while ((child = next_device(&i))) { 4120 if (match(child, data)) { 4121 get_device(child); 4122 break; 4123 } 4124 } 4125 klist_iter_exit(&i); 4126 return child; 4127 } 4128 EXPORT_SYMBOL_GPL(device_find_child); 4129 4130 int __init devices_init(void) 4131 { 4132 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4133 if (!devices_kset) 4134 return -ENOMEM; 4135 dev_kobj = kobject_create_and_add("dev", NULL); 4136 if (!dev_kobj) 4137 goto dev_kobj_err; 4138 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4139 if (!sysfs_dev_block_kobj) 4140 goto block_kobj_err; 4141 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4142 if (!sysfs_dev_char_kobj) 4143 goto char_kobj_err; 4144 device_link_wq = alloc_workqueue("device_link_wq", 0, 0); 4145 if (!device_link_wq) 4146 goto wq_err; 4147 4148 return 0; 4149 4150 wq_err: 4151 kobject_put(sysfs_dev_char_kobj); 4152 char_kobj_err: 4153 kobject_put(sysfs_dev_block_kobj); 4154 block_kobj_err: 4155 kobject_put(dev_kobj); 4156 dev_kobj_err: 4157 kset_unregister(devices_kset); 4158 return -ENOMEM; 4159 } 4160 4161 static int device_check_offline(struct device *dev, void *not_used) 4162 { 4163 int ret; 4164 4165 ret = device_for_each_child(dev, NULL, device_check_offline); 4166 if (ret) 4167 return ret; 4168 4169 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4170 } 4171 4172 /** 4173 * device_offline - Prepare the device for hot-removal. 4174 * @dev: Device to be put offline. 4175 * 4176 * Execute the device bus type's .offline() callback, if present, to prepare 4177 * the device for a subsequent hot-removal. If that succeeds, the device must 4178 * not be used until either it is removed or its bus type's .online() callback 4179 * is executed. 4180 * 4181 * Call under device_hotplug_lock. 4182 */ 4183 int device_offline(struct device *dev) 4184 { 4185 int ret; 4186 4187 if (dev->offline_disabled) 4188 return -EPERM; 4189 4190 ret = device_for_each_child(dev, NULL, device_check_offline); 4191 if (ret) 4192 return ret; 4193 4194 device_lock(dev); 4195 if (device_supports_offline(dev)) { 4196 if (dev->offline) { 4197 ret = 1; 4198 } else { 4199 ret = dev->bus->offline(dev); 4200 if (!ret) { 4201 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4202 dev->offline = true; 4203 } 4204 } 4205 } 4206 device_unlock(dev); 4207 4208 return ret; 4209 } 4210 4211 /** 4212 * device_online - Put the device back online after successful device_offline(). 4213 * @dev: Device to be put back online. 4214 * 4215 * If device_offline() has been successfully executed for @dev, but the device 4216 * has not been removed subsequently, execute its bus type's .online() callback 4217 * to indicate that the device can be used again. 4218 * 4219 * Call under device_hotplug_lock. 4220 */ 4221 int device_online(struct device *dev) 4222 { 4223 int ret = 0; 4224 4225 device_lock(dev); 4226 if (device_supports_offline(dev)) { 4227 if (dev->offline) { 4228 ret = dev->bus->online(dev); 4229 if (!ret) { 4230 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4231 dev->offline = false; 4232 } 4233 } else { 4234 ret = 1; 4235 } 4236 } 4237 device_unlock(dev); 4238 4239 return ret; 4240 } 4241 4242 struct root_device { 4243 struct device dev; 4244 struct module *owner; 4245 }; 4246 4247 static inline struct root_device *to_root_device(struct device *d) 4248 { 4249 return container_of(d, struct root_device, dev); 4250 } 4251 4252 static void root_device_release(struct device *dev) 4253 { 4254 kfree(to_root_device(dev)); 4255 } 4256 4257 /** 4258 * __root_device_register - allocate and register a root device 4259 * @name: root device name 4260 * @owner: owner module of the root device, usually THIS_MODULE 4261 * 4262 * This function allocates a root device and registers it 4263 * using device_register(). In order to free the returned 4264 * device, use root_device_unregister(). 4265 * 4266 * Root devices are dummy devices which allow other devices 4267 * to be grouped under /sys/devices. Use this function to 4268 * allocate a root device and then use it as the parent of 4269 * any device which should appear under /sys/devices/{name} 4270 * 4271 * The /sys/devices/{name} directory will also contain a 4272 * 'module' symlink which points to the @owner directory 4273 * in sysfs. 4274 * 4275 * Returns &struct device pointer on success, or ERR_PTR() on error. 4276 * 4277 * Note: You probably want to use root_device_register(). 4278 */ 4279 struct device *__root_device_register(const char *name, struct module *owner) 4280 { 4281 struct root_device *root; 4282 int err = -ENOMEM; 4283 4284 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4285 if (!root) 4286 return ERR_PTR(err); 4287 4288 err = dev_set_name(&root->dev, "%s", name); 4289 if (err) { 4290 kfree(root); 4291 return ERR_PTR(err); 4292 } 4293 4294 root->dev.release = root_device_release; 4295 4296 err = device_register(&root->dev); 4297 if (err) { 4298 put_device(&root->dev); 4299 return ERR_PTR(err); 4300 } 4301 4302 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4303 if (owner) { 4304 struct module_kobject *mk = &owner->mkobj; 4305 4306 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4307 if (err) { 4308 device_unregister(&root->dev); 4309 return ERR_PTR(err); 4310 } 4311 root->owner = owner; 4312 } 4313 #endif 4314 4315 return &root->dev; 4316 } 4317 EXPORT_SYMBOL_GPL(__root_device_register); 4318 4319 /** 4320 * root_device_unregister - unregister and free a root device 4321 * @dev: device going away 4322 * 4323 * This function unregisters and cleans up a device that was created by 4324 * root_device_register(). 4325 */ 4326 void root_device_unregister(struct device *dev) 4327 { 4328 struct root_device *root = to_root_device(dev); 4329 4330 if (root->owner) 4331 sysfs_remove_link(&root->dev.kobj, "module"); 4332 4333 device_unregister(dev); 4334 } 4335 EXPORT_SYMBOL_GPL(root_device_unregister); 4336 4337 4338 static void device_create_release(struct device *dev) 4339 { 4340 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4341 kfree(dev); 4342 } 4343 4344 static __printf(6, 0) struct device * 4345 device_create_groups_vargs(const struct class *class, struct device *parent, 4346 dev_t devt, void *drvdata, 4347 const struct attribute_group **groups, 4348 const char *fmt, va_list args) 4349 { 4350 struct device *dev = NULL; 4351 int retval = -ENODEV; 4352 4353 if (IS_ERR_OR_NULL(class)) 4354 goto error; 4355 4356 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4357 if (!dev) { 4358 retval = -ENOMEM; 4359 goto error; 4360 } 4361 4362 device_initialize(dev); 4363 dev->devt = devt; 4364 dev->class = class; 4365 dev->parent = parent; 4366 dev->groups = groups; 4367 dev->release = device_create_release; 4368 dev_set_drvdata(dev, drvdata); 4369 4370 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4371 if (retval) 4372 goto error; 4373 4374 retval = device_add(dev); 4375 if (retval) 4376 goto error; 4377 4378 return dev; 4379 4380 error: 4381 put_device(dev); 4382 return ERR_PTR(retval); 4383 } 4384 4385 /** 4386 * device_create - creates a device and registers it with sysfs 4387 * @class: pointer to the struct class that this device should be registered to 4388 * @parent: pointer to the parent struct device of this new device, if any 4389 * @devt: the dev_t for the char device to be added 4390 * @drvdata: the data to be added to the device for callbacks 4391 * @fmt: string for the device's name 4392 * 4393 * This function can be used by char device classes. A struct device 4394 * will be created in sysfs, registered to the specified class. 4395 * 4396 * A "dev" file will be created, showing the dev_t for the device, if 4397 * the dev_t is not 0,0. 4398 * If a pointer to a parent struct device is passed in, the newly created 4399 * struct device will be a child of that device in sysfs. 4400 * The pointer to the struct device will be returned from the call. 4401 * Any further sysfs files that might be required can be created using this 4402 * pointer. 4403 * 4404 * Returns &struct device pointer on success, or ERR_PTR() on error. 4405 */ 4406 struct device *device_create(const struct class *class, struct device *parent, 4407 dev_t devt, void *drvdata, const char *fmt, ...) 4408 { 4409 va_list vargs; 4410 struct device *dev; 4411 4412 va_start(vargs, fmt); 4413 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4414 fmt, vargs); 4415 va_end(vargs); 4416 return dev; 4417 } 4418 EXPORT_SYMBOL_GPL(device_create); 4419 4420 /** 4421 * device_create_with_groups - creates a device and registers it with sysfs 4422 * @class: pointer to the struct class that this device should be registered to 4423 * @parent: pointer to the parent struct device of this new device, if any 4424 * @devt: the dev_t for the char device to be added 4425 * @drvdata: the data to be added to the device for callbacks 4426 * @groups: NULL-terminated list of attribute groups to be created 4427 * @fmt: string for the device's name 4428 * 4429 * This function can be used by char device classes. A struct device 4430 * will be created in sysfs, registered to the specified class. 4431 * Additional attributes specified in the groups parameter will also 4432 * be created automatically. 4433 * 4434 * A "dev" file will be created, showing the dev_t for the device, if 4435 * the dev_t is not 0,0. 4436 * If a pointer to a parent struct device is passed in, the newly created 4437 * struct device will be a child of that device in sysfs. 4438 * The pointer to the struct device will be returned from the call. 4439 * Any further sysfs files that might be required can be created using this 4440 * pointer. 4441 * 4442 * Returns &struct device pointer on success, or ERR_PTR() on error. 4443 */ 4444 struct device *device_create_with_groups(const struct class *class, 4445 struct device *parent, dev_t devt, 4446 void *drvdata, 4447 const struct attribute_group **groups, 4448 const char *fmt, ...) 4449 { 4450 va_list vargs; 4451 struct device *dev; 4452 4453 va_start(vargs, fmt); 4454 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4455 fmt, vargs); 4456 va_end(vargs); 4457 return dev; 4458 } 4459 EXPORT_SYMBOL_GPL(device_create_with_groups); 4460 4461 /** 4462 * device_destroy - removes a device that was created with device_create() 4463 * @class: pointer to the struct class that this device was registered with 4464 * @devt: the dev_t of the device that was previously registered 4465 * 4466 * This call unregisters and cleans up a device that was created with a 4467 * call to device_create(). 4468 */ 4469 void device_destroy(const struct class *class, dev_t devt) 4470 { 4471 struct device *dev; 4472 4473 dev = class_find_device_by_devt(class, devt); 4474 if (dev) { 4475 put_device(dev); 4476 device_unregister(dev); 4477 } 4478 } 4479 EXPORT_SYMBOL_GPL(device_destroy); 4480 4481 /** 4482 * device_rename - renames a device 4483 * @dev: the pointer to the struct device to be renamed 4484 * @new_name: the new name of the device 4485 * 4486 * It is the responsibility of the caller to provide mutual 4487 * exclusion between two different calls of device_rename 4488 * on the same device to ensure that new_name is valid and 4489 * won't conflict with other devices. 4490 * 4491 * Note: given that some subsystems (networking and infiniband) use this 4492 * function, with no immediate plans for this to change, we cannot assume or 4493 * require that this function not be called at all. 4494 * 4495 * However, if you're writing new code, do not call this function. The following 4496 * text from Kay Sievers offers some insight: 4497 * 4498 * Renaming devices is racy at many levels, symlinks and other stuff are not 4499 * replaced atomically, and you get a "move" uevent, but it's not easy to 4500 * connect the event to the old and new device. Device nodes are not renamed at 4501 * all, there isn't even support for that in the kernel now. 4502 * 4503 * In the meantime, during renaming, your target name might be taken by another 4504 * driver, creating conflicts. Or the old name is taken directly after you 4505 * renamed it -- then you get events for the same DEVPATH, before you even see 4506 * the "move" event. It's just a mess, and nothing new should ever rely on 4507 * kernel device renaming. Besides that, it's not even implemented now for 4508 * other things than (driver-core wise very simple) network devices. 4509 * 4510 * Make up a "real" name in the driver before you register anything, or add 4511 * some other attributes for userspace to find the device, or use udev to add 4512 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4513 * don't even want to get into that and try to implement the missing pieces in 4514 * the core. We really have other pieces to fix in the driver core mess. :) 4515 */ 4516 int device_rename(struct device *dev, const char *new_name) 4517 { 4518 struct subsys_private *sp = NULL; 4519 struct kobject *kobj = &dev->kobj; 4520 char *old_device_name = NULL; 4521 int error; 4522 bool is_link_renamed = false; 4523 4524 dev = get_device(dev); 4525 if (!dev) 4526 return -EINVAL; 4527 4528 dev_dbg(dev, "renaming to %s\n", new_name); 4529 4530 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4531 if (!old_device_name) { 4532 error = -ENOMEM; 4533 goto out; 4534 } 4535 4536 if (dev->class) { 4537 sp = class_to_subsys(dev->class); 4538 4539 if (!sp) { 4540 error = -EINVAL; 4541 goto out; 4542 } 4543 4544 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4545 new_name, kobject_namespace(kobj)); 4546 if (error) 4547 goto out; 4548 4549 is_link_renamed = true; 4550 } 4551 4552 error = kobject_rename(kobj, new_name); 4553 out: 4554 if (error && is_link_renamed) 4555 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name, 4556 old_device_name, kobject_namespace(kobj)); 4557 subsys_put(sp); 4558 4559 put_device(dev); 4560 4561 kfree(old_device_name); 4562 4563 return error; 4564 } 4565 EXPORT_SYMBOL_GPL(device_rename); 4566 4567 static int device_move_class_links(struct device *dev, 4568 struct device *old_parent, 4569 struct device *new_parent) 4570 { 4571 int error = 0; 4572 4573 if (old_parent) 4574 sysfs_remove_link(&dev->kobj, "device"); 4575 if (new_parent) 4576 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4577 "device"); 4578 return error; 4579 } 4580 4581 /** 4582 * device_move - moves a device to a new parent 4583 * @dev: the pointer to the struct device to be moved 4584 * @new_parent: the new parent of the device (can be NULL) 4585 * @dpm_order: how to reorder the dpm_list 4586 */ 4587 int device_move(struct device *dev, struct device *new_parent, 4588 enum dpm_order dpm_order) 4589 { 4590 int error; 4591 struct device *old_parent; 4592 struct kobject *new_parent_kobj; 4593 4594 dev = get_device(dev); 4595 if (!dev) 4596 return -EINVAL; 4597 4598 device_pm_lock(); 4599 new_parent = get_device(new_parent); 4600 new_parent_kobj = get_device_parent(dev, new_parent); 4601 if (IS_ERR(new_parent_kobj)) { 4602 error = PTR_ERR(new_parent_kobj); 4603 put_device(new_parent); 4604 goto out; 4605 } 4606 4607 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4608 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4609 error = kobject_move(&dev->kobj, new_parent_kobj); 4610 if (error) { 4611 cleanup_glue_dir(dev, new_parent_kobj); 4612 put_device(new_parent); 4613 goto out; 4614 } 4615 old_parent = dev->parent; 4616 dev->parent = new_parent; 4617 if (old_parent) 4618 klist_remove(&dev->p->knode_parent); 4619 if (new_parent) { 4620 klist_add_tail(&dev->p->knode_parent, 4621 &new_parent->p->klist_children); 4622 set_dev_node(dev, dev_to_node(new_parent)); 4623 } 4624 4625 if (dev->class) { 4626 error = device_move_class_links(dev, old_parent, new_parent); 4627 if (error) { 4628 /* We ignore errors on cleanup since we're hosed anyway... */ 4629 device_move_class_links(dev, new_parent, old_parent); 4630 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4631 if (new_parent) 4632 klist_remove(&dev->p->knode_parent); 4633 dev->parent = old_parent; 4634 if (old_parent) { 4635 klist_add_tail(&dev->p->knode_parent, 4636 &old_parent->p->klist_children); 4637 set_dev_node(dev, dev_to_node(old_parent)); 4638 } 4639 } 4640 cleanup_glue_dir(dev, new_parent_kobj); 4641 put_device(new_parent); 4642 goto out; 4643 } 4644 } 4645 switch (dpm_order) { 4646 case DPM_ORDER_NONE: 4647 break; 4648 case DPM_ORDER_DEV_AFTER_PARENT: 4649 device_pm_move_after(dev, new_parent); 4650 devices_kset_move_after(dev, new_parent); 4651 break; 4652 case DPM_ORDER_PARENT_BEFORE_DEV: 4653 device_pm_move_before(new_parent, dev); 4654 devices_kset_move_before(new_parent, dev); 4655 break; 4656 case DPM_ORDER_DEV_LAST: 4657 device_pm_move_last(dev); 4658 devices_kset_move_last(dev); 4659 break; 4660 } 4661 4662 put_device(old_parent); 4663 out: 4664 device_pm_unlock(); 4665 put_device(dev); 4666 return error; 4667 } 4668 EXPORT_SYMBOL_GPL(device_move); 4669 4670 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4671 kgid_t kgid) 4672 { 4673 struct kobject *kobj = &dev->kobj; 4674 const struct class *class = dev->class; 4675 const struct device_type *type = dev->type; 4676 int error; 4677 4678 if (class) { 4679 /* 4680 * Change the device groups of the device class for @dev to 4681 * @kuid/@kgid. 4682 */ 4683 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4684 kgid); 4685 if (error) 4686 return error; 4687 } 4688 4689 if (type) { 4690 /* 4691 * Change the device groups of the device type for @dev to 4692 * @kuid/@kgid. 4693 */ 4694 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4695 kgid); 4696 if (error) 4697 return error; 4698 } 4699 4700 /* Change the device groups of @dev to @kuid/@kgid. */ 4701 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4702 if (error) 4703 return error; 4704 4705 if (device_supports_offline(dev) && !dev->offline_disabled) { 4706 /* Change online device attributes of @dev to @kuid/@kgid. */ 4707 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4708 kuid, kgid); 4709 if (error) 4710 return error; 4711 } 4712 4713 return 0; 4714 } 4715 4716 /** 4717 * device_change_owner - change the owner of an existing device. 4718 * @dev: device. 4719 * @kuid: new owner's kuid 4720 * @kgid: new owner's kgid 4721 * 4722 * This changes the owner of @dev and its corresponding sysfs entries to 4723 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4724 * core. 4725 * 4726 * Returns 0 on success or error code on failure. 4727 */ 4728 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4729 { 4730 int error; 4731 struct kobject *kobj = &dev->kobj; 4732 struct subsys_private *sp; 4733 4734 dev = get_device(dev); 4735 if (!dev) 4736 return -EINVAL; 4737 4738 /* 4739 * Change the kobject and the default attributes and groups of the 4740 * ktype associated with it to @kuid/@kgid. 4741 */ 4742 error = sysfs_change_owner(kobj, kuid, kgid); 4743 if (error) 4744 goto out; 4745 4746 /* 4747 * Change the uevent file for @dev to the new owner. The uevent file 4748 * was created in a separate step when @dev got added and we mirror 4749 * that step here. 4750 */ 4751 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4752 kgid); 4753 if (error) 4754 goto out; 4755 4756 /* 4757 * Change the device groups, the device groups associated with the 4758 * device class, and the groups associated with the device type of @dev 4759 * to @kuid/@kgid. 4760 */ 4761 error = device_attrs_change_owner(dev, kuid, kgid); 4762 if (error) 4763 goto out; 4764 4765 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4766 if (error) 4767 goto out; 4768 4769 /* 4770 * Change the owner of the symlink located in the class directory of 4771 * the device class associated with @dev which points to the actual 4772 * directory entry for @dev to @kuid/@kgid. This ensures that the 4773 * symlink shows the same permissions as its target. 4774 */ 4775 sp = class_to_subsys(dev->class); 4776 if (!sp) { 4777 error = -EINVAL; 4778 goto out; 4779 } 4780 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4781 subsys_put(sp); 4782 4783 out: 4784 put_device(dev); 4785 return error; 4786 } 4787 EXPORT_SYMBOL_GPL(device_change_owner); 4788 4789 /** 4790 * device_shutdown - call ->shutdown() on each device to shutdown. 4791 */ 4792 void device_shutdown(void) 4793 { 4794 struct device *dev, *parent; 4795 4796 wait_for_device_probe(); 4797 device_block_probing(); 4798 4799 cpufreq_suspend(); 4800 4801 spin_lock(&devices_kset->list_lock); 4802 /* 4803 * Walk the devices list backward, shutting down each in turn. 4804 * Beware that device unplug events may also start pulling 4805 * devices offline, even as the system is shutting down. 4806 */ 4807 while (!list_empty(&devices_kset->list)) { 4808 dev = list_entry(devices_kset->list.prev, struct device, 4809 kobj.entry); 4810 4811 /* 4812 * hold reference count of device's parent to 4813 * prevent it from being freed because parent's 4814 * lock is to be held 4815 */ 4816 parent = get_device(dev->parent); 4817 get_device(dev); 4818 /* 4819 * Make sure the device is off the kset list, in the 4820 * event that dev->*->shutdown() doesn't remove it. 4821 */ 4822 list_del_init(&dev->kobj.entry); 4823 spin_unlock(&devices_kset->list_lock); 4824 4825 /* hold lock to avoid race with probe/release */ 4826 if (parent) 4827 device_lock(parent); 4828 device_lock(dev); 4829 4830 /* Don't allow any more runtime suspends */ 4831 pm_runtime_get_noresume(dev); 4832 pm_runtime_barrier(dev); 4833 4834 if (dev->class && dev->class->shutdown_pre) { 4835 if (initcall_debug) 4836 dev_info(dev, "shutdown_pre\n"); 4837 dev->class->shutdown_pre(dev); 4838 } 4839 if (dev->bus && dev->bus->shutdown) { 4840 if (initcall_debug) 4841 dev_info(dev, "shutdown\n"); 4842 dev->bus->shutdown(dev); 4843 } else if (dev->driver && dev->driver->shutdown) { 4844 if (initcall_debug) 4845 dev_info(dev, "shutdown\n"); 4846 dev->driver->shutdown(dev); 4847 } 4848 4849 device_unlock(dev); 4850 if (parent) 4851 device_unlock(parent); 4852 4853 put_device(dev); 4854 put_device(parent); 4855 4856 spin_lock(&devices_kset->list_lock); 4857 } 4858 spin_unlock(&devices_kset->list_lock); 4859 } 4860 4861 /* 4862 * Device logging functions 4863 */ 4864 4865 #ifdef CONFIG_PRINTK 4866 static void 4867 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4868 { 4869 const char *subsys; 4870 4871 memset(dev_info, 0, sizeof(*dev_info)); 4872 4873 if (dev->class) 4874 subsys = dev->class->name; 4875 else if (dev->bus) 4876 subsys = dev->bus->name; 4877 else 4878 return; 4879 4880 strscpy(dev_info->subsystem, subsys); 4881 4882 /* 4883 * Add device identifier DEVICE=: 4884 * b12:8 block dev_t 4885 * c127:3 char dev_t 4886 * n8 netdev ifindex 4887 * +sound:card0 subsystem:devname 4888 */ 4889 if (MAJOR(dev->devt)) { 4890 char c; 4891 4892 if (strcmp(subsys, "block") == 0) 4893 c = 'b'; 4894 else 4895 c = 'c'; 4896 4897 snprintf(dev_info->device, sizeof(dev_info->device), 4898 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4899 } else if (strcmp(subsys, "net") == 0) { 4900 struct net_device *net = to_net_dev(dev); 4901 4902 snprintf(dev_info->device, sizeof(dev_info->device), 4903 "n%u", net->ifindex); 4904 } else { 4905 snprintf(dev_info->device, sizeof(dev_info->device), 4906 "+%s:%s", subsys, dev_name(dev)); 4907 } 4908 } 4909 4910 int dev_vprintk_emit(int level, const struct device *dev, 4911 const char *fmt, va_list args) 4912 { 4913 struct dev_printk_info dev_info; 4914 4915 set_dev_info(dev, &dev_info); 4916 4917 return vprintk_emit(0, level, &dev_info, fmt, args); 4918 } 4919 EXPORT_SYMBOL(dev_vprintk_emit); 4920 4921 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4922 { 4923 va_list args; 4924 int r; 4925 4926 va_start(args, fmt); 4927 4928 r = dev_vprintk_emit(level, dev, fmt, args); 4929 4930 va_end(args); 4931 4932 return r; 4933 } 4934 EXPORT_SYMBOL(dev_printk_emit); 4935 4936 static void __dev_printk(const char *level, const struct device *dev, 4937 struct va_format *vaf) 4938 { 4939 if (dev) 4940 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4941 dev_driver_string(dev), dev_name(dev), vaf); 4942 else 4943 printk("%s(NULL device *): %pV", level, vaf); 4944 } 4945 4946 void _dev_printk(const char *level, const struct device *dev, 4947 const char *fmt, ...) 4948 { 4949 struct va_format vaf; 4950 va_list args; 4951 4952 va_start(args, fmt); 4953 4954 vaf.fmt = fmt; 4955 vaf.va = &args; 4956 4957 __dev_printk(level, dev, &vaf); 4958 4959 va_end(args); 4960 } 4961 EXPORT_SYMBOL(_dev_printk); 4962 4963 #define define_dev_printk_level(func, kern_level) \ 4964 void func(const struct device *dev, const char *fmt, ...) \ 4965 { \ 4966 struct va_format vaf; \ 4967 va_list args; \ 4968 \ 4969 va_start(args, fmt); \ 4970 \ 4971 vaf.fmt = fmt; \ 4972 vaf.va = &args; \ 4973 \ 4974 __dev_printk(kern_level, dev, &vaf); \ 4975 \ 4976 va_end(args); \ 4977 } \ 4978 EXPORT_SYMBOL(func); 4979 4980 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4981 define_dev_printk_level(_dev_alert, KERN_ALERT); 4982 define_dev_printk_level(_dev_crit, KERN_CRIT); 4983 define_dev_printk_level(_dev_err, KERN_ERR); 4984 define_dev_printk_level(_dev_warn, KERN_WARNING); 4985 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4986 define_dev_printk_level(_dev_info, KERN_INFO); 4987 4988 #endif 4989 4990 static void __dev_probe_failed(const struct device *dev, int err, bool fatal, 4991 const char *fmt, va_list vargsp) 4992 { 4993 struct va_format vaf; 4994 va_list vargs; 4995 4996 /* 4997 * On x86_64 and possibly on other architectures, va_list is actually a 4998 * size-1 array containing a structure. As a result, function parameter 4999 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than 5000 * T(*)[1], which is expected by its assignment to vaf.va below. 5001 * 5002 * One standard way to solve this mess is by creating a copy in a local 5003 * variable of type va_list and then using a pointer to that local copy 5004 * instead, which is the approach employed here. 5005 */ 5006 va_copy(vargs, vargsp); 5007 5008 vaf.fmt = fmt; 5009 vaf.va = &vargs; 5010 5011 switch (err) { 5012 case -EPROBE_DEFER: 5013 device_set_deferred_probe_reason(dev, &vaf); 5014 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5015 break; 5016 5017 case -ENOMEM: 5018 /* Don't print anything on -ENOMEM, there's already enough output */ 5019 break; 5020 5021 default: 5022 /* Log fatal final failures as errors, otherwise produce warnings */ 5023 if (fatal) 5024 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5025 else 5026 dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5027 break; 5028 } 5029 5030 va_end(vargs); 5031 } 5032 5033 /** 5034 * dev_err_probe - probe error check and log helper 5035 * @dev: the pointer to the struct device 5036 * @err: error value to test 5037 * @fmt: printf-style format string 5038 * @...: arguments as specified in the format string 5039 * 5040 * This helper implements common pattern present in probe functions for error 5041 * checking: print debug or error message depending if the error value is 5042 * -EPROBE_DEFER and propagate error upwards. 5043 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 5044 * checked later by reading devices_deferred debugfs attribute. 5045 * It replaces the following code sequence:: 5046 * 5047 * if (err != -EPROBE_DEFER) 5048 * dev_err(dev, ...); 5049 * else 5050 * dev_dbg(dev, ...); 5051 * return err; 5052 * 5053 * with:: 5054 * 5055 * return dev_err_probe(dev, err, ...); 5056 * 5057 * Using this helper in your probe function is totally fine even if @err 5058 * is known to never be -EPROBE_DEFER. 5059 * The benefit compared to a normal dev_err() is the standardized format 5060 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN" 5061 * instead of "-35"), and having the error code returned allows more 5062 * compact error paths. 5063 * 5064 * Returns @err. 5065 */ 5066 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 5067 { 5068 va_list vargs; 5069 5070 va_start(vargs, fmt); 5071 5072 /* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */ 5073 __dev_probe_failed(dev, err, true, fmt, vargs); 5074 5075 va_end(vargs); 5076 5077 return err; 5078 } 5079 EXPORT_SYMBOL_GPL(dev_err_probe); 5080 5081 /** 5082 * dev_warn_probe - probe error check and log helper 5083 * @dev: the pointer to the struct device 5084 * @err: error value to test 5085 * @fmt: printf-style format string 5086 * @...: arguments as specified in the format string 5087 * 5088 * This helper implements common pattern present in probe functions for error 5089 * checking: print debug or warning message depending if the error value is 5090 * -EPROBE_DEFER and propagate error upwards. 5091 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 5092 * checked later by reading devices_deferred debugfs attribute. 5093 * It replaces the following code sequence:: 5094 * 5095 * if (err != -EPROBE_DEFER) 5096 * dev_warn(dev, ...); 5097 * else 5098 * dev_dbg(dev, ...); 5099 * return err; 5100 * 5101 * with:: 5102 * 5103 * return dev_warn_probe(dev, err, ...); 5104 * 5105 * Using this helper in your probe function is totally fine even if @err 5106 * is known to never be -EPROBE_DEFER. 5107 * The benefit compared to a normal dev_warn() is the standardized format 5108 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN" 5109 * instead of "-35"), and having the error code returned allows more 5110 * compact error paths. 5111 * 5112 * Returns @err. 5113 */ 5114 int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...) 5115 { 5116 va_list vargs; 5117 5118 va_start(vargs, fmt); 5119 5120 /* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */ 5121 __dev_probe_failed(dev, err, false, fmt, vargs); 5122 5123 va_end(vargs); 5124 5125 return err; 5126 } 5127 EXPORT_SYMBOL_GPL(dev_warn_probe); 5128 5129 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 5130 { 5131 return fwnode && !IS_ERR(fwnode->secondary); 5132 } 5133 5134 /** 5135 * set_primary_fwnode - Change the primary firmware node of a given device. 5136 * @dev: Device to handle. 5137 * @fwnode: New primary firmware node of the device. 5138 * 5139 * Set the device's firmware node pointer to @fwnode, but if a secondary 5140 * firmware node of the device is present, preserve it. 5141 * 5142 * Valid fwnode cases are: 5143 * - primary --> secondary --> -ENODEV 5144 * - primary --> NULL 5145 * - secondary --> -ENODEV 5146 * - NULL 5147 */ 5148 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5149 { 5150 struct device *parent = dev->parent; 5151 struct fwnode_handle *fn = dev->fwnode; 5152 5153 if (fwnode) { 5154 if (fwnode_is_primary(fn)) 5155 fn = fn->secondary; 5156 5157 if (fn) { 5158 WARN_ON(fwnode->secondary); 5159 fwnode->secondary = fn; 5160 } 5161 dev->fwnode = fwnode; 5162 } else { 5163 if (fwnode_is_primary(fn)) { 5164 dev->fwnode = fn->secondary; 5165 5166 /* Skip nullifying fn->secondary if the primary is shared */ 5167 if (parent && fn == parent->fwnode) 5168 return; 5169 5170 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5171 fn->secondary = NULL; 5172 } else { 5173 dev->fwnode = NULL; 5174 } 5175 } 5176 } 5177 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5178 5179 /** 5180 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5181 * @dev: Device to handle. 5182 * @fwnode: New secondary firmware node of the device. 5183 * 5184 * If a primary firmware node of the device is present, set its secondary 5185 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5186 * @fwnode. 5187 */ 5188 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5189 { 5190 if (fwnode) 5191 fwnode->secondary = ERR_PTR(-ENODEV); 5192 5193 if (fwnode_is_primary(dev->fwnode)) 5194 dev->fwnode->secondary = fwnode; 5195 else 5196 dev->fwnode = fwnode; 5197 } 5198 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5199 5200 /** 5201 * device_remove_of_node - Remove an of_node from a device 5202 * @dev: device whose device tree node is being removed 5203 */ 5204 void device_remove_of_node(struct device *dev) 5205 { 5206 dev = get_device(dev); 5207 if (!dev) 5208 return; 5209 5210 if (!dev->of_node) 5211 goto end; 5212 5213 if (dev->fwnode == of_fwnode_handle(dev->of_node)) 5214 dev->fwnode = NULL; 5215 5216 of_node_put(dev->of_node); 5217 dev->of_node = NULL; 5218 5219 end: 5220 put_device(dev); 5221 } 5222 EXPORT_SYMBOL_GPL(device_remove_of_node); 5223 5224 /** 5225 * device_add_of_node - Add an of_node to an existing device 5226 * @dev: device whose device tree node is being added 5227 * @of_node: of_node to add 5228 * 5229 * Return: 0 on success or error code on failure. 5230 */ 5231 int device_add_of_node(struct device *dev, struct device_node *of_node) 5232 { 5233 int ret; 5234 5235 if (!of_node) 5236 return -EINVAL; 5237 5238 dev = get_device(dev); 5239 if (!dev) 5240 return -EINVAL; 5241 5242 if (dev->of_node) { 5243 dev_err(dev, "Cannot replace node %pOF with %pOF\n", 5244 dev->of_node, of_node); 5245 ret = -EBUSY; 5246 goto end; 5247 } 5248 5249 dev->of_node = of_node_get(of_node); 5250 5251 if (!dev->fwnode) 5252 dev->fwnode = of_fwnode_handle(of_node); 5253 5254 ret = 0; 5255 end: 5256 put_device(dev); 5257 return ret; 5258 } 5259 EXPORT_SYMBOL_GPL(device_add_of_node); 5260 5261 /** 5262 * device_set_of_node_from_dev - reuse device-tree node of another device 5263 * @dev: device whose device-tree node is being set 5264 * @dev2: device whose device-tree node is being reused 5265 * 5266 * Takes another reference to the new device-tree node after first dropping 5267 * any reference held to the old node. 5268 */ 5269 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5270 { 5271 of_node_put(dev->of_node); 5272 dev->of_node = of_node_get(dev2->of_node); 5273 dev->of_node_reused = true; 5274 } 5275 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5276 5277 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5278 { 5279 dev->fwnode = fwnode; 5280 dev->of_node = to_of_node(fwnode); 5281 } 5282 EXPORT_SYMBOL_GPL(device_set_node); 5283 5284 int device_match_name(struct device *dev, const void *name) 5285 { 5286 return sysfs_streq(dev_name(dev), name); 5287 } 5288 EXPORT_SYMBOL_GPL(device_match_name); 5289 5290 int device_match_type(struct device *dev, const void *type) 5291 { 5292 return dev->type == type; 5293 } 5294 EXPORT_SYMBOL_GPL(device_match_type); 5295 5296 int device_match_of_node(struct device *dev, const void *np) 5297 { 5298 return np && dev->of_node == np; 5299 } 5300 EXPORT_SYMBOL_GPL(device_match_of_node); 5301 5302 int device_match_fwnode(struct device *dev, const void *fwnode) 5303 { 5304 return fwnode && dev_fwnode(dev) == fwnode; 5305 } 5306 EXPORT_SYMBOL_GPL(device_match_fwnode); 5307 5308 int device_match_devt(struct device *dev, const void *pdevt) 5309 { 5310 return dev->devt == *(dev_t *)pdevt; 5311 } 5312 EXPORT_SYMBOL_GPL(device_match_devt); 5313 5314 int device_match_acpi_dev(struct device *dev, const void *adev) 5315 { 5316 return adev && ACPI_COMPANION(dev) == adev; 5317 } 5318 EXPORT_SYMBOL(device_match_acpi_dev); 5319 5320 int device_match_acpi_handle(struct device *dev, const void *handle) 5321 { 5322 return handle && ACPI_HANDLE(dev) == handle; 5323 } 5324 EXPORT_SYMBOL(device_match_acpi_handle); 5325 5326 int device_match_any(struct device *dev, const void *unused) 5327 { 5328 return 1; 5329 } 5330 EXPORT_SYMBOL_GPL(device_match_any); 5331