1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Arch specific cpu topology information 4 * 5 * Copyright (C) 2016, ARM Ltd. 6 * Written by: Juri Lelli, ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/cacheinfo.h> 11 #include <linux/cleanup.h> 12 #include <linux/cpu.h> 13 #include <linux/cpufreq.h> 14 #include <linux/cpu_smt.h> 15 #include <linux/device.h> 16 #include <linux/of.h> 17 #include <linux/slab.h> 18 #include <linux/sched/topology.h> 19 #include <linux/cpuset.h> 20 #include <linux/cpumask.h> 21 #include <linux/init.h> 22 #include <linux/rcupdate.h> 23 #include <linux/sched.h> 24 #include <linux/units.h> 25 26 #define CREATE_TRACE_POINTS 27 #include <trace/events/hw_pressure.h> 28 29 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data); 30 static struct cpumask scale_freq_counters_mask; 31 static bool scale_freq_invariant; 32 DEFINE_PER_CPU(unsigned long, capacity_freq_ref) = 0; 33 EXPORT_PER_CPU_SYMBOL_GPL(capacity_freq_ref); 34 35 static bool supports_scale_freq_counters(const struct cpumask *cpus) 36 { 37 return cpumask_subset(cpus, &scale_freq_counters_mask); 38 } 39 40 bool topology_scale_freq_invariant(void) 41 { 42 return cpufreq_supports_freq_invariance() || 43 supports_scale_freq_counters(cpu_online_mask); 44 } 45 46 static void update_scale_freq_invariant(bool status) 47 { 48 if (scale_freq_invariant == status) 49 return; 50 51 /* 52 * Task scheduler behavior depends on frequency invariance support, 53 * either cpufreq or counter driven. If the support status changes as 54 * a result of counter initialisation and use, retrigger the build of 55 * scheduling domains to ensure the information is propagated properly. 56 */ 57 if (topology_scale_freq_invariant() == status) { 58 scale_freq_invariant = status; 59 rebuild_sched_domains_energy(); 60 } 61 } 62 63 void topology_set_scale_freq_source(struct scale_freq_data *data, 64 const struct cpumask *cpus) 65 { 66 struct scale_freq_data *sfd; 67 int cpu; 68 69 /* 70 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is 71 * supported by cpufreq. 72 */ 73 if (cpumask_empty(&scale_freq_counters_mask)) 74 scale_freq_invariant = topology_scale_freq_invariant(); 75 76 rcu_read_lock(); 77 78 for_each_cpu(cpu, cpus) { 79 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); 80 81 /* Use ARCH provided counters whenever possible */ 82 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) { 83 rcu_assign_pointer(per_cpu(sft_data, cpu), data); 84 cpumask_set_cpu(cpu, &scale_freq_counters_mask); 85 } 86 } 87 88 rcu_read_unlock(); 89 90 update_scale_freq_invariant(true); 91 } 92 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source); 93 94 void topology_clear_scale_freq_source(enum scale_freq_source source, 95 const struct cpumask *cpus) 96 { 97 struct scale_freq_data *sfd; 98 int cpu; 99 100 rcu_read_lock(); 101 102 for_each_cpu(cpu, cpus) { 103 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); 104 105 if (sfd && sfd->source == source) { 106 rcu_assign_pointer(per_cpu(sft_data, cpu), NULL); 107 cpumask_clear_cpu(cpu, &scale_freq_counters_mask); 108 } 109 } 110 111 rcu_read_unlock(); 112 113 /* 114 * Make sure all references to previous sft_data are dropped to avoid 115 * use-after-free races. 116 */ 117 synchronize_rcu(); 118 119 update_scale_freq_invariant(false); 120 } 121 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source); 122 123 void topology_scale_freq_tick(void) 124 { 125 struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data)); 126 127 if (sfd) 128 sfd->set_freq_scale(); 129 } 130 131 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE; 132 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale); 133 134 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq, 135 unsigned long max_freq) 136 { 137 unsigned long scale; 138 int i; 139 140 if (WARN_ON_ONCE(!cur_freq || !max_freq)) 141 return; 142 143 /* 144 * If the use of counters for FIE is enabled, just return as we don't 145 * want to update the scale factor with information from CPUFREQ. 146 * Instead the scale factor will be updated from arch_scale_freq_tick. 147 */ 148 if (supports_scale_freq_counters(cpus)) 149 return; 150 151 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq; 152 153 for_each_cpu(i, cpus) 154 per_cpu(arch_freq_scale, i) = scale; 155 } 156 157 DEFINE_PER_CPU(unsigned long, hw_pressure); 158 159 /** 160 * topology_update_hw_pressure() - Update HW pressure for CPUs 161 * @cpus : The related CPUs for which capacity has been reduced 162 * @capped_freq : The maximum allowed frequency that CPUs can run at 163 * 164 * Update the value of HW pressure for all @cpus in the mask. The 165 * cpumask should include all (online+offline) affected CPUs, to avoid 166 * operating on stale data when hot-plug is used for some CPUs. The 167 * @capped_freq reflects the currently allowed max CPUs frequency due to 168 * HW capping. It might be also a boost frequency value, which is bigger 169 * than the internal 'capacity_freq_ref' max frequency. In such case the 170 * pressure value should simply be removed, since this is an indication that 171 * there is no HW throttling. The @capped_freq must be provided in kHz. 172 */ 173 void topology_update_hw_pressure(const struct cpumask *cpus, 174 unsigned long capped_freq) 175 { 176 unsigned long max_capacity, capacity, pressure; 177 u32 max_freq; 178 int cpu; 179 180 cpu = cpumask_first(cpus); 181 max_capacity = arch_scale_cpu_capacity(cpu); 182 max_freq = arch_scale_freq_ref(cpu); 183 184 /* 185 * Handle properly the boost frequencies, which should simply clean 186 * the HW pressure value. 187 */ 188 if (max_freq <= capped_freq) 189 capacity = max_capacity; 190 else 191 capacity = mult_frac(max_capacity, capped_freq, max_freq); 192 193 pressure = max_capacity - capacity; 194 195 trace_hw_pressure_update(cpu, pressure); 196 197 for_each_cpu(cpu, cpus) 198 WRITE_ONCE(per_cpu(hw_pressure, cpu), pressure); 199 } 200 EXPORT_SYMBOL_GPL(topology_update_hw_pressure); 201 202 static void update_topology_flags_workfn(struct work_struct *work); 203 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn); 204 205 static int update_topology; 206 207 int topology_update_cpu_topology(void) 208 { 209 return update_topology; 210 } 211 212 /* 213 * Updating the sched_domains can't be done directly from cpufreq callbacks 214 * due to locking, so queue the work for later. 215 */ 216 static void update_topology_flags_workfn(struct work_struct *work) 217 { 218 update_topology = 1; 219 rebuild_sched_domains(); 220 pr_debug("sched_domain hierarchy rebuilt, flags updated\n"); 221 update_topology = 0; 222 } 223 224 static u32 *raw_capacity; 225 226 static int free_raw_capacity(void) 227 { 228 kfree(raw_capacity); 229 raw_capacity = NULL; 230 231 return 0; 232 } 233 234 void topology_normalize_cpu_scale(void) 235 { 236 u64 capacity; 237 u64 capacity_scale; 238 int cpu; 239 240 if (!raw_capacity) 241 return; 242 243 capacity_scale = 1; 244 for_each_possible_cpu(cpu) { 245 capacity = raw_capacity[cpu] * 246 (per_cpu(capacity_freq_ref, cpu) ?: 1); 247 capacity_scale = max(capacity, capacity_scale); 248 } 249 250 pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale); 251 for_each_possible_cpu(cpu) { 252 capacity = raw_capacity[cpu] * 253 (per_cpu(capacity_freq_ref, cpu) ?: 1); 254 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT, 255 capacity_scale); 256 topology_set_cpu_scale(cpu, capacity); 257 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", 258 cpu, topology_get_cpu_scale(cpu)); 259 } 260 } 261 262 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu) 263 { 264 struct clk *cpu_clk; 265 static bool cap_parsing_failed; 266 int ret; 267 u32 cpu_capacity; 268 269 if (cap_parsing_failed) 270 return false; 271 272 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz", 273 &cpu_capacity); 274 if (!ret) { 275 if (!raw_capacity) { 276 raw_capacity = kcalloc(num_possible_cpus(), 277 sizeof(*raw_capacity), 278 GFP_KERNEL); 279 if (!raw_capacity) { 280 cap_parsing_failed = true; 281 return false; 282 } 283 } 284 raw_capacity[cpu] = cpu_capacity; 285 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n", 286 cpu_node, raw_capacity[cpu]); 287 288 /* 289 * Update capacity_freq_ref for calculating early boot CPU capacities. 290 * For non-clk CPU DVFS mechanism, there's no way to get the 291 * frequency value now, assuming they are running at the same 292 * frequency (by keeping the initial capacity_freq_ref value). 293 */ 294 cpu_clk = of_clk_get(cpu_node, 0); 295 if (!PTR_ERR_OR_ZERO(cpu_clk)) { 296 per_cpu(capacity_freq_ref, cpu) = 297 clk_get_rate(cpu_clk) / HZ_PER_KHZ; 298 clk_put(cpu_clk); 299 } 300 } else { 301 if (raw_capacity) { 302 pr_err("cpu_capacity: missing %pOF raw capacity\n", 303 cpu_node); 304 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); 305 } 306 cap_parsing_failed = true; 307 free_raw_capacity(); 308 } 309 310 return !ret; 311 } 312 313 void __weak freq_inv_set_max_ratio(int cpu, u64 max_rate) 314 { 315 } 316 317 #ifdef CONFIG_ACPI_CPPC_LIB 318 #include <acpi/cppc_acpi.h> 319 320 static inline void topology_init_cpu_capacity_cppc(void) 321 { 322 u64 capacity, capacity_scale = 0; 323 struct cppc_perf_caps perf_caps; 324 int cpu; 325 326 if (likely(!acpi_cpc_valid())) 327 return; 328 329 raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity), 330 GFP_KERNEL); 331 if (!raw_capacity) 332 return; 333 334 for_each_possible_cpu(cpu) { 335 if (!cppc_get_perf_caps(cpu, &perf_caps) && 336 (perf_caps.highest_perf >= perf_caps.nominal_perf) && 337 (perf_caps.highest_perf >= perf_caps.lowest_perf)) { 338 raw_capacity[cpu] = perf_caps.highest_perf; 339 capacity_scale = max_t(u64, capacity_scale, raw_capacity[cpu]); 340 341 per_cpu(capacity_freq_ref, cpu) = cppc_perf_to_khz(&perf_caps, raw_capacity[cpu]); 342 343 pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n", 344 cpu, raw_capacity[cpu]); 345 continue; 346 } 347 348 pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu); 349 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); 350 goto exit; 351 } 352 353 for_each_possible_cpu(cpu) { 354 freq_inv_set_max_ratio(cpu, 355 per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ); 356 357 capacity = raw_capacity[cpu]; 358 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT, 359 capacity_scale); 360 topology_set_cpu_scale(cpu, capacity); 361 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", 362 cpu, topology_get_cpu_scale(cpu)); 363 } 364 365 schedule_work(&update_topology_flags_work); 366 pr_debug("cpu_capacity: cpu_capacity initialization done\n"); 367 368 exit: 369 free_raw_capacity(); 370 } 371 void acpi_processor_init_invariance_cppc(void) 372 { 373 topology_init_cpu_capacity_cppc(); 374 } 375 #endif 376 377 #ifdef CONFIG_CPU_FREQ 378 static cpumask_var_t cpus_to_visit; 379 static void parsing_done_workfn(struct work_struct *work); 380 static DECLARE_WORK(parsing_done_work, parsing_done_workfn); 381 382 static int 383 init_cpu_capacity_callback(struct notifier_block *nb, 384 unsigned long val, 385 void *data) 386 { 387 struct cpufreq_policy *policy = data; 388 int cpu; 389 390 if (val != CPUFREQ_CREATE_POLICY) 391 return 0; 392 393 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n", 394 cpumask_pr_args(policy->related_cpus), 395 cpumask_pr_args(cpus_to_visit)); 396 397 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus); 398 399 for_each_cpu(cpu, policy->related_cpus) { 400 per_cpu(capacity_freq_ref, cpu) = policy->cpuinfo.max_freq; 401 freq_inv_set_max_ratio(cpu, 402 per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ); 403 } 404 405 if (cpumask_empty(cpus_to_visit)) { 406 if (raw_capacity) { 407 topology_normalize_cpu_scale(); 408 schedule_work(&update_topology_flags_work); 409 free_raw_capacity(); 410 } 411 pr_debug("cpu_capacity: parsing done\n"); 412 schedule_work(&parsing_done_work); 413 } 414 415 return 0; 416 } 417 418 static struct notifier_block init_cpu_capacity_notifier = { 419 .notifier_call = init_cpu_capacity_callback, 420 }; 421 422 static int __init register_cpufreq_notifier(void) 423 { 424 int ret; 425 426 /* 427 * On ACPI-based systems skip registering cpufreq notifier as cpufreq 428 * information is not needed for cpu capacity initialization. 429 */ 430 if (!acpi_disabled) 431 return -EINVAL; 432 433 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) 434 return -ENOMEM; 435 436 cpumask_copy(cpus_to_visit, cpu_possible_mask); 437 438 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier, 439 CPUFREQ_POLICY_NOTIFIER); 440 441 if (ret) 442 free_cpumask_var(cpus_to_visit); 443 444 return ret; 445 } 446 core_initcall(register_cpufreq_notifier); 447 448 static void parsing_done_workfn(struct work_struct *work) 449 { 450 cpufreq_unregister_notifier(&init_cpu_capacity_notifier, 451 CPUFREQ_POLICY_NOTIFIER); 452 free_cpumask_var(cpus_to_visit); 453 } 454 455 #else 456 core_initcall(free_raw_capacity); 457 #endif 458 459 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) 460 461 /* Used to enable the SMT control */ 462 static unsigned int max_smt_thread_num = 1; 463 464 /* 465 * This function returns the logic cpu number of the node. 466 * There are basically three kinds of return values: 467 * (1) logic cpu number which is > 0. 468 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but 469 * there is no possible logical CPU in the kernel to match. This happens 470 * when CONFIG_NR_CPUS is configure to be smaller than the number of 471 * CPU nodes in DT. We need to just ignore this case. 472 * (3) -1 if the node does not exist in the device tree 473 */ 474 static int __init get_cpu_for_node(struct device_node *node) 475 { 476 int cpu; 477 struct device_node *cpu_node __free(device_node) = 478 of_parse_phandle(node, "cpu", 0); 479 480 if (!cpu_node) 481 return -1; 482 483 cpu = of_cpu_node_to_id(cpu_node); 484 if (cpu >= 0) 485 topology_parse_cpu_capacity(cpu_node, cpu); 486 else 487 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n", 488 cpu_node, cpumask_pr_args(cpu_possible_mask)); 489 490 return cpu; 491 } 492 493 static int __init parse_core(struct device_node *core, int package_id, 494 int cluster_id, int core_id) 495 { 496 char name[20]; 497 bool leaf = true; 498 int i = 0; 499 int cpu; 500 501 do { 502 snprintf(name, sizeof(name), "thread%d", i); 503 struct device_node *t __free(device_node) = 504 of_get_child_by_name(core, name); 505 506 if (!t) 507 break; 508 509 leaf = false; 510 cpu = get_cpu_for_node(t); 511 if (cpu >= 0) { 512 cpu_topology[cpu].package_id = package_id; 513 cpu_topology[cpu].cluster_id = cluster_id; 514 cpu_topology[cpu].core_id = core_id; 515 cpu_topology[cpu].thread_id = i; 516 } else if (cpu != -ENODEV) { 517 pr_err("%pOF: Can't get CPU for thread\n", t); 518 return -EINVAL; 519 } 520 i++; 521 } while (1); 522 523 max_smt_thread_num = max_t(unsigned int, max_smt_thread_num, i); 524 525 cpu = get_cpu_for_node(core); 526 if (cpu >= 0) { 527 if (!leaf) { 528 pr_err("%pOF: Core has both threads and CPU\n", 529 core); 530 return -EINVAL; 531 } 532 533 cpu_topology[cpu].package_id = package_id; 534 cpu_topology[cpu].cluster_id = cluster_id; 535 cpu_topology[cpu].core_id = core_id; 536 } else if (leaf && cpu != -ENODEV) { 537 pr_err("%pOF: Can't get CPU for leaf core\n", core); 538 return -EINVAL; 539 } 540 541 return 0; 542 } 543 544 static int __init parse_cluster(struct device_node *cluster, int package_id, 545 int cluster_id, int depth) 546 { 547 char name[20]; 548 bool leaf = true; 549 bool has_cores = false; 550 int core_id = 0; 551 int i, ret; 552 553 /* 554 * First check for child clusters; we currently ignore any 555 * information about the nesting of clusters and present the 556 * scheduler with a flat list of them. 557 */ 558 i = 0; 559 do { 560 snprintf(name, sizeof(name), "cluster%d", i); 561 struct device_node *c __free(device_node) = 562 of_get_child_by_name(cluster, name); 563 564 if (!c) 565 break; 566 567 leaf = false; 568 ret = parse_cluster(c, package_id, i, depth + 1); 569 if (depth > 0) 570 pr_warn("Topology for clusters of clusters not yet supported\n"); 571 if (ret != 0) 572 return ret; 573 i++; 574 } while (1); 575 576 /* Now check for cores */ 577 i = 0; 578 do { 579 snprintf(name, sizeof(name), "core%d", i); 580 struct device_node *c __free(device_node) = 581 of_get_child_by_name(cluster, name); 582 583 if (!c) 584 break; 585 586 has_cores = true; 587 588 if (depth == 0) { 589 pr_err("%pOF: cpu-map children should be clusters\n", c); 590 return -EINVAL; 591 } 592 593 if (leaf) { 594 ret = parse_core(c, package_id, cluster_id, core_id++); 595 if (ret != 0) 596 return ret; 597 } else { 598 pr_err("%pOF: Non-leaf cluster with core %s\n", 599 cluster, name); 600 return -EINVAL; 601 } 602 603 i++; 604 } while (1); 605 606 if (leaf && !has_cores) 607 pr_warn("%pOF: empty cluster\n", cluster); 608 609 return 0; 610 } 611 612 static int __init parse_socket(struct device_node *socket) 613 { 614 char name[20]; 615 bool has_socket = false; 616 int package_id = 0, ret; 617 618 do { 619 snprintf(name, sizeof(name), "socket%d", package_id); 620 struct device_node *c __free(device_node) = 621 of_get_child_by_name(socket, name); 622 623 if (!c) 624 break; 625 626 has_socket = true; 627 ret = parse_cluster(c, package_id, -1, 0); 628 if (ret != 0) 629 return ret; 630 631 package_id++; 632 } while (1); 633 634 if (!has_socket) 635 ret = parse_cluster(socket, 0, -1, 0); 636 637 /* 638 * Reset the max_smt_thread_num to 1 on failure. Since on failure 639 * we need to notify the framework the SMT is not supported, but 640 * max_smt_thread_num can be initialized to the SMT thread number 641 * of the cores which are successfully parsed. 642 */ 643 if (ret) 644 max_smt_thread_num = 1; 645 646 cpu_smt_set_num_threads(max_smt_thread_num, max_smt_thread_num); 647 648 return ret; 649 } 650 651 static int __init parse_dt_topology(void) 652 { 653 int ret = 0; 654 int cpu; 655 struct device_node *cn __free(device_node) = 656 of_find_node_by_path("/cpus"); 657 658 if (!cn) { 659 pr_err("No CPU information found in DT\n"); 660 return 0; 661 } 662 663 /* 664 * When topology is provided cpu-map is essentially a root 665 * cluster with restricted subnodes. 666 */ 667 struct device_node *map __free(device_node) = 668 of_get_child_by_name(cn, "cpu-map"); 669 670 if (!map) 671 return ret; 672 673 ret = parse_socket(map); 674 if (ret != 0) 675 return ret; 676 677 topology_normalize_cpu_scale(); 678 679 /* 680 * Check that all cores are in the topology; the SMP code will 681 * only mark cores described in the DT as possible. 682 */ 683 for_each_possible_cpu(cpu) 684 if (cpu_topology[cpu].package_id < 0) { 685 return -EINVAL; 686 } 687 688 return ret; 689 } 690 #endif 691 692 /* 693 * cpu topology table 694 */ 695 struct cpu_topology cpu_topology[NR_CPUS]; 696 EXPORT_SYMBOL_GPL(cpu_topology); 697 698 const struct cpumask *cpu_coregroup_mask(int cpu) 699 { 700 const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu)); 701 702 /* Find the smaller of NUMA, core or LLC siblings */ 703 if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) { 704 /* not numa in package, lets use the package siblings */ 705 core_mask = &cpu_topology[cpu].core_sibling; 706 } 707 708 if (last_level_cache_is_valid(cpu)) { 709 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask)) 710 core_mask = &cpu_topology[cpu].llc_sibling; 711 } 712 713 /* 714 * For systems with no shared cpu-side LLC but with clusters defined, 715 * extend core_mask to cluster_siblings. The sched domain builder will 716 * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled. 717 */ 718 if (IS_ENABLED(CONFIG_SCHED_CLUSTER) && 719 cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling)) 720 core_mask = &cpu_topology[cpu].cluster_sibling; 721 722 return core_mask; 723 } 724 725 const struct cpumask *cpu_clustergroup_mask(int cpu) 726 { 727 /* 728 * Forbid cpu_clustergroup_mask() to span more or the same CPUs as 729 * cpu_coregroup_mask(). 730 */ 731 if (cpumask_subset(cpu_coregroup_mask(cpu), 732 &cpu_topology[cpu].cluster_sibling)) 733 return topology_sibling_cpumask(cpu); 734 735 return &cpu_topology[cpu].cluster_sibling; 736 } 737 738 void update_siblings_masks(unsigned int cpuid) 739 { 740 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; 741 int cpu, ret; 742 743 ret = detect_cache_attributes(cpuid); 744 if (ret && ret != -ENOENT) 745 pr_info("Early cacheinfo allocation failed, ret = %d\n", ret); 746 747 /* update core and thread sibling masks */ 748 for_each_online_cpu(cpu) { 749 cpu_topo = &cpu_topology[cpu]; 750 751 if (last_level_cache_is_shared(cpu, cpuid)) { 752 cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling); 753 cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling); 754 } 755 756 if (cpuid_topo->package_id != cpu_topo->package_id) 757 continue; 758 759 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); 760 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); 761 762 if (cpuid_topo->cluster_id != cpu_topo->cluster_id) 763 continue; 764 765 if (cpuid_topo->cluster_id >= 0) { 766 cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling); 767 cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling); 768 } 769 770 if (cpuid_topo->core_id != cpu_topo->core_id) 771 continue; 772 773 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); 774 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); 775 } 776 } 777 778 static void clear_cpu_topology(int cpu) 779 { 780 struct cpu_topology *cpu_topo = &cpu_topology[cpu]; 781 782 cpumask_clear(&cpu_topo->llc_sibling); 783 cpumask_set_cpu(cpu, &cpu_topo->llc_sibling); 784 785 cpumask_clear(&cpu_topo->cluster_sibling); 786 cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling); 787 788 cpumask_clear(&cpu_topo->core_sibling); 789 cpumask_set_cpu(cpu, &cpu_topo->core_sibling); 790 cpumask_clear(&cpu_topo->thread_sibling); 791 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); 792 } 793 794 void __init reset_cpu_topology(void) 795 { 796 unsigned int cpu; 797 798 for_each_possible_cpu(cpu) { 799 struct cpu_topology *cpu_topo = &cpu_topology[cpu]; 800 801 cpu_topo->thread_id = -1; 802 cpu_topo->core_id = -1; 803 cpu_topo->cluster_id = -1; 804 cpu_topo->package_id = -1; 805 806 clear_cpu_topology(cpu); 807 } 808 } 809 810 void remove_cpu_topology(unsigned int cpu) 811 { 812 int sibling; 813 814 for_each_cpu(sibling, topology_core_cpumask(cpu)) 815 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); 816 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) 817 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); 818 for_each_cpu(sibling, topology_cluster_cpumask(cpu)) 819 cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling)); 820 for_each_cpu(sibling, topology_llc_cpumask(cpu)) 821 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling)); 822 823 clear_cpu_topology(cpu); 824 } 825 826 __weak int __init parse_acpi_topology(void) 827 { 828 return 0; 829 } 830 831 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) 832 void __init init_cpu_topology(void) 833 { 834 int cpu, ret; 835 836 reset_cpu_topology(); 837 ret = parse_acpi_topology(); 838 if (!ret) 839 ret = of_have_populated_dt() && parse_dt_topology(); 840 841 if (ret) { 842 /* 843 * Discard anything that was parsed if we hit an error so we 844 * don't use partial information. But do not return yet to give 845 * arch-specific early cache level detection a chance to run. 846 */ 847 reset_cpu_topology(); 848 } 849 850 for_each_possible_cpu(cpu) { 851 ret = fetch_cache_info(cpu); 852 if (!ret) 853 continue; 854 else if (ret != -ENOENT) 855 pr_err("Early cacheinfo failed, ret = %d\n", ret); 856 return; 857 } 858 } 859 860 void store_cpu_topology(unsigned int cpuid) 861 { 862 struct cpu_topology *cpuid_topo = &cpu_topology[cpuid]; 863 864 if (cpuid_topo->package_id != -1) 865 goto topology_populated; 866 867 cpuid_topo->thread_id = -1; 868 cpuid_topo->core_id = cpuid; 869 cpuid_topo->package_id = cpu_to_node(cpuid); 870 871 pr_debug("CPU%u: package %d core %d thread %d\n", 872 cpuid, cpuid_topo->package_id, cpuid_topo->core_id, 873 cpuid_topo->thread_id); 874 875 topology_populated: 876 update_siblings_masks(cpuid); 877 } 878 #endif 879