1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/compiler_types.h> 4 #include <linux/errno.h> 5 #include <linux/fs.h> 6 #include <linux/fsnotify.h> 7 #include <linux/gfp.h> 8 #include <linux/idr.h> 9 #include <linux/init.h> 10 #include <linux/ipc_namespace.h> 11 #include <linux/kdev_t.h> 12 #include <linux/kernel.h> 13 #include <linux/list.h> 14 #include <linux/namei.h> 15 #include <linux/magic.h> 16 #include <linux/major.h> 17 #include <linux/miscdevice.h> 18 #include <linux/module.h> 19 #include <linux/mutex.h> 20 #include <linux/mount.h> 21 #include <linux/fs_parser.h> 22 #include <linux/sched.h> 23 #include <linux/seq_file.h> 24 #include <linux/slab.h> 25 #include <linux/spinlock_types.h> 26 #include <linux/stddef.h> 27 #include <linux/string.h> 28 #include <linux/types.h> 29 #include <linux/uaccess.h> 30 #include <linux/user_namespace.h> 31 #include <linux/xarray.h> 32 #include <uapi/linux/android/binder.h> 33 #include <uapi/linux/android/binderfs.h> 34 35 #include "binder_internal.h" 36 37 #define FIRST_INODE 1 38 #define SECOND_INODE 2 39 #define INODE_OFFSET 3 40 #define BINDERFS_MAX_MINOR (1U << MINORBITS) 41 /* Ensure that the initial ipc namespace always has devices available. */ 42 #define BINDERFS_MAX_MINOR_CAPPED (BINDERFS_MAX_MINOR - 4) 43 44 static dev_t binderfs_dev; 45 static DEFINE_MUTEX(binderfs_minors_mutex); 46 static DEFINE_IDA(binderfs_minors); 47 48 enum binderfs_param { 49 Opt_max, 50 Opt_stats_mode, 51 }; 52 53 enum binderfs_stats_mode { 54 binderfs_stats_mode_unset, 55 binderfs_stats_mode_global, 56 }; 57 58 struct binder_features { 59 bool oneway_spam_detection; 60 bool extended_error; 61 bool freeze_notification; 62 }; 63 64 static const struct constant_table binderfs_param_stats[] = { 65 { "global", binderfs_stats_mode_global }, 66 {} 67 }; 68 69 static const struct fs_parameter_spec binderfs_fs_parameters[] = { 70 fsparam_u32("max", Opt_max), 71 fsparam_enum("stats", Opt_stats_mode, binderfs_param_stats), 72 {} 73 }; 74 75 static struct binder_features binder_features = { 76 .oneway_spam_detection = true, 77 .extended_error = true, 78 .freeze_notification = true, 79 }; 80 81 static inline struct binderfs_info *BINDERFS_SB(const struct super_block *sb) 82 { 83 return sb->s_fs_info; 84 } 85 86 bool is_binderfs_device(const struct inode *inode) 87 { 88 if (inode->i_sb->s_magic == BINDERFS_SUPER_MAGIC) 89 return true; 90 91 return false; 92 } 93 94 /** 95 * binderfs_binder_device_create - allocate inode from super block of a 96 * binderfs mount 97 * @ref_inode: inode from which the super block will be taken 98 * @userp: buffer to copy information about new device for userspace to 99 * @req: struct binderfs_device as copied from userspace 100 * 101 * This function allocates a new binder_device and reserves a new minor 102 * number for it. 103 * Minor numbers are limited and tracked globally in binderfs_minors. The 104 * function will stash a struct binder_device for the specific binder 105 * device in i_private of the inode. 106 * It will go on to allocate a new inode from the super block of the 107 * filesystem mount, stash a struct binder_device in its i_private field 108 * and attach a dentry to that inode. 109 * 110 * Return: 0 on success, negative errno on failure 111 */ 112 static int binderfs_binder_device_create(struct inode *ref_inode, 113 struct binderfs_device __user *userp, 114 struct binderfs_device *req) 115 { 116 int minor, ret; 117 struct dentry *dentry, *root; 118 struct binder_device *device; 119 char *name = NULL; 120 size_t name_len; 121 struct inode *inode = NULL; 122 struct super_block *sb = ref_inode->i_sb; 123 struct binderfs_info *info = sb->s_fs_info; 124 #if defined(CONFIG_IPC_NS) 125 bool use_reserve = (info->ipc_ns == &init_ipc_ns); 126 #else 127 bool use_reserve = true; 128 #endif 129 130 /* Reserve new minor number for the new device. */ 131 mutex_lock(&binderfs_minors_mutex); 132 if (++info->device_count <= info->mount_opts.max) 133 minor = ida_alloc_max(&binderfs_minors, 134 use_reserve ? BINDERFS_MAX_MINOR : 135 BINDERFS_MAX_MINOR_CAPPED, 136 GFP_KERNEL); 137 else 138 minor = -ENOSPC; 139 if (minor < 0) { 140 --info->device_count; 141 mutex_unlock(&binderfs_minors_mutex); 142 return minor; 143 } 144 mutex_unlock(&binderfs_minors_mutex); 145 146 ret = -ENOMEM; 147 device = kzalloc(sizeof(*device), GFP_KERNEL); 148 if (!device) 149 goto err; 150 151 inode = new_inode(sb); 152 if (!inode) 153 goto err; 154 155 inode->i_ino = minor + INODE_OFFSET; 156 simple_inode_init_ts(inode); 157 init_special_inode(inode, S_IFCHR | 0600, 158 MKDEV(MAJOR(binderfs_dev), minor)); 159 inode->i_fop = &binder_fops; 160 inode->i_uid = info->root_uid; 161 inode->i_gid = info->root_gid; 162 163 req->name[BINDERFS_MAX_NAME] = '\0'; /* NUL-terminate */ 164 name_len = strlen(req->name); 165 /* Make sure to include terminating NUL byte */ 166 name = kmemdup(req->name, name_len + 1, GFP_KERNEL); 167 if (!name) 168 goto err; 169 170 refcount_set(&device->ref, 1); 171 device->binderfs_inode = inode; 172 device->context.binder_context_mgr_uid = INVALID_UID; 173 device->context.name = name; 174 device->miscdev.name = name; 175 device->miscdev.minor = minor; 176 mutex_init(&device->context.context_mgr_node_lock); 177 178 req->major = MAJOR(binderfs_dev); 179 req->minor = minor; 180 181 if (userp && copy_to_user(userp, req, sizeof(*req))) { 182 ret = -EFAULT; 183 goto err; 184 } 185 186 root = sb->s_root; 187 inode_lock(d_inode(root)); 188 189 /* look it up */ 190 dentry = lookup_one_len(name, root, name_len); 191 if (IS_ERR(dentry)) { 192 inode_unlock(d_inode(root)); 193 ret = PTR_ERR(dentry); 194 goto err; 195 } 196 197 if (d_really_is_positive(dentry)) { 198 /* already exists */ 199 dput(dentry); 200 inode_unlock(d_inode(root)); 201 ret = -EEXIST; 202 goto err; 203 } 204 205 inode->i_private = device; 206 d_instantiate(dentry, inode); 207 fsnotify_create(root->d_inode, dentry); 208 inode_unlock(d_inode(root)); 209 210 binder_add_device(device); 211 212 return 0; 213 214 err: 215 kfree(name); 216 kfree(device); 217 mutex_lock(&binderfs_minors_mutex); 218 --info->device_count; 219 ida_free(&binderfs_minors, minor); 220 mutex_unlock(&binderfs_minors_mutex); 221 iput(inode); 222 223 return ret; 224 } 225 226 /** 227 * binder_ctl_ioctl - handle binder device node allocation requests 228 * 229 * The request handler for the binder-control device. All requests operate on 230 * the binderfs mount the binder-control device resides in: 231 * - BINDER_CTL_ADD 232 * Allocate a new binder device. 233 * 234 * Return: %0 on success, negative errno on failure. 235 */ 236 static long binder_ctl_ioctl(struct file *file, unsigned int cmd, 237 unsigned long arg) 238 { 239 int ret = -EINVAL; 240 struct inode *inode = file_inode(file); 241 struct binderfs_device __user *device = (struct binderfs_device __user *)arg; 242 struct binderfs_device device_req; 243 244 switch (cmd) { 245 case BINDER_CTL_ADD: 246 ret = copy_from_user(&device_req, device, sizeof(device_req)); 247 if (ret) { 248 ret = -EFAULT; 249 break; 250 } 251 252 ret = binderfs_binder_device_create(inode, device, &device_req); 253 break; 254 default: 255 break; 256 } 257 258 return ret; 259 } 260 261 static void binderfs_evict_inode(struct inode *inode) 262 { 263 struct binder_device *device = inode->i_private; 264 struct binderfs_info *info = BINDERFS_SB(inode->i_sb); 265 266 clear_inode(inode); 267 268 if (!S_ISCHR(inode->i_mode) || !device) 269 return; 270 271 mutex_lock(&binderfs_minors_mutex); 272 --info->device_count; 273 ida_free(&binderfs_minors, device->miscdev.minor); 274 mutex_unlock(&binderfs_minors_mutex); 275 276 if (refcount_dec_and_test(&device->ref)) { 277 kfree(device->context.name); 278 kfree(device); 279 } 280 } 281 282 static int binderfs_fs_context_parse_param(struct fs_context *fc, 283 struct fs_parameter *param) 284 { 285 int opt; 286 struct binderfs_mount_opts *ctx = fc->fs_private; 287 struct fs_parse_result result; 288 289 opt = fs_parse(fc, binderfs_fs_parameters, param, &result); 290 if (opt < 0) 291 return opt; 292 293 switch (opt) { 294 case Opt_max: 295 if (result.uint_32 > BINDERFS_MAX_MINOR) 296 return invalfc(fc, "Bad value for '%s'", param->key); 297 298 ctx->max = result.uint_32; 299 break; 300 case Opt_stats_mode: 301 if (!capable(CAP_SYS_ADMIN)) 302 return -EPERM; 303 304 ctx->stats_mode = result.uint_32; 305 break; 306 default: 307 return invalfc(fc, "Unsupported parameter '%s'", param->key); 308 } 309 310 return 0; 311 } 312 313 static int binderfs_fs_context_reconfigure(struct fs_context *fc) 314 { 315 struct binderfs_mount_opts *ctx = fc->fs_private; 316 struct binderfs_info *info = BINDERFS_SB(fc->root->d_sb); 317 318 if (info->mount_opts.stats_mode != ctx->stats_mode) 319 return invalfc(fc, "Binderfs stats mode cannot be changed during a remount"); 320 321 info->mount_opts.stats_mode = ctx->stats_mode; 322 info->mount_opts.max = ctx->max; 323 return 0; 324 } 325 326 static int binderfs_show_options(struct seq_file *seq, struct dentry *root) 327 { 328 struct binderfs_info *info = BINDERFS_SB(root->d_sb); 329 330 if (info->mount_opts.max <= BINDERFS_MAX_MINOR) 331 seq_printf(seq, ",max=%d", info->mount_opts.max); 332 333 switch (info->mount_opts.stats_mode) { 334 case binderfs_stats_mode_unset: 335 break; 336 case binderfs_stats_mode_global: 337 seq_printf(seq, ",stats=global"); 338 break; 339 } 340 341 return 0; 342 } 343 344 static const struct super_operations binderfs_super_ops = { 345 .evict_inode = binderfs_evict_inode, 346 .show_options = binderfs_show_options, 347 .statfs = simple_statfs, 348 }; 349 350 static inline bool is_binderfs_control_device(const struct dentry *dentry) 351 { 352 struct binderfs_info *info = dentry->d_sb->s_fs_info; 353 354 return info->control_dentry == dentry; 355 } 356 357 static int binderfs_rename(struct mnt_idmap *idmap, 358 struct inode *old_dir, struct dentry *old_dentry, 359 struct inode *new_dir, struct dentry *new_dentry, 360 unsigned int flags) 361 { 362 if (is_binderfs_control_device(old_dentry) || 363 is_binderfs_control_device(new_dentry)) 364 return -EPERM; 365 366 return simple_rename(idmap, old_dir, old_dentry, new_dir, 367 new_dentry, flags); 368 } 369 370 static int binderfs_unlink(struct inode *dir, struct dentry *dentry) 371 { 372 if (is_binderfs_control_device(dentry)) 373 return -EPERM; 374 375 return simple_unlink(dir, dentry); 376 } 377 378 static const struct file_operations binder_ctl_fops = { 379 .owner = THIS_MODULE, 380 .open = nonseekable_open, 381 .unlocked_ioctl = binder_ctl_ioctl, 382 .compat_ioctl = binder_ctl_ioctl, 383 .llseek = noop_llseek, 384 }; 385 386 /** 387 * binderfs_binder_ctl_create - create a new binder-control device 388 * @sb: super block of the binderfs mount 389 * 390 * This function creates a new binder-control device node in the binderfs mount 391 * referred to by @sb. 392 * 393 * Return: 0 on success, negative errno on failure 394 */ 395 static int binderfs_binder_ctl_create(struct super_block *sb) 396 { 397 int minor, ret; 398 struct dentry *dentry; 399 struct binder_device *device; 400 struct inode *inode = NULL; 401 struct dentry *root = sb->s_root; 402 struct binderfs_info *info = sb->s_fs_info; 403 #if defined(CONFIG_IPC_NS) 404 bool use_reserve = (info->ipc_ns == &init_ipc_ns); 405 #else 406 bool use_reserve = true; 407 #endif 408 409 device = kzalloc(sizeof(*device), GFP_KERNEL); 410 if (!device) 411 return -ENOMEM; 412 413 /* If we have already created a binder-control node, return. */ 414 if (info->control_dentry) { 415 ret = 0; 416 goto out; 417 } 418 419 ret = -ENOMEM; 420 inode = new_inode(sb); 421 if (!inode) 422 goto out; 423 424 /* Reserve a new minor number for the new device. */ 425 mutex_lock(&binderfs_minors_mutex); 426 minor = ida_alloc_max(&binderfs_minors, 427 use_reserve ? BINDERFS_MAX_MINOR : 428 BINDERFS_MAX_MINOR_CAPPED, 429 GFP_KERNEL); 430 mutex_unlock(&binderfs_minors_mutex); 431 if (minor < 0) { 432 ret = minor; 433 goto out; 434 } 435 436 inode->i_ino = SECOND_INODE; 437 simple_inode_init_ts(inode); 438 init_special_inode(inode, S_IFCHR | 0600, 439 MKDEV(MAJOR(binderfs_dev), minor)); 440 inode->i_fop = &binder_ctl_fops; 441 inode->i_uid = info->root_uid; 442 inode->i_gid = info->root_gid; 443 444 refcount_set(&device->ref, 1); 445 device->binderfs_inode = inode; 446 device->miscdev.minor = minor; 447 448 dentry = d_alloc_name(root, "binder-control"); 449 if (!dentry) 450 goto out; 451 452 inode->i_private = device; 453 info->control_dentry = dentry; 454 d_add(dentry, inode); 455 456 return 0; 457 458 out: 459 kfree(device); 460 iput(inode); 461 462 return ret; 463 } 464 465 static const struct inode_operations binderfs_dir_inode_operations = { 466 .lookup = simple_lookup, 467 .rename = binderfs_rename, 468 .unlink = binderfs_unlink, 469 }; 470 471 static struct inode *binderfs_make_inode(struct super_block *sb, int mode) 472 { 473 struct inode *ret; 474 475 ret = new_inode(sb); 476 if (ret) { 477 ret->i_ino = iunique(sb, BINDERFS_MAX_MINOR + INODE_OFFSET); 478 ret->i_mode = mode; 479 simple_inode_init_ts(ret); 480 } 481 return ret; 482 } 483 484 static struct dentry *binderfs_create_dentry(struct dentry *parent, 485 const char *name) 486 { 487 struct dentry *dentry; 488 489 dentry = lookup_one_len(name, parent, strlen(name)); 490 if (IS_ERR(dentry)) 491 return dentry; 492 493 /* Return error if the file/dir already exists. */ 494 if (d_really_is_positive(dentry)) { 495 dput(dentry); 496 return ERR_PTR(-EEXIST); 497 } 498 499 return dentry; 500 } 501 502 void binderfs_remove_file(struct dentry *dentry) 503 { 504 struct inode *parent_inode; 505 506 parent_inode = d_inode(dentry->d_parent); 507 inode_lock(parent_inode); 508 if (simple_positive(dentry)) { 509 dget(dentry); 510 simple_unlink(parent_inode, dentry); 511 d_delete(dentry); 512 dput(dentry); 513 } 514 inode_unlock(parent_inode); 515 } 516 517 struct dentry *binderfs_create_file(struct dentry *parent, const char *name, 518 const struct file_operations *fops, 519 void *data) 520 { 521 struct dentry *dentry; 522 struct inode *new_inode, *parent_inode; 523 struct super_block *sb; 524 525 parent_inode = d_inode(parent); 526 inode_lock(parent_inode); 527 528 dentry = binderfs_create_dentry(parent, name); 529 if (IS_ERR(dentry)) 530 goto out; 531 532 sb = parent_inode->i_sb; 533 new_inode = binderfs_make_inode(sb, S_IFREG | 0444); 534 if (!new_inode) { 535 dput(dentry); 536 dentry = ERR_PTR(-ENOMEM); 537 goto out; 538 } 539 540 new_inode->i_fop = fops; 541 new_inode->i_private = data; 542 d_instantiate(dentry, new_inode); 543 fsnotify_create(parent_inode, dentry); 544 545 out: 546 inode_unlock(parent_inode); 547 return dentry; 548 } 549 550 static struct dentry *binderfs_create_dir(struct dentry *parent, 551 const char *name) 552 { 553 struct dentry *dentry; 554 struct inode *new_inode, *parent_inode; 555 struct super_block *sb; 556 557 parent_inode = d_inode(parent); 558 inode_lock(parent_inode); 559 560 dentry = binderfs_create_dentry(parent, name); 561 if (IS_ERR(dentry)) 562 goto out; 563 564 sb = parent_inode->i_sb; 565 new_inode = binderfs_make_inode(sb, S_IFDIR | 0755); 566 if (!new_inode) { 567 dput(dentry); 568 dentry = ERR_PTR(-ENOMEM); 569 goto out; 570 } 571 572 new_inode->i_fop = &simple_dir_operations; 573 new_inode->i_op = &simple_dir_inode_operations; 574 575 set_nlink(new_inode, 2); 576 d_instantiate(dentry, new_inode); 577 inc_nlink(parent_inode); 578 fsnotify_mkdir(parent_inode, dentry); 579 580 out: 581 inode_unlock(parent_inode); 582 return dentry; 583 } 584 585 static int binder_features_show(struct seq_file *m, void *unused) 586 { 587 bool *feature = m->private; 588 589 seq_printf(m, "%d\n", *feature); 590 591 return 0; 592 } 593 DEFINE_SHOW_ATTRIBUTE(binder_features); 594 595 static int init_binder_features(struct super_block *sb) 596 { 597 struct dentry *dentry, *dir; 598 599 dir = binderfs_create_dir(sb->s_root, "features"); 600 if (IS_ERR(dir)) 601 return PTR_ERR(dir); 602 603 dentry = binderfs_create_file(dir, "oneway_spam_detection", 604 &binder_features_fops, 605 &binder_features.oneway_spam_detection); 606 if (IS_ERR(dentry)) 607 return PTR_ERR(dentry); 608 609 dentry = binderfs_create_file(dir, "extended_error", 610 &binder_features_fops, 611 &binder_features.extended_error); 612 if (IS_ERR(dentry)) 613 return PTR_ERR(dentry); 614 615 dentry = binderfs_create_file(dir, "freeze_notification", 616 &binder_features_fops, 617 &binder_features.freeze_notification); 618 if (IS_ERR(dentry)) 619 return PTR_ERR(dentry); 620 621 return 0; 622 } 623 624 static int init_binder_logs(struct super_block *sb) 625 { 626 struct dentry *binder_logs_root_dir, *dentry, *proc_log_dir; 627 const struct binder_debugfs_entry *db_entry; 628 struct binderfs_info *info; 629 int ret = 0; 630 631 binder_logs_root_dir = binderfs_create_dir(sb->s_root, 632 "binder_logs"); 633 if (IS_ERR(binder_logs_root_dir)) { 634 ret = PTR_ERR(binder_logs_root_dir); 635 goto out; 636 } 637 638 binder_for_each_debugfs_entry(db_entry) { 639 dentry = binderfs_create_file(binder_logs_root_dir, 640 db_entry->name, 641 db_entry->fops, 642 db_entry->data); 643 if (IS_ERR(dentry)) { 644 ret = PTR_ERR(dentry); 645 goto out; 646 } 647 } 648 649 proc_log_dir = binderfs_create_dir(binder_logs_root_dir, "proc"); 650 if (IS_ERR(proc_log_dir)) { 651 ret = PTR_ERR(proc_log_dir); 652 goto out; 653 } 654 info = sb->s_fs_info; 655 info->proc_log_dir = proc_log_dir; 656 657 out: 658 return ret; 659 } 660 661 static int binderfs_fill_super(struct super_block *sb, struct fs_context *fc) 662 { 663 int ret; 664 struct binderfs_info *info; 665 struct binderfs_mount_opts *ctx = fc->fs_private; 666 struct inode *inode = NULL; 667 struct binderfs_device device_info = {}; 668 const char *name; 669 size_t len; 670 671 sb->s_blocksize = PAGE_SIZE; 672 sb->s_blocksize_bits = PAGE_SHIFT; 673 674 /* 675 * The binderfs filesystem can be mounted by userns root in a 676 * non-initial userns. By default such mounts have the SB_I_NODEV flag 677 * set in s_iflags to prevent security issues where userns root can 678 * just create random device nodes via mknod() since it owns the 679 * filesystem mount. But binderfs does not allow to create any files 680 * including devices nodes. The only way to create binder devices nodes 681 * is through the binder-control device which userns root is explicitly 682 * allowed to do. So removing the SB_I_NODEV flag from s_iflags is both 683 * necessary and safe. 684 */ 685 sb->s_iflags &= ~SB_I_NODEV; 686 sb->s_iflags |= SB_I_NOEXEC; 687 sb->s_magic = BINDERFS_SUPER_MAGIC; 688 sb->s_op = &binderfs_super_ops; 689 sb->s_time_gran = 1; 690 691 sb->s_fs_info = kzalloc(sizeof(struct binderfs_info), GFP_KERNEL); 692 if (!sb->s_fs_info) 693 return -ENOMEM; 694 info = sb->s_fs_info; 695 696 info->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns); 697 698 info->root_gid = make_kgid(sb->s_user_ns, 0); 699 if (!gid_valid(info->root_gid)) 700 info->root_gid = GLOBAL_ROOT_GID; 701 info->root_uid = make_kuid(sb->s_user_ns, 0); 702 if (!uid_valid(info->root_uid)) 703 info->root_uid = GLOBAL_ROOT_UID; 704 info->mount_opts.max = ctx->max; 705 info->mount_opts.stats_mode = ctx->stats_mode; 706 707 inode = new_inode(sb); 708 if (!inode) 709 return -ENOMEM; 710 711 inode->i_ino = FIRST_INODE; 712 inode->i_fop = &simple_dir_operations; 713 inode->i_mode = S_IFDIR | 0755; 714 simple_inode_init_ts(inode); 715 inode->i_op = &binderfs_dir_inode_operations; 716 set_nlink(inode, 2); 717 718 sb->s_root = d_make_root(inode); 719 if (!sb->s_root) 720 return -ENOMEM; 721 722 ret = binderfs_binder_ctl_create(sb); 723 if (ret) 724 return ret; 725 726 name = binder_devices_param; 727 for (len = strcspn(name, ","); len > 0; len = strcspn(name, ",")) { 728 strscpy(device_info.name, name, len + 1); 729 ret = binderfs_binder_device_create(inode, NULL, &device_info); 730 if (ret) 731 return ret; 732 name += len; 733 if (*name == ',') 734 name++; 735 } 736 737 ret = init_binder_features(sb); 738 if (ret) 739 return ret; 740 741 if (info->mount_opts.stats_mode == binderfs_stats_mode_global) 742 return init_binder_logs(sb); 743 744 return 0; 745 } 746 747 static int binderfs_fs_context_get_tree(struct fs_context *fc) 748 { 749 return get_tree_nodev(fc, binderfs_fill_super); 750 } 751 752 static void binderfs_fs_context_free(struct fs_context *fc) 753 { 754 struct binderfs_mount_opts *ctx = fc->fs_private; 755 756 kfree(ctx); 757 } 758 759 static const struct fs_context_operations binderfs_fs_context_ops = { 760 .free = binderfs_fs_context_free, 761 .get_tree = binderfs_fs_context_get_tree, 762 .parse_param = binderfs_fs_context_parse_param, 763 .reconfigure = binderfs_fs_context_reconfigure, 764 }; 765 766 static int binderfs_init_fs_context(struct fs_context *fc) 767 { 768 struct binderfs_mount_opts *ctx; 769 770 ctx = kzalloc(sizeof(struct binderfs_mount_opts), GFP_KERNEL); 771 if (!ctx) 772 return -ENOMEM; 773 774 ctx->max = BINDERFS_MAX_MINOR; 775 ctx->stats_mode = binderfs_stats_mode_unset; 776 777 fc->fs_private = ctx; 778 fc->ops = &binderfs_fs_context_ops; 779 780 return 0; 781 } 782 783 static void binderfs_kill_super(struct super_block *sb) 784 { 785 struct binderfs_info *info = sb->s_fs_info; 786 787 /* 788 * During inode eviction struct binderfs_info is needed. 789 * So first wipe the super_block then free struct binderfs_info. 790 */ 791 kill_litter_super(sb); 792 793 if (info && info->ipc_ns) 794 put_ipc_ns(info->ipc_ns); 795 796 kfree(info); 797 } 798 799 static struct file_system_type binder_fs_type = { 800 .name = "binder", 801 .init_fs_context = binderfs_init_fs_context, 802 .parameters = binderfs_fs_parameters, 803 .kill_sb = binderfs_kill_super, 804 .fs_flags = FS_USERNS_MOUNT, 805 }; 806 807 int __init init_binderfs(void) 808 { 809 int ret; 810 const char *name; 811 size_t len; 812 813 /* Verify that the default binderfs device names are valid. */ 814 name = binder_devices_param; 815 for (len = strcspn(name, ","); len > 0; len = strcspn(name, ",")) { 816 if (len > BINDERFS_MAX_NAME) 817 return -E2BIG; 818 name += len; 819 if (*name == ',') 820 name++; 821 } 822 823 /* Allocate new major number for binderfs. */ 824 ret = alloc_chrdev_region(&binderfs_dev, 0, BINDERFS_MAX_MINOR, 825 "binder"); 826 if (ret) 827 return ret; 828 829 ret = register_filesystem(&binder_fs_type); 830 if (ret) { 831 unregister_chrdev_region(binderfs_dev, BINDERFS_MAX_MINOR); 832 return ret; 833 } 834 835 return ret; 836 } 837