xref: /linux/crypto/acompress.c (revision e78f70bad29c5ae1e1076698b690b15794e9b81e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Asynchronous Compression operations
4  *
5  * Copyright (c) 2016, Intel Corporation
6  * Authors: Weigang Li <weigang.li@intel.com>
7  *          Giovanni Cabiddu <giovanni.cabiddu@intel.com>
8  */
9 
10 #include <crypto/internal/acompress.h>
11 #include <crypto/scatterwalk.h>
12 #include <linux/cryptouser.h>
13 #include <linux/cpumask.h>
14 #include <linux/err.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/scatterlist.h>
19 #include <linux/sched.h>
20 #include <linux/seq_file.h>
21 #include <linux/smp.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/workqueue.h>
25 #include <net/netlink.h>
26 
27 #include "compress.h"
28 
29 struct crypto_scomp;
30 
31 enum {
32 	ACOMP_WALK_SLEEP = 1 << 0,
33 	ACOMP_WALK_SRC_LINEAR = 1 << 1,
34 	ACOMP_WALK_DST_LINEAR = 1 << 2,
35 };
36 
37 static const struct crypto_type crypto_acomp_type;
38 
39 static void acomp_reqchain_done(void *data, int err);
40 
41 static inline struct acomp_alg *__crypto_acomp_alg(struct crypto_alg *alg)
42 {
43 	return container_of(alg, struct acomp_alg, calg.base);
44 }
45 
46 static inline struct acomp_alg *crypto_acomp_alg(struct crypto_acomp *tfm)
47 {
48 	return __crypto_acomp_alg(crypto_acomp_tfm(tfm)->__crt_alg);
49 }
50 
51 static int __maybe_unused crypto_acomp_report(
52 	struct sk_buff *skb, struct crypto_alg *alg)
53 {
54 	struct crypto_report_acomp racomp;
55 
56 	memset(&racomp, 0, sizeof(racomp));
57 
58 	strscpy(racomp.type, "acomp", sizeof(racomp.type));
59 
60 	return nla_put(skb, CRYPTOCFGA_REPORT_ACOMP, sizeof(racomp), &racomp);
61 }
62 
63 static void crypto_acomp_show(struct seq_file *m, struct crypto_alg *alg)
64 	__maybe_unused;
65 
66 static void crypto_acomp_show(struct seq_file *m, struct crypto_alg *alg)
67 {
68 	seq_puts(m, "type         : acomp\n");
69 }
70 
71 static void crypto_acomp_exit_tfm(struct crypto_tfm *tfm)
72 {
73 	struct crypto_acomp *acomp = __crypto_acomp_tfm(tfm);
74 	struct acomp_alg *alg = crypto_acomp_alg(acomp);
75 
76 	if (alg->exit)
77 		alg->exit(acomp);
78 
79 	if (acomp_is_async(acomp))
80 		crypto_free_acomp(crypto_acomp_fb(acomp));
81 }
82 
83 static int crypto_acomp_init_tfm(struct crypto_tfm *tfm)
84 {
85 	struct crypto_acomp *acomp = __crypto_acomp_tfm(tfm);
86 	struct acomp_alg *alg = crypto_acomp_alg(acomp);
87 	struct crypto_acomp *fb = NULL;
88 	int err;
89 
90 	if (tfm->__crt_alg->cra_type != &crypto_acomp_type)
91 		return crypto_init_scomp_ops_async(tfm);
92 
93 	if (acomp_is_async(acomp)) {
94 		fb = crypto_alloc_acomp(crypto_acomp_alg_name(acomp), 0,
95 					CRYPTO_ALG_ASYNC);
96 		if (IS_ERR(fb))
97 			return PTR_ERR(fb);
98 
99 		err = -EINVAL;
100 		if (crypto_acomp_reqsize(fb) > MAX_SYNC_COMP_REQSIZE)
101 			goto out_free_fb;
102 
103 		tfm->fb = crypto_acomp_tfm(fb);
104 	}
105 
106 	acomp->compress = alg->compress;
107 	acomp->decompress = alg->decompress;
108 	acomp->reqsize = alg->base.cra_reqsize;
109 
110 	acomp->base.exit = crypto_acomp_exit_tfm;
111 
112 	if (!alg->init)
113 		return 0;
114 
115 	err = alg->init(acomp);
116 	if (err)
117 		goto out_free_fb;
118 
119 	return 0;
120 
121 out_free_fb:
122 	crypto_free_acomp(fb);
123 	return err;
124 }
125 
126 static unsigned int crypto_acomp_extsize(struct crypto_alg *alg)
127 {
128 	int extsize = crypto_alg_extsize(alg);
129 
130 	if (alg->cra_type != &crypto_acomp_type)
131 		extsize += sizeof(struct crypto_scomp *);
132 
133 	return extsize;
134 }
135 
136 static const struct crypto_type crypto_acomp_type = {
137 	.extsize = crypto_acomp_extsize,
138 	.init_tfm = crypto_acomp_init_tfm,
139 #ifdef CONFIG_PROC_FS
140 	.show = crypto_acomp_show,
141 #endif
142 #if IS_ENABLED(CONFIG_CRYPTO_USER)
143 	.report = crypto_acomp_report,
144 #endif
145 	.maskclear = ~CRYPTO_ALG_TYPE_MASK,
146 	.maskset = CRYPTO_ALG_TYPE_ACOMPRESS_MASK,
147 	.type = CRYPTO_ALG_TYPE_ACOMPRESS,
148 	.tfmsize = offsetof(struct crypto_acomp, base),
149 	.algsize = offsetof(struct acomp_alg, base),
150 };
151 
152 struct crypto_acomp *crypto_alloc_acomp(const char *alg_name, u32 type,
153 					u32 mask)
154 {
155 	return crypto_alloc_tfm(alg_name, &crypto_acomp_type, type, mask);
156 }
157 EXPORT_SYMBOL_GPL(crypto_alloc_acomp);
158 
159 struct crypto_acomp *crypto_alloc_acomp_node(const char *alg_name, u32 type,
160 					u32 mask, int node)
161 {
162 	return crypto_alloc_tfm_node(alg_name, &crypto_acomp_type, type, mask,
163 				node);
164 }
165 EXPORT_SYMBOL_GPL(crypto_alloc_acomp_node);
166 
167 static void acomp_save_req(struct acomp_req *req, crypto_completion_t cplt)
168 {
169 	struct acomp_req_chain *state = &req->chain;
170 
171 	state->compl = req->base.complete;
172 	state->data = req->base.data;
173 	req->base.complete = cplt;
174 	req->base.data = state;
175 }
176 
177 static void acomp_restore_req(struct acomp_req *req)
178 {
179 	struct acomp_req_chain *state = req->base.data;
180 
181 	req->base.complete = state->compl;
182 	req->base.data = state->data;
183 }
184 
185 static void acomp_reqchain_virt(struct acomp_req *req)
186 {
187 	struct acomp_req_chain *state = &req->chain;
188 	unsigned int slen = req->slen;
189 	unsigned int dlen = req->dlen;
190 
191 	if (state->flags & CRYPTO_ACOMP_REQ_SRC_VIRT)
192 		acomp_request_set_src_dma(req, state->src, slen);
193 	if (state->flags & CRYPTO_ACOMP_REQ_DST_VIRT)
194 		acomp_request_set_dst_dma(req, state->dst, dlen);
195 }
196 
197 static void acomp_virt_to_sg(struct acomp_req *req)
198 {
199 	struct acomp_req_chain *state = &req->chain;
200 
201 	state->flags = req->base.flags & (CRYPTO_ACOMP_REQ_SRC_VIRT |
202 					  CRYPTO_ACOMP_REQ_DST_VIRT);
203 
204 	if (acomp_request_src_isvirt(req)) {
205 		unsigned int slen = req->slen;
206 		const u8 *svirt = req->svirt;
207 
208 		state->src = svirt;
209 		sg_init_one(&state->ssg, svirt, slen);
210 		acomp_request_set_src_sg(req, &state->ssg, slen);
211 	}
212 
213 	if (acomp_request_dst_isvirt(req)) {
214 		unsigned int dlen = req->dlen;
215 		u8 *dvirt = req->dvirt;
216 
217 		state->dst = dvirt;
218 		sg_init_one(&state->dsg, dvirt, dlen);
219 		acomp_request_set_dst_sg(req, &state->dsg, dlen);
220 	}
221 }
222 
223 static int acomp_do_nondma(struct acomp_req *req, bool comp)
224 {
225 	ACOMP_FBREQ_ON_STACK(fbreq, req);
226 	int err;
227 
228 	if (comp)
229 		err = crypto_acomp_compress(fbreq);
230 	else
231 		err = crypto_acomp_decompress(fbreq);
232 
233 	req->dlen = fbreq->dlen;
234 	return err;
235 }
236 
237 static int acomp_do_one_req(struct acomp_req *req, bool comp)
238 {
239 	if (acomp_request_isnondma(req))
240 		return acomp_do_nondma(req, comp);
241 
242 	acomp_virt_to_sg(req);
243 	return comp ? crypto_acomp_reqtfm(req)->compress(req) :
244 		      crypto_acomp_reqtfm(req)->decompress(req);
245 }
246 
247 static int acomp_reqchain_finish(struct acomp_req *req, int err)
248 {
249 	acomp_reqchain_virt(req);
250 	acomp_restore_req(req);
251 	return err;
252 }
253 
254 static void acomp_reqchain_done(void *data, int err)
255 {
256 	struct acomp_req *req = data;
257 	crypto_completion_t compl;
258 
259 	compl = req->chain.compl;
260 	data = req->chain.data;
261 
262 	if (err == -EINPROGRESS)
263 		goto notify;
264 
265 	err = acomp_reqchain_finish(req, err);
266 
267 notify:
268 	compl(data, err);
269 }
270 
271 static int acomp_do_req_chain(struct acomp_req *req, bool comp)
272 {
273 	int err;
274 
275 	acomp_save_req(req, acomp_reqchain_done);
276 
277 	err = acomp_do_one_req(req, comp);
278 	if (err == -EBUSY || err == -EINPROGRESS)
279 		return err;
280 
281 	return acomp_reqchain_finish(req, err);
282 }
283 
284 int crypto_acomp_compress(struct acomp_req *req)
285 {
286 	struct crypto_acomp *tfm = crypto_acomp_reqtfm(req);
287 
288 	if (acomp_req_on_stack(req) && acomp_is_async(tfm))
289 		return -EAGAIN;
290 	if (crypto_acomp_req_virt(tfm) || acomp_request_issg(req))
291 		return crypto_acomp_reqtfm(req)->compress(req);
292 	return acomp_do_req_chain(req, true);
293 }
294 EXPORT_SYMBOL_GPL(crypto_acomp_compress);
295 
296 int crypto_acomp_decompress(struct acomp_req *req)
297 {
298 	struct crypto_acomp *tfm = crypto_acomp_reqtfm(req);
299 
300 	if (acomp_req_on_stack(req) && acomp_is_async(tfm))
301 		return -EAGAIN;
302 	if (crypto_acomp_req_virt(tfm) || acomp_request_issg(req))
303 		return crypto_acomp_reqtfm(req)->decompress(req);
304 	return acomp_do_req_chain(req, false);
305 }
306 EXPORT_SYMBOL_GPL(crypto_acomp_decompress);
307 
308 void comp_prepare_alg(struct comp_alg_common *alg)
309 {
310 	struct crypto_alg *base = &alg->base;
311 
312 	base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
313 }
314 
315 int crypto_register_acomp(struct acomp_alg *alg)
316 {
317 	struct crypto_alg *base = &alg->calg.base;
318 
319 	comp_prepare_alg(&alg->calg);
320 
321 	base->cra_type = &crypto_acomp_type;
322 	base->cra_flags |= CRYPTO_ALG_TYPE_ACOMPRESS;
323 
324 	return crypto_register_alg(base);
325 }
326 EXPORT_SYMBOL_GPL(crypto_register_acomp);
327 
328 void crypto_unregister_acomp(struct acomp_alg *alg)
329 {
330 	crypto_unregister_alg(&alg->base);
331 }
332 EXPORT_SYMBOL_GPL(crypto_unregister_acomp);
333 
334 int crypto_register_acomps(struct acomp_alg *algs, int count)
335 {
336 	int i, ret;
337 
338 	for (i = 0; i < count; i++) {
339 		ret = crypto_register_acomp(&algs[i]);
340 		if (ret)
341 			goto err;
342 	}
343 
344 	return 0;
345 
346 err:
347 	for (--i; i >= 0; --i)
348 		crypto_unregister_acomp(&algs[i]);
349 
350 	return ret;
351 }
352 EXPORT_SYMBOL_GPL(crypto_register_acomps);
353 
354 void crypto_unregister_acomps(struct acomp_alg *algs, int count)
355 {
356 	int i;
357 
358 	for (i = count - 1; i >= 0; --i)
359 		crypto_unregister_acomp(&algs[i]);
360 }
361 EXPORT_SYMBOL_GPL(crypto_unregister_acomps);
362 
363 static void acomp_stream_workfn(struct work_struct *work)
364 {
365 	struct crypto_acomp_streams *s =
366 		container_of(work, struct crypto_acomp_streams, stream_work);
367 	struct crypto_acomp_stream __percpu *streams = s->streams;
368 	int cpu;
369 
370 	for_each_cpu(cpu, &s->stream_want) {
371 		struct crypto_acomp_stream *ps;
372 		void *ctx;
373 
374 		ps = per_cpu_ptr(streams, cpu);
375 		if (ps->ctx)
376 			continue;
377 
378 		ctx = s->alloc_ctx();
379 		if (IS_ERR(ctx))
380 			break;
381 
382 		spin_lock_bh(&ps->lock);
383 		ps->ctx = ctx;
384 		spin_unlock_bh(&ps->lock);
385 
386 		cpumask_clear_cpu(cpu, &s->stream_want);
387 	}
388 }
389 
390 void crypto_acomp_free_streams(struct crypto_acomp_streams *s)
391 {
392 	struct crypto_acomp_stream __percpu *streams = s->streams;
393 	void (*free_ctx)(void *);
394 	int i;
395 
396 	s->streams = NULL;
397 	if (!streams)
398 		return;
399 
400 	cancel_work_sync(&s->stream_work);
401 	free_ctx = s->free_ctx;
402 
403 	for_each_possible_cpu(i) {
404 		struct crypto_acomp_stream *ps = per_cpu_ptr(streams, i);
405 
406 		if (!ps->ctx)
407 			continue;
408 
409 		free_ctx(ps->ctx);
410 	}
411 
412 	free_percpu(streams);
413 }
414 EXPORT_SYMBOL_GPL(crypto_acomp_free_streams);
415 
416 int crypto_acomp_alloc_streams(struct crypto_acomp_streams *s)
417 {
418 	struct crypto_acomp_stream __percpu *streams;
419 	struct crypto_acomp_stream *ps;
420 	unsigned int i;
421 	void *ctx;
422 
423 	if (s->streams)
424 		return 0;
425 
426 	streams = alloc_percpu(struct crypto_acomp_stream);
427 	if (!streams)
428 		return -ENOMEM;
429 
430 	ctx = s->alloc_ctx();
431 	if (IS_ERR(ctx)) {
432 		free_percpu(streams);
433 		return PTR_ERR(ctx);
434 	}
435 
436 	i = cpumask_first(cpu_possible_mask);
437 	ps = per_cpu_ptr(streams, i);
438 	ps->ctx = ctx;
439 
440 	for_each_possible_cpu(i) {
441 		ps = per_cpu_ptr(streams, i);
442 		spin_lock_init(&ps->lock);
443 	}
444 
445 	s->streams = streams;
446 
447 	INIT_WORK(&s->stream_work, acomp_stream_workfn);
448 	return 0;
449 }
450 EXPORT_SYMBOL_GPL(crypto_acomp_alloc_streams);
451 
452 struct crypto_acomp_stream *crypto_acomp_lock_stream_bh(
453 	struct crypto_acomp_streams *s) __acquires(stream)
454 {
455 	struct crypto_acomp_stream __percpu *streams = s->streams;
456 	int cpu = raw_smp_processor_id();
457 	struct crypto_acomp_stream *ps;
458 
459 	ps = per_cpu_ptr(streams, cpu);
460 	spin_lock_bh(&ps->lock);
461 	if (likely(ps->ctx))
462 		return ps;
463 	spin_unlock(&ps->lock);
464 
465 	cpumask_set_cpu(cpu, &s->stream_want);
466 	schedule_work(&s->stream_work);
467 
468 	ps = per_cpu_ptr(streams, cpumask_first(cpu_possible_mask));
469 	spin_lock(&ps->lock);
470 	return ps;
471 }
472 EXPORT_SYMBOL_GPL(crypto_acomp_lock_stream_bh);
473 
474 void acomp_walk_done_src(struct acomp_walk *walk, int used)
475 {
476 	walk->slen -= used;
477 	if ((walk->flags & ACOMP_WALK_SRC_LINEAR))
478 		scatterwalk_advance(&walk->in, used);
479 	else
480 		scatterwalk_done_src(&walk->in, used);
481 
482 	if ((walk->flags & ACOMP_WALK_SLEEP))
483 		cond_resched();
484 }
485 EXPORT_SYMBOL_GPL(acomp_walk_done_src);
486 
487 void acomp_walk_done_dst(struct acomp_walk *walk, int used)
488 {
489 	walk->dlen -= used;
490 	if ((walk->flags & ACOMP_WALK_DST_LINEAR))
491 		scatterwalk_advance(&walk->out, used);
492 	else
493 		scatterwalk_done_dst(&walk->out, used);
494 
495 	if ((walk->flags & ACOMP_WALK_SLEEP))
496 		cond_resched();
497 }
498 EXPORT_SYMBOL_GPL(acomp_walk_done_dst);
499 
500 int acomp_walk_next_src(struct acomp_walk *walk)
501 {
502 	unsigned int slen = walk->slen;
503 	unsigned int max = UINT_MAX;
504 
505 	if (!preempt_model_preemptible() && (walk->flags & ACOMP_WALK_SLEEP))
506 		max = PAGE_SIZE;
507 	if ((walk->flags & ACOMP_WALK_SRC_LINEAR)) {
508 		walk->in.__addr = (void *)(((u8 *)walk->in.sg) +
509 					   walk->in.offset);
510 		return min(slen, max);
511 	}
512 
513 	return slen ? scatterwalk_next(&walk->in, slen) : 0;
514 }
515 EXPORT_SYMBOL_GPL(acomp_walk_next_src);
516 
517 int acomp_walk_next_dst(struct acomp_walk *walk)
518 {
519 	unsigned int dlen = walk->dlen;
520 	unsigned int max = UINT_MAX;
521 
522 	if (!preempt_model_preemptible() && (walk->flags & ACOMP_WALK_SLEEP))
523 		max = PAGE_SIZE;
524 	if ((walk->flags & ACOMP_WALK_DST_LINEAR)) {
525 		walk->out.__addr = (void *)(((u8 *)walk->out.sg) +
526 					    walk->out.offset);
527 		return min(dlen, max);
528 	}
529 
530 	return dlen ? scatterwalk_next(&walk->out, dlen) : 0;
531 }
532 EXPORT_SYMBOL_GPL(acomp_walk_next_dst);
533 
534 int acomp_walk_virt(struct acomp_walk *__restrict walk,
535 		    struct acomp_req *__restrict req, bool atomic)
536 {
537 	struct scatterlist *src = req->src;
538 	struct scatterlist *dst = req->dst;
539 
540 	walk->slen = req->slen;
541 	walk->dlen = req->dlen;
542 
543 	if (!walk->slen || !walk->dlen)
544 		return -EINVAL;
545 
546 	walk->flags = 0;
547 	if ((req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) && !atomic)
548 		walk->flags |= ACOMP_WALK_SLEEP;
549 	if ((req->base.flags & CRYPTO_ACOMP_REQ_SRC_VIRT))
550 		walk->flags |= ACOMP_WALK_SRC_LINEAR;
551 	if ((req->base.flags & CRYPTO_ACOMP_REQ_DST_VIRT))
552 		walk->flags |= ACOMP_WALK_DST_LINEAR;
553 
554 	if ((walk->flags & ACOMP_WALK_SRC_LINEAR)) {
555 		walk->in.sg = (void *)req->svirt;
556 		walk->in.offset = 0;
557 	} else
558 		scatterwalk_start(&walk->in, src);
559 	if ((walk->flags & ACOMP_WALK_DST_LINEAR)) {
560 		walk->out.sg = (void *)req->dvirt;
561 		walk->out.offset = 0;
562 	} else
563 		scatterwalk_start(&walk->out, dst);
564 
565 	return 0;
566 }
567 EXPORT_SYMBOL_GPL(acomp_walk_virt);
568 
569 struct acomp_req *acomp_request_clone(struct acomp_req *req,
570 				      size_t total, gfp_t gfp)
571 {
572 	struct acomp_req *nreq;
573 
574 	nreq = container_of(crypto_request_clone(&req->base, total, gfp),
575 			    struct acomp_req, base);
576 	if (nreq == req)
577 		return req;
578 
579 	if (req->src == &req->chain.ssg)
580 		nreq->src = &nreq->chain.ssg;
581 	if (req->dst == &req->chain.dsg)
582 		nreq->dst = &nreq->chain.dsg;
583 	return nreq;
584 }
585 EXPORT_SYMBOL_GPL(acomp_request_clone);
586 
587 MODULE_LICENSE("GPL");
588 MODULE_DESCRIPTION("Asynchronous compression type");
589