186db1e29SJens Axboe /* 286db1e29SJens Axboe * Functions related to setting various queue properties from drivers 386db1e29SJens Axboe */ 486db1e29SJens Axboe #include <linux/kernel.h> 586db1e29SJens Axboe #include <linux/module.h> 686db1e29SJens Axboe #include <linux/init.h> 786db1e29SJens Axboe #include <linux/bio.h> 886db1e29SJens Axboe #include <linux/blkdev.h> 986db1e29SJens Axboe #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 1086db1e29SJens Axboe 1186db1e29SJens Axboe #include "blk.h" 1286db1e29SJens Axboe 136728cb0eSJens Axboe unsigned long blk_max_low_pfn; 1486db1e29SJens Axboe EXPORT_SYMBOL(blk_max_low_pfn); 156728cb0eSJens Axboe 166728cb0eSJens Axboe unsigned long blk_max_pfn; 1786db1e29SJens Axboe EXPORT_SYMBOL(blk_max_pfn); 1886db1e29SJens Axboe 1986db1e29SJens Axboe /** 2086db1e29SJens Axboe * blk_queue_prep_rq - set a prepare_request function for queue 2186db1e29SJens Axboe * @q: queue 2286db1e29SJens Axboe * @pfn: prepare_request function 2386db1e29SJens Axboe * 2486db1e29SJens Axboe * It's possible for a queue to register a prepare_request callback which 2586db1e29SJens Axboe * is invoked before the request is handed to the request_fn. The goal of 2686db1e29SJens Axboe * the function is to prepare a request for I/O, it can be used to build a 2786db1e29SJens Axboe * cdb from the request data for instance. 2886db1e29SJens Axboe * 2986db1e29SJens Axboe */ 3086db1e29SJens Axboe void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn) 3186db1e29SJens Axboe { 3286db1e29SJens Axboe q->prep_rq_fn = pfn; 3386db1e29SJens Axboe } 3486db1e29SJens Axboe EXPORT_SYMBOL(blk_queue_prep_rq); 3586db1e29SJens Axboe 3686db1e29SJens Axboe /** 3786db1e29SJens Axboe * blk_queue_merge_bvec - set a merge_bvec function for queue 3886db1e29SJens Axboe * @q: queue 3986db1e29SJens Axboe * @mbfn: merge_bvec_fn 4086db1e29SJens Axboe * 4186db1e29SJens Axboe * Usually queues have static limitations on the max sectors or segments that 4286db1e29SJens Axboe * we can put in a request. Stacking drivers may have some settings that 4386db1e29SJens Axboe * are dynamic, and thus we have to query the queue whether it is ok to 4486db1e29SJens Axboe * add a new bio_vec to a bio at a given offset or not. If the block device 4586db1e29SJens Axboe * has such limitations, it needs to register a merge_bvec_fn to control 4686db1e29SJens Axboe * the size of bio's sent to it. Note that a block device *must* allow a 4786db1e29SJens Axboe * single page to be added to an empty bio. The block device driver may want 4886db1e29SJens Axboe * to use the bio_split() function to deal with these bio's. By default 4986db1e29SJens Axboe * no merge_bvec_fn is defined for a queue, and only the fixed limits are 5086db1e29SJens Axboe * honored. 5186db1e29SJens Axboe */ 5286db1e29SJens Axboe void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn) 5386db1e29SJens Axboe { 5486db1e29SJens Axboe q->merge_bvec_fn = mbfn; 5586db1e29SJens Axboe } 5686db1e29SJens Axboe EXPORT_SYMBOL(blk_queue_merge_bvec); 5786db1e29SJens Axboe 5886db1e29SJens Axboe void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn) 5986db1e29SJens Axboe { 6086db1e29SJens Axboe q->softirq_done_fn = fn; 6186db1e29SJens Axboe } 6286db1e29SJens Axboe EXPORT_SYMBOL(blk_queue_softirq_done); 6386db1e29SJens Axboe 6486db1e29SJens Axboe /** 6586db1e29SJens Axboe * blk_queue_make_request - define an alternate make_request function for a device 6686db1e29SJens Axboe * @q: the request queue for the device to be affected 6786db1e29SJens Axboe * @mfn: the alternate make_request function 6886db1e29SJens Axboe * 6986db1e29SJens Axboe * Description: 7086db1e29SJens Axboe * The normal way for &struct bios to be passed to a device 7186db1e29SJens Axboe * driver is for them to be collected into requests on a request 7286db1e29SJens Axboe * queue, and then to allow the device driver to select requests 7386db1e29SJens Axboe * off that queue when it is ready. This works well for many block 7486db1e29SJens Axboe * devices. However some block devices (typically virtual devices 7586db1e29SJens Axboe * such as md or lvm) do not benefit from the processing on the 7686db1e29SJens Axboe * request queue, and are served best by having the requests passed 7786db1e29SJens Axboe * directly to them. This can be achieved by providing a function 7886db1e29SJens Axboe * to blk_queue_make_request(). 7986db1e29SJens Axboe * 8086db1e29SJens Axboe * Caveat: 8186db1e29SJens Axboe * The driver that does this *must* be able to deal appropriately 8286db1e29SJens Axboe * with buffers in "highmemory". This can be accomplished by either calling 8386db1e29SJens Axboe * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling 8486db1e29SJens Axboe * blk_queue_bounce() to create a buffer in normal memory. 8586db1e29SJens Axboe **/ 8686db1e29SJens Axboe void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn) 8786db1e29SJens Axboe { 8886db1e29SJens Axboe /* 8986db1e29SJens Axboe * set defaults 9086db1e29SJens Axboe */ 9186db1e29SJens Axboe q->nr_requests = BLKDEV_MAX_RQ; 9286db1e29SJens Axboe blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); 9386db1e29SJens Axboe blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); 9486db1e29SJens Axboe q->make_request_fn = mfn; 956728cb0eSJens Axboe q->backing_dev_info.ra_pages = 966728cb0eSJens Axboe (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 9786db1e29SJens Axboe q->backing_dev_info.state = 0; 9886db1e29SJens Axboe q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 9986db1e29SJens Axboe blk_queue_max_sectors(q, SAFE_MAX_SECTORS); 10086db1e29SJens Axboe blk_queue_hardsect_size(q, 512); 10186db1e29SJens Axboe blk_queue_dma_alignment(q, 511); 10286db1e29SJens Axboe blk_queue_congestion_threshold(q); 10386db1e29SJens Axboe q->nr_batching = BLK_BATCH_REQ; 10486db1e29SJens Axboe 10586db1e29SJens Axboe q->unplug_thresh = 4; /* hmm */ 10686db1e29SJens Axboe q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */ 10786db1e29SJens Axboe if (q->unplug_delay == 0) 10886db1e29SJens Axboe q->unplug_delay = 1; 10986db1e29SJens Axboe 11086db1e29SJens Axboe INIT_WORK(&q->unplug_work, blk_unplug_work); 11186db1e29SJens Axboe 11286db1e29SJens Axboe q->unplug_timer.function = blk_unplug_timeout; 11386db1e29SJens Axboe q->unplug_timer.data = (unsigned long)q; 11486db1e29SJens Axboe 11586db1e29SJens Axboe /* 11686db1e29SJens Axboe * by default assume old behaviour and bounce for any highmem page 11786db1e29SJens Axboe */ 11886db1e29SJens Axboe blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); 11986db1e29SJens Axboe } 12086db1e29SJens Axboe EXPORT_SYMBOL(blk_queue_make_request); 12186db1e29SJens Axboe 12286db1e29SJens Axboe /** 12386db1e29SJens Axboe * blk_queue_bounce_limit - set bounce buffer limit for queue 12486db1e29SJens Axboe * @q: the request queue for the device 12586db1e29SJens Axboe * @dma_addr: bus address limit 12686db1e29SJens Axboe * 12786db1e29SJens Axboe * Description: 12886db1e29SJens Axboe * Different hardware can have different requirements as to what pages 12986db1e29SJens Axboe * it can do I/O directly to. A low level driver can call 13086db1e29SJens Axboe * blk_queue_bounce_limit to have lower memory pages allocated as bounce 13186db1e29SJens Axboe * buffers for doing I/O to pages residing above @page. 13286db1e29SJens Axboe **/ 13386db1e29SJens Axboe void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr) 13486db1e29SJens Axboe { 1356728cb0eSJens Axboe unsigned long b_pfn = dma_addr >> PAGE_SHIFT; 13686db1e29SJens Axboe int dma = 0; 13786db1e29SJens Axboe 13886db1e29SJens Axboe q->bounce_gfp = GFP_NOIO; 13986db1e29SJens Axboe #if BITS_PER_LONG == 64 14086db1e29SJens Axboe /* Assume anything <= 4GB can be handled by IOMMU. 14186db1e29SJens Axboe Actually some IOMMUs can handle everything, but I don't 14286db1e29SJens Axboe know of a way to test this here. */ 1436728cb0eSJens Axboe if (b_pfn < (min_t(u64, 0xffffffff, BLK_BOUNCE_HIGH) >> PAGE_SHIFT)) 14486db1e29SJens Axboe dma = 1; 14586db1e29SJens Axboe q->bounce_pfn = max_low_pfn; 14686db1e29SJens Axboe #else 1476728cb0eSJens Axboe if (b_pfn < blk_max_low_pfn) 14886db1e29SJens Axboe dma = 1; 1496728cb0eSJens Axboe q->bounce_pfn = b_pfn; 15086db1e29SJens Axboe #endif 15186db1e29SJens Axboe if (dma) { 15286db1e29SJens Axboe init_emergency_isa_pool(); 15386db1e29SJens Axboe q->bounce_gfp = GFP_NOIO | GFP_DMA; 1546728cb0eSJens Axboe q->bounce_pfn = b_pfn; 15586db1e29SJens Axboe } 15686db1e29SJens Axboe } 15786db1e29SJens Axboe EXPORT_SYMBOL(blk_queue_bounce_limit); 15886db1e29SJens Axboe 15986db1e29SJens Axboe /** 16086db1e29SJens Axboe * blk_queue_max_sectors - set max sectors for a request for this queue 16186db1e29SJens Axboe * @q: the request queue for the device 16286db1e29SJens Axboe * @max_sectors: max sectors in the usual 512b unit 16386db1e29SJens Axboe * 16486db1e29SJens Axboe * Description: 16586db1e29SJens Axboe * Enables a low level driver to set an upper limit on the size of 16686db1e29SJens Axboe * received requests. 16786db1e29SJens Axboe **/ 16886db1e29SJens Axboe void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors) 16986db1e29SJens Axboe { 17086db1e29SJens Axboe if ((max_sectors << 9) < PAGE_CACHE_SIZE) { 17186db1e29SJens Axboe max_sectors = 1 << (PAGE_CACHE_SHIFT - 9); 1726728cb0eSJens Axboe printk(KERN_INFO "%s: set to minimum %d\n", __FUNCTION__, 1736728cb0eSJens Axboe max_sectors); 17486db1e29SJens Axboe } 17586db1e29SJens Axboe 17686db1e29SJens Axboe if (BLK_DEF_MAX_SECTORS > max_sectors) 17786db1e29SJens Axboe q->max_hw_sectors = q->max_sectors = max_sectors; 17886db1e29SJens Axboe else { 17986db1e29SJens Axboe q->max_sectors = BLK_DEF_MAX_SECTORS; 18086db1e29SJens Axboe q->max_hw_sectors = max_sectors; 18186db1e29SJens Axboe } 18286db1e29SJens Axboe } 18386db1e29SJens Axboe EXPORT_SYMBOL(blk_queue_max_sectors); 18486db1e29SJens Axboe 18586db1e29SJens Axboe /** 18686db1e29SJens Axboe * blk_queue_max_phys_segments - set max phys segments for a request for this queue 18786db1e29SJens Axboe * @q: the request queue for the device 18886db1e29SJens Axboe * @max_segments: max number of segments 18986db1e29SJens Axboe * 19086db1e29SJens Axboe * Description: 19186db1e29SJens Axboe * Enables a low level driver to set an upper limit on the number of 19286db1e29SJens Axboe * physical data segments in a request. This would be the largest sized 19386db1e29SJens Axboe * scatter list the driver could handle. 19486db1e29SJens Axboe **/ 19586db1e29SJens Axboe void blk_queue_max_phys_segments(struct request_queue *q, 19686db1e29SJens Axboe unsigned short max_segments) 19786db1e29SJens Axboe { 19886db1e29SJens Axboe if (!max_segments) { 19986db1e29SJens Axboe max_segments = 1; 2006728cb0eSJens Axboe printk(KERN_INFO "%s: set to minimum %d\n", __FUNCTION__, 2016728cb0eSJens Axboe max_segments); 20286db1e29SJens Axboe } 20386db1e29SJens Axboe 20486db1e29SJens Axboe q->max_phys_segments = max_segments; 20586db1e29SJens Axboe } 20686db1e29SJens Axboe EXPORT_SYMBOL(blk_queue_max_phys_segments); 20786db1e29SJens Axboe 20886db1e29SJens Axboe /** 20986db1e29SJens Axboe * blk_queue_max_hw_segments - set max hw segments for a request for this queue 21086db1e29SJens Axboe * @q: the request queue for the device 21186db1e29SJens Axboe * @max_segments: max number of segments 21286db1e29SJens Axboe * 21386db1e29SJens Axboe * Description: 21486db1e29SJens Axboe * Enables a low level driver to set an upper limit on the number of 21586db1e29SJens Axboe * hw data segments in a request. This would be the largest number of 21686db1e29SJens Axboe * address/length pairs the host adapter can actually give as once 21786db1e29SJens Axboe * to the device. 21886db1e29SJens Axboe **/ 21986db1e29SJens Axboe void blk_queue_max_hw_segments(struct request_queue *q, 22086db1e29SJens Axboe unsigned short max_segments) 22186db1e29SJens Axboe { 22286db1e29SJens Axboe if (!max_segments) { 22386db1e29SJens Axboe max_segments = 1; 2246728cb0eSJens Axboe printk(KERN_INFO "%s: set to minimum %d\n", __FUNCTION__, 2256728cb0eSJens Axboe max_segments); 22686db1e29SJens Axboe } 22786db1e29SJens Axboe 22886db1e29SJens Axboe q->max_hw_segments = max_segments; 22986db1e29SJens Axboe } 23086db1e29SJens Axboe EXPORT_SYMBOL(blk_queue_max_hw_segments); 23186db1e29SJens Axboe 23286db1e29SJens Axboe /** 23386db1e29SJens Axboe * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg 23486db1e29SJens Axboe * @q: the request queue for the device 23586db1e29SJens Axboe * @max_size: max size of segment in bytes 23686db1e29SJens Axboe * 23786db1e29SJens Axboe * Description: 23886db1e29SJens Axboe * Enables a low level driver to set an upper limit on the size of a 23986db1e29SJens Axboe * coalesced segment 24086db1e29SJens Axboe **/ 24186db1e29SJens Axboe void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size) 24286db1e29SJens Axboe { 24386db1e29SJens Axboe if (max_size < PAGE_CACHE_SIZE) { 24486db1e29SJens Axboe max_size = PAGE_CACHE_SIZE; 2456728cb0eSJens Axboe printk(KERN_INFO "%s: set to minimum %d\n", __FUNCTION__, 2466728cb0eSJens Axboe max_size); 24786db1e29SJens Axboe } 24886db1e29SJens Axboe 24986db1e29SJens Axboe q->max_segment_size = max_size; 25086db1e29SJens Axboe } 25186db1e29SJens Axboe EXPORT_SYMBOL(blk_queue_max_segment_size); 25286db1e29SJens Axboe 25386db1e29SJens Axboe /** 25486db1e29SJens Axboe * blk_queue_hardsect_size - set hardware sector size for the queue 25586db1e29SJens Axboe * @q: the request queue for the device 25686db1e29SJens Axboe * @size: the hardware sector size, in bytes 25786db1e29SJens Axboe * 25886db1e29SJens Axboe * Description: 25986db1e29SJens Axboe * This should typically be set to the lowest possible sector size 26086db1e29SJens Axboe * that the hardware can operate on (possible without reverting to 26186db1e29SJens Axboe * even internal read-modify-write operations). Usually the default 26286db1e29SJens Axboe * of 512 covers most hardware. 26386db1e29SJens Axboe **/ 26486db1e29SJens Axboe void blk_queue_hardsect_size(struct request_queue *q, unsigned short size) 26586db1e29SJens Axboe { 26686db1e29SJens Axboe q->hardsect_size = size; 26786db1e29SJens Axboe } 26886db1e29SJens Axboe EXPORT_SYMBOL(blk_queue_hardsect_size); 26986db1e29SJens Axboe 27086db1e29SJens Axboe /* 27186db1e29SJens Axboe * Returns the minimum that is _not_ zero, unless both are zero. 27286db1e29SJens Axboe */ 27386db1e29SJens Axboe #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 27486db1e29SJens Axboe 27586db1e29SJens Axboe /** 27686db1e29SJens Axboe * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers 27786db1e29SJens Axboe * @t: the stacking driver (top) 27886db1e29SJens Axboe * @b: the underlying device (bottom) 27986db1e29SJens Axboe **/ 28086db1e29SJens Axboe void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b) 28186db1e29SJens Axboe { 28286db1e29SJens Axboe /* zero is "infinity" */ 28386db1e29SJens Axboe t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors); 28486db1e29SJens Axboe t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors); 28586db1e29SJens Axboe 28686db1e29SJens Axboe t->max_phys_segments = min(t->max_phys_segments, b->max_phys_segments); 28786db1e29SJens Axboe t->max_hw_segments = min(t->max_hw_segments, b->max_hw_segments); 28886db1e29SJens Axboe t->max_segment_size = min(t->max_segment_size, b->max_segment_size); 28986db1e29SJens Axboe t->hardsect_size = max(t->hardsect_size, b->hardsect_size); 29086db1e29SJens Axboe if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) 29186db1e29SJens Axboe clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags); 29286db1e29SJens Axboe } 29386db1e29SJens Axboe EXPORT_SYMBOL(blk_queue_stack_limits); 29486db1e29SJens Axboe 29586db1e29SJens Axboe /** 296*e3790c7dSTejun Heo * blk_queue_dma_pad - set pad mask 297*e3790c7dSTejun Heo * @q: the request queue for the device 298*e3790c7dSTejun Heo * @mask: pad mask 299*e3790c7dSTejun Heo * 300*e3790c7dSTejun Heo * Set pad mask. Direct IO requests are padded to the mask specified. 301*e3790c7dSTejun Heo * 302*e3790c7dSTejun Heo * Appending pad buffer to a request modifies ->data_len such that it 303*e3790c7dSTejun Heo * includes the pad buffer. The original requested data length can be 304*e3790c7dSTejun Heo * obtained using blk_rq_raw_data_len(). 305*e3790c7dSTejun Heo **/ 306*e3790c7dSTejun Heo void blk_queue_dma_pad(struct request_queue *q, unsigned int mask) 307*e3790c7dSTejun Heo { 308*e3790c7dSTejun Heo q->dma_pad_mask = mask; 309*e3790c7dSTejun Heo } 310*e3790c7dSTejun Heo EXPORT_SYMBOL(blk_queue_dma_pad); 311*e3790c7dSTejun Heo 312*e3790c7dSTejun Heo /** 31386db1e29SJens Axboe * blk_queue_dma_drain - Set up a drain buffer for excess dma. 31486db1e29SJens Axboe * @q: the request queue for the device 3152fb98e84STejun Heo * @dma_drain_needed: fn which returns non-zero if drain is necessary 31686db1e29SJens Axboe * @buf: physically contiguous buffer 31786db1e29SJens Axboe * @size: size of the buffer in bytes 31886db1e29SJens Axboe * 31986db1e29SJens Axboe * Some devices have excess DMA problems and can't simply discard (or 32086db1e29SJens Axboe * zero fill) the unwanted piece of the transfer. They have to have a 32186db1e29SJens Axboe * real area of memory to transfer it into. The use case for this is 32286db1e29SJens Axboe * ATAPI devices in DMA mode. If the packet command causes a transfer 32386db1e29SJens Axboe * bigger than the transfer size some HBAs will lock up if there 32486db1e29SJens Axboe * aren't DMA elements to contain the excess transfer. What this API 32586db1e29SJens Axboe * does is adjust the queue so that the buf is always appended 32686db1e29SJens Axboe * silently to the scatterlist. 32786db1e29SJens Axboe * 32886db1e29SJens Axboe * Note: This routine adjusts max_hw_segments to make room for 32986db1e29SJens Axboe * appending the drain buffer. If you call 33086db1e29SJens Axboe * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after 33186db1e29SJens Axboe * calling this routine, you must set the limit to one fewer than your 33286db1e29SJens Axboe * device can support otherwise there won't be room for the drain 33386db1e29SJens Axboe * buffer. 33486db1e29SJens Axboe */ 3352fb98e84STejun Heo extern int blk_queue_dma_drain(struct request_queue *q, 3362fb98e84STejun Heo dma_drain_needed_fn *dma_drain_needed, 3372fb98e84STejun Heo void *buf, unsigned int size) 33886db1e29SJens Axboe { 33986db1e29SJens Axboe if (q->max_hw_segments < 2 || q->max_phys_segments < 2) 34086db1e29SJens Axboe return -EINVAL; 34186db1e29SJens Axboe /* make room for appending the drain */ 34286db1e29SJens Axboe --q->max_hw_segments; 34386db1e29SJens Axboe --q->max_phys_segments; 3442fb98e84STejun Heo q->dma_drain_needed = dma_drain_needed; 34586db1e29SJens Axboe q->dma_drain_buffer = buf; 34686db1e29SJens Axboe q->dma_drain_size = size; 34786db1e29SJens Axboe 34886db1e29SJens Axboe return 0; 34986db1e29SJens Axboe } 35086db1e29SJens Axboe EXPORT_SYMBOL_GPL(blk_queue_dma_drain); 35186db1e29SJens Axboe 35286db1e29SJens Axboe /** 35386db1e29SJens Axboe * blk_queue_segment_boundary - set boundary rules for segment merging 35486db1e29SJens Axboe * @q: the request queue for the device 35586db1e29SJens Axboe * @mask: the memory boundary mask 35686db1e29SJens Axboe **/ 35786db1e29SJens Axboe void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask) 35886db1e29SJens Axboe { 35986db1e29SJens Axboe if (mask < PAGE_CACHE_SIZE - 1) { 36086db1e29SJens Axboe mask = PAGE_CACHE_SIZE - 1; 3616728cb0eSJens Axboe printk(KERN_INFO "%s: set to minimum %lx\n", __FUNCTION__, 3626728cb0eSJens Axboe mask); 36386db1e29SJens Axboe } 36486db1e29SJens Axboe 36586db1e29SJens Axboe q->seg_boundary_mask = mask; 36686db1e29SJens Axboe } 36786db1e29SJens Axboe EXPORT_SYMBOL(blk_queue_segment_boundary); 36886db1e29SJens Axboe 36986db1e29SJens Axboe /** 37086db1e29SJens Axboe * blk_queue_dma_alignment - set dma length and memory alignment 37186db1e29SJens Axboe * @q: the request queue for the device 37286db1e29SJens Axboe * @mask: alignment mask 37386db1e29SJens Axboe * 37486db1e29SJens Axboe * description: 37586db1e29SJens Axboe * set required memory and length aligment for direct dma transactions. 37686db1e29SJens Axboe * this is used when buiding direct io requests for the queue. 37786db1e29SJens Axboe * 37886db1e29SJens Axboe **/ 37986db1e29SJens Axboe void blk_queue_dma_alignment(struct request_queue *q, int mask) 38086db1e29SJens Axboe { 38186db1e29SJens Axboe q->dma_alignment = mask; 38286db1e29SJens Axboe } 38386db1e29SJens Axboe EXPORT_SYMBOL(blk_queue_dma_alignment); 38486db1e29SJens Axboe 38586db1e29SJens Axboe /** 38686db1e29SJens Axboe * blk_queue_update_dma_alignment - update dma length and memory alignment 38786db1e29SJens Axboe * @q: the request queue for the device 38886db1e29SJens Axboe * @mask: alignment mask 38986db1e29SJens Axboe * 39086db1e29SJens Axboe * description: 39186db1e29SJens Axboe * update required memory and length aligment for direct dma transactions. 39286db1e29SJens Axboe * If the requested alignment is larger than the current alignment, then 39386db1e29SJens Axboe * the current queue alignment is updated to the new value, otherwise it 39486db1e29SJens Axboe * is left alone. The design of this is to allow multiple objects 39586db1e29SJens Axboe * (driver, device, transport etc) to set their respective 39686db1e29SJens Axboe * alignments without having them interfere. 39786db1e29SJens Axboe * 39886db1e29SJens Axboe **/ 39986db1e29SJens Axboe void blk_queue_update_dma_alignment(struct request_queue *q, int mask) 40086db1e29SJens Axboe { 40186db1e29SJens Axboe BUG_ON(mask > PAGE_SIZE); 40286db1e29SJens Axboe 40386db1e29SJens Axboe if (mask > q->dma_alignment) 40486db1e29SJens Axboe q->dma_alignment = mask; 40586db1e29SJens Axboe } 40686db1e29SJens Axboe EXPORT_SYMBOL(blk_queue_update_dma_alignment); 40786db1e29SJens Axboe 40852ff4caeSAdrian Bunk static int __init blk_settings_init(void) 40986db1e29SJens Axboe { 41086db1e29SJens Axboe blk_max_low_pfn = max_low_pfn - 1; 41186db1e29SJens Axboe blk_max_pfn = max_pfn - 1; 41286db1e29SJens Axboe return 0; 41386db1e29SJens Axboe } 41486db1e29SJens Axboe subsys_initcall(blk_settings_init); 415