1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/init.h> 3 4 #include <linux/mm.h> 5 #include <linux/spinlock.h> 6 #include <linux/smp.h> 7 #include <linux/interrupt.h> 8 #include <linux/export.h> 9 #include <linux/cpu.h> 10 #include <linux/debugfs.h> 11 #include <linux/sched/smt.h> 12 #include <linux/task_work.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/mmu_context.h> 15 16 #include <asm/tlbflush.h> 17 #include <asm/mmu_context.h> 18 #include <asm/nospec-branch.h> 19 #include <asm/cache.h> 20 #include <asm/cacheflush.h> 21 #include <asm/apic.h> 22 #include <asm/perf_event.h> 23 #include <asm/tlb.h> 24 25 #include "mm_internal.h" 26 27 #ifdef CONFIG_PARAVIRT 28 # define STATIC_NOPV 29 #else 30 # define STATIC_NOPV static 31 # define __flush_tlb_local native_flush_tlb_local 32 # define __flush_tlb_global native_flush_tlb_global 33 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr) 34 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info) 35 #endif 36 37 /* 38 * TLB flushing, formerly SMP-only 39 * c/o Linus Torvalds. 40 * 41 * These mean you can really definitely utterly forget about 42 * writing to user space from interrupts. (Its not allowed anyway). 43 * 44 * Optimizations Manfred Spraul <manfred@colorfullife.com> 45 * 46 * More scalable flush, from Andi Kleen 47 * 48 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi 49 */ 50 51 /* 52 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is 53 * stored in cpu_tlb_state.last_user_mm_spec. 54 */ 55 #define LAST_USER_MM_IBPB 0x1UL 56 #define LAST_USER_MM_L1D_FLUSH 0x2UL 57 #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH) 58 59 /* Bits to set when tlbstate and flush is (re)initialized */ 60 #define LAST_USER_MM_INIT LAST_USER_MM_IBPB 61 62 /* 63 * The x86 feature is called PCID (Process Context IDentifier). It is similar 64 * to what is traditionally called ASID on the RISC processors. 65 * 66 * We don't use the traditional ASID implementation, where each process/mm gets 67 * its own ASID and flush/restart when we run out of ASID space. 68 * 69 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's 70 * that came by on this CPU, allowing cheaper switch_mm between processes on 71 * this CPU. 72 * 73 * We end up with different spaces for different things. To avoid confusion we 74 * use different names for each of them: 75 * 76 * ASID - [0, TLB_NR_DYN_ASIDS-1] 77 * the canonical identifier for an mm, dynamically allocated on each CPU 78 * [TLB_NR_DYN_ASIDS, MAX_ASID_AVAILABLE-1] 79 * the canonical, global identifier for an mm, identical across all CPUs 80 * 81 * kPCID - [1, MAX_ASID_AVAILABLE] 82 * the value we write into the PCID part of CR3; corresponds to the 83 * ASID+1, because PCID 0 is special. 84 * 85 * uPCID - [2048 + 1, 2048 + MAX_ASID_AVAILABLE] 86 * for KPTI each mm has two address spaces and thus needs two 87 * PCID values, but we can still do with a single ASID denomination 88 * for each mm. Corresponds to kPCID + 2048. 89 * 90 */ 91 92 /* 93 * When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for 94 * user/kernel switches 95 */ 96 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 97 # define PTI_CONSUMED_PCID_BITS 1 98 #else 99 # define PTI_CONSUMED_PCID_BITS 0 100 #endif 101 102 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS) 103 104 /* 105 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account 106 * for them being zero-based. Another -1 is because PCID 0 is reserved for 107 * use by non-PCID-aware users. 108 */ 109 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2) 110 111 /* 112 * Given @asid, compute kPCID 113 */ 114 static inline u16 kern_pcid(u16 asid) 115 { 116 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE); 117 118 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 119 /* 120 * Make sure that the dynamic ASID space does not conflict with the 121 * bit we are using to switch between user and kernel ASIDs. 122 */ 123 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT)); 124 125 /* 126 * The ASID being passed in here should have respected the 127 * MAX_ASID_AVAILABLE and thus never have the switch bit set. 128 */ 129 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT)); 130 #endif 131 /* 132 * The dynamically-assigned ASIDs that get passed in are small 133 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set, 134 * so do not bother to clear it. 135 * 136 * If PCID is on, ASID-aware code paths put the ASID+1 into the 137 * PCID bits. This serves two purposes. It prevents a nasty 138 * situation in which PCID-unaware code saves CR3, loads some other 139 * value (with PCID == 0), and then restores CR3, thus corrupting 140 * the TLB for ASID 0 if the saved ASID was nonzero. It also means 141 * that any bugs involving loading a PCID-enabled CR3 with 142 * CR4.PCIDE off will trigger deterministically. 143 */ 144 return asid + 1; 145 } 146 147 /* 148 * Given @asid, compute uPCID 149 */ 150 static inline u16 user_pcid(u16 asid) 151 { 152 u16 ret = kern_pcid(asid); 153 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION 154 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT; 155 #endif 156 return ret; 157 } 158 159 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam) 160 { 161 unsigned long cr3 = __sme_pa(pgd) | lam; 162 163 if (static_cpu_has(X86_FEATURE_PCID)) { 164 cr3 |= kern_pcid(asid); 165 } else { 166 VM_WARN_ON_ONCE(asid != 0); 167 } 168 169 return cr3; 170 } 171 172 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid, 173 unsigned long lam) 174 { 175 /* 176 * Use boot_cpu_has() instead of this_cpu_has() as this function 177 * might be called during early boot. This should work even after 178 * boot because all CPU's the have same capabilities: 179 */ 180 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID)); 181 return build_cr3(pgd, asid, lam) | CR3_NOFLUSH; 182 } 183 184 /* 185 * We get here when we do something requiring a TLB invalidation 186 * but could not go invalidate all of the contexts. We do the 187 * necessary invalidation by clearing out the 'ctx_id' which 188 * forces a TLB flush when the context is loaded. 189 */ 190 static void clear_asid_other(void) 191 { 192 u16 asid; 193 194 /* 195 * This is only expected to be set if we have disabled 196 * kernel _PAGE_GLOBAL pages. 197 */ 198 if (!static_cpu_has(X86_FEATURE_PTI)) { 199 WARN_ON_ONCE(1); 200 return; 201 } 202 203 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 204 /* Do not need to flush the current asid */ 205 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid)) 206 continue; 207 /* 208 * Make sure the next time we go to switch to 209 * this asid, we do a flush: 210 */ 211 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0); 212 } 213 this_cpu_write(cpu_tlbstate.invalidate_other, false); 214 } 215 216 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1); 217 218 219 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen, 220 u16 *new_asid, bool *need_flush) 221 { 222 u16 asid; 223 224 if (!static_cpu_has(X86_FEATURE_PCID)) { 225 *new_asid = 0; 226 *need_flush = true; 227 return; 228 } 229 230 /* 231 * TLB consistency for global ASIDs is maintained with hardware assisted 232 * remote TLB flushing. Global ASIDs are always up to date. 233 */ 234 if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) { 235 u16 global_asid = mm_global_asid(next); 236 237 if (global_asid) { 238 *new_asid = global_asid; 239 *need_flush = false; 240 return; 241 } 242 } 243 244 if (this_cpu_read(cpu_tlbstate.invalidate_other)) 245 clear_asid_other(); 246 247 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) { 248 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) != 249 next->context.ctx_id) 250 continue; 251 252 *new_asid = asid; 253 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < 254 next_tlb_gen); 255 return; 256 } 257 258 /* 259 * We don't currently own an ASID slot on this CPU. 260 * Allocate a slot. 261 */ 262 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1; 263 if (*new_asid >= TLB_NR_DYN_ASIDS) { 264 *new_asid = 0; 265 this_cpu_write(cpu_tlbstate.next_asid, 1); 266 } 267 *need_flush = true; 268 } 269 270 /* 271 * Global ASIDs are allocated for multi-threaded processes that are 272 * active on multiple CPUs simultaneously, giving each of those 273 * processes the same PCID on every CPU, for use with hardware-assisted 274 * TLB shootdown on remote CPUs, like AMD INVLPGB or Intel RAR. 275 * 276 * These global ASIDs are held for the lifetime of the process. 277 */ 278 static DEFINE_RAW_SPINLOCK(global_asid_lock); 279 static u16 last_global_asid = MAX_ASID_AVAILABLE; 280 static DECLARE_BITMAP(global_asid_used, MAX_ASID_AVAILABLE); 281 static DECLARE_BITMAP(global_asid_freed, MAX_ASID_AVAILABLE); 282 static int global_asid_available = MAX_ASID_AVAILABLE - TLB_NR_DYN_ASIDS - 1; 283 284 /* 285 * When the search for a free ASID in the global ASID space reaches 286 * MAX_ASID_AVAILABLE, a global TLB flush guarantees that previously 287 * freed global ASIDs are safe to re-use. 288 * 289 * This way the global flush only needs to happen at ASID rollover 290 * time, and not at ASID allocation time. 291 */ 292 static void reset_global_asid_space(void) 293 { 294 lockdep_assert_held(&global_asid_lock); 295 296 invlpgb_flush_all_nonglobals(); 297 298 /* 299 * The TLB flush above makes it safe to re-use the previously 300 * freed global ASIDs. 301 */ 302 bitmap_andnot(global_asid_used, global_asid_used, 303 global_asid_freed, MAX_ASID_AVAILABLE); 304 bitmap_clear(global_asid_freed, 0, MAX_ASID_AVAILABLE); 305 306 /* Restart the search from the start of global ASID space. */ 307 last_global_asid = TLB_NR_DYN_ASIDS; 308 } 309 310 static u16 allocate_global_asid(void) 311 { 312 u16 asid; 313 314 lockdep_assert_held(&global_asid_lock); 315 316 /* The previous allocation hit the edge of available address space */ 317 if (last_global_asid >= MAX_ASID_AVAILABLE - 1) 318 reset_global_asid_space(); 319 320 asid = find_next_zero_bit(global_asid_used, MAX_ASID_AVAILABLE, last_global_asid); 321 322 if (asid >= MAX_ASID_AVAILABLE && !global_asid_available) { 323 /* This should never happen. */ 324 VM_WARN_ONCE(1, "Unable to allocate global ASID despite %d available\n", 325 global_asid_available); 326 return 0; 327 } 328 329 /* Claim this global ASID. */ 330 __set_bit(asid, global_asid_used); 331 last_global_asid = asid; 332 global_asid_available--; 333 return asid; 334 } 335 336 /* 337 * Check whether a process is currently active on more than @threshold CPUs. 338 * This is a cheap estimation on whether or not it may make sense to assign 339 * a global ASID to this process, and use broadcast TLB invalidation. 340 */ 341 static bool mm_active_cpus_exceeds(struct mm_struct *mm, int threshold) 342 { 343 int count = 0; 344 int cpu; 345 346 /* This quick check should eliminate most single threaded programs. */ 347 if (cpumask_weight(mm_cpumask(mm)) <= threshold) 348 return false; 349 350 /* Slower check to make sure. */ 351 for_each_cpu(cpu, mm_cpumask(mm)) { 352 /* Skip the CPUs that aren't really running this process. */ 353 if (per_cpu(cpu_tlbstate.loaded_mm, cpu) != mm) 354 continue; 355 356 if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu)) 357 continue; 358 359 if (++count > threshold) 360 return true; 361 } 362 return false; 363 } 364 365 /* 366 * Assign a global ASID to the current process, protecting against 367 * races between multiple threads in the process. 368 */ 369 static void use_global_asid(struct mm_struct *mm) 370 { 371 u16 asid; 372 373 guard(raw_spinlock_irqsave)(&global_asid_lock); 374 375 /* This process is already using broadcast TLB invalidation. */ 376 if (mm_global_asid(mm)) 377 return; 378 379 /* 380 * The last global ASID was consumed while waiting for the lock. 381 * 382 * If this fires, a more aggressive ASID reuse scheme might be 383 * needed. 384 */ 385 if (!global_asid_available) { 386 VM_WARN_ONCE(1, "Ran out of global ASIDs\n"); 387 return; 388 } 389 390 asid = allocate_global_asid(); 391 if (!asid) 392 return; 393 394 mm_assign_global_asid(mm, asid); 395 } 396 397 void mm_free_global_asid(struct mm_struct *mm) 398 { 399 if (!cpu_feature_enabled(X86_FEATURE_INVLPGB)) 400 return; 401 402 if (!mm_global_asid(mm)) 403 return; 404 405 guard(raw_spinlock_irqsave)(&global_asid_lock); 406 407 /* The global ASID can be re-used only after flush at wrap-around. */ 408 #ifdef CONFIG_BROADCAST_TLB_FLUSH 409 __set_bit(mm->context.global_asid, global_asid_freed); 410 411 mm->context.global_asid = 0; 412 global_asid_available++; 413 #endif 414 } 415 416 /* 417 * Is the mm transitioning from a CPU-local ASID to a global ASID? 418 */ 419 static bool mm_needs_global_asid(struct mm_struct *mm, u16 asid) 420 { 421 u16 global_asid = mm_global_asid(mm); 422 423 if (!cpu_feature_enabled(X86_FEATURE_INVLPGB)) 424 return false; 425 426 /* Process is transitioning to a global ASID */ 427 if (global_asid && asid != global_asid) 428 return true; 429 430 return false; 431 } 432 433 /* 434 * x86 has 4k ASIDs (2k when compiled with KPTI), but the largest x86 435 * systems have over 8k CPUs. Because of this potential ASID shortage, 436 * global ASIDs are handed out to processes that have frequent TLB 437 * flushes and are active on 4 or more CPUs simultaneously. 438 */ 439 static void consider_global_asid(struct mm_struct *mm) 440 { 441 if (!cpu_feature_enabled(X86_FEATURE_INVLPGB)) 442 return; 443 444 /* Check every once in a while. */ 445 if ((current->pid & 0x1f) != (jiffies & 0x1f)) 446 return; 447 448 /* 449 * Assign a global ASID if the process is active on 450 * 4 or more CPUs simultaneously. 451 */ 452 if (mm_active_cpus_exceeds(mm, 3)) 453 use_global_asid(mm); 454 } 455 456 static void finish_asid_transition(struct flush_tlb_info *info) 457 { 458 struct mm_struct *mm = info->mm; 459 int bc_asid = mm_global_asid(mm); 460 int cpu; 461 462 if (!mm_in_asid_transition(mm)) 463 return; 464 465 for_each_cpu(cpu, mm_cpumask(mm)) { 466 /* 467 * The remote CPU is context switching. Wait for that to 468 * finish, to catch the unlikely case of it switching to 469 * the target mm with an out of date ASID. 470 */ 471 while (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) == LOADED_MM_SWITCHING) 472 cpu_relax(); 473 474 if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) != mm) 475 continue; 476 477 /* 478 * If at least one CPU is not using the global ASID yet, 479 * send a TLB flush IPI. The IPI should cause stragglers 480 * to transition soon. 481 * 482 * This can race with the CPU switching to another task; 483 * that results in a (harmless) extra IPI. 484 */ 485 if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm_asid, cpu)) != bc_asid) { 486 flush_tlb_multi(mm_cpumask(info->mm), info); 487 return; 488 } 489 } 490 491 /* All the CPUs running this process are using the global ASID. */ 492 mm_clear_asid_transition(mm); 493 } 494 495 static void broadcast_tlb_flush(struct flush_tlb_info *info) 496 { 497 bool pmd = info->stride_shift == PMD_SHIFT; 498 unsigned long asid = mm_global_asid(info->mm); 499 unsigned long addr = info->start; 500 501 /* 502 * TLB flushes with INVLPGB are kicked off asynchronously. 503 * The inc_mm_tlb_gen() guarantees page table updates are done 504 * before these TLB flushes happen. 505 */ 506 if (info->end == TLB_FLUSH_ALL) { 507 invlpgb_flush_single_pcid_nosync(kern_pcid(asid)); 508 /* Do any CPUs supporting INVLPGB need PTI? */ 509 if (cpu_feature_enabled(X86_FEATURE_PTI)) 510 invlpgb_flush_single_pcid_nosync(user_pcid(asid)); 511 } else do { 512 unsigned long nr = 1; 513 514 if (info->stride_shift <= PMD_SHIFT) { 515 nr = (info->end - addr) >> info->stride_shift; 516 nr = clamp_val(nr, 1, invlpgb_count_max); 517 } 518 519 invlpgb_flush_user_nr_nosync(kern_pcid(asid), addr, nr, pmd); 520 if (cpu_feature_enabled(X86_FEATURE_PTI)) 521 invlpgb_flush_user_nr_nosync(user_pcid(asid), addr, nr, pmd); 522 523 addr += nr << info->stride_shift; 524 } while (addr < info->end); 525 526 finish_asid_transition(info); 527 528 /* Wait for the INVLPGBs kicked off above to finish. */ 529 __tlbsync(); 530 } 531 532 /* 533 * Given an ASID, flush the corresponding user ASID. We can delay this 534 * until the next time we switch to it. 535 * 536 * See SWITCH_TO_USER_CR3. 537 */ 538 static inline void invalidate_user_asid(u16 asid) 539 { 540 /* There is no user ASID if address space separation is off */ 541 if (!IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION)) 542 return; 543 544 /* 545 * We only have a single ASID if PCID is off and the CR3 546 * write will have flushed it. 547 */ 548 if (!cpu_feature_enabled(X86_FEATURE_PCID)) 549 return; 550 551 if (!static_cpu_has(X86_FEATURE_PTI)) 552 return; 553 554 __set_bit(kern_pcid(asid), 555 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask)); 556 } 557 558 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam, 559 bool need_flush) 560 { 561 unsigned long new_mm_cr3; 562 563 if (need_flush) { 564 invalidate_user_asid(new_asid); 565 new_mm_cr3 = build_cr3(pgdir, new_asid, lam); 566 } else { 567 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam); 568 } 569 570 /* 571 * Caution: many callers of this function expect 572 * that load_cr3() is serializing and orders TLB 573 * fills with respect to the mm_cpumask writes. 574 */ 575 write_cr3(new_mm_cr3); 576 } 577 578 void leave_mm(void) 579 { 580 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 581 582 /* 583 * It's plausible that we're in lazy TLB mode while our mm is init_mm. 584 * If so, our callers still expect us to flush the TLB, but there 585 * aren't any user TLB entries in init_mm to worry about. 586 * 587 * This needs to happen before any other sanity checks due to 588 * intel_idle's shenanigans. 589 */ 590 if (loaded_mm == &init_mm) 591 return; 592 593 /* Warn if we're not lazy. */ 594 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy)); 595 596 switch_mm(NULL, &init_mm, NULL); 597 } 598 EXPORT_SYMBOL_GPL(leave_mm); 599 600 void switch_mm(struct mm_struct *prev, struct mm_struct *next, 601 struct task_struct *tsk) 602 { 603 unsigned long flags; 604 605 local_irq_save(flags); 606 switch_mm_irqs_off(NULL, next, tsk); 607 local_irq_restore(flags); 608 } 609 610 /* 611 * Invoked from return to user/guest by a task that opted-in to L1D 612 * flushing but ended up running on an SMT enabled core due to wrong 613 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush 614 * contract which this task requested. 615 */ 616 static void l1d_flush_force_sigbus(struct callback_head *ch) 617 { 618 force_sig(SIGBUS); 619 } 620 621 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm, 622 struct task_struct *next) 623 { 624 /* Flush L1D if the outgoing task requests it */ 625 if (prev_mm & LAST_USER_MM_L1D_FLUSH) 626 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 627 628 /* Check whether the incoming task opted in for L1D flush */ 629 if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH))) 630 return; 631 632 /* 633 * Validate that it is not running on an SMT sibling as this would 634 * make the exercise pointless because the siblings share L1D. If 635 * it runs on a SMT sibling, notify it with SIGBUS on return to 636 * user/guest 637 */ 638 if (this_cpu_read(cpu_info.smt_active)) { 639 clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH); 640 next->l1d_flush_kill.func = l1d_flush_force_sigbus; 641 task_work_add(next, &next->l1d_flush_kill, TWA_RESUME); 642 } 643 } 644 645 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next) 646 { 647 unsigned long next_tif = read_task_thread_flags(next); 648 unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK; 649 650 /* 651 * Ensure that the bit shift above works as expected and the two flags 652 * end up in bit 0 and 1. 653 */ 654 BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1); 655 656 return (unsigned long)next->mm | spec_bits; 657 } 658 659 static void cond_mitigation(struct task_struct *next) 660 { 661 unsigned long prev_mm, next_mm; 662 663 if (!next || !next->mm) 664 return; 665 666 next_mm = mm_mangle_tif_spec_bits(next); 667 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec); 668 669 /* 670 * Avoid user/user BTB poisoning by flushing the branch predictor 671 * when switching between processes. This stops one process from 672 * doing Spectre-v2 attacks on another. 673 * 674 * Both, the conditional and the always IBPB mode use the mm 675 * pointer to avoid the IBPB when switching between tasks of the 676 * same process. Using the mm pointer instead of mm->context.ctx_id 677 * opens a hypothetical hole vs. mm_struct reuse, which is more or 678 * less impossible to control by an attacker. Aside of that it 679 * would only affect the first schedule so the theoretically 680 * exposed data is not really interesting. 681 */ 682 if (static_branch_likely(&switch_mm_cond_ibpb)) { 683 /* 684 * This is a bit more complex than the always mode because 685 * it has to handle two cases: 686 * 687 * 1) Switch from a user space task (potential attacker) 688 * which has TIF_SPEC_IB set to a user space task 689 * (potential victim) which has TIF_SPEC_IB not set. 690 * 691 * 2) Switch from a user space task (potential attacker) 692 * which has TIF_SPEC_IB not set to a user space task 693 * (potential victim) which has TIF_SPEC_IB set. 694 * 695 * This could be done by unconditionally issuing IBPB when 696 * a task which has TIF_SPEC_IB set is either scheduled in 697 * or out. Though that results in two flushes when: 698 * 699 * - the same user space task is scheduled out and later 700 * scheduled in again and only a kernel thread ran in 701 * between. 702 * 703 * - a user space task belonging to the same process is 704 * scheduled in after a kernel thread ran in between 705 * 706 * - a user space task belonging to the same process is 707 * scheduled in immediately. 708 * 709 * Optimize this with reasonably small overhead for the 710 * above cases. Mangle the TIF_SPEC_IB bit into the mm 711 * pointer of the incoming task which is stored in 712 * cpu_tlbstate.last_user_mm_spec for comparison. 713 * 714 * Issue IBPB only if the mm's are different and one or 715 * both have the IBPB bit set. 716 */ 717 if (next_mm != prev_mm && 718 (next_mm | prev_mm) & LAST_USER_MM_IBPB) 719 indirect_branch_prediction_barrier(); 720 } 721 722 if (static_branch_unlikely(&switch_mm_always_ibpb)) { 723 /* 724 * Only flush when switching to a user space task with a 725 * different context than the user space task which ran 726 * last on this CPU. 727 */ 728 if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != (unsigned long)next->mm) 729 indirect_branch_prediction_barrier(); 730 } 731 732 if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) { 733 /* 734 * Flush L1D when the outgoing task requested it and/or 735 * check whether the incoming task requested L1D flushing 736 * and ended up on an SMT sibling. 737 */ 738 if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH)) 739 l1d_flush_evaluate(prev_mm, next_mm, next); 740 } 741 742 this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm); 743 } 744 745 #ifdef CONFIG_PERF_EVENTS 746 static inline void cr4_update_pce_mm(struct mm_struct *mm) 747 { 748 if (static_branch_unlikely(&rdpmc_always_available_key) || 749 (!static_branch_unlikely(&rdpmc_never_available_key) && 750 atomic_read(&mm->context.perf_rdpmc_allowed))) { 751 /* 752 * Clear the existing dirty counters to 753 * prevent the leak for an RDPMC task. 754 */ 755 perf_clear_dirty_counters(); 756 cr4_set_bits_irqsoff(X86_CR4_PCE); 757 } else 758 cr4_clear_bits_irqsoff(X86_CR4_PCE); 759 } 760 761 void cr4_update_pce(void *ignored) 762 { 763 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm)); 764 } 765 766 #else 767 static inline void cr4_update_pce_mm(struct mm_struct *mm) { } 768 #endif 769 770 /* 771 * This optimizes when not actually switching mm's. Some architectures use the 772 * 'unused' argument for this optimization, but x86 must use 773 * 'cpu_tlbstate.loaded_mm' instead because it does not always keep 774 * 'current->active_mm' up to date. 775 */ 776 void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next, 777 struct task_struct *tsk) 778 { 779 struct mm_struct *prev = this_cpu_read(cpu_tlbstate.loaded_mm); 780 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 781 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy); 782 unsigned cpu = smp_processor_id(); 783 unsigned long new_lam; 784 u64 next_tlb_gen; 785 bool need_flush; 786 u16 new_asid; 787 788 /* We don't want flush_tlb_func() to run concurrently with us. */ 789 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 790 WARN_ON_ONCE(!irqs_disabled()); 791 792 /* 793 * Verify that CR3 is what we think it is. This will catch 794 * hypothetical buggy code that directly switches to swapper_pg_dir 795 * without going through leave_mm() / switch_mm_irqs_off() or that 796 * does something like write_cr3(read_cr3_pa()). 797 * 798 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3() 799 * isn't free. 800 */ 801 #ifdef CONFIG_DEBUG_VM 802 if (WARN_ON_ONCE(__read_cr3() != build_cr3(prev->pgd, prev_asid, 803 tlbstate_lam_cr3_mask()))) { 804 /* 805 * If we were to BUG here, we'd be very likely to kill 806 * the system so hard that we don't see the call trace. 807 * Try to recover instead by ignoring the error and doing 808 * a global flush to minimize the chance of corruption. 809 * 810 * (This is far from being a fully correct recovery. 811 * Architecturally, the CPU could prefetch something 812 * back into an incorrect ASID slot and leave it there 813 * to cause trouble down the road. It's better than 814 * nothing, though.) 815 */ 816 __flush_tlb_all(); 817 } 818 #endif 819 if (was_lazy) 820 this_cpu_write(cpu_tlbstate_shared.is_lazy, false); 821 822 /* 823 * The membarrier system call requires a full memory barrier and 824 * core serialization before returning to user-space, after 825 * storing to rq->curr, when changing mm. This is because 826 * membarrier() sends IPIs to all CPUs that are in the target mm 827 * to make them issue memory barriers. However, if another CPU 828 * switches to/from the target mm concurrently with 829 * membarrier(), it can cause that CPU not to receive an IPI 830 * when it really should issue a memory barrier. Writing to CR3 831 * provides that full memory barrier and core serializing 832 * instruction. 833 */ 834 if (prev == next) { 835 /* Not actually switching mm's */ 836 VM_WARN_ON(is_dyn_asid(prev_asid) && 837 this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) != 838 next->context.ctx_id); 839 840 /* 841 * If this races with another thread that enables lam, 'new_lam' 842 * might not match tlbstate_lam_cr3_mask(). 843 */ 844 845 /* 846 * Even in lazy TLB mode, the CPU should stay set in the 847 * mm_cpumask. The TLB shootdown code can figure out from 848 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI. 849 */ 850 if (IS_ENABLED(CONFIG_DEBUG_VM) && WARN_ON_ONCE(prev != &init_mm && 851 !cpumask_test_cpu(cpu, mm_cpumask(next)))) 852 cpumask_set_cpu(cpu, mm_cpumask(next)); 853 854 /* Check if the current mm is transitioning to a global ASID */ 855 if (mm_needs_global_asid(next, prev_asid)) { 856 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 857 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 858 goto reload_tlb; 859 } 860 861 /* 862 * Broadcast TLB invalidation keeps this ASID up to date 863 * all the time. 864 */ 865 if (is_global_asid(prev_asid)) 866 return; 867 868 /* 869 * If the CPU is not in lazy TLB mode, we are just switching 870 * from one thread in a process to another thread in the same 871 * process. No TLB flush required. 872 */ 873 if (!was_lazy) 874 return; 875 876 /* 877 * Read the tlb_gen to check whether a flush is needed. 878 * If the TLB is up to date, just use it. 879 * The barrier synchronizes with the tlb_gen increment in 880 * the TLB shootdown code. 881 */ 882 smp_mb(); 883 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 884 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) == 885 next_tlb_gen) 886 return; 887 888 /* 889 * TLB contents went out of date while we were in lazy 890 * mode. Fall through to the TLB switching code below. 891 */ 892 new_asid = prev_asid; 893 need_flush = true; 894 } else { 895 /* 896 * Apply process to process speculation vulnerability 897 * mitigations if applicable. 898 */ 899 cond_mitigation(tsk); 900 901 /* 902 * Let nmi_uaccess_okay() and finish_asid_transition() 903 * know that CR3 is changing. 904 */ 905 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING); 906 barrier(); 907 908 /* 909 * Leave this CPU in prev's mm_cpumask. Atomic writes to 910 * mm_cpumask can be expensive under contention. The CPU 911 * will be removed lazily at TLB flush time. 912 */ 913 VM_WARN_ON_ONCE(prev != &init_mm && !cpumask_test_cpu(cpu, 914 mm_cpumask(prev))); 915 916 /* Start receiving IPIs and then read tlb_gen (and LAM below) */ 917 if (next != &init_mm && !cpumask_test_cpu(cpu, mm_cpumask(next))) 918 cpumask_set_cpu(cpu, mm_cpumask(next)); 919 next_tlb_gen = atomic64_read(&next->context.tlb_gen); 920 921 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); 922 } 923 924 reload_tlb: 925 new_lam = mm_lam_cr3_mask(next); 926 if (need_flush) { 927 VM_WARN_ON_ONCE(is_global_asid(new_asid)); 928 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id); 929 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen); 930 load_new_mm_cr3(next->pgd, new_asid, new_lam, true); 931 932 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 933 } else { 934 /* The new ASID is already up to date. */ 935 load_new_mm_cr3(next->pgd, new_asid, new_lam, false); 936 937 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0); 938 } 939 940 /* Make sure we write CR3 before loaded_mm. */ 941 barrier(); 942 943 this_cpu_write(cpu_tlbstate.loaded_mm, next); 944 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid); 945 cpu_tlbstate_update_lam(new_lam, mm_untag_mask(next)); 946 947 if (next != prev) { 948 cr4_update_pce_mm(next); 949 switch_ldt(prev, next); 950 } 951 } 952 953 /* 954 * Please ignore the name of this function. It should be called 955 * switch_to_kernel_thread(). 956 * 957 * enter_lazy_tlb() is a hint from the scheduler that we are entering a 958 * kernel thread or other context without an mm. Acceptable implementations 959 * include doing nothing whatsoever, switching to init_mm, or various clever 960 * lazy tricks to try to minimize TLB flushes. 961 * 962 * The scheduler reserves the right to call enter_lazy_tlb() several times 963 * in a row. It will notify us that we're going back to a real mm by 964 * calling switch_mm_irqs_off(). 965 */ 966 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 967 { 968 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm) 969 return; 970 971 this_cpu_write(cpu_tlbstate_shared.is_lazy, true); 972 } 973 974 /* 975 * Call this when reinitializing a CPU. It fixes the following potential 976 * problems: 977 * 978 * - The ASID changed from what cpu_tlbstate thinks it is (most likely 979 * because the CPU was taken down and came back up with CR3's PCID 980 * bits clear. CPU hotplug can do this. 981 * 982 * - The TLB contains junk in slots corresponding to inactive ASIDs. 983 * 984 * - The CPU went so far out to lunch that it may have missed a TLB 985 * flush. 986 */ 987 void initialize_tlbstate_and_flush(void) 988 { 989 int i; 990 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm); 991 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen); 992 unsigned long lam = mm_lam_cr3_mask(mm); 993 unsigned long cr3 = __read_cr3(); 994 995 /* Assert that CR3 already references the right mm. */ 996 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd)); 997 998 /* LAM expected to be disabled */ 999 WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57)); 1000 WARN_ON(lam); 1001 1002 /* 1003 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization 1004 * doesn't work like other CR4 bits because it can only be set from 1005 * long mode.) 1006 */ 1007 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) && 1008 !(cr4_read_shadow() & X86_CR4_PCIDE)); 1009 1010 /* Disable LAM, force ASID 0 and force a TLB flush. */ 1011 write_cr3(build_cr3(mm->pgd, 0, 0)); 1012 1013 /* Reinitialize tlbstate. */ 1014 this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT); 1015 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0); 1016 this_cpu_write(cpu_tlbstate.next_asid, 1); 1017 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id); 1018 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen); 1019 cpu_tlbstate_update_lam(lam, mm_untag_mask(mm)); 1020 1021 for (i = 1; i < TLB_NR_DYN_ASIDS; i++) 1022 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0); 1023 } 1024 1025 /* 1026 * flush_tlb_func()'s memory ordering requirement is that any 1027 * TLB fills that happen after we flush the TLB are ordered after we 1028 * read active_mm's tlb_gen. We don't need any explicit barriers 1029 * because all x86 flush operations are serializing and the 1030 * atomic64_read operation won't be reordered by the compiler. 1031 */ 1032 static void flush_tlb_func(void *info) 1033 { 1034 /* 1035 * We have three different tlb_gen values in here. They are: 1036 * 1037 * - mm_tlb_gen: the latest generation. 1038 * - local_tlb_gen: the generation that this CPU has already caught 1039 * up to. 1040 * - f->new_tlb_gen: the generation that the requester of the flush 1041 * wants us to catch up to. 1042 */ 1043 const struct flush_tlb_info *f = info; 1044 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1045 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 1046 u64 local_tlb_gen; 1047 bool local = smp_processor_id() == f->initiating_cpu; 1048 unsigned long nr_invalidate = 0; 1049 u64 mm_tlb_gen; 1050 1051 /* This code cannot presently handle being reentered. */ 1052 VM_WARN_ON(!irqs_disabled()); 1053 1054 if (!local) { 1055 inc_irq_stat(irq_tlb_count); 1056 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 1057 } 1058 1059 /* The CPU was left in the mm_cpumask of the target mm. Clear it. */ 1060 if (f->mm && f->mm != loaded_mm) { 1061 cpumask_clear_cpu(raw_smp_processor_id(), mm_cpumask(f->mm)); 1062 trace_tlb_flush(TLB_REMOTE_WRONG_CPU, 0); 1063 return; 1064 } 1065 1066 if (unlikely(loaded_mm == &init_mm)) 1067 return; 1068 1069 /* Reload the ASID if transitioning into or out of a global ASID */ 1070 if (mm_needs_global_asid(loaded_mm, loaded_mm_asid)) { 1071 switch_mm_irqs_off(NULL, loaded_mm, NULL); 1072 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 1073 } 1074 1075 /* Broadcast ASIDs are always kept up to date with INVLPGB. */ 1076 if (is_global_asid(loaded_mm_asid)) 1077 return; 1078 1079 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) != 1080 loaded_mm->context.ctx_id); 1081 1082 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) { 1083 /* 1084 * We're in lazy mode. We need to at least flush our 1085 * paging-structure cache to avoid speculatively reading 1086 * garbage into our TLB. Since switching to init_mm is barely 1087 * slower than a minimal flush, just switch to init_mm. 1088 * 1089 * This should be rare, with native_flush_tlb_multi() skipping 1090 * IPIs to lazy TLB mode CPUs. 1091 */ 1092 switch_mm_irqs_off(NULL, &init_mm, NULL); 1093 return; 1094 } 1095 1096 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen); 1097 1098 if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID && 1099 f->new_tlb_gen <= local_tlb_gen)) { 1100 /* 1101 * The TLB is already up to date in respect to f->new_tlb_gen. 1102 * While the core might be still behind mm_tlb_gen, checking 1103 * mm_tlb_gen unnecessarily would have negative caching effects 1104 * so avoid it. 1105 */ 1106 return; 1107 } 1108 1109 /* 1110 * Defer mm_tlb_gen reading as long as possible to avoid cache 1111 * contention. 1112 */ 1113 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen); 1114 1115 if (unlikely(local_tlb_gen == mm_tlb_gen)) { 1116 /* 1117 * There's nothing to do: we're already up to date. This can 1118 * happen if two concurrent flushes happen -- the first flush to 1119 * be handled can catch us all the way up, leaving no work for 1120 * the second flush. 1121 */ 1122 goto done; 1123 } 1124 1125 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); 1126 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen); 1127 1128 /* 1129 * If we get to this point, we know that our TLB is out of date. 1130 * This does not strictly imply that we need to flush (it's 1131 * possible that f->new_tlb_gen <= local_tlb_gen), but we're 1132 * going to need to flush in the very near future, so we might 1133 * as well get it over with. 1134 * 1135 * The only question is whether to do a full or partial flush. 1136 * 1137 * We do a partial flush if requested and two extra conditions 1138 * are met: 1139 * 1140 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that 1141 * we've always done all needed flushes to catch up to 1142 * local_tlb_gen. If, for example, local_tlb_gen == 2 and 1143 * f->new_tlb_gen == 3, then we know that the flush needed to bring 1144 * us up to date for tlb_gen 3 is the partial flush we're 1145 * processing. 1146 * 1147 * As an example of why this check is needed, suppose that there 1148 * are two concurrent flushes. The first is a full flush that 1149 * changes context.tlb_gen from 1 to 2. The second is a partial 1150 * flush that changes context.tlb_gen from 2 to 3. If they get 1151 * processed on this CPU in reverse order, we'll see 1152 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL. 1153 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to 1154 * 3, we'd be break the invariant: we'd update local_tlb_gen above 1155 * 1 without the full flush that's needed for tlb_gen 2. 1156 * 1157 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization. 1158 * Partial TLB flushes are not all that much cheaper than full TLB 1159 * flushes, so it seems unlikely that it would be a performance win 1160 * to do a partial flush if that won't bring our TLB fully up to 1161 * date. By doing a full flush instead, we can increase 1162 * local_tlb_gen all the way to mm_tlb_gen and we can probably 1163 * avoid another flush in the very near future. 1164 */ 1165 if (f->end != TLB_FLUSH_ALL && 1166 f->new_tlb_gen == local_tlb_gen + 1 && 1167 f->new_tlb_gen == mm_tlb_gen) { 1168 /* Partial flush */ 1169 unsigned long addr = f->start; 1170 1171 /* Partial flush cannot have invalid generations */ 1172 VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID); 1173 1174 /* Partial flush must have valid mm */ 1175 VM_WARN_ON(f->mm == NULL); 1176 1177 nr_invalidate = (f->end - f->start) >> f->stride_shift; 1178 1179 while (addr < f->end) { 1180 flush_tlb_one_user(addr); 1181 addr += 1UL << f->stride_shift; 1182 } 1183 if (local) 1184 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate); 1185 } else { 1186 /* Full flush. */ 1187 nr_invalidate = TLB_FLUSH_ALL; 1188 1189 flush_tlb_local(); 1190 if (local) 1191 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); 1192 } 1193 1194 /* Both paths above update our state to mm_tlb_gen. */ 1195 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen); 1196 1197 /* Tracing is done in a unified manner to reduce the code size */ 1198 done: 1199 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN : 1200 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN : 1201 TLB_LOCAL_MM_SHOOTDOWN, 1202 nr_invalidate); 1203 } 1204 1205 static bool should_flush_tlb(int cpu, void *data) 1206 { 1207 struct flush_tlb_info *info = data; 1208 1209 /* Lazy TLB will get flushed at the next context switch. */ 1210 if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu)) 1211 return false; 1212 1213 /* No mm means kernel memory flush. */ 1214 if (!info->mm) 1215 return true; 1216 1217 /* The target mm is loaded, and the CPU is not lazy. */ 1218 if (per_cpu(cpu_tlbstate.loaded_mm, cpu) == info->mm) 1219 return true; 1220 1221 /* In cpumask, but not the loaded mm? Periodically remove by flushing. */ 1222 if (info->trim_cpumask) 1223 return true; 1224 1225 return false; 1226 } 1227 1228 static bool should_trim_cpumask(struct mm_struct *mm) 1229 { 1230 if (time_after(jiffies, READ_ONCE(mm->context.next_trim_cpumask))) { 1231 WRITE_ONCE(mm->context.next_trim_cpumask, jiffies + HZ); 1232 return true; 1233 } 1234 return false; 1235 } 1236 1237 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared); 1238 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared); 1239 1240 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask, 1241 const struct flush_tlb_info *info) 1242 { 1243 /* 1244 * Do accounting and tracing. Note that there are (and have always been) 1245 * cases in which a remote TLB flush will be traced, but eventually 1246 * would not happen. 1247 */ 1248 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 1249 if (info->end == TLB_FLUSH_ALL) 1250 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL); 1251 else 1252 trace_tlb_flush(TLB_REMOTE_SEND_IPI, 1253 (info->end - info->start) >> PAGE_SHIFT); 1254 1255 /* 1256 * If no page tables were freed, we can skip sending IPIs to 1257 * CPUs in lazy TLB mode. They will flush the CPU themselves 1258 * at the next context switch. 1259 * 1260 * However, if page tables are getting freed, we need to send the 1261 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping 1262 * up on the new contents of what used to be page tables, while 1263 * doing a speculative memory access. 1264 */ 1265 if (info->freed_tables || mm_in_asid_transition(info->mm)) 1266 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true); 1267 else 1268 on_each_cpu_cond_mask(should_flush_tlb, flush_tlb_func, 1269 (void *)info, 1, cpumask); 1270 } 1271 1272 void flush_tlb_multi(const struct cpumask *cpumask, 1273 const struct flush_tlb_info *info) 1274 { 1275 __flush_tlb_multi(cpumask, info); 1276 } 1277 1278 /* 1279 * See Documentation/arch/x86/tlb.rst for details. We choose 33 1280 * because it is large enough to cover the vast majority (at 1281 * least 95%) of allocations, and is small enough that we are 1282 * confident it will not cause too much overhead. Each single 1283 * flush is about 100 ns, so this caps the maximum overhead at 1284 * _about_ 3,000 ns. 1285 * 1286 * This is in units of pages. 1287 */ 1288 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33; 1289 1290 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info); 1291 1292 #ifdef CONFIG_DEBUG_VM 1293 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx); 1294 #endif 1295 1296 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm, 1297 unsigned long start, unsigned long end, 1298 unsigned int stride_shift, bool freed_tables, 1299 u64 new_tlb_gen) 1300 { 1301 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info); 1302 1303 #ifdef CONFIG_DEBUG_VM 1304 /* 1305 * Ensure that the following code is non-reentrant and flush_tlb_info 1306 * is not overwritten. This means no TLB flushing is initiated by 1307 * interrupt handlers and machine-check exception handlers. 1308 */ 1309 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1); 1310 #endif 1311 1312 /* 1313 * If the number of flushes is so large that a full flush 1314 * would be faster, do a full flush. 1315 */ 1316 if ((end - start) >> stride_shift > tlb_single_page_flush_ceiling) { 1317 start = 0; 1318 end = TLB_FLUSH_ALL; 1319 } 1320 1321 info->start = start; 1322 info->end = end; 1323 info->mm = mm; 1324 info->stride_shift = stride_shift; 1325 info->freed_tables = freed_tables; 1326 info->new_tlb_gen = new_tlb_gen; 1327 info->initiating_cpu = smp_processor_id(); 1328 info->trim_cpumask = 0; 1329 1330 return info; 1331 } 1332 1333 static void put_flush_tlb_info(void) 1334 { 1335 #ifdef CONFIG_DEBUG_VM 1336 /* Complete reentrancy prevention checks */ 1337 barrier(); 1338 this_cpu_dec(flush_tlb_info_idx); 1339 #endif 1340 } 1341 1342 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, 1343 unsigned long end, unsigned int stride_shift, 1344 bool freed_tables) 1345 { 1346 struct flush_tlb_info *info; 1347 int cpu = get_cpu(); 1348 u64 new_tlb_gen; 1349 1350 /* This is also a barrier that synchronizes with switch_mm(). */ 1351 new_tlb_gen = inc_mm_tlb_gen(mm); 1352 1353 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables, 1354 new_tlb_gen); 1355 1356 /* 1357 * flush_tlb_multi() is not optimized for the common case in which only 1358 * a local TLB flush is needed. Optimize this use-case by calling 1359 * flush_tlb_func_local() directly in this case. 1360 */ 1361 if (mm_global_asid(mm)) { 1362 broadcast_tlb_flush(info); 1363 } else if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) { 1364 info->trim_cpumask = should_trim_cpumask(mm); 1365 flush_tlb_multi(mm_cpumask(mm), info); 1366 consider_global_asid(mm); 1367 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) { 1368 lockdep_assert_irqs_enabled(); 1369 local_irq_disable(); 1370 flush_tlb_func(info); 1371 local_irq_enable(); 1372 } 1373 1374 put_flush_tlb_info(); 1375 put_cpu(); 1376 mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end); 1377 } 1378 1379 static void do_flush_tlb_all(void *info) 1380 { 1381 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 1382 __flush_tlb_all(); 1383 } 1384 1385 void flush_tlb_all(void) 1386 { 1387 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH); 1388 1389 /* First try (faster) hardware-assisted TLB invalidation. */ 1390 if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) 1391 invlpgb_flush_all(); 1392 else 1393 /* Fall back to the IPI-based invalidation. */ 1394 on_each_cpu(do_flush_tlb_all, NULL, 1); 1395 } 1396 1397 /* Flush an arbitrarily large range of memory with INVLPGB. */ 1398 static void invlpgb_kernel_range_flush(struct flush_tlb_info *info) 1399 { 1400 unsigned long addr, nr; 1401 1402 for (addr = info->start; addr < info->end; addr += nr << PAGE_SHIFT) { 1403 nr = (info->end - addr) >> PAGE_SHIFT; 1404 1405 /* 1406 * INVLPGB has a limit on the size of ranges it can 1407 * flush. Break up large flushes. 1408 */ 1409 nr = clamp_val(nr, 1, invlpgb_count_max); 1410 1411 invlpgb_flush_addr_nosync(addr, nr); 1412 } 1413 __tlbsync(); 1414 } 1415 1416 static void do_kernel_range_flush(void *info) 1417 { 1418 struct flush_tlb_info *f = info; 1419 unsigned long addr; 1420 1421 /* flush range by one by one 'invlpg' */ 1422 for (addr = f->start; addr < f->end; addr += PAGE_SIZE) 1423 flush_tlb_one_kernel(addr); 1424 } 1425 1426 static void kernel_tlb_flush_all(struct flush_tlb_info *info) 1427 { 1428 if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) 1429 invlpgb_flush_all(); 1430 else 1431 on_each_cpu(do_flush_tlb_all, NULL, 1); 1432 } 1433 1434 static void kernel_tlb_flush_range(struct flush_tlb_info *info) 1435 { 1436 if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) 1437 invlpgb_kernel_range_flush(info); 1438 else 1439 on_each_cpu(do_kernel_range_flush, info, 1); 1440 } 1441 1442 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 1443 { 1444 struct flush_tlb_info *info; 1445 1446 guard(preempt)(); 1447 1448 info = get_flush_tlb_info(NULL, start, end, PAGE_SHIFT, false, 1449 TLB_GENERATION_INVALID); 1450 1451 if (info->end == TLB_FLUSH_ALL) 1452 kernel_tlb_flush_all(info); 1453 else 1454 kernel_tlb_flush_range(info); 1455 1456 put_flush_tlb_info(); 1457 } 1458 1459 /* 1460 * This can be used from process context to figure out what the value of 1461 * CR3 is without needing to do a (slow) __read_cr3(). 1462 * 1463 * It's intended to be used for code like KVM that sneakily changes CR3 1464 * and needs to restore it. It needs to be used very carefully. 1465 */ 1466 unsigned long __get_current_cr3_fast(void) 1467 { 1468 unsigned long cr3 = 1469 build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, 1470 this_cpu_read(cpu_tlbstate.loaded_mm_asid), 1471 tlbstate_lam_cr3_mask()); 1472 1473 /* For now, be very restrictive about when this can be called. */ 1474 VM_WARN_ON(in_nmi() || preemptible()); 1475 1476 VM_BUG_ON(cr3 != __read_cr3()); 1477 return cr3; 1478 } 1479 EXPORT_SYMBOL_GPL(__get_current_cr3_fast); 1480 1481 /* 1482 * Flush one page in the kernel mapping 1483 */ 1484 void flush_tlb_one_kernel(unsigned long addr) 1485 { 1486 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); 1487 1488 /* 1489 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its 1490 * paravirt equivalent. Even with PCID, this is sufficient: we only 1491 * use PCID if we also use global PTEs for the kernel mapping, and 1492 * INVLPG flushes global translations across all address spaces. 1493 * 1494 * If PTI is on, then the kernel is mapped with non-global PTEs, and 1495 * __flush_tlb_one_user() will flush the given address for the current 1496 * kernel address space and for its usermode counterpart, but it does 1497 * not flush it for other address spaces. 1498 */ 1499 flush_tlb_one_user(addr); 1500 1501 if (!static_cpu_has(X86_FEATURE_PTI)) 1502 return; 1503 1504 /* 1505 * See above. We need to propagate the flush to all other address 1506 * spaces. In principle, we only need to propagate it to kernelmode 1507 * address spaces, but the extra bookkeeping we would need is not 1508 * worth it. 1509 */ 1510 this_cpu_write(cpu_tlbstate.invalidate_other, true); 1511 } 1512 1513 /* 1514 * Flush one page in the user mapping 1515 */ 1516 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr) 1517 { 1518 u32 loaded_mm_asid; 1519 bool cpu_pcide; 1520 1521 /* Flush 'addr' from the kernel PCID: */ 1522 invlpg(addr); 1523 1524 /* If PTI is off there is no user PCID and nothing to flush. */ 1525 if (!static_cpu_has(X86_FEATURE_PTI)) 1526 return; 1527 1528 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid); 1529 cpu_pcide = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE; 1530 1531 /* 1532 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0. Check 1533 * 'cpu_pcide' to ensure that *this* CPU will not trigger those 1534 * #GP's even if called before CR4.PCIDE has been initialized. 1535 */ 1536 if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide) 1537 invpcid_flush_one(user_pcid(loaded_mm_asid), addr); 1538 else 1539 invalidate_user_asid(loaded_mm_asid); 1540 } 1541 1542 void flush_tlb_one_user(unsigned long addr) 1543 { 1544 __flush_tlb_one_user(addr); 1545 } 1546 1547 /* 1548 * Flush everything 1549 */ 1550 STATIC_NOPV void native_flush_tlb_global(void) 1551 { 1552 unsigned long flags; 1553 1554 if (static_cpu_has(X86_FEATURE_INVPCID)) { 1555 /* 1556 * Using INVPCID is considerably faster than a pair of writes 1557 * to CR4 sandwiched inside an IRQ flag save/restore. 1558 * 1559 * Note, this works with CR4.PCIDE=0 or 1. 1560 */ 1561 invpcid_flush_all(); 1562 return; 1563 } 1564 1565 /* 1566 * Read-modify-write to CR4 - protect it from preemption and 1567 * from interrupts. (Use the raw variant because this code can 1568 * be called from deep inside debugging code.) 1569 */ 1570 raw_local_irq_save(flags); 1571 1572 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4)); 1573 1574 raw_local_irq_restore(flags); 1575 } 1576 1577 /* 1578 * Flush the entire current user mapping 1579 */ 1580 STATIC_NOPV void native_flush_tlb_local(void) 1581 { 1582 /* 1583 * Preemption or interrupts must be disabled to protect the access 1584 * to the per CPU variable and to prevent being preempted between 1585 * read_cr3() and write_cr3(). 1586 */ 1587 WARN_ON_ONCE(preemptible()); 1588 1589 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid)); 1590 1591 /* If current->mm == NULL then the read_cr3() "borrows" an mm */ 1592 native_write_cr3(__native_read_cr3()); 1593 } 1594 1595 void flush_tlb_local(void) 1596 { 1597 __flush_tlb_local(); 1598 } 1599 1600 /* 1601 * Flush everything 1602 */ 1603 void __flush_tlb_all(void) 1604 { 1605 /* 1606 * This is to catch users with enabled preemption and the PGE feature 1607 * and don't trigger the warning in __native_flush_tlb(). 1608 */ 1609 VM_WARN_ON_ONCE(preemptible()); 1610 1611 if (cpu_feature_enabled(X86_FEATURE_PGE)) { 1612 __flush_tlb_global(); 1613 } else { 1614 /* 1615 * !PGE -> !PCID (setup_pcid()), thus every flush is total. 1616 */ 1617 flush_tlb_local(); 1618 } 1619 } 1620 EXPORT_SYMBOL_GPL(__flush_tlb_all); 1621 1622 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch) 1623 { 1624 struct flush_tlb_info *info; 1625 1626 int cpu = get_cpu(); 1627 1628 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 1629 TLB_GENERATION_INVALID); 1630 /* 1631 * flush_tlb_multi() is not optimized for the common case in which only 1632 * a local TLB flush is needed. Optimize this use-case by calling 1633 * flush_tlb_func_local() directly in this case. 1634 */ 1635 if (cpu_feature_enabled(X86_FEATURE_INVLPGB) && batch->unmapped_pages) { 1636 invlpgb_flush_all_nonglobals(); 1637 batch->unmapped_pages = false; 1638 } else if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) { 1639 flush_tlb_multi(&batch->cpumask, info); 1640 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) { 1641 lockdep_assert_irqs_enabled(); 1642 local_irq_disable(); 1643 flush_tlb_func(info); 1644 local_irq_enable(); 1645 } 1646 1647 cpumask_clear(&batch->cpumask); 1648 1649 put_flush_tlb_info(); 1650 put_cpu(); 1651 } 1652 1653 /* 1654 * Blindly accessing user memory from NMI context can be dangerous 1655 * if we're in the middle of switching the current user task or 1656 * switching the loaded mm. It can also be dangerous if we 1657 * interrupted some kernel code that was temporarily using a 1658 * different mm. 1659 */ 1660 bool nmi_uaccess_okay(void) 1661 { 1662 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm); 1663 struct mm_struct *current_mm = current->mm; 1664 1665 VM_WARN_ON_ONCE(!loaded_mm); 1666 1667 /* 1668 * The condition we want to check is 1669 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though, 1670 * if we're running in a VM with shadow paging, and nmi_uaccess_okay() 1671 * is supposed to be reasonably fast. 1672 * 1673 * Instead, we check the almost equivalent but somewhat conservative 1674 * condition below, and we rely on the fact that switch_mm_irqs_off() 1675 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3. 1676 */ 1677 if (loaded_mm != current_mm) 1678 return false; 1679 1680 VM_WARN_ON_ONCE(__pa(current_mm->pgd) != read_cr3_pa()); 1681 1682 return true; 1683 } 1684 1685 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf, 1686 size_t count, loff_t *ppos) 1687 { 1688 char buf[32]; 1689 unsigned int len; 1690 1691 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling); 1692 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 1693 } 1694 1695 static ssize_t tlbflush_write_file(struct file *file, 1696 const char __user *user_buf, size_t count, loff_t *ppos) 1697 { 1698 char buf[32]; 1699 ssize_t len; 1700 int ceiling; 1701 1702 len = min(count, sizeof(buf) - 1); 1703 if (copy_from_user(buf, user_buf, len)) 1704 return -EFAULT; 1705 1706 buf[len] = '\0'; 1707 if (kstrtoint(buf, 0, &ceiling)) 1708 return -EINVAL; 1709 1710 if (ceiling < 0) 1711 return -EINVAL; 1712 1713 tlb_single_page_flush_ceiling = ceiling; 1714 return count; 1715 } 1716 1717 static const struct file_operations fops_tlbflush = { 1718 .read = tlbflush_read_file, 1719 .write = tlbflush_write_file, 1720 .llseek = default_llseek, 1721 }; 1722 1723 static int __init create_tlb_single_page_flush_ceiling(void) 1724 { 1725 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR, 1726 arch_debugfs_dir, NULL, &fops_tlbflush); 1727 return 0; 1728 } 1729 late_initcall(create_tlb_single_page_flush_ceiling); 1730