1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 94 /* 95 * Note, kvm_caps fields should *never* have default values, all fields must be 96 * recomputed from scratch during vendor module load, e.g. to account for a 97 * vendor module being reloaded with different module parameters. 98 */ 99 struct kvm_caps kvm_caps __read_mostly; 100 EXPORT_SYMBOL_GPL(kvm_caps); 101 102 struct kvm_host_values kvm_host __read_mostly; 103 EXPORT_SYMBOL_GPL(kvm_host); 104 105 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 106 107 #define emul_to_vcpu(ctxt) \ 108 ((struct kvm_vcpu *)(ctxt)->vcpu) 109 110 /* EFER defaults: 111 * - enable syscall per default because its emulated by KVM 112 * - enable LME and LMA per default on 64 bit KVM 113 */ 114 #ifdef CONFIG_X86_64 115 static 116 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 117 #else 118 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 119 #endif 120 121 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 122 123 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 124 125 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 126 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 127 128 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 129 static void process_nmi(struct kvm_vcpu *vcpu); 130 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 131 static void store_regs(struct kvm_vcpu *vcpu); 132 static int sync_regs(struct kvm_vcpu *vcpu); 133 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 134 135 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 136 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 137 138 static DEFINE_MUTEX(vendor_module_lock); 139 struct kvm_x86_ops kvm_x86_ops __read_mostly; 140 141 #define KVM_X86_OP(func) \ 142 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 143 *(((struct kvm_x86_ops *)0)->func)); 144 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 145 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 146 #include <asm/kvm-x86-ops.h> 147 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 148 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 149 150 static bool __read_mostly ignore_msrs = 0; 151 module_param(ignore_msrs, bool, 0644); 152 153 bool __read_mostly report_ignored_msrs = true; 154 module_param(report_ignored_msrs, bool, 0644); 155 EXPORT_SYMBOL_GPL(report_ignored_msrs); 156 157 unsigned int min_timer_period_us = 200; 158 module_param(min_timer_period_us, uint, 0644); 159 160 static bool __read_mostly kvmclock_periodic_sync = true; 161 module_param(kvmclock_periodic_sync, bool, 0444); 162 163 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 164 static u32 __read_mostly tsc_tolerance_ppm = 250; 165 module_param(tsc_tolerance_ppm, uint, 0644); 166 167 static bool __read_mostly vector_hashing = true; 168 module_param(vector_hashing, bool, 0444); 169 170 bool __read_mostly enable_vmware_backdoor = false; 171 module_param(enable_vmware_backdoor, bool, 0444); 172 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 173 174 /* 175 * Flags to manipulate forced emulation behavior (any non-zero value will 176 * enable forced emulation). 177 */ 178 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 179 static int __read_mostly force_emulation_prefix; 180 module_param(force_emulation_prefix, int, 0644); 181 182 int __read_mostly pi_inject_timer = -1; 183 module_param(pi_inject_timer, bint, 0644); 184 185 /* Enable/disable PMU virtualization */ 186 bool __read_mostly enable_pmu = true; 187 EXPORT_SYMBOL_GPL(enable_pmu); 188 module_param(enable_pmu, bool, 0444); 189 190 bool __read_mostly eager_page_split = true; 191 module_param(eager_page_split, bool, 0644); 192 193 /* Enable/disable SMT_RSB bug mitigation */ 194 static bool __read_mostly mitigate_smt_rsb; 195 module_param(mitigate_smt_rsb, bool, 0444); 196 197 /* 198 * Restoring the host value for MSRs that are only consumed when running in 199 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 200 * returns to userspace, i.e. the kernel can run with the guest's value. 201 */ 202 #define KVM_MAX_NR_USER_RETURN_MSRS 16 203 204 struct kvm_user_return_msrs { 205 struct user_return_notifier urn; 206 bool registered; 207 struct kvm_user_return_msr_values { 208 u64 host; 209 u64 curr; 210 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 211 }; 212 213 u32 __read_mostly kvm_nr_uret_msrs; 214 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 215 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 216 static struct kvm_user_return_msrs __percpu *user_return_msrs; 217 218 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 219 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 220 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 221 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 222 223 bool __read_mostly allow_smaller_maxphyaddr = 0; 224 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 225 226 bool __read_mostly enable_apicv = true; 227 EXPORT_SYMBOL_GPL(enable_apicv); 228 229 bool __read_mostly enable_ipiv = true; 230 EXPORT_SYMBOL_GPL(enable_ipiv); 231 232 bool __read_mostly enable_device_posted_irqs = true; 233 EXPORT_SYMBOL_GPL(enable_device_posted_irqs); 234 235 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 236 KVM_GENERIC_VM_STATS(), 237 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 238 STATS_DESC_COUNTER(VM, mmu_pte_write), 239 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 240 STATS_DESC_COUNTER(VM, mmu_flooded), 241 STATS_DESC_COUNTER(VM, mmu_recycled), 242 STATS_DESC_COUNTER(VM, mmu_cache_miss), 243 STATS_DESC_ICOUNTER(VM, mmu_unsync), 244 STATS_DESC_ICOUNTER(VM, pages_4k), 245 STATS_DESC_ICOUNTER(VM, pages_2m), 246 STATS_DESC_ICOUNTER(VM, pages_1g), 247 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 248 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 249 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 250 }; 251 252 const struct kvm_stats_header kvm_vm_stats_header = { 253 .name_size = KVM_STATS_NAME_SIZE, 254 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 255 .id_offset = sizeof(struct kvm_stats_header), 256 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 257 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 258 sizeof(kvm_vm_stats_desc), 259 }; 260 261 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 262 KVM_GENERIC_VCPU_STATS(), 263 STATS_DESC_COUNTER(VCPU, pf_taken), 264 STATS_DESC_COUNTER(VCPU, pf_fixed), 265 STATS_DESC_COUNTER(VCPU, pf_emulate), 266 STATS_DESC_COUNTER(VCPU, pf_spurious), 267 STATS_DESC_COUNTER(VCPU, pf_fast), 268 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 269 STATS_DESC_COUNTER(VCPU, pf_guest), 270 STATS_DESC_COUNTER(VCPU, tlb_flush), 271 STATS_DESC_COUNTER(VCPU, invlpg), 272 STATS_DESC_COUNTER(VCPU, exits), 273 STATS_DESC_COUNTER(VCPU, io_exits), 274 STATS_DESC_COUNTER(VCPU, mmio_exits), 275 STATS_DESC_COUNTER(VCPU, signal_exits), 276 STATS_DESC_COUNTER(VCPU, irq_window_exits), 277 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 278 STATS_DESC_COUNTER(VCPU, l1d_flush), 279 STATS_DESC_COUNTER(VCPU, halt_exits), 280 STATS_DESC_COUNTER(VCPU, request_irq_exits), 281 STATS_DESC_COUNTER(VCPU, irq_exits), 282 STATS_DESC_COUNTER(VCPU, host_state_reload), 283 STATS_DESC_COUNTER(VCPU, fpu_reload), 284 STATS_DESC_COUNTER(VCPU, insn_emulation), 285 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 286 STATS_DESC_COUNTER(VCPU, hypercalls), 287 STATS_DESC_COUNTER(VCPU, irq_injections), 288 STATS_DESC_COUNTER(VCPU, nmi_injections), 289 STATS_DESC_COUNTER(VCPU, req_event), 290 STATS_DESC_COUNTER(VCPU, nested_run), 291 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 292 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 293 STATS_DESC_COUNTER(VCPU, preemption_reported), 294 STATS_DESC_COUNTER(VCPU, preemption_other), 295 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 296 STATS_DESC_COUNTER(VCPU, notify_window_exits), 297 }; 298 299 const struct kvm_stats_header kvm_vcpu_stats_header = { 300 .name_size = KVM_STATS_NAME_SIZE, 301 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 302 .id_offset = sizeof(struct kvm_stats_header), 303 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 304 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 305 sizeof(kvm_vcpu_stats_desc), 306 }; 307 308 static struct kmem_cache *x86_emulator_cache; 309 310 /* 311 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 312 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 313 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 314 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 315 * MSRs that KVM emulates without strictly requiring host support. 316 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 317 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 318 * msrs_to_save and emulated_msrs. 319 */ 320 321 static const u32 msrs_to_save_base[] = { 322 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 323 MSR_STAR, 324 #ifdef CONFIG_X86_64 325 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 326 #endif 327 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 328 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 329 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 330 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 331 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 332 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 333 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 334 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 335 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 336 MSR_IA32_UMWAIT_CONTROL, 337 338 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 339 }; 340 341 static const u32 msrs_to_save_pmu[] = { 342 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 343 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 344 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 345 MSR_CORE_PERF_GLOBAL_CTRL, 346 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 347 348 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */ 349 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 350 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 351 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 352 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 353 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 354 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 355 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 356 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 357 358 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 359 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 360 361 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */ 362 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 363 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 364 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 365 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 366 367 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 368 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 369 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 370 }; 371 372 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 373 ARRAY_SIZE(msrs_to_save_pmu)]; 374 static unsigned num_msrs_to_save; 375 376 static const u32 emulated_msrs_all[] = { 377 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 378 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 379 380 #ifdef CONFIG_KVM_HYPERV 381 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 382 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 383 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 384 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 385 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 386 HV_X64_MSR_RESET, 387 HV_X64_MSR_VP_INDEX, 388 HV_X64_MSR_VP_RUNTIME, 389 HV_X64_MSR_SCONTROL, 390 HV_X64_MSR_STIMER0_CONFIG, 391 HV_X64_MSR_VP_ASSIST_PAGE, 392 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 393 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 394 HV_X64_MSR_SYNDBG_OPTIONS, 395 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 396 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 397 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 398 #endif 399 400 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 401 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 402 403 MSR_IA32_TSC_ADJUST, 404 MSR_IA32_TSC_DEADLINE, 405 MSR_IA32_ARCH_CAPABILITIES, 406 MSR_IA32_PERF_CAPABILITIES, 407 MSR_IA32_MISC_ENABLE, 408 MSR_IA32_MCG_STATUS, 409 MSR_IA32_MCG_CTL, 410 MSR_IA32_MCG_EXT_CTL, 411 MSR_IA32_SMBASE, 412 MSR_SMI_COUNT, 413 MSR_PLATFORM_INFO, 414 MSR_MISC_FEATURES_ENABLES, 415 MSR_AMD64_VIRT_SPEC_CTRL, 416 MSR_AMD64_TSC_RATIO, 417 MSR_IA32_POWER_CTL, 418 MSR_IA32_UCODE_REV, 419 420 /* 421 * KVM always supports the "true" VMX control MSRs, even if the host 422 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 423 * doesn't strictly require them to exist in the host (ignoring that 424 * KVM would refuse to load in the first place if the core set of MSRs 425 * aren't supported). 426 */ 427 MSR_IA32_VMX_BASIC, 428 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 429 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 430 MSR_IA32_VMX_TRUE_EXIT_CTLS, 431 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 432 MSR_IA32_VMX_MISC, 433 MSR_IA32_VMX_CR0_FIXED0, 434 MSR_IA32_VMX_CR4_FIXED0, 435 MSR_IA32_VMX_VMCS_ENUM, 436 MSR_IA32_VMX_PROCBASED_CTLS2, 437 MSR_IA32_VMX_EPT_VPID_CAP, 438 MSR_IA32_VMX_VMFUNC, 439 440 MSR_K7_HWCR, 441 MSR_KVM_POLL_CONTROL, 442 }; 443 444 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 445 static unsigned num_emulated_msrs; 446 447 /* 448 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 449 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 450 * feature MSRs, but are handled separately to allow expedited lookups. 451 */ 452 static const u32 msr_based_features_all_except_vmx[] = { 453 MSR_AMD64_DE_CFG, 454 MSR_IA32_UCODE_REV, 455 MSR_IA32_ARCH_CAPABILITIES, 456 MSR_IA32_PERF_CAPABILITIES, 457 MSR_PLATFORM_INFO, 458 }; 459 460 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 461 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 462 static unsigned int num_msr_based_features; 463 464 /* 465 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 466 * patch, are immutable once the vCPU model is defined. 467 */ 468 static bool kvm_is_immutable_feature_msr(u32 msr) 469 { 470 int i; 471 472 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 473 return true; 474 475 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 476 if (msr == msr_based_features_all_except_vmx[i]) 477 return msr != MSR_IA32_UCODE_REV; 478 } 479 480 return false; 481 } 482 483 static bool kvm_is_advertised_msr(u32 msr_index) 484 { 485 unsigned int i; 486 487 for (i = 0; i < num_msrs_to_save; i++) { 488 if (msrs_to_save[i] == msr_index) 489 return true; 490 } 491 492 for (i = 0; i < num_emulated_msrs; i++) { 493 if (emulated_msrs[i] == msr_index) 494 return true; 495 } 496 497 return false; 498 } 499 500 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data, 501 bool host_initiated); 502 503 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr, 504 u64 *data, bool host_initiated, 505 enum kvm_msr_access rw, 506 msr_access_t msr_access_fn) 507 { 508 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr"; 509 int ret; 510 511 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W); 512 513 /* 514 * Zero the data on read failures to avoid leaking stack data to the 515 * guest and/or userspace, e.g. if the failure is ignored below. 516 */ 517 ret = msr_access_fn(vcpu, msr, data, host_initiated); 518 if (ret && rw == MSR_TYPE_R) 519 *data = 0; 520 521 if (ret != KVM_MSR_RET_UNSUPPORTED) 522 return ret; 523 524 /* 525 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM 526 * advertises to userspace, even if an MSR isn't fully supported. 527 * Simply check that @data is '0', which covers both the write '0' case 528 * and all reads (in which case @data is zeroed on failure; see above). 529 */ 530 if (host_initiated && !*data && kvm_is_advertised_msr(msr)) 531 return 0; 532 533 if (!ignore_msrs) { 534 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 535 op, msr, *data); 536 return ret; 537 } 538 539 if (report_ignored_msrs) 540 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data); 541 542 return 0; 543 } 544 545 static struct kmem_cache *kvm_alloc_emulator_cache(void) 546 { 547 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 548 unsigned int size = sizeof(struct x86_emulate_ctxt); 549 550 return kmem_cache_create_usercopy("x86_emulator", size, 551 __alignof__(struct x86_emulate_ctxt), 552 SLAB_ACCOUNT, useroffset, 553 size - useroffset, NULL); 554 } 555 556 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 557 558 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 559 { 560 int i; 561 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 562 vcpu->arch.apf.gfns[i] = ~0; 563 } 564 565 static void kvm_on_user_return(struct user_return_notifier *urn) 566 { 567 unsigned slot; 568 struct kvm_user_return_msrs *msrs 569 = container_of(urn, struct kvm_user_return_msrs, urn); 570 struct kvm_user_return_msr_values *values; 571 unsigned long flags; 572 573 /* 574 * Disabling irqs at this point since the following code could be 575 * interrupted and executed through kvm_arch_disable_virtualization_cpu() 576 */ 577 local_irq_save(flags); 578 if (msrs->registered) { 579 msrs->registered = false; 580 user_return_notifier_unregister(urn); 581 } 582 local_irq_restore(flags); 583 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 584 values = &msrs->values[slot]; 585 if (values->host != values->curr) { 586 wrmsrq(kvm_uret_msrs_list[slot], values->host); 587 values->curr = values->host; 588 } 589 } 590 } 591 592 static int kvm_probe_user_return_msr(u32 msr) 593 { 594 u64 val; 595 int ret; 596 597 preempt_disable(); 598 ret = rdmsrq_safe(msr, &val); 599 if (ret) 600 goto out; 601 ret = wrmsrq_safe(msr, val); 602 out: 603 preempt_enable(); 604 return ret; 605 } 606 607 int kvm_add_user_return_msr(u32 msr) 608 { 609 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 610 611 if (kvm_probe_user_return_msr(msr)) 612 return -1; 613 614 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 615 return kvm_nr_uret_msrs++; 616 } 617 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 618 619 int kvm_find_user_return_msr(u32 msr) 620 { 621 int i; 622 623 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 624 if (kvm_uret_msrs_list[i] == msr) 625 return i; 626 } 627 return -1; 628 } 629 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 630 631 static void kvm_user_return_msr_cpu_online(void) 632 { 633 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 634 u64 value; 635 int i; 636 637 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 638 rdmsrq_safe(kvm_uret_msrs_list[i], &value); 639 msrs->values[i].host = value; 640 msrs->values[i].curr = value; 641 } 642 } 643 644 static void kvm_user_return_register_notifier(struct kvm_user_return_msrs *msrs) 645 { 646 if (!msrs->registered) { 647 msrs->urn.on_user_return = kvm_on_user_return; 648 user_return_notifier_register(&msrs->urn); 649 msrs->registered = true; 650 } 651 } 652 653 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 654 { 655 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 656 int err; 657 658 value = (value & mask) | (msrs->values[slot].host & ~mask); 659 if (value == msrs->values[slot].curr) 660 return 0; 661 err = wrmsrq_safe(kvm_uret_msrs_list[slot], value); 662 if (err) 663 return 1; 664 665 msrs->values[slot].curr = value; 666 kvm_user_return_register_notifier(msrs); 667 return 0; 668 } 669 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 670 671 void kvm_user_return_msr_update_cache(unsigned int slot, u64 value) 672 { 673 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 674 675 msrs->values[slot].curr = value; 676 kvm_user_return_register_notifier(msrs); 677 } 678 EXPORT_SYMBOL_GPL(kvm_user_return_msr_update_cache); 679 680 static void drop_user_return_notifiers(void) 681 { 682 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 683 684 if (msrs->registered) 685 kvm_on_user_return(&msrs->urn); 686 } 687 688 /* 689 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 690 * 691 * Hardware virtualization extension instructions may fault if a reboot turns 692 * off virtualization while processes are running. Usually after catching the 693 * fault we just panic; during reboot instead the instruction is ignored. 694 */ 695 noinstr void kvm_spurious_fault(void) 696 { 697 /* Fault while not rebooting. We want the trace. */ 698 BUG_ON(!kvm_rebooting); 699 } 700 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 701 702 #define EXCPT_BENIGN 0 703 #define EXCPT_CONTRIBUTORY 1 704 #define EXCPT_PF 2 705 706 static int exception_class(int vector) 707 { 708 switch (vector) { 709 case PF_VECTOR: 710 return EXCPT_PF; 711 case DE_VECTOR: 712 case TS_VECTOR: 713 case NP_VECTOR: 714 case SS_VECTOR: 715 case GP_VECTOR: 716 return EXCPT_CONTRIBUTORY; 717 default: 718 break; 719 } 720 return EXCPT_BENIGN; 721 } 722 723 #define EXCPT_FAULT 0 724 #define EXCPT_TRAP 1 725 #define EXCPT_ABORT 2 726 #define EXCPT_INTERRUPT 3 727 #define EXCPT_DB 4 728 729 static int exception_type(int vector) 730 { 731 unsigned int mask; 732 733 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 734 return EXCPT_INTERRUPT; 735 736 mask = 1 << vector; 737 738 /* 739 * #DBs can be trap-like or fault-like, the caller must check other CPU 740 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 741 */ 742 if (mask & (1 << DB_VECTOR)) 743 return EXCPT_DB; 744 745 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 746 return EXCPT_TRAP; 747 748 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 749 return EXCPT_ABORT; 750 751 /* Reserved exceptions will result in fault */ 752 return EXCPT_FAULT; 753 } 754 755 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 756 struct kvm_queued_exception *ex) 757 { 758 if (!ex->has_payload) 759 return; 760 761 switch (ex->vector) { 762 case DB_VECTOR: 763 /* 764 * "Certain debug exceptions may clear bit 0-3. The 765 * remaining contents of the DR6 register are never 766 * cleared by the processor". 767 */ 768 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 769 /* 770 * In order to reflect the #DB exception payload in guest 771 * dr6, three components need to be considered: active low 772 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 773 * DR6_BS and DR6_BT) 774 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 775 * In the target guest dr6: 776 * FIXED_1 bits should always be set. 777 * Active low bits should be cleared if 1-setting in payload. 778 * Active high bits should be set if 1-setting in payload. 779 * 780 * Note, the payload is compatible with the pending debug 781 * exceptions/exit qualification under VMX, that active_low bits 782 * are active high in payload. 783 * So they need to be flipped for DR6. 784 */ 785 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 786 vcpu->arch.dr6 |= ex->payload; 787 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 788 789 /* 790 * The #DB payload is defined as compatible with the 'pending 791 * debug exceptions' field under VMX, not DR6. While bit 12 is 792 * defined in the 'pending debug exceptions' field (enabled 793 * breakpoint), it is reserved and must be zero in DR6. 794 */ 795 vcpu->arch.dr6 &= ~BIT(12); 796 break; 797 case PF_VECTOR: 798 vcpu->arch.cr2 = ex->payload; 799 break; 800 } 801 802 ex->has_payload = false; 803 ex->payload = 0; 804 } 805 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 806 807 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 808 bool has_error_code, u32 error_code, 809 bool has_payload, unsigned long payload) 810 { 811 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 812 813 ex->vector = vector; 814 ex->injected = false; 815 ex->pending = true; 816 ex->has_error_code = has_error_code; 817 ex->error_code = error_code; 818 ex->has_payload = has_payload; 819 ex->payload = payload; 820 } 821 822 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr, 823 bool has_error, u32 error_code, 824 bool has_payload, unsigned long payload) 825 { 826 u32 prev_nr; 827 int class1, class2; 828 829 kvm_make_request(KVM_REQ_EVENT, vcpu); 830 831 /* 832 * If the exception is destined for L2, morph it to a VM-Exit if L1 833 * wants to intercept the exception. 834 */ 835 if (is_guest_mode(vcpu) && 836 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 837 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 838 has_payload, payload); 839 return; 840 } 841 842 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 843 queue: 844 vcpu->arch.exception.pending = true; 845 vcpu->arch.exception.injected = false; 846 847 vcpu->arch.exception.has_error_code = has_error; 848 vcpu->arch.exception.vector = nr; 849 vcpu->arch.exception.error_code = error_code; 850 vcpu->arch.exception.has_payload = has_payload; 851 vcpu->arch.exception.payload = payload; 852 if (!is_guest_mode(vcpu)) 853 kvm_deliver_exception_payload(vcpu, 854 &vcpu->arch.exception); 855 return; 856 } 857 858 /* to check exception */ 859 prev_nr = vcpu->arch.exception.vector; 860 if (prev_nr == DF_VECTOR) { 861 /* triple fault -> shutdown */ 862 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 863 return; 864 } 865 class1 = exception_class(prev_nr); 866 class2 = exception_class(nr); 867 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 868 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 869 /* 870 * Synthesize #DF. Clear the previously injected or pending 871 * exception so as not to incorrectly trigger shutdown. 872 */ 873 vcpu->arch.exception.injected = false; 874 vcpu->arch.exception.pending = false; 875 876 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 877 } else { 878 /* replace previous exception with a new one in a hope 879 that instruction re-execution will regenerate lost 880 exception */ 881 goto queue; 882 } 883 } 884 885 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 886 { 887 kvm_multiple_exception(vcpu, nr, false, 0, false, 0); 888 } 889 EXPORT_SYMBOL_GPL(kvm_queue_exception); 890 891 892 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 893 unsigned long payload) 894 { 895 kvm_multiple_exception(vcpu, nr, false, 0, true, payload); 896 } 897 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 898 899 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 900 u32 error_code, unsigned long payload) 901 { 902 kvm_multiple_exception(vcpu, nr, true, error_code, true, payload); 903 } 904 905 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr, 906 bool has_error_code, u32 error_code) 907 { 908 909 /* 910 * On VM-Entry, an exception can be pending if and only if event 911 * injection was blocked by nested_run_pending. In that case, however, 912 * vcpu_enter_guest() requests an immediate exit, and the guest 913 * shouldn't proceed far enough to need reinjection. 914 */ 915 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 916 917 /* 918 * Do not check for interception when injecting an event for L2, as the 919 * exception was checked for intercept when it was original queued, and 920 * re-checking is incorrect if _L1_ injected the exception, in which 921 * case it's exempt from interception. 922 */ 923 kvm_make_request(KVM_REQ_EVENT, vcpu); 924 925 vcpu->arch.exception.injected = true; 926 vcpu->arch.exception.has_error_code = has_error_code; 927 vcpu->arch.exception.vector = nr; 928 vcpu->arch.exception.error_code = error_code; 929 vcpu->arch.exception.has_payload = false; 930 vcpu->arch.exception.payload = 0; 931 } 932 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 933 934 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 935 { 936 if (err) 937 kvm_inject_gp(vcpu, 0); 938 else 939 return kvm_skip_emulated_instruction(vcpu); 940 941 return 1; 942 } 943 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 944 945 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 946 { 947 if (err) { 948 kvm_inject_gp(vcpu, 0); 949 return 1; 950 } 951 952 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 953 EMULTYPE_COMPLETE_USER_EXIT); 954 } 955 956 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 957 { 958 ++vcpu->stat.pf_guest; 959 960 /* 961 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 962 * whether or not L1 wants to intercept "regular" #PF. 963 */ 964 if (is_guest_mode(vcpu) && fault->async_page_fault) 965 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 966 true, fault->error_code, 967 true, fault->address); 968 else 969 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 970 fault->address); 971 } 972 973 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 974 struct x86_exception *fault) 975 { 976 struct kvm_mmu *fault_mmu; 977 WARN_ON_ONCE(fault->vector != PF_VECTOR); 978 979 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 980 vcpu->arch.walk_mmu; 981 982 /* 983 * Invalidate the TLB entry for the faulting address, if it exists, 984 * else the access will fault indefinitely (and to emulate hardware). 985 */ 986 if ((fault->error_code & PFERR_PRESENT_MASK) && 987 !(fault->error_code & PFERR_RSVD_MASK)) 988 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 989 KVM_MMU_ROOT_CURRENT); 990 991 fault_mmu->inject_page_fault(vcpu, fault); 992 } 993 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 994 995 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 996 { 997 atomic_inc(&vcpu->arch.nmi_queued); 998 kvm_make_request(KVM_REQ_NMI, vcpu); 999 } 1000 1001 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 1002 { 1003 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0); 1004 } 1005 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 1006 1007 /* 1008 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 1009 * a #GP and return false. 1010 */ 1011 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 1012 { 1013 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl) 1014 return true; 1015 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 1016 return false; 1017 } 1018 1019 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 1020 { 1021 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 1022 return true; 1023 1024 kvm_queue_exception(vcpu, UD_VECTOR); 1025 return false; 1026 } 1027 EXPORT_SYMBOL_GPL(kvm_require_dr); 1028 1029 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 1030 { 1031 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 1032 } 1033 1034 /* 1035 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 1036 */ 1037 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 1038 { 1039 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 1040 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 1041 gpa_t real_gpa; 1042 int i; 1043 int ret; 1044 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 1045 1046 /* 1047 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 1048 * to an L1 GPA. 1049 */ 1050 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 1051 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 1052 if (real_gpa == INVALID_GPA) 1053 return 0; 1054 1055 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 1056 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 1057 cr3 & GENMASK(11, 5), sizeof(pdpte)); 1058 if (ret < 0) 1059 return 0; 1060 1061 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 1062 if ((pdpte[i] & PT_PRESENT_MASK) && 1063 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 1064 return 0; 1065 } 1066 } 1067 1068 /* 1069 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 1070 * Shadow page roots need to be reconstructed instead. 1071 */ 1072 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 1073 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 1074 1075 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 1076 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 1077 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 1078 vcpu->arch.pdptrs_from_userspace = false; 1079 1080 return 1; 1081 } 1082 EXPORT_SYMBOL_GPL(load_pdptrs); 1083 1084 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1085 { 1086 #ifdef CONFIG_X86_64 1087 if (cr0 & 0xffffffff00000000UL) 1088 return false; 1089 #endif 1090 1091 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 1092 return false; 1093 1094 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 1095 return false; 1096 1097 return kvm_x86_call(is_valid_cr0)(vcpu, cr0); 1098 } 1099 1100 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 1101 { 1102 /* 1103 * CR0.WP is incorporated into the MMU role, but only for non-nested, 1104 * indirect shadow MMUs. If paging is disabled, no updates are needed 1105 * as there are no permission bits to emulate. If TDP is enabled, the 1106 * MMU's metadata needs to be updated, e.g. so that emulating guest 1107 * translations does the right thing, but there's no need to unload the 1108 * root as CR0.WP doesn't affect SPTEs. 1109 */ 1110 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 1111 if (!(cr0 & X86_CR0_PG)) 1112 return; 1113 1114 if (tdp_enabled) { 1115 kvm_init_mmu(vcpu); 1116 return; 1117 } 1118 } 1119 1120 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 1121 kvm_clear_async_pf_completion_queue(vcpu); 1122 kvm_async_pf_hash_reset(vcpu); 1123 1124 /* 1125 * Clearing CR0.PG is defined to flush the TLB from the guest's 1126 * perspective. 1127 */ 1128 if (!(cr0 & X86_CR0_PG)) 1129 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1130 } 1131 1132 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 1133 kvm_mmu_reset_context(vcpu); 1134 } 1135 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 1136 1137 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1138 { 1139 unsigned long old_cr0 = kvm_read_cr0(vcpu); 1140 1141 if (!kvm_is_valid_cr0(vcpu, cr0)) 1142 return 1; 1143 1144 cr0 |= X86_CR0_ET; 1145 1146 /* Write to CR0 reserved bits are ignored, even on Intel. */ 1147 cr0 &= ~CR0_RESERVED_BITS; 1148 1149 #ifdef CONFIG_X86_64 1150 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 1151 (cr0 & X86_CR0_PG)) { 1152 int cs_db, cs_l; 1153 1154 if (!is_pae(vcpu)) 1155 return 1; 1156 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 1157 if (cs_l) 1158 return 1; 1159 } 1160 #endif 1161 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 1162 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 1163 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1164 return 1; 1165 1166 if (!(cr0 & X86_CR0_PG) && 1167 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1168 return 1; 1169 1170 kvm_x86_call(set_cr0)(vcpu, cr0); 1171 1172 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1173 1174 return 0; 1175 } 1176 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1177 1178 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1179 { 1180 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1181 } 1182 EXPORT_SYMBOL_GPL(kvm_lmsw); 1183 1184 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1185 { 1186 if (vcpu->arch.guest_state_protected) 1187 return; 1188 1189 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1190 1191 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1192 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1193 1194 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && 1195 vcpu->arch.ia32_xss != kvm_host.xss) 1196 wrmsrq(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1197 } 1198 1199 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1200 vcpu->arch.pkru != vcpu->arch.host_pkru && 1201 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1202 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1203 wrpkru(vcpu->arch.pkru); 1204 } 1205 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1206 1207 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1208 { 1209 if (vcpu->arch.guest_state_protected) 1210 return; 1211 1212 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1213 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1214 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1215 vcpu->arch.pkru = rdpkru(); 1216 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1217 wrpkru(vcpu->arch.host_pkru); 1218 } 1219 1220 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1221 1222 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1223 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0); 1224 1225 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && 1226 vcpu->arch.ia32_xss != kvm_host.xss) 1227 wrmsrq(MSR_IA32_XSS, kvm_host.xss); 1228 } 1229 1230 } 1231 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1232 1233 #ifdef CONFIG_X86_64 1234 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1235 { 1236 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1237 } 1238 #endif 1239 1240 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1241 { 1242 u64 xcr0 = xcr; 1243 u64 old_xcr0 = vcpu->arch.xcr0; 1244 u64 valid_bits; 1245 1246 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1247 if (index != XCR_XFEATURE_ENABLED_MASK) 1248 return 1; 1249 if (!(xcr0 & XFEATURE_MASK_FP)) 1250 return 1; 1251 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1252 return 1; 1253 1254 /* 1255 * Do not allow the guest to set bits that we do not support 1256 * saving. However, xcr0 bit 0 is always set, even if the 1257 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1258 */ 1259 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1260 if (xcr0 & ~valid_bits) 1261 return 1; 1262 1263 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1264 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1265 return 1; 1266 1267 if (xcr0 & XFEATURE_MASK_AVX512) { 1268 if (!(xcr0 & XFEATURE_MASK_YMM)) 1269 return 1; 1270 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1271 return 1; 1272 } 1273 1274 if ((xcr0 & XFEATURE_MASK_XTILE) && 1275 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1276 return 1; 1277 1278 vcpu->arch.xcr0 = xcr0; 1279 1280 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1281 vcpu->arch.cpuid_dynamic_bits_dirty = true; 1282 return 0; 1283 } 1284 1285 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1286 { 1287 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1288 if (kvm_x86_call(get_cpl)(vcpu) != 0 || 1289 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1290 kvm_inject_gp(vcpu, 0); 1291 return 1; 1292 } 1293 1294 return kvm_skip_emulated_instruction(vcpu); 1295 } 1296 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1297 1298 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1299 { 1300 return __kvm_is_valid_cr4(vcpu, cr4) && 1301 kvm_x86_call(is_valid_cr4)(vcpu, cr4); 1302 } 1303 1304 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1305 { 1306 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1307 kvm_mmu_reset_context(vcpu); 1308 1309 /* 1310 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1311 * according to the SDM; however, stale prev_roots could be reused 1312 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1313 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1314 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1315 * so fall through. 1316 */ 1317 if (!tdp_enabled && 1318 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1319 kvm_mmu_unload(vcpu); 1320 1321 /* 1322 * The TLB has to be flushed for all PCIDs if any of the following 1323 * (architecturally required) changes happen: 1324 * - CR4.PCIDE is changed from 1 to 0 1325 * - CR4.PGE is toggled 1326 * 1327 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1328 */ 1329 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1330 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1331 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1332 1333 /* 1334 * The TLB has to be flushed for the current PCID if any of the 1335 * following (architecturally required) changes happen: 1336 * - CR4.SMEP is changed from 0 to 1 1337 * - CR4.PAE is toggled 1338 */ 1339 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1340 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1341 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1342 1343 } 1344 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1345 1346 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1347 { 1348 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1349 1350 if (!kvm_is_valid_cr4(vcpu, cr4)) 1351 return 1; 1352 1353 if (is_long_mode(vcpu)) { 1354 if (!(cr4 & X86_CR4_PAE)) 1355 return 1; 1356 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1357 return 1; 1358 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1359 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1360 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1361 return 1; 1362 1363 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1364 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1365 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1366 return 1; 1367 } 1368 1369 kvm_x86_call(set_cr4)(vcpu, cr4); 1370 1371 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1372 1373 return 0; 1374 } 1375 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1376 1377 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1378 { 1379 struct kvm_mmu *mmu = vcpu->arch.mmu; 1380 unsigned long roots_to_free = 0; 1381 int i; 1382 1383 /* 1384 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1385 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1386 * also via the emulator. KVM's TDP page tables are not in the scope of 1387 * the invalidation, but the guest's TLB entries need to be flushed as 1388 * the CPU may have cached entries in its TLB for the target PCID. 1389 */ 1390 if (unlikely(tdp_enabled)) { 1391 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1392 return; 1393 } 1394 1395 /* 1396 * If neither the current CR3 nor any of the prev_roots use the given 1397 * PCID, then nothing needs to be done here because a resync will 1398 * happen anyway before switching to any other CR3. 1399 */ 1400 if (kvm_get_active_pcid(vcpu) == pcid) { 1401 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1402 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1403 } 1404 1405 /* 1406 * If PCID is disabled, there is no need to free prev_roots even if the 1407 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1408 * with PCIDE=0. 1409 */ 1410 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1411 return; 1412 1413 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1414 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1415 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1416 1417 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1418 } 1419 1420 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1421 { 1422 bool skip_tlb_flush = false; 1423 unsigned long pcid = 0; 1424 #ifdef CONFIG_X86_64 1425 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1426 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1427 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1428 pcid = cr3 & X86_CR3_PCID_MASK; 1429 } 1430 #endif 1431 1432 /* PDPTRs are always reloaded for PAE paging. */ 1433 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1434 goto handle_tlb_flush; 1435 1436 /* 1437 * Do not condition the GPA check on long mode, this helper is used to 1438 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1439 * the current vCPU mode is accurate. 1440 */ 1441 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1442 return 1; 1443 1444 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1445 return 1; 1446 1447 if (cr3 != kvm_read_cr3(vcpu)) 1448 kvm_mmu_new_pgd(vcpu, cr3); 1449 1450 vcpu->arch.cr3 = cr3; 1451 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1452 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1453 1454 handle_tlb_flush: 1455 /* 1456 * A load of CR3 that flushes the TLB flushes only the current PCID, 1457 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1458 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1459 * and it's impossible to use a non-zero PCID when PCID is disabled, 1460 * i.e. only PCID=0 can be relevant. 1461 */ 1462 if (!skip_tlb_flush) 1463 kvm_invalidate_pcid(vcpu, pcid); 1464 1465 return 0; 1466 } 1467 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1468 1469 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1470 { 1471 if (cr8 & CR8_RESERVED_BITS) 1472 return 1; 1473 if (lapic_in_kernel(vcpu)) 1474 kvm_lapic_set_tpr(vcpu, cr8); 1475 else 1476 vcpu->arch.cr8 = cr8; 1477 return 0; 1478 } 1479 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1480 1481 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1482 { 1483 if (lapic_in_kernel(vcpu)) 1484 return kvm_lapic_get_cr8(vcpu); 1485 else 1486 return vcpu->arch.cr8; 1487 } 1488 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1489 1490 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1491 { 1492 int i; 1493 1494 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1495 for (i = 0; i < KVM_NR_DB_REGS; i++) 1496 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1497 } 1498 } 1499 1500 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1501 { 1502 unsigned long dr7; 1503 1504 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1505 dr7 = vcpu->arch.guest_debug_dr7; 1506 else 1507 dr7 = vcpu->arch.dr7; 1508 kvm_x86_call(set_dr7)(vcpu, dr7); 1509 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1510 if (dr7 & DR7_BP_EN_MASK) 1511 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1512 } 1513 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1514 1515 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1516 { 1517 u64 fixed = DR6_FIXED_1; 1518 1519 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM)) 1520 fixed |= DR6_RTM; 1521 1522 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1523 fixed |= DR6_BUS_LOCK; 1524 return fixed; 1525 } 1526 1527 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1528 { 1529 size_t size = ARRAY_SIZE(vcpu->arch.db); 1530 1531 switch (dr) { 1532 case 0 ... 3: 1533 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1534 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1535 vcpu->arch.eff_db[dr] = val; 1536 break; 1537 case 4: 1538 case 6: 1539 if (!kvm_dr6_valid(val)) 1540 return 1; /* #GP */ 1541 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1542 break; 1543 case 5: 1544 default: /* 7 */ 1545 if (!kvm_dr7_valid(val)) 1546 return 1; /* #GP */ 1547 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1548 kvm_update_dr7(vcpu); 1549 break; 1550 } 1551 1552 return 0; 1553 } 1554 EXPORT_SYMBOL_GPL(kvm_set_dr); 1555 1556 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr) 1557 { 1558 size_t size = ARRAY_SIZE(vcpu->arch.db); 1559 1560 switch (dr) { 1561 case 0 ... 3: 1562 return vcpu->arch.db[array_index_nospec(dr, size)]; 1563 case 4: 1564 case 6: 1565 return vcpu->arch.dr6; 1566 case 5: 1567 default: /* 7 */ 1568 return vcpu->arch.dr7; 1569 } 1570 } 1571 EXPORT_SYMBOL_GPL(kvm_get_dr); 1572 1573 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1574 { 1575 u32 ecx = kvm_rcx_read(vcpu); 1576 u64 data; 1577 1578 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1579 kvm_inject_gp(vcpu, 0); 1580 return 1; 1581 } 1582 1583 kvm_rax_write(vcpu, (u32)data); 1584 kvm_rdx_write(vcpu, data >> 32); 1585 return kvm_skip_emulated_instruction(vcpu); 1586 } 1587 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1588 1589 /* 1590 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1591 * does not yet virtualize. These include: 1592 * 10 - MISC_PACKAGE_CTRLS 1593 * 11 - ENERGY_FILTERING_CTL 1594 * 12 - DOITM 1595 * 18 - FB_CLEAR_CTRL 1596 * 21 - XAPIC_DISABLE_STATUS 1597 * 23 - OVERCLOCKING_STATUS 1598 */ 1599 1600 #define KVM_SUPPORTED_ARCH_CAP \ 1601 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1602 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1603 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1604 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1605 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ 1606 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO) 1607 1608 static u64 kvm_get_arch_capabilities(void) 1609 { 1610 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1611 1612 /* 1613 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1614 * the nested hypervisor runs with NX huge pages. If it is not, 1615 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1616 * L1 guests, so it need not worry about its own (L2) guests. 1617 */ 1618 data |= ARCH_CAP_PSCHANGE_MC_NO; 1619 1620 /* 1621 * If we're doing cache flushes (either "always" or "cond") 1622 * we will do one whenever the guest does a vmlaunch/vmresume. 1623 * If an outer hypervisor is doing the cache flush for us 1624 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1625 * capability to the guest too, and if EPT is disabled we're not 1626 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1627 * require a nested hypervisor to do a flush of its own. 1628 */ 1629 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1630 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1631 1632 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1633 data |= ARCH_CAP_RDCL_NO; 1634 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1635 data |= ARCH_CAP_SSB_NO; 1636 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1637 data |= ARCH_CAP_MDS_NO; 1638 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 1639 data |= ARCH_CAP_RFDS_NO; 1640 if (!boot_cpu_has_bug(X86_BUG_ITS)) 1641 data |= ARCH_CAP_ITS_NO; 1642 1643 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1644 /* 1645 * If RTM=0 because the kernel has disabled TSX, the host might 1646 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1647 * and therefore knows that there cannot be TAA) but keep 1648 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1649 * and we want to allow migrating those guests to tsx=off hosts. 1650 */ 1651 data &= ~ARCH_CAP_TAA_NO; 1652 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1653 data |= ARCH_CAP_TAA_NO; 1654 } else { 1655 /* 1656 * Nothing to do here; we emulate TSX_CTRL if present on the 1657 * host so the guest can choose between disabling TSX or 1658 * using VERW to clear CPU buffers. 1659 */ 1660 } 1661 1662 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1663 data |= ARCH_CAP_GDS_NO; 1664 1665 return data; 1666 } 1667 1668 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1669 bool host_initiated) 1670 { 1671 WARN_ON_ONCE(!host_initiated); 1672 1673 switch (index) { 1674 case MSR_IA32_ARCH_CAPABILITIES: 1675 *data = kvm_get_arch_capabilities(); 1676 break; 1677 case MSR_IA32_PERF_CAPABILITIES: 1678 *data = kvm_caps.supported_perf_cap; 1679 break; 1680 case MSR_PLATFORM_INFO: 1681 *data = MSR_PLATFORM_INFO_CPUID_FAULT; 1682 break; 1683 case MSR_IA32_UCODE_REV: 1684 rdmsrq_safe(index, data); 1685 break; 1686 default: 1687 return kvm_x86_call(get_feature_msr)(index, data); 1688 } 1689 return 0; 1690 } 1691 1692 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1693 { 1694 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R, 1695 kvm_get_feature_msr); 1696 } 1697 1698 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1699 { 1700 if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS)) 1701 return false; 1702 1703 if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT)) 1704 return false; 1705 1706 if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM)) 1707 return false; 1708 1709 if (efer & (EFER_LME | EFER_LMA) && 1710 !guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 1711 return false; 1712 1713 if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX)) 1714 return false; 1715 1716 return true; 1717 1718 } 1719 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1720 { 1721 if (efer & efer_reserved_bits) 1722 return false; 1723 1724 return __kvm_valid_efer(vcpu, efer); 1725 } 1726 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1727 1728 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1729 { 1730 u64 old_efer = vcpu->arch.efer; 1731 u64 efer = msr_info->data; 1732 int r; 1733 1734 if (efer & efer_reserved_bits) 1735 return 1; 1736 1737 if (!msr_info->host_initiated) { 1738 if (!__kvm_valid_efer(vcpu, efer)) 1739 return 1; 1740 1741 if (is_paging(vcpu) && 1742 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1743 return 1; 1744 } 1745 1746 efer &= ~EFER_LMA; 1747 efer |= vcpu->arch.efer & EFER_LMA; 1748 1749 r = kvm_x86_call(set_efer)(vcpu, efer); 1750 if (r) { 1751 WARN_ON(r > 0); 1752 return r; 1753 } 1754 1755 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1756 kvm_mmu_reset_context(vcpu); 1757 1758 if (!static_cpu_has(X86_FEATURE_XSAVES) && 1759 (efer & EFER_SVME)) 1760 kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1761 1762 return 0; 1763 } 1764 1765 void kvm_enable_efer_bits(u64 mask) 1766 { 1767 efer_reserved_bits &= ~mask; 1768 } 1769 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1770 1771 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1772 { 1773 struct kvm_x86_msr_filter *msr_filter; 1774 struct msr_bitmap_range *ranges; 1775 struct kvm *kvm = vcpu->kvm; 1776 bool allowed; 1777 int idx; 1778 u32 i; 1779 1780 /* x2APIC MSRs do not support filtering. */ 1781 if (index >= 0x800 && index <= 0x8ff) 1782 return true; 1783 1784 idx = srcu_read_lock(&kvm->srcu); 1785 1786 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1787 if (!msr_filter) { 1788 allowed = true; 1789 goto out; 1790 } 1791 1792 allowed = msr_filter->default_allow; 1793 ranges = msr_filter->ranges; 1794 1795 for (i = 0; i < msr_filter->count; i++) { 1796 u32 start = ranges[i].base; 1797 u32 end = start + ranges[i].nmsrs; 1798 u32 flags = ranges[i].flags; 1799 unsigned long *bitmap = ranges[i].bitmap; 1800 1801 if ((index >= start) && (index < end) && (flags & type)) { 1802 allowed = test_bit(index - start, bitmap); 1803 break; 1804 } 1805 } 1806 1807 out: 1808 srcu_read_unlock(&kvm->srcu, idx); 1809 1810 return allowed; 1811 } 1812 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1813 1814 /* 1815 * Write @data into the MSR specified by @index. Select MSR specific fault 1816 * checks are bypassed if @host_initiated is %true. 1817 * Returns 0 on success, non-0 otherwise. 1818 * Assumes vcpu_load() was already called. 1819 */ 1820 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1821 bool host_initiated) 1822 { 1823 struct msr_data msr; 1824 1825 switch (index) { 1826 case MSR_FS_BASE: 1827 case MSR_GS_BASE: 1828 case MSR_KERNEL_GS_BASE: 1829 case MSR_CSTAR: 1830 case MSR_LSTAR: 1831 if (is_noncanonical_msr_address(data, vcpu)) 1832 return 1; 1833 break; 1834 case MSR_IA32_SYSENTER_EIP: 1835 case MSR_IA32_SYSENTER_ESP: 1836 /* 1837 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1838 * non-canonical address is written on Intel but not on 1839 * AMD (which ignores the top 32-bits, because it does 1840 * not implement 64-bit SYSENTER). 1841 * 1842 * 64-bit code should hence be able to write a non-canonical 1843 * value on AMD. Making the address canonical ensures that 1844 * vmentry does not fail on Intel after writing a non-canonical 1845 * value, and that something deterministic happens if the guest 1846 * invokes 64-bit SYSENTER. 1847 */ 1848 data = __canonical_address(data, max_host_virt_addr_bits()); 1849 break; 1850 case MSR_TSC_AUX: 1851 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1852 return 1; 1853 1854 if (!host_initiated && 1855 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) && 1856 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID)) 1857 return 1; 1858 1859 /* 1860 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1861 * incomplete and conflicting architectural behavior. Current 1862 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1863 * reserved and always read as zeros. Enforce Intel's reserved 1864 * bits check if the guest CPU is Intel compatible, otherwise 1865 * clear the bits. This ensures cross-vendor migration will 1866 * provide consistent behavior for the guest. 1867 */ 1868 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0) 1869 return 1; 1870 1871 data = (u32)data; 1872 break; 1873 } 1874 1875 msr.data = data; 1876 msr.index = index; 1877 msr.host_initiated = host_initiated; 1878 1879 return kvm_x86_call(set_msr)(vcpu, &msr); 1880 } 1881 1882 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1883 bool host_initiated) 1884 { 1885 return __kvm_set_msr(vcpu, index, *data, host_initiated); 1886 } 1887 1888 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1889 u32 index, u64 data, bool host_initiated) 1890 { 1891 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W, 1892 _kvm_set_msr); 1893 } 1894 1895 /* 1896 * Read the MSR specified by @index into @data. Select MSR specific fault 1897 * checks are bypassed if @host_initiated is %true. 1898 * Returns 0 on success, non-0 otherwise. 1899 * Assumes vcpu_load() was already called. 1900 */ 1901 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1902 bool host_initiated) 1903 { 1904 struct msr_data msr; 1905 int ret; 1906 1907 switch (index) { 1908 case MSR_TSC_AUX: 1909 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1910 return 1; 1911 1912 if (!host_initiated && 1913 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) && 1914 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID)) 1915 return 1; 1916 break; 1917 } 1918 1919 msr.index = index; 1920 msr.host_initiated = host_initiated; 1921 1922 ret = kvm_x86_call(get_msr)(vcpu, &msr); 1923 if (!ret) 1924 *data = msr.data; 1925 return ret; 1926 } 1927 1928 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1929 u32 index, u64 *data, bool host_initiated) 1930 { 1931 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R, 1932 __kvm_get_msr); 1933 } 1934 1935 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1936 { 1937 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1938 return KVM_MSR_RET_FILTERED; 1939 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1940 } 1941 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter); 1942 1943 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1944 { 1945 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1946 return KVM_MSR_RET_FILTERED; 1947 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1948 } 1949 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter); 1950 1951 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1952 { 1953 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1954 } 1955 EXPORT_SYMBOL_GPL(kvm_get_msr); 1956 1957 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1958 { 1959 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1960 } 1961 EXPORT_SYMBOL_GPL(kvm_set_msr); 1962 1963 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1964 { 1965 if (!vcpu->run->msr.error) { 1966 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1967 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1968 } 1969 } 1970 1971 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1972 { 1973 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1974 } 1975 1976 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1977 { 1978 complete_userspace_rdmsr(vcpu); 1979 return complete_emulated_msr_access(vcpu); 1980 } 1981 1982 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1983 { 1984 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1985 } 1986 1987 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1988 { 1989 complete_userspace_rdmsr(vcpu); 1990 return complete_fast_msr_access(vcpu); 1991 } 1992 1993 static u64 kvm_msr_reason(int r) 1994 { 1995 switch (r) { 1996 case KVM_MSR_RET_UNSUPPORTED: 1997 return KVM_MSR_EXIT_REASON_UNKNOWN; 1998 case KVM_MSR_RET_FILTERED: 1999 return KVM_MSR_EXIT_REASON_FILTER; 2000 default: 2001 return KVM_MSR_EXIT_REASON_INVAL; 2002 } 2003 } 2004 2005 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2006 u32 exit_reason, u64 data, 2007 int (*completion)(struct kvm_vcpu *vcpu), 2008 int r) 2009 { 2010 u64 msr_reason = kvm_msr_reason(r); 2011 2012 /* Check if the user wanted to know about this MSR fault */ 2013 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2014 return 0; 2015 2016 vcpu->run->exit_reason = exit_reason; 2017 vcpu->run->msr.error = 0; 2018 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2019 vcpu->run->msr.reason = msr_reason; 2020 vcpu->run->msr.index = index; 2021 vcpu->run->msr.data = data; 2022 vcpu->arch.complete_userspace_io = completion; 2023 2024 return 1; 2025 } 2026 2027 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2028 { 2029 u32 ecx = kvm_rcx_read(vcpu); 2030 u64 data; 2031 int r; 2032 2033 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2034 2035 if (!r) { 2036 trace_kvm_msr_read(ecx, data); 2037 2038 kvm_rax_write(vcpu, data & -1u); 2039 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2040 } else { 2041 /* MSR read failed? See if we should ask user space */ 2042 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2043 complete_fast_rdmsr, r)) 2044 return 0; 2045 trace_kvm_msr_read_ex(ecx); 2046 } 2047 2048 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2049 } 2050 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2051 2052 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2053 { 2054 u32 ecx = kvm_rcx_read(vcpu); 2055 u64 data = kvm_read_edx_eax(vcpu); 2056 int r; 2057 2058 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2059 2060 if (!r) { 2061 trace_kvm_msr_write(ecx, data); 2062 } else { 2063 /* MSR write failed? See if we should ask user space */ 2064 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2065 complete_fast_msr_access, r)) 2066 return 0; 2067 /* Signal all other negative errors to userspace */ 2068 if (r < 0) 2069 return r; 2070 trace_kvm_msr_write_ex(ecx, data); 2071 } 2072 2073 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2074 } 2075 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2076 2077 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2078 { 2079 return kvm_skip_emulated_instruction(vcpu); 2080 } 2081 2082 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2083 { 2084 /* Treat an INVD instruction as a NOP and just skip it. */ 2085 return kvm_emulate_as_nop(vcpu); 2086 } 2087 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2088 2089 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2090 { 2091 kvm_queue_exception(vcpu, UD_VECTOR); 2092 return 1; 2093 } 2094 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2095 2096 2097 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2098 { 2099 bool enabled; 2100 2101 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)) 2102 goto emulate_as_nop; 2103 2104 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) 2105 enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT); 2106 else 2107 enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT; 2108 2109 if (!enabled) 2110 return kvm_handle_invalid_op(vcpu); 2111 2112 emulate_as_nop: 2113 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2114 return kvm_emulate_as_nop(vcpu); 2115 } 2116 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2117 { 2118 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2119 } 2120 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2121 2122 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2123 { 2124 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2125 } 2126 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2127 2128 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2129 { 2130 xfer_to_guest_mode_prepare(); 2131 2132 return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE || 2133 kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending(); 2134 } 2135 2136 /* 2137 * The fast path for frequent and performance sensitive wrmsr emulation, 2138 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2139 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2140 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2141 * other cases which must be called after interrupts are enabled on the host. 2142 */ 2143 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2144 { 2145 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2146 return 1; 2147 2148 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2149 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2150 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2151 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2152 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2153 2154 return 1; 2155 } 2156 2157 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2158 { 2159 if (!kvm_can_use_hv_timer(vcpu)) 2160 return 1; 2161 2162 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2163 return 0; 2164 } 2165 2166 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2167 { 2168 u32 msr = kvm_rcx_read(vcpu); 2169 u64 data; 2170 fastpath_t ret; 2171 bool handled; 2172 2173 kvm_vcpu_srcu_read_lock(vcpu); 2174 2175 switch (msr) { 2176 case APIC_BASE_MSR + (APIC_ICR >> 4): 2177 data = kvm_read_edx_eax(vcpu); 2178 handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data); 2179 break; 2180 case MSR_IA32_TSC_DEADLINE: 2181 data = kvm_read_edx_eax(vcpu); 2182 handled = !handle_fastpath_set_tscdeadline(vcpu, data); 2183 break; 2184 default: 2185 handled = false; 2186 break; 2187 } 2188 2189 if (handled) { 2190 if (!kvm_skip_emulated_instruction(vcpu)) 2191 ret = EXIT_FASTPATH_EXIT_USERSPACE; 2192 else 2193 ret = EXIT_FASTPATH_REENTER_GUEST; 2194 trace_kvm_msr_write(msr, data); 2195 } else { 2196 ret = EXIT_FASTPATH_NONE; 2197 } 2198 2199 kvm_vcpu_srcu_read_unlock(vcpu); 2200 2201 return ret; 2202 } 2203 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2204 2205 /* 2206 * Adapt set_msr() to msr_io()'s calling convention 2207 */ 2208 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2209 { 2210 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2211 } 2212 2213 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2214 { 2215 u64 val; 2216 2217 /* 2218 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2219 * not support modifying the guest vCPU model on the fly, e.g. changing 2220 * the nVMX capabilities while L2 is running is nonsensical. Allow 2221 * writes of the same value, e.g. to allow userspace to blindly stuff 2222 * all MSRs when emulating RESET. 2223 */ 2224 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) && 2225 (do_get_msr(vcpu, index, &val) || *data != val)) 2226 return -EINVAL; 2227 2228 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2229 } 2230 2231 #ifdef CONFIG_X86_64 2232 struct pvclock_clock { 2233 int vclock_mode; 2234 u64 cycle_last; 2235 u64 mask; 2236 u32 mult; 2237 u32 shift; 2238 u64 base_cycles; 2239 u64 offset; 2240 }; 2241 2242 struct pvclock_gtod_data { 2243 seqcount_t seq; 2244 2245 struct pvclock_clock clock; /* extract of a clocksource struct */ 2246 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2247 2248 ktime_t offs_boot; 2249 u64 wall_time_sec; 2250 }; 2251 2252 static struct pvclock_gtod_data pvclock_gtod_data; 2253 2254 static void update_pvclock_gtod(struct timekeeper *tk) 2255 { 2256 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2257 2258 write_seqcount_begin(&vdata->seq); 2259 2260 /* copy pvclock gtod data */ 2261 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2262 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2263 vdata->clock.mask = tk->tkr_mono.mask; 2264 vdata->clock.mult = tk->tkr_mono.mult; 2265 vdata->clock.shift = tk->tkr_mono.shift; 2266 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2267 vdata->clock.offset = tk->tkr_mono.base; 2268 2269 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2270 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2271 vdata->raw_clock.mask = tk->tkr_raw.mask; 2272 vdata->raw_clock.mult = tk->tkr_raw.mult; 2273 vdata->raw_clock.shift = tk->tkr_raw.shift; 2274 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2275 vdata->raw_clock.offset = tk->tkr_raw.base; 2276 2277 vdata->wall_time_sec = tk->xtime_sec; 2278 2279 vdata->offs_boot = tk->offs_boot; 2280 2281 write_seqcount_end(&vdata->seq); 2282 } 2283 2284 static s64 get_kvmclock_base_ns(void) 2285 { 2286 /* Count up from boot time, but with the frequency of the raw clock. */ 2287 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2288 } 2289 #else 2290 static s64 get_kvmclock_base_ns(void) 2291 { 2292 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2293 return ktime_get_boottime_ns(); 2294 } 2295 #endif 2296 2297 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2298 { 2299 int version; 2300 int r; 2301 struct pvclock_wall_clock wc; 2302 u32 wc_sec_hi; 2303 u64 wall_nsec; 2304 2305 if (!wall_clock) 2306 return; 2307 2308 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2309 if (r) 2310 return; 2311 2312 if (version & 1) 2313 ++version; /* first time write, random junk */ 2314 2315 ++version; 2316 2317 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2318 return; 2319 2320 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2321 2322 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2323 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2324 wc.version = version; 2325 2326 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2327 2328 if (sec_hi_ofs) { 2329 wc_sec_hi = wall_nsec >> 32; 2330 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2331 &wc_sec_hi, sizeof(wc_sec_hi)); 2332 } 2333 2334 version++; 2335 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2336 } 2337 2338 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2339 bool old_msr, bool host_initiated) 2340 { 2341 struct kvm_arch *ka = &vcpu->kvm->arch; 2342 2343 if (vcpu->vcpu_id == 0 && !host_initiated) { 2344 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2345 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2346 2347 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2348 } 2349 2350 vcpu->arch.time = system_time; 2351 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2352 2353 /* we verify if the enable bit is set... */ 2354 if (system_time & 1) 2355 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2356 sizeof(struct pvclock_vcpu_time_info)); 2357 else 2358 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2359 2360 return; 2361 } 2362 2363 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2364 { 2365 do_shl32_div32(dividend, divisor); 2366 return dividend; 2367 } 2368 2369 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2370 s8 *pshift, u32 *pmultiplier) 2371 { 2372 uint64_t scaled64; 2373 int32_t shift = 0; 2374 uint64_t tps64; 2375 uint32_t tps32; 2376 2377 tps64 = base_hz; 2378 scaled64 = scaled_hz; 2379 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2380 tps64 >>= 1; 2381 shift--; 2382 } 2383 2384 tps32 = (uint32_t)tps64; 2385 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2386 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2387 scaled64 >>= 1; 2388 else 2389 tps32 <<= 1; 2390 shift++; 2391 } 2392 2393 *pshift = shift; 2394 *pmultiplier = div_frac(scaled64, tps32); 2395 } 2396 2397 #ifdef CONFIG_X86_64 2398 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2399 #endif 2400 2401 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2402 static unsigned long max_tsc_khz; 2403 2404 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2405 { 2406 u64 v = (u64)khz * (1000000 + ppm); 2407 do_div(v, 1000000); 2408 return v; 2409 } 2410 2411 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2412 2413 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2414 { 2415 u64 ratio; 2416 2417 /* Guest TSC same frequency as host TSC? */ 2418 if (!scale) { 2419 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2420 return 0; 2421 } 2422 2423 /* TSC scaling supported? */ 2424 if (!kvm_caps.has_tsc_control) { 2425 if (user_tsc_khz > tsc_khz) { 2426 vcpu->arch.tsc_catchup = 1; 2427 vcpu->arch.tsc_always_catchup = 1; 2428 return 0; 2429 } else { 2430 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2431 return -1; 2432 } 2433 } 2434 2435 /* TSC scaling required - calculate ratio */ 2436 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2437 user_tsc_khz, tsc_khz); 2438 2439 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2440 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2441 user_tsc_khz); 2442 return -1; 2443 } 2444 2445 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2446 return 0; 2447 } 2448 2449 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2450 { 2451 u32 thresh_lo, thresh_hi; 2452 int use_scaling = 0; 2453 2454 /* tsc_khz can be zero if TSC calibration fails */ 2455 if (user_tsc_khz == 0) { 2456 /* set tsc_scaling_ratio to a safe value */ 2457 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2458 return -1; 2459 } 2460 2461 /* Compute a scale to convert nanoseconds in TSC cycles */ 2462 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2463 &vcpu->arch.virtual_tsc_shift, 2464 &vcpu->arch.virtual_tsc_mult); 2465 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2466 2467 /* 2468 * Compute the variation in TSC rate which is acceptable 2469 * within the range of tolerance and decide if the 2470 * rate being applied is within that bounds of the hardware 2471 * rate. If so, no scaling or compensation need be done. 2472 */ 2473 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2474 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2475 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2476 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2477 user_tsc_khz, thresh_lo, thresh_hi); 2478 use_scaling = 1; 2479 } 2480 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2481 } 2482 2483 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2484 { 2485 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2486 vcpu->arch.virtual_tsc_mult, 2487 vcpu->arch.virtual_tsc_shift); 2488 tsc += vcpu->arch.this_tsc_write; 2489 return tsc; 2490 } 2491 2492 #ifdef CONFIG_X86_64 2493 static inline bool gtod_is_based_on_tsc(int mode) 2494 { 2495 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2496 } 2497 #endif 2498 2499 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2500 { 2501 #ifdef CONFIG_X86_64 2502 struct kvm_arch *ka = &vcpu->kvm->arch; 2503 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2504 2505 /* 2506 * To use the masterclock, the host clocksource must be based on TSC 2507 * and all vCPUs must have matching TSCs. Note, the count for matching 2508 * vCPUs doesn't include the reference vCPU, hence "+1". 2509 */ 2510 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2511 atomic_read(&vcpu->kvm->online_vcpus)) && 2512 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2513 2514 /* 2515 * Request a masterclock update if the masterclock needs to be toggled 2516 * on/off, or when starting a new generation and the masterclock is 2517 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2518 * taken _after_ the new generation is created). 2519 */ 2520 if ((ka->use_master_clock && new_generation) || 2521 (ka->use_master_clock != use_master_clock)) 2522 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2523 2524 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2525 atomic_read(&vcpu->kvm->online_vcpus), 2526 ka->use_master_clock, gtod->clock.vclock_mode); 2527 #endif 2528 } 2529 2530 /* 2531 * Multiply tsc by a fixed point number represented by ratio. 2532 * 2533 * The most significant 64-N bits (mult) of ratio represent the 2534 * integral part of the fixed point number; the remaining N bits 2535 * (frac) represent the fractional part, ie. ratio represents a fixed 2536 * point number (mult + frac * 2^(-N)). 2537 * 2538 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2539 */ 2540 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2541 { 2542 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2543 } 2544 2545 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2546 { 2547 u64 _tsc = tsc; 2548 2549 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2550 _tsc = __scale_tsc(ratio, tsc); 2551 2552 return _tsc; 2553 } 2554 2555 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2556 { 2557 u64 tsc; 2558 2559 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2560 2561 return target_tsc - tsc; 2562 } 2563 2564 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2565 { 2566 return vcpu->arch.l1_tsc_offset + 2567 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2568 } 2569 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2570 2571 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2572 { 2573 u64 nested_offset; 2574 2575 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2576 nested_offset = l1_offset; 2577 else 2578 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2579 kvm_caps.tsc_scaling_ratio_frac_bits); 2580 2581 nested_offset += l2_offset; 2582 return nested_offset; 2583 } 2584 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2585 2586 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2587 { 2588 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2589 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2590 kvm_caps.tsc_scaling_ratio_frac_bits); 2591 2592 return l1_multiplier; 2593 } 2594 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2595 2596 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2597 { 2598 if (vcpu->arch.guest_tsc_protected) 2599 return; 2600 2601 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2602 vcpu->arch.l1_tsc_offset, 2603 l1_offset); 2604 2605 vcpu->arch.l1_tsc_offset = l1_offset; 2606 2607 /* 2608 * If we are here because L1 chose not to trap WRMSR to TSC then 2609 * according to the spec this should set L1's TSC (as opposed to 2610 * setting L1's offset for L2). 2611 */ 2612 if (is_guest_mode(vcpu)) 2613 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2614 l1_offset, 2615 kvm_x86_call(get_l2_tsc_offset)(vcpu), 2616 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2617 else 2618 vcpu->arch.tsc_offset = l1_offset; 2619 2620 kvm_x86_call(write_tsc_offset)(vcpu); 2621 } 2622 2623 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2624 { 2625 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2626 2627 /* Userspace is changing the multiplier while L2 is active */ 2628 if (is_guest_mode(vcpu)) 2629 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2630 l1_multiplier, 2631 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2632 else 2633 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2634 2635 if (kvm_caps.has_tsc_control) 2636 kvm_x86_call(write_tsc_multiplier)(vcpu); 2637 } 2638 2639 static inline bool kvm_check_tsc_unstable(void) 2640 { 2641 #ifdef CONFIG_X86_64 2642 /* 2643 * TSC is marked unstable when we're running on Hyper-V, 2644 * 'TSC page' clocksource is good. 2645 */ 2646 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2647 return false; 2648 #endif 2649 return check_tsc_unstable(); 2650 } 2651 2652 /* 2653 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2654 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2655 * participates in. 2656 */ 2657 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2658 u64 ns, bool matched, bool user_set_tsc) 2659 { 2660 struct kvm *kvm = vcpu->kvm; 2661 2662 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2663 2664 if (vcpu->arch.guest_tsc_protected) 2665 return; 2666 2667 if (user_set_tsc) 2668 vcpu->kvm->arch.user_set_tsc = true; 2669 2670 /* 2671 * We also track th most recent recorded KHZ, write and time to 2672 * allow the matching interval to be extended at each write. 2673 */ 2674 kvm->arch.last_tsc_nsec = ns; 2675 kvm->arch.last_tsc_write = tsc; 2676 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2677 kvm->arch.last_tsc_offset = offset; 2678 2679 vcpu->arch.last_guest_tsc = tsc; 2680 2681 kvm_vcpu_write_tsc_offset(vcpu, offset); 2682 2683 if (!matched) { 2684 /* 2685 * We split periods of matched TSC writes into generations. 2686 * For each generation, we track the original measured 2687 * nanosecond time, offset, and write, so if TSCs are in 2688 * sync, we can match exact offset, and if not, we can match 2689 * exact software computation in compute_guest_tsc() 2690 * 2691 * These values are tracked in kvm->arch.cur_xxx variables. 2692 */ 2693 kvm->arch.cur_tsc_generation++; 2694 kvm->arch.cur_tsc_nsec = ns; 2695 kvm->arch.cur_tsc_write = tsc; 2696 kvm->arch.cur_tsc_offset = offset; 2697 kvm->arch.nr_vcpus_matched_tsc = 0; 2698 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2699 kvm->arch.nr_vcpus_matched_tsc++; 2700 } 2701 2702 /* Keep track of which generation this VCPU has synchronized to */ 2703 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2704 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2705 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2706 2707 kvm_track_tsc_matching(vcpu, !matched); 2708 } 2709 2710 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2711 { 2712 u64 data = user_value ? *user_value : 0; 2713 struct kvm *kvm = vcpu->kvm; 2714 u64 offset, ns, elapsed; 2715 unsigned long flags; 2716 bool matched = false; 2717 bool synchronizing = false; 2718 2719 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2720 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2721 ns = get_kvmclock_base_ns(); 2722 elapsed = ns - kvm->arch.last_tsc_nsec; 2723 2724 if (vcpu->arch.virtual_tsc_khz) { 2725 if (data == 0) { 2726 /* 2727 * Force synchronization when creating a vCPU, or when 2728 * userspace explicitly writes a zero value. 2729 */ 2730 synchronizing = true; 2731 } else if (kvm->arch.user_set_tsc) { 2732 u64 tsc_exp = kvm->arch.last_tsc_write + 2733 nsec_to_cycles(vcpu, elapsed); 2734 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2735 /* 2736 * Here lies UAPI baggage: when a user-initiated TSC write has 2737 * a small delta (1 second) of virtual cycle time against the 2738 * previously set vCPU, we assume that they were intended to be 2739 * in sync and the delta was only due to the racy nature of the 2740 * legacy API. 2741 * 2742 * This trick falls down when restoring a guest which genuinely 2743 * has been running for less time than the 1 second of imprecision 2744 * which we allow for in the legacy API. In this case, the first 2745 * value written by userspace (on any vCPU) should not be subject 2746 * to this 'correction' to make it sync up with values that only 2747 * come from the kernel's default vCPU creation. Make the 1-second 2748 * slop hack only trigger if the user_set_tsc flag is already set. 2749 */ 2750 synchronizing = data < tsc_exp + tsc_hz && 2751 data + tsc_hz > tsc_exp; 2752 } 2753 } 2754 2755 2756 /* 2757 * For a reliable TSC, we can match TSC offsets, and for an unstable 2758 * TSC, we add elapsed time in this computation. We could let the 2759 * compensation code attempt to catch up if we fall behind, but 2760 * it's better to try to match offsets from the beginning. 2761 */ 2762 if (synchronizing && 2763 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2764 if (!kvm_check_tsc_unstable()) { 2765 offset = kvm->arch.cur_tsc_offset; 2766 } else { 2767 u64 delta = nsec_to_cycles(vcpu, elapsed); 2768 data += delta; 2769 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2770 } 2771 matched = true; 2772 } 2773 2774 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value); 2775 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2776 } 2777 2778 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2779 s64 adjustment) 2780 { 2781 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2782 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2783 } 2784 2785 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2786 { 2787 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2788 WARN_ON(adjustment < 0); 2789 adjustment = kvm_scale_tsc((u64) adjustment, 2790 vcpu->arch.l1_tsc_scaling_ratio); 2791 adjust_tsc_offset_guest(vcpu, adjustment); 2792 } 2793 2794 #ifdef CONFIG_X86_64 2795 2796 static u64 read_tsc(void) 2797 { 2798 u64 ret = (u64)rdtsc_ordered(); 2799 u64 last = pvclock_gtod_data.clock.cycle_last; 2800 2801 if (likely(ret >= last)) 2802 return ret; 2803 2804 /* 2805 * GCC likes to generate cmov here, but this branch is extremely 2806 * predictable (it's just a function of time and the likely is 2807 * very likely) and there's a data dependence, so force GCC 2808 * to generate a branch instead. I don't barrier() because 2809 * we don't actually need a barrier, and if this function 2810 * ever gets inlined it will generate worse code. 2811 */ 2812 asm volatile (""); 2813 return last; 2814 } 2815 2816 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2817 int *mode) 2818 { 2819 u64 tsc_pg_val; 2820 long v; 2821 2822 switch (clock->vclock_mode) { 2823 case VDSO_CLOCKMODE_HVCLOCK: 2824 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2825 tsc_timestamp, &tsc_pg_val)) { 2826 /* TSC page valid */ 2827 *mode = VDSO_CLOCKMODE_HVCLOCK; 2828 v = (tsc_pg_val - clock->cycle_last) & 2829 clock->mask; 2830 } else { 2831 /* TSC page invalid */ 2832 *mode = VDSO_CLOCKMODE_NONE; 2833 } 2834 break; 2835 case VDSO_CLOCKMODE_TSC: 2836 *mode = VDSO_CLOCKMODE_TSC; 2837 *tsc_timestamp = read_tsc(); 2838 v = (*tsc_timestamp - clock->cycle_last) & 2839 clock->mask; 2840 break; 2841 default: 2842 *mode = VDSO_CLOCKMODE_NONE; 2843 } 2844 2845 if (*mode == VDSO_CLOCKMODE_NONE) 2846 *tsc_timestamp = v = 0; 2847 2848 return v * clock->mult; 2849 } 2850 2851 /* 2852 * As with get_kvmclock_base_ns(), this counts from boot time, at the 2853 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot). 2854 */ 2855 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp) 2856 { 2857 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2858 unsigned long seq; 2859 int mode; 2860 u64 ns; 2861 2862 do { 2863 seq = read_seqcount_begin(>od->seq); 2864 ns = gtod->raw_clock.base_cycles; 2865 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2866 ns >>= gtod->raw_clock.shift; 2867 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2868 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2869 *t = ns; 2870 2871 return mode; 2872 } 2873 2874 /* 2875 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with 2876 * no boot time offset. 2877 */ 2878 static int do_monotonic(s64 *t, u64 *tsc_timestamp) 2879 { 2880 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2881 unsigned long seq; 2882 int mode; 2883 u64 ns; 2884 2885 do { 2886 seq = read_seqcount_begin(>od->seq); 2887 ns = gtod->clock.base_cycles; 2888 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2889 ns >>= gtod->clock.shift; 2890 ns += ktime_to_ns(gtod->clock.offset); 2891 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2892 *t = ns; 2893 2894 return mode; 2895 } 2896 2897 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2898 { 2899 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2900 unsigned long seq; 2901 int mode; 2902 u64 ns; 2903 2904 do { 2905 seq = read_seqcount_begin(>od->seq); 2906 ts->tv_sec = gtod->wall_time_sec; 2907 ns = gtod->clock.base_cycles; 2908 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2909 ns >>= gtod->clock.shift; 2910 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2911 2912 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2913 ts->tv_nsec = ns; 2914 2915 return mode; 2916 } 2917 2918 /* 2919 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and 2920 * reports the TSC value from which it do so. Returns true if host is 2921 * using TSC based clocksource. 2922 */ 2923 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2924 { 2925 /* checked again under seqlock below */ 2926 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2927 return false; 2928 2929 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns, 2930 tsc_timestamp)); 2931 } 2932 2933 /* 2934 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did 2935 * so. Returns true if host is using TSC based clocksource. 2936 */ 2937 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2938 { 2939 /* checked again under seqlock below */ 2940 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2941 return false; 2942 2943 return gtod_is_based_on_tsc(do_monotonic(kernel_ns, 2944 tsc_timestamp)); 2945 } 2946 2947 /* 2948 * Calculates CLOCK_REALTIME and reports the TSC value from which it did 2949 * so. Returns true if host is using TSC based clocksource. 2950 * 2951 * DO NOT USE this for anything related to migration. You want CLOCK_TAI 2952 * for that. 2953 */ 2954 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2955 u64 *tsc_timestamp) 2956 { 2957 /* checked again under seqlock below */ 2958 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2959 return false; 2960 2961 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2962 } 2963 #endif 2964 2965 /* 2966 * 2967 * Assuming a stable TSC across physical CPUS, and a stable TSC 2968 * across virtual CPUs, the following condition is possible. 2969 * Each numbered line represents an event visible to both 2970 * CPUs at the next numbered event. 2971 * 2972 * "timespecX" represents host monotonic time. "tscX" represents 2973 * RDTSC value. 2974 * 2975 * VCPU0 on CPU0 | VCPU1 on CPU1 2976 * 2977 * 1. read timespec0,tsc0 2978 * 2. | timespec1 = timespec0 + N 2979 * | tsc1 = tsc0 + M 2980 * 3. transition to guest | transition to guest 2981 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2982 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2983 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2984 * 2985 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2986 * 2987 * - ret0 < ret1 2988 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2989 * ... 2990 * - 0 < N - M => M < N 2991 * 2992 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2993 * always the case (the difference between two distinct xtime instances 2994 * might be smaller then the difference between corresponding TSC reads, 2995 * when updating guest vcpus pvclock areas). 2996 * 2997 * To avoid that problem, do not allow visibility of distinct 2998 * system_timestamp/tsc_timestamp values simultaneously: use a master 2999 * copy of host monotonic time values. Update that master copy 3000 * in lockstep. 3001 * 3002 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 3003 * 3004 */ 3005 3006 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 3007 { 3008 #ifdef CONFIG_X86_64 3009 struct kvm_arch *ka = &kvm->arch; 3010 int vclock_mode; 3011 bool host_tsc_clocksource, vcpus_matched; 3012 3013 lockdep_assert_held(&kvm->arch.tsc_write_lock); 3014 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 3015 atomic_read(&kvm->online_vcpus)); 3016 3017 /* 3018 * If the host uses TSC clock, then passthrough TSC as stable 3019 * to the guest. 3020 */ 3021 host_tsc_clocksource = kvm_get_time_and_clockread( 3022 &ka->master_kernel_ns, 3023 &ka->master_cycle_now); 3024 3025 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 3026 && !ka->backwards_tsc_observed 3027 && !ka->boot_vcpu_runs_old_kvmclock; 3028 3029 if (ka->use_master_clock) 3030 atomic_set(&kvm_guest_has_master_clock, 1); 3031 3032 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 3033 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 3034 vcpus_matched); 3035 #endif 3036 } 3037 3038 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 3039 { 3040 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 3041 } 3042 3043 static void __kvm_start_pvclock_update(struct kvm *kvm) 3044 { 3045 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3046 write_seqcount_begin(&kvm->arch.pvclock_sc); 3047 } 3048 3049 static void kvm_start_pvclock_update(struct kvm *kvm) 3050 { 3051 kvm_make_mclock_inprogress_request(kvm); 3052 3053 /* no guest entries from this point */ 3054 __kvm_start_pvclock_update(kvm); 3055 } 3056 3057 static void kvm_end_pvclock_update(struct kvm *kvm) 3058 { 3059 struct kvm_arch *ka = &kvm->arch; 3060 struct kvm_vcpu *vcpu; 3061 unsigned long i; 3062 3063 write_seqcount_end(&ka->pvclock_sc); 3064 raw_spin_unlock_irq(&ka->tsc_write_lock); 3065 kvm_for_each_vcpu(i, vcpu, kvm) 3066 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3067 3068 /* guest entries allowed */ 3069 kvm_for_each_vcpu(i, vcpu, kvm) 3070 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3071 } 3072 3073 static void kvm_update_masterclock(struct kvm *kvm) 3074 { 3075 kvm_hv_request_tsc_page_update(kvm); 3076 kvm_start_pvclock_update(kvm); 3077 pvclock_update_vm_gtod_copy(kvm); 3078 kvm_end_pvclock_update(kvm); 3079 } 3080 3081 /* 3082 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3083 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3084 * can change during boot even if the TSC is constant, as it's possible for KVM 3085 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3086 * notification when calibration completes, but practically speaking calibration 3087 * will complete before userspace is alive enough to create VMs. 3088 */ 3089 static unsigned long get_cpu_tsc_khz(void) 3090 { 3091 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3092 return tsc_khz; 3093 else 3094 return __this_cpu_read(cpu_tsc_khz); 3095 } 3096 3097 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3098 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3099 { 3100 struct kvm_arch *ka = &kvm->arch; 3101 struct pvclock_vcpu_time_info hv_clock; 3102 3103 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3104 get_cpu(); 3105 3106 data->flags = 0; 3107 if (ka->use_master_clock && 3108 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3109 #ifdef CONFIG_X86_64 3110 struct timespec64 ts; 3111 3112 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3113 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3114 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3115 } else 3116 #endif 3117 data->host_tsc = rdtsc(); 3118 3119 data->flags |= KVM_CLOCK_TSC_STABLE; 3120 hv_clock.tsc_timestamp = ka->master_cycle_now; 3121 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3122 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3123 &hv_clock.tsc_shift, 3124 &hv_clock.tsc_to_system_mul); 3125 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3126 } else { 3127 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3128 } 3129 3130 put_cpu(); 3131 } 3132 3133 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3134 { 3135 struct kvm_arch *ka = &kvm->arch; 3136 unsigned seq; 3137 3138 do { 3139 seq = read_seqcount_begin(&ka->pvclock_sc); 3140 __get_kvmclock(kvm, data); 3141 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3142 } 3143 3144 u64 get_kvmclock_ns(struct kvm *kvm) 3145 { 3146 struct kvm_clock_data data; 3147 3148 get_kvmclock(kvm, &data); 3149 return data.clock; 3150 } 3151 3152 static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock, 3153 struct kvm_vcpu *vcpu, 3154 struct gfn_to_pfn_cache *gpc, 3155 unsigned int offset) 3156 { 3157 struct pvclock_vcpu_time_info *guest_hv_clock; 3158 struct pvclock_vcpu_time_info hv_clock; 3159 unsigned long flags; 3160 3161 memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock)); 3162 3163 read_lock_irqsave(&gpc->lock, flags); 3164 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3165 read_unlock_irqrestore(&gpc->lock, flags); 3166 3167 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3168 return; 3169 3170 read_lock_irqsave(&gpc->lock, flags); 3171 } 3172 3173 guest_hv_clock = (void *)(gpc->khva + offset); 3174 3175 /* 3176 * This VCPU is paused, but it's legal for a guest to read another 3177 * VCPU's kvmclock, so we really have to follow the specification where 3178 * it says that version is odd if data is being modified, and even after 3179 * it is consistent. 3180 */ 3181 3182 guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1; 3183 smp_wmb(); 3184 3185 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3186 hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3187 3188 memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock)); 3189 3190 smp_wmb(); 3191 3192 guest_hv_clock->version = ++hv_clock.version; 3193 3194 kvm_gpc_mark_dirty_in_slot(gpc); 3195 read_unlock_irqrestore(&gpc->lock, flags); 3196 3197 trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock); 3198 } 3199 3200 int kvm_guest_time_update(struct kvm_vcpu *v) 3201 { 3202 struct pvclock_vcpu_time_info hv_clock = {}; 3203 unsigned long flags, tgt_tsc_khz; 3204 unsigned seq; 3205 struct kvm_vcpu_arch *vcpu = &v->arch; 3206 struct kvm_arch *ka = &v->kvm->arch; 3207 s64 kernel_ns; 3208 u64 tsc_timestamp, host_tsc; 3209 bool use_master_clock; 3210 3211 kernel_ns = 0; 3212 host_tsc = 0; 3213 3214 /* 3215 * If the host uses TSC clock, then passthrough TSC as stable 3216 * to the guest. 3217 */ 3218 do { 3219 seq = read_seqcount_begin(&ka->pvclock_sc); 3220 use_master_clock = ka->use_master_clock; 3221 if (use_master_clock) { 3222 host_tsc = ka->master_cycle_now; 3223 kernel_ns = ka->master_kernel_ns; 3224 } 3225 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3226 3227 /* Keep irq disabled to prevent changes to the clock */ 3228 local_irq_save(flags); 3229 tgt_tsc_khz = get_cpu_tsc_khz(); 3230 if (unlikely(tgt_tsc_khz == 0)) { 3231 local_irq_restore(flags); 3232 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3233 return 1; 3234 } 3235 if (!use_master_clock) { 3236 host_tsc = rdtsc(); 3237 kernel_ns = get_kvmclock_base_ns(); 3238 } 3239 3240 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3241 3242 /* 3243 * We may have to catch up the TSC to match elapsed wall clock 3244 * time for two reasons, even if kvmclock is used. 3245 * 1) CPU could have been running below the maximum TSC rate 3246 * 2) Broken TSC compensation resets the base at each VCPU 3247 * entry to avoid unknown leaps of TSC even when running 3248 * again on the same CPU. This may cause apparent elapsed 3249 * time to disappear, and the guest to stand still or run 3250 * very slowly. 3251 */ 3252 if (vcpu->tsc_catchup) { 3253 u64 tsc = compute_guest_tsc(v, kernel_ns); 3254 if (tsc > tsc_timestamp) { 3255 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3256 tsc_timestamp = tsc; 3257 } 3258 } 3259 3260 local_irq_restore(flags); 3261 3262 /* With all the info we got, fill in the values */ 3263 3264 if (kvm_caps.has_tsc_control) { 3265 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3266 v->arch.l1_tsc_scaling_ratio); 3267 tgt_tsc_khz = tgt_tsc_khz ? : 1; 3268 } 3269 3270 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3271 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3272 &vcpu->pvclock_tsc_shift, 3273 &vcpu->pvclock_tsc_mul); 3274 vcpu->hw_tsc_khz = tgt_tsc_khz; 3275 } 3276 3277 hv_clock.tsc_shift = vcpu->pvclock_tsc_shift; 3278 hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul; 3279 hv_clock.tsc_timestamp = tsc_timestamp; 3280 hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3281 vcpu->last_guest_tsc = tsc_timestamp; 3282 3283 /* If the host uses TSC clocksource, then it is stable */ 3284 hv_clock.flags = 0; 3285 if (use_master_clock) 3286 hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT; 3287 3288 if (vcpu->pv_time.active) { 3289 /* 3290 * GUEST_STOPPED is only supported by kvmclock, and KVM's 3291 * historic behavior is to only process the request if kvmclock 3292 * is active/enabled. 3293 */ 3294 if (vcpu->pvclock_set_guest_stopped_request) { 3295 hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3296 vcpu->pvclock_set_guest_stopped_request = false; 3297 } 3298 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0); 3299 3300 hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED; 3301 } 3302 3303 kvm_hv_setup_tsc_page(v->kvm, &hv_clock); 3304 3305 #ifdef CONFIG_KVM_XEN 3306 /* 3307 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3308 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3309 * This default behaviour led to bugs in some guest kernels which cause 3310 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3311 * 3312 * Note! Clear TSC_STABLE only for Xen clocks, i.e. the order matters! 3313 */ 3314 if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE) 3315 hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT; 3316 3317 if (vcpu->xen.vcpu_info_cache.active) 3318 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache, 3319 offsetof(struct compat_vcpu_info, time)); 3320 if (vcpu->xen.vcpu_time_info_cache.active) 3321 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0); 3322 #endif 3323 return 0; 3324 } 3325 3326 /* 3327 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3328 * which it started (i.e. its epoch, when its kvmclock was zero). 3329 * 3330 * In fact those clocks are subtly different; wall clock frequency is 3331 * adjusted by NTP and has leap seconds, while the kvmclock is a 3332 * simple function of the TSC without any such adjustment. 3333 * 3334 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3335 * that and kvmclock, but even that would be subject to change over 3336 * time. 3337 * 3338 * Attempt to calculate the epoch at a given moment using the *same* 3339 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3340 * wallclock and kvmclock times, and subtracting one from the other. 3341 * 3342 * Fall back to using their values at slightly different moments by 3343 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3344 */ 3345 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3346 { 3347 #ifdef CONFIG_X86_64 3348 struct pvclock_vcpu_time_info hv_clock; 3349 struct kvm_arch *ka = &kvm->arch; 3350 unsigned long seq, local_tsc_khz; 3351 struct timespec64 ts; 3352 uint64_t host_tsc; 3353 3354 do { 3355 seq = read_seqcount_begin(&ka->pvclock_sc); 3356 3357 local_tsc_khz = 0; 3358 if (!ka->use_master_clock) 3359 break; 3360 3361 /* 3362 * The TSC read and the call to get_cpu_tsc_khz() must happen 3363 * on the same CPU. 3364 */ 3365 get_cpu(); 3366 3367 local_tsc_khz = get_cpu_tsc_khz(); 3368 3369 if (local_tsc_khz && 3370 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3371 local_tsc_khz = 0; /* Fall back to old method */ 3372 3373 put_cpu(); 3374 3375 /* 3376 * These values must be snapshotted within the seqcount loop. 3377 * After that, it's just mathematics which can happen on any 3378 * CPU at any time. 3379 */ 3380 hv_clock.tsc_timestamp = ka->master_cycle_now; 3381 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3382 3383 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3384 3385 /* 3386 * If the conditions were right, and obtaining the wallclock+TSC was 3387 * successful, calculate the KVM clock at the corresponding time and 3388 * subtract one from the other to get the guest's epoch in nanoseconds 3389 * since 1970-01-01. 3390 */ 3391 if (local_tsc_khz) { 3392 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3393 &hv_clock.tsc_shift, 3394 &hv_clock.tsc_to_system_mul); 3395 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3396 __pvclock_read_cycles(&hv_clock, host_tsc); 3397 } 3398 #endif 3399 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3400 } 3401 3402 /* 3403 * kvmclock updates which are isolated to a given vcpu, such as 3404 * vcpu->cpu migration, should not allow system_timestamp from 3405 * the rest of the vcpus to remain static. Otherwise ntp frequency 3406 * correction applies to one vcpu's system_timestamp but not 3407 * the others. 3408 * 3409 * So in those cases, request a kvmclock update for all vcpus. 3410 * We need to rate-limit these requests though, as they can 3411 * considerably slow guests that have a large number of vcpus. 3412 * The time for a remote vcpu to update its kvmclock is bound 3413 * by the delay we use to rate-limit the updates. 3414 */ 3415 3416 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3417 3418 static void kvmclock_update_fn(struct work_struct *work) 3419 { 3420 unsigned long i; 3421 struct delayed_work *dwork = to_delayed_work(work); 3422 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3423 kvmclock_update_work); 3424 struct kvm *kvm = container_of(ka, struct kvm, arch); 3425 struct kvm_vcpu *vcpu; 3426 3427 kvm_for_each_vcpu(i, vcpu, kvm) { 3428 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3429 kvm_vcpu_kick(vcpu); 3430 } 3431 } 3432 3433 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3434 { 3435 struct kvm *kvm = v->kvm; 3436 3437 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3438 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3439 KVMCLOCK_UPDATE_DELAY); 3440 } 3441 3442 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3443 3444 static void kvmclock_sync_fn(struct work_struct *work) 3445 { 3446 struct delayed_work *dwork = to_delayed_work(work); 3447 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3448 kvmclock_sync_work); 3449 struct kvm *kvm = container_of(ka, struct kvm, arch); 3450 3451 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3452 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3453 KVMCLOCK_SYNC_PERIOD); 3454 } 3455 3456 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3457 static bool is_mci_control_msr(u32 msr) 3458 { 3459 return (msr & 3) == 0; 3460 } 3461 static bool is_mci_status_msr(u32 msr) 3462 { 3463 return (msr & 3) == 1; 3464 } 3465 3466 /* 3467 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3468 */ 3469 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3470 { 3471 /* McStatusWrEn enabled? */ 3472 if (guest_cpuid_is_amd_compatible(vcpu)) 3473 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3474 3475 return false; 3476 } 3477 3478 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3479 { 3480 u64 mcg_cap = vcpu->arch.mcg_cap; 3481 unsigned bank_num = mcg_cap & 0xff; 3482 u32 msr = msr_info->index; 3483 u64 data = msr_info->data; 3484 u32 offset, last_msr; 3485 3486 switch (msr) { 3487 case MSR_IA32_MCG_STATUS: 3488 vcpu->arch.mcg_status = data; 3489 break; 3490 case MSR_IA32_MCG_CTL: 3491 if (!(mcg_cap & MCG_CTL_P) && 3492 (data || !msr_info->host_initiated)) 3493 return 1; 3494 if (data != 0 && data != ~(u64)0) 3495 return 1; 3496 vcpu->arch.mcg_ctl = data; 3497 break; 3498 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3499 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3500 if (msr > last_msr) 3501 return 1; 3502 3503 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3504 return 1; 3505 /* An attempt to write a 1 to a reserved bit raises #GP */ 3506 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3507 return 1; 3508 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3509 last_msr + 1 - MSR_IA32_MC0_CTL2); 3510 vcpu->arch.mci_ctl2_banks[offset] = data; 3511 break; 3512 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3513 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3514 if (msr > last_msr) 3515 return 1; 3516 3517 /* 3518 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3519 * values are architecturally undefined. But, some Linux 3520 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3521 * issue on AMD K8s, allow bit 10 to be clear when setting all 3522 * other bits in order to avoid an uncaught #GP in the guest. 3523 * 3524 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3525 * single-bit ECC data errors. 3526 */ 3527 if (is_mci_control_msr(msr) && 3528 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3529 return 1; 3530 3531 /* 3532 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3533 * AMD-based CPUs allow non-zero values, but if and only if 3534 * HWCR[McStatusWrEn] is set. 3535 */ 3536 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3537 data != 0 && !can_set_mci_status(vcpu)) 3538 return 1; 3539 3540 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3541 last_msr + 1 - MSR_IA32_MC0_CTL); 3542 vcpu->arch.mce_banks[offset] = data; 3543 break; 3544 default: 3545 return 1; 3546 } 3547 return 0; 3548 } 3549 3550 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3551 { 3552 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3553 3554 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3555 } 3556 3557 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3558 { 3559 gpa_t gpa = data & ~0x3f; 3560 3561 /* Bits 4:5 are reserved, Should be zero */ 3562 if (data & 0x30) 3563 return 1; 3564 3565 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3566 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3567 return 1; 3568 3569 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3570 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3571 return 1; 3572 3573 if (!lapic_in_kernel(vcpu)) 3574 return data ? 1 : 0; 3575 3576 vcpu->arch.apf.msr_en_val = data; 3577 3578 if (!kvm_pv_async_pf_enabled(vcpu)) { 3579 kvm_clear_async_pf_completion_queue(vcpu); 3580 kvm_async_pf_hash_reset(vcpu); 3581 return 0; 3582 } 3583 3584 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3585 sizeof(u64))) 3586 return 1; 3587 3588 vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS); 3589 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3590 3591 kvm_async_pf_wakeup_all(vcpu); 3592 3593 return 0; 3594 } 3595 3596 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3597 { 3598 /* Bits 8-63 are reserved */ 3599 if (data >> 8) 3600 return 1; 3601 3602 if (!lapic_in_kernel(vcpu)) 3603 return 1; 3604 3605 vcpu->arch.apf.msr_int_val = data; 3606 3607 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3608 3609 return 0; 3610 } 3611 3612 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3613 { 3614 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3615 vcpu->arch.time = 0; 3616 } 3617 3618 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3619 { 3620 ++vcpu->stat.tlb_flush; 3621 kvm_x86_call(flush_tlb_all)(vcpu); 3622 3623 /* Flushing all ASIDs flushes the current ASID... */ 3624 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3625 } 3626 3627 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3628 { 3629 ++vcpu->stat.tlb_flush; 3630 3631 if (!tdp_enabled) { 3632 /* 3633 * A TLB flush on behalf of the guest is equivalent to 3634 * INVPCID(all), toggling CR4.PGE, etc., which requires 3635 * a forced sync of the shadow page tables. Ensure all the 3636 * roots are synced and the guest TLB in hardware is clean. 3637 */ 3638 kvm_mmu_sync_roots(vcpu); 3639 kvm_mmu_sync_prev_roots(vcpu); 3640 } 3641 3642 kvm_x86_call(flush_tlb_guest)(vcpu); 3643 3644 /* 3645 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3646 * grained flushing. 3647 */ 3648 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3649 } 3650 3651 3652 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3653 { 3654 ++vcpu->stat.tlb_flush; 3655 kvm_x86_call(flush_tlb_current)(vcpu); 3656 } 3657 3658 /* 3659 * Service "local" TLB flush requests, which are specific to the current MMU 3660 * context. In addition to the generic event handling in vcpu_enter_guest(), 3661 * TLB flushes that are targeted at an MMU context also need to be serviced 3662 * prior before nested VM-Enter/VM-Exit. 3663 */ 3664 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3665 { 3666 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3667 kvm_vcpu_flush_tlb_current(vcpu); 3668 3669 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3670 kvm_vcpu_flush_tlb_guest(vcpu); 3671 } 3672 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3673 3674 static void record_steal_time(struct kvm_vcpu *vcpu) 3675 { 3676 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3677 struct kvm_steal_time __user *st; 3678 struct kvm_memslots *slots; 3679 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3680 u64 steal; 3681 u32 version; 3682 3683 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3684 kvm_xen_runstate_set_running(vcpu); 3685 return; 3686 } 3687 3688 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3689 return; 3690 3691 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3692 return; 3693 3694 slots = kvm_memslots(vcpu->kvm); 3695 3696 if (unlikely(slots->generation != ghc->generation || 3697 gpa != ghc->gpa || 3698 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3699 /* We rely on the fact that it fits in a single page. */ 3700 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3701 3702 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3703 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3704 return; 3705 } 3706 3707 st = (struct kvm_steal_time __user *)ghc->hva; 3708 /* 3709 * Doing a TLB flush here, on the guest's behalf, can avoid 3710 * expensive IPIs. 3711 */ 3712 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3713 u8 st_preempted = 0; 3714 int err = -EFAULT; 3715 3716 if (!user_access_begin(st, sizeof(*st))) 3717 return; 3718 3719 asm volatile("1: xchgb %0, %2\n" 3720 "xor %1, %1\n" 3721 "2:\n" 3722 _ASM_EXTABLE_UA(1b, 2b) 3723 : "+q" (st_preempted), 3724 "+&r" (err), 3725 "+m" (st->preempted)); 3726 if (err) 3727 goto out; 3728 3729 user_access_end(); 3730 3731 vcpu->arch.st.preempted = 0; 3732 3733 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3734 st_preempted & KVM_VCPU_FLUSH_TLB); 3735 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3736 kvm_vcpu_flush_tlb_guest(vcpu); 3737 3738 if (!user_access_begin(st, sizeof(*st))) 3739 goto dirty; 3740 } else { 3741 if (!user_access_begin(st, sizeof(*st))) 3742 return; 3743 3744 unsafe_put_user(0, &st->preempted, out); 3745 vcpu->arch.st.preempted = 0; 3746 } 3747 3748 unsafe_get_user(version, &st->version, out); 3749 if (version & 1) 3750 version += 1; /* first time write, random junk */ 3751 3752 version += 1; 3753 unsafe_put_user(version, &st->version, out); 3754 3755 smp_wmb(); 3756 3757 unsafe_get_user(steal, &st->steal, out); 3758 steal += current->sched_info.run_delay - 3759 vcpu->arch.st.last_steal; 3760 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3761 unsafe_put_user(steal, &st->steal, out); 3762 3763 version += 1; 3764 unsafe_put_user(version, &st->version, out); 3765 3766 out: 3767 user_access_end(); 3768 dirty: 3769 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3770 } 3771 3772 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3773 { 3774 u32 msr = msr_info->index; 3775 u64 data = msr_info->data; 3776 3777 /* 3778 * Do not allow host-initiated writes to trigger the Xen hypercall 3779 * page setup; it could incur locking paths which are not expected 3780 * if userspace sets the MSR in an unusual location. 3781 */ 3782 if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) && 3783 !msr_info->host_initiated) 3784 return kvm_xen_write_hypercall_page(vcpu, data); 3785 3786 switch (msr) { 3787 case MSR_AMD64_NB_CFG: 3788 case MSR_IA32_UCODE_WRITE: 3789 case MSR_VM_HSAVE_PA: 3790 case MSR_AMD64_PATCH_LOADER: 3791 case MSR_AMD64_BU_CFG2: 3792 case MSR_AMD64_DC_CFG: 3793 case MSR_AMD64_TW_CFG: 3794 case MSR_F15H_EX_CFG: 3795 break; 3796 3797 case MSR_IA32_UCODE_REV: 3798 if (msr_info->host_initiated) 3799 vcpu->arch.microcode_version = data; 3800 break; 3801 case MSR_IA32_ARCH_CAPABILITIES: 3802 if (!msr_info->host_initiated || 3803 !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3804 return KVM_MSR_RET_UNSUPPORTED; 3805 vcpu->arch.arch_capabilities = data; 3806 break; 3807 case MSR_IA32_PERF_CAPABILITIES: 3808 if (!msr_info->host_initiated || 3809 !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM)) 3810 return KVM_MSR_RET_UNSUPPORTED; 3811 3812 if (data & ~kvm_caps.supported_perf_cap) 3813 return 1; 3814 3815 /* 3816 * Note, this is not just a performance optimization! KVM 3817 * disallows changing feature MSRs after the vCPU has run; PMU 3818 * refresh will bug the VM if called after the vCPU has run. 3819 */ 3820 if (vcpu->arch.perf_capabilities == data) 3821 break; 3822 3823 vcpu->arch.perf_capabilities = data; 3824 kvm_pmu_refresh(vcpu); 3825 break; 3826 case MSR_IA32_PRED_CMD: { 3827 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3828 3829 if (!msr_info->host_initiated) { 3830 if ((!guest_has_pred_cmd_msr(vcpu))) 3831 return 1; 3832 3833 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3834 !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB)) 3835 reserved_bits |= PRED_CMD_IBPB; 3836 3837 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB)) 3838 reserved_bits |= PRED_CMD_SBPB; 3839 } 3840 3841 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3842 reserved_bits |= PRED_CMD_IBPB; 3843 3844 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3845 reserved_bits |= PRED_CMD_SBPB; 3846 3847 if (data & reserved_bits) 3848 return 1; 3849 3850 if (!data) 3851 break; 3852 3853 wrmsrq(MSR_IA32_PRED_CMD, data); 3854 break; 3855 } 3856 case MSR_IA32_FLUSH_CMD: 3857 if (!msr_info->host_initiated && 3858 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3859 return 1; 3860 3861 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3862 return 1; 3863 if (!data) 3864 break; 3865 3866 wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3867 break; 3868 case MSR_EFER: 3869 return set_efer(vcpu, msr_info); 3870 case MSR_K7_HWCR: 3871 data &= ~(u64)0x40; /* ignore flush filter disable */ 3872 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3873 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3874 3875 /* 3876 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3877 * through at least v6.6 whine if TscFreqSel is clear, 3878 * depending on F/M/S. 3879 */ 3880 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3881 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3882 return 1; 3883 } 3884 vcpu->arch.msr_hwcr = data; 3885 break; 3886 case MSR_FAM10H_MMIO_CONF_BASE: 3887 if (data != 0) { 3888 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3889 return 1; 3890 } 3891 break; 3892 case MSR_IA32_CR_PAT: 3893 if (!kvm_pat_valid(data)) 3894 return 1; 3895 3896 vcpu->arch.pat = data; 3897 break; 3898 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3899 case MSR_MTRRdefType: 3900 return kvm_mtrr_set_msr(vcpu, msr, data); 3901 case MSR_IA32_APICBASE: 3902 return kvm_apic_set_base(vcpu, data, msr_info->host_initiated); 3903 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3904 return kvm_x2apic_msr_write(vcpu, msr, data); 3905 case MSR_IA32_TSC_DEADLINE: 3906 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3907 break; 3908 case MSR_IA32_TSC_ADJUST: 3909 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3910 if (!msr_info->host_initiated) { 3911 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3912 adjust_tsc_offset_guest(vcpu, adj); 3913 /* Before back to guest, tsc_timestamp must be adjusted 3914 * as well, otherwise guest's percpu pvclock time could jump. 3915 */ 3916 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3917 } 3918 vcpu->arch.ia32_tsc_adjust_msr = data; 3919 } 3920 break; 3921 case MSR_IA32_MISC_ENABLE: { 3922 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3923 3924 if (!msr_info->host_initiated) { 3925 /* RO bits */ 3926 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3927 return 1; 3928 3929 /* R bits, i.e. writes are ignored, but don't fault. */ 3930 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3931 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3932 } 3933 3934 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3935 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3936 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3)) 3937 return 1; 3938 vcpu->arch.ia32_misc_enable_msr = data; 3939 vcpu->arch.cpuid_dynamic_bits_dirty = true; 3940 } else { 3941 vcpu->arch.ia32_misc_enable_msr = data; 3942 } 3943 break; 3944 } 3945 case MSR_IA32_SMBASE: 3946 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3947 return 1; 3948 vcpu->arch.smbase = data; 3949 break; 3950 case MSR_IA32_POWER_CTL: 3951 vcpu->arch.msr_ia32_power_ctl = data; 3952 break; 3953 case MSR_IA32_TSC: 3954 if (msr_info->host_initiated) { 3955 kvm_synchronize_tsc(vcpu, &data); 3956 } else if (!vcpu->arch.guest_tsc_protected) { 3957 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3958 adjust_tsc_offset_guest(vcpu, adj); 3959 vcpu->arch.ia32_tsc_adjust_msr += adj; 3960 } 3961 break; 3962 case MSR_IA32_XSS: 3963 if (!msr_info->host_initiated && 3964 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3965 return 1; 3966 /* 3967 * KVM supports exposing PT to the guest, but does not support 3968 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3969 * XSAVES/XRSTORS to save/restore PT MSRs. 3970 */ 3971 if (data & ~kvm_caps.supported_xss) 3972 return 1; 3973 vcpu->arch.ia32_xss = data; 3974 vcpu->arch.cpuid_dynamic_bits_dirty = true; 3975 break; 3976 case MSR_SMI_COUNT: 3977 if (!msr_info->host_initiated) 3978 return 1; 3979 vcpu->arch.smi_count = data; 3980 break; 3981 case MSR_KVM_WALL_CLOCK_NEW: 3982 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3983 return 1; 3984 3985 vcpu->kvm->arch.wall_clock = data; 3986 kvm_write_wall_clock(vcpu->kvm, data, 0); 3987 break; 3988 case MSR_KVM_WALL_CLOCK: 3989 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3990 return 1; 3991 3992 vcpu->kvm->arch.wall_clock = data; 3993 kvm_write_wall_clock(vcpu->kvm, data, 0); 3994 break; 3995 case MSR_KVM_SYSTEM_TIME_NEW: 3996 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3997 return 1; 3998 3999 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 4000 break; 4001 case MSR_KVM_SYSTEM_TIME: 4002 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4003 return 1; 4004 4005 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 4006 break; 4007 case MSR_KVM_ASYNC_PF_EN: 4008 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4009 return 1; 4010 4011 if (kvm_pv_enable_async_pf(vcpu, data)) 4012 return 1; 4013 break; 4014 case MSR_KVM_ASYNC_PF_INT: 4015 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4016 return 1; 4017 4018 if (kvm_pv_enable_async_pf_int(vcpu, data)) 4019 return 1; 4020 break; 4021 case MSR_KVM_ASYNC_PF_ACK: 4022 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4023 return 1; 4024 if (data & 0x1) { 4025 vcpu->arch.apf.pageready_pending = false; 4026 kvm_check_async_pf_completion(vcpu); 4027 } 4028 break; 4029 case MSR_KVM_STEAL_TIME: 4030 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4031 return 1; 4032 4033 if (unlikely(!sched_info_on())) 4034 return 1; 4035 4036 if (data & KVM_STEAL_RESERVED_MASK) 4037 return 1; 4038 4039 vcpu->arch.st.msr_val = data; 4040 4041 if (!(data & KVM_MSR_ENABLED)) 4042 break; 4043 4044 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4045 4046 break; 4047 case MSR_KVM_PV_EOI_EN: 4048 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4049 return 1; 4050 4051 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4052 return 1; 4053 break; 4054 4055 case MSR_KVM_POLL_CONTROL: 4056 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4057 return 1; 4058 4059 /* only enable bit supported */ 4060 if (data & (-1ULL << 1)) 4061 return 1; 4062 4063 vcpu->arch.msr_kvm_poll_control = data; 4064 break; 4065 4066 case MSR_IA32_MCG_CTL: 4067 case MSR_IA32_MCG_STATUS: 4068 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4069 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4070 return set_msr_mce(vcpu, msr_info); 4071 4072 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4073 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4074 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4075 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4076 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4077 return kvm_pmu_set_msr(vcpu, msr_info); 4078 4079 if (data) 4080 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4081 break; 4082 case MSR_K7_CLK_CTL: 4083 /* 4084 * Ignore all writes to this no longer documented MSR. 4085 * Writes are only relevant for old K7 processors, 4086 * all pre-dating SVM, but a recommended workaround from 4087 * AMD for these chips. It is possible to specify the 4088 * affected processor models on the command line, hence 4089 * the need to ignore the workaround. 4090 */ 4091 break; 4092 #ifdef CONFIG_KVM_HYPERV 4093 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4094 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4095 case HV_X64_MSR_SYNDBG_OPTIONS: 4096 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4097 case HV_X64_MSR_CRASH_CTL: 4098 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4099 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4100 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4101 case HV_X64_MSR_TSC_EMULATION_STATUS: 4102 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4103 return kvm_hv_set_msr_common(vcpu, msr, data, 4104 msr_info->host_initiated); 4105 #endif 4106 case MSR_IA32_BBL_CR_CTL3: 4107 /* Drop writes to this legacy MSR -- see rdmsr 4108 * counterpart for further detail. 4109 */ 4110 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4111 break; 4112 case MSR_AMD64_OSVW_ID_LENGTH: 4113 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4114 return 1; 4115 vcpu->arch.osvw.length = data; 4116 break; 4117 case MSR_AMD64_OSVW_STATUS: 4118 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4119 return 1; 4120 vcpu->arch.osvw.status = data; 4121 break; 4122 case MSR_PLATFORM_INFO: 4123 if (!msr_info->host_initiated) 4124 return 1; 4125 vcpu->arch.msr_platform_info = data; 4126 break; 4127 case MSR_MISC_FEATURES_ENABLES: 4128 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4129 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4130 !supports_cpuid_fault(vcpu))) 4131 return 1; 4132 vcpu->arch.msr_misc_features_enables = data; 4133 break; 4134 #ifdef CONFIG_X86_64 4135 case MSR_IA32_XFD: 4136 if (!msr_info->host_initiated && 4137 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4138 return 1; 4139 4140 if (data & ~kvm_guest_supported_xfd(vcpu)) 4141 return 1; 4142 4143 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4144 break; 4145 case MSR_IA32_XFD_ERR: 4146 if (!msr_info->host_initiated && 4147 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4148 return 1; 4149 4150 if (data & ~kvm_guest_supported_xfd(vcpu)) 4151 return 1; 4152 4153 vcpu->arch.guest_fpu.xfd_err = data; 4154 break; 4155 #endif 4156 default: 4157 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4158 return kvm_pmu_set_msr(vcpu, msr_info); 4159 4160 return KVM_MSR_RET_UNSUPPORTED; 4161 } 4162 return 0; 4163 } 4164 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4165 4166 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4167 { 4168 u64 data; 4169 u64 mcg_cap = vcpu->arch.mcg_cap; 4170 unsigned bank_num = mcg_cap & 0xff; 4171 u32 offset, last_msr; 4172 4173 switch (msr) { 4174 case MSR_IA32_P5_MC_ADDR: 4175 case MSR_IA32_P5_MC_TYPE: 4176 data = 0; 4177 break; 4178 case MSR_IA32_MCG_CAP: 4179 data = vcpu->arch.mcg_cap; 4180 break; 4181 case MSR_IA32_MCG_CTL: 4182 if (!(mcg_cap & MCG_CTL_P) && !host) 4183 return 1; 4184 data = vcpu->arch.mcg_ctl; 4185 break; 4186 case MSR_IA32_MCG_STATUS: 4187 data = vcpu->arch.mcg_status; 4188 break; 4189 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4190 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4191 if (msr > last_msr) 4192 return 1; 4193 4194 if (!(mcg_cap & MCG_CMCI_P) && !host) 4195 return 1; 4196 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4197 last_msr + 1 - MSR_IA32_MC0_CTL2); 4198 data = vcpu->arch.mci_ctl2_banks[offset]; 4199 break; 4200 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4201 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4202 if (msr > last_msr) 4203 return 1; 4204 4205 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4206 last_msr + 1 - MSR_IA32_MC0_CTL); 4207 data = vcpu->arch.mce_banks[offset]; 4208 break; 4209 default: 4210 return 1; 4211 } 4212 *pdata = data; 4213 return 0; 4214 } 4215 4216 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4217 { 4218 switch (msr_info->index) { 4219 case MSR_IA32_PLATFORM_ID: 4220 case MSR_IA32_EBL_CR_POWERON: 4221 case MSR_IA32_LASTBRANCHFROMIP: 4222 case MSR_IA32_LASTBRANCHTOIP: 4223 case MSR_IA32_LASTINTFROMIP: 4224 case MSR_IA32_LASTINTTOIP: 4225 case MSR_AMD64_SYSCFG: 4226 case MSR_K8_TSEG_ADDR: 4227 case MSR_K8_TSEG_MASK: 4228 case MSR_VM_HSAVE_PA: 4229 case MSR_K8_INT_PENDING_MSG: 4230 case MSR_AMD64_NB_CFG: 4231 case MSR_FAM10H_MMIO_CONF_BASE: 4232 case MSR_AMD64_BU_CFG2: 4233 case MSR_IA32_PERF_CTL: 4234 case MSR_AMD64_DC_CFG: 4235 case MSR_AMD64_TW_CFG: 4236 case MSR_F15H_EX_CFG: 4237 /* 4238 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4239 * limit) MSRs. Just return 0, as we do not want to expose the host 4240 * data here. Do not conditionalize this on CPUID, as KVM does not do 4241 * so for existing CPU-specific MSRs. 4242 */ 4243 case MSR_RAPL_POWER_UNIT: 4244 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4245 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4246 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4247 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4248 msr_info->data = 0; 4249 break; 4250 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4251 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4252 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4253 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4254 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4255 return kvm_pmu_get_msr(vcpu, msr_info); 4256 msr_info->data = 0; 4257 break; 4258 case MSR_IA32_UCODE_REV: 4259 msr_info->data = vcpu->arch.microcode_version; 4260 break; 4261 case MSR_IA32_ARCH_CAPABILITIES: 4262 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4263 return KVM_MSR_RET_UNSUPPORTED; 4264 msr_info->data = vcpu->arch.arch_capabilities; 4265 break; 4266 case MSR_IA32_PERF_CAPABILITIES: 4267 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM)) 4268 return KVM_MSR_RET_UNSUPPORTED; 4269 msr_info->data = vcpu->arch.perf_capabilities; 4270 break; 4271 case MSR_IA32_POWER_CTL: 4272 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4273 break; 4274 case MSR_IA32_TSC: { 4275 /* 4276 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4277 * even when not intercepted. AMD manual doesn't explicitly 4278 * state this but appears to behave the same. 4279 * 4280 * On userspace reads and writes, however, we unconditionally 4281 * return L1's TSC value to ensure backwards-compatible 4282 * behavior for migration. 4283 */ 4284 u64 offset, ratio; 4285 4286 if (msr_info->host_initiated) { 4287 offset = vcpu->arch.l1_tsc_offset; 4288 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4289 } else { 4290 offset = vcpu->arch.tsc_offset; 4291 ratio = vcpu->arch.tsc_scaling_ratio; 4292 } 4293 4294 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4295 break; 4296 } 4297 case MSR_IA32_CR_PAT: 4298 msr_info->data = vcpu->arch.pat; 4299 break; 4300 case MSR_MTRRcap: 4301 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4302 case MSR_MTRRdefType: 4303 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4304 case 0xcd: /* fsb frequency */ 4305 msr_info->data = 3; 4306 break; 4307 /* 4308 * MSR_EBC_FREQUENCY_ID 4309 * Conservative value valid for even the basic CPU models. 4310 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4311 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4312 * and 266MHz for model 3, or 4. Set Core Clock 4313 * Frequency to System Bus Frequency Ratio to 1 (bits 4314 * 31:24) even though these are only valid for CPU 4315 * models > 2, however guests may end up dividing or 4316 * multiplying by zero otherwise. 4317 */ 4318 case MSR_EBC_FREQUENCY_ID: 4319 msr_info->data = 1 << 24; 4320 break; 4321 case MSR_IA32_APICBASE: 4322 msr_info->data = vcpu->arch.apic_base; 4323 break; 4324 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4325 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4326 case MSR_IA32_TSC_DEADLINE: 4327 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4328 break; 4329 case MSR_IA32_TSC_ADJUST: 4330 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4331 break; 4332 case MSR_IA32_MISC_ENABLE: 4333 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4334 break; 4335 case MSR_IA32_SMBASE: 4336 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4337 return 1; 4338 msr_info->data = vcpu->arch.smbase; 4339 break; 4340 case MSR_SMI_COUNT: 4341 msr_info->data = vcpu->arch.smi_count; 4342 break; 4343 case MSR_IA32_PERF_STATUS: 4344 /* TSC increment by tick */ 4345 msr_info->data = 1000ULL; 4346 /* CPU multiplier */ 4347 msr_info->data |= (((uint64_t)4ULL) << 40); 4348 break; 4349 case MSR_EFER: 4350 msr_info->data = vcpu->arch.efer; 4351 break; 4352 case MSR_KVM_WALL_CLOCK: 4353 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4354 return 1; 4355 4356 msr_info->data = vcpu->kvm->arch.wall_clock; 4357 break; 4358 case MSR_KVM_WALL_CLOCK_NEW: 4359 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4360 return 1; 4361 4362 msr_info->data = vcpu->kvm->arch.wall_clock; 4363 break; 4364 case MSR_KVM_SYSTEM_TIME: 4365 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4366 return 1; 4367 4368 msr_info->data = vcpu->arch.time; 4369 break; 4370 case MSR_KVM_SYSTEM_TIME_NEW: 4371 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4372 return 1; 4373 4374 msr_info->data = vcpu->arch.time; 4375 break; 4376 case MSR_KVM_ASYNC_PF_EN: 4377 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4378 return 1; 4379 4380 msr_info->data = vcpu->arch.apf.msr_en_val; 4381 break; 4382 case MSR_KVM_ASYNC_PF_INT: 4383 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4384 return 1; 4385 4386 msr_info->data = vcpu->arch.apf.msr_int_val; 4387 break; 4388 case MSR_KVM_ASYNC_PF_ACK: 4389 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4390 return 1; 4391 4392 msr_info->data = 0; 4393 break; 4394 case MSR_KVM_STEAL_TIME: 4395 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4396 return 1; 4397 4398 msr_info->data = vcpu->arch.st.msr_val; 4399 break; 4400 case MSR_KVM_PV_EOI_EN: 4401 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4402 return 1; 4403 4404 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4405 break; 4406 case MSR_KVM_POLL_CONTROL: 4407 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4408 return 1; 4409 4410 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4411 break; 4412 case MSR_IA32_P5_MC_ADDR: 4413 case MSR_IA32_P5_MC_TYPE: 4414 case MSR_IA32_MCG_CAP: 4415 case MSR_IA32_MCG_CTL: 4416 case MSR_IA32_MCG_STATUS: 4417 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4418 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4419 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4420 msr_info->host_initiated); 4421 case MSR_IA32_XSS: 4422 if (!msr_info->host_initiated && 4423 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4424 return 1; 4425 msr_info->data = vcpu->arch.ia32_xss; 4426 break; 4427 case MSR_K7_CLK_CTL: 4428 /* 4429 * Provide expected ramp-up count for K7. All other 4430 * are set to zero, indicating minimum divisors for 4431 * every field. 4432 * 4433 * This prevents guest kernels on AMD host with CPU 4434 * type 6, model 8 and higher from exploding due to 4435 * the rdmsr failing. 4436 */ 4437 msr_info->data = 0x20000000; 4438 break; 4439 #ifdef CONFIG_KVM_HYPERV 4440 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4441 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4442 case HV_X64_MSR_SYNDBG_OPTIONS: 4443 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4444 case HV_X64_MSR_CRASH_CTL: 4445 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4446 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4447 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4448 case HV_X64_MSR_TSC_EMULATION_STATUS: 4449 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4450 return kvm_hv_get_msr_common(vcpu, 4451 msr_info->index, &msr_info->data, 4452 msr_info->host_initiated); 4453 #endif 4454 case MSR_IA32_BBL_CR_CTL3: 4455 /* This legacy MSR exists but isn't fully documented in current 4456 * silicon. It is however accessed by winxp in very narrow 4457 * scenarios where it sets bit #19, itself documented as 4458 * a "reserved" bit. Best effort attempt to source coherent 4459 * read data here should the balance of the register be 4460 * interpreted by the guest: 4461 * 4462 * L2 cache control register 3: 64GB range, 256KB size, 4463 * enabled, latency 0x1, configured 4464 */ 4465 msr_info->data = 0xbe702111; 4466 break; 4467 case MSR_AMD64_OSVW_ID_LENGTH: 4468 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4469 return 1; 4470 msr_info->data = vcpu->arch.osvw.length; 4471 break; 4472 case MSR_AMD64_OSVW_STATUS: 4473 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4474 return 1; 4475 msr_info->data = vcpu->arch.osvw.status; 4476 break; 4477 case MSR_PLATFORM_INFO: 4478 if (!msr_info->host_initiated && 4479 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4480 return 1; 4481 msr_info->data = vcpu->arch.msr_platform_info; 4482 break; 4483 case MSR_MISC_FEATURES_ENABLES: 4484 msr_info->data = vcpu->arch.msr_misc_features_enables; 4485 break; 4486 case MSR_K7_HWCR: 4487 msr_info->data = vcpu->arch.msr_hwcr; 4488 break; 4489 #ifdef CONFIG_X86_64 4490 case MSR_IA32_XFD: 4491 if (!msr_info->host_initiated && 4492 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4493 return 1; 4494 4495 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4496 break; 4497 case MSR_IA32_XFD_ERR: 4498 if (!msr_info->host_initiated && 4499 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4500 return 1; 4501 4502 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4503 break; 4504 #endif 4505 default: 4506 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4507 return kvm_pmu_get_msr(vcpu, msr_info); 4508 4509 return KVM_MSR_RET_UNSUPPORTED; 4510 } 4511 return 0; 4512 } 4513 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4514 4515 /* 4516 * Read or write a bunch of msrs. All parameters are kernel addresses. 4517 * 4518 * @return number of msrs set successfully. 4519 */ 4520 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4521 struct kvm_msr_entry *entries, 4522 int (*do_msr)(struct kvm_vcpu *vcpu, 4523 unsigned index, u64 *data)) 4524 { 4525 int i; 4526 4527 for (i = 0; i < msrs->nmsrs; ++i) 4528 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4529 break; 4530 4531 return i; 4532 } 4533 4534 /* 4535 * Read or write a bunch of msrs. Parameters are user addresses. 4536 * 4537 * @return number of msrs set successfully. 4538 */ 4539 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4540 int (*do_msr)(struct kvm_vcpu *vcpu, 4541 unsigned index, u64 *data), 4542 int writeback) 4543 { 4544 struct kvm_msrs msrs; 4545 struct kvm_msr_entry *entries; 4546 unsigned size; 4547 int r; 4548 4549 r = -EFAULT; 4550 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4551 goto out; 4552 4553 r = -E2BIG; 4554 if (msrs.nmsrs >= MAX_IO_MSRS) 4555 goto out; 4556 4557 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4558 entries = memdup_user(user_msrs->entries, size); 4559 if (IS_ERR(entries)) { 4560 r = PTR_ERR(entries); 4561 goto out; 4562 } 4563 4564 r = __msr_io(vcpu, &msrs, entries, do_msr); 4565 4566 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4567 r = -EFAULT; 4568 4569 kfree(entries); 4570 out: 4571 return r; 4572 } 4573 4574 static inline bool kvm_can_mwait_in_guest(void) 4575 { 4576 return boot_cpu_has(X86_FEATURE_MWAIT) && 4577 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4578 boot_cpu_has(X86_FEATURE_ARAT); 4579 } 4580 4581 static u64 kvm_get_allowed_disable_exits(void) 4582 { 4583 u64 r = KVM_X86_DISABLE_EXITS_PAUSE; 4584 4585 if (boot_cpu_has(X86_FEATURE_APERFMPERF)) 4586 r |= KVM_X86_DISABLE_EXITS_APERFMPERF; 4587 4588 if (!mitigate_smt_rsb) { 4589 r |= KVM_X86_DISABLE_EXITS_HLT | 4590 KVM_X86_DISABLE_EXITS_CSTATE; 4591 4592 if (kvm_can_mwait_in_guest()) 4593 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4594 } 4595 return r; 4596 } 4597 4598 #ifdef CONFIG_KVM_HYPERV 4599 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4600 struct kvm_cpuid2 __user *cpuid_arg) 4601 { 4602 struct kvm_cpuid2 cpuid; 4603 int r; 4604 4605 r = -EFAULT; 4606 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4607 return r; 4608 4609 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4610 if (r) 4611 return r; 4612 4613 r = -EFAULT; 4614 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4615 return r; 4616 4617 return 0; 4618 } 4619 #endif 4620 4621 static bool kvm_is_vm_type_supported(unsigned long type) 4622 { 4623 return type < 32 && (kvm_caps.supported_vm_types & BIT(type)); 4624 } 4625 4626 static inline u64 kvm_sync_valid_fields(struct kvm *kvm) 4627 { 4628 return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS; 4629 } 4630 4631 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4632 { 4633 int r = 0; 4634 4635 switch (ext) { 4636 case KVM_CAP_IRQCHIP: 4637 case KVM_CAP_HLT: 4638 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4639 case KVM_CAP_SET_TSS_ADDR: 4640 case KVM_CAP_EXT_CPUID: 4641 case KVM_CAP_EXT_EMUL_CPUID: 4642 case KVM_CAP_CLOCKSOURCE: 4643 #ifdef CONFIG_KVM_IOAPIC 4644 case KVM_CAP_PIT: 4645 case KVM_CAP_PIT2: 4646 case KVM_CAP_PIT_STATE2: 4647 case KVM_CAP_REINJECT_CONTROL: 4648 #endif 4649 case KVM_CAP_NOP_IO_DELAY: 4650 case KVM_CAP_MP_STATE: 4651 case KVM_CAP_SYNC_MMU: 4652 case KVM_CAP_USER_NMI: 4653 case KVM_CAP_IRQ_INJECT_STATUS: 4654 case KVM_CAP_IOEVENTFD: 4655 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4656 4657 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4658 case KVM_CAP_VCPU_EVENTS: 4659 #ifdef CONFIG_KVM_HYPERV 4660 case KVM_CAP_HYPERV: 4661 case KVM_CAP_HYPERV_VAPIC: 4662 case KVM_CAP_HYPERV_SPIN: 4663 case KVM_CAP_HYPERV_TIME: 4664 case KVM_CAP_HYPERV_SYNIC: 4665 case KVM_CAP_HYPERV_SYNIC2: 4666 case KVM_CAP_HYPERV_VP_INDEX: 4667 case KVM_CAP_HYPERV_EVENTFD: 4668 case KVM_CAP_HYPERV_TLBFLUSH: 4669 case KVM_CAP_HYPERV_SEND_IPI: 4670 case KVM_CAP_HYPERV_CPUID: 4671 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4672 case KVM_CAP_SYS_HYPERV_CPUID: 4673 #endif 4674 case KVM_CAP_PCI_SEGMENT: 4675 case KVM_CAP_DEBUGREGS: 4676 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4677 case KVM_CAP_XSAVE: 4678 case KVM_CAP_ASYNC_PF: 4679 case KVM_CAP_ASYNC_PF_INT: 4680 case KVM_CAP_GET_TSC_KHZ: 4681 case KVM_CAP_KVMCLOCK_CTRL: 4682 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4683 case KVM_CAP_TSC_DEADLINE_TIMER: 4684 case KVM_CAP_DISABLE_QUIRKS: 4685 case KVM_CAP_SET_BOOT_CPU_ID: 4686 case KVM_CAP_SPLIT_IRQCHIP: 4687 case KVM_CAP_IMMEDIATE_EXIT: 4688 case KVM_CAP_PMU_EVENT_FILTER: 4689 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4690 case KVM_CAP_GET_MSR_FEATURES: 4691 case KVM_CAP_MSR_PLATFORM_INFO: 4692 case KVM_CAP_EXCEPTION_PAYLOAD: 4693 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4694 case KVM_CAP_SET_GUEST_DEBUG: 4695 case KVM_CAP_LAST_CPU: 4696 case KVM_CAP_X86_USER_SPACE_MSR: 4697 case KVM_CAP_X86_MSR_FILTER: 4698 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4699 #ifdef CONFIG_X86_SGX_KVM 4700 case KVM_CAP_SGX_ATTRIBUTE: 4701 #endif 4702 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4703 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4704 case KVM_CAP_SREGS2: 4705 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4706 case KVM_CAP_VCPU_ATTRIBUTES: 4707 case KVM_CAP_SYS_ATTRIBUTES: 4708 case KVM_CAP_VAPIC: 4709 case KVM_CAP_ENABLE_CAP: 4710 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4711 case KVM_CAP_IRQFD_RESAMPLE: 4712 case KVM_CAP_MEMORY_FAULT_INFO: 4713 case KVM_CAP_X86_GUEST_MODE: 4714 r = 1; 4715 break; 4716 case KVM_CAP_PRE_FAULT_MEMORY: 4717 r = tdp_enabled; 4718 break; 4719 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: 4720 r = APIC_BUS_CYCLE_NS_DEFAULT; 4721 break; 4722 case KVM_CAP_EXIT_HYPERCALL: 4723 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4724 break; 4725 case KVM_CAP_SET_GUEST_DEBUG2: 4726 return KVM_GUESTDBG_VALID_MASK; 4727 #ifdef CONFIG_KVM_XEN 4728 case KVM_CAP_XEN_HVM: 4729 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4730 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4731 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4732 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4733 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4734 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE | 4735 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA; 4736 if (sched_info_on()) 4737 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4738 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4739 break; 4740 #endif 4741 case KVM_CAP_SYNC_REGS: 4742 r = kvm_sync_valid_fields(kvm); 4743 break; 4744 case KVM_CAP_ADJUST_CLOCK: 4745 r = KVM_CLOCK_VALID_FLAGS; 4746 break; 4747 case KVM_CAP_X86_DISABLE_EXITS: 4748 r = kvm_get_allowed_disable_exits(); 4749 break; 4750 case KVM_CAP_X86_SMM: 4751 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4752 break; 4753 4754 /* SMBASE is usually relocated above 1M on modern chipsets, 4755 * and SMM handlers might indeed rely on 4G segment limits, 4756 * so do not report SMM to be available if real mode is 4757 * emulated via vm86 mode. Still, do not go to great lengths 4758 * to avoid userspace's usage of the feature, because it is a 4759 * fringe case that is not enabled except via specific settings 4760 * of the module parameters. 4761 */ 4762 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4763 break; 4764 case KVM_CAP_NR_VCPUS: 4765 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4766 break; 4767 case KVM_CAP_MAX_VCPUS: 4768 r = KVM_MAX_VCPUS; 4769 if (kvm) 4770 r = kvm->max_vcpus; 4771 break; 4772 case KVM_CAP_MAX_VCPU_ID: 4773 r = KVM_MAX_VCPU_IDS; 4774 break; 4775 case KVM_CAP_PV_MMU: /* obsolete */ 4776 r = 0; 4777 break; 4778 case KVM_CAP_MCE: 4779 r = KVM_MAX_MCE_BANKS; 4780 break; 4781 case KVM_CAP_XCRS: 4782 r = boot_cpu_has(X86_FEATURE_XSAVE); 4783 break; 4784 case KVM_CAP_TSC_CONTROL: 4785 case KVM_CAP_VM_TSC_CONTROL: 4786 r = kvm_caps.has_tsc_control; 4787 break; 4788 case KVM_CAP_X2APIC_API: 4789 r = KVM_X2APIC_API_VALID_FLAGS; 4790 break; 4791 case KVM_CAP_NESTED_STATE: 4792 r = kvm_x86_ops.nested_ops->get_state ? 4793 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4794 break; 4795 #ifdef CONFIG_KVM_HYPERV 4796 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4797 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4798 break; 4799 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4800 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4801 break; 4802 #endif 4803 case KVM_CAP_SMALLER_MAXPHYADDR: 4804 r = (int) allow_smaller_maxphyaddr; 4805 break; 4806 case KVM_CAP_STEAL_TIME: 4807 r = sched_info_on(); 4808 break; 4809 case KVM_CAP_X86_BUS_LOCK_EXIT: 4810 if (kvm_caps.has_bus_lock_exit) 4811 r = KVM_BUS_LOCK_DETECTION_OFF | 4812 KVM_BUS_LOCK_DETECTION_EXIT; 4813 else 4814 r = 0; 4815 break; 4816 case KVM_CAP_XSAVE2: { 4817 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4818 if (r < sizeof(struct kvm_xsave)) 4819 r = sizeof(struct kvm_xsave); 4820 break; 4821 } 4822 case KVM_CAP_PMU_CAPABILITY: 4823 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4824 break; 4825 case KVM_CAP_DISABLE_QUIRKS2: 4826 r = kvm_caps.supported_quirks; 4827 break; 4828 case KVM_CAP_X86_NOTIFY_VMEXIT: 4829 r = kvm_caps.has_notify_vmexit; 4830 break; 4831 case KVM_CAP_VM_TYPES: 4832 r = kvm_caps.supported_vm_types; 4833 break; 4834 case KVM_CAP_READONLY_MEM: 4835 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1; 4836 break; 4837 default: 4838 break; 4839 } 4840 return r; 4841 } 4842 4843 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val) 4844 { 4845 if (attr->group) { 4846 if (kvm_x86_ops.dev_get_attr) 4847 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val); 4848 return -ENXIO; 4849 } 4850 4851 switch (attr->attr) { 4852 case KVM_X86_XCOMP_GUEST_SUPP: 4853 *val = kvm_caps.supported_xcr0; 4854 return 0; 4855 default: 4856 return -ENXIO; 4857 } 4858 } 4859 4860 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4861 { 4862 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 4863 int r; 4864 u64 val; 4865 4866 r = __kvm_x86_dev_get_attr(attr, &val); 4867 if (r < 0) 4868 return r; 4869 4870 if (put_user(val, uaddr)) 4871 return -EFAULT; 4872 4873 return 0; 4874 } 4875 4876 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4877 { 4878 u64 val; 4879 4880 return __kvm_x86_dev_get_attr(attr, &val); 4881 } 4882 4883 long kvm_arch_dev_ioctl(struct file *filp, 4884 unsigned int ioctl, unsigned long arg) 4885 { 4886 void __user *argp = (void __user *)arg; 4887 long r; 4888 4889 switch (ioctl) { 4890 case KVM_GET_MSR_INDEX_LIST: { 4891 struct kvm_msr_list __user *user_msr_list = argp; 4892 struct kvm_msr_list msr_list; 4893 unsigned n; 4894 4895 r = -EFAULT; 4896 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4897 goto out; 4898 n = msr_list.nmsrs; 4899 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4900 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4901 goto out; 4902 r = -E2BIG; 4903 if (n < msr_list.nmsrs) 4904 goto out; 4905 r = -EFAULT; 4906 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4907 num_msrs_to_save * sizeof(u32))) 4908 goto out; 4909 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4910 &emulated_msrs, 4911 num_emulated_msrs * sizeof(u32))) 4912 goto out; 4913 r = 0; 4914 break; 4915 } 4916 case KVM_GET_SUPPORTED_CPUID: 4917 case KVM_GET_EMULATED_CPUID: { 4918 struct kvm_cpuid2 __user *cpuid_arg = argp; 4919 struct kvm_cpuid2 cpuid; 4920 4921 r = -EFAULT; 4922 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4923 goto out; 4924 4925 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4926 ioctl); 4927 if (r) 4928 goto out; 4929 4930 r = -EFAULT; 4931 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4932 goto out; 4933 r = 0; 4934 break; 4935 } 4936 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4937 r = -EFAULT; 4938 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4939 sizeof(kvm_caps.supported_mce_cap))) 4940 goto out; 4941 r = 0; 4942 break; 4943 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4944 struct kvm_msr_list __user *user_msr_list = argp; 4945 struct kvm_msr_list msr_list; 4946 unsigned int n; 4947 4948 r = -EFAULT; 4949 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4950 goto out; 4951 n = msr_list.nmsrs; 4952 msr_list.nmsrs = num_msr_based_features; 4953 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4954 goto out; 4955 r = -E2BIG; 4956 if (n < msr_list.nmsrs) 4957 goto out; 4958 r = -EFAULT; 4959 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4960 num_msr_based_features * sizeof(u32))) 4961 goto out; 4962 r = 0; 4963 break; 4964 } 4965 case KVM_GET_MSRS: 4966 r = msr_io(NULL, argp, do_get_feature_msr, 1); 4967 break; 4968 #ifdef CONFIG_KVM_HYPERV 4969 case KVM_GET_SUPPORTED_HV_CPUID: 4970 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4971 break; 4972 #endif 4973 case KVM_GET_DEVICE_ATTR: { 4974 struct kvm_device_attr attr; 4975 r = -EFAULT; 4976 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4977 break; 4978 r = kvm_x86_dev_get_attr(&attr); 4979 break; 4980 } 4981 case KVM_HAS_DEVICE_ATTR: { 4982 struct kvm_device_attr attr; 4983 r = -EFAULT; 4984 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4985 break; 4986 r = kvm_x86_dev_has_attr(&attr); 4987 break; 4988 } 4989 default: 4990 r = -EINVAL; 4991 break; 4992 } 4993 out: 4994 return r; 4995 } 4996 4997 static void wbinvd_ipi(void *garbage) 4998 { 4999 wbinvd(); 5000 } 5001 5002 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 5003 { 5004 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 5005 } 5006 5007 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu); 5008 5009 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 5010 { 5011 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 5012 5013 vcpu->arch.l1tf_flush_l1d = true; 5014 5015 if (vcpu->scheduled_out && pmu->version && pmu->event_count) { 5016 pmu->need_cleanup = true; 5017 kvm_make_request(KVM_REQ_PMU, vcpu); 5018 } 5019 5020 /* Address WBINVD may be executed by guest */ 5021 if (need_emulate_wbinvd(vcpu)) { 5022 if (kvm_x86_call(has_wbinvd_exit)()) 5023 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 5024 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 5025 smp_call_function_single(vcpu->cpu, 5026 wbinvd_ipi, NULL, 1); 5027 } 5028 5029 kvm_x86_call(vcpu_load)(vcpu, cpu); 5030 5031 if (vcpu != per_cpu(last_vcpu, cpu)) { 5032 /* 5033 * Flush the branch predictor when switching vCPUs on the same 5034 * physical CPU, as each vCPU needs its own branch prediction 5035 * domain. No IBPB is needed when switching between L1 and L2 5036 * on the same vCPU unless IBRS is advertised to the vCPU; that 5037 * is handled on the nested VM-Exit path. 5038 */ 5039 if (static_branch_likely(&switch_vcpu_ibpb)) 5040 indirect_branch_prediction_barrier(); 5041 per_cpu(last_vcpu, cpu) = vcpu; 5042 } 5043 5044 /* Save host pkru register if supported */ 5045 vcpu->arch.host_pkru = read_pkru(); 5046 5047 /* Apply any externally detected TSC adjustments (due to suspend) */ 5048 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 5049 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 5050 vcpu->arch.tsc_offset_adjustment = 0; 5051 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5052 } 5053 5054 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 5055 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 5056 rdtsc() - vcpu->arch.last_host_tsc; 5057 if (tsc_delta < 0) 5058 mark_tsc_unstable("KVM discovered backwards TSC"); 5059 5060 if (kvm_check_tsc_unstable()) { 5061 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 5062 vcpu->arch.last_guest_tsc); 5063 kvm_vcpu_write_tsc_offset(vcpu, offset); 5064 if (!vcpu->arch.guest_tsc_protected) 5065 vcpu->arch.tsc_catchup = 1; 5066 } 5067 5068 if (kvm_lapic_hv_timer_in_use(vcpu)) 5069 kvm_lapic_restart_hv_timer(vcpu); 5070 5071 /* 5072 * On a host with synchronized TSC, there is no need to update 5073 * kvmclock on vcpu->cpu migration 5074 */ 5075 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5076 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5077 if (vcpu->cpu != cpu) 5078 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5079 vcpu->cpu = cpu; 5080 } 5081 5082 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5083 } 5084 5085 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5086 { 5087 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5088 struct kvm_steal_time __user *st; 5089 struct kvm_memslots *slots; 5090 static const u8 preempted = KVM_VCPU_PREEMPTED; 5091 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5092 5093 /* 5094 * The vCPU can be marked preempted if and only if the VM-Exit was on 5095 * an instruction boundary and will not trigger guest emulation of any 5096 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5097 * when this is true, for example allowing the vCPU to be marked 5098 * preempted if and only if the VM-Exit was due to a host interrupt. 5099 */ 5100 if (!vcpu->arch.at_instruction_boundary) { 5101 vcpu->stat.preemption_other++; 5102 return; 5103 } 5104 5105 vcpu->stat.preemption_reported++; 5106 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5107 return; 5108 5109 if (vcpu->arch.st.preempted) 5110 return; 5111 5112 /* This happens on process exit */ 5113 if (unlikely(current->mm != vcpu->kvm->mm)) 5114 return; 5115 5116 slots = kvm_memslots(vcpu->kvm); 5117 5118 if (unlikely(slots->generation != ghc->generation || 5119 gpa != ghc->gpa || 5120 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5121 return; 5122 5123 st = (struct kvm_steal_time __user *)ghc->hva; 5124 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5125 5126 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5127 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5128 5129 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5130 } 5131 5132 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5133 { 5134 int idx; 5135 5136 if (vcpu->preempted) { 5137 /* 5138 * Assume protected guests are in-kernel. Inefficient yielding 5139 * due to false positives is preferable to never yielding due 5140 * to false negatives. 5141 */ 5142 vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected || 5143 !kvm_x86_call(get_cpl_no_cache)(vcpu); 5144 5145 /* 5146 * Take the srcu lock as memslots will be accessed to check the gfn 5147 * cache generation against the memslots generation. 5148 */ 5149 idx = srcu_read_lock(&vcpu->kvm->srcu); 5150 if (kvm_xen_msr_enabled(vcpu->kvm)) 5151 kvm_xen_runstate_set_preempted(vcpu); 5152 else 5153 kvm_steal_time_set_preempted(vcpu); 5154 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5155 } 5156 5157 kvm_x86_call(vcpu_put)(vcpu); 5158 vcpu->arch.last_host_tsc = rdtsc(); 5159 } 5160 5161 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5162 struct kvm_lapic_state *s) 5163 { 5164 if (vcpu->arch.apic->guest_apic_protected) 5165 return -EINVAL; 5166 5167 kvm_x86_call(sync_pir_to_irr)(vcpu); 5168 5169 return kvm_apic_get_state(vcpu, s); 5170 } 5171 5172 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5173 struct kvm_lapic_state *s) 5174 { 5175 int r; 5176 5177 if (vcpu->arch.apic->guest_apic_protected) 5178 return -EINVAL; 5179 5180 r = kvm_apic_set_state(vcpu, s); 5181 if (r) 5182 return r; 5183 update_cr8_intercept(vcpu); 5184 5185 return 0; 5186 } 5187 5188 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5189 { 5190 /* 5191 * We can accept userspace's request for interrupt injection 5192 * as long as we have a place to store the interrupt number. 5193 * The actual injection will happen when the CPU is able to 5194 * deliver the interrupt. 5195 */ 5196 if (kvm_cpu_has_extint(vcpu)) 5197 return false; 5198 5199 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5200 return (!lapic_in_kernel(vcpu) || 5201 kvm_apic_accept_pic_intr(vcpu)); 5202 } 5203 5204 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5205 { 5206 /* 5207 * Do not cause an interrupt window exit if an exception 5208 * is pending or an event needs reinjection; userspace 5209 * might want to inject the interrupt manually using KVM_SET_REGS 5210 * or KVM_SET_SREGS. For that to work, we must be at an 5211 * instruction boundary and with no events half-injected. 5212 */ 5213 return (kvm_arch_interrupt_allowed(vcpu) && 5214 kvm_cpu_accept_dm_intr(vcpu) && 5215 !kvm_event_needs_reinjection(vcpu) && 5216 !kvm_is_exception_pending(vcpu)); 5217 } 5218 5219 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5220 struct kvm_interrupt *irq) 5221 { 5222 if (irq->irq >= KVM_NR_INTERRUPTS) 5223 return -EINVAL; 5224 5225 if (!irqchip_in_kernel(vcpu->kvm)) { 5226 kvm_queue_interrupt(vcpu, irq->irq, false); 5227 kvm_make_request(KVM_REQ_EVENT, vcpu); 5228 return 0; 5229 } 5230 5231 /* 5232 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5233 * fail for in-kernel 8259. 5234 */ 5235 if (pic_in_kernel(vcpu->kvm)) 5236 return -ENXIO; 5237 5238 if (vcpu->arch.pending_external_vector != -1) 5239 return -EEXIST; 5240 5241 vcpu->arch.pending_external_vector = irq->irq; 5242 kvm_make_request(KVM_REQ_EVENT, vcpu); 5243 return 0; 5244 } 5245 5246 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5247 { 5248 kvm_inject_nmi(vcpu); 5249 5250 return 0; 5251 } 5252 5253 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5254 struct kvm_tpr_access_ctl *tac) 5255 { 5256 if (tac->flags) 5257 return -EINVAL; 5258 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5259 return 0; 5260 } 5261 5262 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5263 u64 mcg_cap) 5264 { 5265 int r; 5266 unsigned bank_num = mcg_cap & 0xff, bank; 5267 5268 r = -EINVAL; 5269 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5270 goto out; 5271 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5272 goto out; 5273 r = 0; 5274 vcpu->arch.mcg_cap = mcg_cap; 5275 /* Init IA32_MCG_CTL to all 1s */ 5276 if (mcg_cap & MCG_CTL_P) 5277 vcpu->arch.mcg_ctl = ~(u64)0; 5278 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5279 for (bank = 0; bank < bank_num; bank++) { 5280 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5281 if (mcg_cap & MCG_CMCI_P) 5282 vcpu->arch.mci_ctl2_banks[bank] = 0; 5283 } 5284 5285 kvm_apic_after_set_mcg_cap(vcpu); 5286 5287 kvm_x86_call(setup_mce)(vcpu); 5288 out: 5289 return r; 5290 } 5291 5292 /* 5293 * Validate this is an UCNA (uncorrectable no action) error by checking the 5294 * MCG_STATUS and MCi_STATUS registers: 5295 * - none of the bits for Machine Check Exceptions are set 5296 * - both the VAL (valid) and UC (uncorrectable) bits are set 5297 * MCI_STATUS_PCC - Processor Context Corrupted 5298 * MCI_STATUS_S - Signaled as a Machine Check Exception 5299 * MCI_STATUS_AR - Software recoverable Action Required 5300 */ 5301 static bool is_ucna(struct kvm_x86_mce *mce) 5302 { 5303 return !mce->mcg_status && 5304 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5305 (mce->status & MCI_STATUS_VAL) && 5306 (mce->status & MCI_STATUS_UC); 5307 } 5308 5309 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5310 { 5311 u64 mcg_cap = vcpu->arch.mcg_cap; 5312 5313 banks[1] = mce->status; 5314 banks[2] = mce->addr; 5315 banks[3] = mce->misc; 5316 vcpu->arch.mcg_status = mce->mcg_status; 5317 5318 if (!(mcg_cap & MCG_CMCI_P) || 5319 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5320 return 0; 5321 5322 if (lapic_in_kernel(vcpu)) 5323 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5324 5325 return 0; 5326 } 5327 5328 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5329 struct kvm_x86_mce *mce) 5330 { 5331 u64 mcg_cap = vcpu->arch.mcg_cap; 5332 unsigned bank_num = mcg_cap & 0xff; 5333 u64 *banks = vcpu->arch.mce_banks; 5334 5335 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5336 return -EINVAL; 5337 5338 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5339 5340 if (is_ucna(mce)) 5341 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5342 5343 /* 5344 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5345 * reporting is disabled 5346 */ 5347 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5348 vcpu->arch.mcg_ctl != ~(u64)0) 5349 return 0; 5350 /* 5351 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5352 * reporting is disabled for the bank 5353 */ 5354 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5355 return 0; 5356 if (mce->status & MCI_STATUS_UC) { 5357 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5358 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5359 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5360 return 0; 5361 } 5362 if (banks[1] & MCI_STATUS_VAL) 5363 mce->status |= MCI_STATUS_OVER; 5364 banks[2] = mce->addr; 5365 banks[3] = mce->misc; 5366 vcpu->arch.mcg_status = mce->mcg_status; 5367 banks[1] = mce->status; 5368 kvm_queue_exception(vcpu, MC_VECTOR); 5369 } else if (!(banks[1] & MCI_STATUS_VAL) 5370 || !(banks[1] & MCI_STATUS_UC)) { 5371 if (banks[1] & MCI_STATUS_VAL) 5372 mce->status |= MCI_STATUS_OVER; 5373 banks[2] = mce->addr; 5374 banks[3] = mce->misc; 5375 banks[1] = mce->status; 5376 } else 5377 banks[1] |= MCI_STATUS_OVER; 5378 return 0; 5379 } 5380 5381 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5382 struct kvm_vcpu_events *events) 5383 { 5384 struct kvm_queued_exception *ex; 5385 5386 process_nmi(vcpu); 5387 5388 #ifdef CONFIG_KVM_SMM 5389 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5390 process_smi(vcpu); 5391 #endif 5392 5393 /* 5394 * KVM's ABI only allows for one exception to be migrated. Luckily, 5395 * the only time there can be two queued exceptions is if there's a 5396 * non-exiting _injected_ exception, and a pending exiting exception. 5397 * In that case, ignore the VM-Exiting exception as it's an extension 5398 * of the injected exception. 5399 */ 5400 if (vcpu->arch.exception_vmexit.pending && 5401 !vcpu->arch.exception.pending && 5402 !vcpu->arch.exception.injected) 5403 ex = &vcpu->arch.exception_vmexit; 5404 else 5405 ex = &vcpu->arch.exception; 5406 5407 /* 5408 * In guest mode, payload delivery should be deferred if the exception 5409 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5410 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5411 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5412 * propagate the payload and so it cannot be safely deferred. Deliver 5413 * the payload if the capability hasn't been requested. 5414 */ 5415 if (!vcpu->kvm->arch.exception_payload_enabled && 5416 ex->pending && ex->has_payload) 5417 kvm_deliver_exception_payload(vcpu, ex); 5418 5419 memset(events, 0, sizeof(*events)); 5420 5421 /* 5422 * The API doesn't provide the instruction length for software 5423 * exceptions, so don't report them. As long as the guest RIP 5424 * isn't advanced, we should expect to encounter the exception 5425 * again. 5426 */ 5427 if (!kvm_exception_is_soft(ex->vector)) { 5428 events->exception.injected = ex->injected; 5429 events->exception.pending = ex->pending; 5430 /* 5431 * For ABI compatibility, deliberately conflate 5432 * pending and injected exceptions when 5433 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5434 */ 5435 if (!vcpu->kvm->arch.exception_payload_enabled) 5436 events->exception.injected |= ex->pending; 5437 } 5438 events->exception.nr = ex->vector; 5439 events->exception.has_error_code = ex->has_error_code; 5440 events->exception.error_code = ex->error_code; 5441 events->exception_has_payload = ex->has_payload; 5442 events->exception_payload = ex->payload; 5443 5444 events->interrupt.injected = 5445 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5446 events->interrupt.nr = vcpu->arch.interrupt.nr; 5447 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 5448 5449 events->nmi.injected = vcpu->arch.nmi_injected; 5450 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5451 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu); 5452 5453 /* events->sipi_vector is never valid when reporting to user space */ 5454 5455 #ifdef CONFIG_KVM_SMM 5456 events->smi.smm = is_smm(vcpu); 5457 events->smi.pending = vcpu->arch.smi_pending; 5458 events->smi.smm_inside_nmi = 5459 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5460 #endif 5461 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5462 5463 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5464 | KVM_VCPUEVENT_VALID_SHADOW 5465 | KVM_VCPUEVENT_VALID_SMM); 5466 if (vcpu->kvm->arch.exception_payload_enabled) 5467 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5468 if (vcpu->kvm->arch.triple_fault_event) { 5469 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5470 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5471 } 5472 } 5473 5474 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5475 struct kvm_vcpu_events *events) 5476 { 5477 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5478 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5479 | KVM_VCPUEVENT_VALID_SHADOW 5480 | KVM_VCPUEVENT_VALID_SMM 5481 | KVM_VCPUEVENT_VALID_PAYLOAD 5482 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5483 return -EINVAL; 5484 5485 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5486 if (!vcpu->kvm->arch.exception_payload_enabled) 5487 return -EINVAL; 5488 if (events->exception.pending) 5489 events->exception.injected = 0; 5490 else 5491 events->exception_has_payload = 0; 5492 } else { 5493 events->exception.pending = 0; 5494 events->exception_has_payload = 0; 5495 } 5496 5497 if ((events->exception.injected || events->exception.pending) && 5498 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5499 return -EINVAL; 5500 5501 process_nmi(vcpu); 5502 5503 /* 5504 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5505 * morph the exception to a VM-Exit if appropriate. Do this only for 5506 * pending exceptions, already-injected exceptions are not subject to 5507 * intercpetion. Note, userspace that conflates pending and injected 5508 * is hosed, and will incorrectly convert an injected exception into a 5509 * pending exception, which in turn may cause a spurious VM-Exit. 5510 */ 5511 vcpu->arch.exception_from_userspace = events->exception.pending; 5512 5513 vcpu->arch.exception_vmexit.pending = false; 5514 5515 vcpu->arch.exception.injected = events->exception.injected; 5516 vcpu->arch.exception.pending = events->exception.pending; 5517 vcpu->arch.exception.vector = events->exception.nr; 5518 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5519 vcpu->arch.exception.error_code = events->exception.error_code; 5520 vcpu->arch.exception.has_payload = events->exception_has_payload; 5521 vcpu->arch.exception.payload = events->exception_payload; 5522 5523 vcpu->arch.interrupt.injected = events->interrupt.injected; 5524 vcpu->arch.interrupt.nr = events->interrupt.nr; 5525 vcpu->arch.interrupt.soft = events->interrupt.soft; 5526 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5527 kvm_x86_call(set_interrupt_shadow)(vcpu, 5528 events->interrupt.shadow); 5529 5530 vcpu->arch.nmi_injected = events->nmi.injected; 5531 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5532 vcpu->arch.nmi_pending = 0; 5533 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5534 if (events->nmi.pending) 5535 kvm_make_request(KVM_REQ_NMI, vcpu); 5536 } 5537 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked); 5538 5539 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5540 lapic_in_kernel(vcpu)) 5541 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5542 5543 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5544 #ifdef CONFIG_KVM_SMM 5545 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5546 kvm_leave_nested(vcpu); 5547 kvm_smm_changed(vcpu, events->smi.smm); 5548 } 5549 5550 vcpu->arch.smi_pending = events->smi.pending; 5551 5552 if (events->smi.smm) { 5553 if (events->smi.smm_inside_nmi) 5554 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5555 else 5556 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5557 } 5558 5559 #else 5560 if (events->smi.smm || events->smi.pending || 5561 events->smi.smm_inside_nmi) 5562 return -EINVAL; 5563 #endif 5564 5565 if (lapic_in_kernel(vcpu)) { 5566 if (events->smi.latched_init) 5567 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5568 else 5569 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5570 } 5571 } 5572 5573 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5574 if (!vcpu->kvm->arch.triple_fault_event) 5575 return -EINVAL; 5576 if (events->triple_fault.pending) 5577 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5578 else 5579 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5580 } 5581 5582 kvm_make_request(KVM_REQ_EVENT, vcpu); 5583 5584 return 0; 5585 } 5586 5587 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5588 struct kvm_debugregs *dbgregs) 5589 { 5590 unsigned int i; 5591 5592 if (vcpu->kvm->arch.has_protected_state && 5593 vcpu->arch.guest_state_protected) 5594 return -EINVAL; 5595 5596 memset(dbgregs, 0, sizeof(*dbgregs)); 5597 5598 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db)); 5599 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5600 dbgregs->db[i] = vcpu->arch.db[i]; 5601 5602 dbgregs->dr6 = vcpu->arch.dr6; 5603 dbgregs->dr7 = vcpu->arch.dr7; 5604 return 0; 5605 } 5606 5607 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5608 struct kvm_debugregs *dbgregs) 5609 { 5610 unsigned int i; 5611 5612 if (vcpu->kvm->arch.has_protected_state && 5613 vcpu->arch.guest_state_protected) 5614 return -EINVAL; 5615 5616 if (dbgregs->flags) 5617 return -EINVAL; 5618 5619 if (!kvm_dr6_valid(dbgregs->dr6)) 5620 return -EINVAL; 5621 if (!kvm_dr7_valid(dbgregs->dr7)) 5622 return -EINVAL; 5623 5624 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5625 vcpu->arch.db[i] = dbgregs->db[i]; 5626 5627 kvm_update_dr0123(vcpu); 5628 vcpu->arch.dr6 = dbgregs->dr6; 5629 vcpu->arch.dr7 = dbgregs->dr7; 5630 kvm_update_dr7(vcpu); 5631 5632 return 0; 5633 } 5634 5635 5636 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5637 u8 *state, unsigned int size) 5638 { 5639 /* 5640 * Only copy state for features that are enabled for the guest. The 5641 * state itself isn't problematic, but setting bits in the header for 5642 * features that are supported in *this* host but not exposed to the 5643 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5644 * compatible host without the features that are NOT exposed to the 5645 * guest. 5646 * 5647 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5648 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5649 * supported by the host. 5650 */ 5651 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5652 XFEATURE_MASK_FPSSE; 5653 5654 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5655 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5656 5657 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5658 supported_xcr0, vcpu->arch.pkru); 5659 return 0; 5660 } 5661 5662 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5663 struct kvm_xsave *guest_xsave) 5664 { 5665 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5666 sizeof(guest_xsave->region)); 5667 } 5668 5669 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5670 struct kvm_xsave *guest_xsave) 5671 { 5672 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5673 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5674 5675 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5676 guest_xsave->region, 5677 kvm_caps.supported_xcr0, 5678 &vcpu->arch.pkru); 5679 } 5680 5681 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5682 struct kvm_xcrs *guest_xcrs) 5683 { 5684 if (vcpu->kvm->arch.has_protected_state && 5685 vcpu->arch.guest_state_protected) 5686 return -EINVAL; 5687 5688 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5689 guest_xcrs->nr_xcrs = 0; 5690 return 0; 5691 } 5692 5693 guest_xcrs->nr_xcrs = 1; 5694 guest_xcrs->flags = 0; 5695 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5696 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5697 return 0; 5698 } 5699 5700 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5701 struct kvm_xcrs *guest_xcrs) 5702 { 5703 int i, r = 0; 5704 5705 if (vcpu->kvm->arch.has_protected_state && 5706 vcpu->arch.guest_state_protected) 5707 return -EINVAL; 5708 5709 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5710 return -EINVAL; 5711 5712 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5713 return -EINVAL; 5714 5715 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5716 /* Only support XCR0 currently */ 5717 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5718 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5719 guest_xcrs->xcrs[i].value); 5720 break; 5721 } 5722 if (r) 5723 r = -EINVAL; 5724 return r; 5725 } 5726 5727 /* 5728 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5729 * stopped by the hypervisor. This function will be called from the host only. 5730 * EINVAL is returned when the host attempts to set the flag for a guest that 5731 * does not support pv clocks. 5732 */ 5733 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5734 { 5735 if (!vcpu->arch.pv_time.active) 5736 return -EINVAL; 5737 vcpu->arch.pvclock_set_guest_stopped_request = true; 5738 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5739 return 0; 5740 } 5741 5742 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5743 struct kvm_device_attr *attr) 5744 { 5745 int r; 5746 5747 switch (attr->attr) { 5748 case KVM_VCPU_TSC_OFFSET: 5749 r = 0; 5750 break; 5751 default: 5752 r = -ENXIO; 5753 } 5754 5755 return r; 5756 } 5757 5758 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5759 struct kvm_device_attr *attr) 5760 { 5761 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5762 int r; 5763 5764 switch (attr->attr) { 5765 case KVM_VCPU_TSC_OFFSET: 5766 r = -EFAULT; 5767 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5768 break; 5769 r = 0; 5770 break; 5771 default: 5772 r = -ENXIO; 5773 } 5774 5775 return r; 5776 } 5777 5778 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5779 struct kvm_device_attr *attr) 5780 { 5781 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5782 struct kvm *kvm = vcpu->kvm; 5783 int r; 5784 5785 switch (attr->attr) { 5786 case KVM_VCPU_TSC_OFFSET: { 5787 u64 offset, tsc, ns; 5788 unsigned long flags; 5789 bool matched; 5790 5791 r = -EFAULT; 5792 if (get_user(offset, uaddr)) 5793 break; 5794 5795 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5796 5797 matched = (vcpu->arch.virtual_tsc_khz && 5798 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5799 kvm->arch.last_tsc_offset == offset); 5800 5801 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5802 ns = get_kvmclock_base_ns(); 5803 5804 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true); 5805 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5806 5807 r = 0; 5808 break; 5809 } 5810 default: 5811 r = -ENXIO; 5812 } 5813 5814 return r; 5815 } 5816 5817 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5818 unsigned int ioctl, 5819 void __user *argp) 5820 { 5821 struct kvm_device_attr attr; 5822 int r; 5823 5824 if (copy_from_user(&attr, argp, sizeof(attr))) 5825 return -EFAULT; 5826 5827 if (attr.group != KVM_VCPU_TSC_CTRL) 5828 return -ENXIO; 5829 5830 switch (ioctl) { 5831 case KVM_HAS_DEVICE_ATTR: 5832 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5833 break; 5834 case KVM_GET_DEVICE_ATTR: 5835 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5836 break; 5837 case KVM_SET_DEVICE_ATTR: 5838 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5839 break; 5840 } 5841 5842 return r; 5843 } 5844 5845 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5846 struct kvm_enable_cap *cap) 5847 { 5848 if (cap->flags) 5849 return -EINVAL; 5850 5851 switch (cap->cap) { 5852 #ifdef CONFIG_KVM_HYPERV 5853 case KVM_CAP_HYPERV_SYNIC2: 5854 if (cap->args[0]) 5855 return -EINVAL; 5856 fallthrough; 5857 5858 case KVM_CAP_HYPERV_SYNIC: 5859 if (!irqchip_in_kernel(vcpu->kvm)) 5860 return -EINVAL; 5861 return kvm_hv_activate_synic(vcpu, cap->cap == 5862 KVM_CAP_HYPERV_SYNIC2); 5863 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5864 { 5865 int r; 5866 uint16_t vmcs_version; 5867 void __user *user_ptr; 5868 5869 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5870 return -ENOTTY; 5871 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5872 if (!r) { 5873 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5874 if (copy_to_user(user_ptr, &vmcs_version, 5875 sizeof(vmcs_version))) 5876 r = -EFAULT; 5877 } 5878 return r; 5879 } 5880 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5881 if (!kvm_x86_ops.enable_l2_tlb_flush) 5882 return -ENOTTY; 5883 5884 return kvm_x86_call(enable_l2_tlb_flush)(vcpu); 5885 5886 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5887 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5888 #endif 5889 5890 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5891 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5892 return 0; 5893 default: 5894 return -EINVAL; 5895 } 5896 } 5897 5898 long kvm_arch_vcpu_ioctl(struct file *filp, 5899 unsigned int ioctl, unsigned long arg) 5900 { 5901 struct kvm_vcpu *vcpu = filp->private_data; 5902 void __user *argp = (void __user *)arg; 5903 int r; 5904 union { 5905 struct kvm_sregs2 *sregs2; 5906 struct kvm_lapic_state *lapic; 5907 struct kvm_xsave *xsave; 5908 struct kvm_xcrs *xcrs; 5909 void *buffer; 5910 } u; 5911 5912 vcpu_load(vcpu); 5913 5914 u.buffer = NULL; 5915 switch (ioctl) { 5916 case KVM_GET_LAPIC: { 5917 r = -EINVAL; 5918 if (!lapic_in_kernel(vcpu)) 5919 goto out; 5920 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 5921 5922 r = -ENOMEM; 5923 if (!u.lapic) 5924 goto out; 5925 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5926 if (r) 5927 goto out; 5928 r = -EFAULT; 5929 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5930 goto out; 5931 r = 0; 5932 break; 5933 } 5934 case KVM_SET_LAPIC: { 5935 r = -EINVAL; 5936 if (!lapic_in_kernel(vcpu)) 5937 goto out; 5938 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5939 if (IS_ERR(u.lapic)) { 5940 r = PTR_ERR(u.lapic); 5941 goto out_nofree; 5942 } 5943 5944 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5945 break; 5946 } 5947 case KVM_INTERRUPT: { 5948 struct kvm_interrupt irq; 5949 5950 r = -EFAULT; 5951 if (copy_from_user(&irq, argp, sizeof(irq))) 5952 goto out; 5953 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5954 break; 5955 } 5956 case KVM_NMI: { 5957 r = kvm_vcpu_ioctl_nmi(vcpu); 5958 break; 5959 } 5960 case KVM_SMI: { 5961 r = kvm_inject_smi(vcpu); 5962 break; 5963 } 5964 case KVM_SET_CPUID: { 5965 struct kvm_cpuid __user *cpuid_arg = argp; 5966 struct kvm_cpuid cpuid; 5967 5968 r = -EFAULT; 5969 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5970 goto out; 5971 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5972 break; 5973 } 5974 case KVM_SET_CPUID2: { 5975 struct kvm_cpuid2 __user *cpuid_arg = argp; 5976 struct kvm_cpuid2 cpuid; 5977 5978 r = -EFAULT; 5979 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5980 goto out; 5981 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5982 cpuid_arg->entries); 5983 break; 5984 } 5985 case KVM_GET_CPUID2: { 5986 struct kvm_cpuid2 __user *cpuid_arg = argp; 5987 struct kvm_cpuid2 cpuid; 5988 5989 r = -EFAULT; 5990 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5991 goto out; 5992 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5993 cpuid_arg->entries); 5994 if (r) 5995 goto out; 5996 r = -EFAULT; 5997 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5998 goto out; 5999 r = 0; 6000 break; 6001 } 6002 case KVM_GET_MSRS: { 6003 int idx = srcu_read_lock(&vcpu->kvm->srcu); 6004 r = msr_io(vcpu, argp, do_get_msr, 1); 6005 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6006 break; 6007 } 6008 case KVM_SET_MSRS: { 6009 int idx = srcu_read_lock(&vcpu->kvm->srcu); 6010 r = msr_io(vcpu, argp, do_set_msr, 0); 6011 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6012 break; 6013 } 6014 case KVM_TPR_ACCESS_REPORTING: { 6015 struct kvm_tpr_access_ctl tac; 6016 6017 r = -EFAULT; 6018 if (copy_from_user(&tac, argp, sizeof(tac))) 6019 goto out; 6020 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 6021 if (r) 6022 goto out; 6023 r = -EFAULT; 6024 if (copy_to_user(argp, &tac, sizeof(tac))) 6025 goto out; 6026 r = 0; 6027 break; 6028 }; 6029 case KVM_SET_VAPIC_ADDR: { 6030 struct kvm_vapic_addr va; 6031 int idx; 6032 6033 r = -EINVAL; 6034 if (!lapic_in_kernel(vcpu)) 6035 goto out; 6036 r = -EFAULT; 6037 if (copy_from_user(&va, argp, sizeof(va))) 6038 goto out; 6039 idx = srcu_read_lock(&vcpu->kvm->srcu); 6040 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 6041 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6042 break; 6043 } 6044 case KVM_X86_SETUP_MCE: { 6045 u64 mcg_cap; 6046 6047 r = -EFAULT; 6048 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 6049 goto out; 6050 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 6051 break; 6052 } 6053 case KVM_X86_SET_MCE: { 6054 struct kvm_x86_mce mce; 6055 6056 r = -EFAULT; 6057 if (copy_from_user(&mce, argp, sizeof(mce))) 6058 goto out; 6059 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 6060 break; 6061 } 6062 case KVM_GET_VCPU_EVENTS: { 6063 struct kvm_vcpu_events events; 6064 6065 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 6066 6067 r = -EFAULT; 6068 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 6069 break; 6070 r = 0; 6071 break; 6072 } 6073 case KVM_SET_VCPU_EVENTS: { 6074 struct kvm_vcpu_events events; 6075 6076 r = -EFAULT; 6077 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 6078 break; 6079 6080 kvm_vcpu_srcu_read_lock(vcpu); 6081 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 6082 kvm_vcpu_srcu_read_unlock(vcpu); 6083 break; 6084 } 6085 case KVM_GET_DEBUGREGS: { 6086 struct kvm_debugregs dbgregs; 6087 6088 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 6089 if (r < 0) 6090 break; 6091 6092 r = -EFAULT; 6093 if (copy_to_user(argp, &dbgregs, 6094 sizeof(struct kvm_debugregs))) 6095 break; 6096 r = 0; 6097 break; 6098 } 6099 case KVM_SET_DEBUGREGS: { 6100 struct kvm_debugregs dbgregs; 6101 6102 r = -EFAULT; 6103 if (copy_from_user(&dbgregs, argp, 6104 sizeof(struct kvm_debugregs))) 6105 break; 6106 6107 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6108 break; 6109 } 6110 case KVM_GET_XSAVE: { 6111 r = -EINVAL; 6112 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6113 break; 6114 6115 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 6116 r = -ENOMEM; 6117 if (!u.xsave) 6118 break; 6119 6120 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6121 if (r < 0) 6122 break; 6123 6124 r = -EFAULT; 6125 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6126 break; 6127 r = 0; 6128 break; 6129 } 6130 case KVM_SET_XSAVE: { 6131 int size = vcpu->arch.guest_fpu.uabi_size; 6132 6133 u.xsave = memdup_user(argp, size); 6134 if (IS_ERR(u.xsave)) { 6135 r = PTR_ERR(u.xsave); 6136 goto out_nofree; 6137 } 6138 6139 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6140 break; 6141 } 6142 6143 case KVM_GET_XSAVE2: { 6144 int size = vcpu->arch.guest_fpu.uabi_size; 6145 6146 u.xsave = kzalloc(size, GFP_KERNEL); 6147 r = -ENOMEM; 6148 if (!u.xsave) 6149 break; 6150 6151 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6152 if (r < 0) 6153 break; 6154 6155 r = -EFAULT; 6156 if (copy_to_user(argp, u.xsave, size)) 6157 break; 6158 6159 r = 0; 6160 break; 6161 } 6162 6163 case KVM_GET_XCRS: { 6164 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 6165 r = -ENOMEM; 6166 if (!u.xcrs) 6167 break; 6168 6169 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6170 if (r < 0) 6171 break; 6172 6173 r = -EFAULT; 6174 if (copy_to_user(argp, u.xcrs, 6175 sizeof(struct kvm_xcrs))) 6176 break; 6177 r = 0; 6178 break; 6179 } 6180 case KVM_SET_XCRS: { 6181 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6182 if (IS_ERR(u.xcrs)) { 6183 r = PTR_ERR(u.xcrs); 6184 goto out_nofree; 6185 } 6186 6187 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6188 break; 6189 } 6190 case KVM_SET_TSC_KHZ: { 6191 u32 user_tsc_khz; 6192 6193 r = -EINVAL; 6194 6195 if (vcpu->arch.guest_tsc_protected) 6196 goto out; 6197 6198 user_tsc_khz = (u32)arg; 6199 6200 if (kvm_caps.has_tsc_control && 6201 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6202 goto out; 6203 6204 if (user_tsc_khz == 0) 6205 user_tsc_khz = tsc_khz; 6206 6207 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6208 r = 0; 6209 6210 goto out; 6211 } 6212 case KVM_GET_TSC_KHZ: { 6213 r = vcpu->arch.virtual_tsc_khz; 6214 goto out; 6215 } 6216 case KVM_KVMCLOCK_CTRL: { 6217 r = kvm_set_guest_paused(vcpu); 6218 goto out; 6219 } 6220 case KVM_ENABLE_CAP: { 6221 struct kvm_enable_cap cap; 6222 6223 r = -EFAULT; 6224 if (copy_from_user(&cap, argp, sizeof(cap))) 6225 goto out; 6226 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6227 break; 6228 } 6229 case KVM_GET_NESTED_STATE: { 6230 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6231 u32 user_data_size; 6232 6233 r = -EINVAL; 6234 if (!kvm_x86_ops.nested_ops->get_state) 6235 break; 6236 6237 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6238 r = -EFAULT; 6239 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6240 break; 6241 6242 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6243 user_data_size); 6244 if (r < 0) 6245 break; 6246 6247 if (r > user_data_size) { 6248 if (put_user(r, &user_kvm_nested_state->size)) 6249 r = -EFAULT; 6250 else 6251 r = -E2BIG; 6252 break; 6253 } 6254 6255 r = 0; 6256 break; 6257 } 6258 case KVM_SET_NESTED_STATE: { 6259 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6260 struct kvm_nested_state kvm_state; 6261 int idx; 6262 6263 r = -EINVAL; 6264 if (!kvm_x86_ops.nested_ops->set_state) 6265 break; 6266 6267 r = -EFAULT; 6268 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6269 break; 6270 6271 r = -EINVAL; 6272 if (kvm_state.size < sizeof(kvm_state)) 6273 break; 6274 6275 if (kvm_state.flags & 6276 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6277 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6278 | KVM_STATE_NESTED_GIF_SET)) 6279 break; 6280 6281 /* nested_run_pending implies guest_mode. */ 6282 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6283 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6284 break; 6285 6286 idx = srcu_read_lock(&vcpu->kvm->srcu); 6287 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6288 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6289 break; 6290 } 6291 #ifdef CONFIG_KVM_HYPERV 6292 case KVM_GET_SUPPORTED_HV_CPUID: 6293 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6294 break; 6295 #endif 6296 #ifdef CONFIG_KVM_XEN 6297 case KVM_XEN_VCPU_GET_ATTR: { 6298 struct kvm_xen_vcpu_attr xva; 6299 6300 r = -EFAULT; 6301 if (copy_from_user(&xva, argp, sizeof(xva))) 6302 goto out; 6303 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6304 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6305 r = -EFAULT; 6306 break; 6307 } 6308 case KVM_XEN_VCPU_SET_ATTR: { 6309 struct kvm_xen_vcpu_attr xva; 6310 6311 r = -EFAULT; 6312 if (copy_from_user(&xva, argp, sizeof(xva))) 6313 goto out; 6314 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6315 break; 6316 } 6317 #endif 6318 case KVM_GET_SREGS2: { 6319 r = -EINVAL; 6320 if (vcpu->kvm->arch.has_protected_state && 6321 vcpu->arch.guest_state_protected) 6322 goto out; 6323 6324 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6325 r = -ENOMEM; 6326 if (!u.sregs2) 6327 goto out; 6328 __get_sregs2(vcpu, u.sregs2); 6329 r = -EFAULT; 6330 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6331 goto out; 6332 r = 0; 6333 break; 6334 } 6335 case KVM_SET_SREGS2: { 6336 r = -EINVAL; 6337 if (vcpu->kvm->arch.has_protected_state && 6338 vcpu->arch.guest_state_protected) 6339 goto out; 6340 6341 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6342 if (IS_ERR(u.sregs2)) { 6343 r = PTR_ERR(u.sregs2); 6344 u.sregs2 = NULL; 6345 goto out; 6346 } 6347 r = __set_sregs2(vcpu, u.sregs2); 6348 break; 6349 } 6350 case KVM_HAS_DEVICE_ATTR: 6351 case KVM_GET_DEVICE_ATTR: 6352 case KVM_SET_DEVICE_ATTR: 6353 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6354 break; 6355 case KVM_MEMORY_ENCRYPT_OP: 6356 r = -ENOTTY; 6357 if (!kvm_x86_ops.vcpu_mem_enc_ioctl) 6358 goto out; 6359 r = kvm_x86_ops.vcpu_mem_enc_ioctl(vcpu, argp); 6360 break; 6361 default: 6362 r = -EINVAL; 6363 } 6364 out: 6365 kfree(u.buffer); 6366 out_nofree: 6367 vcpu_put(vcpu); 6368 return r; 6369 } 6370 6371 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6372 { 6373 return VM_FAULT_SIGBUS; 6374 } 6375 6376 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6377 { 6378 int ret; 6379 6380 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6381 return -EINVAL; 6382 ret = kvm_x86_call(set_tss_addr)(kvm, addr); 6383 return ret; 6384 } 6385 6386 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6387 u64 ident_addr) 6388 { 6389 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr); 6390 } 6391 6392 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6393 unsigned long kvm_nr_mmu_pages) 6394 { 6395 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6396 return -EINVAL; 6397 6398 mutex_lock(&kvm->slots_lock); 6399 6400 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6401 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6402 6403 mutex_unlock(&kvm->slots_lock); 6404 return 0; 6405 } 6406 6407 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6408 { 6409 6410 /* 6411 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6412 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6413 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6414 * VM-Exit. 6415 */ 6416 struct kvm_vcpu *vcpu; 6417 unsigned long i; 6418 6419 if (!kvm->arch.cpu_dirty_log_size) 6420 return; 6421 6422 kvm_for_each_vcpu(i, vcpu, kvm) 6423 kvm_vcpu_kick(vcpu); 6424 } 6425 6426 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6427 struct kvm_enable_cap *cap) 6428 { 6429 int r; 6430 6431 if (cap->flags) 6432 return -EINVAL; 6433 6434 switch (cap->cap) { 6435 case KVM_CAP_DISABLE_QUIRKS2: 6436 r = -EINVAL; 6437 if (cap->args[0] & ~kvm_caps.supported_quirks) 6438 break; 6439 fallthrough; 6440 case KVM_CAP_DISABLE_QUIRKS: 6441 kvm->arch.disabled_quirks |= cap->args[0] & kvm_caps.supported_quirks; 6442 r = 0; 6443 break; 6444 case KVM_CAP_SPLIT_IRQCHIP: { 6445 mutex_lock(&kvm->lock); 6446 r = -EINVAL; 6447 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6448 goto split_irqchip_unlock; 6449 r = -EEXIST; 6450 if (irqchip_in_kernel(kvm)) 6451 goto split_irqchip_unlock; 6452 if (kvm->created_vcpus) 6453 goto split_irqchip_unlock; 6454 /* Pairs with irqchip_in_kernel. */ 6455 smp_wmb(); 6456 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6457 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6458 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6459 r = 0; 6460 split_irqchip_unlock: 6461 mutex_unlock(&kvm->lock); 6462 break; 6463 } 6464 case KVM_CAP_X2APIC_API: 6465 r = -EINVAL; 6466 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6467 break; 6468 6469 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6470 kvm->arch.x2apic_format = true; 6471 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6472 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6473 6474 r = 0; 6475 break; 6476 case KVM_CAP_X86_DISABLE_EXITS: 6477 r = -EINVAL; 6478 if (cap->args[0] & ~kvm_get_allowed_disable_exits()) 6479 break; 6480 6481 mutex_lock(&kvm->lock); 6482 if (kvm->created_vcpus) 6483 goto disable_exits_unlock; 6484 6485 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6486 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6487 6488 if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) && 6489 cpu_smt_possible() && 6490 (cap->args[0] & ~(KVM_X86_DISABLE_EXITS_PAUSE | 6491 KVM_X86_DISABLE_EXITS_APERFMPERF))) 6492 pr_warn_once(SMT_RSB_MSG); 6493 6494 kvm_disable_exits(kvm, cap->args[0]); 6495 r = 0; 6496 disable_exits_unlock: 6497 mutex_unlock(&kvm->lock); 6498 break; 6499 case KVM_CAP_MSR_PLATFORM_INFO: 6500 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6501 r = 0; 6502 break; 6503 case KVM_CAP_EXCEPTION_PAYLOAD: 6504 kvm->arch.exception_payload_enabled = cap->args[0]; 6505 r = 0; 6506 break; 6507 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6508 kvm->arch.triple_fault_event = cap->args[0]; 6509 r = 0; 6510 break; 6511 case KVM_CAP_X86_USER_SPACE_MSR: 6512 r = -EINVAL; 6513 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6514 break; 6515 kvm->arch.user_space_msr_mask = cap->args[0]; 6516 r = 0; 6517 break; 6518 case KVM_CAP_X86_BUS_LOCK_EXIT: 6519 r = -EINVAL; 6520 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6521 break; 6522 6523 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6524 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6525 break; 6526 6527 if (kvm_caps.has_bus_lock_exit && 6528 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6529 kvm->arch.bus_lock_detection_enabled = true; 6530 r = 0; 6531 break; 6532 #ifdef CONFIG_X86_SGX_KVM 6533 case KVM_CAP_SGX_ATTRIBUTE: { 6534 unsigned long allowed_attributes = 0; 6535 6536 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6537 if (r) 6538 break; 6539 6540 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6541 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6542 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6543 kvm->arch.sgx_provisioning_allowed = true; 6544 else 6545 r = -EINVAL; 6546 break; 6547 } 6548 #endif 6549 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6550 r = -EINVAL; 6551 if (!kvm_x86_ops.vm_copy_enc_context_from) 6552 break; 6553 6554 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]); 6555 break; 6556 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6557 r = -EINVAL; 6558 if (!kvm_x86_ops.vm_move_enc_context_from) 6559 break; 6560 6561 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]); 6562 break; 6563 case KVM_CAP_EXIT_HYPERCALL: 6564 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6565 r = -EINVAL; 6566 break; 6567 } 6568 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6569 r = 0; 6570 break; 6571 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6572 r = -EINVAL; 6573 if (cap->args[0] & ~1) 6574 break; 6575 kvm->arch.exit_on_emulation_error = cap->args[0]; 6576 r = 0; 6577 break; 6578 case KVM_CAP_PMU_CAPABILITY: 6579 r = -EINVAL; 6580 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6581 break; 6582 6583 mutex_lock(&kvm->lock); 6584 if (!kvm->created_vcpus) { 6585 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6586 r = 0; 6587 } 6588 mutex_unlock(&kvm->lock); 6589 break; 6590 case KVM_CAP_MAX_VCPU_ID: 6591 r = -EINVAL; 6592 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6593 break; 6594 6595 mutex_lock(&kvm->lock); 6596 if (kvm->arch.bsp_vcpu_id > cap->args[0]) { 6597 ; 6598 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6599 r = 0; 6600 } else if (!kvm->arch.max_vcpu_ids) { 6601 kvm->arch.max_vcpu_ids = cap->args[0]; 6602 r = 0; 6603 } 6604 mutex_unlock(&kvm->lock); 6605 break; 6606 case KVM_CAP_X86_NOTIFY_VMEXIT: 6607 r = -EINVAL; 6608 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6609 break; 6610 if (!kvm_caps.has_notify_vmexit) 6611 break; 6612 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6613 break; 6614 mutex_lock(&kvm->lock); 6615 if (!kvm->created_vcpus) { 6616 kvm->arch.notify_window = cap->args[0] >> 32; 6617 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6618 r = 0; 6619 } 6620 mutex_unlock(&kvm->lock); 6621 break; 6622 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6623 r = -EINVAL; 6624 6625 /* 6626 * Since the risk of disabling NX hugepages is a guest crashing 6627 * the system, ensure the userspace process has permission to 6628 * reboot the system. 6629 * 6630 * Note that unlike the reboot() syscall, the process must have 6631 * this capability in the root namespace because exposing 6632 * /dev/kvm into a container does not limit the scope of the 6633 * iTLB multihit bug to that container. In other words, 6634 * this must use capable(), not ns_capable(). 6635 */ 6636 if (!capable(CAP_SYS_BOOT)) { 6637 r = -EPERM; 6638 break; 6639 } 6640 6641 if (cap->args[0]) 6642 break; 6643 6644 mutex_lock(&kvm->lock); 6645 if (!kvm->created_vcpus) { 6646 kvm->arch.disable_nx_huge_pages = true; 6647 r = 0; 6648 } 6649 mutex_unlock(&kvm->lock); 6650 break; 6651 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: { 6652 u64 bus_cycle_ns = cap->args[0]; 6653 u64 unused; 6654 6655 /* 6656 * Guard against overflow in tmict_to_ns(). 128 is the highest 6657 * divide value that can be programmed in APIC_TDCR. 6658 */ 6659 r = -EINVAL; 6660 if (!bus_cycle_ns || 6661 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused)) 6662 break; 6663 6664 r = 0; 6665 mutex_lock(&kvm->lock); 6666 if (!irqchip_in_kernel(kvm)) 6667 r = -ENXIO; 6668 else if (kvm->created_vcpus) 6669 r = -EINVAL; 6670 else 6671 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns; 6672 mutex_unlock(&kvm->lock); 6673 break; 6674 } 6675 default: 6676 r = -EINVAL; 6677 break; 6678 } 6679 return r; 6680 } 6681 6682 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6683 { 6684 struct kvm_x86_msr_filter *msr_filter; 6685 6686 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6687 if (!msr_filter) 6688 return NULL; 6689 6690 msr_filter->default_allow = default_allow; 6691 return msr_filter; 6692 } 6693 6694 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6695 { 6696 u32 i; 6697 6698 if (!msr_filter) 6699 return; 6700 6701 for (i = 0; i < msr_filter->count; i++) 6702 kfree(msr_filter->ranges[i].bitmap); 6703 6704 kfree(msr_filter); 6705 } 6706 6707 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6708 struct kvm_msr_filter_range *user_range) 6709 { 6710 unsigned long *bitmap; 6711 size_t bitmap_size; 6712 6713 if (!user_range->nmsrs) 6714 return 0; 6715 6716 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6717 return -EINVAL; 6718 6719 if (!user_range->flags) 6720 return -EINVAL; 6721 6722 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6723 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6724 return -EINVAL; 6725 6726 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6727 if (IS_ERR(bitmap)) 6728 return PTR_ERR(bitmap); 6729 6730 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6731 .flags = user_range->flags, 6732 .base = user_range->base, 6733 .nmsrs = user_range->nmsrs, 6734 .bitmap = bitmap, 6735 }; 6736 6737 msr_filter->count++; 6738 return 0; 6739 } 6740 6741 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6742 struct kvm_msr_filter *filter) 6743 { 6744 struct kvm_x86_msr_filter *new_filter, *old_filter; 6745 bool default_allow; 6746 bool empty = true; 6747 int r; 6748 u32 i; 6749 6750 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6751 return -EINVAL; 6752 6753 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6754 empty &= !filter->ranges[i].nmsrs; 6755 6756 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6757 if (empty && !default_allow) 6758 return -EINVAL; 6759 6760 new_filter = kvm_alloc_msr_filter(default_allow); 6761 if (!new_filter) 6762 return -ENOMEM; 6763 6764 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6765 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6766 if (r) { 6767 kvm_free_msr_filter(new_filter); 6768 return r; 6769 } 6770 } 6771 6772 mutex_lock(&kvm->lock); 6773 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6774 mutex_is_locked(&kvm->lock)); 6775 mutex_unlock(&kvm->lock); 6776 synchronize_srcu(&kvm->srcu); 6777 6778 kvm_free_msr_filter(old_filter); 6779 6780 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6781 6782 return 0; 6783 } 6784 6785 #ifdef CONFIG_KVM_COMPAT 6786 /* for KVM_X86_SET_MSR_FILTER */ 6787 struct kvm_msr_filter_range_compat { 6788 __u32 flags; 6789 __u32 nmsrs; 6790 __u32 base; 6791 __u32 bitmap; 6792 }; 6793 6794 struct kvm_msr_filter_compat { 6795 __u32 flags; 6796 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6797 }; 6798 6799 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6800 6801 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6802 unsigned long arg) 6803 { 6804 void __user *argp = (void __user *)arg; 6805 struct kvm *kvm = filp->private_data; 6806 long r = -ENOTTY; 6807 6808 switch (ioctl) { 6809 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6810 struct kvm_msr_filter __user *user_msr_filter = argp; 6811 struct kvm_msr_filter_compat filter_compat; 6812 struct kvm_msr_filter filter; 6813 int i; 6814 6815 if (copy_from_user(&filter_compat, user_msr_filter, 6816 sizeof(filter_compat))) 6817 return -EFAULT; 6818 6819 filter.flags = filter_compat.flags; 6820 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6821 struct kvm_msr_filter_range_compat *cr; 6822 6823 cr = &filter_compat.ranges[i]; 6824 filter.ranges[i] = (struct kvm_msr_filter_range) { 6825 .flags = cr->flags, 6826 .nmsrs = cr->nmsrs, 6827 .base = cr->base, 6828 .bitmap = (__u8 *)(ulong)cr->bitmap, 6829 }; 6830 } 6831 6832 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6833 break; 6834 } 6835 } 6836 6837 return r; 6838 } 6839 #endif 6840 6841 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6842 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6843 { 6844 struct kvm_vcpu *vcpu; 6845 unsigned long i; 6846 6847 /* 6848 * Ignore the return, marking the guest paused only "fails" if the vCPU 6849 * isn't using kvmclock; continuing on is correct and desirable. 6850 */ 6851 kvm_for_each_vcpu(i, vcpu, kvm) 6852 (void)kvm_set_guest_paused(vcpu); 6853 6854 return NOTIFY_DONE; 6855 } 6856 6857 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6858 { 6859 switch (state) { 6860 case PM_HIBERNATION_PREPARE: 6861 case PM_SUSPEND_PREPARE: 6862 return kvm_arch_suspend_notifier(kvm); 6863 } 6864 6865 return NOTIFY_DONE; 6866 } 6867 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6868 6869 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6870 { 6871 struct kvm_clock_data data = { 0 }; 6872 6873 get_kvmclock(kvm, &data); 6874 if (copy_to_user(argp, &data, sizeof(data))) 6875 return -EFAULT; 6876 6877 return 0; 6878 } 6879 6880 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6881 { 6882 struct kvm_arch *ka = &kvm->arch; 6883 struct kvm_clock_data data; 6884 u64 now_raw_ns; 6885 6886 if (copy_from_user(&data, argp, sizeof(data))) 6887 return -EFAULT; 6888 6889 /* 6890 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6891 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6892 */ 6893 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6894 return -EINVAL; 6895 6896 kvm_hv_request_tsc_page_update(kvm); 6897 kvm_start_pvclock_update(kvm); 6898 pvclock_update_vm_gtod_copy(kvm); 6899 6900 /* 6901 * This pairs with kvm_guest_time_update(): when masterclock is 6902 * in use, we use master_kernel_ns + kvmclock_offset to set 6903 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6904 * is slightly ahead) here we risk going negative on unsigned 6905 * 'system_time' when 'data.clock' is very small. 6906 */ 6907 if (data.flags & KVM_CLOCK_REALTIME) { 6908 u64 now_real_ns = ktime_get_real_ns(); 6909 6910 /* 6911 * Avoid stepping the kvmclock backwards. 6912 */ 6913 if (now_real_ns > data.realtime) 6914 data.clock += now_real_ns - data.realtime; 6915 } 6916 6917 if (ka->use_master_clock) 6918 now_raw_ns = ka->master_kernel_ns; 6919 else 6920 now_raw_ns = get_kvmclock_base_ns(); 6921 ka->kvmclock_offset = data.clock - now_raw_ns; 6922 kvm_end_pvclock_update(kvm); 6923 return 0; 6924 } 6925 6926 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6927 { 6928 struct kvm *kvm = filp->private_data; 6929 void __user *argp = (void __user *)arg; 6930 int r = -ENOTTY; 6931 6932 #ifdef CONFIG_KVM_IOAPIC 6933 /* 6934 * This union makes it completely explicit to gcc-3.x 6935 * that these three variables' stack usage should be 6936 * combined, not added together. 6937 */ 6938 union { 6939 struct kvm_pit_state ps; 6940 struct kvm_pit_state2 ps2; 6941 struct kvm_pit_config pit_config; 6942 } u; 6943 #endif 6944 6945 switch (ioctl) { 6946 case KVM_SET_TSS_ADDR: 6947 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6948 break; 6949 case KVM_SET_IDENTITY_MAP_ADDR: { 6950 u64 ident_addr; 6951 6952 mutex_lock(&kvm->lock); 6953 r = -EINVAL; 6954 if (kvm->created_vcpus) 6955 goto set_identity_unlock; 6956 r = -EFAULT; 6957 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6958 goto set_identity_unlock; 6959 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6960 set_identity_unlock: 6961 mutex_unlock(&kvm->lock); 6962 break; 6963 } 6964 case KVM_SET_NR_MMU_PAGES: 6965 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6966 break; 6967 #ifdef CONFIG_KVM_IOAPIC 6968 case KVM_CREATE_IRQCHIP: { 6969 mutex_lock(&kvm->lock); 6970 6971 r = -EEXIST; 6972 if (irqchip_in_kernel(kvm)) 6973 goto create_irqchip_unlock; 6974 6975 r = -EINVAL; 6976 if (kvm->created_vcpus) 6977 goto create_irqchip_unlock; 6978 6979 r = kvm_pic_init(kvm); 6980 if (r) 6981 goto create_irqchip_unlock; 6982 6983 r = kvm_ioapic_init(kvm); 6984 if (r) { 6985 kvm_pic_destroy(kvm); 6986 goto create_irqchip_unlock; 6987 } 6988 6989 r = kvm_setup_default_ioapic_and_pic_routing(kvm); 6990 if (r) { 6991 kvm_ioapic_destroy(kvm); 6992 kvm_pic_destroy(kvm); 6993 goto create_irqchip_unlock; 6994 } 6995 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6996 smp_wmb(); 6997 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6998 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6999 create_irqchip_unlock: 7000 mutex_unlock(&kvm->lock); 7001 break; 7002 } 7003 case KVM_CREATE_PIT: 7004 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 7005 goto create_pit; 7006 case KVM_CREATE_PIT2: 7007 r = -EFAULT; 7008 if (copy_from_user(&u.pit_config, argp, 7009 sizeof(struct kvm_pit_config))) 7010 goto out; 7011 create_pit: 7012 mutex_lock(&kvm->lock); 7013 r = -EEXIST; 7014 if (kvm->arch.vpit) 7015 goto create_pit_unlock; 7016 r = -ENOENT; 7017 if (!pic_in_kernel(kvm)) 7018 goto create_pit_unlock; 7019 r = -ENOMEM; 7020 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7021 if (kvm->arch.vpit) 7022 r = 0; 7023 create_pit_unlock: 7024 mutex_unlock(&kvm->lock); 7025 break; 7026 case KVM_GET_IRQCHIP: { 7027 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7028 struct kvm_irqchip *chip; 7029 7030 chip = memdup_user(argp, sizeof(*chip)); 7031 if (IS_ERR(chip)) { 7032 r = PTR_ERR(chip); 7033 goto out; 7034 } 7035 7036 r = -ENXIO; 7037 if (!irqchip_full(kvm)) 7038 goto get_irqchip_out; 7039 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7040 if (r) 7041 goto get_irqchip_out; 7042 r = -EFAULT; 7043 if (copy_to_user(argp, chip, sizeof(*chip))) 7044 goto get_irqchip_out; 7045 r = 0; 7046 get_irqchip_out: 7047 kfree(chip); 7048 break; 7049 } 7050 case KVM_SET_IRQCHIP: { 7051 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7052 struct kvm_irqchip *chip; 7053 7054 chip = memdup_user(argp, sizeof(*chip)); 7055 if (IS_ERR(chip)) { 7056 r = PTR_ERR(chip); 7057 goto out; 7058 } 7059 7060 r = -ENXIO; 7061 if (!irqchip_full(kvm)) 7062 goto set_irqchip_out; 7063 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7064 set_irqchip_out: 7065 kfree(chip); 7066 break; 7067 } 7068 case KVM_GET_PIT: { 7069 r = -EFAULT; 7070 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7071 goto out; 7072 r = -ENXIO; 7073 if (!kvm->arch.vpit) 7074 goto out; 7075 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7076 if (r) 7077 goto out; 7078 r = -EFAULT; 7079 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7080 goto out; 7081 r = 0; 7082 break; 7083 } 7084 case KVM_SET_PIT: { 7085 r = -EFAULT; 7086 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7087 goto out; 7088 mutex_lock(&kvm->lock); 7089 r = -ENXIO; 7090 if (!kvm->arch.vpit) 7091 goto set_pit_out; 7092 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7093 set_pit_out: 7094 mutex_unlock(&kvm->lock); 7095 break; 7096 } 7097 case KVM_GET_PIT2: { 7098 r = -ENXIO; 7099 if (!kvm->arch.vpit) 7100 goto out; 7101 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7102 if (r) 7103 goto out; 7104 r = -EFAULT; 7105 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7106 goto out; 7107 r = 0; 7108 break; 7109 } 7110 case KVM_SET_PIT2: { 7111 r = -EFAULT; 7112 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7113 goto out; 7114 mutex_lock(&kvm->lock); 7115 r = -ENXIO; 7116 if (!kvm->arch.vpit) 7117 goto set_pit2_out; 7118 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7119 set_pit2_out: 7120 mutex_unlock(&kvm->lock); 7121 break; 7122 } 7123 case KVM_REINJECT_CONTROL: { 7124 struct kvm_reinject_control control; 7125 r = -EFAULT; 7126 if (copy_from_user(&control, argp, sizeof(control))) 7127 goto out; 7128 r = -ENXIO; 7129 if (!kvm->arch.vpit) 7130 goto out; 7131 r = kvm_vm_ioctl_reinject(kvm, &control); 7132 break; 7133 } 7134 #endif 7135 case KVM_SET_BOOT_CPU_ID: 7136 r = 0; 7137 mutex_lock(&kvm->lock); 7138 if (kvm->created_vcpus) 7139 r = -EBUSY; 7140 else if (arg > KVM_MAX_VCPU_IDS || 7141 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids)) 7142 r = -EINVAL; 7143 else 7144 kvm->arch.bsp_vcpu_id = arg; 7145 mutex_unlock(&kvm->lock); 7146 break; 7147 #ifdef CONFIG_KVM_XEN 7148 case KVM_XEN_HVM_CONFIG: { 7149 struct kvm_xen_hvm_config xhc; 7150 r = -EFAULT; 7151 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7152 goto out; 7153 r = kvm_xen_hvm_config(kvm, &xhc); 7154 break; 7155 } 7156 case KVM_XEN_HVM_GET_ATTR: { 7157 struct kvm_xen_hvm_attr xha; 7158 7159 r = -EFAULT; 7160 if (copy_from_user(&xha, argp, sizeof(xha))) 7161 goto out; 7162 r = kvm_xen_hvm_get_attr(kvm, &xha); 7163 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7164 r = -EFAULT; 7165 break; 7166 } 7167 case KVM_XEN_HVM_SET_ATTR: { 7168 struct kvm_xen_hvm_attr xha; 7169 7170 r = -EFAULT; 7171 if (copy_from_user(&xha, argp, sizeof(xha))) 7172 goto out; 7173 r = kvm_xen_hvm_set_attr(kvm, &xha); 7174 break; 7175 } 7176 case KVM_XEN_HVM_EVTCHN_SEND: { 7177 struct kvm_irq_routing_xen_evtchn uxe; 7178 7179 r = -EFAULT; 7180 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7181 goto out; 7182 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7183 break; 7184 } 7185 #endif 7186 case KVM_SET_CLOCK: 7187 r = kvm_vm_ioctl_set_clock(kvm, argp); 7188 break; 7189 case KVM_GET_CLOCK: 7190 r = kvm_vm_ioctl_get_clock(kvm, argp); 7191 break; 7192 case KVM_SET_TSC_KHZ: { 7193 u32 user_tsc_khz; 7194 7195 r = -EINVAL; 7196 user_tsc_khz = (u32)arg; 7197 7198 if (kvm_caps.has_tsc_control && 7199 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7200 goto out; 7201 7202 if (user_tsc_khz == 0) 7203 user_tsc_khz = tsc_khz; 7204 7205 mutex_lock(&kvm->lock); 7206 if (!kvm->created_vcpus) { 7207 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7208 r = 0; 7209 } 7210 mutex_unlock(&kvm->lock); 7211 goto out; 7212 } 7213 case KVM_GET_TSC_KHZ: { 7214 r = READ_ONCE(kvm->arch.default_tsc_khz); 7215 goto out; 7216 } 7217 case KVM_MEMORY_ENCRYPT_OP: 7218 r = -ENOTTY; 7219 if (!kvm_x86_ops.mem_enc_ioctl) 7220 goto out; 7221 7222 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp); 7223 break; 7224 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7225 struct kvm_enc_region region; 7226 7227 r = -EFAULT; 7228 if (copy_from_user(®ion, argp, sizeof(region))) 7229 goto out; 7230 7231 r = -ENOTTY; 7232 if (!kvm_x86_ops.mem_enc_register_region) 7233 goto out; 7234 7235 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion); 7236 break; 7237 } 7238 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7239 struct kvm_enc_region region; 7240 7241 r = -EFAULT; 7242 if (copy_from_user(®ion, argp, sizeof(region))) 7243 goto out; 7244 7245 r = -ENOTTY; 7246 if (!kvm_x86_ops.mem_enc_unregister_region) 7247 goto out; 7248 7249 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion); 7250 break; 7251 } 7252 #ifdef CONFIG_KVM_HYPERV 7253 case KVM_HYPERV_EVENTFD: { 7254 struct kvm_hyperv_eventfd hvevfd; 7255 7256 r = -EFAULT; 7257 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7258 goto out; 7259 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7260 break; 7261 } 7262 #endif 7263 case KVM_SET_PMU_EVENT_FILTER: 7264 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7265 break; 7266 case KVM_X86_SET_MSR_FILTER: { 7267 struct kvm_msr_filter __user *user_msr_filter = argp; 7268 struct kvm_msr_filter filter; 7269 7270 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7271 return -EFAULT; 7272 7273 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7274 break; 7275 } 7276 default: 7277 r = -ENOTTY; 7278 } 7279 out: 7280 return r; 7281 } 7282 7283 static void kvm_probe_feature_msr(u32 msr_index) 7284 { 7285 u64 data; 7286 7287 if (kvm_get_feature_msr(NULL, msr_index, &data, true)) 7288 return; 7289 7290 msr_based_features[num_msr_based_features++] = msr_index; 7291 } 7292 7293 static void kvm_probe_msr_to_save(u32 msr_index) 7294 { 7295 u32 dummy[2]; 7296 7297 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7298 return; 7299 7300 /* 7301 * Even MSRs that are valid in the host may not be exposed to guests in 7302 * some cases. 7303 */ 7304 switch (msr_index) { 7305 case MSR_IA32_BNDCFGS: 7306 if (!kvm_mpx_supported()) 7307 return; 7308 break; 7309 case MSR_TSC_AUX: 7310 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7311 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7312 return; 7313 break; 7314 case MSR_IA32_UMWAIT_CONTROL: 7315 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7316 return; 7317 break; 7318 case MSR_IA32_RTIT_CTL: 7319 case MSR_IA32_RTIT_STATUS: 7320 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7321 return; 7322 break; 7323 case MSR_IA32_RTIT_CR3_MATCH: 7324 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7325 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7326 return; 7327 break; 7328 case MSR_IA32_RTIT_OUTPUT_BASE: 7329 case MSR_IA32_RTIT_OUTPUT_MASK: 7330 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7331 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7332 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7333 return; 7334 break; 7335 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7336 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7337 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7338 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7339 return; 7340 break; 7341 case MSR_ARCH_PERFMON_PERFCTR0 ... 7342 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1: 7343 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7344 kvm_pmu_cap.num_counters_gp) 7345 return; 7346 break; 7347 case MSR_ARCH_PERFMON_EVENTSEL0 ... 7348 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1: 7349 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7350 kvm_pmu_cap.num_counters_gp) 7351 return; 7352 break; 7353 case MSR_ARCH_PERFMON_FIXED_CTR0 ... 7354 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1: 7355 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7356 kvm_pmu_cap.num_counters_fixed) 7357 return; 7358 break; 7359 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7360 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7361 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7362 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7363 return; 7364 break; 7365 case MSR_IA32_XFD: 7366 case MSR_IA32_XFD_ERR: 7367 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7368 return; 7369 break; 7370 case MSR_IA32_TSX_CTRL: 7371 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7372 return; 7373 break; 7374 default: 7375 break; 7376 } 7377 7378 msrs_to_save[num_msrs_to_save++] = msr_index; 7379 } 7380 7381 static void kvm_init_msr_lists(void) 7382 { 7383 unsigned i; 7384 7385 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3, 7386 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7387 7388 num_msrs_to_save = 0; 7389 num_emulated_msrs = 0; 7390 num_msr_based_features = 0; 7391 7392 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7393 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7394 7395 if (enable_pmu) { 7396 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7397 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7398 } 7399 7400 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7401 if (!kvm_x86_call(has_emulated_msr)(NULL, 7402 emulated_msrs_all[i])) 7403 continue; 7404 7405 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7406 } 7407 7408 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7409 kvm_probe_feature_msr(i); 7410 7411 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7412 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7413 } 7414 7415 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7416 const void *v) 7417 { 7418 int handled = 0; 7419 int n; 7420 7421 do { 7422 n = min(len, 8); 7423 if (!(lapic_in_kernel(vcpu) && 7424 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7425 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7426 break; 7427 handled += n; 7428 addr += n; 7429 len -= n; 7430 v += n; 7431 } while (len); 7432 7433 return handled; 7434 } 7435 7436 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7437 { 7438 int handled = 0; 7439 int n; 7440 7441 do { 7442 n = min(len, 8); 7443 if (!(lapic_in_kernel(vcpu) && 7444 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7445 addr, n, v)) 7446 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7447 break; 7448 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7449 handled += n; 7450 addr += n; 7451 len -= n; 7452 v += n; 7453 } while (len); 7454 7455 return handled; 7456 } 7457 7458 void kvm_set_segment(struct kvm_vcpu *vcpu, 7459 struct kvm_segment *var, int seg) 7460 { 7461 kvm_x86_call(set_segment)(vcpu, var, seg); 7462 } 7463 7464 void kvm_get_segment(struct kvm_vcpu *vcpu, 7465 struct kvm_segment *var, int seg) 7466 { 7467 kvm_x86_call(get_segment)(vcpu, var, seg); 7468 } 7469 7470 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7471 struct x86_exception *exception) 7472 { 7473 struct kvm_mmu *mmu = vcpu->arch.mmu; 7474 gpa_t t_gpa; 7475 7476 BUG_ON(!mmu_is_nested(vcpu)); 7477 7478 /* NPT walks are always user-walks */ 7479 access |= PFERR_USER_MASK; 7480 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7481 7482 return t_gpa; 7483 } 7484 7485 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7486 struct x86_exception *exception) 7487 { 7488 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7489 7490 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7491 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7492 } 7493 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7494 7495 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7496 struct x86_exception *exception) 7497 { 7498 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7499 7500 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7501 access |= PFERR_WRITE_MASK; 7502 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7503 } 7504 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7505 7506 /* uses this to access any guest's mapped memory without checking CPL */ 7507 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7508 struct x86_exception *exception) 7509 { 7510 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7511 7512 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7513 } 7514 7515 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7516 struct kvm_vcpu *vcpu, u64 access, 7517 struct x86_exception *exception) 7518 { 7519 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7520 void *data = val; 7521 int r = X86EMUL_CONTINUE; 7522 7523 while (bytes) { 7524 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7525 unsigned offset = addr & (PAGE_SIZE-1); 7526 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7527 int ret; 7528 7529 if (gpa == INVALID_GPA) 7530 return X86EMUL_PROPAGATE_FAULT; 7531 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7532 offset, toread); 7533 if (ret < 0) { 7534 r = X86EMUL_IO_NEEDED; 7535 goto out; 7536 } 7537 7538 bytes -= toread; 7539 data += toread; 7540 addr += toread; 7541 } 7542 out: 7543 return r; 7544 } 7545 7546 /* used for instruction fetching */ 7547 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7548 gva_t addr, void *val, unsigned int bytes, 7549 struct x86_exception *exception) 7550 { 7551 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7552 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7553 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7554 unsigned offset; 7555 int ret; 7556 7557 /* Inline kvm_read_guest_virt_helper for speed. */ 7558 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7559 exception); 7560 if (unlikely(gpa == INVALID_GPA)) 7561 return X86EMUL_PROPAGATE_FAULT; 7562 7563 offset = addr & (PAGE_SIZE-1); 7564 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7565 bytes = (unsigned)PAGE_SIZE - offset; 7566 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7567 offset, bytes); 7568 if (unlikely(ret < 0)) 7569 return X86EMUL_IO_NEEDED; 7570 7571 return X86EMUL_CONTINUE; 7572 } 7573 7574 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7575 gva_t addr, void *val, unsigned int bytes, 7576 struct x86_exception *exception) 7577 { 7578 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7579 7580 /* 7581 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7582 * is returned, but our callers are not ready for that and they blindly 7583 * call kvm_inject_page_fault. Ensure that they at least do not leak 7584 * uninitialized kernel stack memory into cr2 and error code. 7585 */ 7586 memset(exception, 0, sizeof(*exception)); 7587 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7588 exception); 7589 } 7590 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7591 7592 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7593 gva_t addr, void *val, unsigned int bytes, 7594 struct x86_exception *exception, bool system) 7595 { 7596 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7597 u64 access = 0; 7598 7599 if (system) 7600 access |= PFERR_IMPLICIT_ACCESS; 7601 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7602 access |= PFERR_USER_MASK; 7603 7604 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7605 } 7606 7607 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7608 struct kvm_vcpu *vcpu, u64 access, 7609 struct x86_exception *exception) 7610 { 7611 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7612 void *data = val; 7613 int r = X86EMUL_CONTINUE; 7614 7615 while (bytes) { 7616 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7617 unsigned offset = addr & (PAGE_SIZE-1); 7618 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7619 int ret; 7620 7621 if (gpa == INVALID_GPA) 7622 return X86EMUL_PROPAGATE_FAULT; 7623 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7624 if (ret < 0) { 7625 r = X86EMUL_IO_NEEDED; 7626 goto out; 7627 } 7628 7629 bytes -= towrite; 7630 data += towrite; 7631 addr += towrite; 7632 } 7633 out: 7634 return r; 7635 } 7636 7637 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7638 unsigned int bytes, struct x86_exception *exception, 7639 bool system) 7640 { 7641 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7642 u64 access = PFERR_WRITE_MASK; 7643 7644 if (system) 7645 access |= PFERR_IMPLICIT_ACCESS; 7646 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7647 access |= PFERR_USER_MASK; 7648 7649 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7650 access, exception); 7651 } 7652 7653 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7654 unsigned int bytes, struct x86_exception *exception) 7655 { 7656 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7657 vcpu->arch.l1tf_flush_l1d = true; 7658 7659 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7660 PFERR_WRITE_MASK, exception); 7661 } 7662 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7663 7664 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7665 void *insn, int insn_len) 7666 { 7667 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type, 7668 insn, insn_len); 7669 } 7670 7671 int handle_ud(struct kvm_vcpu *vcpu) 7672 { 7673 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7674 int fep_flags = READ_ONCE(force_emulation_prefix); 7675 int emul_type = EMULTYPE_TRAP_UD; 7676 char sig[5]; /* ud2; .ascii "kvm" */ 7677 struct x86_exception e; 7678 int r; 7679 7680 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7681 if (r != X86EMUL_CONTINUE) 7682 return 1; 7683 7684 if (fep_flags && 7685 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7686 sig, sizeof(sig), &e) == 0 && 7687 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7688 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7689 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7690 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7691 emul_type = EMULTYPE_TRAP_UD_FORCED; 7692 } 7693 7694 return kvm_emulate_instruction(vcpu, emul_type); 7695 } 7696 EXPORT_SYMBOL_GPL(handle_ud); 7697 7698 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7699 gpa_t gpa, bool write) 7700 { 7701 /* For APIC access vmexit */ 7702 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7703 return 1; 7704 7705 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7706 trace_vcpu_match_mmio(gva, gpa, write, true); 7707 return 1; 7708 } 7709 7710 return 0; 7711 } 7712 7713 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7714 gpa_t *gpa, struct x86_exception *exception, 7715 bool write) 7716 { 7717 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7718 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7719 | (write ? PFERR_WRITE_MASK : 0); 7720 7721 /* 7722 * currently PKRU is only applied to ept enabled guest so 7723 * there is no pkey in EPT page table for L1 guest or EPT 7724 * shadow page table for L2 guest. 7725 */ 7726 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7727 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7728 vcpu->arch.mmio_access, 0, access))) { 7729 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7730 (gva & (PAGE_SIZE - 1)); 7731 trace_vcpu_match_mmio(gva, *gpa, write, false); 7732 return 1; 7733 } 7734 7735 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7736 7737 if (*gpa == INVALID_GPA) 7738 return -1; 7739 7740 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7741 } 7742 7743 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7744 const void *val, int bytes) 7745 { 7746 int ret; 7747 7748 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7749 if (ret < 0) 7750 return 0; 7751 kvm_page_track_write(vcpu, gpa, val, bytes); 7752 return 1; 7753 } 7754 7755 struct read_write_emulator_ops { 7756 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7757 int bytes); 7758 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7759 void *val, int bytes); 7760 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7761 int bytes, void *val); 7762 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7763 void *val, int bytes); 7764 bool write; 7765 }; 7766 7767 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7768 { 7769 if (vcpu->mmio_read_completed) { 7770 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7771 vcpu->mmio_fragments[0].gpa, val); 7772 vcpu->mmio_read_completed = 0; 7773 return 1; 7774 } 7775 7776 return 0; 7777 } 7778 7779 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7780 void *val, int bytes) 7781 { 7782 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7783 } 7784 7785 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7786 void *val, int bytes) 7787 { 7788 return emulator_write_phys(vcpu, gpa, val, bytes); 7789 } 7790 7791 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7792 { 7793 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7794 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7795 } 7796 7797 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7798 void *val, int bytes) 7799 { 7800 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7801 return X86EMUL_IO_NEEDED; 7802 } 7803 7804 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7805 void *val, int bytes) 7806 { 7807 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7808 7809 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7810 return X86EMUL_CONTINUE; 7811 } 7812 7813 static const struct read_write_emulator_ops read_emultor = { 7814 .read_write_prepare = read_prepare, 7815 .read_write_emulate = read_emulate, 7816 .read_write_mmio = vcpu_mmio_read, 7817 .read_write_exit_mmio = read_exit_mmio, 7818 }; 7819 7820 static const struct read_write_emulator_ops write_emultor = { 7821 .read_write_emulate = write_emulate, 7822 .read_write_mmio = write_mmio, 7823 .read_write_exit_mmio = write_exit_mmio, 7824 .write = true, 7825 }; 7826 7827 static int emulator_read_write_onepage(unsigned long addr, void *val, 7828 unsigned int bytes, 7829 struct x86_exception *exception, 7830 struct kvm_vcpu *vcpu, 7831 const struct read_write_emulator_ops *ops) 7832 { 7833 gpa_t gpa; 7834 int handled, ret; 7835 bool write = ops->write; 7836 struct kvm_mmio_fragment *frag; 7837 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7838 7839 /* 7840 * If the exit was due to a NPF we may already have a GPA. 7841 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7842 * Note, this cannot be used on string operations since string 7843 * operation using rep will only have the initial GPA from the NPF 7844 * occurred. 7845 */ 7846 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7847 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7848 gpa = ctxt->gpa_val; 7849 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7850 } else { 7851 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7852 if (ret < 0) 7853 return X86EMUL_PROPAGATE_FAULT; 7854 } 7855 7856 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7857 return X86EMUL_CONTINUE; 7858 7859 /* 7860 * Is this MMIO handled locally? 7861 */ 7862 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7863 if (handled == bytes) 7864 return X86EMUL_CONTINUE; 7865 7866 gpa += handled; 7867 bytes -= handled; 7868 val += handled; 7869 7870 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7871 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7872 frag->gpa = gpa; 7873 frag->data = val; 7874 frag->len = bytes; 7875 return X86EMUL_CONTINUE; 7876 } 7877 7878 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7879 unsigned long addr, 7880 void *val, unsigned int bytes, 7881 struct x86_exception *exception, 7882 const struct read_write_emulator_ops *ops) 7883 { 7884 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7885 gpa_t gpa; 7886 int rc; 7887 7888 if (ops->read_write_prepare && 7889 ops->read_write_prepare(vcpu, val, bytes)) 7890 return X86EMUL_CONTINUE; 7891 7892 vcpu->mmio_nr_fragments = 0; 7893 7894 /* Crossing a page boundary? */ 7895 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7896 int now; 7897 7898 now = -addr & ~PAGE_MASK; 7899 rc = emulator_read_write_onepage(addr, val, now, exception, 7900 vcpu, ops); 7901 7902 if (rc != X86EMUL_CONTINUE) 7903 return rc; 7904 addr += now; 7905 if (ctxt->mode != X86EMUL_MODE_PROT64) 7906 addr = (u32)addr; 7907 val += now; 7908 bytes -= now; 7909 } 7910 7911 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7912 vcpu, ops); 7913 if (rc != X86EMUL_CONTINUE) 7914 return rc; 7915 7916 if (!vcpu->mmio_nr_fragments) 7917 return X86EMUL_CONTINUE; 7918 7919 gpa = vcpu->mmio_fragments[0].gpa; 7920 7921 vcpu->mmio_needed = 1; 7922 vcpu->mmio_cur_fragment = 0; 7923 7924 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7925 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7926 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7927 vcpu->run->mmio.phys_addr = gpa; 7928 7929 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7930 } 7931 7932 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7933 unsigned long addr, 7934 void *val, 7935 unsigned int bytes, 7936 struct x86_exception *exception) 7937 { 7938 return emulator_read_write(ctxt, addr, val, bytes, 7939 exception, &read_emultor); 7940 } 7941 7942 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7943 unsigned long addr, 7944 const void *val, 7945 unsigned int bytes, 7946 struct x86_exception *exception) 7947 { 7948 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7949 exception, &write_emultor); 7950 } 7951 7952 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7953 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7954 7955 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7956 unsigned long addr, 7957 const void *old, 7958 const void *new, 7959 unsigned int bytes, 7960 struct x86_exception *exception) 7961 { 7962 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7963 u64 page_line_mask; 7964 unsigned long hva; 7965 gpa_t gpa; 7966 int r; 7967 7968 /* guests cmpxchg8b have to be emulated atomically */ 7969 if (bytes > 8 || (bytes & (bytes - 1))) 7970 goto emul_write; 7971 7972 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7973 7974 if (gpa == INVALID_GPA || 7975 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7976 goto emul_write; 7977 7978 /* 7979 * Emulate the atomic as a straight write to avoid #AC if SLD is 7980 * enabled in the host and the access splits a cache line. 7981 */ 7982 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7983 page_line_mask = ~(cache_line_size() - 1); 7984 else 7985 page_line_mask = PAGE_MASK; 7986 7987 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7988 goto emul_write; 7989 7990 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7991 if (kvm_is_error_hva(hva)) 7992 goto emul_write; 7993 7994 hva += offset_in_page(gpa); 7995 7996 switch (bytes) { 7997 case 1: 7998 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7999 break; 8000 case 2: 8001 r = emulator_try_cmpxchg_user(u16, hva, old, new); 8002 break; 8003 case 4: 8004 r = emulator_try_cmpxchg_user(u32, hva, old, new); 8005 break; 8006 case 8: 8007 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8008 break; 8009 default: 8010 BUG(); 8011 } 8012 8013 if (r < 0) 8014 return X86EMUL_UNHANDLEABLE; 8015 8016 /* 8017 * Mark the page dirty _before_ checking whether or not the CMPXCHG was 8018 * successful, as the old value is written back on failure. Note, for 8019 * live migration, this is unnecessarily conservative as CMPXCHG writes 8020 * back the original value and the access is atomic, but KVM's ABI is 8021 * that all writes are dirty logged, regardless of the value written. 8022 */ 8023 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); 8024 8025 if (r) 8026 return X86EMUL_CMPXCHG_FAILED; 8027 8028 kvm_page_track_write(vcpu, gpa, new, bytes); 8029 8030 return X86EMUL_CONTINUE; 8031 8032 emul_write: 8033 pr_warn_once("emulating exchange as write\n"); 8034 8035 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8036 } 8037 8038 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8039 unsigned short port, void *data, 8040 unsigned int count, bool in) 8041 { 8042 unsigned i; 8043 int r; 8044 8045 WARN_ON_ONCE(vcpu->arch.pio.count); 8046 for (i = 0; i < count; i++) { 8047 if (in) 8048 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8049 else 8050 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8051 8052 if (r) { 8053 if (i == 0) 8054 goto userspace_io; 8055 8056 /* 8057 * Userspace must have unregistered the device while PIO 8058 * was running. Drop writes / read as 0. 8059 */ 8060 if (in) 8061 memset(data, 0, size * (count - i)); 8062 break; 8063 } 8064 8065 data += size; 8066 } 8067 return 1; 8068 8069 userspace_io: 8070 vcpu->arch.pio.port = port; 8071 vcpu->arch.pio.in = in; 8072 vcpu->arch.pio.count = count; 8073 vcpu->arch.pio.size = size; 8074 8075 if (in) 8076 memset(vcpu->arch.pio_data, 0, size * count); 8077 else 8078 memcpy(vcpu->arch.pio_data, data, size * count); 8079 8080 vcpu->run->exit_reason = KVM_EXIT_IO; 8081 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8082 vcpu->run->io.size = size; 8083 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8084 vcpu->run->io.count = count; 8085 vcpu->run->io.port = port; 8086 return 0; 8087 } 8088 8089 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8090 unsigned short port, void *val, unsigned int count) 8091 { 8092 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8093 if (r) 8094 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8095 8096 return r; 8097 } 8098 8099 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8100 { 8101 int size = vcpu->arch.pio.size; 8102 unsigned int count = vcpu->arch.pio.count; 8103 memcpy(val, vcpu->arch.pio_data, size * count); 8104 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8105 vcpu->arch.pio.count = 0; 8106 } 8107 8108 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8109 int size, unsigned short port, void *val, 8110 unsigned int count) 8111 { 8112 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8113 if (vcpu->arch.pio.count) { 8114 /* 8115 * Complete a previous iteration that required userspace I/O. 8116 * Note, @count isn't guaranteed to match pio.count as userspace 8117 * can modify ECX before rerunning the vCPU. Ignore any such 8118 * shenanigans as KVM doesn't support modifying the rep count, 8119 * and the emulator ensures @count doesn't overflow the buffer. 8120 */ 8121 complete_emulator_pio_in(vcpu, val); 8122 return 1; 8123 } 8124 8125 return emulator_pio_in(vcpu, size, port, val, count); 8126 } 8127 8128 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8129 unsigned short port, const void *val, 8130 unsigned int count) 8131 { 8132 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8133 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8134 } 8135 8136 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8137 int size, unsigned short port, 8138 const void *val, unsigned int count) 8139 { 8140 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8141 } 8142 8143 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8144 { 8145 return kvm_x86_call(get_segment_base)(vcpu, seg); 8146 } 8147 8148 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8149 { 8150 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8151 } 8152 8153 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8154 { 8155 if (!need_emulate_wbinvd(vcpu)) 8156 return X86EMUL_CONTINUE; 8157 8158 if (kvm_x86_call(has_wbinvd_exit)()) { 8159 int cpu = get_cpu(); 8160 8161 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8162 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 8163 wbinvd_ipi, NULL, 1); 8164 put_cpu(); 8165 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8166 } else 8167 wbinvd(); 8168 return X86EMUL_CONTINUE; 8169 } 8170 8171 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8172 { 8173 kvm_emulate_wbinvd_noskip(vcpu); 8174 return kvm_skip_emulated_instruction(vcpu); 8175 } 8176 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8177 8178 8179 8180 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8181 { 8182 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8183 } 8184 8185 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr) 8186 { 8187 return kvm_get_dr(emul_to_vcpu(ctxt), dr); 8188 } 8189 8190 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8191 unsigned long value) 8192 { 8193 8194 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8195 } 8196 8197 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8198 { 8199 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8200 } 8201 8202 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8203 { 8204 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8205 unsigned long value; 8206 8207 switch (cr) { 8208 case 0: 8209 value = kvm_read_cr0(vcpu); 8210 break; 8211 case 2: 8212 value = vcpu->arch.cr2; 8213 break; 8214 case 3: 8215 value = kvm_read_cr3(vcpu); 8216 break; 8217 case 4: 8218 value = kvm_read_cr4(vcpu); 8219 break; 8220 case 8: 8221 value = kvm_get_cr8(vcpu); 8222 break; 8223 default: 8224 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8225 return 0; 8226 } 8227 8228 return value; 8229 } 8230 8231 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8232 { 8233 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8234 int res = 0; 8235 8236 switch (cr) { 8237 case 0: 8238 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8239 break; 8240 case 2: 8241 vcpu->arch.cr2 = val; 8242 break; 8243 case 3: 8244 res = kvm_set_cr3(vcpu, val); 8245 break; 8246 case 4: 8247 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8248 break; 8249 case 8: 8250 res = kvm_set_cr8(vcpu, val); 8251 break; 8252 default: 8253 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8254 res = -1; 8255 } 8256 8257 return res; 8258 } 8259 8260 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8261 { 8262 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt)); 8263 } 8264 8265 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8266 { 8267 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt); 8268 } 8269 8270 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8271 { 8272 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt); 8273 } 8274 8275 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8276 { 8277 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt); 8278 } 8279 8280 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8281 { 8282 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt); 8283 } 8284 8285 static unsigned long emulator_get_cached_segment_base( 8286 struct x86_emulate_ctxt *ctxt, int seg) 8287 { 8288 return get_segment_base(emul_to_vcpu(ctxt), seg); 8289 } 8290 8291 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8292 struct desc_struct *desc, u32 *base3, 8293 int seg) 8294 { 8295 struct kvm_segment var; 8296 8297 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8298 *selector = var.selector; 8299 8300 if (var.unusable) { 8301 memset(desc, 0, sizeof(*desc)); 8302 if (base3) 8303 *base3 = 0; 8304 return false; 8305 } 8306 8307 if (var.g) 8308 var.limit >>= 12; 8309 set_desc_limit(desc, var.limit); 8310 set_desc_base(desc, (unsigned long)var.base); 8311 #ifdef CONFIG_X86_64 8312 if (base3) 8313 *base3 = var.base >> 32; 8314 #endif 8315 desc->type = var.type; 8316 desc->s = var.s; 8317 desc->dpl = var.dpl; 8318 desc->p = var.present; 8319 desc->avl = var.avl; 8320 desc->l = var.l; 8321 desc->d = var.db; 8322 desc->g = var.g; 8323 8324 return true; 8325 } 8326 8327 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8328 struct desc_struct *desc, u32 base3, 8329 int seg) 8330 { 8331 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8332 struct kvm_segment var; 8333 8334 var.selector = selector; 8335 var.base = get_desc_base(desc); 8336 #ifdef CONFIG_X86_64 8337 var.base |= ((u64)base3) << 32; 8338 #endif 8339 var.limit = get_desc_limit(desc); 8340 if (desc->g) 8341 var.limit = (var.limit << 12) | 0xfff; 8342 var.type = desc->type; 8343 var.dpl = desc->dpl; 8344 var.db = desc->d; 8345 var.s = desc->s; 8346 var.l = desc->l; 8347 var.g = desc->g; 8348 var.avl = desc->avl; 8349 var.present = desc->p; 8350 var.unusable = !var.present; 8351 var.padding = 0; 8352 8353 kvm_set_segment(vcpu, &var, seg); 8354 return; 8355 } 8356 8357 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8358 u32 msr_index, u64 *pdata) 8359 { 8360 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8361 int r; 8362 8363 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8364 if (r < 0) 8365 return X86EMUL_UNHANDLEABLE; 8366 8367 if (r) { 8368 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8369 complete_emulated_rdmsr, r)) 8370 return X86EMUL_IO_NEEDED; 8371 8372 trace_kvm_msr_read_ex(msr_index); 8373 return X86EMUL_PROPAGATE_FAULT; 8374 } 8375 8376 trace_kvm_msr_read(msr_index, *pdata); 8377 return X86EMUL_CONTINUE; 8378 } 8379 8380 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8381 u32 msr_index, u64 data) 8382 { 8383 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8384 int r; 8385 8386 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8387 if (r < 0) 8388 return X86EMUL_UNHANDLEABLE; 8389 8390 if (r) { 8391 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8392 complete_emulated_msr_access, r)) 8393 return X86EMUL_IO_NEEDED; 8394 8395 trace_kvm_msr_write_ex(msr_index, data); 8396 return X86EMUL_PROPAGATE_FAULT; 8397 } 8398 8399 trace_kvm_msr_write(msr_index, data); 8400 return X86EMUL_CONTINUE; 8401 } 8402 8403 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8404 u32 msr_index, u64 *pdata) 8405 { 8406 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8407 } 8408 8409 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc) 8410 { 8411 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc); 8412 } 8413 8414 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8415 u32 pmc, u64 *pdata) 8416 { 8417 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8418 } 8419 8420 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8421 { 8422 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8423 } 8424 8425 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8426 struct x86_instruction_info *info, 8427 enum x86_intercept_stage stage) 8428 { 8429 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage, 8430 &ctxt->exception); 8431 } 8432 8433 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8434 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8435 bool exact_only) 8436 { 8437 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8438 } 8439 8440 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8441 { 8442 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8443 } 8444 8445 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8446 { 8447 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8448 } 8449 8450 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8451 { 8452 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8453 } 8454 8455 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt) 8456 { 8457 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt)); 8458 } 8459 8460 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8461 { 8462 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8463 } 8464 8465 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8466 { 8467 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8468 } 8469 8470 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8471 { 8472 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8473 } 8474 8475 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8476 { 8477 return is_smm(emul_to_vcpu(ctxt)); 8478 } 8479 8480 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8481 { 8482 return is_guest_mode(emul_to_vcpu(ctxt)); 8483 } 8484 8485 #ifndef CONFIG_KVM_SMM 8486 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8487 { 8488 WARN_ON_ONCE(1); 8489 return X86EMUL_UNHANDLEABLE; 8490 } 8491 #endif 8492 8493 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8494 { 8495 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8496 } 8497 8498 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8499 { 8500 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8501 } 8502 8503 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8504 { 8505 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8506 8507 if (!kvm->vm_bugged) 8508 kvm_vm_bugged(kvm); 8509 } 8510 8511 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8512 gva_t addr, unsigned int flags) 8513 { 8514 if (!kvm_x86_ops.get_untagged_addr) 8515 return addr; 8516 8517 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt), 8518 addr, flags); 8519 } 8520 8521 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt, 8522 gva_t addr, unsigned int flags) 8523 { 8524 return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags); 8525 } 8526 8527 static const struct x86_emulate_ops emulate_ops = { 8528 .vm_bugged = emulator_vm_bugged, 8529 .read_gpr = emulator_read_gpr, 8530 .write_gpr = emulator_write_gpr, 8531 .read_std = emulator_read_std, 8532 .write_std = emulator_write_std, 8533 .fetch = kvm_fetch_guest_virt, 8534 .read_emulated = emulator_read_emulated, 8535 .write_emulated = emulator_write_emulated, 8536 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8537 .invlpg = emulator_invlpg, 8538 .pio_in_emulated = emulator_pio_in_emulated, 8539 .pio_out_emulated = emulator_pio_out_emulated, 8540 .get_segment = emulator_get_segment, 8541 .set_segment = emulator_set_segment, 8542 .get_cached_segment_base = emulator_get_cached_segment_base, 8543 .get_gdt = emulator_get_gdt, 8544 .get_idt = emulator_get_idt, 8545 .set_gdt = emulator_set_gdt, 8546 .set_idt = emulator_set_idt, 8547 .get_cr = emulator_get_cr, 8548 .set_cr = emulator_set_cr, 8549 .cpl = emulator_get_cpl, 8550 .get_dr = emulator_get_dr, 8551 .set_dr = emulator_set_dr, 8552 .set_msr_with_filter = emulator_set_msr_with_filter, 8553 .get_msr_with_filter = emulator_get_msr_with_filter, 8554 .get_msr = emulator_get_msr, 8555 .check_rdpmc_early = emulator_check_rdpmc_early, 8556 .read_pmc = emulator_read_pmc, 8557 .halt = emulator_halt, 8558 .wbinvd = emulator_wbinvd, 8559 .fix_hypercall = emulator_fix_hypercall, 8560 .intercept = emulator_intercept, 8561 .get_cpuid = emulator_get_cpuid, 8562 .guest_has_movbe = emulator_guest_has_movbe, 8563 .guest_has_fxsr = emulator_guest_has_fxsr, 8564 .guest_has_rdpid = emulator_guest_has_rdpid, 8565 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible, 8566 .set_nmi_mask = emulator_set_nmi_mask, 8567 .is_smm = emulator_is_smm, 8568 .is_guest_mode = emulator_is_guest_mode, 8569 .leave_smm = emulator_leave_smm, 8570 .triple_fault = emulator_triple_fault, 8571 .set_xcr = emulator_set_xcr, 8572 .get_untagged_addr = emulator_get_untagged_addr, 8573 .is_canonical_addr = emulator_is_canonical_addr, 8574 }; 8575 8576 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8577 { 8578 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 8579 /* 8580 * an sti; sti; sequence only disable interrupts for the first 8581 * instruction. So, if the last instruction, be it emulated or 8582 * not, left the system with the INT_STI flag enabled, it 8583 * means that the last instruction is an sti. We should not 8584 * leave the flag on in this case. The same goes for mov ss 8585 */ 8586 if (int_shadow & mask) 8587 mask = 0; 8588 if (unlikely(int_shadow || mask)) { 8589 kvm_x86_call(set_interrupt_shadow)(vcpu, mask); 8590 if (!mask) 8591 kvm_make_request(KVM_REQ_EVENT, vcpu); 8592 } 8593 } 8594 8595 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8596 { 8597 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8598 8599 if (ctxt->exception.vector == PF_VECTOR) 8600 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8601 else if (ctxt->exception.error_code_valid) 8602 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8603 ctxt->exception.error_code); 8604 else 8605 kvm_queue_exception(vcpu, ctxt->exception.vector); 8606 } 8607 8608 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8609 { 8610 struct x86_emulate_ctxt *ctxt; 8611 8612 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8613 if (!ctxt) { 8614 pr_err("failed to allocate vcpu's emulator\n"); 8615 return NULL; 8616 } 8617 8618 ctxt->vcpu = vcpu; 8619 ctxt->ops = &emulate_ops; 8620 vcpu->arch.emulate_ctxt = ctxt; 8621 8622 return ctxt; 8623 } 8624 8625 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8626 { 8627 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8628 int cs_db, cs_l; 8629 8630 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8631 8632 ctxt->gpa_available = false; 8633 ctxt->eflags = kvm_get_rflags(vcpu); 8634 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8635 8636 ctxt->eip = kvm_rip_read(vcpu); 8637 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8638 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8639 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8640 cs_db ? X86EMUL_MODE_PROT32 : 8641 X86EMUL_MODE_PROT16; 8642 ctxt->interruptibility = 0; 8643 ctxt->have_exception = false; 8644 ctxt->exception.vector = -1; 8645 ctxt->perm_ok = false; 8646 8647 init_decode_cache(ctxt); 8648 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8649 } 8650 8651 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8652 { 8653 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8654 int ret; 8655 8656 init_emulate_ctxt(vcpu); 8657 8658 ctxt->op_bytes = 2; 8659 ctxt->ad_bytes = 2; 8660 ctxt->_eip = ctxt->eip + inc_eip; 8661 ret = emulate_int_real(ctxt, irq); 8662 8663 if (ret != X86EMUL_CONTINUE) { 8664 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8665 } else { 8666 ctxt->eip = ctxt->_eip; 8667 kvm_rip_write(vcpu, ctxt->eip); 8668 kvm_set_rflags(vcpu, ctxt->eflags); 8669 } 8670 } 8671 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8672 8673 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8674 u8 ndata, u8 *insn_bytes, u8 insn_size) 8675 { 8676 struct kvm_run *run = vcpu->run; 8677 u64 info[5]; 8678 u8 info_start; 8679 8680 /* 8681 * Zero the whole array used to retrieve the exit info, as casting to 8682 * u32 for select entries will leave some chunks uninitialized. 8683 */ 8684 memset(&info, 0, sizeof(info)); 8685 8686 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2], 8687 (u32 *)&info[3], (u32 *)&info[4]); 8688 8689 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8690 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8691 8692 /* 8693 * There's currently space for 13 entries, but 5 are used for the exit 8694 * reason and info. Restrict to 4 to reduce the maintenance burden 8695 * when expanding kvm_run.emulation_failure in the future. 8696 */ 8697 if (WARN_ON_ONCE(ndata > 4)) 8698 ndata = 4; 8699 8700 /* Always include the flags as a 'data' entry. */ 8701 info_start = 1; 8702 run->emulation_failure.flags = 0; 8703 8704 if (insn_size) { 8705 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8706 sizeof(run->emulation_failure.insn_bytes) != 16)); 8707 info_start += 2; 8708 run->emulation_failure.flags |= 8709 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8710 run->emulation_failure.insn_size = insn_size; 8711 memset(run->emulation_failure.insn_bytes, 0x90, 8712 sizeof(run->emulation_failure.insn_bytes)); 8713 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8714 } 8715 8716 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8717 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8718 ndata * sizeof(data[0])); 8719 8720 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8721 } 8722 8723 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8724 { 8725 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8726 8727 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8728 ctxt->fetch.end - ctxt->fetch.data); 8729 } 8730 8731 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8732 u8 ndata) 8733 { 8734 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8735 } 8736 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8737 8738 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8739 { 8740 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8741 } 8742 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8743 8744 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa) 8745 { 8746 u32 reason, intr_info, error_code; 8747 struct kvm_run *run = vcpu->run; 8748 u64 info1, info2; 8749 int ndata = 0; 8750 8751 kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2, 8752 &intr_info, &error_code); 8753 8754 run->internal.data[ndata++] = info2; 8755 run->internal.data[ndata++] = reason; 8756 run->internal.data[ndata++] = info1; 8757 run->internal.data[ndata++] = gpa; 8758 run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 8759 8760 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8761 run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 8762 run->internal.ndata = ndata; 8763 } 8764 EXPORT_SYMBOL_GPL(kvm_prepare_event_vectoring_exit); 8765 8766 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8767 { 8768 struct kvm *kvm = vcpu->kvm; 8769 8770 ++vcpu->stat.insn_emulation_fail; 8771 trace_kvm_emulate_insn_failed(vcpu); 8772 8773 if (emulation_type & EMULTYPE_VMWARE_GP) { 8774 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8775 return 1; 8776 } 8777 8778 if (kvm->arch.exit_on_emulation_error || 8779 (emulation_type & EMULTYPE_SKIP)) { 8780 prepare_emulation_ctxt_failure_exit(vcpu); 8781 return 0; 8782 } 8783 8784 kvm_queue_exception(vcpu, UD_VECTOR); 8785 8786 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) { 8787 prepare_emulation_ctxt_failure_exit(vcpu); 8788 return 0; 8789 } 8790 8791 return 1; 8792 } 8793 8794 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu, 8795 gpa_t cr2_or_gpa, 8796 int emulation_type) 8797 { 8798 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8799 return false; 8800 8801 /* 8802 * If the failed instruction faulted on an access to page tables that 8803 * are used to translate any part of the instruction, KVM can't resolve 8804 * the issue by unprotecting the gfn, as zapping the shadow page will 8805 * result in the instruction taking a !PRESENT page fault and thus put 8806 * the vCPU into an infinite loop of page faults. E.g. KVM will create 8807 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and 8808 * then zap the SPTE to unprotect the gfn, and then do it all over 8809 * again. Report the error to userspace. 8810 */ 8811 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP) 8812 return false; 8813 8814 /* 8815 * If emulation may have been triggered by a write to a shadowed page 8816 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the 8817 * guest to let the CPU re-execute the instruction in the hope that the 8818 * CPU can cleanly execute the instruction that KVM failed to emulate. 8819 */ 8820 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true); 8821 8822 /* 8823 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible 8824 * all SPTEs were already zapped by a different task. The alternative 8825 * is to report the error to userspace and likely terminate the guest, 8826 * and the last_retry_{eip,addr} checks will prevent retrying the page 8827 * fault indefinitely, i.e. there's nothing to lose by retrying. 8828 */ 8829 return true; 8830 } 8831 8832 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8833 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8834 8835 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8836 unsigned long *db) 8837 { 8838 u32 dr6 = 0; 8839 int i; 8840 u32 enable, rwlen; 8841 8842 enable = dr7; 8843 rwlen = dr7 >> 16; 8844 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8845 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8846 dr6 |= (1 << i); 8847 return dr6; 8848 } 8849 8850 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8851 { 8852 struct kvm_run *kvm_run = vcpu->run; 8853 8854 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8855 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8856 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8857 kvm_run->debug.arch.exception = DB_VECTOR; 8858 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8859 return 0; 8860 } 8861 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8862 return 1; 8863 } 8864 8865 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8866 { 8867 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 8868 int r; 8869 8870 r = kvm_x86_call(skip_emulated_instruction)(vcpu); 8871 if (unlikely(!r)) 8872 return 0; 8873 8874 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 8875 8876 /* 8877 * rflags is the old, "raw" value of the flags. The new value has 8878 * not been saved yet. 8879 * 8880 * This is correct even for TF set by the guest, because "the 8881 * processor will not generate this exception after the instruction 8882 * that sets the TF flag". 8883 */ 8884 if (unlikely(rflags & X86_EFLAGS_TF)) 8885 r = kvm_vcpu_do_singlestep(vcpu); 8886 return r; 8887 } 8888 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8889 8890 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8891 { 8892 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8893 return true; 8894 8895 /* 8896 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is 8897 * active, but AMD compatible CPUs do not. 8898 */ 8899 if (!guest_cpuid_is_intel_compatible(vcpu)) 8900 return false; 8901 8902 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS; 8903 } 8904 8905 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8906 int emulation_type, int *r) 8907 { 8908 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8909 8910 /* 8911 * Do not check for code breakpoints if hardware has already done the 8912 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8913 * the instruction has passed all exception checks, and all intercepted 8914 * exceptions that trigger emulation have lower priority than code 8915 * breakpoints, i.e. the fact that the intercepted exception occurred 8916 * means any code breakpoints have already been serviced. 8917 * 8918 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8919 * hardware has checked the RIP of the magic prefix, but not the RIP of 8920 * the instruction being emulated. The intent of forced emulation is 8921 * to behave as if KVM intercepted the instruction without an exception 8922 * and without a prefix. 8923 */ 8924 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8925 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8926 return false; 8927 8928 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8929 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8930 struct kvm_run *kvm_run = vcpu->run; 8931 unsigned long eip = kvm_get_linear_rip(vcpu); 8932 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8933 vcpu->arch.guest_debug_dr7, 8934 vcpu->arch.eff_db); 8935 8936 if (dr6 != 0) { 8937 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8938 kvm_run->debug.arch.pc = eip; 8939 kvm_run->debug.arch.exception = DB_VECTOR; 8940 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8941 *r = 0; 8942 return true; 8943 } 8944 } 8945 8946 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8947 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8948 unsigned long eip = kvm_get_linear_rip(vcpu); 8949 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8950 vcpu->arch.dr7, 8951 vcpu->arch.db); 8952 8953 if (dr6 != 0) { 8954 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8955 *r = 1; 8956 return true; 8957 } 8958 } 8959 8960 return false; 8961 } 8962 8963 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8964 { 8965 switch (ctxt->opcode_len) { 8966 case 1: 8967 switch (ctxt->b) { 8968 case 0xe4: /* IN */ 8969 case 0xe5: 8970 case 0xec: 8971 case 0xed: 8972 case 0xe6: /* OUT */ 8973 case 0xe7: 8974 case 0xee: 8975 case 0xef: 8976 case 0x6c: /* INS */ 8977 case 0x6d: 8978 case 0x6e: /* OUTS */ 8979 case 0x6f: 8980 return true; 8981 } 8982 break; 8983 case 2: 8984 switch (ctxt->b) { 8985 case 0x33: /* RDPMC */ 8986 return true; 8987 } 8988 break; 8989 } 8990 8991 return false; 8992 } 8993 8994 /* 8995 * Decode an instruction for emulation. The caller is responsible for handling 8996 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8997 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8998 * code breakpoints have higher priority and thus have already been done by 8999 * hardware. 9000 * 9001 * [*] Except #MC, which is higher priority, but KVM should never emulate in 9002 * response to a machine check. 9003 */ 9004 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 9005 void *insn, int insn_len) 9006 { 9007 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9008 int r; 9009 9010 init_emulate_ctxt(vcpu); 9011 9012 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9013 9014 trace_kvm_emulate_insn_start(vcpu); 9015 ++vcpu->stat.insn_emulation; 9016 9017 return r; 9018 } 9019 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 9020 9021 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9022 int emulation_type, void *insn, int insn_len) 9023 { 9024 int r; 9025 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9026 bool writeback = true; 9027 9028 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && 9029 (WARN_ON_ONCE(is_guest_mode(vcpu)) || 9030 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))) 9031 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF; 9032 9033 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9034 if (r != X86EMUL_CONTINUE) { 9035 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9036 return 1; 9037 9038 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9039 emulation_type)) 9040 return 1; 9041 9042 if (r == X86EMUL_UNHANDLEABLE_VECTORING) { 9043 kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa); 9044 return 0; 9045 } 9046 9047 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9048 return handle_emulation_failure(vcpu, emulation_type); 9049 } 9050 9051 vcpu->arch.l1tf_flush_l1d = true; 9052 9053 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9054 kvm_clear_exception_queue(vcpu); 9055 9056 /* 9057 * Return immediately if RIP hits a code breakpoint, such #DBs 9058 * are fault-like and are higher priority than any faults on 9059 * the code fetch itself. 9060 */ 9061 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9062 return r; 9063 9064 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9065 insn, insn_len); 9066 if (r != EMULATION_OK) { 9067 if ((emulation_type & EMULTYPE_TRAP_UD) || 9068 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9069 kvm_queue_exception(vcpu, UD_VECTOR); 9070 return 1; 9071 } 9072 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9073 emulation_type)) 9074 return 1; 9075 9076 if (ctxt->have_exception && 9077 !(emulation_type & EMULTYPE_SKIP)) { 9078 /* 9079 * #UD should result in just EMULATION_FAILED, and trap-like 9080 * exception should not be encountered during decode. 9081 */ 9082 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9083 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9084 inject_emulated_exception(vcpu); 9085 return 1; 9086 } 9087 return handle_emulation_failure(vcpu, emulation_type); 9088 } 9089 } 9090 9091 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9092 !is_vmware_backdoor_opcode(ctxt)) { 9093 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9094 return 1; 9095 } 9096 9097 /* 9098 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9099 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9100 * The caller is responsible for updating interruptibility state and 9101 * injecting single-step #DBs. 9102 */ 9103 if (emulation_type & EMULTYPE_SKIP) { 9104 if (ctxt->mode != X86EMUL_MODE_PROT64) 9105 ctxt->eip = (u32)ctxt->_eip; 9106 else 9107 ctxt->eip = ctxt->_eip; 9108 9109 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9110 r = 1; 9111 goto writeback; 9112 } 9113 9114 kvm_rip_write(vcpu, ctxt->eip); 9115 if (ctxt->eflags & X86_EFLAGS_RF) 9116 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9117 return 1; 9118 } 9119 9120 /* 9121 * If emulation was caused by a write-protection #PF on a non-page_table 9122 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages, 9123 * and retry the instruction, as the vCPU is likely no longer using the 9124 * gfn as a page table. 9125 */ 9126 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && 9127 !x86_page_table_writing_insn(ctxt) && 9128 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 9129 return 1; 9130 9131 /* this is needed for vmware backdoor interface to work since it 9132 changes registers values during IO operation */ 9133 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9134 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9135 emulator_invalidate_register_cache(ctxt); 9136 } 9137 9138 restart: 9139 if (emulation_type & EMULTYPE_PF) { 9140 /* Save the faulting GPA (cr2) in the address field */ 9141 ctxt->exception.address = cr2_or_gpa; 9142 9143 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9144 if (vcpu->arch.mmu->root_role.direct) { 9145 ctxt->gpa_available = true; 9146 ctxt->gpa_val = cr2_or_gpa; 9147 } 9148 } else { 9149 /* Sanitize the address out of an abundance of paranoia. */ 9150 ctxt->exception.address = 0; 9151 } 9152 9153 r = x86_emulate_insn(ctxt); 9154 9155 if (r == EMULATION_INTERCEPTED) 9156 return 1; 9157 9158 if (r == EMULATION_FAILED) { 9159 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9160 emulation_type)) 9161 return 1; 9162 9163 return handle_emulation_failure(vcpu, emulation_type); 9164 } 9165 9166 if (ctxt->have_exception) { 9167 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9168 vcpu->mmio_needed = false; 9169 r = 1; 9170 inject_emulated_exception(vcpu); 9171 } else if (vcpu->arch.pio.count) { 9172 if (!vcpu->arch.pio.in) { 9173 /* FIXME: return into emulator if single-stepping. */ 9174 vcpu->arch.pio.count = 0; 9175 } else { 9176 writeback = false; 9177 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9178 } 9179 r = 0; 9180 } else if (vcpu->mmio_needed) { 9181 ++vcpu->stat.mmio_exits; 9182 9183 if (!vcpu->mmio_is_write) 9184 writeback = false; 9185 r = 0; 9186 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9187 } else if (vcpu->arch.complete_userspace_io) { 9188 writeback = false; 9189 r = 0; 9190 } else if (r == EMULATION_RESTART) 9191 goto restart; 9192 else 9193 r = 1; 9194 9195 writeback: 9196 if (writeback) { 9197 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 9198 toggle_interruptibility(vcpu, ctxt->interruptibility); 9199 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9200 9201 /* 9202 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9203 * only supports code breakpoints and general detect #DB, both 9204 * of which are fault-like. 9205 */ 9206 if (!ctxt->have_exception || 9207 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9208 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 9209 if (ctxt->is_branch) 9210 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED); 9211 kvm_rip_write(vcpu, ctxt->eip); 9212 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9213 r = kvm_vcpu_do_singlestep(vcpu); 9214 kvm_x86_call(update_emulated_instruction)(vcpu); 9215 __kvm_set_rflags(vcpu, ctxt->eflags); 9216 } 9217 9218 /* 9219 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9220 * do nothing, and it will be requested again as soon as 9221 * the shadow expires. But we still need to check here, 9222 * because POPF has no interrupt shadow. 9223 */ 9224 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9225 kvm_make_request(KVM_REQ_EVENT, vcpu); 9226 } else 9227 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9228 9229 return r; 9230 } 9231 9232 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9233 { 9234 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9235 } 9236 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9237 9238 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9239 void *insn, int insn_len) 9240 { 9241 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9242 } 9243 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9244 9245 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9246 { 9247 vcpu->arch.pio.count = 0; 9248 return 1; 9249 } 9250 9251 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9252 { 9253 vcpu->arch.pio.count = 0; 9254 9255 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) 9256 return 1; 9257 9258 return kvm_skip_emulated_instruction(vcpu); 9259 } 9260 9261 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9262 unsigned short port) 9263 { 9264 unsigned long val = kvm_rax_read(vcpu); 9265 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9266 9267 if (ret) 9268 return ret; 9269 9270 /* 9271 * Workaround userspace that relies on old KVM behavior of %rip being 9272 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9273 */ 9274 if (port == 0x7e && 9275 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9276 vcpu->arch.complete_userspace_io = 9277 complete_fast_pio_out_port_0x7e; 9278 kvm_skip_emulated_instruction(vcpu); 9279 } else { 9280 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu); 9281 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9282 } 9283 return 0; 9284 } 9285 9286 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9287 { 9288 unsigned long val; 9289 9290 /* We should only ever be called with arch.pio.count equal to 1 */ 9291 BUG_ON(vcpu->arch.pio.count != 1); 9292 9293 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) { 9294 vcpu->arch.pio.count = 0; 9295 return 1; 9296 } 9297 9298 /* For size less than 4 we merge, else we zero extend */ 9299 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9300 9301 complete_emulator_pio_in(vcpu, &val); 9302 kvm_rax_write(vcpu, val); 9303 9304 return kvm_skip_emulated_instruction(vcpu); 9305 } 9306 9307 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9308 unsigned short port) 9309 { 9310 unsigned long val; 9311 int ret; 9312 9313 /* For size less than 4 we merge, else we zero extend */ 9314 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9315 9316 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9317 if (ret) { 9318 kvm_rax_write(vcpu, val); 9319 return ret; 9320 } 9321 9322 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu); 9323 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9324 9325 return 0; 9326 } 9327 9328 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9329 { 9330 int ret; 9331 9332 if (in) 9333 ret = kvm_fast_pio_in(vcpu, size, port); 9334 else 9335 ret = kvm_fast_pio_out(vcpu, size, port); 9336 return ret && kvm_skip_emulated_instruction(vcpu); 9337 } 9338 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9339 9340 static int kvmclock_cpu_down_prep(unsigned int cpu) 9341 { 9342 __this_cpu_write(cpu_tsc_khz, 0); 9343 return 0; 9344 } 9345 9346 static void tsc_khz_changed(void *data) 9347 { 9348 struct cpufreq_freqs *freq = data; 9349 unsigned long khz; 9350 9351 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9352 9353 if (data) 9354 khz = freq->new; 9355 else 9356 khz = cpufreq_quick_get(raw_smp_processor_id()); 9357 if (!khz) 9358 khz = tsc_khz; 9359 __this_cpu_write(cpu_tsc_khz, khz); 9360 } 9361 9362 #ifdef CONFIG_X86_64 9363 static void kvm_hyperv_tsc_notifier(void) 9364 { 9365 struct kvm *kvm; 9366 int cpu; 9367 9368 mutex_lock(&kvm_lock); 9369 list_for_each_entry(kvm, &vm_list, vm_list) 9370 kvm_make_mclock_inprogress_request(kvm); 9371 9372 /* no guest entries from this point */ 9373 hyperv_stop_tsc_emulation(); 9374 9375 /* TSC frequency always matches when on Hyper-V */ 9376 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9377 for_each_present_cpu(cpu) 9378 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9379 } 9380 kvm_caps.max_guest_tsc_khz = tsc_khz; 9381 9382 list_for_each_entry(kvm, &vm_list, vm_list) { 9383 __kvm_start_pvclock_update(kvm); 9384 pvclock_update_vm_gtod_copy(kvm); 9385 kvm_end_pvclock_update(kvm); 9386 } 9387 9388 mutex_unlock(&kvm_lock); 9389 } 9390 #endif 9391 9392 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9393 { 9394 struct kvm *kvm; 9395 struct kvm_vcpu *vcpu; 9396 int send_ipi = 0; 9397 unsigned long i; 9398 9399 /* 9400 * We allow guests to temporarily run on slowing clocks, 9401 * provided we notify them after, or to run on accelerating 9402 * clocks, provided we notify them before. Thus time never 9403 * goes backwards. 9404 * 9405 * However, we have a problem. We can't atomically update 9406 * the frequency of a given CPU from this function; it is 9407 * merely a notifier, which can be called from any CPU. 9408 * Changing the TSC frequency at arbitrary points in time 9409 * requires a recomputation of local variables related to 9410 * the TSC for each VCPU. We must flag these local variables 9411 * to be updated and be sure the update takes place with the 9412 * new frequency before any guests proceed. 9413 * 9414 * Unfortunately, the combination of hotplug CPU and frequency 9415 * change creates an intractable locking scenario; the order 9416 * of when these callouts happen is undefined with respect to 9417 * CPU hotplug, and they can race with each other. As such, 9418 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9419 * undefined; you can actually have a CPU frequency change take 9420 * place in between the computation of X and the setting of the 9421 * variable. To protect against this problem, all updates of 9422 * the per_cpu tsc_khz variable are done in an interrupt 9423 * protected IPI, and all callers wishing to update the value 9424 * must wait for a synchronous IPI to complete (which is trivial 9425 * if the caller is on the CPU already). This establishes the 9426 * necessary total order on variable updates. 9427 * 9428 * Note that because a guest time update may take place 9429 * anytime after the setting of the VCPU's request bit, the 9430 * correct TSC value must be set before the request. However, 9431 * to ensure the update actually makes it to any guest which 9432 * starts running in hardware virtualization between the set 9433 * and the acquisition of the spinlock, we must also ping the 9434 * CPU after setting the request bit. 9435 * 9436 */ 9437 9438 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9439 9440 mutex_lock(&kvm_lock); 9441 list_for_each_entry(kvm, &vm_list, vm_list) { 9442 kvm_for_each_vcpu(i, vcpu, kvm) { 9443 if (vcpu->cpu != cpu) 9444 continue; 9445 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9446 if (vcpu->cpu != raw_smp_processor_id()) 9447 send_ipi = 1; 9448 } 9449 } 9450 mutex_unlock(&kvm_lock); 9451 9452 if (freq->old < freq->new && send_ipi) { 9453 /* 9454 * We upscale the frequency. Must make the guest 9455 * doesn't see old kvmclock values while running with 9456 * the new frequency, otherwise we risk the guest sees 9457 * time go backwards. 9458 * 9459 * In case we update the frequency for another cpu 9460 * (which might be in guest context) send an interrupt 9461 * to kick the cpu out of guest context. Next time 9462 * guest context is entered kvmclock will be updated, 9463 * so the guest will not see stale values. 9464 */ 9465 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9466 } 9467 } 9468 9469 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9470 void *data) 9471 { 9472 struct cpufreq_freqs *freq = data; 9473 int cpu; 9474 9475 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9476 return 0; 9477 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9478 return 0; 9479 9480 for_each_cpu(cpu, freq->policy->cpus) 9481 __kvmclock_cpufreq_notifier(freq, cpu); 9482 9483 return 0; 9484 } 9485 9486 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9487 .notifier_call = kvmclock_cpufreq_notifier 9488 }; 9489 9490 static int kvmclock_cpu_online(unsigned int cpu) 9491 { 9492 tsc_khz_changed(NULL); 9493 return 0; 9494 } 9495 9496 static void kvm_timer_init(void) 9497 { 9498 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9499 max_tsc_khz = tsc_khz; 9500 9501 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9502 struct cpufreq_policy *policy; 9503 int cpu; 9504 9505 cpu = get_cpu(); 9506 policy = cpufreq_cpu_get(cpu); 9507 if (policy) { 9508 if (policy->cpuinfo.max_freq) 9509 max_tsc_khz = policy->cpuinfo.max_freq; 9510 cpufreq_cpu_put(policy); 9511 } 9512 put_cpu(); 9513 } 9514 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9515 CPUFREQ_TRANSITION_NOTIFIER); 9516 9517 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9518 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9519 } 9520 } 9521 9522 #ifdef CONFIG_X86_64 9523 static void pvclock_gtod_update_fn(struct work_struct *work) 9524 { 9525 struct kvm *kvm; 9526 struct kvm_vcpu *vcpu; 9527 unsigned long i; 9528 9529 mutex_lock(&kvm_lock); 9530 list_for_each_entry(kvm, &vm_list, vm_list) 9531 kvm_for_each_vcpu(i, vcpu, kvm) 9532 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9533 atomic_set(&kvm_guest_has_master_clock, 0); 9534 mutex_unlock(&kvm_lock); 9535 } 9536 9537 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9538 9539 /* 9540 * Indirection to move queue_work() out of the tk_core.seq write held 9541 * region to prevent possible deadlocks against time accessors which 9542 * are invoked with work related locks held. 9543 */ 9544 static void pvclock_irq_work_fn(struct irq_work *w) 9545 { 9546 queue_work(system_long_wq, &pvclock_gtod_work); 9547 } 9548 9549 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9550 9551 /* 9552 * Notification about pvclock gtod data update. 9553 */ 9554 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9555 void *priv) 9556 { 9557 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9558 struct timekeeper *tk = priv; 9559 9560 update_pvclock_gtod(tk); 9561 9562 /* 9563 * Disable master clock if host does not trust, or does not use, 9564 * TSC based clocksource. Delegate queue_work() to irq_work as 9565 * this is invoked with tk_core.seq write held. 9566 */ 9567 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9568 atomic_read(&kvm_guest_has_master_clock) != 0) 9569 irq_work_queue(&pvclock_irq_work); 9570 return 0; 9571 } 9572 9573 static struct notifier_block pvclock_gtod_notifier = { 9574 .notifier_call = pvclock_gtod_notify, 9575 }; 9576 #endif 9577 9578 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9579 { 9580 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9581 9582 #define __KVM_X86_OP(func) \ 9583 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9584 #define KVM_X86_OP(func) \ 9585 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9586 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9587 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9588 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9589 (void *)__static_call_return0); 9590 #include <asm/kvm-x86-ops.h> 9591 #undef __KVM_X86_OP 9592 9593 kvm_pmu_ops_update(ops->pmu_ops); 9594 } 9595 9596 static int kvm_x86_check_processor_compatibility(void) 9597 { 9598 int cpu = smp_processor_id(); 9599 struct cpuinfo_x86 *c = &cpu_data(cpu); 9600 9601 /* 9602 * Compatibility checks are done when loading KVM and when enabling 9603 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9604 * compatible, i.e. KVM should never perform a compatibility check on 9605 * an offline CPU. 9606 */ 9607 WARN_ON(!cpu_online(cpu)); 9608 9609 if (__cr4_reserved_bits(cpu_has, c) != 9610 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9611 return -EIO; 9612 9613 return kvm_x86_call(check_processor_compatibility)(); 9614 } 9615 9616 static void kvm_x86_check_cpu_compat(void *ret) 9617 { 9618 *(int *)ret = kvm_x86_check_processor_compatibility(); 9619 } 9620 9621 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9622 { 9623 u64 host_pat; 9624 int r, cpu; 9625 9626 guard(mutex)(&vendor_module_lock); 9627 9628 if (kvm_x86_ops.enable_virtualization_cpu) { 9629 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9630 return -EEXIST; 9631 } 9632 9633 /* 9634 * KVM explicitly assumes that the guest has an FPU and 9635 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9636 * vCPU's FPU state as a fxregs_state struct. 9637 */ 9638 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9639 pr_err("inadequate fpu\n"); 9640 return -EOPNOTSUPP; 9641 } 9642 9643 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9644 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9645 return -EOPNOTSUPP; 9646 } 9647 9648 /* 9649 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9650 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9651 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9652 * with an exception. PAT[0] is set to WB on RESET and also by the 9653 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9654 */ 9655 if (rdmsrq_safe(MSR_IA32_CR_PAT, &host_pat) || 9656 (host_pat & GENMASK(2, 0)) != 6) { 9657 pr_err("host PAT[0] is not WB\n"); 9658 return -EIO; 9659 } 9660 9661 memset(&kvm_caps, 0, sizeof(kvm_caps)); 9662 9663 x86_emulator_cache = kvm_alloc_emulator_cache(); 9664 if (!x86_emulator_cache) { 9665 pr_err("failed to allocate cache for x86 emulator\n"); 9666 return -ENOMEM; 9667 } 9668 9669 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9670 if (!user_return_msrs) { 9671 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9672 r = -ENOMEM; 9673 goto out_free_x86_emulator_cache; 9674 } 9675 kvm_nr_uret_msrs = 0; 9676 9677 r = kvm_mmu_vendor_module_init(); 9678 if (r) 9679 goto out_free_percpu; 9680 9681 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM); 9682 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P; 9683 9684 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9685 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9686 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0; 9687 } 9688 kvm_caps.supported_quirks = KVM_X86_VALID_QUIRKS; 9689 kvm_caps.inapplicable_quirks = KVM_X86_CONDITIONAL_QUIRKS; 9690 9691 rdmsrq_safe(MSR_EFER, &kvm_host.efer); 9692 9693 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9694 rdmsrq(MSR_IA32_XSS, kvm_host.xss); 9695 9696 kvm_init_pmu_capability(ops->pmu_ops); 9697 9698 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9699 rdmsrq(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities); 9700 9701 r = ops->hardware_setup(); 9702 if (r != 0) 9703 goto out_mmu_exit; 9704 9705 enable_device_posted_irqs &= enable_apicv && 9706 irq_remapping_cap(IRQ_POSTING_CAP); 9707 9708 kvm_ops_update(ops); 9709 9710 for_each_online_cpu(cpu) { 9711 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9712 if (r < 0) 9713 goto out_unwind_ops; 9714 } 9715 9716 /* 9717 * Point of no return! DO NOT add error paths below this point unless 9718 * absolutely necessary, as most operations from this point forward 9719 * require unwinding. 9720 */ 9721 kvm_timer_init(); 9722 9723 if (pi_inject_timer == -1) 9724 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9725 #ifdef CONFIG_X86_64 9726 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9727 9728 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9729 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9730 #endif 9731 9732 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9733 9734 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled) 9735 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM); 9736 9737 /* KVM always ignores guest PAT for shadow paging. */ 9738 if (!tdp_enabled) 9739 kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT; 9740 9741 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9742 kvm_caps.supported_xss = 0; 9743 9744 if (kvm_caps.has_tsc_control) { 9745 /* 9746 * Make sure the user can only configure tsc_khz values that 9747 * fit into a signed integer. 9748 * A min value is not calculated because it will always 9749 * be 1 on all machines. 9750 */ 9751 u64 max = min(0x7fffffffULL, 9752 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9753 kvm_caps.max_guest_tsc_khz = max; 9754 } 9755 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9756 kvm_init_msr_lists(); 9757 return 0; 9758 9759 out_unwind_ops: 9760 kvm_x86_ops.enable_virtualization_cpu = NULL; 9761 kvm_x86_call(hardware_unsetup)(); 9762 out_mmu_exit: 9763 kvm_mmu_vendor_module_exit(); 9764 out_free_percpu: 9765 free_percpu(user_return_msrs); 9766 out_free_x86_emulator_cache: 9767 kmem_cache_destroy(x86_emulator_cache); 9768 return r; 9769 } 9770 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9771 9772 void kvm_x86_vendor_exit(void) 9773 { 9774 kvm_unregister_perf_callbacks(); 9775 9776 #ifdef CONFIG_X86_64 9777 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9778 clear_hv_tscchange_cb(); 9779 #endif 9780 kvm_lapic_exit(); 9781 9782 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9783 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9784 CPUFREQ_TRANSITION_NOTIFIER); 9785 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9786 } 9787 #ifdef CONFIG_X86_64 9788 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9789 irq_work_sync(&pvclock_irq_work); 9790 cancel_work_sync(&pvclock_gtod_work); 9791 #endif 9792 kvm_x86_call(hardware_unsetup)(); 9793 kvm_mmu_vendor_module_exit(); 9794 free_percpu(user_return_msrs); 9795 kmem_cache_destroy(x86_emulator_cache); 9796 #ifdef CONFIG_KVM_XEN 9797 static_key_deferred_flush(&kvm_xen_enabled); 9798 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9799 #endif 9800 mutex_lock(&vendor_module_lock); 9801 kvm_x86_ops.enable_virtualization_cpu = NULL; 9802 mutex_unlock(&vendor_module_lock); 9803 } 9804 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9805 9806 #ifdef CONFIG_X86_64 9807 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9808 unsigned long clock_type) 9809 { 9810 struct kvm_clock_pairing clock_pairing; 9811 struct timespec64 ts; 9812 u64 cycle; 9813 int ret; 9814 9815 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9816 return -KVM_EOPNOTSUPP; 9817 9818 /* 9819 * When tsc is in permanent catchup mode guests won't be able to use 9820 * pvclock_read_retry loop to get consistent view of pvclock 9821 */ 9822 if (vcpu->arch.tsc_always_catchup) 9823 return -KVM_EOPNOTSUPP; 9824 9825 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9826 return -KVM_EOPNOTSUPP; 9827 9828 clock_pairing.sec = ts.tv_sec; 9829 clock_pairing.nsec = ts.tv_nsec; 9830 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9831 clock_pairing.flags = 0; 9832 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9833 9834 ret = 0; 9835 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9836 sizeof(struct kvm_clock_pairing))) 9837 ret = -KVM_EFAULT; 9838 9839 return ret; 9840 } 9841 #endif 9842 9843 /* 9844 * kvm_pv_kick_cpu_op: Kick a vcpu. 9845 * 9846 * @apicid - apicid of vcpu to be kicked. 9847 */ 9848 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9849 { 9850 /* 9851 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9852 * common code, e.g. for tracing. Defer initialization to the compiler. 9853 */ 9854 struct kvm_lapic_irq lapic_irq = { 9855 .delivery_mode = APIC_DM_REMRD, 9856 .dest_mode = APIC_DEST_PHYSICAL, 9857 .shorthand = APIC_DEST_NOSHORT, 9858 .dest_id = apicid, 9859 }; 9860 9861 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9862 } 9863 9864 bool kvm_apicv_activated(struct kvm *kvm) 9865 { 9866 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9867 } 9868 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9869 9870 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9871 { 9872 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9873 ulong vcpu_reasons = 9874 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu); 9875 9876 return (vm_reasons | vcpu_reasons) == 0; 9877 } 9878 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9879 9880 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9881 enum kvm_apicv_inhibit reason, bool set) 9882 { 9883 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS }; 9884 9885 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS); 9886 9887 if (set) 9888 __set_bit(reason, inhibits); 9889 else 9890 __clear_bit(reason, inhibits); 9891 9892 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9893 } 9894 9895 static void kvm_apicv_init(struct kvm *kvm) 9896 { 9897 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT : 9898 APICV_INHIBIT_REASON_DISABLED; 9899 9900 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true); 9901 9902 init_rwsem(&kvm->arch.apicv_update_lock); 9903 } 9904 9905 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9906 { 9907 struct kvm_vcpu *target = NULL; 9908 struct kvm_apic_map *map; 9909 9910 vcpu->stat.directed_yield_attempted++; 9911 9912 if (single_task_running()) 9913 goto no_yield; 9914 9915 rcu_read_lock(); 9916 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9917 9918 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9919 target = map->phys_map[dest_id]->vcpu; 9920 9921 rcu_read_unlock(); 9922 9923 if (!target || !READ_ONCE(target->ready)) 9924 goto no_yield; 9925 9926 /* Ignore requests to yield to self */ 9927 if (vcpu == target) 9928 goto no_yield; 9929 9930 if (kvm_vcpu_yield_to(target) <= 0) 9931 goto no_yield; 9932 9933 vcpu->stat.directed_yield_successful++; 9934 9935 no_yield: 9936 return; 9937 } 9938 9939 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9940 { 9941 u64 ret = vcpu->run->hypercall.ret; 9942 9943 if (!is_64_bit_hypercall(vcpu)) 9944 ret = (u32)ret; 9945 kvm_rax_write(vcpu, ret); 9946 return kvm_skip_emulated_instruction(vcpu); 9947 } 9948 9949 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl, 9950 int (*complete_hypercall)(struct kvm_vcpu *)) 9951 { 9952 unsigned long ret; 9953 unsigned long nr = kvm_rax_read(vcpu); 9954 unsigned long a0 = kvm_rbx_read(vcpu); 9955 unsigned long a1 = kvm_rcx_read(vcpu); 9956 unsigned long a2 = kvm_rdx_read(vcpu); 9957 unsigned long a3 = kvm_rsi_read(vcpu); 9958 int op_64_bit = is_64_bit_hypercall(vcpu); 9959 9960 ++vcpu->stat.hypercalls; 9961 9962 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9963 9964 if (!op_64_bit) { 9965 nr &= 0xFFFFFFFF; 9966 a0 &= 0xFFFFFFFF; 9967 a1 &= 0xFFFFFFFF; 9968 a2 &= 0xFFFFFFFF; 9969 a3 &= 0xFFFFFFFF; 9970 } 9971 9972 if (cpl) { 9973 ret = -KVM_EPERM; 9974 goto out; 9975 } 9976 9977 ret = -KVM_ENOSYS; 9978 9979 switch (nr) { 9980 case KVM_HC_VAPIC_POLL_IRQ: 9981 ret = 0; 9982 break; 9983 case KVM_HC_KICK_CPU: 9984 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9985 break; 9986 9987 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9988 kvm_sched_yield(vcpu, a1); 9989 ret = 0; 9990 break; 9991 #ifdef CONFIG_X86_64 9992 case KVM_HC_CLOCK_PAIRING: 9993 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9994 break; 9995 #endif 9996 case KVM_HC_SEND_IPI: 9997 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9998 break; 9999 10000 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 10001 break; 10002 case KVM_HC_SCHED_YIELD: 10003 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 10004 break; 10005 10006 kvm_sched_yield(vcpu, a0); 10007 ret = 0; 10008 break; 10009 case KVM_HC_MAP_GPA_RANGE: { 10010 u64 gpa = a0, npages = a1, attrs = a2; 10011 10012 ret = -KVM_ENOSYS; 10013 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) 10014 break; 10015 10016 if (!PAGE_ALIGNED(gpa) || !npages || 10017 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10018 ret = -KVM_EINVAL; 10019 break; 10020 } 10021 10022 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10023 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10024 /* 10025 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) 10026 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that 10027 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting 10028 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. 10029 */ 10030 vcpu->run->hypercall.ret = 0; 10031 vcpu->run->hypercall.args[0] = gpa; 10032 vcpu->run->hypercall.args[1] = npages; 10033 vcpu->run->hypercall.args[2] = attrs; 10034 vcpu->run->hypercall.flags = 0; 10035 if (op_64_bit) 10036 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10037 10038 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10039 vcpu->arch.complete_userspace_io = complete_hypercall; 10040 return 0; 10041 } 10042 default: 10043 ret = -KVM_ENOSYS; 10044 break; 10045 } 10046 10047 out: 10048 vcpu->run->hypercall.ret = ret; 10049 return 1; 10050 } 10051 EXPORT_SYMBOL_GPL(____kvm_emulate_hypercall); 10052 10053 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10054 { 10055 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10056 return kvm_xen_hypercall(vcpu); 10057 10058 if (kvm_hv_hypercall_enabled(vcpu)) 10059 return kvm_hv_hypercall(vcpu); 10060 10061 return __kvm_emulate_hypercall(vcpu, kvm_x86_call(get_cpl)(vcpu), 10062 complete_hypercall_exit); 10063 } 10064 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10065 10066 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10067 { 10068 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10069 char instruction[3]; 10070 unsigned long rip = kvm_rip_read(vcpu); 10071 10072 /* 10073 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10074 * the pieces. 10075 */ 10076 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10077 ctxt->exception.error_code_valid = false; 10078 ctxt->exception.vector = UD_VECTOR; 10079 ctxt->have_exception = true; 10080 return X86EMUL_PROPAGATE_FAULT; 10081 } 10082 10083 kvm_x86_call(patch_hypercall)(vcpu, instruction); 10084 10085 return emulator_write_emulated(ctxt, rip, instruction, 3, 10086 &ctxt->exception); 10087 } 10088 10089 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10090 { 10091 return vcpu->run->request_interrupt_window && 10092 likely(!pic_in_kernel(vcpu->kvm)); 10093 } 10094 10095 /* Called within kvm->srcu read side. */ 10096 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10097 { 10098 struct kvm_run *kvm_run = vcpu->run; 10099 10100 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu); 10101 kvm_run->cr8 = kvm_get_cr8(vcpu); 10102 kvm_run->apic_base = vcpu->arch.apic_base; 10103 10104 kvm_run->ready_for_interrupt_injection = 10105 pic_in_kernel(vcpu->kvm) || 10106 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10107 10108 if (is_smm(vcpu)) 10109 kvm_run->flags |= KVM_RUN_X86_SMM; 10110 if (is_guest_mode(vcpu)) 10111 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE; 10112 } 10113 10114 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10115 { 10116 int max_irr, tpr; 10117 10118 if (!kvm_x86_ops.update_cr8_intercept) 10119 return; 10120 10121 if (!lapic_in_kernel(vcpu)) 10122 return; 10123 10124 if (vcpu->arch.apic->apicv_active) 10125 return; 10126 10127 if (!vcpu->arch.apic->vapic_addr) 10128 max_irr = kvm_lapic_find_highest_irr(vcpu); 10129 else 10130 max_irr = -1; 10131 10132 if (max_irr != -1) 10133 max_irr >>= 4; 10134 10135 tpr = kvm_lapic_get_cr8(vcpu); 10136 10137 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr); 10138 } 10139 10140 10141 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10142 { 10143 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10144 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10145 return 1; 10146 } 10147 10148 return kvm_x86_ops.nested_ops->check_events(vcpu); 10149 } 10150 10151 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10152 { 10153 /* 10154 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10155 * exceptions don't report error codes. The presence of an error code 10156 * is carried with the exception and only stripped when the exception 10157 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10158 * report an error code despite the CPU being in Real Mode. 10159 */ 10160 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10161 10162 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10163 vcpu->arch.exception.has_error_code, 10164 vcpu->arch.exception.error_code, 10165 vcpu->arch.exception.injected); 10166 10167 kvm_x86_call(inject_exception)(vcpu); 10168 } 10169 10170 /* 10171 * Check for any event (interrupt or exception) that is ready to be injected, 10172 * and if there is at least one event, inject the event with the highest 10173 * priority. This handles both "pending" events, i.e. events that have never 10174 * been injected into the guest, and "injected" events, i.e. events that were 10175 * injected as part of a previous VM-Enter, but weren't successfully delivered 10176 * and need to be re-injected. 10177 * 10178 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10179 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10180 * be able to inject exceptions in the "middle" of an instruction, and so must 10181 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10182 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10183 * boundaries is necessary and correct. 10184 * 10185 * For simplicity, KVM uses a single path to inject all events (except events 10186 * that are injected directly from L1 to L2) and doesn't explicitly track 10187 * instruction boundaries for asynchronous events. However, because VM-Exits 10188 * that can occur during instruction execution typically result in KVM skipping 10189 * the instruction or injecting an exception, e.g. instruction and exception 10190 * intercepts, and because pending exceptions have higher priority than pending 10191 * interrupts, KVM still honors instruction boundaries in most scenarios. 10192 * 10193 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10194 * the instruction or inject an exception, then KVM can incorrecty inject a new 10195 * asynchronous event if the event became pending after the CPU fetched the 10196 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10197 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10198 * injected on the restarted instruction instead of being deferred until the 10199 * instruction completes. 10200 * 10201 * In practice, this virtualization hole is unlikely to be observed by the 10202 * guest, and even less likely to cause functional problems. To detect the 10203 * hole, the guest would have to trigger an event on a side effect of an early 10204 * phase of instruction execution, e.g. on the instruction fetch from memory. 10205 * And for it to be a functional problem, the guest would need to depend on the 10206 * ordering between that side effect, the instruction completing, _and_ the 10207 * delivery of the asynchronous event. 10208 */ 10209 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10210 bool *req_immediate_exit) 10211 { 10212 bool can_inject; 10213 int r; 10214 10215 /* 10216 * Process nested events first, as nested VM-Exit supersedes event 10217 * re-injection. If there's an event queued for re-injection, it will 10218 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10219 */ 10220 if (is_guest_mode(vcpu)) 10221 r = kvm_check_nested_events(vcpu); 10222 else 10223 r = 0; 10224 10225 /* 10226 * Re-inject exceptions and events *especially* if immediate entry+exit 10227 * to/from L2 is needed, as any event that has already been injected 10228 * into L2 needs to complete its lifecycle before injecting a new event. 10229 * 10230 * Don't re-inject an NMI or interrupt if there is a pending exception. 10231 * This collision arises if an exception occurred while vectoring the 10232 * injected event, KVM intercepted said exception, and KVM ultimately 10233 * determined the fault belongs to the guest and queues the exception 10234 * for injection back into the guest. 10235 * 10236 * "Injected" interrupts can also collide with pending exceptions if 10237 * userspace ignores the "ready for injection" flag and blindly queues 10238 * an interrupt. In that case, prioritizing the exception is correct, 10239 * as the exception "occurred" before the exit to userspace. Trap-like 10240 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10241 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10242 * priority, they're only generated (pended) during instruction 10243 * execution, and interrupts are recognized at instruction boundaries. 10244 * Thus a pending fault-like exception means the fault occurred on the 10245 * *previous* instruction and must be serviced prior to recognizing any 10246 * new events in order to fully complete the previous instruction. 10247 */ 10248 if (vcpu->arch.exception.injected) 10249 kvm_inject_exception(vcpu); 10250 else if (kvm_is_exception_pending(vcpu)) 10251 ; /* see above */ 10252 else if (vcpu->arch.nmi_injected) 10253 kvm_x86_call(inject_nmi)(vcpu); 10254 else if (vcpu->arch.interrupt.injected) 10255 kvm_x86_call(inject_irq)(vcpu, true); 10256 10257 /* 10258 * Exceptions that morph to VM-Exits are handled above, and pending 10259 * exceptions on top of injected exceptions that do not VM-Exit should 10260 * either morph to #DF or, sadly, override the injected exception. 10261 */ 10262 WARN_ON_ONCE(vcpu->arch.exception.injected && 10263 vcpu->arch.exception.pending); 10264 10265 /* 10266 * Bail if immediate entry+exit to/from the guest is needed to complete 10267 * nested VM-Enter or event re-injection so that a different pending 10268 * event can be serviced (or if KVM needs to exit to userspace). 10269 * 10270 * Otherwise, continue processing events even if VM-Exit occurred. The 10271 * VM-Exit will have cleared exceptions that were meant for L2, but 10272 * there may now be events that can be injected into L1. 10273 */ 10274 if (r < 0) 10275 goto out; 10276 10277 /* 10278 * A pending exception VM-Exit should either result in nested VM-Exit 10279 * or force an immediate re-entry and exit to/from L2, and exception 10280 * VM-Exits cannot be injected (flag should _never_ be set). 10281 */ 10282 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10283 vcpu->arch.exception_vmexit.pending); 10284 10285 /* 10286 * New events, other than exceptions, cannot be injected if KVM needs 10287 * to re-inject a previous event. See above comments on re-injecting 10288 * for why pending exceptions get priority. 10289 */ 10290 can_inject = !kvm_event_needs_reinjection(vcpu); 10291 10292 if (vcpu->arch.exception.pending) { 10293 /* 10294 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10295 * value pushed on the stack. Trap-like exception and all #DBs 10296 * leave RF as-is (KVM follows Intel's behavior in this regard; 10297 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10298 * 10299 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10300 * describe the behavior of General Detect #DBs, which are 10301 * fault-like. They do _not_ set RF, a la code breakpoints. 10302 */ 10303 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10304 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10305 X86_EFLAGS_RF); 10306 10307 if (vcpu->arch.exception.vector == DB_VECTOR) { 10308 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10309 if (vcpu->arch.dr7 & DR7_GD) { 10310 vcpu->arch.dr7 &= ~DR7_GD; 10311 kvm_update_dr7(vcpu); 10312 } 10313 } 10314 10315 kvm_inject_exception(vcpu); 10316 10317 vcpu->arch.exception.pending = false; 10318 vcpu->arch.exception.injected = true; 10319 10320 can_inject = false; 10321 } 10322 10323 /* Don't inject interrupts if the user asked to avoid doing so */ 10324 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10325 return 0; 10326 10327 /* 10328 * Finally, inject interrupt events. If an event cannot be injected 10329 * due to architectural conditions (e.g. IF=0) a window-open exit 10330 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10331 * and can architecturally be injected, but we cannot do it right now: 10332 * an interrupt could have arrived just now and we have to inject it 10333 * as a vmexit, or there could already an event in the queue, which is 10334 * indicated by can_inject. In that case we request an immediate exit 10335 * in order to make progress and get back here for another iteration. 10336 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10337 */ 10338 #ifdef CONFIG_KVM_SMM 10339 if (vcpu->arch.smi_pending) { 10340 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) : 10341 -EBUSY; 10342 if (r < 0) 10343 goto out; 10344 if (r) { 10345 vcpu->arch.smi_pending = false; 10346 ++vcpu->arch.smi_count; 10347 enter_smm(vcpu); 10348 can_inject = false; 10349 } else 10350 kvm_x86_call(enable_smi_window)(vcpu); 10351 } 10352 #endif 10353 10354 if (vcpu->arch.nmi_pending) { 10355 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) : 10356 -EBUSY; 10357 if (r < 0) 10358 goto out; 10359 if (r) { 10360 --vcpu->arch.nmi_pending; 10361 vcpu->arch.nmi_injected = true; 10362 kvm_x86_call(inject_nmi)(vcpu); 10363 can_inject = false; 10364 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0); 10365 } 10366 if (vcpu->arch.nmi_pending) 10367 kvm_x86_call(enable_nmi_window)(vcpu); 10368 } 10369 10370 if (kvm_cpu_has_injectable_intr(vcpu)) { 10371 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) : 10372 -EBUSY; 10373 if (r < 0) 10374 goto out; 10375 if (r) { 10376 int irq = kvm_cpu_get_interrupt(vcpu); 10377 10378 if (!WARN_ON_ONCE(irq == -1)) { 10379 kvm_queue_interrupt(vcpu, irq, false); 10380 kvm_x86_call(inject_irq)(vcpu, false); 10381 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0); 10382 } 10383 } 10384 if (kvm_cpu_has_injectable_intr(vcpu)) 10385 kvm_x86_call(enable_irq_window)(vcpu); 10386 } 10387 10388 if (is_guest_mode(vcpu) && 10389 kvm_x86_ops.nested_ops->has_events && 10390 kvm_x86_ops.nested_ops->has_events(vcpu, true)) 10391 *req_immediate_exit = true; 10392 10393 /* 10394 * KVM must never queue a new exception while injecting an event; KVM 10395 * is done emulating and should only propagate the to-be-injected event 10396 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10397 * infinite loop as KVM will bail from VM-Enter to inject the pending 10398 * exception and start the cycle all over. 10399 * 10400 * Exempt triple faults as they have special handling and won't put the 10401 * vCPU into an infinite loop. Triple fault can be queued when running 10402 * VMX without unrestricted guest, as that requires KVM to emulate Real 10403 * Mode events (see kvm_inject_realmode_interrupt()). 10404 */ 10405 WARN_ON_ONCE(vcpu->arch.exception.pending || 10406 vcpu->arch.exception_vmexit.pending); 10407 return 0; 10408 10409 out: 10410 if (r == -EBUSY) { 10411 *req_immediate_exit = true; 10412 r = 0; 10413 } 10414 return r; 10415 } 10416 10417 static void process_nmi(struct kvm_vcpu *vcpu) 10418 { 10419 unsigned int limit; 10420 10421 /* 10422 * x86 is limited to one NMI pending, but because KVM can't react to 10423 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10424 * scheduled out, KVM needs to play nice with two queued NMIs showing 10425 * up at the same time. To handle this scenario, allow two NMIs to be 10426 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10427 * waiting for a previous NMI injection to complete (which effectively 10428 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10429 * will request an NMI window to handle the second NMI. 10430 */ 10431 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10432 limit = 1; 10433 else 10434 limit = 2; 10435 10436 /* 10437 * Adjust the limit to account for pending virtual NMIs, which aren't 10438 * tracked in vcpu->arch.nmi_pending. 10439 */ 10440 if (kvm_x86_call(is_vnmi_pending)(vcpu)) 10441 limit--; 10442 10443 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10444 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10445 10446 if (vcpu->arch.nmi_pending && 10447 (kvm_x86_call(set_vnmi_pending)(vcpu))) 10448 vcpu->arch.nmi_pending--; 10449 10450 if (vcpu->arch.nmi_pending) 10451 kvm_make_request(KVM_REQ_EVENT, vcpu); 10452 } 10453 10454 /* Return total number of NMIs pending injection to the VM */ 10455 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10456 { 10457 return vcpu->arch.nmi_pending + 10458 kvm_x86_call(is_vnmi_pending)(vcpu); 10459 } 10460 10461 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10462 unsigned long *vcpu_bitmap) 10463 { 10464 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10465 } 10466 10467 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10468 { 10469 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10470 } 10471 10472 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10473 { 10474 struct kvm_lapic *apic = vcpu->arch.apic; 10475 bool activate; 10476 10477 if (!lapic_in_kernel(vcpu)) 10478 return; 10479 10480 down_read(&vcpu->kvm->arch.apicv_update_lock); 10481 preempt_disable(); 10482 10483 /* Do not activate APICV when APIC is disabled */ 10484 activate = kvm_vcpu_apicv_activated(vcpu) && 10485 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10486 10487 if (apic->apicv_active == activate) 10488 goto out; 10489 10490 apic->apicv_active = activate; 10491 kvm_apic_update_apicv(vcpu); 10492 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu); 10493 10494 /* 10495 * When APICv gets disabled, we may still have injected interrupts 10496 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10497 * still active when the interrupt got accepted. Make sure 10498 * kvm_check_and_inject_events() is called to check for that. 10499 */ 10500 if (!apic->apicv_active) 10501 kvm_make_request(KVM_REQ_EVENT, vcpu); 10502 10503 out: 10504 preempt_enable(); 10505 up_read(&vcpu->kvm->arch.apicv_update_lock); 10506 } 10507 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10508 10509 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10510 { 10511 if (!lapic_in_kernel(vcpu)) 10512 return; 10513 10514 /* 10515 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10516 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10517 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10518 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10519 * this case so that KVM can use the AVIC doorbell to inject interrupts 10520 * to running vCPUs, but KVM must not create SPTEs for the APIC base as 10521 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10522 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10523 * access page is sticky. 10524 */ 10525 if (apic_x2apic_mode(vcpu->arch.apic) && 10526 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10527 kvm_inhibit_apic_access_page(vcpu); 10528 10529 __kvm_vcpu_update_apicv(vcpu); 10530 } 10531 10532 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10533 enum kvm_apicv_inhibit reason, bool set) 10534 { 10535 unsigned long old, new; 10536 10537 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10538 10539 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10540 return; 10541 10542 old = new = kvm->arch.apicv_inhibit_reasons; 10543 10544 set_or_clear_apicv_inhibit(&new, reason, set); 10545 10546 if (!!old != !!new) { 10547 /* 10548 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10549 * false positives in the sanity check WARN in vcpu_enter_guest(). 10550 * This task will wait for all vCPUs to ack the kick IRQ before 10551 * updating apicv_inhibit_reasons, and all other vCPUs will 10552 * block on acquiring apicv_update_lock so that vCPUs can't 10553 * redo vcpu_enter_guest() without seeing the new inhibit state. 10554 * 10555 * Note, holding apicv_update_lock and taking it in the read 10556 * side (handling the request) also prevents other vCPUs from 10557 * servicing the request with a stale apicv_inhibit_reasons. 10558 */ 10559 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10560 kvm->arch.apicv_inhibit_reasons = new; 10561 if (new) { 10562 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10563 int idx = srcu_read_lock(&kvm->srcu); 10564 10565 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10566 srcu_read_unlock(&kvm->srcu, idx); 10567 } 10568 } else { 10569 kvm->arch.apicv_inhibit_reasons = new; 10570 } 10571 } 10572 10573 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10574 enum kvm_apicv_inhibit reason, bool set) 10575 { 10576 if (!enable_apicv) 10577 return; 10578 10579 down_write(&kvm->arch.apicv_update_lock); 10580 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10581 up_write(&kvm->arch.apicv_update_lock); 10582 } 10583 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10584 10585 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10586 { 10587 if (!kvm_apic_present(vcpu)) 10588 return; 10589 10590 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10591 vcpu->arch.highest_stale_pending_ioapic_eoi = -1; 10592 10593 kvm_x86_call(sync_pir_to_irr)(vcpu); 10594 10595 if (irqchip_split(vcpu->kvm)) 10596 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10597 #ifdef CONFIG_KVM_IOAPIC 10598 else if (ioapic_in_kernel(vcpu->kvm)) 10599 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10600 #endif 10601 10602 if (is_guest_mode(vcpu)) 10603 vcpu->arch.load_eoi_exitmap_pending = true; 10604 else 10605 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10606 } 10607 10608 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10609 { 10610 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10611 return; 10612 10613 #ifdef CONFIG_KVM_HYPERV 10614 if (to_hv_vcpu(vcpu)) { 10615 u64 eoi_exit_bitmap[4]; 10616 10617 bitmap_or((ulong *)eoi_exit_bitmap, 10618 vcpu->arch.ioapic_handled_vectors, 10619 to_hv_synic(vcpu)->vec_bitmap, 256); 10620 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10621 return; 10622 } 10623 #endif 10624 kvm_x86_call(load_eoi_exitmap)( 10625 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10626 } 10627 10628 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10629 { 10630 kvm_x86_call(guest_memory_reclaimed)(kvm); 10631 } 10632 10633 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10634 { 10635 if (!lapic_in_kernel(vcpu)) 10636 return; 10637 10638 kvm_x86_call(set_apic_access_page_addr)(vcpu); 10639 } 10640 10641 /* 10642 * Called within kvm->srcu read side. 10643 * Returns 1 to let vcpu_run() continue the guest execution loop without 10644 * exiting to the userspace. Otherwise, the value will be returned to the 10645 * userspace. 10646 */ 10647 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10648 { 10649 int r; 10650 bool req_int_win = 10651 dm_request_for_irq_injection(vcpu) && 10652 kvm_cpu_accept_dm_intr(vcpu); 10653 fastpath_t exit_fastpath; 10654 u64 run_flags, debug_ctl; 10655 10656 bool req_immediate_exit = false; 10657 10658 if (kvm_request_pending(vcpu)) { 10659 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10660 r = -EIO; 10661 goto out; 10662 } 10663 10664 if (kvm_dirty_ring_check_request(vcpu)) { 10665 r = 0; 10666 goto out; 10667 } 10668 10669 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10670 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10671 r = 0; 10672 goto out; 10673 } 10674 } 10675 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10676 kvm_mmu_free_obsolete_roots(vcpu); 10677 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10678 __kvm_migrate_timers(vcpu); 10679 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10680 kvm_update_masterclock(vcpu->kvm); 10681 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10682 kvm_gen_kvmclock_update(vcpu); 10683 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10684 r = kvm_guest_time_update(vcpu); 10685 if (unlikely(r)) 10686 goto out; 10687 } 10688 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10689 kvm_mmu_sync_roots(vcpu); 10690 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10691 kvm_mmu_load_pgd(vcpu); 10692 10693 /* 10694 * Note, the order matters here, as flushing "all" TLB entries 10695 * also flushes the "current" TLB entries, i.e. servicing the 10696 * flush "all" will clear any request to flush "current". 10697 */ 10698 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10699 kvm_vcpu_flush_tlb_all(vcpu); 10700 10701 kvm_service_local_tlb_flush_requests(vcpu); 10702 10703 /* 10704 * Fall back to a "full" guest flush if Hyper-V's precise 10705 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10706 * the flushes are considered "remote" and not "local" because 10707 * the requests can be initiated from other vCPUs. 10708 */ 10709 #ifdef CONFIG_KVM_HYPERV 10710 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10711 kvm_hv_vcpu_flush_tlb(vcpu)) 10712 kvm_vcpu_flush_tlb_guest(vcpu); 10713 #endif 10714 10715 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10716 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10717 r = 0; 10718 goto out; 10719 } 10720 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10721 if (is_guest_mode(vcpu)) 10722 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10723 10724 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10725 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10726 vcpu->mmio_needed = 0; 10727 r = 0; 10728 goto out; 10729 } 10730 } 10731 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10732 /* Page is swapped out. Do synthetic halt */ 10733 vcpu->arch.apf.halted = true; 10734 r = 1; 10735 goto out; 10736 } 10737 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10738 record_steal_time(vcpu); 10739 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10740 kvm_pmu_handle_event(vcpu); 10741 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10742 kvm_pmu_deliver_pmi(vcpu); 10743 #ifdef CONFIG_KVM_SMM 10744 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10745 process_smi(vcpu); 10746 #endif 10747 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10748 process_nmi(vcpu); 10749 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10750 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10751 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10752 vcpu->arch.ioapic_handled_vectors)) { 10753 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10754 vcpu->run->eoi.vector = 10755 vcpu->arch.pending_ioapic_eoi; 10756 r = 0; 10757 goto out; 10758 } 10759 } 10760 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10761 vcpu_scan_ioapic(vcpu); 10762 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10763 vcpu_load_eoi_exitmap(vcpu); 10764 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10765 kvm_vcpu_reload_apic_access_page(vcpu); 10766 #ifdef CONFIG_KVM_HYPERV 10767 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10768 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10769 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10770 vcpu->run->system_event.ndata = 0; 10771 r = 0; 10772 goto out; 10773 } 10774 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10775 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10776 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10777 vcpu->run->system_event.ndata = 0; 10778 r = 0; 10779 goto out; 10780 } 10781 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10782 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10783 10784 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10785 vcpu->run->hyperv = hv_vcpu->exit; 10786 r = 0; 10787 goto out; 10788 } 10789 10790 /* 10791 * KVM_REQ_HV_STIMER has to be processed after 10792 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10793 * depend on the guest clock being up-to-date 10794 */ 10795 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10796 kvm_hv_process_stimers(vcpu); 10797 #endif 10798 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10799 kvm_vcpu_update_apicv(vcpu); 10800 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10801 kvm_check_async_pf_completion(vcpu); 10802 10803 /* 10804 * Recalc MSR intercepts as userspace may want to intercept 10805 * accesses to MSRs that KVM would otherwise pass through to 10806 * the guest. 10807 */ 10808 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10809 kvm_x86_call(recalc_msr_intercepts)(vcpu); 10810 10811 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10812 kvm_x86_call(update_cpu_dirty_logging)(vcpu); 10813 10814 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) { 10815 kvm_vcpu_reset(vcpu, true); 10816 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) { 10817 r = 1; 10818 goto out; 10819 } 10820 } 10821 } 10822 10823 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10824 kvm_xen_has_interrupt(vcpu)) { 10825 ++vcpu->stat.req_event; 10826 r = kvm_apic_accept_events(vcpu); 10827 if (r < 0) { 10828 r = 0; 10829 goto out; 10830 } 10831 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10832 r = 1; 10833 goto out; 10834 } 10835 10836 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10837 if (r < 0) { 10838 r = 0; 10839 goto out; 10840 } 10841 if (req_int_win) 10842 kvm_x86_call(enable_irq_window)(vcpu); 10843 10844 if (kvm_lapic_enabled(vcpu)) { 10845 update_cr8_intercept(vcpu); 10846 kvm_lapic_sync_to_vapic(vcpu); 10847 } 10848 } 10849 10850 r = kvm_mmu_reload(vcpu); 10851 if (unlikely(r)) { 10852 goto cancel_injection; 10853 } 10854 10855 preempt_disable(); 10856 10857 kvm_x86_call(prepare_switch_to_guest)(vcpu); 10858 10859 /* 10860 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10861 * IPI are then delayed after guest entry, which ensures that they 10862 * result in virtual interrupt delivery. 10863 */ 10864 local_irq_disable(); 10865 10866 /* Store vcpu->apicv_active before vcpu->mode. */ 10867 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10868 10869 kvm_vcpu_srcu_read_unlock(vcpu); 10870 10871 /* 10872 * 1) We should set ->mode before checking ->requests. Please see 10873 * the comment in kvm_vcpu_exiting_guest_mode(). 10874 * 10875 * 2) For APICv, we should set ->mode before checking PID.ON. This 10876 * pairs with the memory barrier implicit in pi_test_and_set_on 10877 * (see vmx_deliver_posted_interrupt). 10878 * 10879 * 3) This also orders the write to mode from any reads to the page 10880 * tables done while the VCPU is running. Please see the comment 10881 * in kvm_flush_remote_tlbs. 10882 */ 10883 smp_mb__after_srcu_read_unlock(); 10884 10885 /* 10886 * Process pending posted interrupts to handle the case where the 10887 * notification IRQ arrived in the host, or was never sent (because the 10888 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10889 * status, KVM doesn't update assigned devices when APICv is inhibited, 10890 * i.e. they can post interrupts even if APICv is temporarily disabled. 10891 */ 10892 if (kvm_lapic_enabled(vcpu)) 10893 kvm_x86_call(sync_pir_to_irr)(vcpu); 10894 10895 if (kvm_vcpu_exit_request(vcpu)) { 10896 vcpu->mode = OUTSIDE_GUEST_MODE; 10897 smp_wmb(); 10898 local_irq_enable(); 10899 preempt_enable(); 10900 kvm_vcpu_srcu_read_lock(vcpu); 10901 r = 1; 10902 goto cancel_injection; 10903 } 10904 10905 run_flags = 0; 10906 if (req_immediate_exit) { 10907 run_flags |= KVM_RUN_FORCE_IMMEDIATE_EXIT; 10908 kvm_make_request(KVM_REQ_EVENT, vcpu); 10909 } 10910 10911 fpregs_assert_state_consistent(); 10912 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10913 switch_fpu_return(); 10914 10915 if (vcpu->arch.guest_fpu.xfd_err) 10916 wrmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10917 10918 if (unlikely(vcpu->arch.switch_db_regs && 10919 !(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH))) { 10920 set_debugreg(DR7_FIXED_1, 7); 10921 set_debugreg(vcpu->arch.eff_db[0], 0); 10922 set_debugreg(vcpu->arch.eff_db[1], 1); 10923 set_debugreg(vcpu->arch.eff_db[2], 2); 10924 set_debugreg(vcpu->arch.eff_db[3], 3); 10925 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 10926 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 10927 run_flags |= KVM_RUN_LOAD_GUEST_DR6; 10928 } else if (unlikely(hw_breakpoint_active())) { 10929 set_debugreg(DR7_FIXED_1, 7); 10930 } 10931 10932 /* 10933 * Refresh the host DEBUGCTL snapshot after disabling IRQs, as DEBUGCTL 10934 * can be modified in IRQ context, e.g. via SMP function calls. Inform 10935 * vendor code if any host-owned bits were changed, e.g. so that the 10936 * value loaded into hardware while running the guest can be updated. 10937 */ 10938 debug_ctl = get_debugctlmsr(); 10939 if ((debug_ctl ^ vcpu->arch.host_debugctl) & kvm_x86_ops.HOST_OWNED_DEBUGCTL && 10940 !vcpu->arch.guest_state_protected) 10941 run_flags |= KVM_RUN_LOAD_DEBUGCTL; 10942 vcpu->arch.host_debugctl = debug_ctl; 10943 10944 guest_timing_enter_irqoff(); 10945 10946 for (;;) { 10947 /* 10948 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10949 * update must kick and wait for all vCPUs before toggling the 10950 * per-VM state, and responding vCPUs must wait for the update 10951 * to complete before servicing KVM_REQ_APICV_UPDATE. 10952 */ 10953 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10954 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10955 10956 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, run_flags); 10957 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10958 break; 10959 10960 if (kvm_lapic_enabled(vcpu)) 10961 kvm_x86_call(sync_pir_to_irr)(vcpu); 10962 10963 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10964 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10965 break; 10966 } 10967 10968 run_flags = 0; 10969 10970 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10971 ++vcpu->stat.exits; 10972 } 10973 10974 /* 10975 * Do this here before restoring debug registers on the host. And 10976 * since we do this before handling the vmexit, a DR access vmexit 10977 * can (a) read the correct value of the debug registers, (b) set 10978 * KVM_DEBUGREG_WONT_EXIT again. 10979 */ 10980 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10981 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10982 WARN_ON(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH); 10983 kvm_x86_call(sync_dirty_debug_regs)(vcpu); 10984 kvm_update_dr0123(vcpu); 10985 kvm_update_dr7(vcpu); 10986 } 10987 10988 /* 10989 * If the guest has used debug registers, at least dr7 10990 * will be disabled while returning to the host. 10991 * If we don't have active breakpoints in the host, we don't 10992 * care about the messed up debug address registers. But if 10993 * we have some of them active, restore the old state. 10994 */ 10995 if (hw_breakpoint_active()) 10996 hw_breakpoint_restore(); 10997 10998 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10999 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 11000 11001 vcpu->mode = OUTSIDE_GUEST_MODE; 11002 smp_wmb(); 11003 11004 /* 11005 * Sync xfd before calling handle_exit_irqoff() which may 11006 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11007 * in #NM irqoff handler). 11008 */ 11009 if (vcpu->arch.xfd_no_write_intercept) 11010 fpu_sync_guest_vmexit_xfd_state(); 11011 11012 kvm_x86_call(handle_exit_irqoff)(vcpu); 11013 11014 if (vcpu->arch.guest_fpu.xfd_err) 11015 wrmsrq(MSR_IA32_XFD_ERR, 0); 11016 11017 /* 11018 * Consume any pending interrupts, including the possible source of 11019 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11020 * An instruction is required after local_irq_enable() to fully unblock 11021 * interrupts on processors that implement an interrupt shadow, the 11022 * stat.exits increment will do nicely. 11023 */ 11024 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11025 local_irq_enable(); 11026 ++vcpu->stat.exits; 11027 local_irq_disable(); 11028 kvm_after_interrupt(vcpu); 11029 11030 /* 11031 * Wait until after servicing IRQs to account guest time so that any 11032 * ticks that occurred while running the guest are properly accounted 11033 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11034 * of accounting via context tracking, but the loss of accuracy is 11035 * acceptable for all known use cases. 11036 */ 11037 guest_timing_exit_irqoff(); 11038 11039 local_irq_enable(); 11040 preempt_enable(); 11041 11042 kvm_vcpu_srcu_read_lock(vcpu); 11043 11044 /* 11045 * Call this to ensure WC buffers in guest are evicted after each VM 11046 * Exit, so that the evicted WC writes can be snooped across all cpus 11047 */ 11048 smp_mb__after_srcu_read_lock(); 11049 11050 /* 11051 * Profile KVM exit RIPs: 11052 */ 11053 if (unlikely(prof_on == KVM_PROFILING && 11054 !vcpu->arch.guest_state_protected)) { 11055 unsigned long rip = kvm_rip_read(vcpu); 11056 profile_hit(KVM_PROFILING, (void *)rip); 11057 } 11058 11059 if (unlikely(vcpu->arch.tsc_always_catchup)) 11060 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11061 11062 if (vcpu->arch.apic_attention) 11063 kvm_lapic_sync_from_vapic(vcpu); 11064 11065 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE)) 11066 return 0; 11067 11068 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath); 11069 return r; 11070 11071 cancel_injection: 11072 if (req_immediate_exit) 11073 kvm_make_request(KVM_REQ_EVENT, vcpu); 11074 kvm_x86_call(cancel_injection)(vcpu); 11075 if (unlikely(vcpu->arch.apic_attention)) 11076 kvm_lapic_sync_from_vapic(vcpu); 11077 out: 11078 return r; 11079 } 11080 11081 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11082 { 11083 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11084 !vcpu->arch.apf.halted); 11085 } 11086 11087 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 11088 { 11089 if (!list_empty_careful(&vcpu->async_pf.done)) 11090 return true; 11091 11092 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 11093 kvm_apic_init_sipi_allowed(vcpu)) 11094 return true; 11095 11096 if (kvm_is_exception_pending(vcpu)) 11097 return true; 11098 11099 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11100 (vcpu->arch.nmi_pending && 11101 kvm_x86_call(nmi_allowed)(vcpu, false))) 11102 return true; 11103 11104 #ifdef CONFIG_KVM_SMM 11105 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 11106 (vcpu->arch.smi_pending && 11107 kvm_x86_call(smi_allowed)(vcpu, false))) 11108 return true; 11109 #endif 11110 11111 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 11112 return true; 11113 11114 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) 11115 return true; 11116 11117 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu)) 11118 return true; 11119 11120 if (kvm_hv_has_stimer_pending(vcpu)) 11121 return true; 11122 11123 if (is_guest_mode(vcpu) && 11124 kvm_x86_ops.nested_ops->has_events && 11125 kvm_x86_ops.nested_ops->has_events(vcpu, false)) 11126 return true; 11127 11128 if (kvm_xen_has_pending_events(vcpu)) 11129 return true; 11130 11131 return false; 11132 } 11133 EXPORT_SYMBOL_GPL(kvm_vcpu_has_events); 11134 11135 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 11136 { 11137 return kvm_vcpu_running(vcpu) || vcpu->arch.pv.pv_unhalted || 11138 kvm_vcpu_has_events(vcpu); 11139 } 11140 11141 /* Called within kvm->srcu read side. */ 11142 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11143 { 11144 bool hv_timer; 11145 11146 if (!kvm_arch_vcpu_runnable(vcpu)) { 11147 /* 11148 * Switch to the software timer before halt-polling/blocking as 11149 * the guest's timer may be a break event for the vCPU, and the 11150 * hypervisor timer runs only when the CPU is in guest mode. 11151 * Switch before halt-polling so that KVM recognizes an expired 11152 * timer before blocking. 11153 */ 11154 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11155 if (hv_timer) 11156 kvm_lapic_switch_to_sw_timer(vcpu); 11157 11158 kvm_vcpu_srcu_read_unlock(vcpu); 11159 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11160 kvm_vcpu_halt(vcpu); 11161 else 11162 kvm_vcpu_block(vcpu); 11163 kvm_vcpu_srcu_read_lock(vcpu); 11164 11165 if (hv_timer) 11166 kvm_lapic_switch_to_hv_timer(vcpu); 11167 11168 /* 11169 * If the vCPU is not runnable, a signal or another host event 11170 * of some kind is pending; service it without changing the 11171 * vCPU's activity state. 11172 */ 11173 if (!kvm_arch_vcpu_runnable(vcpu)) 11174 return 1; 11175 } 11176 11177 /* 11178 * Evaluate nested events before exiting the halted state. This allows 11179 * the halt state to be recorded properly in the VMCS12's activity 11180 * state field (AMD does not have a similar field and a VM-Exit always 11181 * causes a spurious wakeup from HLT). 11182 */ 11183 if (is_guest_mode(vcpu)) { 11184 int r = kvm_check_nested_events(vcpu); 11185 11186 WARN_ON_ONCE(r == -EBUSY); 11187 if (r < 0) 11188 return 0; 11189 } 11190 11191 if (kvm_apic_accept_events(vcpu) < 0) 11192 return 0; 11193 switch(vcpu->arch.mp_state) { 11194 case KVM_MP_STATE_HALTED: 11195 case KVM_MP_STATE_AP_RESET_HOLD: 11196 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 11197 fallthrough; 11198 case KVM_MP_STATE_RUNNABLE: 11199 vcpu->arch.apf.halted = false; 11200 break; 11201 case KVM_MP_STATE_INIT_RECEIVED: 11202 break; 11203 default: 11204 WARN_ON_ONCE(1); 11205 break; 11206 } 11207 return 1; 11208 } 11209 11210 /* Called within kvm->srcu read side. */ 11211 static int vcpu_run(struct kvm_vcpu *vcpu) 11212 { 11213 int r; 11214 11215 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11216 11217 for (;;) { 11218 /* 11219 * If another guest vCPU requests a PV TLB flush in the middle 11220 * of instruction emulation, the rest of the emulation could 11221 * use a stale page translation. Assume that any code after 11222 * this point can start executing an instruction. 11223 */ 11224 vcpu->arch.at_instruction_boundary = false; 11225 if (kvm_vcpu_running(vcpu)) { 11226 r = vcpu_enter_guest(vcpu); 11227 } else { 11228 r = vcpu_block(vcpu); 11229 } 11230 11231 if (r <= 0) 11232 break; 11233 11234 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11235 if (kvm_xen_has_pending_events(vcpu)) 11236 kvm_xen_inject_pending_events(vcpu); 11237 11238 if (kvm_cpu_has_pending_timer(vcpu)) 11239 kvm_inject_pending_timer_irqs(vcpu); 11240 11241 if (dm_request_for_irq_injection(vcpu) && 11242 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11243 r = 0; 11244 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11245 ++vcpu->stat.request_irq_exits; 11246 break; 11247 } 11248 11249 if (__xfer_to_guest_mode_work_pending()) { 11250 kvm_vcpu_srcu_read_unlock(vcpu); 11251 r = xfer_to_guest_mode_handle_work(vcpu); 11252 kvm_vcpu_srcu_read_lock(vcpu); 11253 if (r) 11254 return r; 11255 } 11256 } 11257 11258 return r; 11259 } 11260 11261 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 11262 { 11263 /* 11264 * The vCPU has halted, e.g. executed HLT. Update the run state if the 11265 * local APIC is in-kernel, the run loop will detect the non-runnable 11266 * state and halt the vCPU. Exit to userspace if the local APIC is 11267 * managed by userspace, in which case userspace is responsible for 11268 * handling wake events. 11269 */ 11270 ++vcpu->stat.halt_exits; 11271 if (lapic_in_kernel(vcpu)) { 11272 if (kvm_vcpu_has_events(vcpu) || vcpu->arch.pv.pv_unhalted) 11273 state = KVM_MP_STATE_RUNNABLE; 11274 kvm_set_mp_state(vcpu, state); 11275 return 1; 11276 } else { 11277 vcpu->run->exit_reason = reason; 11278 return 0; 11279 } 11280 } 11281 11282 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 11283 { 11284 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 11285 } 11286 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 11287 11288 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 11289 { 11290 int ret = kvm_skip_emulated_instruction(vcpu); 11291 /* 11292 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 11293 * KVM_EXIT_DEBUG here. 11294 */ 11295 return kvm_emulate_halt_noskip(vcpu) && ret; 11296 } 11297 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 11298 11299 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu) 11300 { 11301 int ret; 11302 11303 kvm_vcpu_srcu_read_lock(vcpu); 11304 ret = kvm_emulate_halt(vcpu); 11305 kvm_vcpu_srcu_read_unlock(vcpu); 11306 11307 if (!ret) 11308 return EXIT_FASTPATH_EXIT_USERSPACE; 11309 11310 if (kvm_vcpu_running(vcpu)) 11311 return EXIT_FASTPATH_REENTER_GUEST; 11312 11313 return EXIT_FASTPATH_EXIT_HANDLED; 11314 } 11315 EXPORT_SYMBOL_GPL(handle_fastpath_hlt); 11316 11317 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 11318 { 11319 int ret = kvm_skip_emulated_instruction(vcpu); 11320 11321 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 11322 KVM_EXIT_AP_RESET_HOLD) && ret; 11323 } 11324 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 11325 11326 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 11327 { 11328 return kvm_vcpu_apicv_active(vcpu) && 11329 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu); 11330 } 11331 11332 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 11333 { 11334 return vcpu->arch.preempted_in_kernel; 11335 } 11336 11337 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 11338 { 11339 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 11340 return true; 11341 11342 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11343 #ifdef CONFIG_KVM_SMM 11344 kvm_test_request(KVM_REQ_SMI, vcpu) || 11345 #endif 11346 kvm_test_request(KVM_REQ_EVENT, vcpu)) 11347 return true; 11348 11349 return kvm_arch_dy_has_pending_interrupt(vcpu); 11350 } 11351 11352 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11353 { 11354 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11355 } 11356 11357 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11358 { 11359 BUG_ON(!vcpu->arch.pio.count); 11360 11361 return complete_emulated_io(vcpu); 11362 } 11363 11364 /* 11365 * Implements the following, as a state machine: 11366 * 11367 * read: 11368 * for each fragment 11369 * for each mmio piece in the fragment 11370 * write gpa, len 11371 * exit 11372 * copy data 11373 * execute insn 11374 * 11375 * write: 11376 * for each fragment 11377 * for each mmio piece in the fragment 11378 * write gpa, len 11379 * copy data 11380 * exit 11381 */ 11382 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11383 { 11384 struct kvm_run *run = vcpu->run; 11385 struct kvm_mmio_fragment *frag; 11386 unsigned len; 11387 11388 BUG_ON(!vcpu->mmio_needed); 11389 11390 /* Complete previous fragment */ 11391 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11392 len = min(8u, frag->len); 11393 if (!vcpu->mmio_is_write) 11394 memcpy(frag->data, run->mmio.data, len); 11395 11396 if (frag->len <= 8) { 11397 /* Switch to the next fragment. */ 11398 frag++; 11399 vcpu->mmio_cur_fragment++; 11400 } else { 11401 /* Go forward to the next mmio piece. */ 11402 frag->data += len; 11403 frag->gpa += len; 11404 frag->len -= len; 11405 } 11406 11407 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11408 vcpu->mmio_needed = 0; 11409 11410 /* FIXME: return into emulator if single-stepping. */ 11411 if (vcpu->mmio_is_write) 11412 return 1; 11413 vcpu->mmio_read_completed = 1; 11414 return complete_emulated_io(vcpu); 11415 } 11416 11417 run->exit_reason = KVM_EXIT_MMIO; 11418 run->mmio.phys_addr = frag->gpa; 11419 if (vcpu->mmio_is_write) 11420 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11421 run->mmio.len = min(8u, frag->len); 11422 run->mmio.is_write = vcpu->mmio_is_write; 11423 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11424 return 0; 11425 } 11426 11427 /* Swap (qemu) user FPU context for the guest FPU context. */ 11428 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11429 { 11430 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11431 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11432 trace_kvm_fpu(1); 11433 } 11434 11435 /* When vcpu_run ends, restore user space FPU context. */ 11436 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11437 { 11438 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11439 ++vcpu->stat.fpu_reload; 11440 trace_kvm_fpu(0); 11441 } 11442 11443 static int kvm_x86_vcpu_pre_run(struct kvm_vcpu *vcpu) 11444 { 11445 /* 11446 * SIPI_RECEIVED is obsolete; KVM leaves the vCPU in Wait-For-SIPI and 11447 * tracks the pending SIPI separately. SIPI_RECEIVED is still accepted 11448 * by KVM_SET_VCPU_EVENTS for backwards compatibility, but should be 11449 * converted to INIT_RECEIVED. 11450 */ 11451 if (WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) 11452 return -EINVAL; 11453 11454 /* 11455 * Disallow running the vCPU if userspace forced it into an impossible 11456 * MP_STATE, e.g. if the vCPU is in WFS but SIPI is blocked. 11457 */ 11458 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED && 11459 !kvm_apic_init_sipi_allowed(vcpu)) 11460 return -EINVAL; 11461 11462 return kvm_x86_call(vcpu_pre_run)(vcpu); 11463 } 11464 11465 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11466 { 11467 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11468 struct kvm_run *kvm_run = vcpu->run; 11469 u64 sync_valid_fields; 11470 int r; 11471 11472 r = kvm_mmu_post_init_vm(vcpu->kvm); 11473 if (r) 11474 return r; 11475 11476 vcpu_load(vcpu); 11477 kvm_sigset_activate(vcpu); 11478 kvm_run->flags = 0; 11479 kvm_load_guest_fpu(vcpu); 11480 11481 kvm_vcpu_srcu_read_lock(vcpu); 11482 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11483 if (!vcpu->wants_to_run) { 11484 r = -EINTR; 11485 goto out; 11486 } 11487 11488 /* 11489 * Don't bother switching APIC timer emulation from the 11490 * hypervisor timer to the software timer, the only way for the 11491 * APIC timer to be active is if userspace stuffed vCPU state, 11492 * i.e. put the vCPU into a nonsensical state. Only an INIT 11493 * will transition the vCPU out of UNINITIALIZED (without more 11494 * state stuffing from userspace), which will reset the local 11495 * APIC and thus cancel the timer or drop the IRQ (if the timer 11496 * already expired). 11497 */ 11498 kvm_vcpu_srcu_read_unlock(vcpu); 11499 kvm_vcpu_block(vcpu); 11500 kvm_vcpu_srcu_read_lock(vcpu); 11501 11502 if (kvm_apic_accept_events(vcpu) < 0) { 11503 r = 0; 11504 goto out; 11505 } 11506 r = -EAGAIN; 11507 if (signal_pending(current)) { 11508 r = -EINTR; 11509 kvm_run->exit_reason = KVM_EXIT_INTR; 11510 ++vcpu->stat.signal_exits; 11511 } 11512 goto out; 11513 } 11514 11515 sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm); 11516 if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) || 11517 (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) { 11518 r = -EINVAL; 11519 goto out; 11520 } 11521 11522 if (kvm_run->kvm_dirty_regs) { 11523 r = sync_regs(vcpu); 11524 if (r != 0) 11525 goto out; 11526 } 11527 11528 /* re-sync apic's tpr */ 11529 if (!lapic_in_kernel(vcpu)) { 11530 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11531 r = -EINVAL; 11532 goto out; 11533 } 11534 } 11535 11536 /* 11537 * If userspace set a pending exception and L2 is active, convert it to 11538 * a pending VM-Exit if L1 wants to intercept the exception. 11539 */ 11540 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11541 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11542 ex->error_code)) { 11543 kvm_queue_exception_vmexit(vcpu, ex->vector, 11544 ex->has_error_code, ex->error_code, 11545 ex->has_payload, ex->payload); 11546 ex->injected = false; 11547 ex->pending = false; 11548 } 11549 vcpu->arch.exception_from_userspace = false; 11550 11551 if (unlikely(vcpu->arch.complete_userspace_io)) { 11552 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11553 vcpu->arch.complete_userspace_io = NULL; 11554 r = cui(vcpu); 11555 if (r <= 0) 11556 goto out; 11557 } else { 11558 WARN_ON_ONCE(vcpu->arch.pio.count); 11559 WARN_ON_ONCE(vcpu->mmio_needed); 11560 } 11561 11562 if (!vcpu->wants_to_run) { 11563 r = -EINTR; 11564 goto out; 11565 } 11566 11567 r = kvm_x86_vcpu_pre_run(vcpu); 11568 if (r <= 0) 11569 goto out; 11570 11571 r = vcpu_run(vcpu); 11572 11573 out: 11574 kvm_put_guest_fpu(vcpu); 11575 if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected)) 11576 store_regs(vcpu); 11577 post_kvm_run_save(vcpu); 11578 kvm_vcpu_srcu_read_unlock(vcpu); 11579 11580 kvm_sigset_deactivate(vcpu); 11581 vcpu_put(vcpu); 11582 return r; 11583 } 11584 11585 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11586 { 11587 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11588 /* 11589 * We are here if userspace calls get_regs() in the middle of 11590 * instruction emulation. Registers state needs to be copied 11591 * back from emulation context to vcpu. Userspace shouldn't do 11592 * that usually, but some bad designed PV devices (vmware 11593 * backdoor interface) need this to work 11594 */ 11595 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11596 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11597 } 11598 regs->rax = kvm_rax_read(vcpu); 11599 regs->rbx = kvm_rbx_read(vcpu); 11600 regs->rcx = kvm_rcx_read(vcpu); 11601 regs->rdx = kvm_rdx_read(vcpu); 11602 regs->rsi = kvm_rsi_read(vcpu); 11603 regs->rdi = kvm_rdi_read(vcpu); 11604 regs->rsp = kvm_rsp_read(vcpu); 11605 regs->rbp = kvm_rbp_read(vcpu); 11606 #ifdef CONFIG_X86_64 11607 regs->r8 = kvm_r8_read(vcpu); 11608 regs->r9 = kvm_r9_read(vcpu); 11609 regs->r10 = kvm_r10_read(vcpu); 11610 regs->r11 = kvm_r11_read(vcpu); 11611 regs->r12 = kvm_r12_read(vcpu); 11612 regs->r13 = kvm_r13_read(vcpu); 11613 regs->r14 = kvm_r14_read(vcpu); 11614 regs->r15 = kvm_r15_read(vcpu); 11615 #endif 11616 11617 regs->rip = kvm_rip_read(vcpu); 11618 regs->rflags = kvm_get_rflags(vcpu); 11619 } 11620 11621 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11622 { 11623 if (vcpu->kvm->arch.has_protected_state && 11624 vcpu->arch.guest_state_protected) 11625 return -EINVAL; 11626 11627 vcpu_load(vcpu); 11628 __get_regs(vcpu, regs); 11629 vcpu_put(vcpu); 11630 return 0; 11631 } 11632 11633 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11634 { 11635 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11636 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11637 11638 kvm_rax_write(vcpu, regs->rax); 11639 kvm_rbx_write(vcpu, regs->rbx); 11640 kvm_rcx_write(vcpu, regs->rcx); 11641 kvm_rdx_write(vcpu, regs->rdx); 11642 kvm_rsi_write(vcpu, regs->rsi); 11643 kvm_rdi_write(vcpu, regs->rdi); 11644 kvm_rsp_write(vcpu, regs->rsp); 11645 kvm_rbp_write(vcpu, regs->rbp); 11646 #ifdef CONFIG_X86_64 11647 kvm_r8_write(vcpu, regs->r8); 11648 kvm_r9_write(vcpu, regs->r9); 11649 kvm_r10_write(vcpu, regs->r10); 11650 kvm_r11_write(vcpu, regs->r11); 11651 kvm_r12_write(vcpu, regs->r12); 11652 kvm_r13_write(vcpu, regs->r13); 11653 kvm_r14_write(vcpu, regs->r14); 11654 kvm_r15_write(vcpu, regs->r15); 11655 #endif 11656 11657 kvm_rip_write(vcpu, regs->rip); 11658 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11659 11660 vcpu->arch.exception.pending = false; 11661 vcpu->arch.exception_vmexit.pending = false; 11662 11663 kvm_make_request(KVM_REQ_EVENT, vcpu); 11664 } 11665 11666 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11667 { 11668 if (vcpu->kvm->arch.has_protected_state && 11669 vcpu->arch.guest_state_protected) 11670 return -EINVAL; 11671 11672 vcpu_load(vcpu); 11673 __set_regs(vcpu, regs); 11674 vcpu_put(vcpu); 11675 return 0; 11676 } 11677 11678 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11679 { 11680 struct desc_ptr dt; 11681 11682 if (vcpu->arch.guest_state_protected) 11683 goto skip_protected_regs; 11684 11685 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11686 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11687 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11688 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11689 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11690 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11691 11692 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11693 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11694 11695 kvm_x86_call(get_idt)(vcpu, &dt); 11696 sregs->idt.limit = dt.size; 11697 sregs->idt.base = dt.address; 11698 kvm_x86_call(get_gdt)(vcpu, &dt); 11699 sregs->gdt.limit = dt.size; 11700 sregs->gdt.base = dt.address; 11701 11702 sregs->cr2 = vcpu->arch.cr2; 11703 sregs->cr3 = kvm_read_cr3(vcpu); 11704 11705 skip_protected_regs: 11706 sregs->cr0 = kvm_read_cr0(vcpu); 11707 sregs->cr4 = kvm_read_cr4(vcpu); 11708 sregs->cr8 = kvm_get_cr8(vcpu); 11709 sregs->efer = vcpu->arch.efer; 11710 sregs->apic_base = vcpu->arch.apic_base; 11711 } 11712 11713 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11714 { 11715 __get_sregs_common(vcpu, sregs); 11716 11717 if (vcpu->arch.guest_state_protected) 11718 return; 11719 11720 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11721 set_bit(vcpu->arch.interrupt.nr, 11722 (unsigned long *)sregs->interrupt_bitmap); 11723 } 11724 11725 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11726 { 11727 int i; 11728 11729 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11730 11731 if (vcpu->arch.guest_state_protected) 11732 return; 11733 11734 if (is_pae_paging(vcpu)) { 11735 for (i = 0 ; i < 4 ; i++) 11736 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11737 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11738 } 11739 } 11740 11741 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11742 struct kvm_sregs *sregs) 11743 { 11744 if (vcpu->kvm->arch.has_protected_state && 11745 vcpu->arch.guest_state_protected) 11746 return -EINVAL; 11747 11748 vcpu_load(vcpu); 11749 __get_sregs(vcpu, sregs); 11750 vcpu_put(vcpu); 11751 return 0; 11752 } 11753 11754 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11755 struct kvm_mp_state *mp_state) 11756 { 11757 int r; 11758 11759 vcpu_load(vcpu); 11760 if (kvm_mpx_supported()) 11761 kvm_load_guest_fpu(vcpu); 11762 11763 kvm_vcpu_srcu_read_lock(vcpu); 11764 11765 r = kvm_apic_accept_events(vcpu); 11766 if (r < 0) 11767 goto out; 11768 r = 0; 11769 11770 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11771 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11772 vcpu->arch.pv.pv_unhalted) 11773 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11774 else 11775 mp_state->mp_state = vcpu->arch.mp_state; 11776 11777 out: 11778 kvm_vcpu_srcu_read_unlock(vcpu); 11779 11780 if (kvm_mpx_supported()) 11781 kvm_put_guest_fpu(vcpu); 11782 vcpu_put(vcpu); 11783 return r; 11784 } 11785 11786 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11787 struct kvm_mp_state *mp_state) 11788 { 11789 int ret = -EINVAL; 11790 11791 vcpu_load(vcpu); 11792 11793 switch (mp_state->mp_state) { 11794 case KVM_MP_STATE_UNINITIALIZED: 11795 case KVM_MP_STATE_HALTED: 11796 case KVM_MP_STATE_AP_RESET_HOLD: 11797 case KVM_MP_STATE_INIT_RECEIVED: 11798 case KVM_MP_STATE_SIPI_RECEIVED: 11799 if (!lapic_in_kernel(vcpu)) 11800 goto out; 11801 break; 11802 11803 case KVM_MP_STATE_RUNNABLE: 11804 break; 11805 11806 default: 11807 goto out; 11808 } 11809 11810 /* 11811 * SIPI_RECEIVED is obsolete and no longer used internally; KVM instead 11812 * leaves the vCPU in INIT_RECIEVED (Wait-For-SIPI) and pends the SIPI. 11813 * Translate SIPI_RECEIVED as appropriate for backwards compatibility. 11814 */ 11815 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11816 mp_state->mp_state = KVM_MP_STATE_INIT_RECEIVED; 11817 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11818 } 11819 11820 kvm_set_mp_state(vcpu, mp_state->mp_state); 11821 kvm_make_request(KVM_REQ_EVENT, vcpu); 11822 11823 ret = 0; 11824 out: 11825 vcpu_put(vcpu); 11826 return ret; 11827 } 11828 11829 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11830 int reason, bool has_error_code, u32 error_code) 11831 { 11832 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11833 int ret; 11834 11835 init_emulate_ctxt(vcpu); 11836 11837 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11838 has_error_code, error_code); 11839 11840 /* 11841 * Report an error userspace if MMIO is needed, as KVM doesn't support 11842 * MMIO during a task switch (or any other complex operation). 11843 */ 11844 if (ret || vcpu->mmio_needed) { 11845 vcpu->mmio_needed = false; 11846 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11847 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11848 vcpu->run->internal.ndata = 0; 11849 return 0; 11850 } 11851 11852 kvm_rip_write(vcpu, ctxt->eip); 11853 kvm_set_rflags(vcpu, ctxt->eflags); 11854 return 1; 11855 } 11856 EXPORT_SYMBOL_GPL(kvm_task_switch); 11857 11858 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11859 { 11860 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11861 /* 11862 * When EFER.LME and CR0.PG are set, the processor is in 11863 * 64-bit mode (though maybe in a 32-bit code segment). 11864 * CR4.PAE and EFER.LMA must be set. 11865 */ 11866 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11867 return false; 11868 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 11869 return false; 11870 } else { 11871 /* 11872 * Not in 64-bit mode: EFER.LMA is clear and the code 11873 * segment cannot be 64-bit. 11874 */ 11875 if (sregs->efer & EFER_LMA || sregs->cs.l) 11876 return false; 11877 } 11878 11879 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11880 kvm_is_valid_cr0(vcpu, sregs->cr0); 11881 } 11882 11883 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11884 int *mmu_reset_needed, bool update_pdptrs) 11885 { 11886 int idx; 11887 struct desc_ptr dt; 11888 11889 if (!kvm_is_valid_sregs(vcpu, sregs)) 11890 return -EINVAL; 11891 11892 if (kvm_apic_set_base(vcpu, sregs->apic_base, true)) 11893 return -EINVAL; 11894 11895 if (vcpu->arch.guest_state_protected) 11896 return 0; 11897 11898 dt.size = sregs->idt.limit; 11899 dt.address = sregs->idt.base; 11900 kvm_x86_call(set_idt)(vcpu, &dt); 11901 dt.size = sregs->gdt.limit; 11902 dt.address = sregs->gdt.base; 11903 kvm_x86_call(set_gdt)(vcpu, &dt); 11904 11905 vcpu->arch.cr2 = sregs->cr2; 11906 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11907 vcpu->arch.cr3 = sregs->cr3; 11908 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11909 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3); 11910 11911 kvm_set_cr8(vcpu, sregs->cr8); 11912 11913 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11914 kvm_x86_call(set_efer)(vcpu, sregs->efer); 11915 11916 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11917 kvm_x86_call(set_cr0)(vcpu, sregs->cr0); 11918 11919 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11920 kvm_x86_call(set_cr4)(vcpu, sregs->cr4); 11921 11922 if (update_pdptrs) { 11923 idx = srcu_read_lock(&vcpu->kvm->srcu); 11924 if (is_pae_paging(vcpu)) { 11925 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11926 *mmu_reset_needed = 1; 11927 } 11928 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11929 } 11930 11931 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11932 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11933 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11934 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11935 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11936 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11937 11938 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11939 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11940 11941 update_cr8_intercept(vcpu); 11942 11943 /* Older userspace won't unhalt the vcpu on reset. */ 11944 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11945 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11946 !is_protmode(vcpu)) 11947 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 11948 11949 return 0; 11950 } 11951 11952 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11953 { 11954 int pending_vec, max_bits; 11955 int mmu_reset_needed = 0; 11956 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11957 11958 if (ret) 11959 return ret; 11960 11961 if (mmu_reset_needed) { 11962 kvm_mmu_reset_context(vcpu); 11963 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11964 } 11965 11966 max_bits = KVM_NR_INTERRUPTS; 11967 pending_vec = find_first_bit( 11968 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11969 11970 if (pending_vec < max_bits) { 11971 kvm_queue_interrupt(vcpu, pending_vec, false); 11972 pr_debug("Set back pending irq %d\n", pending_vec); 11973 kvm_make_request(KVM_REQ_EVENT, vcpu); 11974 } 11975 return 0; 11976 } 11977 11978 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11979 { 11980 int mmu_reset_needed = 0; 11981 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11982 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11983 !(sregs2->efer & EFER_LMA); 11984 int i, ret; 11985 11986 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11987 return -EINVAL; 11988 11989 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11990 return -EINVAL; 11991 11992 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11993 &mmu_reset_needed, !valid_pdptrs); 11994 if (ret) 11995 return ret; 11996 11997 if (valid_pdptrs) { 11998 for (i = 0; i < 4 ; i++) 11999 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 12000 12001 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 12002 mmu_reset_needed = 1; 12003 vcpu->arch.pdptrs_from_userspace = true; 12004 } 12005 if (mmu_reset_needed) { 12006 kvm_mmu_reset_context(vcpu); 12007 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12008 } 12009 return 0; 12010 } 12011 12012 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 12013 struct kvm_sregs *sregs) 12014 { 12015 int ret; 12016 12017 if (vcpu->kvm->arch.has_protected_state && 12018 vcpu->arch.guest_state_protected) 12019 return -EINVAL; 12020 12021 vcpu_load(vcpu); 12022 ret = __set_sregs(vcpu, sregs); 12023 vcpu_put(vcpu); 12024 return ret; 12025 } 12026 12027 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 12028 { 12029 bool set = false; 12030 struct kvm_vcpu *vcpu; 12031 unsigned long i; 12032 12033 if (!enable_apicv) 12034 return; 12035 12036 down_write(&kvm->arch.apicv_update_lock); 12037 12038 kvm_for_each_vcpu(i, vcpu, kvm) { 12039 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 12040 set = true; 12041 break; 12042 } 12043 } 12044 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 12045 up_write(&kvm->arch.apicv_update_lock); 12046 } 12047 12048 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 12049 struct kvm_guest_debug *dbg) 12050 { 12051 unsigned long rflags; 12052 int i, r; 12053 12054 if (vcpu->arch.guest_state_protected) 12055 return -EINVAL; 12056 12057 vcpu_load(vcpu); 12058 12059 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 12060 r = -EBUSY; 12061 if (kvm_is_exception_pending(vcpu)) 12062 goto out; 12063 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 12064 kvm_queue_exception(vcpu, DB_VECTOR); 12065 else 12066 kvm_queue_exception(vcpu, BP_VECTOR); 12067 } 12068 12069 /* 12070 * Read rflags as long as potentially injected trace flags are still 12071 * filtered out. 12072 */ 12073 rflags = kvm_get_rflags(vcpu); 12074 12075 vcpu->guest_debug = dbg->control; 12076 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 12077 vcpu->guest_debug = 0; 12078 12079 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 12080 for (i = 0; i < KVM_NR_DB_REGS; ++i) 12081 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 12082 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 12083 } else { 12084 for (i = 0; i < KVM_NR_DB_REGS; i++) 12085 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 12086 } 12087 kvm_update_dr7(vcpu); 12088 12089 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12090 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 12091 12092 /* 12093 * Trigger an rflags update that will inject or remove the trace 12094 * flags. 12095 */ 12096 kvm_set_rflags(vcpu, rflags); 12097 12098 kvm_x86_call(update_exception_bitmap)(vcpu); 12099 12100 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 12101 12102 r = 0; 12103 12104 out: 12105 vcpu_put(vcpu); 12106 return r; 12107 } 12108 12109 /* 12110 * Translate a guest virtual address to a guest physical address. 12111 */ 12112 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 12113 struct kvm_translation *tr) 12114 { 12115 unsigned long vaddr = tr->linear_address; 12116 gpa_t gpa; 12117 int idx; 12118 12119 vcpu_load(vcpu); 12120 12121 idx = srcu_read_lock(&vcpu->kvm->srcu); 12122 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 12123 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12124 tr->physical_address = gpa; 12125 tr->valid = gpa != INVALID_GPA; 12126 tr->writeable = 1; 12127 tr->usermode = 0; 12128 12129 vcpu_put(vcpu); 12130 return 0; 12131 } 12132 12133 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12134 { 12135 struct fxregs_state *fxsave; 12136 12137 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12138 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12139 12140 vcpu_load(vcpu); 12141 12142 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12143 memcpy(fpu->fpr, fxsave->st_space, 128); 12144 fpu->fcw = fxsave->cwd; 12145 fpu->fsw = fxsave->swd; 12146 fpu->ftwx = fxsave->twd; 12147 fpu->last_opcode = fxsave->fop; 12148 fpu->last_ip = fxsave->rip; 12149 fpu->last_dp = fxsave->rdp; 12150 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 12151 12152 vcpu_put(vcpu); 12153 return 0; 12154 } 12155 12156 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12157 { 12158 struct fxregs_state *fxsave; 12159 12160 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12161 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12162 12163 vcpu_load(vcpu); 12164 12165 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12166 12167 memcpy(fxsave->st_space, fpu->fpr, 128); 12168 fxsave->cwd = fpu->fcw; 12169 fxsave->swd = fpu->fsw; 12170 fxsave->twd = fpu->ftwx; 12171 fxsave->fop = fpu->last_opcode; 12172 fxsave->rip = fpu->last_ip; 12173 fxsave->rdp = fpu->last_dp; 12174 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 12175 12176 vcpu_put(vcpu); 12177 return 0; 12178 } 12179 12180 static void store_regs(struct kvm_vcpu *vcpu) 12181 { 12182 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 12183 12184 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 12185 __get_regs(vcpu, &vcpu->run->s.regs.regs); 12186 12187 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 12188 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 12189 12190 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 12191 kvm_vcpu_ioctl_x86_get_vcpu_events( 12192 vcpu, &vcpu->run->s.regs.events); 12193 } 12194 12195 static int sync_regs(struct kvm_vcpu *vcpu) 12196 { 12197 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12198 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12199 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12200 } 12201 12202 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12203 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12204 12205 if (__set_sregs(vcpu, &sregs)) 12206 return -EINVAL; 12207 12208 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12209 } 12210 12211 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12212 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12213 12214 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12215 return -EINVAL; 12216 12217 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12218 } 12219 12220 return 0; 12221 } 12222 12223 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12224 { 12225 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12226 pr_warn_once("SMP vm created on host with unstable TSC; " 12227 "guest TSC will not be reliable\n"); 12228 12229 if (!kvm->arch.max_vcpu_ids) 12230 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12231 12232 if (id >= kvm->arch.max_vcpu_ids) 12233 return -EINVAL; 12234 12235 return kvm_x86_call(vcpu_precreate)(kvm); 12236 } 12237 12238 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12239 { 12240 struct page *page; 12241 int r; 12242 12243 vcpu->arch.last_vmentry_cpu = -1; 12244 vcpu->arch.regs_avail = ~0; 12245 vcpu->arch.regs_dirty = ~0; 12246 12247 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm); 12248 12249 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12250 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 12251 else 12252 kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED); 12253 12254 r = kvm_mmu_create(vcpu); 12255 if (r < 0) 12256 return r; 12257 12258 r = kvm_create_lapic(vcpu); 12259 if (r < 0) 12260 goto fail_mmu_destroy; 12261 12262 r = -ENOMEM; 12263 12264 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12265 if (!page) 12266 goto fail_free_lapic; 12267 vcpu->arch.pio_data = page_address(page); 12268 12269 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12270 GFP_KERNEL_ACCOUNT); 12271 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12272 GFP_KERNEL_ACCOUNT); 12273 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12274 goto fail_free_mce_banks; 12275 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12276 12277 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12278 GFP_KERNEL_ACCOUNT)) 12279 goto fail_free_mce_banks; 12280 12281 if (!alloc_emulate_ctxt(vcpu)) 12282 goto free_wbinvd_dirty_mask; 12283 12284 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12285 pr_err("failed to allocate vcpu's fpu\n"); 12286 goto free_emulate_ctxt; 12287 } 12288 12289 kvm_async_pf_hash_reset(vcpu); 12290 12291 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) { 12292 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12293 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12294 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12295 } 12296 kvm_pmu_init(vcpu); 12297 12298 vcpu->arch.pending_external_vector = -1; 12299 vcpu->arch.preempted_in_kernel = false; 12300 12301 #if IS_ENABLED(CONFIG_HYPERV) 12302 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12303 #endif 12304 12305 r = kvm_x86_call(vcpu_create)(vcpu); 12306 if (r) 12307 goto free_guest_fpu; 12308 12309 kvm_xen_init_vcpu(vcpu); 12310 vcpu_load(vcpu); 12311 kvm_vcpu_after_set_cpuid(vcpu); 12312 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12313 kvm_vcpu_reset(vcpu, false); 12314 kvm_init_mmu(vcpu); 12315 vcpu_put(vcpu); 12316 return 0; 12317 12318 free_guest_fpu: 12319 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12320 free_emulate_ctxt: 12321 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12322 free_wbinvd_dirty_mask: 12323 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12324 fail_free_mce_banks: 12325 kfree(vcpu->arch.mce_banks); 12326 kfree(vcpu->arch.mci_ctl2_banks); 12327 free_page((unsigned long)vcpu->arch.pio_data); 12328 fail_free_lapic: 12329 kvm_free_lapic(vcpu); 12330 fail_mmu_destroy: 12331 kvm_mmu_destroy(vcpu); 12332 return r; 12333 } 12334 12335 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12336 { 12337 struct kvm *kvm = vcpu->kvm; 12338 12339 if (mutex_lock_killable(&vcpu->mutex)) 12340 return; 12341 vcpu_load(vcpu); 12342 kvm_synchronize_tsc(vcpu, NULL); 12343 vcpu_put(vcpu); 12344 12345 /* poll control enabled by default */ 12346 vcpu->arch.msr_kvm_poll_control = 1; 12347 12348 mutex_unlock(&vcpu->mutex); 12349 12350 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12351 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12352 KVMCLOCK_SYNC_PERIOD); 12353 } 12354 12355 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12356 { 12357 int idx, cpu; 12358 12359 kvm_clear_async_pf_completion_queue(vcpu); 12360 kvm_mmu_unload(vcpu); 12361 12362 kvmclock_reset(vcpu); 12363 12364 for_each_possible_cpu(cpu) 12365 cmpxchg(per_cpu_ptr(&last_vcpu, cpu), vcpu, NULL); 12366 12367 kvm_x86_call(vcpu_free)(vcpu); 12368 12369 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12370 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12371 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12372 12373 kvm_xen_destroy_vcpu(vcpu); 12374 kvm_hv_vcpu_uninit(vcpu); 12375 kvm_pmu_destroy(vcpu); 12376 kfree(vcpu->arch.mce_banks); 12377 kfree(vcpu->arch.mci_ctl2_banks); 12378 kvm_free_lapic(vcpu); 12379 idx = srcu_read_lock(&vcpu->kvm->srcu); 12380 kvm_mmu_destroy(vcpu); 12381 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12382 free_page((unsigned long)vcpu->arch.pio_data); 12383 kvfree(vcpu->arch.cpuid_entries); 12384 } 12385 12386 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12387 { 12388 struct kvm_cpuid_entry2 *cpuid_0x1; 12389 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12390 unsigned long new_cr0; 12391 12392 /* 12393 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12394 * to handle side effects. RESET emulation hits those flows and relies 12395 * on emulated/virtualized registers, including those that are loaded 12396 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12397 * to detect improper or missing initialization. 12398 */ 12399 WARN_ON_ONCE(!init_event && 12400 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12401 12402 /* 12403 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12404 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12405 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12406 * bits), i.e. virtualization is disabled. 12407 */ 12408 if (is_guest_mode(vcpu)) 12409 kvm_leave_nested(vcpu); 12410 12411 kvm_lapic_reset(vcpu, init_event); 12412 12413 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12414 vcpu->arch.hflags = 0; 12415 12416 vcpu->arch.smi_pending = 0; 12417 vcpu->arch.smi_count = 0; 12418 atomic_set(&vcpu->arch.nmi_queued, 0); 12419 vcpu->arch.nmi_pending = 0; 12420 vcpu->arch.nmi_injected = false; 12421 kvm_clear_interrupt_queue(vcpu); 12422 kvm_clear_exception_queue(vcpu); 12423 12424 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12425 kvm_update_dr0123(vcpu); 12426 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12427 vcpu->arch.dr7 = DR7_FIXED_1; 12428 kvm_update_dr7(vcpu); 12429 12430 vcpu->arch.cr2 = 0; 12431 12432 kvm_make_request(KVM_REQ_EVENT, vcpu); 12433 vcpu->arch.apf.msr_en_val = 0; 12434 vcpu->arch.apf.msr_int_val = 0; 12435 vcpu->arch.st.msr_val = 0; 12436 12437 kvmclock_reset(vcpu); 12438 12439 kvm_clear_async_pf_completion_queue(vcpu); 12440 kvm_async_pf_hash_reset(vcpu); 12441 vcpu->arch.apf.halted = false; 12442 12443 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12444 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12445 12446 /* 12447 * All paths that lead to INIT are required to load the guest's 12448 * FPU state (because most paths are buried in KVM_RUN). 12449 */ 12450 if (init_event) 12451 kvm_put_guest_fpu(vcpu); 12452 12453 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12454 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12455 12456 if (init_event) 12457 kvm_load_guest_fpu(vcpu); 12458 } 12459 12460 if (!init_event) { 12461 vcpu->arch.smbase = 0x30000; 12462 12463 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12464 12465 vcpu->arch.msr_misc_features_enables = 0; 12466 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12467 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12468 12469 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12470 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12471 } 12472 12473 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12474 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12475 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12476 12477 /* 12478 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12479 * if no CPUID match is found. Note, it's impossible to get a match at 12480 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12481 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12482 * on RESET. But, go through the motions in case that's ever remedied. 12483 */ 12484 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12485 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12486 12487 kvm_x86_call(vcpu_reset)(vcpu, init_event); 12488 12489 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12490 kvm_rip_write(vcpu, 0xfff0); 12491 12492 vcpu->arch.cr3 = 0; 12493 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12494 12495 /* 12496 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12497 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12498 * (or qualify) that with a footnote stating that CD/NW are preserved. 12499 */ 12500 new_cr0 = X86_CR0_ET; 12501 if (init_event) 12502 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12503 else 12504 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12505 12506 kvm_x86_call(set_cr0)(vcpu, new_cr0); 12507 kvm_x86_call(set_cr4)(vcpu, 0); 12508 kvm_x86_call(set_efer)(vcpu, 0); 12509 kvm_x86_call(update_exception_bitmap)(vcpu); 12510 12511 /* 12512 * On the standard CR0/CR4/EFER modification paths, there are several 12513 * complex conditions determining whether the MMU has to be reset and/or 12514 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12515 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12516 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12517 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12518 */ 12519 if (old_cr0 & X86_CR0_PG) { 12520 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12521 kvm_mmu_reset_context(vcpu); 12522 } 12523 12524 /* 12525 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12526 * APM states the TLBs are untouched by INIT, but it also states that 12527 * the TLBs are flushed on "External initialization of the processor." 12528 * Flush the guest TLB regardless of vendor, there is no meaningful 12529 * benefit in relying on the guest to flush the TLB immediately after 12530 * INIT. A spurious TLB flush is benign and likely negligible from a 12531 * performance perspective. 12532 */ 12533 if (init_event) 12534 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12535 } 12536 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12537 12538 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12539 { 12540 struct kvm_segment cs; 12541 12542 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12543 cs.selector = vector << 8; 12544 cs.base = vector << 12; 12545 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12546 kvm_rip_write(vcpu, 0); 12547 } 12548 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12549 12550 void kvm_arch_enable_virtualization(void) 12551 { 12552 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); 12553 } 12554 12555 void kvm_arch_disable_virtualization(void) 12556 { 12557 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); 12558 } 12559 12560 int kvm_arch_enable_virtualization_cpu(void) 12561 { 12562 struct kvm *kvm; 12563 struct kvm_vcpu *vcpu; 12564 unsigned long i; 12565 int ret; 12566 u64 local_tsc; 12567 u64 max_tsc = 0; 12568 bool stable, backwards_tsc = false; 12569 12570 kvm_user_return_msr_cpu_online(); 12571 12572 ret = kvm_x86_check_processor_compatibility(); 12573 if (ret) 12574 return ret; 12575 12576 ret = kvm_x86_call(enable_virtualization_cpu)(); 12577 if (ret != 0) 12578 return ret; 12579 12580 local_tsc = rdtsc(); 12581 stable = !kvm_check_tsc_unstable(); 12582 list_for_each_entry(kvm, &vm_list, vm_list) { 12583 kvm_for_each_vcpu(i, vcpu, kvm) { 12584 if (!stable && vcpu->cpu == smp_processor_id()) 12585 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12586 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12587 backwards_tsc = true; 12588 if (vcpu->arch.last_host_tsc > max_tsc) 12589 max_tsc = vcpu->arch.last_host_tsc; 12590 } 12591 } 12592 } 12593 12594 /* 12595 * Sometimes, even reliable TSCs go backwards. This happens on 12596 * platforms that reset TSC during suspend or hibernate actions, but 12597 * maintain synchronization. We must compensate. Fortunately, we can 12598 * detect that condition here, which happens early in CPU bringup, 12599 * before any KVM threads can be running. Unfortunately, we can't 12600 * bring the TSCs fully up to date with real time, as we aren't yet far 12601 * enough into CPU bringup that we know how much real time has actually 12602 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12603 * variables that haven't been updated yet. 12604 * 12605 * So we simply find the maximum observed TSC above, then record the 12606 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12607 * the adjustment will be applied. Note that we accumulate 12608 * adjustments, in case multiple suspend cycles happen before some VCPU 12609 * gets a chance to run again. In the event that no KVM threads get a 12610 * chance to run, we will miss the entire elapsed period, as we'll have 12611 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12612 * loose cycle time. This isn't too big a deal, since the loss will be 12613 * uniform across all VCPUs (not to mention the scenario is extremely 12614 * unlikely). It is possible that a second hibernate recovery happens 12615 * much faster than a first, causing the observed TSC here to be 12616 * smaller; this would require additional padding adjustment, which is 12617 * why we set last_host_tsc to the local tsc observed here. 12618 * 12619 * N.B. - this code below runs only on platforms with reliable TSC, 12620 * as that is the only way backwards_tsc is set above. Also note 12621 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12622 * have the same delta_cyc adjustment applied if backwards_tsc 12623 * is detected. Note further, this adjustment is only done once, 12624 * as we reset last_host_tsc on all VCPUs to stop this from being 12625 * called multiple times (one for each physical CPU bringup). 12626 * 12627 * Platforms with unreliable TSCs don't have to deal with this, they 12628 * will be compensated by the logic in vcpu_load, which sets the TSC to 12629 * catchup mode. This will catchup all VCPUs to real time, but cannot 12630 * guarantee that they stay in perfect synchronization. 12631 */ 12632 if (backwards_tsc) { 12633 u64 delta_cyc = max_tsc - local_tsc; 12634 list_for_each_entry(kvm, &vm_list, vm_list) { 12635 kvm->arch.backwards_tsc_observed = true; 12636 kvm_for_each_vcpu(i, vcpu, kvm) { 12637 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12638 vcpu->arch.last_host_tsc = local_tsc; 12639 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12640 } 12641 12642 /* 12643 * We have to disable TSC offset matching.. if you were 12644 * booting a VM while issuing an S4 host suspend.... 12645 * you may have some problem. Solving this issue is 12646 * left as an exercise to the reader. 12647 */ 12648 kvm->arch.last_tsc_nsec = 0; 12649 kvm->arch.last_tsc_write = 0; 12650 } 12651 12652 } 12653 return 0; 12654 } 12655 12656 void kvm_arch_disable_virtualization_cpu(void) 12657 { 12658 kvm_x86_call(disable_virtualization_cpu)(); 12659 drop_user_return_notifiers(); 12660 } 12661 12662 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12663 { 12664 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12665 } 12666 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 12667 12668 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12669 { 12670 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12671 } 12672 12673 void kvm_arch_free_vm(struct kvm *kvm) 12674 { 12675 #if IS_ENABLED(CONFIG_HYPERV) 12676 kfree(kvm->arch.hv_pa_pg); 12677 #endif 12678 __kvm_arch_free_vm(kvm); 12679 } 12680 12681 12682 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12683 { 12684 int ret; 12685 unsigned long flags; 12686 12687 if (!kvm_is_vm_type_supported(type)) 12688 return -EINVAL; 12689 12690 kvm->arch.vm_type = type; 12691 kvm->arch.has_private_mem = 12692 (type == KVM_X86_SW_PROTECTED_VM); 12693 /* Decided by the vendor code for other VM types. */ 12694 kvm->arch.pre_fault_allowed = 12695 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM; 12696 kvm->arch.disabled_quirks = kvm_caps.inapplicable_quirks & kvm_caps.supported_quirks; 12697 12698 ret = kvm_page_track_init(kvm); 12699 if (ret) 12700 goto out; 12701 12702 ret = kvm_mmu_init_vm(kvm); 12703 if (ret) 12704 goto out_cleanup_page_track; 12705 12706 ret = kvm_x86_call(vm_init)(kvm); 12707 if (ret) 12708 goto out_uninit_mmu; 12709 12710 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12711 12712 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12713 mutex_init(&kvm->arch.apic_map_lock); 12714 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12715 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12716 12717 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12718 pvclock_update_vm_gtod_copy(kvm); 12719 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12720 12721 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12722 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT; 12723 kvm->arch.guest_can_read_msr_platform_info = true; 12724 kvm->arch.enable_pmu = enable_pmu; 12725 12726 #if IS_ENABLED(CONFIG_HYPERV) 12727 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12728 kvm->arch.hv_root_tdp = INVALID_PAGE; 12729 #endif 12730 12731 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12732 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12733 12734 kvm_apicv_init(kvm); 12735 kvm_hv_init_vm(kvm); 12736 kvm_xen_init_vm(kvm); 12737 12738 if (ignore_msrs && !report_ignored_msrs) { 12739 pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n" 12740 "a supported configuration. Lying to the guest about the existence of MSRs\n" 12741 "may cause the guest operating system to hang or produce errors. If a guest\n" 12742 "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n"); 12743 } 12744 12745 once_init(&kvm->arch.nx_once); 12746 return 0; 12747 12748 out_uninit_mmu: 12749 kvm_mmu_uninit_vm(kvm); 12750 out_cleanup_page_track: 12751 kvm_page_track_cleanup(kvm); 12752 out: 12753 return ret; 12754 } 12755 12756 /** 12757 * __x86_set_memory_region: Setup KVM internal memory slot 12758 * 12759 * @kvm: the kvm pointer to the VM. 12760 * @id: the slot ID to setup. 12761 * @gpa: the GPA to install the slot (unused when @size == 0). 12762 * @size: the size of the slot. Set to zero to uninstall a slot. 12763 * 12764 * This function helps to setup a KVM internal memory slot. Specify 12765 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12766 * slot. The return code can be one of the following: 12767 * 12768 * HVA: on success (uninstall will return a bogus HVA) 12769 * -errno: on error 12770 * 12771 * The caller should always use IS_ERR() to check the return value 12772 * before use. Note, the KVM internal memory slots are guaranteed to 12773 * remain valid and unchanged until the VM is destroyed, i.e., the 12774 * GPA->HVA translation will not change. However, the HVA is a user 12775 * address, i.e. its accessibility is not guaranteed, and must be 12776 * accessed via __copy_{to,from}_user(). 12777 */ 12778 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12779 u32 size) 12780 { 12781 int i, r; 12782 unsigned long hva, old_npages; 12783 struct kvm_memslots *slots = kvm_memslots(kvm); 12784 struct kvm_memory_slot *slot; 12785 12786 lockdep_assert_held(&kvm->slots_lock); 12787 12788 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12789 return ERR_PTR_USR(-EINVAL); 12790 12791 slot = id_to_memslot(slots, id); 12792 if (size) { 12793 if (slot && slot->npages) 12794 return ERR_PTR_USR(-EEXIST); 12795 12796 /* 12797 * MAP_SHARED to prevent internal slot pages from being moved 12798 * by fork()/COW. 12799 */ 12800 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12801 MAP_SHARED | MAP_ANONYMOUS, 0); 12802 if (IS_ERR_VALUE(hva)) 12803 return (void __user *)hva; 12804 } else { 12805 if (!slot || !slot->npages) 12806 return NULL; 12807 12808 old_npages = slot->npages; 12809 hva = slot->userspace_addr; 12810 } 12811 12812 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 12813 struct kvm_userspace_memory_region2 m; 12814 12815 m.slot = id | (i << 16); 12816 m.flags = 0; 12817 m.guest_phys_addr = gpa; 12818 m.userspace_addr = hva; 12819 m.memory_size = size; 12820 r = kvm_set_internal_memslot(kvm, &m); 12821 if (r < 0) 12822 return ERR_PTR_USR(r); 12823 } 12824 12825 if (!size) 12826 vm_munmap(hva, old_npages * PAGE_SIZE); 12827 12828 return (void __user *)hva; 12829 } 12830 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12831 12832 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12833 { 12834 /* 12835 * Stop all background workers and kthreads before destroying vCPUs, as 12836 * iterating over vCPUs in a different task while vCPUs are being freed 12837 * is unsafe, i.e. will lead to use-after-free. The PIT also needs to 12838 * be stopped before IRQ routing is freed. 12839 */ 12840 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12841 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12842 12843 #ifdef CONFIG_KVM_IOAPIC 12844 kvm_free_pit(kvm); 12845 #endif 12846 12847 kvm_mmu_pre_destroy_vm(kvm); 12848 static_call_cond(kvm_x86_vm_pre_destroy)(kvm); 12849 } 12850 12851 void kvm_arch_destroy_vm(struct kvm *kvm) 12852 { 12853 if (current->mm == kvm->mm) { 12854 /* 12855 * Free memory regions allocated on behalf of userspace, 12856 * unless the memory map has changed due to process exit 12857 * or fd copying. 12858 */ 12859 mutex_lock(&kvm->slots_lock); 12860 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12861 0, 0); 12862 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12863 0, 0); 12864 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12865 mutex_unlock(&kvm->slots_lock); 12866 } 12867 kvm_destroy_vcpus(kvm); 12868 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12869 #ifdef CONFIG_KVM_IOAPIC 12870 kvm_pic_destroy(kvm); 12871 kvm_ioapic_destroy(kvm); 12872 #endif 12873 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12874 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12875 kvm_mmu_uninit_vm(kvm); 12876 kvm_page_track_cleanup(kvm); 12877 kvm_xen_destroy_vm(kvm); 12878 kvm_hv_destroy_vm(kvm); 12879 kvm_x86_call(vm_destroy)(kvm); 12880 } 12881 12882 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12883 { 12884 int i; 12885 12886 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12887 vfree(slot->arch.rmap[i]); 12888 slot->arch.rmap[i] = NULL; 12889 } 12890 } 12891 12892 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12893 { 12894 int i; 12895 12896 memslot_rmap_free(slot); 12897 12898 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12899 vfree(slot->arch.lpage_info[i - 1]); 12900 slot->arch.lpage_info[i - 1] = NULL; 12901 } 12902 12903 kvm_page_track_free_memslot(slot); 12904 } 12905 12906 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12907 { 12908 const int sz = sizeof(*slot->arch.rmap[0]); 12909 int i; 12910 12911 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12912 int level = i + 1; 12913 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12914 12915 if (slot->arch.rmap[i]) 12916 continue; 12917 12918 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12919 if (!slot->arch.rmap[i]) { 12920 memslot_rmap_free(slot); 12921 return -ENOMEM; 12922 } 12923 } 12924 12925 return 0; 12926 } 12927 12928 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12929 struct kvm_memory_slot *slot) 12930 { 12931 unsigned long npages = slot->npages; 12932 int i, r; 12933 12934 /* 12935 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12936 * old arrays will be freed by kvm_set_memory_region() if installing 12937 * the new memslot is successful. 12938 */ 12939 memset(&slot->arch, 0, sizeof(slot->arch)); 12940 12941 if (kvm_memslots_have_rmaps(kvm)) { 12942 r = memslot_rmap_alloc(slot, npages); 12943 if (r) 12944 return r; 12945 } 12946 12947 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12948 struct kvm_lpage_info *linfo; 12949 unsigned long ugfn; 12950 int lpages; 12951 int level = i + 1; 12952 12953 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12954 12955 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12956 if (!linfo) 12957 goto out_free; 12958 12959 slot->arch.lpage_info[i - 1] = linfo; 12960 12961 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12962 linfo[0].disallow_lpage = 1; 12963 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12964 linfo[lpages - 1].disallow_lpage = 1; 12965 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12966 /* 12967 * If the gfn and userspace address are not aligned wrt each 12968 * other, disable large page support for this slot. 12969 */ 12970 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12971 unsigned long j; 12972 12973 for (j = 0; j < lpages; ++j) 12974 linfo[j].disallow_lpage = 1; 12975 } 12976 } 12977 12978 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 12979 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 12980 #endif 12981 12982 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12983 goto out_free; 12984 12985 return 0; 12986 12987 out_free: 12988 memslot_rmap_free(slot); 12989 12990 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12991 vfree(slot->arch.lpage_info[i - 1]); 12992 slot->arch.lpage_info[i - 1] = NULL; 12993 } 12994 return -ENOMEM; 12995 } 12996 12997 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12998 { 12999 struct kvm_vcpu *vcpu; 13000 unsigned long i; 13001 13002 /* 13003 * memslots->generation has been incremented. 13004 * mmio generation may have reached its maximum value. 13005 */ 13006 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 13007 13008 /* Force re-initialization of steal_time cache */ 13009 kvm_for_each_vcpu(i, vcpu, kvm) 13010 kvm_vcpu_kick(vcpu); 13011 } 13012 13013 int kvm_arch_prepare_memory_region(struct kvm *kvm, 13014 const struct kvm_memory_slot *old, 13015 struct kvm_memory_slot *new, 13016 enum kvm_mr_change change) 13017 { 13018 /* 13019 * KVM doesn't support moving memslots when there are external page 13020 * trackers attached to the VM, i.e. if KVMGT is in use. 13021 */ 13022 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 13023 return -EINVAL; 13024 13025 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 13026 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 13027 return -EINVAL; 13028 13029 if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1)) 13030 return -EINVAL; 13031 13032 return kvm_alloc_memslot_metadata(kvm, new); 13033 } 13034 13035 if (change == KVM_MR_FLAGS_ONLY) 13036 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 13037 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 13038 return -EIO; 13039 13040 return 0; 13041 } 13042 13043 13044 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 13045 { 13046 int nr_slots; 13047 13048 if (!kvm->arch.cpu_dirty_log_size) 13049 return; 13050 13051 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 13052 if ((enable && nr_slots == 1) || !nr_slots) 13053 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 13054 } 13055 13056 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 13057 struct kvm_memory_slot *old, 13058 const struct kvm_memory_slot *new, 13059 enum kvm_mr_change change) 13060 { 13061 u32 old_flags = old ? old->flags : 0; 13062 u32 new_flags = new ? new->flags : 0; 13063 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 13064 13065 /* 13066 * Update CPU dirty logging if dirty logging is being toggled. This 13067 * applies to all operations. 13068 */ 13069 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 13070 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 13071 13072 /* 13073 * Nothing more to do for RO slots (which can't be dirtied and can't be 13074 * made writable) or CREATE/MOVE/DELETE of a slot. 13075 * 13076 * For a memslot with dirty logging disabled: 13077 * CREATE: No dirty mappings will already exist. 13078 * MOVE/DELETE: The old mappings will already have been cleaned up by 13079 * kvm_arch_flush_shadow_memslot() 13080 * 13081 * For a memslot with dirty logging enabled: 13082 * CREATE: No shadow pages exist, thus nothing to write-protect 13083 * and no dirty bits to clear. 13084 * MOVE/DELETE: The old mappings will already have been cleaned up by 13085 * kvm_arch_flush_shadow_memslot(). 13086 */ 13087 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 13088 return; 13089 13090 /* 13091 * READONLY and non-flags changes were filtered out above, and the only 13092 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 13093 * logging isn't being toggled on or off. 13094 */ 13095 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 13096 return; 13097 13098 if (!log_dirty_pages) { 13099 /* 13100 * Recover huge page mappings in the slot now that dirty logging 13101 * is disabled, i.e. now that KVM does not have to track guest 13102 * writes at 4KiB granularity. 13103 * 13104 * Dirty logging might be disabled by userspace if an ongoing VM 13105 * live migration is cancelled and the VM must continue running 13106 * on the source. 13107 */ 13108 kvm_mmu_recover_huge_pages(kvm, new); 13109 } else { 13110 /* 13111 * Initially-all-set does not require write protecting any page, 13112 * because they're all assumed to be dirty. 13113 */ 13114 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 13115 return; 13116 13117 if (READ_ONCE(eager_page_split)) 13118 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 13119 13120 if (kvm->arch.cpu_dirty_log_size) { 13121 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 13122 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 13123 } else { 13124 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 13125 } 13126 13127 /* 13128 * Unconditionally flush the TLBs after enabling dirty logging. 13129 * A flush is almost always going to be necessary (see below), 13130 * and unconditionally flushing allows the helpers to omit 13131 * the subtly complex checks when removing write access. 13132 * 13133 * Do the flush outside of mmu_lock to reduce the amount of 13134 * time mmu_lock is held. Flushing after dropping mmu_lock is 13135 * safe as KVM only needs to guarantee the slot is fully 13136 * write-protected before returning to userspace, i.e. before 13137 * userspace can consume the dirty status. 13138 * 13139 * Flushing outside of mmu_lock requires KVM to be careful when 13140 * making decisions based on writable status of an SPTE, e.g. a 13141 * !writable SPTE doesn't guarantee a CPU can't perform writes. 13142 * 13143 * Specifically, KVM also write-protects guest page tables to 13144 * monitor changes when using shadow paging, and must guarantee 13145 * no CPUs can write to those page before mmu_lock is dropped. 13146 * Because CPUs may have stale TLB entries at this point, a 13147 * !writable SPTE doesn't guarantee CPUs can't perform writes. 13148 * 13149 * KVM also allows making SPTES writable outside of mmu_lock, 13150 * e.g. to allow dirty logging without taking mmu_lock. 13151 * 13152 * To handle these scenarios, KVM uses a separate software-only 13153 * bit (MMU-writable) to track if a SPTE is !writable due to 13154 * a guest page table being write-protected (KVM clears the 13155 * MMU-writable flag when write-protecting for shadow paging). 13156 * 13157 * The use of MMU-writable is also the primary motivation for 13158 * the unconditional flush. Because KVM must guarantee that a 13159 * CPU doesn't contain stale, writable TLB entries for a 13160 * !MMU-writable SPTE, KVM must flush if it encounters any 13161 * MMU-writable SPTE regardless of whether the actual hardware 13162 * writable bit was set. I.e. KVM is almost guaranteed to need 13163 * to flush, while unconditionally flushing allows the "remove 13164 * write access" helpers to ignore MMU-writable entirely. 13165 * 13166 * See is_writable_pte() for more details (the case involving 13167 * access-tracked SPTEs is particularly relevant). 13168 */ 13169 kvm_flush_remote_tlbs_memslot(kvm, new); 13170 } 13171 } 13172 13173 void kvm_arch_commit_memory_region(struct kvm *kvm, 13174 struct kvm_memory_slot *old, 13175 const struct kvm_memory_slot *new, 13176 enum kvm_mr_change change) 13177 { 13178 if (change == KVM_MR_DELETE) 13179 kvm_page_track_delete_slot(kvm, old); 13180 13181 if (!kvm->arch.n_requested_mmu_pages && 13182 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13183 unsigned long nr_mmu_pages; 13184 13185 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13186 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13187 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13188 } 13189 13190 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13191 13192 /* Free the arrays associated with the old memslot. */ 13193 if (change == KVM_MR_MOVE) 13194 kvm_arch_free_memslot(kvm, old); 13195 } 13196 13197 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13198 { 13199 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)); 13200 13201 if (vcpu->arch.guest_state_protected) 13202 return true; 13203 13204 return kvm_x86_call(get_cpl)(vcpu) == 0; 13205 } 13206 13207 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13208 { 13209 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)); 13210 13211 if (vcpu->arch.guest_state_protected) 13212 return 0; 13213 13214 return kvm_rip_read(vcpu); 13215 } 13216 13217 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13218 { 13219 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13220 } 13221 13222 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13223 { 13224 return kvm_x86_call(interrupt_allowed)(vcpu, false); 13225 } 13226 13227 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13228 { 13229 /* Can't read the RIP when guest state is protected, just return 0 */ 13230 if (vcpu->arch.guest_state_protected) 13231 return 0; 13232 13233 if (is_64_bit_mode(vcpu)) 13234 return kvm_rip_read(vcpu); 13235 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13236 kvm_rip_read(vcpu)); 13237 } 13238 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13239 13240 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13241 { 13242 return kvm_get_linear_rip(vcpu) == linear_rip; 13243 } 13244 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13245 13246 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13247 { 13248 unsigned long rflags; 13249 13250 rflags = kvm_x86_call(get_rflags)(vcpu); 13251 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13252 rflags &= ~X86_EFLAGS_TF; 13253 return rflags; 13254 } 13255 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13256 13257 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13258 { 13259 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13260 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13261 rflags |= X86_EFLAGS_TF; 13262 kvm_x86_call(set_rflags)(vcpu, rflags); 13263 } 13264 13265 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13266 { 13267 __kvm_set_rflags(vcpu, rflags); 13268 kvm_make_request(KVM_REQ_EVENT, vcpu); 13269 } 13270 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13271 13272 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13273 { 13274 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13275 13276 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13277 } 13278 13279 static inline u32 kvm_async_pf_next_probe(u32 key) 13280 { 13281 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13282 } 13283 13284 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13285 { 13286 u32 key = kvm_async_pf_hash_fn(gfn); 13287 13288 while (vcpu->arch.apf.gfns[key] != ~0) 13289 key = kvm_async_pf_next_probe(key); 13290 13291 vcpu->arch.apf.gfns[key] = gfn; 13292 } 13293 13294 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13295 { 13296 int i; 13297 u32 key = kvm_async_pf_hash_fn(gfn); 13298 13299 for (i = 0; i < ASYNC_PF_PER_VCPU && 13300 (vcpu->arch.apf.gfns[key] != gfn && 13301 vcpu->arch.apf.gfns[key] != ~0); i++) 13302 key = kvm_async_pf_next_probe(key); 13303 13304 return key; 13305 } 13306 13307 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13308 { 13309 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13310 } 13311 13312 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13313 { 13314 u32 i, j, k; 13315 13316 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13317 13318 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13319 return; 13320 13321 while (true) { 13322 vcpu->arch.apf.gfns[i] = ~0; 13323 do { 13324 j = kvm_async_pf_next_probe(j); 13325 if (vcpu->arch.apf.gfns[j] == ~0) 13326 return; 13327 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13328 /* 13329 * k lies cyclically in ]i,j] 13330 * | i.k.j | 13331 * |....j i.k.| or |.k..j i...| 13332 */ 13333 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13334 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13335 i = j; 13336 } 13337 } 13338 13339 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13340 { 13341 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13342 13343 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13344 sizeof(reason)); 13345 } 13346 13347 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13348 { 13349 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13350 13351 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13352 &token, offset, sizeof(token)); 13353 } 13354 13355 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13356 { 13357 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13358 u32 val; 13359 13360 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13361 &val, offset, sizeof(val))) 13362 return false; 13363 13364 return !val; 13365 } 13366 13367 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13368 { 13369 13370 if (!kvm_pv_async_pf_enabled(vcpu)) 13371 return false; 13372 13373 if (!vcpu->arch.apf.send_always && 13374 (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu))) 13375 return false; 13376 13377 if (is_guest_mode(vcpu)) { 13378 /* 13379 * L1 needs to opt into the special #PF vmexits that are 13380 * used to deliver async page faults. 13381 */ 13382 return vcpu->arch.apf.delivery_as_pf_vmexit; 13383 } else { 13384 /* 13385 * Play it safe in case the guest temporarily disables paging. 13386 * The real mode IDT in particular is unlikely to have a #PF 13387 * exception setup. 13388 */ 13389 return is_paging(vcpu); 13390 } 13391 } 13392 13393 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13394 { 13395 if (unlikely(!lapic_in_kernel(vcpu) || 13396 kvm_event_needs_reinjection(vcpu) || 13397 kvm_is_exception_pending(vcpu))) 13398 return false; 13399 13400 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13401 return false; 13402 13403 /* 13404 * If interrupts are off we cannot even use an artificial 13405 * halt state. 13406 */ 13407 return kvm_arch_interrupt_allowed(vcpu); 13408 } 13409 13410 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13411 struct kvm_async_pf *work) 13412 { 13413 struct x86_exception fault; 13414 13415 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13416 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13417 13418 if (kvm_can_deliver_async_pf(vcpu) && 13419 !apf_put_user_notpresent(vcpu)) { 13420 fault.vector = PF_VECTOR; 13421 fault.error_code_valid = true; 13422 fault.error_code = 0; 13423 fault.nested_page_fault = false; 13424 fault.address = work->arch.token; 13425 fault.async_page_fault = true; 13426 kvm_inject_page_fault(vcpu, &fault); 13427 return true; 13428 } else { 13429 /* 13430 * It is not possible to deliver a paravirtualized asynchronous 13431 * page fault, but putting the guest in an artificial halt state 13432 * can be beneficial nevertheless: if an interrupt arrives, we 13433 * can deliver it timely and perhaps the guest will schedule 13434 * another process. When the instruction that triggered a page 13435 * fault is retried, hopefully the page will be ready in the host. 13436 */ 13437 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13438 return false; 13439 } 13440 } 13441 13442 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13443 struct kvm_async_pf *work) 13444 { 13445 struct kvm_lapic_irq irq = { 13446 .delivery_mode = APIC_DM_FIXED, 13447 .vector = vcpu->arch.apf.vec 13448 }; 13449 13450 if (work->wakeup_all) 13451 work->arch.token = ~0; /* broadcast wakeup */ 13452 else 13453 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13454 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13455 13456 if ((work->wakeup_all || work->notpresent_injected) && 13457 kvm_pv_async_pf_enabled(vcpu) && 13458 !apf_put_user_ready(vcpu, work->arch.token)) { 13459 vcpu->arch.apf.pageready_pending = true; 13460 kvm_apic_set_irq(vcpu, &irq, NULL); 13461 } 13462 13463 vcpu->arch.apf.halted = false; 13464 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 13465 } 13466 13467 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13468 { 13469 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13470 if (!vcpu->arch.apf.pageready_pending) 13471 kvm_vcpu_kick(vcpu); 13472 } 13473 13474 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13475 { 13476 if (!kvm_pv_async_pf_enabled(vcpu)) 13477 return true; 13478 else 13479 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13480 } 13481 13482 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13483 { 13484 /* 13485 * Non-coherent DMA assignment and de-assignment may affect whether or 13486 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs 13487 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first 13488 * (or last) non-coherent device is (un)registered to so that new SPTEs 13489 * with the correct "ignore guest PAT" setting are created. 13490 * 13491 * If KVM always honors guest PAT, however, there is nothing to do. 13492 */ 13493 if (kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT)) 13494 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13495 } 13496 13497 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13498 { 13499 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13500 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13501 } 13502 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13503 13504 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13505 { 13506 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13507 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13508 } 13509 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13510 13511 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13512 { 13513 return atomic_read(&kvm->arch.noncoherent_dma_count); 13514 } 13515 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13516 13517 bool kvm_vector_hashing_enabled(void) 13518 { 13519 return vector_hashing; 13520 } 13521 13522 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13523 { 13524 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13525 } 13526 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13527 13528 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 13529 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order) 13530 { 13531 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order); 13532 } 13533 #endif 13534 13535 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 13536 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 13537 { 13538 kvm_x86_call(gmem_invalidate)(start, end); 13539 } 13540 #endif 13541 13542 int kvm_spec_ctrl_test_value(u64 value) 13543 { 13544 /* 13545 * test that setting IA32_SPEC_CTRL to given value 13546 * is allowed by the host processor 13547 */ 13548 13549 u64 saved_value; 13550 unsigned long flags; 13551 int ret = 0; 13552 13553 local_irq_save(flags); 13554 13555 if (rdmsrq_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13556 ret = 1; 13557 else if (wrmsrq_safe(MSR_IA32_SPEC_CTRL, value)) 13558 ret = 1; 13559 else 13560 wrmsrq(MSR_IA32_SPEC_CTRL, saved_value); 13561 13562 local_irq_restore(flags); 13563 13564 return ret; 13565 } 13566 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13567 13568 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13569 { 13570 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13571 struct x86_exception fault; 13572 u64 access = error_code & 13573 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13574 13575 if (!(error_code & PFERR_PRESENT_MASK) || 13576 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13577 /* 13578 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13579 * tables probably do not match the TLB. Just proceed 13580 * with the error code that the processor gave. 13581 */ 13582 fault.vector = PF_VECTOR; 13583 fault.error_code_valid = true; 13584 fault.error_code = error_code; 13585 fault.nested_page_fault = false; 13586 fault.address = gva; 13587 fault.async_page_fault = false; 13588 } 13589 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13590 } 13591 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13592 13593 /* 13594 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13595 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13596 * indicates whether exit to userspace is needed. 13597 */ 13598 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13599 struct x86_exception *e) 13600 { 13601 if (r == X86EMUL_PROPAGATE_FAULT) { 13602 if (KVM_BUG_ON(!e, vcpu->kvm)) 13603 return -EIO; 13604 13605 kvm_inject_emulated_page_fault(vcpu, e); 13606 return 1; 13607 } 13608 13609 /* 13610 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13611 * while handling a VMX instruction KVM could've handled the request 13612 * correctly by exiting to userspace and performing I/O but there 13613 * doesn't seem to be a real use-case behind such requests, just return 13614 * KVM_EXIT_INTERNAL_ERROR for now. 13615 */ 13616 kvm_prepare_emulation_failure_exit(vcpu); 13617 13618 return 0; 13619 } 13620 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13621 13622 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13623 { 13624 bool pcid_enabled; 13625 struct x86_exception e; 13626 struct { 13627 u64 pcid; 13628 u64 gla; 13629 } operand; 13630 int r; 13631 13632 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13633 if (r != X86EMUL_CONTINUE) 13634 return kvm_handle_memory_failure(vcpu, r, &e); 13635 13636 if (operand.pcid >> 12 != 0) { 13637 kvm_inject_gp(vcpu, 0); 13638 return 1; 13639 } 13640 13641 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13642 13643 switch (type) { 13644 case INVPCID_TYPE_INDIV_ADDR: 13645 /* 13646 * LAM doesn't apply to addresses that are inputs to TLB 13647 * invalidation. 13648 */ 13649 if ((!pcid_enabled && (operand.pcid != 0)) || 13650 is_noncanonical_invlpg_address(operand.gla, vcpu)) { 13651 kvm_inject_gp(vcpu, 0); 13652 return 1; 13653 } 13654 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13655 return kvm_skip_emulated_instruction(vcpu); 13656 13657 case INVPCID_TYPE_SINGLE_CTXT: 13658 if (!pcid_enabled && (operand.pcid != 0)) { 13659 kvm_inject_gp(vcpu, 0); 13660 return 1; 13661 } 13662 13663 kvm_invalidate_pcid(vcpu, operand.pcid); 13664 return kvm_skip_emulated_instruction(vcpu); 13665 13666 case INVPCID_TYPE_ALL_NON_GLOBAL: 13667 /* 13668 * Currently, KVM doesn't mark global entries in the shadow 13669 * page tables, so a non-global flush just degenerates to a 13670 * global flush. If needed, we could optimize this later by 13671 * keeping track of global entries in shadow page tables. 13672 */ 13673 13674 fallthrough; 13675 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13676 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13677 return kvm_skip_emulated_instruction(vcpu); 13678 13679 default: 13680 kvm_inject_gp(vcpu, 0); 13681 return 1; 13682 } 13683 } 13684 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13685 13686 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13687 { 13688 struct kvm_run *run = vcpu->run; 13689 struct kvm_mmio_fragment *frag; 13690 unsigned int len; 13691 13692 BUG_ON(!vcpu->mmio_needed); 13693 13694 /* Complete previous fragment */ 13695 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13696 len = min(8u, frag->len); 13697 if (!vcpu->mmio_is_write) 13698 memcpy(frag->data, run->mmio.data, len); 13699 13700 if (frag->len <= 8) { 13701 /* Switch to the next fragment. */ 13702 frag++; 13703 vcpu->mmio_cur_fragment++; 13704 } else { 13705 /* Go forward to the next mmio piece. */ 13706 frag->data += len; 13707 frag->gpa += len; 13708 frag->len -= len; 13709 } 13710 13711 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13712 vcpu->mmio_needed = 0; 13713 13714 // VMG change, at this point, we're always done 13715 // RIP has already been advanced 13716 return 1; 13717 } 13718 13719 // More MMIO is needed 13720 run->mmio.phys_addr = frag->gpa; 13721 run->mmio.len = min(8u, frag->len); 13722 run->mmio.is_write = vcpu->mmio_is_write; 13723 if (run->mmio.is_write) 13724 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13725 run->exit_reason = KVM_EXIT_MMIO; 13726 13727 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13728 13729 return 0; 13730 } 13731 13732 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13733 void *data) 13734 { 13735 int handled; 13736 struct kvm_mmio_fragment *frag; 13737 13738 if (!data) 13739 return -EINVAL; 13740 13741 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13742 if (handled == bytes) 13743 return 1; 13744 13745 bytes -= handled; 13746 gpa += handled; 13747 data += handled; 13748 13749 /*TODO: Check if need to increment number of frags */ 13750 frag = vcpu->mmio_fragments; 13751 vcpu->mmio_nr_fragments = 1; 13752 frag->len = bytes; 13753 frag->gpa = gpa; 13754 frag->data = data; 13755 13756 vcpu->mmio_needed = 1; 13757 vcpu->mmio_cur_fragment = 0; 13758 13759 vcpu->run->mmio.phys_addr = gpa; 13760 vcpu->run->mmio.len = min(8u, frag->len); 13761 vcpu->run->mmio.is_write = 1; 13762 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13763 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13764 13765 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13766 13767 return 0; 13768 } 13769 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13770 13771 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13772 void *data) 13773 { 13774 int handled; 13775 struct kvm_mmio_fragment *frag; 13776 13777 if (!data) 13778 return -EINVAL; 13779 13780 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13781 if (handled == bytes) 13782 return 1; 13783 13784 bytes -= handled; 13785 gpa += handled; 13786 data += handled; 13787 13788 /*TODO: Check if need to increment number of frags */ 13789 frag = vcpu->mmio_fragments; 13790 vcpu->mmio_nr_fragments = 1; 13791 frag->len = bytes; 13792 frag->gpa = gpa; 13793 frag->data = data; 13794 13795 vcpu->mmio_needed = 1; 13796 vcpu->mmio_cur_fragment = 0; 13797 13798 vcpu->run->mmio.phys_addr = gpa; 13799 vcpu->run->mmio.len = min(8u, frag->len); 13800 vcpu->run->mmio.is_write = 0; 13801 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13802 13803 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13804 13805 return 0; 13806 } 13807 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13808 13809 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13810 { 13811 vcpu->arch.sev_pio_count -= count; 13812 vcpu->arch.sev_pio_data += count * size; 13813 } 13814 13815 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13816 unsigned int port); 13817 13818 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13819 { 13820 int size = vcpu->arch.pio.size; 13821 int port = vcpu->arch.pio.port; 13822 13823 vcpu->arch.pio.count = 0; 13824 if (vcpu->arch.sev_pio_count) 13825 return kvm_sev_es_outs(vcpu, size, port); 13826 return 1; 13827 } 13828 13829 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13830 unsigned int port) 13831 { 13832 for (;;) { 13833 unsigned int count = 13834 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13835 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13836 13837 /* memcpy done already by emulator_pio_out. */ 13838 advance_sev_es_emulated_pio(vcpu, count, size); 13839 if (!ret) 13840 break; 13841 13842 /* Emulation done by the kernel. */ 13843 if (!vcpu->arch.sev_pio_count) 13844 return 1; 13845 } 13846 13847 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13848 return 0; 13849 } 13850 13851 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13852 unsigned int port); 13853 13854 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13855 { 13856 unsigned count = vcpu->arch.pio.count; 13857 int size = vcpu->arch.pio.size; 13858 int port = vcpu->arch.pio.port; 13859 13860 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13861 advance_sev_es_emulated_pio(vcpu, count, size); 13862 if (vcpu->arch.sev_pio_count) 13863 return kvm_sev_es_ins(vcpu, size, port); 13864 return 1; 13865 } 13866 13867 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13868 unsigned int port) 13869 { 13870 for (;;) { 13871 unsigned int count = 13872 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13873 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13874 break; 13875 13876 /* Emulation done by the kernel. */ 13877 advance_sev_es_emulated_pio(vcpu, count, size); 13878 if (!vcpu->arch.sev_pio_count) 13879 return 1; 13880 } 13881 13882 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13883 return 0; 13884 } 13885 13886 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13887 unsigned int port, void *data, unsigned int count, 13888 int in) 13889 { 13890 vcpu->arch.sev_pio_data = data; 13891 vcpu->arch.sev_pio_count = count; 13892 return in ? kvm_sev_es_ins(vcpu, size, port) 13893 : kvm_sev_es_outs(vcpu, size, port); 13894 } 13895 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13896 13897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_mmio); 13900 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13901 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13902 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13903 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13904 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13905 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13906 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13907 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13908 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13909 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13910 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13911 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13912 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13913 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13914 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13915 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13916 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13917 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13918 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13919 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13920 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13921 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13922 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13923 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13924 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13925 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13926 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault); 13927 13928 static int __init kvm_x86_init(void) 13929 { 13930 kvm_init_xstate_sizes(); 13931 13932 kvm_mmu_x86_module_init(); 13933 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13934 return 0; 13935 } 13936 module_init(kvm_x86_init); 13937 13938 static void __exit kvm_x86_exit(void) 13939 { 13940 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu)); 13941 } 13942 module_exit(kvm_x86_exit); 13943