1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 /* 19 * The MMU needs to be able to access/walk 32-bit and 64-bit guest page tables, 20 * as well as guest EPT tables, so the code in this file is compiled thrice, 21 * once per guest PTE type. The per-type defines are #undef'd at the end. 22 */ 23 24 #if PTTYPE == 64 25 #define pt_element_t u64 26 #define guest_walker guest_walker64 27 #define FNAME(name) paging##64_##name 28 #define PT_LEVEL_BITS 9 29 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 30 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 31 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 32 #ifdef CONFIG_X86_64 33 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL 34 #else 35 #define PT_MAX_FULL_LEVELS 2 36 #endif 37 #elif PTTYPE == 32 38 #define pt_element_t u32 39 #define guest_walker guest_walker32 40 #define FNAME(name) paging##32_##name 41 #define PT_LEVEL_BITS 10 42 #define PT_MAX_FULL_LEVELS 2 43 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 44 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 45 #define PT_HAVE_ACCESSED_DIRTY(mmu) true 46 47 #define PT32_DIR_PSE36_SIZE 4 48 #define PT32_DIR_PSE36_SHIFT 13 49 #define PT32_DIR_PSE36_MASK \ 50 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) 51 #elif PTTYPE == PTTYPE_EPT 52 #define pt_element_t u64 53 #define guest_walker guest_walkerEPT 54 #define FNAME(name) ept_##name 55 #define PT_LEVEL_BITS 9 56 #define PT_GUEST_DIRTY_SHIFT 9 57 #define PT_GUEST_ACCESSED_SHIFT 8 58 #define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled) 59 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL 60 #else 61 #error Invalid PTTYPE value 62 #endif 63 64 /* Common logic, but per-type values. These also need to be undefined. */ 65 #define PT_BASE_ADDR_MASK ((pt_element_t)__PT_BASE_ADDR_MASK) 66 #define PT_LVL_ADDR_MASK(lvl) __PT_LVL_ADDR_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS) 67 #define PT_LVL_OFFSET_MASK(lvl) __PT_LVL_OFFSET_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS) 68 #define PT_INDEX(addr, lvl) __PT_INDEX(addr, lvl, PT_LEVEL_BITS) 69 70 #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT) 71 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT) 72 73 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) 74 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K) 75 76 /* 77 * The guest_walker structure emulates the behavior of the hardware page 78 * table walker. 79 */ 80 struct guest_walker { 81 int level; 82 unsigned max_level; 83 gfn_t table_gfn[PT_MAX_FULL_LEVELS]; 84 pt_element_t ptes[PT_MAX_FULL_LEVELS]; 85 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; 86 gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; 87 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; 88 bool pte_writable[PT_MAX_FULL_LEVELS]; 89 unsigned int pt_access[PT_MAX_FULL_LEVELS]; 90 unsigned int pte_access; 91 gfn_t gfn; 92 struct x86_exception fault; 93 }; 94 95 #if PTTYPE == 32 96 static inline gfn_t pse36_gfn_delta(u32 gpte) 97 { 98 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 99 100 return (gpte & PT32_DIR_PSE36_MASK) << shift; 101 } 102 #endif 103 104 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) 105 { 106 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; 107 } 108 109 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access, 110 unsigned gpte) 111 { 112 unsigned mask; 113 114 /* dirty bit is not supported, so no need to track it */ 115 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 116 return; 117 118 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); 119 120 mask = (unsigned)~ACC_WRITE_MASK; 121 /* Allow write access to dirty gptes */ 122 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & 123 PT_WRITABLE_MASK; 124 *access &= mask; 125 } 126 127 static inline int FNAME(is_present_gpte)(unsigned long pte) 128 { 129 #if PTTYPE != PTTYPE_EPT 130 return pte & PT_PRESENT_MASK; 131 #else 132 return pte & 7; 133 #endif 134 } 135 136 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte) 137 { 138 #if PTTYPE != PTTYPE_EPT 139 return false; 140 #else 141 return __is_bad_mt_xwr(rsvd_check, gpte); 142 #endif 143 } 144 145 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level) 146 { 147 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) || 148 FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte); 149 } 150 151 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, 152 struct kvm_mmu_page *sp, u64 *spte, 153 u64 gpte) 154 { 155 if (!FNAME(is_present_gpte)(gpte)) 156 goto no_present; 157 158 /* Prefetch only accessed entries (unless A/D bits are disabled). */ 159 if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) && 160 !(gpte & PT_GUEST_ACCESSED_MASK)) 161 goto no_present; 162 163 if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K)) 164 goto no_present; 165 166 return false; 167 168 no_present: 169 drop_spte(vcpu->kvm, spte); 170 return true; 171 } 172 173 /* 174 * For PTTYPE_EPT, a page table can be executable but not readable 175 * on supported processors. Therefore, set_spte does not automatically 176 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK 177 * to signify readability since it isn't used in the EPT case 178 */ 179 static inline unsigned FNAME(gpte_access)(u64 gpte) 180 { 181 unsigned access; 182 #if PTTYPE == PTTYPE_EPT 183 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | 184 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | 185 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0); 186 #else 187 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK); 188 BUILD_BUG_ON(ACC_EXEC_MASK != 1); 189 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK); 190 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */ 191 access ^= (gpte >> PT64_NX_SHIFT); 192 #endif 193 194 return access; 195 } 196 197 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, 198 struct kvm_mmu *mmu, 199 struct guest_walker *walker, 200 gpa_t addr, int write_fault) 201 { 202 unsigned level, index; 203 pt_element_t pte, orig_pte; 204 pt_element_t __user *ptep_user; 205 gfn_t table_gfn; 206 int ret; 207 208 /* dirty/accessed bits are not supported, so no need to update them */ 209 if (!PT_HAVE_ACCESSED_DIRTY(mmu)) 210 return 0; 211 212 for (level = walker->max_level; level >= walker->level; --level) { 213 pte = orig_pte = walker->ptes[level - 1]; 214 table_gfn = walker->table_gfn[level - 1]; 215 ptep_user = walker->ptep_user[level - 1]; 216 index = offset_in_page(ptep_user) / sizeof(pt_element_t); 217 if (!(pte & PT_GUEST_ACCESSED_MASK)) { 218 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); 219 pte |= PT_GUEST_ACCESSED_MASK; 220 } 221 if (level == walker->level && write_fault && 222 !(pte & PT_GUEST_DIRTY_MASK)) { 223 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); 224 #if PTTYPE == PTTYPE_EPT 225 if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr)) 226 return -EINVAL; 227 #endif 228 pte |= PT_GUEST_DIRTY_MASK; 229 } 230 if (pte == orig_pte) 231 continue; 232 233 /* 234 * If the slot is read-only, simply do not process the accessed 235 * and dirty bits. This is the correct thing to do if the slot 236 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots 237 * are only supported if the accessed and dirty bits are already 238 * set in the ROM (so that MMIO writes are never needed). 239 * 240 * Note that NPT does not allow this at all and faults, since 241 * it always wants nested page table entries for the guest 242 * page tables to be writable. And EPT works but will simply 243 * overwrite the read-only memory to set the accessed and dirty 244 * bits. 245 */ 246 if (unlikely(!walker->pte_writable[level - 1])) 247 continue; 248 249 ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault); 250 if (ret) 251 return ret; 252 253 kvm_vcpu_mark_page_dirty(vcpu, table_gfn); 254 walker->ptes[level - 1] = pte; 255 } 256 return 0; 257 } 258 259 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte) 260 { 261 unsigned pkeys = 0; 262 #if PTTYPE == 64 263 pte_t pte = {.pte = gpte}; 264 265 pkeys = pte_flags_pkey(pte_flags(pte)); 266 #endif 267 return pkeys; 268 } 269 270 static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu, 271 unsigned int level, unsigned int gpte) 272 { 273 /* 274 * For EPT and PAE paging (both variants), bit 7 is either reserved at 275 * all level or indicates a huge page (ignoring CR3/EPTP). In either 276 * case, bit 7 being set terminates the walk. 277 */ 278 #if PTTYPE == 32 279 /* 280 * 32-bit paging requires special handling because bit 7 is ignored if 281 * CR4.PSE=0, not reserved. Clear bit 7 in the gpte if the level is 282 * greater than the last level for which bit 7 is the PAGE_SIZE bit. 283 * 284 * The RHS has bit 7 set iff level < (2 + PSE). If it is clear, bit 7 285 * is not reserved and does not indicate a large page at this level, 286 * so clear PT_PAGE_SIZE_MASK in gpte if that is the case. 287 */ 288 gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse); 289 #endif 290 /* 291 * PG_LEVEL_4K always terminates. The RHS has bit 7 set 292 * iff level <= PG_LEVEL_4K, which for our purpose means 293 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. 294 */ 295 gpte |= level - PG_LEVEL_4K - 1; 296 297 return gpte & PT_PAGE_SIZE_MASK; 298 } 299 /* 300 * Fetch a guest pte for a guest virtual address, or for an L2's GPA. 301 */ 302 static int FNAME(walk_addr_generic)(struct guest_walker *walker, 303 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 304 gpa_t addr, u64 access) 305 { 306 int ret; 307 pt_element_t pte; 308 pt_element_t __user *ptep_user; 309 gfn_t table_gfn; 310 u64 pt_access, pte_access; 311 unsigned index, accessed_dirty, pte_pkey; 312 u64 nested_access; 313 gpa_t pte_gpa; 314 bool have_ad; 315 int offset; 316 u64 walk_nx_mask = 0; 317 const int write_fault = access & PFERR_WRITE_MASK; 318 const int user_fault = access & PFERR_USER_MASK; 319 const int fetch_fault = access & PFERR_FETCH_MASK; 320 u16 errcode = 0; 321 gpa_t real_gpa; 322 gfn_t gfn; 323 324 trace_kvm_mmu_pagetable_walk(addr, access); 325 retry_walk: 326 walker->level = mmu->cpu_role.base.level; 327 pte = kvm_mmu_get_guest_pgd(vcpu, mmu); 328 have_ad = PT_HAVE_ACCESSED_DIRTY(mmu); 329 330 #if PTTYPE == 64 331 walk_nx_mask = 1ULL << PT64_NX_SHIFT; 332 if (walker->level == PT32E_ROOT_LEVEL) { 333 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); 334 trace_kvm_mmu_paging_element(pte, walker->level); 335 if (!FNAME(is_present_gpte)(pte)) 336 goto error; 337 --walker->level; 338 } 339 #endif 340 walker->max_level = walker->level; 341 342 /* 343 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging 344 * by the MOV to CR instruction are treated as reads and do not cause the 345 * processor to set the dirty flag in any EPT paging-structure entry. 346 */ 347 nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK; 348 349 pte_access = ~0; 350 351 /* 352 * Queue a page fault for injection if this assertion fails, as callers 353 * assume that walker.fault contains sane info on a walk failure. I.e. 354 * avoid making the situation worse by inducing even worse badness 355 * between when the assertion fails and when KVM kicks the vCPU out to 356 * userspace (because the VM is bugged). 357 */ 358 if (KVM_BUG_ON(is_long_mode(vcpu) && !is_pae(vcpu), vcpu->kvm)) 359 goto error; 360 361 ++walker->level; 362 363 do { 364 struct kvm_memory_slot *slot; 365 unsigned long host_addr; 366 367 pt_access = pte_access; 368 --walker->level; 369 370 index = PT_INDEX(addr, walker->level); 371 table_gfn = gpte_to_gfn(pte); 372 offset = index * sizeof(pt_element_t); 373 pte_gpa = gfn_to_gpa(table_gfn) + offset; 374 375 BUG_ON(walker->level < 1); 376 walker->table_gfn[walker->level - 1] = table_gfn; 377 walker->pte_gpa[walker->level - 1] = pte_gpa; 378 379 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn), 380 nested_access, &walker->fault); 381 382 /* 383 * FIXME: This can happen if emulation (for of an INS/OUTS 384 * instruction) triggers a nested page fault. The exit 385 * qualification / exit info field will incorrectly have 386 * "guest page access" as the nested page fault's cause, 387 * instead of "guest page structure access". To fix this, 388 * the x86_exception struct should be augmented with enough 389 * information to fix the exit_qualification or exit_info_1 390 * fields. 391 */ 392 if (unlikely(real_gpa == INVALID_GPA)) 393 return 0; 394 395 slot = kvm_vcpu_gfn_to_memslot(vcpu, gpa_to_gfn(real_gpa)); 396 if (!kvm_is_visible_memslot(slot)) 397 goto error; 398 399 host_addr = gfn_to_hva_memslot_prot(slot, gpa_to_gfn(real_gpa), 400 &walker->pte_writable[walker->level - 1]); 401 if (unlikely(kvm_is_error_hva(host_addr))) 402 goto error; 403 404 ptep_user = (pt_element_t __user *)((void *)host_addr + offset); 405 if (unlikely(__get_user(pte, ptep_user))) 406 goto error; 407 walker->ptep_user[walker->level - 1] = ptep_user; 408 409 trace_kvm_mmu_paging_element(pte, walker->level); 410 411 /* 412 * Inverting the NX it lets us AND it like other 413 * permission bits. 414 */ 415 pte_access = pt_access & (pte ^ walk_nx_mask); 416 417 if (unlikely(!FNAME(is_present_gpte)(pte))) 418 goto error; 419 420 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) { 421 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK; 422 goto error; 423 } 424 425 walker->ptes[walker->level - 1] = pte; 426 427 /* Convert to ACC_*_MASK flags for struct guest_walker. */ 428 walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask); 429 } while (!FNAME(is_last_gpte)(mmu, walker->level, pte)); 430 431 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte); 432 accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0; 433 434 /* Convert to ACC_*_MASK flags for struct guest_walker. */ 435 walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask); 436 errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access); 437 if (unlikely(errcode)) 438 goto error; 439 440 gfn = gpte_to_gfn_lvl(pte, walker->level); 441 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; 442 443 #if PTTYPE == 32 444 if (walker->level > PG_LEVEL_4K && is_cpuid_PSE36()) 445 gfn += pse36_gfn_delta(pte); 446 #endif 447 448 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault); 449 if (real_gpa == INVALID_GPA) 450 return 0; 451 452 walker->gfn = real_gpa >> PAGE_SHIFT; 453 454 if (!write_fault) 455 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte); 456 else 457 /* 458 * On a write fault, fold the dirty bit into accessed_dirty. 459 * For modes without A/D bits support accessed_dirty will be 460 * always clear. 461 */ 462 accessed_dirty &= pte >> 463 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); 464 465 if (unlikely(!accessed_dirty)) { 466 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, 467 addr, write_fault); 468 if (unlikely(ret < 0)) 469 goto error; 470 else if (ret) 471 goto retry_walk; 472 } 473 474 return 1; 475 476 error: 477 errcode |= write_fault | user_fault; 478 if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu))) 479 errcode |= PFERR_FETCH_MASK; 480 481 walker->fault.vector = PF_VECTOR; 482 walker->fault.error_code_valid = true; 483 walker->fault.error_code = errcode; 484 485 #if PTTYPE == PTTYPE_EPT 486 /* 487 * Use PFERR_RSVD_MASK in error_code to tell if EPT 488 * misconfiguration requires to be injected. The detection is 489 * done by is_rsvd_bits_set() above. 490 * 491 * We set up the value of exit_qualification to inject: 492 * [2:0] - Derive from the access bits. The exit_qualification might be 493 * out of date if it is serving an EPT misconfiguration. 494 * [5:3] - Calculated by the page walk of the guest EPT page tables 495 * [7:8] - Derived from [7:8] of real exit_qualification 496 * 497 * The other bits are set to 0. 498 */ 499 if (!(errcode & PFERR_RSVD_MASK)) { 500 walker->fault.exit_qualification = 0; 501 502 if (write_fault) 503 walker->fault.exit_qualification |= EPT_VIOLATION_ACC_WRITE; 504 if (user_fault) 505 walker->fault.exit_qualification |= EPT_VIOLATION_ACC_READ; 506 if (fetch_fault) 507 walker->fault.exit_qualification |= EPT_VIOLATION_ACC_INSTR; 508 509 /* 510 * Note, pte_access holds the raw RWX bits from the EPTE, not 511 * ACC_*_MASK flags! 512 */ 513 walker->fault.exit_qualification |= EPT_VIOLATION_RWX_TO_PROT(pte_access); 514 } 515 #endif 516 walker->fault.address = addr; 517 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; 518 walker->fault.async_page_fault = false; 519 520 trace_kvm_mmu_walker_error(walker->fault.error_code); 521 return 0; 522 } 523 524 static int FNAME(walk_addr)(struct guest_walker *walker, 525 struct kvm_vcpu *vcpu, gpa_t addr, u64 access) 526 { 527 return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr, 528 access); 529 } 530 531 static bool 532 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 533 u64 *spte, pt_element_t gpte) 534 { 535 unsigned pte_access; 536 gfn_t gfn; 537 538 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) 539 return false; 540 541 gfn = gpte_to_gfn(gpte); 542 pte_access = sp->role.access & FNAME(gpte_access)(gpte); 543 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 544 545 return kvm_mmu_prefetch_sptes(vcpu, gfn, spte, 1, pte_access); 546 } 547 548 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, 549 struct guest_walker *gw, int level) 550 { 551 pt_element_t curr_pte; 552 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; 553 u64 mask; 554 int r, index; 555 556 if (level == PG_LEVEL_4K) { 557 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; 558 base_gpa = pte_gpa & ~mask; 559 index = (pte_gpa - base_gpa) / sizeof(pt_element_t); 560 561 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, 562 gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); 563 curr_pte = gw->prefetch_ptes[index]; 564 } else 565 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, 566 &curr_pte, sizeof(curr_pte)); 567 568 return r || curr_pte != gw->ptes[level - 1]; 569 } 570 571 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, 572 u64 *sptep) 573 { 574 struct kvm_mmu_page *sp; 575 pt_element_t *gptep = gw->prefetch_ptes; 576 u64 *spte; 577 int i; 578 579 sp = sptep_to_sp(sptep); 580 581 if (sp->role.level > PG_LEVEL_4K) 582 return; 583 584 /* 585 * If addresses are being invalidated, skip prefetching to avoid 586 * accidentally prefetching those addresses. 587 */ 588 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) 589 return; 590 591 if (sp->role.direct) 592 return __direct_pte_prefetch(vcpu, sp, sptep); 593 594 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); 595 spte = sp->spt + i; 596 597 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 598 if (spte == sptep) 599 continue; 600 601 if (is_shadow_present_pte(*spte)) 602 continue; 603 604 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i])) 605 break; 606 } 607 } 608 609 /* 610 * Fetch a shadow pte for a specific level in the paging hierarchy. 611 * If the guest tries to write a write-protected page, we need to 612 * emulate this operation, return 1 to indicate this case. 613 */ 614 static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, 615 struct guest_walker *gw) 616 { 617 struct kvm_mmu_page *sp = NULL; 618 struct kvm_shadow_walk_iterator it; 619 unsigned int direct_access, access; 620 int top_level, ret; 621 gfn_t base_gfn = fault->gfn; 622 623 WARN_ON_ONCE(gw->gfn != base_gfn); 624 direct_access = gw->pte_access; 625 626 top_level = vcpu->arch.mmu->cpu_role.base.level; 627 if (top_level == PT32E_ROOT_LEVEL) 628 top_level = PT32_ROOT_LEVEL; 629 /* 630 * Verify that the top-level gpte is still there. Since the page 631 * is a root page, it is either write protected (and cannot be 632 * changed from now on) or it is invalid (in which case, we don't 633 * really care if it changes underneath us after this point). 634 */ 635 if (FNAME(gpte_changed)(vcpu, gw, top_level)) 636 return RET_PF_RETRY; 637 638 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) 639 return RET_PF_RETRY; 640 641 /* 642 * Load a new root and retry the faulting instruction in the extremely 643 * unlikely scenario that the guest root gfn became visible between 644 * loading a dummy root and handling the resulting page fault, e.g. if 645 * userspace create a memslot in the interim. 646 */ 647 if (unlikely(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) { 648 kvm_make_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu); 649 return RET_PF_RETRY; 650 } 651 652 for_each_shadow_entry(vcpu, fault->addr, it) { 653 gfn_t table_gfn; 654 655 clear_sp_write_flooding_count(it.sptep); 656 if (it.level == gw->level) 657 break; 658 659 table_gfn = gw->table_gfn[it.level - 2]; 660 access = gw->pt_access[it.level - 2]; 661 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, table_gfn, 662 false, access); 663 664 /* 665 * Synchronize the new page before linking it, as the CPU (KVM) 666 * is architecturally disallowed from inserting non-present 667 * entries into the TLB, i.e. the guest isn't required to flush 668 * the TLB when changing the gPTE from non-present to present. 669 * 670 * For PG_LEVEL_4K, kvm_mmu_find_shadow_page() has already 671 * synchronized the page via kvm_sync_page(). 672 * 673 * For higher level pages, which cannot be unsync themselves 674 * but can have unsync children, synchronize via the slower 675 * mmu_sync_children(). If KVM needs to drop mmu_lock due to 676 * contention or to reschedule, instruct the caller to retry 677 * the #PF (mmu_sync_children() ensures forward progress will 678 * be made). 679 */ 680 if (sp != ERR_PTR(-EEXIST) && sp->unsync_children && 681 mmu_sync_children(vcpu, sp, false)) 682 return RET_PF_RETRY; 683 684 /* 685 * Verify that the gpte in the page, which is now either 686 * write-protected or unsync, wasn't modified between the fault 687 * and acquiring mmu_lock. This needs to be done even when 688 * reusing an existing shadow page to ensure the information 689 * gathered by the walker matches the information stored in the 690 * shadow page (which could have been modified by a different 691 * vCPU even if the page was already linked). Holding mmu_lock 692 * prevents the shadow page from changing after this point. 693 */ 694 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) 695 return RET_PF_RETRY; 696 697 if (sp != ERR_PTR(-EEXIST)) 698 link_shadow_page(vcpu, it.sptep, sp); 699 700 if (fault->write && table_gfn == fault->gfn) 701 fault->write_fault_to_shadow_pgtable = true; 702 } 703 704 /* 705 * Adjust the hugepage size _after_ resolving indirect shadow pages. 706 * KVM doesn't support mapping hugepages into the guest for gfns that 707 * are being shadowed by KVM, i.e. allocating a new shadow page may 708 * affect the allowed hugepage size. 709 */ 710 kvm_mmu_hugepage_adjust(vcpu, fault); 711 712 trace_kvm_mmu_spte_requested(fault); 713 714 for (; shadow_walk_okay(&it); shadow_walk_next(&it)) { 715 /* 716 * We cannot overwrite existing page tables with an NX 717 * large page, as the leaf could be executable. 718 */ 719 if (fault->nx_huge_page_workaround_enabled) 720 disallowed_hugepage_adjust(fault, *it.sptep, it.level); 721 722 base_gfn = gfn_round_for_level(fault->gfn, it.level); 723 if (it.level == fault->goal_level) 724 break; 725 726 validate_direct_spte(vcpu, it.sptep, direct_access); 727 728 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, 729 true, direct_access); 730 if (sp == ERR_PTR(-EEXIST)) 731 continue; 732 733 link_shadow_page(vcpu, it.sptep, sp); 734 if (fault->huge_page_disallowed) 735 account_nx_huge_page(vcpu->kvm, sp, 736 fault->req_level >= it.level); 737 } 738 739 if (WARN_ON_ONCE(it.level != fault->goal_level)) 740 return -EFAULT; 741 742 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access, 743 base_gfn, fault->pfn, fault); 744 if (ret == RET_PF_SPURIOUS) 745 return ret; 746 747 FNAME(pte_prefetch)(vcpu, gw, it.sptep); 748 return ret; 749 } 750 751 /* 752 * Page fault handler. There are several causes for a page fault: 753 * - there is no shadow pte for the guest pte 754 * - write access through a shadow pte marked read only so that we can set 755 * the dirty bit 756 * - write access to a shadow pte marked read only so we can update the page 757 * dirty bitmap, when userspace requests it 758 * - mmio access; in this case we will never install a present shadow pte 759 * - normal guest page fault due to the guest pte marked not present, not 760 * writable, or not executable 761 * 762 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or 763 * a negative value on error. 764 */ 765 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 766 { 767 struct guest_walker walker; 768 int r; 769 770 WARN_ON_ONCE(fault->is_tdp); 771 772 /* 773 * Look up the guest pte for the faulting address. 774 * If PFEC.RSVD is set, this is a shadow page fault. 775 * The bit needs to be cleared before walking guest page tables. 776 */ 777 r = FNAME(walk_addr)(&walker, vcpu, fault->addr, 778 fault->error_code & ~PFERR_RSVD_MASK); 779 780 /* 781 * The page is not mapped by the guest. Let the guest handle it. 782 */ 783 if (!r) { 784 if (!fault->prefetch) 785 kvm_inject_emulated_page_fault(vcpu, &walker.fault); 786 787 return RET_PF_RETRY; 788 } 789 790 fault->gfn = walker.gfn; 791 fault->max_level = walker.level; 792 fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); 793 794 if (page_fault_handle_page_track(vcpu, fault)) { 795 shadow_page_table_clear_flood(vcpu, fault->addr); 796 return RET_PF_WRITE_PROTECTED; 797 } 798 799 r = mmu_topup_memory_caches(vcpu, true); 800 if (r) 801 return r; 802 803 r = kvm_mmu_faultin_pfn(vcpu, fault, walker.pte_access); 804 if (r != RET_PF_CONTINUE) 805 return r; 806 807 /* 808 * Do not change pte_access if the pfn is a mmio page, otherwise 809 * we will cache the incorrect access into mmio spte. 810 */ 811 if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) && 812 !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) { 813 walker.pte_access |= ACC_WRITE_MASK; 814 walker.pte_access &= ~ACC_USER_MASK; 815 816 /* 817 * If we converted a user page to a kernel page, 818 * so that the kernel can write to it when cr0.wp=0, 819 * then we should prevent the kernel from executing it 820 * if SMEP is enabled. 821 */ 822 if (is_cr4_smep(vcpu->arch.mmu)) 823 walker.pte_access &= ~ACC_EXEC_MASK; 824 } 825 826 r = RET_PF_RETRY; 827 write_lock(&vcpu->kvm->mmu_lock); 828 829 if (is_page_fault_stale(vcpu, fault)) 830 goto out_unlock; 831 832 r = make_mmu_pages_available(vcpu); 833 if (r) 834 goto out_unlock; 835 r = FNAME(fetch)(vcpu, fault, &walker); 836 837 out_unlock: 838 kvm_mmu_finish_page_fault(vcpu, fault, r); 839 write_unlock(&vcpu->kvm->mmu_lock); 840 return r; 841 } 842 843 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) 844 { 845 int offset = 0; 846 847 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); 848 849 if (PTTYPE == 32) 850 offset = sp->role.quadrant << SPTE_LEVEL_BITS; 851 852 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); 853 } 854 855 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */ 856 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 857 gpa_t addr, u64 access, 858 struct x86_exception *exception) 859 { 860 struct guest_walker walker; 861 gpa_t gpa = INVALID_GPA; 862 int r; 863 864 #ifndef CONFIG_X86_64 865 /* A 64-bit GVA should be impossible on 32-bit KVM. */ 866 WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu); 867 #endif 868 869 r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access); 870 871 if (r) { 872 gpa = gfn_to_gpa(walker.gfn); 873 gpa |= addr & ~PAGE_MASK; 874 } else if (exception) 875 *exception = walker.fault; 876 877 return gpa; 878 } 879 880 /* 881 * Using the information in sp->shadowed_translation (kvm_mmu_page_get_gfn()) is 882 * safe because SPTEs are protected by mmu_notifiers and memslot generations, so 883 * the pfn for a given gfn can't change unless all SPTEs pointing to the gfn are 884 * nuked first. 885 * 886 * Returns 887 * < 0: failed to sync spte 888 * 0: the spte is synced and no tlb flushing is required 889 * > 0: the spte is synced and tlb flushing is required 890 */ 891 static int FNAME(sync_spte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) 892 { 893 bool host_writable; 894 gpa_t first_pte_gpa; 895 u64 *sptep, spte; 896 struct kvm_memory_slot *slot; 897 unsigned pte_access; 898 pt_element_t gpte; 899 gpa_t pte_gpa; 900 gfn_t gfn; 901 902 if (WARN_ON_ONCE(sp->spt[i] == SHADOW_NONPRESENT_VALUE || 903 !sp->shadowed_translation)) 904 return 0; 905 906 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); 907 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); 908 909 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 910 sizeof(pt_element_t))) 911 return -1; 912 913 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) 914 return 1; 915 916 gfn = gpte_to_gfn(gpte); 917 pte_access = sp->role.access; 918 pte_access &= FNAME(gpte_access)(gpte); 919 FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); 920 921 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access)) 922 return 0; 923 924 /* 925 * Drop the SPTE if the new protections result in no effective 926 * "present" bit or if the gfn is changing. The former case 927 * only affects EPT with execute-only support with pte_access==0; 928 * all other paging modes will create a read-only SPTE if 929 * pte_access is zero. 930 */ 931 if ((pte_access | shadow_present_mask) == SHADOW_NONPRESENT_VALUE || 932 gfn != kvm_mmu_page_get_gfn(sp, i)) { 933 drop_spte(vcpu->kvm, &sp->spt[i]); 934 return 1; 935 } 936 /* 937 * Do nothing if the permissions are unchanged. The existing SPTE is 938 * still, and prefetch_invalid_gpte() has verified that the A/D bits 939 * are set in the "new" gPTE, i.e. there is no danger of missing an A/D 940 * update due to A/D bits being set in the SPTE but not the gPTE. 941 */ 942 if (kvm_mmu_page_get_access(sp, i) == pte_access) 943 return 0; 944 945 /* Update the shadowed access bits in case they changed. */ 946 kvm_mmu_page_set_access(sp, i, pte_access); 947 948 sptep = &sp->spt[i]; 949 spte = *sptep; 950 host_writable = spte & shadow_host_writable_mask; 951 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 952 make_spte(vcpu, sp, slot, pte_access, gfn, 953 spte_to_pfn(spte), spte, true, true, 954 host_writable, &spte); 955 956 /* 957 * There is no need to mark the pfn dirty, as the new protections must 958 * be a subset of the old protections, i.e. synchronizing a SPTE cannot 959 * change the SPTE from read-only to writable. 960 */ 961 return mmu_spte_update(sptep, spte); 962 } 963 964 #undef pt_element_t 965 #undef guest_walker 966 #undef FNAME 967 #undef PT_BASE_ADDR_MASK 968 #undef PT_INDEX 969 #undef PT_LVL_ADDR_MASK 970 #undef PT_LVL_OFFSET_MASK 971 #undef PT_LEVEL_BITS 972 #undef PT_MAX_FULL_LEVELS 973 #undef gpte_to_gfn 974 #undef gpte_to_gfn_lvl 975 #undef PT_GUEST_ACCESSED_MASK 976 #undef PT_GUEST_DIRTY_MASK 977 #undef PT_GUEST_DIRTY_SHIFT 978 #undef PT_GUEST_ACCESSED_SHIFT 979 #undef PT_HAVE_ACCESSED_DIRTY 980