1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include <linux/kvm.h> 22 #include <linux/mm.h> 23 #include <linux/highmem.h> 24 #include <linux/smp.h> 25 #include <linux/hrtimer.h> 26 #include <linux/io.h> 27 #include <linux/export.h> 28 #include <linux/math64.h> 29 #include <linux/slab.h> 30 #include <asm/processor.h> 31 #include <asm/mce.h> 32 #include <asm/msr.h> 33 #include <asm/page.h> 34 #include <asm/current.h> 35 #include <asm/apicdef.h> 36 #include <asm/delay.h> 37 #include <linux/atomic.h> 38 #include <linux/jump_label.h> 39 #include "kvm_cache_regs.h" 40 #include "irq.h" 41 #include "ioapic.h" 42 #include "trace.h" 43 #include "x86.h" 44 #include "xen.h" 45 #include "cpuid.h" 46 #include "hyperv.h" 47 #include "smm.h" 48 49 #ifndef CONFIG_X86_64 50 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 51 #else 52 #define mod_64(x, y) ((x) % (y)) 53 #endif 54 55 /* 14 is the version for Xeon and Pentium 8.4.8*/ 56 #define APIC_VERSION 0x14UL 57 #define LAPIC_MMIO_LENGTH (1 << 12) 58 /* followed define is not in apicdef.h */ 59 #define MAX_APIC_VECTOR 256 60 #define APIC_VECTORS_PER_REG 32 61 62 /* 63 * Enable local APIC timer advancement (tscdeadline mode only) with adaptive 64 * tuning. When enabled, KVM programs the host timer event to fire early, i.e. 65 * before the deadline expires, to account for the delay between taking the 66 * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume 67 * the guest, i.e. so that the interrupt arrives in the guest with minimal 68 * latency relative to the deadline programmed by the guest. 69 */ 70 static bool lapic_timer_advance __read_mostly = true; 71 module_param(lapic_timer_advance, bool, 0444); 72 73 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 74 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 75 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 76 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 77 /* step-by-step approximation to mitigate fluctuation */ 78 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 79 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data); 80 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data); 81 82 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val) 83 { 84 *((u32 *) (regs + reg_off)) = val; 85 } 86 87 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) 88 { 89 __kvm_lapic_set_reg(apic->regs, reg_off, val); 90 } 91 92 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg) 93 { 94 BUILD_BUG_ON(reg != APIC_ICR); 95 return *((u64 *) (regs + reg)); 96 } 97 98 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg) 99 { 100 return __kvm_lapic_get_reg64(apic->regs, reg); 101 } 102 103 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val) 104 { 105 BUILD_BUG_ON(reg != APIC_ICR); 106 *((u64 *) (regs + reg)) = val; 107 } 108 109 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic, 110 int reg, u64 val) 111 { 112 __kvm_lapic_set_reg64(apic->regs, reg, val); 113 } 114 115 static inline int apic_test_vector(int vec, void *bitmap) 116 { 117 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 118 } 119 120 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 121 { 122 struct kvm_lapic *apic = vcpu->arch.apic; 123 124 return apic_test_vector(vector, apic->regs + APIC_ISR) || 125 apic_test_vector(vector, apic->regs + APIC_IRR); 126 } 127 128 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 129 { 130 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 131 } 132 133 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 134 { 135 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 136 } 137 138 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 139 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 140 141 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 142 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 143 144 static inline int apic_enabled(struct kvm_lapic *apic) 145 { 146 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 147 } 148 149 #define LVT_MASK \ 150 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 151 152 #define LINT_MASK \ 153 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 154 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 155 156 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 157 { 158 return apic->vcpu->vcpu_id; 159 } 160 161 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 162 { 163 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) && 164 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm)); 165 } 166 167 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 168 { 169 return kvm_x86_ops.set_hv_timer 170 && !(kvm_mwait_in_guest(vcpu->kvm) || 171 kvm_can_post_timer_interrupt(vcpu)); 172 } 173 174 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 175 { 176 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 177 } 178 179 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 180 { 181 return ((id >> 4) << 16) | (1 << (id & 0xf)); 182 } 183 184 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 185 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 186 switch (map->logical_mode) { 187 case KVM_APIC_MODE_SW_DISABLED: 188 /* Arbitrarily use the flat map so that @cluster isn't NULL. */ 189 *cluster = map->xapic_flat_map; 190 *mask = 0; 191 return true; 192 case KVM_APIC_MODE_X2APIC: { 193 u32 offset = (dest_id >> 16) * 16; 194 u32 max_apic_id = map->max_apic_id; 195 196 if (offset <= max_apic_id) { 197 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 198 199 offset = array_index_nospec(offset, map->max_apic_id + 1); 200 *cluster = &map->phys_map[offset]; 201 *mask = dest_id & (0xffff >> (16 - cluster_size)); 202 } else { 203 *mask = 0; 204 } 205 206 return true; 207 } 208 case KVM_APIC_MODE_XAPIC_FLAT: 209 *cluster = map->xapic_flat_map; 210 *mask = dest_id & 0xff; 211 return true; 212 case KVM_APIC_MODE_XAPIC_CLUSTER: 213 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 214 *mask = dest_id & 0xf; 215 return true; 216 case KVM_APIC_MODE_MAP_DISABLED: 217 return false; 218 default: 219 WARN_ON_ONCE(1); 220 return false; 221 } 222 } 223 224 static int kvm_recalculate_phys_map(struct kvm_apic_map *new, 225 struct kvm_vcpu *vcpu, 226 bool *xapic_id_mismatch) 227 { 228 struct kvm_lapic *apic = vcpu->arch.apic; 229 u32 x2apic_id = kvm_x2apic_id(apic); 230 u32 xapic_id = kvm_xapic_id(apic); 231 u32 physical_id; 232 233 /* 234 * For simplicity, KVM always allocates enough space for all possible 235 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on 236 * without the optimized map. 237 */ 238 if (WARN_ON_ONCE(xapic_id > new->max_apic_id)) 239 return -EINVAL; 240 241 /* 242 * Bail if a vCPU was added and/or enabled its APIC between allocating 243 * the map and doing the actual calculations for the map. Note, KVM 244 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if 245 * the compiler decides to reload x2apic_id after this check. 246 */ 247 if (x2apic_id > new->max_apic_id) 248 return -E2BIG; 249 250 /* 251 * Deliberately truncate the vCPU ID when detecting a mismatched APIC 252 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a 253 * 32-bit value. Any unwanted aliasing due to truncation results will 254 * be detected below. 255 */ 256 if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id) 257 *xapic_id_mismatch = true; 258 259 /* 260 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs. 261 * Allow sending events to vCPUs by their x2APIC ID even if the target 262 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs 263 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap 264 * and collide). 265 * 266 * Honor the architectural (and KVM's non-optimized) behavior if 267 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed 268 * to process messages independently. If multiple vCPUs have the same 269 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest 270 * manually modified its xAPIC IDs, events targeting that ID are 271 * supposed to be recognized by all vCPUs with said ID. 272 */ 273 if (vcpu->kvm->arch.x2apic_format) { 274 /* See also kvm_apic_match_physical_addr(). */ 275 if (apic_x2apic_mode(apic) || x2apic_id > 0xff) 276 new->phys_map[x2apic_id] = apic; 277 278 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 279 new->phys_map[xapic_id] = apic; 280 } else { 281 /* 282 * Disable the optimized map if the physical APIC ID is already 283 * mapped, i.e. is aliased to multiple vCPUs. The optimized 284 * map requires a strict 1:1 mapping between IDs and vCPUs. 285 */ 286 if (apic_x2apic_mode(apic)) 287 physical_id = x2apic_id; 288 else 289 physical_id = xapic_id; 290 291 if (new->phys_map[physical_id]) 292 return -EINVAL; 293 294 new->phys_map[physical_id] = apic; 295 } 296 297 return 0; 298 } 299 300 static void kvm_recalculate_logical_map(struct kvm_apic_map *new, 301 struct kvm_vcpu *vcpu) 302 { 303 struct kvm_lapic *apic = vcpu->arch.apic; 304 enum kvm_apic_logical_mode logical_mode; 305 struct kvm_lapic **cluster; 306 u16 mask; 307 u32 ldr; 308 309 if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 310 return; 311 312 if (!kvm_apic_sw_enabled(apic)) 313 return; 314 315 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 316 if (!ldr) 317 return; 318 319 if (apic_x2apic_mode(apic)) { 320 logical_mode = KVM_APIC_MODE_X2APIC; 321 } else { 322 ldr = GET_APIC_LOGICAL_ID(ldr); 323 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 324 logical_mode = KVM_APIC_MODE_XAPIC_FLAT; 325 else 326 logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER; 327 } 328 329 /* 330 * To optimize logical mode delivery, all software-enabled APICs must 331 * be configured for the same mode. 332 */ 333 if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) { 334 new->logical_mode = logical_mode; 335 } else if (new->logical_mode != logical_mode) { 336 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 337 return; 338 } 339 340 /* 341 * In x2APIC mode, the LDR is read-only and derived directly from the 342 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses 343 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by 344 * reversing the LDR calculation to get cluster of APICs, i.e. no 345 * additional work is required. 346 */ 347 if (apic_x2apic_mode(apic)) 348 return; 349 350 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr, 351 &cluster, &mask))) { 352 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 353 return; 354 } 355 356 if (!mask) 357 return; 358 359 ldr = ffs(mask) - 1; 360 if (!is_power_of_2(mask) || cluster[ldr]) 361 new->logical_mode = KVM_APIC_MODE_MAP_DISABLED; 362 else 363 cluster[ldr] = apic; 364 } 365 366 /* 367 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 368 * 369 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 370 * apic_map_lock_held. 371 */ 372 enum { 373 CLEAN, 374 UPDATE_IN_PROGRESS, 375 DIRTY 376 }; 377 378 static void kvm_recalculate_apic_map(struct kvm *kvm) 379 { 380 struct kvm_apic_map *new, *old = NULL; 381 struct kvm_vcpu *vcpu; 382 unsigned long i; 383 u32 max_id = 255; /* enough space for any xAPIC ID */ 384 bool xapic_id_mismatch; 385 int r; 386 387 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 388 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 389 return; 390 391 WARN_ONCE(!irqchip_in_kernel(kvm), 392 "Dirty APIC map without an in-kernel local APIC"); 393 394 mutex_lock(&kvm->arch.apic_map_lock); 395 396 retry: 397 /* 398 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean) 399 * or the APIC registers (if dirty). Note, on retry the map may have 400 * not yet been marked dirty by whatever task changed a vCPU's x2APIC 401 * ID, i.e. the map may still show up as in-progress. In that case 402 * this task still needs to retry and complete its calculation. 403 */ 404 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 405 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 406 /* Someone else has updated the map. */ 407 mutex_unlock(&kvm->arch.apic_map_lock); 408 return; 409 } 410 411 /* 412 * Reset the mismatch flag between attempts so that KVM does the right 413 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e. 414 * keep max_id strictly increasing. Disallowing max_id from shrinking 415 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU 416 * with the highest x2APIC ID is toggling its APIC on and off. 417 */ 418 xapic_id_mismatch = false; 419 420 kvm_for_each_vcpu(i, vcpu, kvm) 421 if (kvm_apic_present(vcpu)) 422 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 423 424 new = kvzalloc(sizeof(struct kvm_apic_map) + 425 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 426 GFP_KERNEL_ACCOUNT); 427 428 if (!new) 429 goto out; 430 431 new->max_apic_id = max_id; 432 new->logical_mode = KVM_APIC_MODE_SW_DISABLED; 433 434 kvm_for_each_vcpu(i, vcpu, kvm) { 435 if (!kvm_apic_present(vcpu)) 436 continue; 437 438 r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch); 439 if (r) { 440 kvfree(new); 441 new = NULL; 442 if (r == -E2BIG) { 443 cond_resched(); 444 goto retry; 445 } 446 447 goto out; 448 } 449 450 kvm_recalculate_logical_map(new, vcpu); 451 } 452 out: 453 /* 454 * The optimized map is effectively KVM's internal version of APICv, 455 * and all unwanted aliasing that results in disabling the optimized 456 * map also applies to APICv. 457 */ 458 if (!new) 459 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 460 else 461 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED); 462 463 if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED) 464 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 465 else 466 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED); 467 468 if (xapic_id_mismatch) 469 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 470 else 471 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED); 472 473 old = rcu_dereference_protected(kvm->arch.apic_map, 474 lockdep_is_held(&kvm->arch.apic_map_lock)); 475 rcu_assign_pointer(kvm->arch.apic_map, new); 476 /* 477 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 478 * If another update has come in, leave it DIRTY. 479 */ 480 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 481 UPDATE_IN_PROGRESS, CLEAN); 482 mutex_unlock(&kvm->arch.apic_map_lock); 483 484 if (old) 485 kvfree_rcu(old, rcu); 486 487 kvm_make_scan_ioapic_request(kvm); 488 } 489 490 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 491 { 492 bool enabled = val & APIC_SPIV_APIC_ENABLED; 493 494 kvm_lapic_set_reg(apic, APIC_SPIV, val); 495 496 if (enabled != apic->sw_enabled) { 497 apic->sw_enabled = enabled; 498 if (enabled) 499 static_branch_slow_dec_deferred(&apic_sw_disabled); 500 else 501 static_branch_inc(&apic_sw_disabled.key); 502 503 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 504 } 505 506 /* Check if there are APF page ready requests pending */ 507 if (enabled) { 508 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 509 kvm_xen_sw_enable_lapic(apic->vcpu); 510 } 511 } 512 513 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 514 { 515 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 516 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 517 } 518 519 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 520 { 521 kvm_lapic_set_reg(apic, APIC_LDR, id); 522 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 523 } 524 525 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 526 { 527 kvm_lapic_set_reg(apic, APIC_DFR, val); 528 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 529 } 530 531 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 532 { 533 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 534 535 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 536 537 kvm_lapic_set_reg(apic, APIC_ID, id); 538 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 539 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 540 } 541 542 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 543 { 544 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 545 } 546 547 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 548 { 549 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 550 } 551 552 static inline int apic_lvtt_period(struct kvm_lapic *apic) 553 { 554 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 555 } 556 557 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 558 { 559 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 560 } 561 562 static inline int apic_lvt_nmi_mode(u32 lvt_val) 563 { 564 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 565 } 566 567 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index) 568 { 569 return apic->nr_lvt_entries > lvt_index; 570 } 571 572 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu) 573 { 574 return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P); 575 } 576 577 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 578 { 579 struct kvm_lapic *apic = vcpu->arch.apic; 580 u32 v = 0; 581 582 if (!lapic_in_kernel(vcpu)) 583 return; 584 585 v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16); 586 587 /* 588 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 589 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 590 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 591 * version first and level-triggered interrupts never get EOIed in 592 * IOAPIC. 593 */ 594 if (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) && 595 !ioapic_in_kernel(vcpu->kvm)) 596 v |= APIC_LVR_DIRECTED_EOI; 597 kvm_lapic_set_reg(apic, APIC_LVR, v); 598 } 599 600 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu) 601 { 602 int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 603 struct kvm_lapic *apic = vcpu->arch.apic; 604 int i; 605 606 if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries) 607 return; 608 609 /* Initialize/mask any "new" LVT entries. */ 610 for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++) 611 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 612 613 apic->nr_lvt_entries = nr_lvt_entries; 614 615 /* The number of LVT entries is reflected in the version register. */ 616 kvm_apic_set_version(vcpu); 617 } 618 619 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = { 620 [LVT_TIMER] = LVT_MASK, /* timer mode mask added at runtime */ 621 [LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK, 622 [LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK, 623 [LVT_LINT0] = LINT_MASK, 624 [LVT_LINT1] = LINT_MASK, 625 [LVT_ERROR] = LVT_MASK, 626 [LVT_CMCI] = LVT_MASK | APIC_MODE_MASK 627 }; 628 629 static int find_highest_vector(void *bitmap) 630 { 631 int vec; 632 u32 *reg; 633 634 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 635 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 636 reg = bitmap + REG_POS(vec); 637 if (*reg) 638 return __fls(*reg) + vec; 639 } 640 641 return -1; 642 } 643 644 static u8 count_vectors(void *bitmap) 645 { 646 int vec; 647 u32 *reg; 648 u8 count = 0; 649 650 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 651 reg = bitmap + REG_POS(vec); 652 count += hweight32(*reg); 653 } 654 655 return count; 656 } 657 658 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 659 { 660 u32 i, vec; 661 u32 pir_val, irr_val, prev_irr_val; 662 int max_updated_irr; 663 664 max_updated_irr = -1; 665 *max_irr = -1; 666 667 for (i = vec = 0; i <= 7; i++, vec += 32) { 668 u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10); 669 670 irr_val = *p_irr; 671 pir_val = READ_ONCE(pir[i]); 672 673 if (pir_val) { 674 pir_val = xchg(&pir[i], 0); 675 676 prev_irr_val = irr_val; 677 do { 678 irr_val = prev_irr_val | pir_val; 679 } while (prev_irr_val != irr_val && 680 !try_cmpxchg(p_irr, &prev_irr_val, irr_val)); 681 682 if (prev_irr_val != irr_val) 683 max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec; 684 } 685 if (irr_val) 686 *max_irr = __fls(irr_val) + vec; 687 } 688 689 return ((max_updated_irr != -1) && 690 (max_updated_irr == *max_irr)); 691 } 692 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 693 694 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 695 { 696 struct kvm_lapic *apic = vcpu->arch.apic; 697 bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr); 698 699 if (unlikely(!apic->apicv_active && irr_updated)) 700 apic->irr_pending = true; 701 return irr_updated; 702 } 703 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 704 705 static inline int apic_search_irr(struct kvm_lapic *apic) 706 { 707 return find_highest_vector(apic->regs + APIC_IRR); 708 } 709 710 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 711 { 712 int result; 713 714 /* 715 * Note that irr_pending is just a hint. It will be always 716 * true with virtual interrupt delivery enabled. 717 */ 718 if (!apic->irr_pending) 719 return -1; 720 721 result = apic_search_irr(apic); 722 ASSERT(result == -1 || result >= 16); 723 724 return result; 725 } 726 727 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 728 { 729 if (unlikely(apic->apicv_active)) { 730 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 731 } else { 732 apic->irr_pending = false; 733 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 734 if (apic_search_irr(apic) != -1) 735 apic->irr_pending = true; 736 } 737 } 738 739 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 740 { 741 apic_clear_irr(vec, vcpu->arch.apic); 742 } 743 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 744 745 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 746 { 747 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 748 return; 749 750 /* 751 * With APIC virtualization enabled, all caching is disabled 752 * because the processor can modify ISR under the hood. Instead 753 * just set SVI. 754 */ 755 if (unlikely(apic->apicv_active)) 756 kvm_x86_call(hwapic_isr_update)(apic->vcpu, vec); 757 else { 758 ++apic->isr_count; 759 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 760 /* 761 * ISR (in service register) bit is set when injecting an interrupt. 762 * The highest vector is injected. Thus the latest bit set matches 763 * the highest bit in ISR. 764 */ 765 apic->highest_isr_cache = vec; 766 } 767 } 768 769 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 770 { 771 int result; 772 773 /* 774 * Note that isr_count is always 1, and highest_isr_cache 775 * is always -1, with APIC virtualization enabled. 776 */ 777 if (!apic->isr_count) 778 return -1; 779 if (likely(apic->highest_isr_cache != -1)) 780 return apic->highest_isr_cache; 781 782 result = find_highest_vector(apic->regs + APIC_ISR); 783 ASSERT(result == -1 || result >= 16); 784 785 return result; 786 } 787 788 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 789 { 790 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 791 return; 792 793 /* 794 * We do get here for APIC virtualization enabled if the guest 795 * uses the Hyper-V APIC enlightenment. In this case we may need 796 * to trigger a new interrupt delivery by writing the SVI field; 797 * on the other hand isr_count and highest_isr_cache are unused 798 * and must be left alone. 799 */ 800 if (unlikely(apic->apicv_active)) 801 kvm_x86_call(hwapic_isr_update)(apic->vcpu, apic_find_highest_isr(apic)); 802 else { 803 --apic->isr_count; 804 BUG_ON(apic->isr_count < 0); 805 apic->highest_isr_cache = -1; 806 } 807 } 808 809 void kvm_apic_update_hwapic_isr(struct kvm_vcpu *vcpu) 810 { 811 struct kvm_lapic *apic = vcpu->arch.apic; 812 813 if (WARN_ON_ONCE(!lapic_in_kernel(vcpu)) || !apic->apicv_active) 814 return; 815 816 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 817 } 818 EXPORT_SYMBOL_GPL(kvm_apic_update_hwapic_isr); 819 820 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 821 { 822 /* This may race with setting of irr in __apic_accept_irq() and 823 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 824 * will cause vmexit immediately and the value will be recalculated 825 * on the next vmentry. 826 */ 827 return apic_find_highest_irr(vcpu->arch.apic); 828 } 829 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 830 831 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 832 int vector, int level, int trig_mode, 833 struct dest_map *dest_map); 834 835 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 836 struct dest_map *dest_map) 837 { 838 struct kvm_lapic *apic = vcpu->arch.apic; 839 840 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 841 irq->level, irq->trig_mode, dest_map); 842 } 843 844 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 845 struct kvm_lapic_irq *irq, u32 min) 846 { 847 int i, count = 0; 848 struct kvm_vcpu *vcpu; 849 850 if (min > map->max_apic_id) 851 return 0; 852 853 for_each_set_bit(i, ipi_bitmap, 854 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 855 if (map->phys_map[min + i]) { 856 vcpu = map->phys_map[min + i]->vcpu; 857 count += kvm_apic_set_irq(vcpu, irq, NULL); 858 } 859 } 860 861 return count; 862 } 863 864 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 865 unsigned long ipi_bitmap_high, u32 min, 866 unsigned long icr, int op_64_bit) 867 { 868 struct kvm_apic_map *map; 869 struct kvm_lapic_irq irq = {0}; 870 int cluster_size = op_64_bit ? 64 : 32; 871 int count; 872 873 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 874 return -KVM_EINVAL; 875 876 irq.vector = icr & APIC_VECTOR_MASK; 877 irq.delivery_mode = icr & APIC_MODE_MASK; 878 irq.level = (icr & APIC_INT_ASSERT) != 0; 879 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 880 881 rcu_read_lock(); 882 map = rcu_dereference(kvm->arch.apic_map); 883 884 count = -EOPNOTSUPP; 885 if (likely(map)) { 886 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 887 min += cluster_size; 888 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 889 } 890 891 rcu_read_unlock(); 892 return count; 893 } 894 895 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 896 { 897 898 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 899 sizeof(val)); 900 } 901 902 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 903 { 904 905 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 906 sizeof(*val)); 907 } 908 909 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 910 { 911 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 912 } 913 914 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 915 { 916 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) 917 return; 918 919 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 920 } 921 922 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) 923 { 924 u8 val; 925 926 if (pv_eoi_get_user(vcpu, &val) < 0) 927 return false; 928 929 val &= KVM_PV_EOI_ENABLED; 930 931 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) 932 return false; 933 934 /* 935 * Clear pending bit in any case: it will be set again on vmentry. 936 * While this might not be ideal from performance point of view, 937 * this makes sure pv eoi is only enabled when we know it's safe. 938 */ 939 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 940 941 return val; 942 } 943 944 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 945 { 946 int highest_irr; 947 if (kvm_x86_ops.sync_pir_to_irr) 948 highest_irr = kvm_x86_call(sync_pir_to_irr)(apic->vcpu); 949 else 950 highest_irr = apic_find_highest_irr(apic); 951 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 952 return -1; 953 return highest_irr; 954 } 955 956 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 957 { 958 u32 tpr, isrv, ppr, old_ppr; 959 int isr; 960 961 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 962 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 963 isr = apic_find_highest_isr(apic); 964 isrv = (isr != -1) ? isr : 0; 965 966 if ((tpr & 0xf0) >= (isrv & 0xf0)) 967 ppr = tpr & 0xff; 968 else 969 ppr = isrv & 0xf0; 970 971 *new_ppr = ppr; 972 if (old_ppr != ppr) 973 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 974 975 return ppr < old_ppr; 976 } 977 978 static void apic_update_ppr(struct kvm_lapic *apic) 979 { 980 u32 ppr; 981 982 if (__apic_update_ppr(apic, &ppr) && 983 apic_has_interrupt_for_ppr(apic, ppr) != -1) 984 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 985 } 986 987 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 988 { 989 apic_update_ppr(vcpu->arch.apic); 990 } 991 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 992 993 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 994 { 995 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 996 apic_update_ppr(apic); 997 } 998 999 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 1000 { 1001 return mda == (apic_x2apic_mode(apic) ? 1002 X2APIC_BROADCAST : APIC_BROADCAST); 1003 } 1004 1005 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 1006 { 1007 if (kvm_apic_broadcast(apic, mda)) 1008 return true; 1009 1010 /* 1011 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they 1012 * were in x2APIC mode if the target APIC ID can't be encoded as an 1013 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which 1014 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC 1015 * mode. Match the x2APIC ID if and only if the target APIC ID can't 1016 * be encoded in xAPIC to avoid spurious matches against a vCPU that 1017 * changed its (addressable) xAPIC ID (which is writable). 1018 */ 1019 if (apic_x2apic_mode(apic) || mda > 0xff) 1020 return mda == kvm_x2apic_id(apic); 1021 1022 return mda == kvm_xapic_id(apic); 1023 } 1024 1025 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 1026 { 1027 u32 logical_id; 1028 1029 if (kvm_apic_broadcast(apic, mda)) 1030 return true; 1031 1032 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 1033 1034 if (apic_x2apic_mode(apic)) 1035 return ((logical_id >> 16) == (mda >> 16)) 1036 && (logical_id & mda & 0xffff) != 0; 1037 1038 logical_id = GET_APIC_LOGICAL_ID(logical_id); 1039 1040 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 1041 case APIC_DFR_FLAT: 1042 return (logical_id & mda) != 0; 1043 case APIC_DFR_CLUSTER: 1044 return ((logical_id >> 4) == (mda >> 4)) 1045 && (logical_id & mda & 0xf) != 0; 1046 default: 1047 return false; 1048 } 1049 } 1050 1051 /* The KVM local APIC implementation has two quirks: 1052 * 1053 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 1054 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 1055 * KVM doesn't do that aliasing. 1056 * 1057 * - in-kernel IOAPIC messages have to be delivered directly to 1058 * x2APIC, because the kernel does not support interrupt remapping. 1059 * In order to support broadcast without interrupt remapping, x2APIC 1060 * rewrites the destination of non-IPI messages from APIC_BROADCAST 1061 * to X2APIC_BROADCAST. 1062 * 1063 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 1064 * important when userspace wants to use x2APIC-format MSIs, because 1065 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 1066 */ 1067 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 1068 struct kvm_lapic *source, struct kvm_lapic *target) 1069 { 1070 bool ipi = source != NULL; 1071 1072 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 1073 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 1074 return X2APIC_BROADCAST; 1075 1076 return dest_id; 1077 } 1078 1079 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 1080 int shorthand, unsigned int dest, int dest_mode) 1081 { 1082 struct kvm_lapic *target = vcpu->arch.apic; 1083 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 1084 1085 ASSERT(target); 1086 switch (shorthand) { 1087 case APIC_DEST_NOSHORT: 1088 if (dest_mode == APIC_DEST_PHYSICAL) 1089 return kvm_apic_match_physical_addr(target, mda); 1090 else 1091 return kvm_apic_match_logical_addr(target, mda); 1092 case APIC_DEST_SELF: 1093 return target == source; 1094 case APIC_DEST_ALLINC: 1095 return true; 1096 case APIC_DEST_ALLBUT: 1097 return target != source; 1098 default: 1099 return false; 1100 } 1101 } 1102 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 1103 1104 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 1105 const unsigned long *bitmap, u32 bitmap_size) 1106 { 1107 u32 mod; 1108 int i, idx = -1; 1109 1110 mod = vector % dest_vcpus; 1111 1112 for (i = 0; i <= mod; i++) { 1113 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 1114 BUG_ON(idx == bitmap_size); 1115 } 1116 1117 return idx; 1118 } 1119 1120 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 1121 { 1122 if (!kvm->arch.disabled_lapic_found) { 1123 kvm->arch.disabled_lapic_found = true; 1124 pr_info("Disabled LAPIC found during irq injection\n"); 1125 } 1126 } 1127 1128 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 1129 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 1130 { 1131 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 1132 if ((irq->dest_id == APIC_BROADCAST && 1133 map->logical_mode != KVM_APIC_MODE_X2APIC)) 1134 return true; 1135 if (irq->dest_id == X2APIC_BROADCAST) 1136 return true; 1137 } else { 1138 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 1139 if (irq->dest_id == (x2apic_ipi ? 1140 X2APIC_BROADCAST : APIC_BROADCAST)) 1141 return true; 1142 } 1143 1144 return false; 1145 } 1146 1147 /* Return true if the interrupt can be handled by using *bitmap as index mask 1148 * for valid destinations in *dst array. 1149 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 1150 * Note: we may have zero kvm_lapic destinations when we return true, which 1151 * means that the interrupt should be dropped. In this case, *bitmap would be 1152 * zero and *dst undefined. 1153 */ 1154 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 1155 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 1156 struct kvm_apic_map *map, struct kvm_lapic ***dst, 1157 unsigned long *bitmap) 1158 { 1159 int i, lowest; 1160 1161 if (irq->shorthand == APIC_DEST_SELF && src) { 1162 *dst = src; 1163 *bitmap = 1; 1164 return true; 1165 } else if (irq->shorthand) 1166 return false; 1167 1168 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 1169 return false; 1170 1171 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 1172 if (irq->dest_id > map->max_apic_id) { 1173 *bitmap = 0; 1174 } else { 1175 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 1176 *dst = &map->phys_map[dest_id]; 1177 *bitmap = 1; 1178 } 1179 return true; 1180 } 1181 1182 *bitmap = 0; 1183 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 1184 (u16 *)bitmap)) 1185 return false; 1186 1187 if (!kvm_lowest_prio_delivery(irq)) 1188 return true; 1189 1190 if (!kvm_vector_hashing_enabled()) { 1191 lowest = -1; 1192 for_each_set_bit(i, bitmap, 16) { 1193 if (!(*dst)[i]) 1194 continue; 1195 if (lowest < 0) 1196 lowest = i; 1197 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 1198 (*dst)[lowest]->vcpu) < 0) 1199 lowest = i; 1200 } 1201 } else { 1202 if (!*bitmap) 1203 return true; 1204 1205 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 1206 bitmap, 16); 1207 1208 if (!(*dst)[lowest]) { 1209 kvm_apic_disabled_lapic_found(kvm); 1210 *bitmap = 0; 1211 return true; 1212 } 1213 } 1214 1215 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 1216 1217 return true; 1218 } 1219 1220 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 1221 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 1222 { 1223 struct kvm_apic_map *map; 1224 unsigned long bitmap; 1225 struct kvm_lapic **dst = NULL; 1226 int i; 1227 bool ret; 1228 1229 *r = -1; 1230 1231 if (irq->shorthand == APIC_DEST_SELF) { 1232 if (KVM_BUG_ON(!src, kvm)) { 1233 *r = 0; 1234 return true; 1235 } 1236 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 1237 return true; 1238 } 1239 1240 rcu_read_lock(); 1241 map = rcu_dereference(kvm->arch.apic_map); 1242 1243 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1244 if (ret) { 1245 *r = 0; 1246 for_each_set_bit(i, &bitmap, 16) { 1247 if (!dst[i]) 1248 continue; 1249 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1250 } 1251 } 1252 1253 rcu_read_unlock(); 1254 return ret; 1255 } 1256 1257 /* 1258 * This routine tries to handle interrupts in posted mode, here is how 1259 * it deals with different cases: 1260 * - For single-destination interrupts, handle it in posted mode 1261 * - Else if vector hashing is enabled and it is a lowest-priority 1262 * interrupt, handle it in posted mode and use the following mechanism 1263 * to find the destination vCPU. 1264 * 1. For lowest-priority interrupts, store all the possible 1265 * destination vCPUs in an array. 1266 * 2. Use "guest vector % max number of destination vCPUs" to find 1267 * the right destination vCPU in the array for the lowest-priority 1268 * interrupt. 1269 * - Otherwise, use remapped mode to inject the interrupt. 1270 */ 1271 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1272 struct kvm_vcpu **dest_vcpu) 1273 { 1274 struct kvm_apic_map *map; 1275 unsigned long bitmap; 1276 struct kvm_lapic **dst = NULL; 1277 bool ret = false; 1278 1279 if (irq->shorthand) 1280 return false; 1281 1282 rcu_read_lock(); 1283 map = rcu_dereference(kvm->arch.apic_map); 1284 1285 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1286 hweight16(bitmap) == 1) { 1287 unsigned long i = find_first_bit(&bitmap, 16); 1288 1289 if (dst[i]) { 1290 *dest_vcpu = dst[i]->vcpu; 1291 ret = true; 1292 } 1293 } 1294 1295 rcu_read_unlock(); 1296 return ret; 1297 } 1298 1299 /* 1300 * Add a pending IRQ into lapic. 1301 * Return 1 if successfully added and 0 if discarded. 1302 */ 1303 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1304 int vector, int level, int trig_mode, 1305 struct dest_map *dest_map) 1306 { 1307 int result = 0; 1308 struct kvm_vcpu *vcpu = apic->vcpu; 1309 1310 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1311 trig_mode, vector); 1312 switch (delivery_mode) { 1313 case APIC_DM_LOWEST: 1314 vcpu->arch.apic_arb_prio++; 1315 fallthrough; 1316 case APIC_DM_FIXED: 1317 if (unlikely(trig_mode && !level)) 1318 break; 1319 1320 /* FIXME add logic for vcpu on reset */ 1321 if (unlikely(!apic_enabled(apic))) 1322 break; 1323 1324 result = 1; 1325 1326 if (dest_map) { 1327 __set_bit(vcpu->vcpu_id, dest_map->map); 1328 dest_map->vectors[vcpu->vcpu_id] = vector; 1329 } 1330 1331 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1332 if (trig_mode) 1333 kvm_lapic_set_vector(vector, 1334 apic->regs + APIC_TMR); 1335 else 1336 kvm_lapic_clear_vector(vector, 1337 apic->regs + APIC_TMR); 1338 } 1339 1340 kvm_x86_call(deliver_interrupt)(apic, delivery_mode, 1341 trig_mode, vector); 1342 break; 1343 1344 case APIC_DM_REMRD: 1345 result = 1; 1346 vcpu->arch.pv.pv_unhalted = 1; 1347 kvm_make_request(KVM_REQ_EVENT, vcpu); 1348 kvm_vcpu_kick(vcpu); 1349 break; 1350 1351 case APIC_DM_SMI: 1352 if (!kvm_inject_smi(vcpu)) { 1353 kvm_vcpu_kick(vcpu); 1354 result = 1; 1355 } 1356 break; 1357 1358 case APIC_DM_NMI: 1359 result = 1; 1360 kvm_inject_nmi(vcpu); 1361 kvm_vcpu_kick(vcpu); 1362 break; 1363 1364 case APIC_DM_INIT: 1365 if (!trig_mode || level) { 1366 result = 1; 1367 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1368 apic->pending_events = (1UL << KVM_APIC_INIT); 1369 kvm_make_request(KVM_REQ_EVENT, vcpu); 1370 kvm_vcpu_kick(vcpu); 1371 } 1372 break; 1373 1374 case APIC_DM_STARTUP: 1375 result = 1; 1376 apic->sipi_vector = vector; 1377 /* make sure sipi_vector is visible for the receiver */ 1378 smp_wmb(); 1379 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1380 kvm_make_request(KVM_REQ_EVENT, vcpu); 1381 kvm_vcpu_kick(vcpu); 1382 break; 1383 1384 case APIC_DM_EXTINT: 1385 /* 1386 * Should only be called by kvm_apic_local_deliver() with LVT0, 1387 * before NMI watchdog was enabled. Already handled by 1388 * kvm_apic_accept_pic_intr(). 1389 */ 1390 break; 1391 1392 default: 1393 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1394 delivery_mode); 1395 break; 1396 } 1397 return result; 1398 } 1399 1400 /* 1401 * This routine identifies the destination vcpus mask meant to receive the 1402 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1403 * out the destination vcpus array and set the bitmap or it traverses to 1404 * each available vcpu to identify the same. 1405 */ 1406 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1407 unsigned long *vcpu_bitmap) 1408 { 1409 struct kvm_lapic **dest_vcpu = NULL; 1410 struct kvm_lapic *src = NULL; 1411 struct kvm_apic_map *map; 1412 struct kvm_vcpu *vcpu; 1413 unsigned long bitmap, i; 1414 int vcpu_idx; 1415 bool ret; 1416 1417 rcu_read_lock(); 1418 map = rcu_dereference(kvm->arch.apic_map); 1419 1420 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1421 &bitmap); 1422 if (ret) { 1423 for_each_set_bit(i, &bitmap, 16) { 1424 if (!dest_vcpu[i]) 1425 continue; 1426 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1427 __set_bit(vcpu_idx, vcpu_bitmap); 1428 } 1429 } else { 1430 kvm_for_each_vcpu(i, vcpu, kvm) { 1431 if (!kvm_apic_present(vcpu)) 1432 continue; 1433 if (!kvm_apic_match_dest(vcpu, NULL, 1434 irq->shorthand, 1435 irq->dest_id, 1436 irq->dest_mode)) 1437 continue; 1438 __set_bit(i, vcpu_bitmap); 1439 } 1440 } 1441 rcu_read_unlock(); 1442 } 1443 1444 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1445 { 1446 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1447 } 1448 1449 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1450 { 1451 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1452 } 1453 1454 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1455 { 1456 int trigger_mode; 1457 1458 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1459 if (!kvm_ioapic_handles_vector(apic, vector)) 1460 return; 1461 1462 /* Request a KVM exit to inform the userspace IOAPIC. */ 1463 if (irqchip_split(apic->vcpu->kvm)) { 1464 apic->vcpu->arch.pending_ioapic_eoi = vector; 1465 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1466 return; 1467 } 1468 1469 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1470 trigger_mode = IOAPIC_LEVEL_TRIG; 1471 else 1472 trigger_mode = IOAPIC_EDGE_TRIG; 1473 1474 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1475 } 1476 1477 static int apic_set_eoi(struct kvm_lapic *apic) 1478 { 1479 int vector = apic_find_highest_isr(apic); 1480 1481 trace_kvm_eoi(apic, vector); 1482 1483 /* 1484 * Not every write EOI will has corresponding ISR, 1485 * one example is when Kernel check timer on setup_IO_APIC 1486 */ 1487 if (vector == -1) 1488 return vector; 1489 1490 apic_clear_isr(vector, apic); 1491 apic_update_ppr(apic); 1492 1493 if (kvm_hv_synic_has_vector(apic->vcpu, vector)) 1494 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1495 1496 kvm_ioapic_send_eoi(apic, vector); 1497 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1498 return vector; 1499 } 1500 1501 /* 1502 * this interface assumes a trap-like exit, which has already finished 1503 * desired side effect including vISR and vPPR update. 1504 */ 1505 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1506 { 1507 struct kvm_lapic *apic = vcpu->arch.apic; 1508 1509 trace_kvm_eoi(apic, vector); 1510 1511 kvm_ioapic_send_eoi(apic, vector); 1512 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1513 } 1514 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1515 1516 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1517 { 1518 struct kvm_lapic_irq irq; 1519 1520 /* KVM has no delay and should always clear the BUSY/PENDING flag. */ 1521 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY); 1522 1523 irq.vector = icr_low & APIC_VECTOR_MASK; 1524 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1525 irq.dest_mode = icr_low & APIC_DEST_MASK; 1526 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1527 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1528 irq.shorthand = icr_low & APIC_SHORT_MASK; 1529 irq.msi_redir_hint = false; 1530 if (apic_x2apic_mode(apic)) 1531 irq.dest_id = icr_high; 1532 else 1533 irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high); 1534 1535 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1536 1537 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1538 } 1539 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi); 1540 1541 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1542 { 1543 ktime_t remaining, now; 1544 s64 ns; 1545 1546 ASSERT(apic != NULL); 1547 1548 /* if initial count is 0, current count should also be 0 */ 1549 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1550 apic->lapic_timer.period == 0) 1551 return 0; 1552 1553 now = ktime_get(); 1554 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1555 if (ktime_to_ns(remaining) < 0) 1556 remaining = 0; 1557 1558 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1559 return div64_u64(ns, (apic->vcpu->kvm->arch.apic_bus_cycle_ns * 1560 apic->divide_count)); 1561 } 1562 1563 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1564 { 1565 struct kvm_vcpu *vcpu = apic->vcpu; 1566 struct kvm_run *run = vcpu->run; 1567 1568 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1569 run->tpr_access.rip = kvm_rip_read(vcpu); 1570 run->tpr_access.is_write = write; 1571 } 1572 1573 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1574 { 1575 if (apic->vcpu->arch.tpr_access_reporting) 1576 __report_tpr_access(apic, write); 1577 } 1578 1579 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1580 { 1581 u32 val = 0; 1582 1583 if (offset >= LAPIC_MMIO_LENGTH) 1584 return 0; 1585 1586 switch (offset) { 1587 case APIC_ARBPRI: 1588 break; 1589 1590 case APIC_TMCCT: /* Timer CCR */ 1591 if (apic_lvtt_tscdeadline(apic)) 1592 return 0; 1593 1594 val = apic_get_tmcct(apic); 1595 break; 1596 case APIC_PROCPRI: 1597 apic_update_ppr(apic); 1598 val = kvm_lapic_get_reg(apic, offset); 1599 break; 1600 case APIC_TASKPRI: 1601 report_tpr_access(apic, false); 1602 fallthrough; 1603 default: 1604 val = kvm_lapic_get_reg(apic, offset); 1605 break; 1606 } 1607 1608 return val; 1609 } 1610 1611 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1612 { 1613 return container_of(dev, struct kvm_lapic, dev); 1614 } 1615 1616 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1617 #define APIC_REGS_MASK(first, count) \ 1618 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1619 1620 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic) 1621 { 1622 /* Leave bits '0' for reserved and write-only registers. */ 1623 u64 valid_reg_mask = 1624 APIC_REG_MASK(APIC_ID) | 1625 APIC_REG_MASK(APIC_LVR) | 1626 APIC_REG_MASK(APIC_TASKPRI) | 1627 APIC_REG_MASK(APIC_PROCPRI) | 1628 APIC_REG_MASK(APIC_LDR) | 1629 APIC_REG_MASK(APIC_SPIV) | 1630 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1631 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1632 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1633 APIC_REG_MASK(APIC_ESR) | 1634 APIC_REG_MASK(APIC_ICR) | 1635 APIC_REG_MASK(APIC_LVTT) | 1636 APIC_REG_MASK(APIC_LVTTHMR) | 1637 APIC_REG_MASK(APIC_LVTPC) | 1638 APIC_REG_MASK(APIC_LVT0) | 1639 APIC_REG_MASK(APIC_LVT1) | 1640 APIC_REG_MASK(APIC_LVTERR) | 1641 APIC_REG_MASK(APIC_TMICT) | 1642 APIC_REG_MASK(APIC_TMCCT) | 1643 APIC_REG_MASK(APIC_TDCR); 1644 1645 if (kvm_lapic_lvt_supported(apic, LVT_CMCI)) 1646 valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI); 1647 1648 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */ 1649 if (!apic_x2apic_mode(apic)) 1650 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) | 1651 APIC_REG_MASK(APIC_DFR) | 1652 APIC_REG_MASK(APIC_ICR2); 1653 1654 return valid_reg_mask; 1655 } 1656 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask); 1657 1658 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1659 void *data) 1660 { 1661 unsigned char alignment = offset & 0xf; 1662 u32 result; 1663 1664 /* 1665 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in 1666 * x2APIC and needs to be manually handled by the caller. 1667 */ 1668 WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR); 1669 1670 if (alignment + len > 4) 1671 return 1; 1672 1673 if (offset > 0x3f0 || 1674 !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset))) 1675 return 1; 1676 1677 result = __apic_read(apic, offset & ~0xf); 1678 1679 trace_kvm_apic_read(offset, result); 1680 1681 switch (len) { 1682 case 1: 1683 case 2: 1684 case 4: 1685 memcpy(data, (char *)&result + alignment, len); 1686 break; 1687 default: 1688 printk(KERN_ERR "Local APIC read with len = %x, " 1689 "should be 1,2, or 4 instead\n", len); 1690 break; 1691 } 1692 return 0; 1693 } 1694 1695 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1696 { 1697 return addr >= apic->base_address && 1698 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1699 } 1700 1701 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1702 gpa_t address, int len, void *data) 1703 { 1704 struct kvm_lapic *apic = to_lapic(this); 1705 u32 offset = address - apic->base_address; 1706 1707 if (!apic_mmio_in_range(apic, address)) 1708 return -EOPNOTSUPP; 1709 1710 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1711 if (!kvm_check_has_quirk(vcpu->kvm, 1712 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1713 return -EOPNOTSUPP; 1714 1715 memset(data, 0xff, len); 1716 return 0; 1717 } 1718 1719 kvm_lapic_reg_read(apic, offset, len, data); 1720 1721 return 0; 1722 } 1723 1724 static void update_divide_count(struct kvm_lapic *apic) 1725 { 1726 u32 tmp1, tmp2, tdcr; 1727 1728 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1729 tmp1 = tdcr & 0xf; 1730 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1731 apic->divide_count = 0x1 << (tmp2 & 0x7); 1732 } 1733 1734 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1735 { 1736 /* 1737 * Do not allow the guest to program periodic timers with small 1738 * interval, since the hrtimers are not throttled by the host 1739 * scheduler. 1740 */ 1741 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1742 s64 min_period = min_timer_period_us * 1000LL; 1743 1744 if (apic->lapic_timer.period < min_period) { 1745 pr_info_once( 1746 "vcpu %i: requested %lld ns " 1747 "lapic timer period limited to %lld ns\n", 1748 apic->vcpu->vcpu_id, 1749 apic->lapic_timer.period, min_period); 1750 apic->lapic_timer.period = min_period; 1751 } 1752 } 1753 } 1754 1755 static void cancel_hv_timer(struct kvm_lapic *apic); 1756 1757 static void cancel_apic_timer(struct kvm_lapic *apic) 1758 { 1759 hrtimer_cancel(&apic->lapic_timer.timer); 1760 preempt_disable(); 1761 if (apic->lapic_timer.hv_timer_in_use) 1762 cancel_hv_timer(apic); 1763 preempt_enable(); 1764 atomic_set(&apic->lapic_timer.pending, 0); 1765 } 1766 1767 static void apic_update_lvtt(struct kvm_lapic *apic) 1768 { 1769 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1770 apic->lapic_timer.timer_mode_mask; 1771 1772 if (apic->lapic_timer.timer_mode != timer_mode) { 1773 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1774 APIC_LVT_TIMER_TSCDEADLINE)) { 1775 cancel_apic_timer(apic); 1776 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1777 apic->lapic_timer.period = 0; 1778 apic->lapic_timer.tscdeadline = 0; 1779 } 1780 apic->lapic_timer.timer_mode = timer_mode; 1781 limit_periodic_timer_frequency(apic); 1782 } 1783 } 1784 1785 /* 1786 * On APICv, this test will cause a busy wait 1787 * during a higher-priority task. 1788 */ 1789 1790 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1791 { 1792 struct kvm_lapic *apic = vcpu->arch.apic; 1793 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1794 1795 if (kvm_apic_hw_enabled(apic)) { 1796 int vec = reg & APIC_VECTOR_MASK; 1797 void *bitmap = apic->regs + APIC_ISR; 1798 1799 if (apic->apicv_active) 1800 bitmap = apic->regs + APIC_IRR; 1801 1802 if (apic_test_vector(vec, bitmap)) 1803 return true; 1804 } 1805 return false; 1806 } 1807 1808 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1809 { 1810 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1811 1812 /* 1813 * If the guest TSC is running at a different ratio than the host, then 1814 * convert the delay to nanoseconds to achieve an accurate delay. Note 1815 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1816 * always for VMX enabled hardware. 1817 */ 1818 if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) { 1819 __delay(min(guest_cycles, 1820 nsec_to_cycles(vcpu, timer_advance_ns))); 1821 } else { 1822 u64 delay_ns = guest_cycles * 1000000ULL; 1823 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1824 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1825 } 1826 } 1827 1828 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1829 s64 advance_expire_delta) 1830 { 1831 struct kvm_lapic *apic = vcpu->arch.apic; 1832 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1833 u64 ns; 1834 1835 /* Do not adjust for tiny fluctuations or large random spikes. */ 1836 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1837 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1838 return; 1839 1840 /* too early */ 1841 if (advance_expire_delta < 0) { 1842 ns = -advance_expire_delta * 1000000ULL; 1843 do_div(ns, vcpu->arch.virtual_tsc_khz); 1844 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1845 } else { 1846 /* too late */ 1847 ns = advance_expire_delta * 1000000ULL; 1848 do_div(ns, vcpu->arch.virtual_tsc_khz); 1849 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1850 } 1851 1852 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1853 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1854 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1855 } 1856 1857 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1858 { 1859 struct kvm_lapic *apic = vcpu->arch.apic; 1860 u64 guest_tsc, tsc_deadline; 1861 1862 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1863 apic->lapic_timer.expired_tscdeadline = 0; 1864 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1865 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline); 1866 1867 adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline); 1868 1869 /* 1870 * If the timer fired early, reread the TSC to account for the overhead 1871 * of the above adjustment to avoid waiting longer than is necessary. 1872 */ 1873 if (guest_tsc < tsc_deadline) 1874 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1875 1876 if (guest_tsc < tsc_deadline) 1877 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1878 } 1879 1880 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1881 { 1882 if (lapic_in_kernel(vcpu) && 1883 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1884 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1885 lapic_timer_int_injected(vcpu)) 1886 __kvm_wait_lapic_expire(vcpu); 1887 } 1888 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1889 1890 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1891 { 1892 struct kvm_timer *ktimer = &apic->lapic_timer; 1893 1894 kvm_apic_local_deliver(apic, APIC_LVTT); 1895 if (apic_lvtt_tscdeadline(apic)) { 1896 ktimer->tscdeadline = 0; 1897 } else if (apic_lvtt_oneshot(apic)) { 1898 ktimer->tscdeadline = 0; 1899 ktimer->target_expiration = 0; 1900 } 1901 } 1902 1903 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1904 { 1905 struct kvm_vcpu *vcpu = apic->vcpu; 1906 struct kvm_timer *ktimer = &apic->lapic_timer; 1907 1908 if (atomic_read(&apic->lapic_timer.pending)) 1909 return; 1910 1911 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1912 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1913 1914 if (!from_timer_fn && apic->apicv_active) { 1915 WARN_ON(kvm_get_running_vcpu() != vcpu); 1916 kvm_apic_inject_pending_timer_irqs(apic); 1917 return; 1918 } 1919 1920 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1921 /* 1922 * Ensure the guest's timer has truly expired before posting an 1923 * interrupt. Open code the relevant checks to avoid querying 1924 * lapic_timer_int_injected(), which will be false since the 1925 * interrupt isn't yet injected. Waiting until after injecting 1926 * is not an option since that won't help a posted interrupt. 1927 */ 1928 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1929 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1930 __kvm_wait_lapic_expire(vcpu); 1931 kvm_apic_inject_pending_timer_irqs(apic); 1932 return; 1933 } 1934 1935 atomic_inc(&apic->lapic_timer.pending); 1936 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1937 if (from_timer_fn) 1938 kvm_vcpu_kick(vcpu); 1939 } 1940 1941 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1942 { 1943 struct kvm_timer *ktimer = &apic->lapic_timer; 1944 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1945 u64 ns = 0; 1946 ktime_t expire; 1947 struct kvm_vcpu *vcpu = apic->vcpu; 1948 u32 this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1949 unsigned long flags; 1950 ktime_t now; 1951 1952 if (unlikely(!tscdeadline || !this_tsc_khz)) 1953 return; 1954 1955 local_irq_save(flags); 1956 1957 now = ktime_get(); 1958 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1959 1960 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1961 do_div(ns, this_tsc_khz); 1962 1963 if (likely(tscdeadline > guest_tsc) && 1964 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1965 expire = ktime_add_ns(now, ns); 1966 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1967 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1968 } else 1969 apic_timer_expired(apic, false); 1970 1971 local_irq_restore(flags); 1972 } 1973 1974 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1975 { 1976 return (u64)tmict * apic->vcpu->kvm->arch.apic_bus_cycle_ns * 1977 (u64)apic->divide_count; 1978 } 1979 1980 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1981 { 1982 ktime_t now, remaining; 1983 u64 ns_remaining_old, ns_remaining_new; 1984 1985 apic->lapic_timer.period = 1986 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1987 limit_periodic_timer_frequency(apic); 1988 1989 now = ktime_get(); 1990 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1991 if (ktime_to_ns(remaining) < 0) 1992 remaining = 0; 1993 1994 ns_remaining_old = ktime_to_ns(remaining); 1995 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1996 apic->divide_count, old_divisor); 1997 1998 apic->lapic_timer.tscdeadline += 1999 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 2000 nsec_to_cycles(apic->vcpu, ns_remaining_old); 2001 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 2002 } 2003 2004 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 2005 { 2006 ktime_t now; 2007 u64 tscl = rdtsc(); 2008 s64 deadline; 2009 2010 now = ktime_get(); 2011 apic->lapic_timer.period = 2012 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 2013 2014 if (!apic->lapic_timer.period) { 2015 apic->lapic_timer.tscdeadline = 0; 2016 return false; 2017 } 2018 2019 limit_periodic_timer_frequency(apic); 2020 deadline = apic->lapic_timer.period; 2021 2022 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 2023 if (unlikely(count_reg != APIC_TMICT)) { 2024 deadline = tmict_to_ns(apic, 2025 kvm_lapic_get_reg(apic, count_reg)); 2026 if (unlikely(deadline <= 0)) { 2027 if (apic_lvtt_period(apic)) 2028 deadline = apic->lapic_timer.period; 2029 else 2030 deadline = 0; 2031 } 2032 else if (unlikely(deadline > apic->lapic_timer.period)) { 2033 pr_info_ratelimited( 2034 "vcpu %i: requested lapic timer restore with " 2035 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 2036 "Using initial count to start timer.\n", 2037 apic->vcpu->vcpu_id, 2038 count_reg, 2039 kvm_lapic_get_reg(apic, count_reg), 2040 deadline, apic->lapic_timer.period); 2041 kvm_lapic_set_reg(apic, count_reg, 0); 2042 deadline = apic->lapic_timer.period; 2043 } 2044 } 2045 } 2046 2047 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2048 nsec_to_cycles(apic->vcpu, deadline); 2049 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 2050 2051 return true; 2052 } 2053 2054 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 2055 { 2056 ktime_t now = ktime_get(); 2057 u64 tscl = rdtsc(); 2058 ktime_t delta; 2059 2060 /* 2061 * Synchronize both deadlines to the same time source or 2062 * differences in the periods (caused by differences in the 2063 * underlying clocks or numerical approximation errors) will 2064 * cause the two to drift apart over time as the errors 2065 * accumulate. 2066 */ 2067 apic->lapic_timer.target_expiration = 2068 ktime_add_ns(apic->lapic_timer.target_expiration, 2069 apic->lapic_timer.period); 2070 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 2071 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 2072 nsec_to_cycles(apic->vcpu, delta); 2073 } 2074 2075 static void start_sw_period(struct kvm_lapic *apic) 2076 { 2077 if (!apic->lapic_timer.period) 2078 return; 2079 2080 if (ktime_after(ktime_get(), 2081 apic->lapic_timer.target_expiration)) { 2082 apic_timer_expired(apic, false); 2083 2084 if (apic_lvtt_oneshot(apic)) 2085 return; 2086 2087 advance_periodic_target_expiration(apic); 2088 } 2089 2090 hrtimer_start(&apic->lapic_timer.timer, 2091 apic->lapic_timer.target_expiration, 2092 HRTIMER_MODE_ABS_HARD); 2093 } 2094 2095 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 2096 { 2097 if (!lapic_in_kernel(vcpu)) 2098 return false; 2099 2100 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 2101 } 2102 2103 static void cancel_hv_timer(struct kvm_lapic *apic) 2104 { 2105 WARN_ON(preemptible()); 2106 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2107 kvm_x86_call(cancel_hv_timer)(apic->vcpu); 2108 apic->lapic_timer.hv_timer_in_use = false; 2109 } 2110 2111 static bool start_hv_timer(struct kvm_lapic *apic) 2112 { 2113 struct kvm_timer *ktimer = &apic->lapic_timer; 2114 struct kvm_vcpu *vcpu = apic->vcpu; 2115 bool expired; 2116 2117 WARN_ON(preemptible()); 2118 if (!kvm_can_use_hv_timer(vcpu)) 2119 return false; 2120 2121 if (!ktimer->tscdeadline) 2122 return false; 2123 2124 if (kvm_x86_call(set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 2125 return false; 2126 2127 ktimer->hv_timer_in_use = true; 2128 hrtimer_cancel(&ktimer->timer); 2129 2130 /* 2131 * To simplify handling the periodic timer, leave the hv timer running 2132 * even if the deadline timer has expired, i.e. rely on the resulting 2133 * VM-Exit to recompute the periodic timer's target expiration. 2134 */ 2135 if (!apic_lvtt_period(apic)) { 2136 /* 2137 * Cancel the hv timer if the sw timer fired while the hv timer 2138 * was being programmed, or if the hv timer itself expired. 2139 */ 2140 if (atomic_read(&ktimer->pending)) { 2141 cancel_hv_timer(apic); 2142 } else if (expired) { 2143 apic_timer_expired(apic, false); 2144 cancel_hv_timer(apic); 2145 } 2146 } 2147 2148 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 2149 2150 return true; 2151 } 2152 2153 static void start_sw_timer(struct kvm_lapic *apic) 2154 { 2155 struct kvm_timer *ktimer = &apic->lapic_timer; 2156 2157 WARN_ON(preemptible()); 2158 if (apic->lapic_timer.hv_timer_in_use) 2159 cancel_hv_timer(apic); 2160 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 2161 return; 2162 2163 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2164 start_sw_period(apic); 2165 else if (apic_lvtt_tscdeadline(apic)) 2166 start_sw_tscdeadline(apic); 2167 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 2168 } 2169 2170 static void restart_apic_timer(struct kvm_lapic *apic) 2171 { 2172 preempt_disable(); 2173 2174 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 2175 goto out; 2176 2177 if (!start_hv_timer(apic)) 2178 start_sw_timer(apic); 2179 out: 2180 preempt_enable(); 2181 } 2182 2183 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 2184 { 2185 struct kvm_lapic *apic = vcpu->arch.apic; 2186 2187 preempt_disable(); 2188 /* If the preempt notifier has already run, it also called apic_timer_expired */ 2189 if (!apic->lapic_timer.hv_timer_in_use) 2190 goto out; 2191 WARN_ON(kvm_vcpu_is_blocking(vcpu)); 2192 apic_timer_expired(apic, false); 2193 cancel_hv_timer(apic); 2194 2195 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 2196 advance_periodic_target_expiration(apic); 2197 restart_apic_timer(apic); 2198 } 2199 out: 2200 preempt_enable(); 2201 } 2202 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 2203 2204 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 2205 { 2206 restart_apic_timer(vcpu->arch.apic); 2207 } 2208 2209 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 2210 { 2211 struct kvm_lapic *apic = vcpu->arch.apic; 2212 2213 preempt_disable(); 2214 /* Possibly the TSC deadline timer is not enabled yet */ 2215 if (apic->lapic_timer.hv_timer_in_use) 2216 start_sw_timer(apic); 2217 preempt_enable(); 2218 } 2219 2220 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 2221 { 2222 struct kvm_lapic *apic = vcpu->arch.apic; 2223 2224 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2225 restart_apic_timer(apic); 2226 } 2227 2228 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 2229 { 2230 atomic_set(&apic->lapic_timer.pending, 0); 2231 2232 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2233 && !set_target_expiration(apic, count_reg)) 2234 return; 2235 2236 restart_apic_timer(apic); 2237 } 2238 2239 static void start_apic_timer(struct kvm_lapic *apic) 2240 { 2241 __start_apic_timer(apic, APIC_TMICT); 2242 } 2243 2244 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 2245 { 2246 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 2247 2248 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 2249 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 2250 if (lvt0_in_nmi_mode) { 2251 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2252 } else 2253 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2254 } 2255 } 2256 2257 static int get_lvt_index(u32 reg) 2258 { 2259 if (reg == APIC_LVTCMCI) 2260 return LVT_CMCI; 2261 if (reg < APIC_LVTT || reg > APIC_LVTERR) 2262 return -1; 2263 return array_index_nospec( 2264 (reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES); 2265 } 2266 2267 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 2268 { 2269 int ret = 0; 2270 2271 trace_kvm_apic_write(reg, val); 2272 2273 switch (reg) { 2274 case APIC_ID: /* Local APIC ID */ 2275 if (!apic_x2apic_mode(apic)) { 2276 kvm_apic_set_xapic_id(apic, val >> 24); 2277 } else { 2278 ret = 1; 2279 } 2280 break; 2281 2282 case APIC_TASKPRI: 2283 report_tpr_access(apic, true); 2284 apic_set_tpr(apic, val & 0xff); 2285 break; 2286 2287 case APIC_EOI: 2288 apic_set_eoi(apic); 2289 break; 2290 2291 case APIC_LDR: 2292 if (!apic_x2apic_mode(apic)) 2293 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2294 else 2295 ret = 1; 2296 break; 2297 2298 case APIC_DFR: 2299 if (!apic_x2apic_mode(apic)) 2300 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2301 else 2302 ret = 1; 2303 break; 2304 2305 case APIC_SPIV: { 2306 u32 mask = 0x3ff; 2307 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2308 mask |= APIC_SPIV_DIRECTED_EOI; 2309 apic_set_spiv(apic, val & mask); 2310 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2311 int i; 2312 2313 for (i = 0; i < apic->nr_lvt_entries; i++) { 2314 kvm_lapic_set_reg(apic, APIC_LVTx(i), 2315 kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED); 2316 } 2317 apic_update_lvtt(apic); 2318 atomic_set(&apic->lapic_timer.pending, 0); 2319 2320 } 2321 break; 2322 } 2323 case APIC_ICR: 2324 WARN_ON_ONCE(apic_x2apic_mode(apic)); 2325 2326 /* No delay here, so we always clear the pending bit */ 2327 val &= ~APIC_ICR_BUSY; 2328 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2329 kvm_lapic_set_reg(apic, APIC_ICR, val); 2330 break; 2331 case APIC_ICR2: 2332 if (apic_x2apic_mode(apic)) 2333 ret = 1; 2334 else 2335 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000); 2336 break; 2337 2338 case APIC_LVT0: 2339 apic_manage_nmi_watchdog(apic, val); 2340 fallthrough; 2341 case APIC_LVTTHMR: 2342 case APIC_LVTPC: 2343 case APIC_LVT1: 2344 case APIC_LVTERR: 2345 case APIC_LVTCMCI: { 2346 u32 index = get_lvt_index(reg); 2347 if (!kvm_lapic_lvt_supported(apic, index)) { 2348 ret = 1; 2349 break; 2350 } 2351 if (!kvm_apic_sw_enabled(apic)) 2352 val |= APIC_LVT_MASKED; 2353 val &= apic_lvt_mask[index]; 2354 kvm_lapic_set_reg(apic, reg, val); 2355 break; 2356 } 2357 2358 case APIC_LVTT: 2359 if (!kvm_apic_sw_enabled(apic)) 2360 val |= APIC_LVT_MASKED; 2361 val &= (apic_lvt_mask[LVT_TIMER] | apic->lapic_timer.timer_mode_mask); 2362 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2363 apic_update_lvtt(apic); 2364 break; 2365 2366 case APIC_TMICT: 2367 if (apic_lvtt_tscdeadline(apic)) 2368 break; 2369 2370 cancel_apic_timer(apic); 2371 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2372 start_apic_timer(apic); 2373 break; 2374 2375 case APIC_TDCR: { 2376 uint32_t old_divisor = apic->divide_count; 2377 2378 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2379 update_divide_count(apic); 2380 if (apic->divide_count != old_divisor && 2381 apic->lapic_timer.period) { 2382 hrtimer_cancel(&apic->lapic_timer.timer); 2383 update_target_expiration(apic, old_divisor); 2384 restart_apic_timer(apic); 2385 } 2386 break; 2387 } 2388 case APIC_ESR: 2389 if (apic_x2apic_mode(apic) && val != 0) 2390 ret = 1; 2391 break; 2392 2393 case APIC_SELF_IPI: 2394 /* 2395 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold 2396 * the vector, everything else is reserved. 2397 */ 2398 if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK)) 2399 ret = 1; 2400 else 2401 kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0); 2402 break; 2403 default: 2404 ret = 1; 2405 break; 2406 } 2407 2408 /* 2409 * Recalculate APIC maps if necessary, e.g. if the software enable bit 2410 * was toggled, the APIC ID changed, etc... The maps are marked dirty 2411 * on relevant changes, i.e. this is a nop for most writes. 2412 */ 2413 kvm_recalculate_apic_map(apic->vcpu->kvm); 2414 2415 return ret; 2416 } 2417 2418 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2419 gpa_t address, int len, const void *data) 2420 { 2421 struct kvm_lapic *apic = to_lapic(this); 2422 unsigned int offset = address - apic->base_address; 2423 u32 val; 2424 2425 if (!apic_mmio_in_range(apic, address)) 2426 return -EOPNOTSUPP; 2427 2428 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2429 if (!kvm_check_has_quirk(vcpu->kvm, 2430 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2431 return -EOPNOTSUPP; 2432 2433 return 0; 2434 } 2435 2436 /* 2437 * APIC register must be aligned on 128-bits boundary. 2438 * 32/64/128 bits registers must be accessed thru 32 bits. 2439 * Refer SDM 8.4.1 2440 */ 2441 if (len != 4 || (offset & 0xf)) 2442 return 0; 2443 2444 val = *(u32*)data; 2445 2446 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2447 2448 return 0; 2449 } 2450 2451 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2452 { 2453 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2454 } 2455 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2456 2457 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13)) 2458 2459 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data) 2460 { 2461 if (data & X2APIC_ICR_RESERVED_BITS) 2462 return 1; 2463 2464 /* 2465 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but 2466 * only AMD requires it to be zero, Intel essentially just ignores the 2467 * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled, 2468 * the CPU performs the reserved bits checks, i.e. the underlying CPU 2469 * behavior will "win". Arbitrarily clear the BUSY bit, as there is no 2470 * sane way to provide consistent behavior with respect to hardware. 2471 */ 2472 data &= ~APIC_ICR_BUSY; 2473 2474 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32)); 2475 if (kvm_x86_ops.x2apic_icr_is_split) { 2476 kvm_lapic_set_reg(apic, APIC_ICR, data); 2477 kvm_lapic_set_reg(apic, APIC_ICR2, data >> 32); 2478 } else { 2479 kvm_lapic_set_reg64(apic, APIC_ICR, data); 2480 } 2481 trace_kvm_apic_write(APIC_ICR, data); 2482 return 0; 2483 } 2484 2485 static u64 kvm_x2apic_icr_read(struct kvm_lapic *apic) 2486 { 2487 if (kvm_x86_ops.x2apic_icr_is_split) 2488 return (u64)kvm_lapic_get_reg(apic, APIC_ICR) | 2489 (u64)kvm_lapic_get_reg(apic, APIC_ICR2) << 32; 2490 2491 return kvm_lapic_get_reg64(apic, APIC_ICR); 2492 } 2493 2494 /* emulate APIC access in a trap manner */ 2495 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2496 { 2497 struct kvm_lapic *apic = vcpu->arch.apic; 2498 2499 /* 2500 * ICR is a single 64-bit register when x2APIC is enabled, all others 2501 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to 2502 * go down the common path to get the upper half from ICR2. 2503 * 2504 * Note, using the write helpers may incur an unnecessary write to the 2505 * virtual APIC state, but KVM needs to conditionally modify the value 2506 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra 2507 * conditional branches is likely a wash relative to the cost of the 2508 * maybe-unecessary write, and both are in the noise anyways. 2509 */ 2510 if (apic_x2apic_mode(apic) && offset == APIC_ICR) 2511 WARN_ON_ONCE(kvm_x2apic_icr_write(apic, kvm_x2apic_icr_read(apic))); 2512 else 2513 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); 2514 } 2515 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2516 2517 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2518 { 2519 struct kvm_lapic *apic = vcpu->arch.apic; 2520 2521 if (!vcpu->arch.apic) { 2522 static_branch_dec(&kvm_has_noapic_vcpu); 2523 return; 2524 } 2525 2526 hrtimer_cancel(&apic->lapic_timer.timer); 2527 2528 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2529 static_branch_slow_dec_deferred(&apic_hw_disabled); 2530 2531 if (!apic->sw_enabled) 2532 static_branch_slow_dec_deferred(&apic_sw_disabled); 2533 2534 if (apic->regs) 2535 free_page((unsigned long)apic->regs); 2536 2537 kfree(apic); 2538 } 2539 2540 /* 2541 *---------------------------------------------------------------------- 2542 * LAPIC interface 2543 *---------------------------------------------------------------------- 2544 */ 2545 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2546 { 2547 struct kvm_lapic *apic = vcpu->arch.apic; 2548 2549 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2550 return 0; 2551 2552 return apic->lapic_timer.tscdeadline; 2553 } 2554 2555 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2556 { 2557 struct kvm_lapic *apic = vcpu->arch.apic; 2558 2559 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2560 return; 2561 2562 hrtimer_cancel(&apic->lapic_timer.timer); 2563 apic->lapic_timer.tscdeadline = data; 2564 start_apic_timer(apic); 2565 } 2566 2567 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2568 { 2569 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4); 2570 } 2571 2572 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2573 { 2574 u64 tpr; 2575 2576 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2577 2578 return (tpr & 0xf0) >> 4; 2579 } 2580 2581 static void __kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value) 2582 { 2583 u64 old_value = vcpu->arch.apic_base; 2584 struct kvm_lapic *apic = vcpu->arch.apic; 2585 2586 vcpu->arch.apic_base = value; 2587 2588 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2589 vcpu->arch.cpuid_dynamic_bits_dirty = true; 2590 2591 if (!apic) 2592 return; 2593 2594 /* update jump label if enable bit changes */ 2595 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2596 if (value & MSR_IA32_APICBASE_ENABLE) { 2597 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2598 static_branch_slow_dec_deferred(&apic_hw_disabled); 2599 /* Check if there are APF page ready requests pending */ 2600 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2601 } else { 2602 static_branch_inc(&apic_hw_disabled.key); 2603 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2604 } 2605 } 2606 2607 if ((old_value ^ value) & X2APIC_ENABLE) { 2608 if (value & X2APIC_ENABLE) 2609 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2610 else if (value & MSR_IA32_APICBASE_ENABLE) 2611 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2612 } 2613 2614 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) { 2615 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2616 kvm_x86_call(set_virtual_apic_mode)(vcpu); 2617 } 2618 2619 apic->base_address = apic->vcpu->arch.apic_base & 2620 MSR_IA32_APICBASE_BASE; 2621 2622 if ((value & MSR_IA32_APICBASE_ENABLE) && 2623 apic->base_address != APIC_DEFAULT_PHYS_BASE) { 2624 kvm_set_apicv_inhibit(apic->vcpu->kvm, 2625 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); 2626 } 2627 } 2628 2629 int kvm_apic_set_base(struct kvm_vcpu *vcpu, u64 value, bool host_initiated) 2630 { 2631 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 2632 enum lapic_mode new_mode = kvm_apic_mode(value); 2633 2634 if (vcpu->arch.apic_base == value) 2635 return 0; 2636 2637 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 2638 (guest_cpu_cap_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 2639 2640 if ((value & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 2641 return 1; 2642 if (!host_initiated) { 2643 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 2644 return 1; 2645 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 2646 return 1; 2647 } 2648 2649 __kvm_apic_set_base(vcpu, value); 2650 kvm_recalculate_apic_map(vcpu->kvm); 2651 return 0; 2652 } 2653 2654 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2655 { 2656 struct kvm_lapic *apic = vcpu->arch.apic; 2657 2658 /* 2659 * When APICv is enabled, KVM must always search the IRR for a pending 2660 * IRQ, as other vCPUs and devices can set IRR bits even if the vCPU 2661 * isn't running. If APICv is disabled, KVM _should_ search the IRR 2662 * for a pending IRQ. But KVM currently doesn't ensure *all* hardware, 2663 * e.g. CPUs and IOMMUs, has seen the change in state, i.e. searching 2664 * the IRR at this time could race with IRQ delivery from hardware that 2665 * still sees APICv as being enabled. 2666 * 2667 * FIXME: Ensure other vCPUs and devices observe the change in APICv 2668 * state prior to updating KVM's metadata caches, so that KVM 2669 * can safely search the IRR and set irr_pending accordingly. 2670 */ 2671 apic->irr_pending = true; 2672 2673 if (apic->apicv_active) 2674 apic->isr_count = 1; 2675 else 2676 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2677 2678 apic->highest_isr_cache = -1; 2679 } 2680 2681 int kvm_alloc_apic_access_page(struct kvm *kvm) 2682 { 2683 void __user *hva; 2684 int ret = 0; 2685 2686 mutex_lock(&kvm->slots_lock); 2687 if (kvm->arch.apic_access_memslot_enabled || 2688 kvm->arch.apic_access_memslot_inhibited) 2689 goto out; 2690 2691 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 2692 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 2693 if (IS_ERR(hva)) { 2694 ret = PTR_ERR(hva); 2695 goto out; 2696 } 2697 2698 kvm->arch.apic_access_memslot_enabled = true; 2699 out: 2700 mutex_unlock(&kvm->slots_lock); 2701 return ret; 2702 } 2703 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page); 2704 2705 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu) 2706 { 2707 struct kvm *kvm = vcpu->kvm; 2708 2709 if (!kvm->arch.apic_access_memslot_enabled) 2710 return; 2711 2712 kvm_vcpu_srcu_read_unlock(vcpu); 2713 2714 mutex_lock(&kvm->slots_lock); 2715 2716 if (kvm->arch.apic_access_memslot_enabled) { 2717 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 2718 /* 2719 * Clear "enabled" after the memslot is deleted so that a 2720 * different vCPU doesn't get a false negative when checking 2721 * the flag out of slots_lock. No additional memory barrier is 2722 * needed as modifying memslots requires waiting other vCPUs to 2723 * drop SRCU (see above), and false positives are ok as the 2724 * flag is rechecked after acquiring slots_lock. 2725 */ 2726 kvm->arch.apic_access_memslot_enabled = false; 2727 2728 /* 2729 * Mark the memslot as inhibited to prevent reallocating the 2730 * memslot during vCPU creation, e.g. if a vCPU is hotplugged. 2731 */ 2732 kvm->arch.apic_access_memslot_inhibited = true; 2733 } 2734 2735 mutex_unlock(&kvm->slots_lock); 2736 2737 kvm_vcpu_srcu_read_lock(vcpu); 2738 } 2739 2740 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2741 { 2742 struct kvm_lapic *apic = vcpu->arch.apic; 2743 u64 msr_val; 2744 int i; 2745 2746 kvm_x86_call(apicv_pre_state_restore)(vcpu); 2747 2748 if (!init_event) { 2749 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; 2750 if (kvm_vcpu_is_reset_bsp(vcpu)) 2751 msr_val |= MSR_IA32_APICBASE_BSP; 2752 2753 /* 2754 * Use the inner helper to avoid an extra recalcuation of the 2755 * optimized APIC map if some other task has dirtied the map. 2756 * The recalculation needed for this vCPU will be done after 2757 * all APIC state has been initialized (see below). 2758 */ 2759 __kvm_apic_set_base(vcpu, msr_val); 2760 } 2761 2762 if (!apic) 2763 return; 2764 2765 /* Stop the timer in case it's a reset to an active apic */ 2766 hrtimer_cancel(&apic->lapic_timer.timer); 2767 2768 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ 2769 if (!init_event) 2770 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2771 kvm_apic_set_version(apic->vcpu); 2772 2773 for (i = 0; i < apic->nr_lvt_entries; i++) 2774 kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED); 2775 apic_update_lvtt(apic); 2776 if (kvm_vcpu_is_reset_bsp(vcpu) && 2777 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2778 kvm_lapic_set_reg(apic, APIC_LVT0, 2779 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2780 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2781 2782 kvm_apic_set_dfr(apic, 0xffffffffU); 2783 apic_set_spiv(apic, 0xff); 2784 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2785 if (!apic_x2apic_mode(apic)) 2786 kvm_apic_set_ldr(apic, 0); 2787 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2788 if (!apic_x2apic_mode(apic)) { 2789 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2790 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2791 } else { 2792 kvm_lapic_set_reg64(apic, APIC_ICR, 0); 2793 } 2794 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2795 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2796 for (i = 0; i < 8; i++) { 2797 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2798 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2799 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2800 } 2801 kvm_apic_update_apicv(vcpu); 2802 update_divide_count(apic); 2803 atomic_set(&apic->lapic_timer.pending, 0); 2804 2805 vcpu->arch.pv_eoi.msr_val = 0; 2806 apic_update_ppr(apic); 2807 if (apic->apicv_active) { 2808 kvm_x86_call(apicv_post_state_restore)(vcpu); 2809 kvm_x86_call(hwapic_isr_update)(vcpu, -1); 2810 } 2811 2812 vcpu->arch.apic_arb_prio = 0; 2813 vcpu->arch.apic_attention = 0; 2814 2815 kvm_recalculate_apic_map(vcpu->kvm); 2816 } 2817 2818 /* 2819 *---------------------------------------------------------------------- 2820 * timer interface 2821 *---------------------------------------------------------------------- 2822 */ 2823 2824 static bool lapic_is_periodic(struct kvm_lapic *apic) 2825 { 2826 return apic_lvtt_period(apic); 2827 } 2828 2829 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2830 { 2831 struct kvm_lapic *apic = vcpu->arch.apic; 2832 2833 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2834 return atomic_read(&apic->lapic_timer.pending); 2835 2836 return 0; 2837 } 2838 2839 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2840 { 2841 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2842 int vector, mode, trig_mode; 2843 int r; 2844 2845 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2846 vector = reg & APIC_VECTOR_MASK; 2847 mode = reg & APIC_MODE_MASK; 2848 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2849 2850 r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL); 2851 if (r && lvt_type == APIC_LVTPC && 2852 guest_cpuid_is_intel_compatible(apic->vcpu)) 2853 kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED); 2854 return r; 2855 } 2856 return 0; 2857 } 2858 2859 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2860 { 2861 struct kvm_lapic *apic = vcpu->arch.apic; 2862 2863 if (apic) 2864 kvm_apic_local_deliver(apic, APIC_LVT0); 2865 } 2866 2867 static const struct kvm_io_device_ops apic_mmio_ops = { 2868 .read = apic_mmio_read, 2869 .write = apic_mmio_write, 2870 }; 2871 2872 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2873 { 2874 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2875 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2876 2877 apic_timer_expired(apic, true); 2878 2879 if (lapic_is_periodic(apic)) { 2880 advance_periodic_target_expiration(apic); 2881 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2882 return HRTIMER_RESTART; 2883 } else 2884 return HRTIMER_NORESTART; 2885 } 2886 2887 int kvm_create_lapic(struct kvm_vcpu *vcpu) 2888 { 2889 struct kvm_lapic *apic; 2890 2891 ASSERT(vcpu != NULL); 2892 2893 if (!irqchip_in_kernel(vcpu->kvm)) { 2894 static_branch_inc(&kvm_has_noapic_vcpu); 2895 return 0; 2896 } 2897 2898 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2899 if (!apic) 2900 goto nomem; 2901 2902 vcpu->arch.apic = apic; 2903 2904 if (kvm_x86_ops.alloc_apic_backing_page) 2905 apic->regs = kvm_x86_call(alloc_apic_backing_page)(vcpu); 2906 else 2907 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2908 if (!apic->regs) { 2909 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2910 vcpu->vcpu_id); 2911 goto nomem_free_apic; 2912 } 2913 apic->vcpu = vcpu; 2914 2915 apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu); 2916 2917 hrtimer_setup(&apic->lapic_timer.timer, apic_timer_fn, CLOCK_MONOTONIC, 2918 HRTIMER_MODE_ABS_HARD); 2919 if (lapic_timer_advance) 2920 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2921 2922 /* 2923 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing 2924 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). 2925 */ 2926 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2927 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2928 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2929 2930 /* 2931 * Defer evaluating inhibits until the vCPU is first run, as this vCPU 2932 * will not get notified of any changes until this vCPU is visible to 2933 * other vCPUs (marked online and added to the set of vCPUs). 2934 * 2935 * Opportunistically mark APICv active as VMX in particularly is highly 2936 * unlikely to have inhibits. Ignore the current per-VM APICv state so 2937 * that vCPU creation is guaranteed to run with a deterministic value, 2938 * the request will ensure the vCPU gets the correct state before VM-Entry. 2939 */ 2940 if (enable_apicv) { 2941 apic->apicv_active = true; 2942 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 2943 } 2944 2945 return 0; 2946 nomem_free_apic: 2947 kfree(apic); 2948 vcpu->arch.apic = NULL; 2949 nomem: 2950 return -ENOMEM; 2951 } 2952 2953 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2954 { 2955 struct kvm_lapic *apic = vcpu->arch.apic; 2956 u32 ppr; 2957 2958 if (!kvm_apic_present(vcpu)) 2959 return -1; 2960 2961 __apic_update_ppr(apic, &ppr); 2962 return apic_has_interrupt_for_ppr(apic, ppr); 2963 } 2964 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2965 2966 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2967 { 2968 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2969 2970 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2971 return 1; 2972 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2973 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2974 return 1; 2975 return 0; 2976 } 2977 2978 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2979 { 2980 struct kvm_lapic *apic = vcpu->arch.apic; 2981 2982 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2983 kvm_apic_inject_pending_timer_irqs(apic); 2984 atomic_set(&apic->lapic_timer.pending, 0); 2985 } 2986 } 2987 2988 void kvm_apic_ack_interrupt(struct kvm_vcpu *vcpu, int vector) 2989 { 2990 struct kvm_lapic *apic = vcpu->arch.apic; 2991 u32 ppr; 2992 2993 if (WARN_ON_ONCE(vector < 0 || !apic)) 2994 return; 2995 2996 /* 2997 * We get here even with APIC virtualization enabled, if doing 2998 * nested virtualization and L1 runs with the "acknowledge interrupt 2999 * on exit" mode. Then we cannot inject the interrupt via RVI, 3000 * because the process would deliver it through the IDT. 3001 */ 3002 3003 apic_clear_irr(vector, apic); 3004 if (kvm_hv_synic_auto_eoi_set(vcpu, vector)) { 3005 /* 3006 * For auto-EOI interrupts, there might be another pending 3007 * interrupt above PPR, so check whether to raise another 3008 * KVM_REQ_EVENT. 3009 */ 3010 apic_update_ppr(apic); 3011 } else { 3012 /* 3013 * For normal interrupts, PPR has been raised and there cannot 3014 * be a higher-priority pending interrupt---except if there was 3015 * a concurrent interrupt injection, but that would have 3016 * triggered KVM_REQ_EVENT already. 3017 */ 3018 apic_set_isr(vector, apic); 3019 __apic_update_ppr(apic, &ppr); 3020 } 3021 3022 } 3023 EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt); 3024 3025 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 3026 struct kvm_lapic_state *s, bool set) 3027 { 3028 if (apic_x2apic_mode(vcpu->arch.apic)) { 3029 u32 x2apic_id = kvm_x2apic_id(vcpu->arch.apic); 3030 u32 *id = (u32 *)(s->regs + APIC_ID); 3031 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 3032 u64 icr; 3033 3034 if (vcpu->kvm->arch.x2apic_format) { 3035 if (*id != x2apic_id) 3036 return -EINVAL; 3037 } else { 3038 /* 3039 * Ignore the userspace value when setting APIC state. 3040 * KVM's model is that the x2APIC ID is readonly, e.g. 3041 * KVM only supports delivering interrupts to KVM's 3042 * version of the x2APIC ID. However, for backwards 3043 * compatibility, don't reject attempts to set a 3044 * mismatched ID for userspace that hasn't opted into 3045 * x2apic_format. 3046 */ 3047 if (set) 3048 *id = x2apic_id; 3049 else 3050 *id = x2apic_id << 24; 3051 } 3052 3053 /* 3054 * In x2APIC mode, the LDR is fixed and based on the id. And 3055 * if the ICR is _not_ split, ICR is internally a single 64-bit 3056 * register, but needs to be split to ICR+ICR2 in userspace for 3057 * backwards compatibility. 3058 */ 3059 if (set) 3060 *ldr = kvm_apic_calc_x2apic_ldr(x2apic_id); 3061 3062 if (!kvm_x86_ops.x2apic_icr_is_split) { 3063 if (set) { 3064 icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) | 3065 (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32; 3066 __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr); 3067 } else { 3068 icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR); 3069 __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32); 3070 } 3071 } 3072 } 3073 3074 return 0; 3075 } 3076 3077 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3078 { 3079 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 3080 3081 /* 3082 * Get calculated timer current count for remaining timer period (if 3083 * any) and store it in the returned register set. 3084 */ 3085 __kvm_lapic_set_reg(s->regs, APIC_TMCCT, 3086 __apic_read(vcpu->arch.apic, APIC_TMCCT)); 3087 3088 return kvm_apic_state_fixup(vcpu, s, false); 3089 } 3090 3091 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 3092 { 3093 struct kvm_lapic *apic = vcpu->arch.apic; 3094 int r; 3095 3096 kvm_x86_call(apicv_pre_state_restore)(vcpu); 3097 3098 /* set SPIV separately to get count of SW disabled APICs right */ 3099 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 3100 3101 r = kvm_apic_state_fixup(vcpu, s, true); 3102 if (r) { 3103 kvm_recalculate_apic_map(vcpu->kvm); 3104 return r; 3105 } 3106 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 3107 3108 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 3109 kvm_recalculate_apic_map(vcpu->kvm); 3110 kvm_apic_set_version(vcpu); 3111 3112 apic_update_ppr(apic); 3113 cancel_apic_timer(apic); 3114 apic->lapic_timer.expired_tscdeadline = 0; 3115 apic_update_lvtt(apic); 3116 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 3117 update_divide_count(apic); 3118 __start_apic_timer(apic, APIC_TMCCT); 3119 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 3120 kvm_apic_update_apicv(vcpu); 3121 if (apic->apicv_active) { 3122 kvm_x86_call(apicv_post_state_restore)(vcpu); 3123 kvm_x86_call(hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 3124 } 3125 kvm_make_request(KVM_REQ_EVENT, vcpu); 3126 if (ioapic_in_kernel(vcpu->kvm)) 3127 kvm_rtc_eoi_tracking_restore_one(vcpu); 3128 3129 vcpu->arch.apic_arb_prio = 0; 3130 3131 return 0; 3132 } 3133 3134 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 3135 { 3136 struct hrtimer *timer; 3137 3138 if (!lapic_in_kernel(vcpu) || 3139 kvm_can_post_timer_interrupt(vcpu)) 3140 return; 3141 3142 timer = &vcpu->arch.apic->lapic_timer.timer; 3143 if (hrtimer_cancel(timer)) 3144 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 3145 } 3146 3147 /* 3148 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 3149 * 3150 * Detect whether guest triggered PV EOI since the 3151 * last entry. If yes, set EOI on guests's behalf. 3152 * Clear PV EOI in guest memory in any case. 3153 */ 3154 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 3155 struct kvm_lapic *apic) 3156 { 3157 int vector; 3158 /* 3159 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 3160 * and KVM_PV_EOI_ENABLED in guest memory as follows: 3161 * 3162 * KVM_APIC_PV_EOI_PENDING is unset: 3163 * -> host disabled PV EOI. 3164 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 3165 * -> host enabled PV EOI, guest did not execute EOI yet. 3166 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 3167 * -> host enabled PV EOI, guest executed EOI. 3168 */ 3169 BUG_ON(!pv_eoi_enabled(vcpu)); 3170 3171 if (pv_eoi_test_and_clr_pending(vcpu)) 3172 return; 3173 vector = apic_set_eoi(apic); 3174 trace_kvm_pv_eoi(apic, vector); 3175 } 3176 3177 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 3178 { 3179 u32 data; 3180 3181 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 3182 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 3183 3184 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3185 return; 3186 3187 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3188 sizeof(u32))) 3189 return; 3190 3191 apic_set_tpr(vcpu->arch.apic, data & 0xff); 3192 } 3193 3194 /* 3195 * apic_sync_pv_eoi_to_guest - called before vmentry 3196 * 3197 * Detect whether it's safe to enable PV EOI and 3198 * if yes do so. 3199 */ 3200 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 3201 struct kvm_lapic *apic) 3202 { 3203 if (!pv_eoi_enabled(vcpu) || 3204 /* IRR set or many bits in ISR: could be nested. */ 3205 apic->irr_pending || 3206 /* Cache not set: could be safe but we don't bother. */ 3207 apic->highest_isr_cache == -1 || 3208 /* Need EOI to update ioapic. */ 3209 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 3210 /* 3211 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 3212 * so we need not do anything here. 3213 */ 3214 return; 3215 } 3216 3217 pv_eoi_set_pending(apic->vcpu); 3218 } 3219 3220 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 3221 { 3222 u32 data, tpr; 3223 int max_irr, max_isr; 3224 struct kvm_lapic *apic = vcpu->arch.apic; 3225 3226 apic_sync_pv_eoi_to_guest(vcpu, apic); 3227 3228 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 3229 return; 3230 3231 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 3232 max_irr = apic_find_highest_irr(apic); 3233 if (max_irr < 0) 3234 max_irr = 0; 3235 max_isr = apic_find_highest_isr(apic); 3236 if (max_isr < 0) 3237 max_isr = 0; 3238 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 3239 3240 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 3241 sizeof(u32)); 3242 } 3243 3244 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 3245 { 3246 if (vapic_addr) { 3247 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 3248 &vcpu->arch.apic->vapic_cache, 3249 vapic_addr, sizeof(u32))) 3250 return -EINVAL; 3251 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3252 } else { 3253 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 3254 } 3255 3256 vcpu->arch.apic->vapic_addr = vapic_addr; 3257 return 0; 3258 } 3259 3260 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data) 3261 { 3262 u32 low; 3263 3264 if (reg == APIC_ICR) { 3265 *data = kvm_x2apic_icr_read(apic); 3266 return 0; 3267 } 3268 3269 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 3270 return 1; 3271 3272 *data = low; 3273 3274 return 0; 3275 } 3276 3277 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data) 3278 { 3279 /* 3280 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and 3281 * can be written as such, all other registers remain accessible only 3282 * through 32-bit reads/writes. 3283 */ 3284 if (reg == APIC_ICR) 3285 return kvm_x2apic_icr_write(apic, data); 3286 3287 /* Bits 63:32 are reserved in all other registers. */ 3288 if (data >> 32) 3289 return 1; 3290 3291 return kvm_lapic_reg_write(apic, reg, (u32)data); 3292 } 3293 3294 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 3295 { 3296 struct kvm_lapic *apic = vcpu->arch.apic; 3297 u32 reg = (msr - APIC_BASE_MSR) << 4; 3298 3299 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3300 return 1; 3301 3302 return kvm_lapic_msr_write(apic, reg, data); 3303 } 3304 3305 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 3306 { 3307 struct kvm_lapic *apic = vcpu->arch.apic; 3308 u32 reg = (msr - APIC_BASE_MSR) << 4; 3309 3310 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 3311 return 1; 3312 3313 return kvm_lapic_msr_read(apic, reg, data); 3314 } 3315 3316 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 3317 { 3318 if (!lapic_in_kernel(vcpu)) 3319 return 1; 3320 3321 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data); 3322 } 3323 3324 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 3325 { 3326 if (!lapic_in_kernel(vcpu)) 3327 return 1; 3328 3329 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data); 3330 } 3331 3332 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 3333 { 3334 u64 addr = data & ~KVM_MSR_ENABLED; 3335 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 3336 unsigned long new_len; 3337 int ret; 3338 3339 if (!IS_ALIGNED(addr, 4)) 3340 return 1; 3341 3342 if (data & KVM_MSR_ENABLED) { 3343 if (addr == ghc->gpa && len <= ghc->len) 3344 new_len = ghc->len; 3345 else 3346 new_len = len; 3347 3348 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 3349 if (ret) 3350 return ret; 3351 } 3352 3353 vcpu->arch.pv_eoi.msr_val = data; 3354 3355 return 0; 3356 } 3357 3358 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 3359 { 3360 struct kvm_lapic *apic = vcpu->arch.apic; 3361 u8 sipi_vector; 3362 int r; 3363 3364 if (!kvm_apic_has_pending_init_or_sipi(vcpu)) 3365 return 0; 3366 3367 if (is_guest_mode(vcpu)) { 3368 r = kvm_check_nested_events(vcpu); 3369 if (r < 0) 3370 return r == -EBUSY ? 0 : r; 3371 /* 3372 * Continue processing INIT/SIPI even if a nested VM-Exit 3373 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI 3374 * are blocked as a result of transitioning to VMX root mode. 3375 */ 3376 } 3377 3378 /* 3379 * INITs are blocked while CPU is in specific states (SMM, VMX root 3380 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in 3381 * wait-for-SIPI (WFS). 3382 */ 3383 if (!kvm_apic_init_sipi_allowed(vcpu)) { 3384 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 3385 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 3386 return 0; 3387 } 3388 3389 if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) { 3390 kvm_vcpu_reset(vcpu, true); 3391 if (kvm_vcpu_is_bsp(apic->vcpu)) 3392 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 3393 else 3394 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED); 3395 } 3396 if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) { 3397 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 3398 /* evaluate pending_events before reading the vector */ 3399 smp_rmb(); 3400 sipi_vector = apic->sipi_vector; 3401 kvm_x86_call(vcpu_deliver_sipi_vector)(vcpu, 3402 sipi_vector); 3403 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 3404 } 3405 } 3406 return 0; 3407 } 3408 3409 void kvm_lapic_exit(void) 3410 { 3411 static_key_deferred_flush(&apic_hw_disabled); 3412 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); 3413 static_key_deferred_flush(&apic_sw_disabled); 3414 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); 3415 } 3416