xref: /linux/arch/x86/kernel/head64.c (revision f7f0adfe64de08803990dc4cbecd2849c04e314a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  prepare to run common code
4  *
5  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6  */
7 
8 #define DISABLE_BRANCH_PROFILING
9 
10 /* cpu_feature_enabled() cannot be used this early */
11 #define USE_EARLY_PGTABLE_L5
12 
13 #include <linux/init.h>
14 #include <linux/linkage.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/percpu.h>
19 #include <linux/start_kernel.h>
20 #include <linux/io.h>
21 #include <linux/memblock.h>
22 #include <linux/cc_platform.h>
23 #include <linux/pgtable.h>
24 
25 #include <asm/asm.h>
26 #include <asm/page_64.h>
27 #include <asm/processor.h>
28 #include <asm/proto.h>
29 #include <asm/smp.h>
30 #include <asm/setup.h>
31 #include <asm/desc.h>
32 #include <asm/tlbflush.h>
33 #include <asm/sections.h>
34 #include <asm/kdebug.h>
35 #include <asm/e820/api.h>
36 #include <asm/bios_ebda.h>
37 #include <asm/bootparam_utils.h>
38 #include <asm/microcode.h>
39 #include <asm/kasan.h>
40 #include <asm/fixmap.h>
41 #include <asm/realmode.h>
42 #include <asm/extable.h>
43 #include <asm/trapnr.h>
44 #include <asm/sev.h>
45 #include <asm/tdx.h>
46 #include <asm/init.h>
47 
48 /*
49  * Manage page tables very early on.
50  */
51 extern pmd_t early_dynamic_pgts[EARLY_DYNAMIC_PAGE_TABLES][PTRS_PER_PMD];
52 static unsigned int __initdata next_early_pgt;
53 pmdval_t early_pmd_flags = __PAGE_KERNEL_LARGE & ~(_PAGE_GLOBAL | _PAGE_NX);
54 
55 #ifdef CONFIG_X86_5LEVEL
56 unsigned int __pgtable_l5_enabled __ro_after_init;
57 unsigned int pgdir_shift __ro_after_init = 39;
58 EXPORT_SYMBOL(pgdir_shift);
59 unsigned int ptrs_per_p4d __ro_after_init = 1;
60 EXPORT_SYMBOL(ptrs_per_p4d);
61 #endif
62 
63 #ifdef CONFIG_DYNAMIC_MEMORY_LAYOUT
64 unsigned long page_offset_base __ro_after_init = __PAGE_OFFSET_BASE_L4;
65 EXPORT_SYMBOL(page_offset_base);
66 unsigned long vmalloc_base __ro_after_init = __VMALLOC_BASE_L4;
67 EXPORT_SYMBOL(vmalloc_base);
68 unsigned long vmemmap_base __ro_after_init = __VMEMMAP_BASE_L4;
69 EXPORT_SYMBOL(vmemmap_base);
70 #endif
71 
72 static inline bool check_la57_support(void)
73 {
74 	if (!IS_ENABLED(CONFIG_X86_5LEVEL))
75 		return false;
76 
77 	/*
78 	 * 5-level paging is detected and enabled at kernel decompression
79 	 * stage. Only check if it has been enabled there.
80 	 */
81 	if (!(native_read_cr4() & X86_CR4_LA57))
82 		return false;
83 
84 	RIP_REL_REF(__pgtable_l5_enabled)	= 1;
85 	RIP_REL_REF(pgdir_shift)		= 48;
86 	RIP_REL_REF(ptrs_per_p4d)		= 512;
87 	RIP_REL_REF(page_offset_base)		= __PAGE_OFFSET_BASE_L5;
88 	RIP_REL_REF(vmalloc_base)		= __VMALLOC_BASE_L5;
89 	RIP_REL_REF(vmemmap_base)		= __VMEMMAP_BASE_L5;
90 
91 	return true;
92 }
93 
94 static unsigned long __head sme_postprocess_startup(struct boot_params *bp,
95 						    pmdval_t *pmd,
96 						    unsigned long p2v_offset)
97 {
98 	unsigned long paddr, paddr_end;
99 	int i;
100 
101 	/* Encrypt the kernel and related (if SME is active) */
102 	sme_encrypt_kernel(bp);
103 
104 	/*
105 	 * Clear the memory encryption mask from the .bss..decrypted section.
106 	 * The bss section will be memset to zero later in the initialization so
107 	 * there is no need to zero it after changing the memory encryption
108 	 * attribute.
109 	 */
110 	if (sme_get_me_mask()) {
111 		paddr = (unsigned long)&RIP_REL_REF(__start_bss_decrypted);
112 		paddr_end = (unsigned long)&RIP_REL_REF(__end_bss_decrypted);
113 
114 		for (; paddr < paddr_end; paddr += PMD_SIZE) {
115 			/*
116 			 * On SNP, transition the page to shared in the RMP table so that
117 			 * it is consistent with the page table attribute change.
118 			 *
119 			 * __start_bss_decrypted has a virtual address in the high range
120 			 * mapping (kernel .text). PVALIDATE, by way of
121 			 * early_snp_set_memory_shared(), requires a valid virtual
122 			 * address but the kernel is currently running off of the identity
123 			 * mapping so use the PA to get a *currently* valid virtual address.
124 			 */
125 			early_snp_set_memory_shared(paddr, paddr, PTRS_PER_PMD);
126 
127 			i = pmd_index(paddr - p2v_offset);
128 			pmd[i] -= sme_get_me_mask();
129 		}
130 	}
131 
132 	/*
133 	 * Return the SME encryption mask (if SME is active) to be used as a
134 	 * modifier for the initial pgdir entry programmed into CR3.
135 	 */
136 	return sme_get_me_mask();
137 }
138 
139 /* Code in __startup_64() can be relocated during execution, but the compiler
140  * doesn't have to generate PC-relative relocations when accessing globals from
141  * that function. Clang actually does not generate them, which leads to
142  * boot-time crashes. To work around this problem, every global pointer must
143  * be accessed using RIP_REL_REF(). Kernel virtual addresses can be determined
144  * by subtracting p2v_offset from the RIP-relative address.
145  */
146 unsigned long __head __startup_64(unsigned long p2v_offset,
147 				  struct boot_params *bp)
148 {
149 	pmd_t (*early_pgts)[PTRS_PER_PMD] = RIP_REL_REF(early_dynamic_pgts);
150 	unsigned long physaddr = (unsigned long)&RIP_REL_REF(_text);
151 	unsigned long va_text, va_end;
152 	unsigned long pgtable_flags;
153 	unsigned long load_delta;
154 	pgdval_t *pgd;
155 	p4dval_t *p4d;
156 	pudval_t *pud;
157 	pmdval_t *pmd, pmd_entry;
158 	bool la57;
159 	int i;
160 
161 	la57 = check_la57_support();
162 
163 	/* Is the address too large? */
164 	if (physaddr >> MAX_PHYSMEM_BITS)
165 		for (;;);
166 
167 	/*
168 	 * Compute the delta between the address I am compiled to run at
169 	 * and the address I am actually running at.
170 	 */
171 	load_delta = __START_KERNEL_map + p2v_offset;
172 	RIP_REL_REF(phys_base) = load_delta;
173 
174 	/* Is the address not 2M aligned? */
175 	if (load_delta & ~PMD_MASK)
176 		for (;;);
177 
178 	va_text = physaddr - p2v_offset;
179 	va_end  = (unsigned long)&RIP_REL_REF(_end) - p2v_offset;
180 
181 	/* Include the SME encryption mask in the fixup value */
182 	load_delta += sme_get_me_mask();
183 
184 	/* Fixup the physical addresses in the page table */
185 
186 	pgd = &RIP_REL_REF(early_top_pgt)->pgd;
187 	pgd[pgd_index(__START_KERNEL_map)] += load_delta;
188 
189 	if (IS_ENABLED(CONFIG_X86_5LEVEL) && la57) {
190 		p4d = (p4dval_t *)&RIP_REL_REF(level4_kernel_pgt);
191 		p4d[MAX_PTRS_PER_P4D - 1] += load_delta;
192 
193 		pgd[pgd_index(__START_KERNEL_map)] = (pgdval_t)p4d | _PAGE_TABLE;
194 	}
195 
196 	RIP_REL_REF(level3_kernel_pgt)[PTRS_PER_PUD - 2].pud += load_delta;
197 	RIP_REL_REF(level3_kernel_pgt)[PTRS_PER_PUD - 1].pud += load_delta;
198 
199 	for (i = FIXMAP_PMD_TOP; i > FIXMAP_PMD_TOP - FIXMAP_PMD_NUM; i--)
200 		RIP_REL_REF(level2_fixmap_pgt)[i].pmd += load_delta;
201 
202 	/*
203 	 * Set up the identity mapping for the switchover.  These
204 	 * entries should *NOT* have the global bit set!  This also
205 	 * creates a bunch of nonsense entries but that is fine --
206 	 * it avoids problems around wraparound.
207 	 */
208 
209 	pud = &early_pgts[0]->pmd;
210 	pmd = &early_pgts[1]->pmd;
211 	RIP_REL_REF(next_early_pgt) = 2;
212 
213 	pgtable_flags = _KERNPG_TABLE_NOENC + sme_get_me_mask();
214 
215 	if (la57) {
216 		p4d = &early_pgts[RIP_REL_REF(next_early_pgt)++]->pmd;
217 
218 		i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
219 		pgd[i + 0] = (pgdval_t)p4d + pgtable_flags;
220 		pgd[i + 1] = (pgdval_t)p4d + pgtable_flags;
221 
222 		i = physaddr >> P4D_SHIFT;
223 		p4d[(i + 0) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
224 		p4d[(i + 1) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
225 	} else {
226 		i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
227 		pgd[i + 0] = (pgdval_t)pud + pgtable_flags;
228 		pgd[i + 1] = (pgdval_t)pud + pgtable_flags;
229 	}
230 
231 	i = physaddr >> PUD_SHIFT;
232 	pud[(i + 0) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
233 	pud[(i + 1) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
234 
235 	pmd_entry = __PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL;
236 	/* Filter out unsupported __PAGE_KERNEL_* bits: */
237 	pmd_entry &= RIP_REL_REF(__supported_pte_mask);
238 	pmd_entry += sme_get_me_mask();
239 	pmd_entry +=  physaddr;
240 
241 	for (i = 0; i < DIV_ROUND_UP(va_end - va_text, PMD_SIZE); i++) {
242 		int idx = i + (physaddr >> PMD_SHIFT);
243 
244 		pmd[idx % PTRS_PER_PMD] = pmd_entry + i * PMD_SIZE;
245 	}
246 
247 	/*
248 	 * Fixup the kernel text+data virtual addresses. Note that
249 	 * we might write invalid pmds, when the kernel is relocated
250 	 * cleanup_highmap() fixes this up along with the mappings
251 	 * beyond _end.
252 	 *
253 	 * Only the region occupied by the kernel image has so far
254 	 * been checked against the table of usable memory regions
255 	 * provided by the firmware, so invalidate pages outside that
256 	 * region. A page table entry that maps to a reserved area of
257 	 * memory would allow processor speculation into that area,
258 	 * and on some hardware (particularly the UV platform) even
259 	 * speculative access to some reserved areas is caught as an
260 	 * error, causing the BIOS to halt the system.
261 	 */
262 
263 	pmd = &RIP_REL_REF(level2_kernel_pgt)->pmd;
264 
265 	/* invalidate pages before the kernel image */
266 	for (i = 0; i < pmd_index(va_text); i++)
267 		pmd[i] &= ~_PAGE_PRESENT;
268 
269 	/* fixup pages that are part of the kernel image */
270 	for (; i <= pmd_index(va_end); i++)
271 		if (pmd[i] & _PAGE_PRESENT)
272 			pmd[i] += load_delta;
273 
274 	/* invalidate pages after the kernel image */
275 	for (; i < PTRS_PER_PMD; i++)
276 		pmd[i] &= ~_PAGE_PRESENT;
277 
278 	return sme_postprocess_startup(bp, pmd, p2v_offset);
279 }
280 
281 /* Wipe all early page tables except for the kernel symbol map */
282 static void __init reset_early_page_tables(void)
283 {
284 	memset(early_top_pgt, 0, sizeof(pgd_t)*(PTRS_PER_PGD-1));
285 	next_early_pgt = 0;
286 	write_cr3(__sme_pa_nodebug(early_top_pgt));
287 }
288 
289 /* Create a new PMD entry */
290 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd)
291 {
292 	unsigned long physaddr = address - __PAGE_OFFSET;
293 	pgdval_t pgd, *pgd_p;
294 	p4dval_t p4d, *p4d_p;
295 	pudval_t pud, *pud_p;
296 	pmdval_t *pmd_p;
297 
298 	/* Invalid address or early pgt is done ?  */
299 	if (physaddr >= MAXMEM || read_cr3_pa() != __pa_nodebug(early_top_pgt))
300 		return false;
301 
302 again:
303 	pgd_p = &early_top_pgt[pgd_index(address)].pgd;
304 	pgd = *pgd_p;
305 
306 	/*
307 	 * The use of __START_KERNEL_map rather than __PAGE_OFFSET here is
308 	 * critical -- __PAGE_OFFSET would point us back into the dynamic
309 	 * range and we might end up looping forever...
310 	 */
311 	if (!pgtable_l5_enabled())
312 		p4d_p = pgd_p;
313 	else if (pgd)
314 		p4d_p = (p4dval_t *)((pgd & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
315 	else {
316 		if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
317 			reset_early_page_tables();
318 			goto again;
319 		}
320 
321 		p4d_p = (p4dval_t *)early_dynamic_pgts[next_early_pgt++];
322 		memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
323 		*pgd_p = (pgdval_t)p4d_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
324 	}
325 	p4d_p += p4d_index(address);
326 	p4d = *p4d_p;
327 
328 	if (p4d)
329 		pud_p = (pudval_t *)((p4d & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
330 	else {
331 		if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
332 			reset_early_page_tables();
333 			goto again;
334 		}
335 
336 		pud_p = (pudval_t *)early_dynamic_pgts[next_early_pgt++];
337 		memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
338 		*p4d_p = (p4dval_t)pud_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
339 	}
340 	pud_p += pud_index(address);
341 	pud = *pud_p;
342 
343 	if (pud)
344 		pmd_p = (pmdval_t *)((pud & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
345 	else {
346 		if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
347 			reset_early_page_tables();
348 			goto again;
349 		}
350 
351 		pmd_p = (pmdval_t *)early_dynamic_pgts[next_early_pgt++];
352 		memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
353 		*pud_p = (pudval_t)pmd_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
354 	}
355 	pmd_p[pmd_index(address)] = pmd;
356 
357 	return true;
358 }
359 
360 static bool __init early_make_pgtable(unsigned long address)
361 {
362 	unsigned long physaddr = address - __PAGE_OFFSET;
363 	pmdval_t pmd;
364 
365 	pmd = (physaddr & PMD_MASK) + early_pmd_flags;
366 
367 	return __early_make_pgtable(address, pmd);
368 }
369 
370 void __init do_early_exception(struct pt_regs *regs, int trapnr)
371 {
372 	if (trapnr == X86_TRAP_PF &&
373 	    early_make_pgtable(native_read_cr2()))
374 		return;
375 
376 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT) &&
377 	    trapnr == X86_TRAP_VC && handle_vc_boot_ghcb(regs))
378 		return;
379 
380 	if (trapnr == X86_TRAP_VE && tdx_early_handle_ve(regs))
381 		return;
382 
383 	early_fixup_exception(regs, trapnr);
384 }
385 
386 /* Don't add a printk in there. printk relies on the PDA which is not initialized
387    yet. */
388 void __init clear_bss(void)
389 {
390 	memset(__bss_start, 0,
391 	       (unsigned long) __bss_stop - (unsigned long) __bss_start);
392 	memset(__brk_base, 0,
393 	       (unsigned long) __brk_limit - (unsigned long) __brk_base);
394 }
395 
396 static unsigned long get_cmd_line_ptr(void)
397 {
398 	unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr;
399 
400 	cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << 32;
401 
402 	return cmd_line_ptr;
403 }
404 
405 static void __init copy_bootdata(char *real_mode_data)
406 {
407 	char * command_line;
408 	unsigned long cmd_line_ptr;
409 
410 	/*
411 	 * If SME is active, this will create decrypted mappings of the
412 	 * boot data in advance of the copy operations.
413 	 */
414 	sme_map_bootdata(real_mode_data);
415 
416 	memcpy(&boot_params, real_mode_data, sizeof(boot_params));
417 	sanitize_boot_params(&boot_params);
418 	cmd_line_ptr = get_cmd_line_ptr();
419 	if (cmd_line_ptr) {
420 		command_line = __va(cmd_line_ptr);
421 		memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
422 	}
423 
424 	/*
425 	 * The old boot data is no longer needed and won't be reserved,
426 	 * freeing up that memory for use by the system. If SME is active,
427 	 * we need to remove the mappings that were created so that the
428 	 * memory doesn't remain mapped as decrypted.
429 	 */
430 	sme_unmap_bootdata(real_mode_data);
431 }
432 
433 asmlinkage __visible void __init __noreturn x86_64_start_kernel(char * real_mode_data)
434 {
435 	/*
436 	 * Build-time sanity checks on the kernel image and module
437 	 * area mappings. (these are purely build-time and produce no code)
438 	 */
439 	BUILD_BUG_ON(MODULES_VADDR < __START_KERNEL_map);
440 	BUILD_BUG_ON(MODULES_VADDR - __START_KERNEL_map < KERNEL_IMAGE_SIZE);
441 	BUILD_BUG_ON(MODULES_LEN + KERNEL_IMAGE_SIZE > 2*PUD_SIZE);
442 	BUILD_BUG_ON((__START_KERNEL_map & ~PMD_MASK) != 0);
443 	BUILD_BUG_ON((MODULES_VADDR & ~PMD_MASK) != 0);
444 	BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
445 	MAYBE_BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
446 				(__START_KERNEL & PGDIR_MASK)));
447 	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END);
448 
449 	cr4_init_shadow();
450 
451 	/* Kill off the identity-map trampoline */
452 	reset_early_page_tables();
453 
454 	clear_bss();
455 
456 	/*
457 	 * This needs to happen *before* kasan_early_init() because latter maps stuff
458 	 * into that page.
459 	 */
460 	clear_page(init_top_pgt);
461 
462 	/*
463 	 * SME support may update early_pmd_flags to include the memory
464 	 * encryption mask, so it needs to be called before anything
465 	 * that may generate a page fault.
466 	 */
467 	sme_early_init();
468 
469 	kasan_early_init();
470 
471 	/*
472 	 * Flush global TLB entries which could be left over from the trampoline page
473 	 * table.
474 	 *
475 	 * This needs to happen *after* kasan_early_init() as KASAN-enabled .configs
476 	 * instrument native_write_cr4() so KASAN must be initialized for that
477 	 * instrumentation to work.
478 	 */
479 	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
480 
481 	idt_setup_early_handler();
482 
483 	/* Needed before cc_platform_has() can be used for TDX */
484 	tdx_early_init();
485 
486 	copy_bootdata(__va(real_mode_data));
487 
488 	/*
489 	 * Load microcode early on BSP.
490 	 */
491 	load_ucode_bsp();
492 
493 	/* set init_top_pgt kernel high mapping*/
494 	init_top_pgt[511] = early_top_pgt[511];
495 
496 	x86_64_start_reservations(real_mode_data);
497 }
498 
499 void __init __noreturn x86_64_start_reservations(char *real_mode_data)
500 {
501 	/* version is always not zero if it is copied */
502 	if (!boot_params.hdr.version)
503 		copy_bootdata(__va(real_mode_data));
504 
505 	x86_early_init_platform_quirks();
506 
507 	switch (boot_params.hdr.hardware_subarch) {
508 	case X86_SUBARCH_INTEL_MID:
509 		x86_intel_mid_early_setup();
510 		break;
511 	default:
512 		break;
513 	}
514 
515 	start_kernel();
516 }
517 
518 /*
519  * Data structures and code used for IDT setup in head_64.S. The bringup-IDT is
520  * used until the idt_table takes over. On the boot CPU this happens in
521  * x86_64_start_kernel(), on secondary CPUs in start_secondary(). In both cases
522  * this happens in the functions called from head_64.S.
523  *
524  * The idt_table can't be used that early because all the code modifying it is
525  * in idt.c and can be instrumented by tracing or KASAN, which both don't work
526  * during early CPU bringup. Also the idt_table has the runtime vectors
527  * configured which require certain CPU state to be setup already (like TSS),
528  * which also hasn't happened yet in early CPU bringup.
529  */
530 static gate_desc bringup_idt_table[NUM_EXCEPTION_VECTORS] __page_aligned_data;
531 
532 /* This may run while still in the direct mapping */
533 static void __head startup_64_load_idt(void *vc_handler)
534 {
535 	struct desc_ptr desc = {
536 		.address = (unsigned long)&RIP_REL_REF(bringup_idt_table),
537 		.size    = sizeof(bringup_idt_table) - 1,
538 	};
539 	struct idt_data data;
540 	gate_desc idt_desc;
541 
542 	/* @vc_handler is set only for a VMM Communication Exception */
543 	if (vc_handler) {
544 		init_idt_data(&data, X86_TRAP_VC, vc_handler);
545 		idt_init_desc(&idt_desc, &data);
546 		native_write_idt_entry((gate_desc *)desc.address, X86_TRAP_VC, &idt_desc);
547 	}
548 
549 	native_load_idt(&desc);
550 }
551 
552 /* This is used when running on kernel addresses */
553 void early_setup_idt(void)
554 {
555 	void *handler = NULL;
556 
557 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
558 		setup_ghcb();
559 		handler = vc_boot_ghcb;
560 	}
561 
562 	startup_64_load_idt(handler);
563 }
564 
565 /*
566  * Setup boot CPU state needed before kernel switches to virtual addresses.
567  */
568 void __head startup_64_setup_gdt_idt(void)
569 {
570 	struct desc_struct *gdt = (void *)(__force unsigned long)init_per_cpu_var(gdt_page.gdt);
571 	void *handler = NULL;
572 
573 	struct desc_ptr startup_gdt_descr = {
574 		.address = (unsigned long)&RIP_REL_REF(*gdt),
575 		.size    = GDT_SIZE - 1,
576 	};
577 
578 	/* Load GDT */
579 	native_load_gdt(&startup_gdt_descr);
580 
581 	/* New GDT is live - reload data segment registers */
582 	asm volatile("movl %%eax, %%ds\n"
583 		     "movl %%eax, %%ss\n"
584 		     "movl %%eax, %%es\n" : : "a"(__KERNEL_DS) : "memory");
585 
586 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT))
587 		handler = &RIP_REL_REF(vc_no_ghcb);
588 
589 	startup_64_load_idt(handler);
590 }
591