1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * CPU Microcode Update Driver for Linux 4 * 5 * Copyright (C) 2000-2006 Tigran Aivazian <aivazian.tigran@gmail.com> 6 * 2006 Shaohua Li <shaohua.li@intel.com> 7 * 2013-2016 Borislav Petkov <bp@alien8.de> 8 * 9 * X86 CPU microcode early update for Linux: 10 * 11 * Copyright (C) 2012 Fenghua Yu <fenghua.yu@intel.com> 12 * H Peter Anvin" <hpa@zytor.com> 13 * (C) 2015 Borislav Petkov <bp@alien8.de> 14 * 15 * This driver allows to upgrade microcode on x86 processors. 16 */ 17 18 #define pr_fmt(fmt) "microcode: " fmt 19 20 #include <linux/platform_device.h> 21 #include <linux/stop_machine.h> 22 #include <linux/syscore_ops.h> 23 #include <linux/miscdevice.h> 24 #include <linux/capability.h> 25 #include <linux/firmware.h> 26 #include <linux/cpumask.h> 27 #include <linux/kernel.h> 28 #include <linux/delay.h> 29 #include <linux/mutex.h> 30 #include <linux/cpu.h> 31 #include <linux/nmi.h> 32 #include <linux/fs.h> 33 #include <linux/mm.h> 34 35 #include <asm/apic.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/perf_event.h> 38 #include <asm/processor.h> 39 #include <asm/cmdline.h> 40 #include <asm/setup.h> 41 42 #include "internal.h" 43 44 static struct microcode_ops *microcode_ops; 45 static bool dis_ucode_ldr = false; 46 47 bool force_minrev = IS_ENABLED(CONFIG_MICROCODE_LATE_FORCE_MINREV); 48 module_param(force_minrev, bool, S_IRUSR | S_IWUSR); 49 50 /* 51 * Synchronization. 52 * 53 * All non cpu-hotplug-callback call sites use: 54 * 55 * - cpus_read_lock/unlock() to synchronize with 56 * the cpu-hotplug-callback call sites. 57 * 58 * We guarantee that only a single cpu is being 59 * updated at any particular moment of time. 60 */ 61 struct ucode_cpu_info ucode_cpu_info[NR_CPUS]; 62 63 /* 64 * Those patch levels cannot be updated to newer ones and thus should be final. 65 */ 66 static u32 final_levels[] = { 67 0x01000098, 68 0x0100009f, 69 0x010000af, 70 0, /* T-101 terminator */ 71 }; 72 73 struct early_load_data early_data; 74 75 /* 76 * Check the current patch level on this CPU. 77 * 78 * Returns: 79 * - true: if update should stop 80 * - false: otherwise 81 */ 82 static bool amd_check_current_patch_level(void) 83 { 84 u32 lvl, dummy, i; 85 u32 *levels; 86 87 if (x86_cpuid_vendor() != X86_VENDOR_AMD) 88 return false; 89 90 native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy); 91 92 levels = final_levels; 93 94 for (i = 0; levels[i]; i++) { 95 if (lvl == levels[i]) 96 return true; 97 } 98 return false; 99 } 100 101 bool __init microcode_loader_disabled(void) 102 { 103 if (dis_ucode_ldr) 104 return true; 105 106 /* 107 * Disable when: 108 * 109 * 1) The CPU does not support CPUID. 110 * 111 * 2) Bit 31 in CPUID[1]:ECX is clear 112 * The bit is reserved for hypervisor use. This is still not 113 * completely accurate as XEN PV guests don't see that CPUID bit 114 * set, but that's good enough as they don't land on the BSP 115 * path anyway. 116 * 117 * 3) Certain AMD patch levels are not allowed to be 118 * overwritten. 119 */ 120 if (!have_cpuid_p() || 121 native_cpuid_ecx(1) & BIT(31) || 122 amd_check_current_patch_level()) 123 dis_ucode_ldr = true; 124 125 return dis_ucode_ldr; 126 } 127 128 void __init load_ucode_bsp(void) 129 { 130 unsigned int cpuid_1_eax; 131 bool intel = true; 132 133 if (cmdline_find_option_bool(boot_command_line, "dis_ucode_ldr") > 0) 134 dis_ucode_ldr = true; 135 136 if (microcode_loader_disabled()) 137 return; 138 139 cpuid_1_eax = native_cpuid_eax(1); 140 141 switch (x86_cpuid_vendor()) { 142 case X86_VENDOR_INTEL: 143 if (x86_family(cpuid_1_eax) < 6) 144 return; 145 break; 146 147 case X86_VENDOR_AMD: 148 if (x86_family(cpuid_1_eax) < 0x10) 149 return; 150 intel = false; 151 break; 152 153 default: 154 return; 155 } 156 157 if (intel) 158 load_ucode_intel_bsp(&early_data); 159 else 160 load_ucode_amd_bsp(&early_data, cpuid_1_eax); 161 } 162 163 void load_ucode_ap(void) 164 { 165 unsigned int cpuid_1_eax; 166 167 /* 168 * Can't use microcode_loader_disabled() here - .init section 169 * hell. It doesn't have to either - the BSP variant must've 170 * parsed cmdline already anyway. 171 */ 172 if (dis_ucode_ldr) 173 return; 174 175 cpuid_1_eax = native_cpuid_eax(1); 176 177 switch (x86_cpuid_vendor()) { 178 case X86_VENDOR_INTEL: 179 if (x86_family(cpuid_1_eax) >= 6) 180 load_ucode_intel_ap(); 181 break; 182 case X86_VENDOR_AMD: 183 if (x86_family(cpuid_1_eax) >= 0x10) 184 load_ucode_amd_ap(cpuid_1_eax); 185 break; 186 default: 187 break; 188 } 189 } 190 191 struct cpio_data __init find_microcode_in_initrd(const char *path) 192 { 193 #ifdef CONFIG_BLK_DEV_INITRD 194 unsigned long start = 0; 195 size_t size; 196 197 #ifdef CONFIG_X86_32 198 size = boot_params.hdr.ramdisk_size; 199 /* Early load on BSP has a temporary mapping. */ 200 if (size) 201 start = initrd_start_early; 202 203 #else /* CONFIG_X86_64 */ 204 size = (unsigned long)boot_params.ext_ramdisk_size << 32; 205 size |= boot_params.hdr.ramdisk_size; 206 207 if (size) { 208 start = (unsigned long)boot_params.ext_ramdisk_image << 32; 209 start |= boot_params.hdr.ramdisk_image; 210 start += PAGE_OFFSET; 211 } 212 #endif 213 214 /* 215 * Fixup the start address: after reserve_initrd() runs, initrd_start 216 * has the virtual address of the beginning of the initrd. It also 217 * possibly relocates the ramdisk. In either case, initrd_start contains 218 * the updated address so use that instead. 219 */ 220 if (initrd_start) 221 start = initrd_start; 222 223 return find_cpio_data(path, (void *)start, size, NULL); 224 #else /* !CONFIG_BLK_DEV_INITRD */ 225 return (struct cpio_data){ NULL, 0, "" }; 226 #endif 227 } 228 229 static void reload_early_microcode(unsigned int cpu) 230 { 231 int vendor, family; 232 233 vendor = x86_cpuid_vendor(); 234 family = x86_cpuid_family(); 235 236 switch (vendor) { 237 case X86_VENDOR_INTEL: 238 if (family >= 6) 239 reload_ucode_intel(); 240 break; 241 case X86_VENDOR_AMD: 242 if (family >= 0x10) 243 reload_ucode_amd(cpu); 244 break; 245 default: 246 break; 247 } 248 } 249 250 /* fake device for request_firmware */ 251 static struct platform_device *microcode_pdev; 252 253 #ifdef CONFIG_MICROCODE_LATE_LOADING 254 /* 255 * Late loading dance. Why the heavy-handed stomp_machine effort? 256 * 257 * - HT siblings must be idle and not execute other code while the other sibling 258 * is loading microcode in order to avoid any negative interactions caused by 259 * the loading. 260 * 261 * - In addition, microcode update on the cores must be serialized until this 262 * requirement can be relaxed in the future. Right now, this is conservative 263 * and good. 264 */ 265 enum sibling_ctrl { 266 /* Spinwait with timeout */ 267 SCTRL_WAIT, 268 /* Invoke the microcode_apply() callback */ 269 SCTRL_APPLY, 270 /* Proceed without invoking the microcode_apply() callback */ 271 SCTRL_DONE, 272 }; 273 274 struct microcode_ctrl { 275 enum sibling_ctrl ctrl; 276 enum ucode_state result; 277 unsigned int ctrl_cpu; 278 bool nmi_enabled; 279 }; 280 281 DEFINE_STATIC_KEY_FALSE(microcode_nmi_handler_enable); 282 static DEFINE_PER_CPU(struct microcode_ctrl, ucode_ctrl); 283 static atomic_t late_cpus_in, offline_in_nmi; 284 static unsigned int loops_per_usec; 285 static cpumask_t cpu_offline_mask; 286 287 static noinstr bool wait_for_cpus(atomic_t *cnt) 288 { 289 unsigned int timeout, loops; 290 291 WARN_ON_ONCE(raw_atomic_dec_return(cnt) < 0); 292 293 for (timeout = 0; timeout < USEC_PER_SEC; timeout++) { 294 if (!raw_atomic_read(cnt)) 295 return true; 296 297 for (loops = 0; loops < loops_per_usec; loops++) 298 cpu_relax(); 299 300 /* If invoked directly, tickle the NMI watchdog */ 301 if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) { 302 instrumentation_begin(); 303 touch_nmi_watchdog(); 304 instrumentation_end(); 305 } 306 } 307 /* Prevent the late comers from making progress and let them time out */ 308 raw_atomic_inc(cnt); 309 return false; 310 } 311 312 static noinstr bool wait_for_ctrl(void) 313 { 314 unsigned int timeout, loops; 315 316 for (timeout = 0; timeout < USEC_PER_SEC; timeout++) { 317 if (raw_cpu_read(ucode_ctrl.ctrl) != SCTRL_WAIT) 318 return true; 319 320 for (loops = 0; loops < loops_per_usec; loops++) 321 cpu_relax(); 322 323 /* If invoked directly, tickle the NMI watchdog */ 324 if (!microcode_ops->use_nmi && !(timeout % USEC_PER_MSEC)) { 325 instrumentation_begin(); 326 touch_nmi_watchdog(); 327 instrumentation_end(); 328 } 329 } 330 return false; 331 } 332 333 /* 334 * Protected against instrumentation up to the point where the primary 335 * thread completed the update. See microcode_nmi_handler() for details. 336 */ 337 static noinstr bool load_secondary_wait(unsigned int ctrl_cpu) 338 { 339 /* Initial rendezvous to ensure that all CPUs have arrived */ 340 if (!wait_for_cpus(&late_cpus_in)) { 341 raw_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); 342 return false; 343 } 344 345 /* 346 * Wait for primary threads to complete. If one of them hangs due 347 * to the update, there is no way out. This is non-recoverable 348 * because the CPU might hold locks or resources and confuse the 349 * scheduler, watchdogs etc. There is no way to safely evacuate the 350 * machine. 351 */ 352 if (wait_for_ctrl()) 353 return true; 354 355 instrumentation_begin(); 356 panic("Microcode load: Primary CPU %d timed out\n", ctrl_cpu); 357 instrumentation_end(); 358 } 359 360 /* 361 * Protected against instrumentation up to the point where the primary 362 * thread completed the update. See microcode_nmi_handler() for details. 363 */ 364 static noinstr void load_secondary(unsigned int cpu) 365 { 366 unsigned int ctrl_cpu = raw_cpu_read(ucode_ctrl.ctrl_cpu); 367 enum ucode_state ret; 368 369 if (!load_secondary_wait(ctrl_cpu)) { 370 instrumentation_begin(); 371 pr_err_once("load: %d CPUs timed out\n", 372 atomic_read(&late_cpus_in) - 1); 373 instrumentation_end(); 374 return; 375 } 376 377 /* Primary thread completed. Allow to invoke instrumentable code */ 378 instrumentation_begin(); 379 /* 380 * If the primary succeeded then invoke the apply() callback, 381 * otherwise copy the state from the primary thread. 382 */ 383 if (this_cpu_read(ucode_ctrl.ctrl) == SCTRL_APPLY) 384 ret = microcode_ops->apply_microcode(cpu); 385 else 386 ret = per_cpu(ucode_ctrl.result, ctrl_cpu); 387 388 this_cpu_write(ucode_ctrl.result, ret); 389 this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE); 390 instrumentation_end(); 391 } 392 393 static void __load_primary(unsigned int cpu) 394 { 395 struct cpumask *secondaries = topology_sibling_cpumask(cpu); 396 enum sibling_ctrl ctrl; 397 enum ucode_state ret; 398 unsigned int sibling; 399 400 /* Initial rendezvous to ensure that all CPUs have arrived */ 401 if (!wait_for_cpus(&late_cpus_in)) { 402 this_cpu_write(ucode_ctrl.result, UCODE_TIMEOUT); 403 pr_err_once("load: %d CPUs timed out\n", atomic_read(&late_cpus_in) - 1); 404 return; 405 } 406 407 ret = microcode_ops->apply_microcode(cpu); 408 this_cpu_write(ucode_ctrl.result, ret); 409 this_cpu_write(ucode_ctrl.ctrl, SCTRL_DONE); 410 411 /* 412 * If the update was successful, let the siblings run the apply() 413 * callback. If not, tell them it's done. This also covers the 414 * case where the CPU has uniform loading at package or system 415 * scope implemented but does not advertise it. 416 */ 417 if (ret == UCODE_UPDATED || ret == UCODE_OK) 418 ctrl = SCTRL_APPLY; 419 else 420 ctrl = SCTRL_DONE; 421 422 for_each_cpu(sibling, secondaries) { 423 if (sibling != cpu) 424 per_cpu(ucode_ctrl.ctrl, sibling) = ctrl; 425 } 426 } 427 428 static bool kick_offline_cpus(unsigned int nr_offl) 429 { 430 unsigned int cpu, timeout; 431 432 for_each_cpu(cpu, &cpu_offline_mask) { 433 /* Enable the rendezvous handler and send NMI */ 434 per_cpu(ucode_ctrl.nmi_enabled, cpu) = true; 435 apic_send_nmi_to_offline_cpu(cpu); 436 } 437 438 /* Wait for them to arrive */ 439 for (timeout = 0; timeout < (USEC_PER_SEC / 2); timeout++) { 440 if (atomic_read(&offline_in_nmi) == nr_offl) 441 return true; 442 udelay(1); 443 } 444 /* Let the others time out */ 445 return false; 446 } 447 448 static void release_offline_cpus(void) 449 { 450 unsigned int cpu; 451 452 for_each_cpu(cpu, &cpu_offline_mask) 453 per_cpu(ucode_ctrl.ctrl, cpu) = SCTRL_DONE; 454 } 455 456 static void load_primary(unsigned int cpu) 457 { 458 unsigned int nr_offl = cpumask_weight(&cpu_offline_mask); 459 bool proceed = true; 460 461 /* Kick soft-offlined SMT siblings if required */ 462 if (!cpu && nr_offl) 463 proceed = kick_offline_cpus(nr_offl); 464 465 /* If the soft-offlined CPUs did not respond, abort */ 466 if (proceed) 467 __load_primary(cpu); 468 469 /* Unconditionally release soft-offlined SMT siblings if required */ 470 if (!cpu && nr_offl) 471 release_offline_cpus(); 472 } 473 474 /* 475 * Minimal stub rendezvous handler for soft-offlined CPUs which participate 476 * in the NMI rendezvous to protect against a concurrent NMI on affected 477 * CPUs. 478 */ 479 void noinstr microcode_offline_nmi_handler(void) 480 { 481 if (!raw_cpu_read(ucode_ctrl.nmi_enabled)) 482 return; 483 raw_cpu_write(ucode_ctrl.nmi_enabled, false); 484 raw_cpu_write(ucode_ctrl.result, UCODE_OFFLINE); 485 raw_atomic_inc(&offline_in_nmi); 486 wait_for_ctrl(); 487 } 488 489 static noinstr bool microcode_update_handler(void) 490 { 491 unsigned int cpu = raw_smp_processor_id(); 492 493 if (raw_cpu_read(ucode_ctrl.ctrl_cpu) == cpu) { 494 instrumentation_begin(); 495 load_primary(cpu); 496 instrumentation_end(); 497 } else { 498 load_secondary(cpu); 499 } 500 501 instrumentation_begin(); 502 touch_nmi_watchdog(); 503 instrumentation_end(); 504 505 return true; 506 } 507 508 /* 509 * Protection against instrumentation is required for CPUs which are not 510 * safe against an NMI which is delivered to the secondary SMT sibling 511 * while the primary thread updates the microcode. Instrumentation can end 512 * up in #INT3, #DB and #PF. The IRET from those exceptions reenables NMI 513 * which is the opposite of what the NMI rendezvous is trying to achieve. 514 * 515 * The primary thread is safe versus instrumentation as the actual 516 * microcode update handles this correctly. It's only the sibling code 517 * path which must be NMI safe until the primary thread completed the 518 * update. 519 */ 520 bool noinstr microcode_nmi_handler(void) 521 { 522 if (!raw_cpu_read(ucode_ctrl.nmi_enabled)) 523 return false; 524 525 raw_cpu_write(ucode_ctrl.nmi_enabled, false); 526 return microcode_update_handler(); 527 } 528 529 static int load_cpus_stopped(void *unused) 530 { 531 if (microcode_ops->use_nmi) { 532 /* Enable the NMI handler and raise NMI */ 533 this_cpu_write(ucode_ctrl.nmi_enabled, true); 534 apic->send_IPI(smp_processor_id(), NMI_VECTOR); 535 } else { 536 /* Just invoke the handler directly */ 537 microcode_update_handler(); 538 } 539 return 0; 540 } 541 542 static int load_late_stop_cpus(bool is_safe) 543 { 544 unsigned int cpu, updated = 0, failed = 0, timedout = 0, siblings = 0; 545 unsigned int nr_offl, offline = 0; 546 int old_rev = boot_cpu_data.microcode; 547 struct cpuinfo_x86 prev_info; 548 549 if (!is_safe) { 550 pr_err("Late microcode loading without minimal revision check.\n"); 551 pr_err("You should switch to early loading, if possible.\n"); 552 } 553 554 atomic_set(&late_cpus_in, num_online_cpus()); 555 atomic_set(&offline_in_nmi, 0); 556 loops_per_usec = loops_per_jiffy / (TICK_NSEC / 1000); 557 558 /* 559 * Take a snapshot before the microcode update in order to compare and 560 * check whether any bits changed after an update. 561 */ 562 store_cpu_caps(&prev_info); 563 564 if (microcode_ops->use_nmi) 565 static_branch_enable_cpuslocked(µcode_nmi_handler_enable); 566 567 stop_machine_cpuslocked(load_cpus_stopped, NULL, cpu_online_mask); 568 569 if (microcode_ops->use_nmi) 570 static_branch_disable_cpuslocked(µcode_nmi_handler_enable); 571 572 /* Analyze the results */ 573 for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { 574 switch (per_cpu(ucode_ctrl.result, cpu)) { 575 case UCODE_UPDATED: updated++; break; 576 case UCODE_TIMEOUT: timedout++; break; 577 case UCODE_OK: siblings++; break; 578 case UCODE_OFFLINE: offline++; break; 579 default: failed++; break; 580 } 581 } 582 583 if (microcode_ops->finalize_late_load) 584 microcode_ops->finalize_late_load(!updated); 585 586 if (!updated) { 587 /* Nothing changed. */ 588 if (!failed && !timedout) 589 return 0; 590 591 nr_offl = cpumask_weight(&cpu_offline_mask); 592 if (offline < nr_offl) { 593 pr_warn("%u offline siblings did not respond.\n", 594 nr_offl - atomic_read(&offline_in_nmi)); 595 return -EIO; 596 } 597 pr_err("update failed: %u CPUs failed %u CPUs timed out\n", 598 failed, timedout); 599 return -EIO; 600 } 601 602 if (!is_safe || failed || timedout) 603 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 604 605 pr_info("load: updated on %u primary CPUs with %u siblings\n", updated, siblings); 606 if (failed || timedout) { 607 pr_err("load incomplete. %u CPUs timed out or failed\n", 608 num_online_cpus() - (updated + siblings)); 609 } 610 pr_info("revision: 0x%x -> 0x%x\n", old_rev, boot_cpu_data.microcode); 611 microcode_check(&prev_info); 612 613 return updated + siblings == num_online_cpus() ? 0 : -EIO; 614 } 615 616 /* 617 * This function does two things: 618 * 619 * 1) Ensure that all required CPUs which are present and have been booted 620 * once are online. 621 * 622 * To pass this check, all primary threads must be online. 623 * 624 * If the microcode load is not safe against NMI then all SMT threads 625 * must be online as well because they still react to NMIs when they are 626 * soft-offlined and parked in one of the play_dead() variants. So if a 627 * NMI hits while the primary thread updates the microcode the resulting 628 * behaviour is undefined. The default play_dead() implementation on 629 * modern CPUs uses MWAIT, which is also not guaranteed to be safe 630 * against a microcode update which affects MWAIT. 631 * 632 * As soft-offlined CPUs still react on NMIs, the SMT sibling 633 * restriction can be lifted when the vendor driver signals to use NMI 634 * for rendezvous and the APIC provides a mechanism to send an NMI to a 635 * soft-offlined CPU. The soft-offlined CPUs are then able to 636 * participate in the rendezvous in a trivial stub handler. 637 * 638 * 2) Initialize the per CPU control structure and create a cpumask 639 * which contains "offline"; secondary threads, so they can be handled 640 * correctly by a control CPU. 641 */ 642 static bool setup_cpus(void) 643 { 644 struct microcode_ctrl ctrl = { .ctrl = SCTRL_WAIT, .result = -1, }; 645 bool allow_smt_offline; 646 unsigned int cpu; 647 648 allow_smt_offline = microcode_ops->nmi_safe || 649 (microcode_ops->use_nmi && apic->nmi_to_offline_cpu); 650 651 cpumask_clear(&cpu_offline_mask); 652 653 for_each_cpu_and(cpu, cpu_present_mask, &cpus_booted_once_mask) { 654 /* 655 * Offline CPUs sit in one of the play_dead() functions 656 * with interrupts disabled, but they still react on NMIs 657 * and execute arbitrary code. Also MWAIT being updated 658 * while the offline CPU sits there is not necessarily safe 659 * on all CPU variants. 660 * 661 * Mark them in the offline_cpus mask which will be handled 662 * by CPU0 later in the update process. 663 * 664 * Ensure that the primary thread is online so that it is 665 * guaranteed that all cores are updated. 666 */ 667 if (!cpu_online(cpu)) { 668 if (topology_is_primary_thread(cpu) || !allow_smt_offline) { 669 pr_err("CPU %u not online, loading aborted\n", cpu); 670 return false; 671 } 672 cpumask_set_cpu(cpu, &cpu_offline_mask); 673 per_cpu(ucode_ctrl, cpu) = ctrl; 674 continue; 675 } 676 677 /* 678 * Initialize the per CPU state. This is core scope for now, 679 * but prepared to take package or system scope into account. 680 */ 681 ctrl.ctrl_cpu = cpumask_first(topology_sibling_cpumask(cpu)); 682 per_cpu(ucode_ctrl, cpu) = ctrl; 683 } 684 return true; 685 } 686 687 static int load_late_locked(void) 688 { 689 if (!setup_cpus()) 690 return -EBUSY; 691 692 switch (microcode_ops->request_microcode_fw(0, µcode_pdev->dev)) { 693 case UCODE_NEW: 694 return load_late_stop_cpus(false); 695 case UCODE_NEW_SAFE: 696 return load_late_stop_cpus(true); 697 case UCODE_NFOUND: 698 return -ENOENT; 699 default: 700 return -EBADFD; 701 } 702 } 703 704 static ssize_t reload_store(struct device *dev, 705 struct device_attribute *attr, 706 const char *buf, size_t size) 707 { 708 unsigned long val; 709 ssize_t ret; 710 711 ret = kstrtoul(buf, 0, &val); 712 if (ret || val != 1) 713 return -EINVAL; 714 715 cpus_read_lock(); 716 ret = load_late_locked(); 717 cpus_read_unlock(); 718 719 return ret ? : size; 720 } 721 722 static DEVICE_ATTR_WO(reload); 723 #endif 724 725 static ssize_t version_show(struct device *dev, 726 struct device_attribute *attr, char *buf) 727 { 728 struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; 729 730 return sprintf(buf, "0x%x\n", uci->cpu_sig.rev); 731 } 732 733 static ssize_t processor_flags_show(struct device *dev, 734 struct device_attribute *attr, char *buf) 735 { 736 struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; 737 738 return sprintf(buf, "0x%x\n", uci->cpu_sig.pf); 739 } 740 741 static DEVICE_ATTR_RO(version); 742 static DEVICE_ATTR_RO(processor_flags); 743 744 static struct attribute *mc_default_attrs[] = { 745 &dev_attr_version.attr, 746 &dev_attr_processor_flags.attr, 747 NULL 748 }; 749 750 static const struct attribute_group mc_attr_group = { 751 .attrs = mc_default_attrs, 752 .name = "microcode", 753 }; 754 755 static void microcode_fini_cpu(int cpu) 756 { 757 if (microcode_ops->microcode_fini_cpu) 758 microcode_ops->microcode_fini_cpu(cpu); 759 } 760 761 /** 762 * microcode_bsp_resume - Update boot CPU microcode during resume. 763 */ 764 void microcode_bsp_resume(void) 765 { 766 int cpu = smp_processor_id(); 767 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 768 769 if (uci->mc) 770 microcode_ops->apply_microcode(cpu); 771 else 772 reload_early_microcode(cpu); 773 } 774 775 static struct syscore_ops mc_syscore_ops = { 776 .resume = microcode_bsp_resume, 777 }; 778 779 static int mc_cpu_online(unsigned int cpu) 780 { 781 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 782 struct device *dev = get_cpu_device(cpu); 783 784 memset(uci, 0, sizeof(*uci)); 785 786 microcode_ops->collect_cpu_info(cpu, &uci->cpu_sig); 787 cpu_data(cpu).microcode = uci->cpu_sig.rev; 788 if (!cpu) 789 boot_cpu_data.microcode = uci->cpu_sig.rev; 790 791 if (sysfs_create_group(&dev->kobj, &mc_attr_group)) 792 pr_err("Failed to create group for CPU%d\n", cpu); 793 return 0; 794 } 795 796 static int mc_cpu_down_prep(unsigned int cpu) 797 { 798 struct device *dev = get_cpu_device(cpu); 799 800 microcode_fini_cpu(cpu); 801 sysfs_remove_group(&dev->kobj, &mc_attr_group); 802 return 0; 803 } 804 805 static struct attribute *cpu_root_microcode_attrs[] = { 806 #ifdef CONFIG_MICROCODE_LATE_LOADING 807 &dev_attr_reload.attr, 808 #endif 809 NULL 810 }; 811 812 static const struct attribute_group cpu_root_microcode_group = { 813 .name = "microcode", 814 .attrs = cpu_root_microcode_attrs, 815 }; 816 817 static int __init microcode_init(void) 818 { 819 struct device *dev_root; 820 struct cpuinfo_x86 *c = &boot_cpu_data; 821 int error; 822 823 if (microcode_loader_disabled()) 824 return -EINVAL; 825 826 if (c->x86_vendor == X86_VENDOR_INTEL) 827 microcode_ops = init_intel_microcode(); 828 else if (c->x86_vendor == X86_VENDOR_AMD) 829 microcode_ops = init_amd_microcode(); 830 else 831 pr_err("no support for this CPU vendor\n"); 832 833 if (!microcode_ops) 834 return -ENODEV; 835 836 pr_info_once("Current revision: 0x%08x\n", (early_data.new_rev ?: early_data.old_rev)); 837 838 if (early_data.new_rev) 839 pr_info_once("Updated early from: 0x%08x\n", early_data.old_rev); 840 841 microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0); 842 if (IS_ERR(microcode_pdev)) 843 return PTR_ERR(microcode_pdev); 844 845 dev_root = bus_get_dev_root(&cpu_subsys); 846 if (dev_root) { 847 error = sysfs_create_group(&dev_root->kobj, &cpu_root_microcode_group); 848 put_device(dev_root); 849 if (error) { 850 pr_err("Error creating microcode group!\n"); 851 goto out_pdev; 852 } 853 } 854 855 register_syscore_ops(&mc_syscore_ops); 856 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/microcode:online", 857 mc_cpu_online, mc_cpu_down_prep); 858 859 return 0; 860 861 out_pdev: 862 platform_device_unregister(microcode_pdev); 863 return error; 864 865 } 866 late_initcall(microcode_init); 867