1# SPDX-License-Identifier: GPL-2.0 2# Select 32 or 64 bit 3config 64BIT 4 bool "64-bit kernel" if "$(ARCH)" = "x86" 5 default "$(ARCH)" != "i386" 6 help 7 Say yes to build a 64-bit kernel - formerly known as x86_64 8 Say no to build a 32-bit kernel - formerly known as i386 9 10config X86_32 11 def_bool y 12 depends on !64BIT 13 # Options that are inherently 32-bit kernel only: 14 select ARCH_WANT_IPC_PARSE_VERSION 15 select CLKSRC_I8253 16 select CLONE_BACKWARDS 17 select GENERIC_VDSO_32 18 select HAVE_DEBUG_STACKOVERFLOW 19 select KMAP_LOCAL 20 select MODULES_USE_ELF_REL 21 select OLD_SIGACTION 22 select ARCH_SPLIT_ARG64 23 24config X86_64 25 def_bool y 26 depends on 64BIT 27 # Options that are inherently 64-bit kernel only: 28 select ARCH_HAS_GIGANTIC_PAGE 29 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 30 select ARCH_SUPPORTS_PER_VMA_LOCK 31 select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE 32 select HAVE_ARCH_SOFT_DIRTY 33 select MODULES_USE_ELF_RELA 34 select NEED_DMA_MAP_STATE 35 select SWIOTLB 36 select ARCH_HAS_ELFCORE_COMPAT 37 select ZONE_DMA32 38 select EXECMEM if DYNAMIC_FTRACE 39 40config FORCE_DYNAMIC_FTRACE 41 def_bool y 42 depends on X86_32 43 depends on FUNCTION_TRACER 44 select DYNAMIC_FTRACE 45 help 46 We keep the static function tracing (!DYNAMIC_FTRACE) around 47 in order to test the non static function tracing in the 48 generic code, as other architectures still use it. But we 49 only need to keep it around for x86_64. No need to keep it 50 for x86_32. For x86_32, force DYNAMIC_FTRACE. 51# 52# Arch settings 53# 54# ( Note that options that are marked 'if X86_64' could in principle be 55# ported to 32-bit as well. ) 56# 57config X86 58 def_bool y 59 # 60 # Note: keep this list sorted alphabetically 61 # 62 select ACPI_LEGACY_TABLES_LOOKUP if ACPI 63 select ACPI_SYSTEM_POWER_STATES_SUPPORT if ACPI 64 select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU 65 select ARCH_32BIT_OFF_T if X86_32 66 select ARCH_CLOCKSOURCE_INIT 67 select ARCH_CONFIGURES_CPU_MITIGATIONS 68 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE 69 select ARCH_ENABLE_HUGEPAGE_MIGRATION if X86_64 && HUGETLB_PAGE && MIGRATION 70 select ARCH_ENABLE_MEMORY_HOTPLUG if X86_64 71 select ARCH_ENABLE_MEMORY_HOTREMOVE if MEMORY_HOTPLUG 72 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if (PGTABLE_LEVELS > 2) && (X86_64 || X86_PAE) 73 select ARCH_ENABLE_THP_MIGRATION if X86_64 && TRANSPARENT_HUGEPAGE 74 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 75 select ARCH_HAS_CACHE_LINE_SIZE 76 select ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION 77 select ARCH_HAS_CPU_FINALIZE_INIT 78 select ARCH_HAS_CPU_PASID if IOMMU_SVA 79 select ARCH_HAS_CRC32 80 select ARCH_HAS_CRC_T10DIF if X86_64 81 select ARCH_HAS_CURRENT_STACK_POINTER 82 select ARCH_HAS_DEBUG_VIRTUAL 83 select ARCH_HAS_DEBUG_VM_PGTABLE if !X86_PAE 84 select ARCH_HAS_DEVMEM_IS_ALLOWED 85 select ARCH_HAS_DMA_OPS if GART_IOMMU || XEN 86 select ARCH_HAS_EARLY_DEBUG if KGDB 87 select ARCH_HAS_ELF_RANDOMIZE 88 select ARCH_HAS_FAST_MULTIPLIER 89 select ARCH_HAS_FORTIFY_SOURCE 90 select ARCH_HAS_GCOV_PROFILE_ALL 91 select ARCH_HAS_KCOV if X86_64 92 select ARCH_HAS_KERNEL_FPU_SUPPORT 93 select ARCH_HAS_MEM_ENCRYPT 94 select ARCH_HAS_MEMBARRIER_SYNC_CORE 95 select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS 96 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 97 select ARCH_HAS_PMEM_API if X86_64 98 select ARCH_HAS_PREEMPT_LAZY 99 select ARCH_HAS_PTE_DEVMAP if X86_64 100 select ARCH_HAS_PTE_SPECIAL 101 select ARCH_HAS_HW_PTE_YOUNG 102 select ARCH_HAS_NONLEAF_PMD_YOUNG if PGTABLE_LEVELS > 2 103 select ARCH_HAS_UACCESS_FLUSHCACHE if X86_64 104 select ARCH_HAS_COPY_MC if X86_64 105 select ARCH_HAS_SET_MEMORY 106 select ARCH_HAS_SET_DIRECT_MAP 107 select ARCH_HAS_STRICT_KERNEL_RWX 108 select ARCH_HAS_STRICT_MODULE_RWX 109 select ARCH_HAS_SYNC_CORE_BEFORE_USERMODE 110 select ARCH_HAS_SYSCALL_WRAPPER 111 select ARCH_HAS_UBSAN 112 select ARCH_HAS_DEBUG_WX 113 select ARCH_HAS_ZONE_DMA_SET if EXPERT 114 select ARCH_HAVE_NMI_SAFE_CMPXCHG 115 select ARCH_HAVE_EXTRA_ELF_NOTES 116 select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 117 select ARCH_MIGHT_HAVE_ACPI_PDC if ACPI 118 select ARCH_MIGHT_HAVE_PC_PARPORT 119 select ARCH_MIGHT_HAVE_PC_SERIO 120 select ARCH_STACKWALK 121 select ARCH_SUPPORTS_ACPI 122 select ARCH_SUPPORTS_ATOMIC_RMW 123 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 124 select ARCH_SUPPORTS_PAGE_TABLE_CHECK if X86_64 125 select ARCH_SUPPORTS_NUMA_BALANCING if X86_64 126 select ARCH_SUPPORTS_KMAP_LOCAL_FORCE_MAP if NR_CPUS <= 4096 127 select ARCH_SUPPORTS_CFI_CLANG if X86_64 128 select ARCH_USES_CFI_TRAPS if X86_64 && CFI_CLANG 129 select ARCH_SUPPORTS_LTO_CLANG 130 select ARCH_SUPPORTS_LTO_CLANG_THIN 131 select ARCH_SUPPORTS_RT 132 select ARCH_SUPPORTS_AUTOFDO_CLANG 133 select ARCH_SUPPORTS_PROPELLER_CLANG if X86_64 134 select ARCH_USE_BUILTIN_BSWAP 135 select ARCH_USE_CMPXCHG_LOCKREF if X86_CMPXCHG64 136 select ARCH_USE_MEMTEST 137 select ARCH_USE_QUEUED_RWLOCKS 138 select ARCH_USE_QUEUED_SPINLOCKS 139 select ARCH_USE_SYM_ANNOTATIONS 140 select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 141 select ARCH_WANT_DEFAULT_BPF_JIT if X86_64 142 select ARCH_WANTS_DYNAMIC_TASK_STRUCT 143 select ARCH_WANTS_NO_INSTR 144 select ARCH_WANT_GENERAL_HUGETLB 145 select ARCH_WANT_HUGE_PMD_SHARE 146 select ARCH_WANT_LD_ORPHAN_WARN 147 select ARCH_WANT_OPTIMIZE_DAX_VMEMMAP if X86_64 148 select ARCH_WANT_OPTIMIZE_HUGETLB_VMEMMAP if X86_64 149 select ARCH_WANTS_THP_SWAP if X86_64 150 select ARCH_HAS_PARANOID_L1D_FLUSH 151 select BUILDTIME_TABLE_SORT 152 select CLKEVT_I8253 153 select CLOCKSOURCE_WATCHDOG 154 # Word-size accesses may read uninitialized data past the trailing \0 155 # in strings and cause false KMSAN reports. 156 select DCACHE_WORD_ACCESS if !KMSAN 157 select DYNAMIC_SIGFRAME 158 select EDAC_ATOMIC_SCRUB 159 select EDAC_SUPPORT 160 select GENERIC_CLOCKEVENTS_BROADCAST if X86_64 || (X86_32 && X86_LOCAL_APIC) 161 select GENERIC_CLOCKEVENTS_BROADCAST_IDLE if GENERIC_CLOCKEVENTS_BROADCAST 162 select GENERIC_CLOCKEVENTS_MIN_ADJUST 163 select GENERIC_CMOS_UPDATE 164 select GENERIC_CPU_AUTOPROBE 165 select GENERIC_CPU_DEVICES 166 select GENERIC_CPU_VULNERABILITIES 167 select GENERIC_EARLY_IOREMAP 168 select GENERIC_ENTRY 169 select GENERIC_IOMAP 170 select GENERIC_IRQ_EFFECTIVE_AFF_MASK if SMP 171 select GENERIC_IRQ_MATRIX_ALLOCATOR if X86_LOCAL_APIC 172 select GENERIC_IRQ_MIGRATION if SMP 173 select GENERIC_IRQ_PROBE 174 select GENERIC_IRQ_RESERVATION_MODE 175 select GENERIC_IRQ_SHOW 176 select GENERIC_PENDING_IRQ if SMP 177 select GENERIC_PTDUMP 178 select GENERIC_SMP_IDLE_THREAD 179 select GENERIC_TIME_VSYSCALL 180 select GENERIC_GETTIMEOFDAY 181 select GENERIC_VDSO_TIME_NS 182 select GENERIC_VDSO_OVERFLOW_PROTECT 183 select GUP_GET_PXX_LOW_HIGH if X86_PAE 184 select HARDIRQS_SW_RESEND 185 select HARDLOCKUP_CHECK_TIMESTAMP if X86_64 186 select HAS_IOPORT 187 select HAVE_ACPI_APEI if ACPI 188 select HAVE_ACPI_APEI_NMI if ACPI 189 select HAVE_ALIGNED_STRUCT_PAGE 190 select HAVE_ARCH_AUDITSYSCALL 191 select HAVE_ARCH_HUGE_VMAP if X86_64 || X86_PAE 192 select HAVE_ARCH_HUGE_VMALLOC if X86_64 193 select HAVE_ARCH_JUMP_LABEL 194 select HAVE_ARCH_JUMP_LABEL_RELATIVE 195 select HAVE_ARCH_KASAN if X86_64 196 select HAVE_ARCH_KASAN_VMALLOC if X86_64 197 select HAVE_ARCH_KFENCE 198 select HAVE_ARCH_KMSAN if X86_64 199 select HAVE_ARCH_KGDB 200 select HAVE_ARCH_MMAP_RND_BITS if MMU 201 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if MMU && COMPAT 202 select HAVE_ARCH_COMPAT_MMAP_BASES if MMU && COMPAT 203 select HAVE_ARCH_PREL32_RELOCATIONS 204 select HAVE_ARCH_SECCOMP_FILTER 205 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 206 select HAVE_ARCH_STACKLEAK 207 select HAVE_ARCH_TRACEHOOK 208 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 209 select HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD if X86_64 210 select HAVE_ARCH_USERFAULTFD_WP if X86_64 && USERFAULTFD 211 select HAVE_ARCH_USERFAULTFD_MINOR if X86_64 && USERFAULTFD 212 select HAVE_ARCH_VMAP_STACK if X86_64 213 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 214 select HAVE_ARCH_WITHIN_STACK_FRAMES 215 select HAVE_ASM_MODVERSIONS 216 select HAVE_CMPXCHG_DOUBLE 217 select HAVE_CMPXCHG_LOCAL 218 select HAVE_CONTEXT_TRACKING_USER if X86_64 219 select HAVE_CONTEXT_TRACKING_USER_OFFSTACK if HAVE_CONTEXT_TRACKING_USER 220 select HAVE_C_RECORDMCOUNT 221 select HAVE_OBJTOOL_MCOUNT if HAVE_OBJTOOL 222 select HAVE_OBJTOOL_NOP_MCOUNT if HAVE_OBJTOOL_MCOUNT 223 select HAVE_BUILDTIME_MCOUNT_SORT 224 select HAVE_DEBUG_KMEMLEAK 225 select HAVE_DMA_CONTIGUOUS 226 select HAVE_DYNAMIC_FTRACE 227 select HAVE_DYNAMIC_FTRACE_WITH_REGS 228 select HAVE_DYNAMIC_FTRACE_WITH_ARGS if X86_64 229 select HAVE_FTRACE_REGS_HAVING_PT_REGS if X86_64 230 select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS 231 select HAVE_SAMPLE_FTRACE_DIRECT if X86_64 232 select HAVE_SAMPLE_FTRACE_DIRECT_MULTI if X86_64 233 select HAVE_EBPF_JIT 234 select HAVE_EFFICIENT_UNALIGNED_ACCESS 235 select HAVE_EISA 236 select HAVE_EXIT_THREAD 237 select HAVE_GUP_FAST 238 select HAVE_FENTRY if X86_64 || DYNAMIC_FTRACE 239 select HAVE_FTRACE_GRAPH_FUNC if HAVE_FUNCTION_GRAPH_TRACER 240 select HAVE_FTRACE_MCOUNT_RECORD 241 select HAVE_FUNCTION_GRAPH_FREGS if HAVE_FUNCTION_GRAPH_TRACER 242 select HAVE_FUNCTION_GRAPH_TRACER if X86_32 || (X86_64 && DYNAMIC_FTRACE) 243 select HAVE_FUNCTION_TRACER 244 select HAVE_GCC_PLUGINS 245 select HAVE_HW_BREAKPOINT 246 select HAVE_IOREMAP_PROT 247 select HAVE_IRQ_EXIT_ON_IRQ_STACK if X86_64 248 select HAVE_IRQ_TIME_ACCOUNTING 249 select HAVE_JUMP_LABEL_HACK if HAVE_OBJTOOL 250 select HAVE_KERNEL_BZIP2 251 select HAVE_KERNEL_GZIP 252 select HAVE_KERNEL_LZ4 253 select HAVE_KERNEL_LZMA 254 select HAVE_KERNEL_LZO 255 select HAVE_KERNEL_XZ 256 select HAVE_KERNEL_ZSTD 257 select HAVE_KPROBES 258 select HAVE_KPROBES_ON_FTRACE 259 select HAVE_FUNCTION_ERROR_INJECTION 260 select HAVE_KRETPROBES 261 select HAVE_RETHOOK 262 select HAVE_LIVEPATCH if X86_64 263 select HAVE_MIXED_BREAKPOINTS_REGS 264 select HAVE_MOD_ARCH_SPECIFIC 265 select HAVE_MOVE_PMD 266 select HAVE_MOVE_PUD 267 select HAVE_NOINSTR_HACK if HAVE_OBJTOOL 268 select HAVE_NMI 269 select HAVE_NOINSTR_VALIDATION if HAVE_OBJTOOL 270 select HAVE_OBJTOOL if X86_64 271 select HAVE_OPTPROBES 272 select HAVE_PAGE_SIZE_4KB 273 select HAVE_PCSPKR_PLATFORM 274 select HAVE_PERF_EVENTS 275 select HAVE_PERF_EVENTS_NMI 276 select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && HAVE_PERF_EVENTS_NMI 277 select HAVE_PCI 278 select HAVE_PERF_REGS 279 select HAVE_PERF_USER_STACK_DUMP 280 select MMU_GATHER_RCU_TABLE_FREE if PARAVIRT 281 select MMU_GATHER_MERGE_VMAS 282 select HAVE_POSIX_CPU_TIMERS_TASK_WORK 283 select HAVE_REGS_AND_STACK_ACCESS_API 284 select HAVE_RELIABLE_STACKTRACE if UNWINDER_ORC || STACK_VALIDATION 285 select HAVE_FUNCTION_ARG_ACCESS_API 286 select HAVE_SETUP_PER_CPU_AREA 287 select HAVE_SOFTIRQ_ON_OWN_STACK 288 select HAVE_STACKPROTECTOR if CC_HAS_SANE_STACKPROTECTOR 289 select HAVE_STACK_VALIDATION if HAVE_OBJTOOL 290 select HAVE_STATIC_CALL 291 select HAVE_STATIC_CALL_INLINE if HAVE_OBJTOOL 292 select HAVE_PREEMPT_DYNAMIC_CALL 293 select HAVE_RSEQ 294 select HAVE_RUST if X86_64 295 select HAVE_SYSCALL_TRACEPOINTS 296 select HAVE_UACCESS_VALIDATION if HAVE_OBJTOOL 297 select HAVE_UNSTABLE_SCHED_CLOCK 298 select HAVE_USER_RETURN_NOTIFIER 299 select HAVE_GENERIC_VDSO 300 select VDSO_GETRANDOM if X86_64 301 select HOTPLUG_PARALLEL if SMP && X86_64 302 select HOTPLUG_SMT if SMP 303 select HOTPLUG_SPLIT_STARTUP if SMP && X86_32 304 select IRQ_FORCED_THREADING 305 select LOCK_MM_AND_FIND_VMA 306 select NEED_PER_CPU_EMBED_FIRST_CHUNK 307 select NEED_PER_CPU_PAGE_FIRST_CHUNK 308 select NEED_SG_DMA_LENGTH 309 select NUMA_MEMBLKS if NUMA 310 select PCI_DOMAINS if PCI 311 select PCI_LOCKLESS_CONFIG if PCI 312 select PERF_EVENTS 313 select RTC_LIB 314 select RTC_MC146818_LIB 315 select SPARSE_IRQ 316 select SYSCTL_EXCEPTION_TRACE 317 select THREAD_INFO_IN_TASK 318 select TRACE_IRQFLAGS_SUPPORT 319 select TRACE_IRQFLAGS_NMI_SUPPORT 320 select USER_STACKTRACE_SUPPORT 321 select HAVE_ARCH_KCSAN if X86_64 322 select PROC_PID_ARCH_STATUS if PROC_FS 323 select HAVE_ARCH_NODE_DEV_GROUP if X86_SGX 324 select FUNCTION_ALIGNMENT_16B if X86_64 || X86_ALIGNMENT_16 325 select FUNCTION_ALIGNMENT_4B 326 imply IMA_SECURE_AND_OR_TRUSTED_BOOT if EFI 327 select HAVE_DYNAMIC_FTRACE_NO_PATCHABLE 328 select ARCH_SUPPORTS_PT_RECLAIM if X86_64 329 330config INSTRUCTION_DECODER 331 def_bool y 332 depends on KPROBES || PERF_EVENTS || UPROBES 333 334config OUTPUT_FORMAT 335 string 336 default "elf32-i386" if X86_32 337 default "elf64-x86-64" if X86_64 338 339config LOCKDEP_SUPPORT 340 def_bool y 341 342config STACKTRACE_SUPPORT 343 def_bool y 344 345config MMU 346 def_bool y 347 348config ARCH_MMAP_RND_BITS_MIN 349 default 28 if 64BIT 350 default 8 351 352config ARCH_MMAP_RND_BITS_MAX 353 default 32 if 64BIT 354 default 16 355 356config ARCH_MMAP_RND_COMPAT_BITS_MIN 357 default 8 358 359config ARCH_MMAP_RND_COMPAT_BITS_MAX 360 default 16 361 362config SBUS 363 bool 364 365config GENERIC_ISA_DMA 366 def_bool y 367 depends on ISA_DMA_API 368 369config GENERIC_CSUM 370 bool 371 default y if KMSAN || KASAN 372 373config GENERIC_BUG 374 def_bool y 375 depends on BUG 376 select GENERIC_BUG_RELATIVE_POINTERS if X86_64 377 378config GENERIC_BUG_RELATIVE_POINTERS 379 bool 380 381config ARCH_MAY_HAVE_PC_FDC 382 def_bool y 383 depends on ISA_DMA_API 384 385config GENERIC_CALIBRATE_DELAY 386 def_bool y 387 388config ARCH_HAS_CPU_RELAX 389 def_bool y 390 391config ARCH_HIBERNATION_POSSIBLE 392 def_bool y 393 394config ARCH_SUSPEND_POSSIBLE 395 def_bool y 396 397config AUDIT_ARCH 398 def_bool y if X86_64 399 400config KASAN_SHADOW_OFFSET 401 hex 402 depends on KASAN 403 default 0xdffffc0000000000 404 405config HAVE_INTEL_TXT 406 def_bool y 407 depends on INTEL_IOMMU && ACPI 408 409config X86_64_SMP 410 def_bool y 411 depends on X86_64 && SMP 412 413config ARCH_SUPPORTS_UPROBES 414 def_bool y 415 416config FIX_EARLYCON_MEM 417 def_bool y 418 419config DYNAMIC_PHYSICAL_MASK 420 bool 421 422config PGTABLE_LEVELS 423 int 424 default 5 if X86_5LEVEL 425 default 4 if X86_64 426 default 3 if X86_PAE 427 default 2 428 429config CC_HAS_SANE_STACKPROTECTOR 430 bool 431 default $(success,$(srctree)/scripts/gcc-x86_64-has-stack-protector.sh $(CC) $(CLANG_FLAGS)) if 64BIT 432 default $(success,$(srctree)/scripts/gcc-x86_32-has-stack-protector.sh $(CC) $(CLANG_FLAGS)) 433 help 434 We have to make sure stack protector is unconditionally disabled if 435 the compiler produces broken code or if it does not let us control 436 the segment on 32-bit kernels. 437 438menu "Processor type and features" 439 440config SMP 441 bool "Symmetric multi-processing support" 442 help 443 This enables support for systems with more than one CPU. If you have 444 a system with only one CPU, say N. If you have a system with more 445 than one CPU, say Y. 446 447 If you say N here, the kernel will run on uni- and multiprocessor 448 machines, but will use only one CPU of a multiprocessor machine. If 449 you say Y here, the kernel will run on many, but not all, 450 uniprocessor machines. On a uniprocessor machine, the kernel 451 will run faster if you say N here. 452 453 Note that if you say Y here and choose architecture "586" or 454 "Pentium" under "Processor family", the kernel will not work on 486 455 architectures. Similarly, multiprocessor kernels for the "PPro" 456 architecture may not work on all Pentium based boards. 457 458 People using multiprocessor machines who say Y here should also say 459 Y to "Enhanced Real Time Clock Support", below. The "Advanced Power 460 Management" code will be disabled if you say Y here. 461 462 See also <file:Documentation/arch/x86/i386/IO-APIC.rst>, 463 <file:Documentation/admin-guide/lockup-watchdogs.rst> and the SMP-HOWTO available at 464 <http://www.tldp.org/docs.html#howto>. 465 466 If you don't know what to do here, say N. 467 468config X86_X2APIC 469 bool "Support x2apic" 470 depends on X86_LOCAL_APIC && X86_64 && (IRQ_REMAP || HYPERVISOR_GUEST) 471 help 472 This enables x2apic support on CPUs that have this feature. 473 474 This allows 32-bit apic IDs (so it can support very large systems), 475 and accesses the local apic via MSRs not via mmio. 476 477 Some Intel systems circa 2022 and later are locked into x2APIC mode 478 and can not fall back to the legacy APIC modes if SGX or TDX are 479 enabled in the BIOS. They will boot with very reduced functionality 480 without enabling this option. 481 482 If you don't know what to do here, say N. 483 484config X86_POSTED_MSI 485 bool "Enable MSI and MSI-x delivery by posted interrupts" 486 depends on X86_64 && IRQ_REMAP 487 help 488 This enables MSIs that are under interrupt remapping to be delivered as 489 posted interrupts to the host kernel. Interrupt throughput can 490 potentially be improved by coalescing CPU notifications during high 491 frequency bursts. 492 493 If you don't know what to do here, say N. 494 495config X86_MPPARSE 496 bool "Enable MPS table" if ACPI 497 default y 498 depends on X86_LOCAL_APIC 499 help 500 For old smp systems that do not have proper acpi support. Newer systems 501 (esp with 64bit cpus) with acpi support, MADT and DSDT will override it 502 503config X86_CPU_RESCTRL 504 bool "x86 CPU resource control support" 505 depends on X86 && (CPU_SUP_INTEL || CPU_SUP_AMD) 506 select KERNFS 507 select PROC_CPU_RESCTRL if PROC_FS 508 help 509 Enable x86 CPU resource control support. 510 511 Provide support for the allocation and monitoring of system resources 512 usage by the CPU. 513 514 Intel calls this Intel Resource Director Technology 515 (Intel(R) RDT). More information about RDT can be found in the 516 Intel x86 Architecture Software Developer Manual. 517 518 AMD calls this AMD Platform Quality of Service (AMD QoS). 519 More information about AMD QoS can be found in the AMD64 Technology 520 Platform Quality of Service Extensions manual. 521 522 Say N if unsure. 523 524config X86_FRED 525 bool "Flexible Return and Event Delivery" 526 depends on X86_64 527 help 528 When enabled, try to use Flexible Return and Event Delivery 529 instead of the legacy SYSCALL/SYSENTER/IDT architecture for 530 ring transitions and exception/interrupt handling if the 531 system supports it. 532 533config X86_BIGSMP 534 bool "Support for big SMP systems with more than 8 CPUs" 535 depends on SMP && X86_32 536 help 537 This option is needed for the systems that have more than 8 CPUs. 538 539config X86_EXTENDED_PLATFORM 540 bool "Support for extended (non-PC) x86 platforms" 541 default y 542 help 543 If you disable this option then the kernel will only support 544 standard PC platforms. (which covers the vast majority of 545 systems out there.) 546 547 If you enable this option then you'll be able to select support 548 for the following non-PC x86 platforms, depending on the value of 549 CONFIG_64BIT. 550 551 32-bit platforms (CONFIG_64BIT=n): 552 Goldfish (Android emulator) 553 AMD Elan 554 RDC R-321x SoC 555 SGI 320/540 (Visual Workstation) 556 STA2X11-based (e.g. Northville) 557 Moorestown MID devices 558 559 64-bit platforms (CONFIG_64BIT=y): 560 Numascale NumaChip 561 ScaleMP vSMP 562 SGI Ultraviolet 563 564 If you have one of these systems, or if you want to build a 565 generic distribution kernel, say Y here - otherwise say N. 566 567# This is an alphabetically sorted list of 64 bit extended platforms 568# Please maintain the alphabetic order if and when there are additions 569config X86_NUMACHIP 570 bool "Numascale NumaChip" 571 depends on X86_64 572 depends on X86_EXTENDED_PLATFORM 573 depends on NUMA 574 depends on SMP 575 depends on X86_X2APIC 576 depends on PCI_MMCONFIG 577 help 578 Adds support for Numascale NumaChip large-SMP systems. Needed to 579 enable more than ~168 cores. 580 If you don't have one of these, you should say N here. 581 582config X86_VSMP 583 bool "ScaleMP vSMP" 584 select HYPERVISOR_GUEST 585 select PARAVIRT 586 depends on X86_64 && PCI 587 depends on X86_EXTENDED_PLATFORM 588 depends on SMP 589 help 590 Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is 591 supposed to run on these EM64T-based machines. Only choose this option 592 if you have one of these machines. 593 594config X86_UV 595 bool "SGI Ultraviolet" 596 depends on X86_64 597 depends on X86_EXTENDED_PLATFORM 598 depends on NUMA 599 depends on EFI 600 depends on KEXEC_CORE 601 depends on X86_X2APIC 602 depends on PCI 603 help 604 This option is needed in order to support SGI Ultraviolet systems. 605 If you don't have one of these, you should say N here. 606 607# Following is an alphabetically sorted list of 32 bit extended platforms 608# Please maintain the alphabetic order if and when there are additions 609 610config X86_GOLDFISH 611 bool "Goldfish (Virtual Platform)" 612 depends on X86_EXTENDED_PLATFORM 613 help 614 Enable support for the Goldfish virtual platform used primarily 615 for Android development. Unless you are building for the Android 616 Goldfish emulator say N here. 617 618config X86_INTEL_CE 619 bool "CE4100 TV platform" 620 depends on PCI 621 depends on PCI_GODIRECT 622 depends on X86_IO_APIC 623 depends on X86_32 624 depends on X86_EXTENDED_PLATFORM 625 select X86_REBOOTFIXUPS 626 select OF 627 select OF_EARLY_FLATTREE 628 help 629 Select for the Intel CE media processor (CE4100) SOC. 630 This option compiles in support for the CE4100 SOC for settop 631 boxes and media devices. 632 633config X86_INTEL_MID 634 bool "Intel MID platform support" 635 depends on X86_EXTENDED_PLATFORM 636 depends on X86_PLATFORM_DEVICES 637 depends on PCI 638 depends on X86_64 || (PCI_GOANY && X86_32) 639 depends on X86_IO_APIC 640 select I2C 641 select DW_APB_TIMER 642 select INTEL_SCU_PCI 643 help 644 Select to build a kernel capable of supporting Intel MID (Mobile 645 Internet Device) platform systems which do not have the PCI legacy 646 interfaces. If you are building for a PC class system say N here. 647 648 Intel MID platforms are based on an Intel processor and chipset which 649 consume less power than most of the x86 derivatives. 650 651config X86_INTEL_QUARK 652 bool "Intel Quark platform support" 653 depends on X86_32 654 depends on X86_EXTENDED_PLATFORM 655 depends on X86_PLATFORM_DEVICES 656 depends on X86_TSC 657 depends on PCI 658 depends on PCI_GOANY 659 depends on X86_IO_APIC 660 select IOSF_MBI 661 select INTEL_IMR 662 select COMMON_CLK 663 help 664 Select to include support for Quark X1000 SoC. 665 Say Y here if you have a Quark based system such as the Arduino 666 compatible Intel Galileo. 667 668config X86_INTEL_LPSS 669 bool "Intel Low Power Subsystem Support" 670 depends on X86 && ACPI && PCI 671 select COMMON_CLK 672 select PINCTRL 673 select IOSF_MBI 674 help 675 Select to build support for Intel Low Power Subsystem such as 676 found on Intel Lynxpoint PCH. Selecting this option enables 677 things like clock tree (common clock framework) and pincontrol 678 which are needed by the LPSS peripheral drivers. 679 680config X86_AMD_PLATFORM_DEVICE 681 bool "AMD ACPI2Platform devices support" 682 depends on ACPI 683 select COMMON_CLK 684 select PINCTRL 685 help 686 Select to interpret AMD specific ACPI device to platform device 687 such as I2C, UART, GPIO found on AMD Carrizo and later chipsets. 688 I2C and UART depend on COMMON_CLK to set clock. GPIO driver is 689 implemented under PINCTRL subsystem. 690 691config IOSF_MBI 692 tristate "Intel SoC IOSF Sideband support for SoC platforms" 693 depends on PCI 694 help 695 This option enables sideband register access support for Intel SoC 696 platforms. On these platforms the IOSF sideband is used in lieu of 697 MSR's for some register accesses, mostly but not limited to thermal 698 and power. Drivers may query the availability of this device to 699 determine if they need the sideband in order to work on these 700 platforms. The sideband is available on the following SoC products. 701 This list is not meant to be exclusive. 702 - BayTrail 703 - Braswell 704 - Quark 705 706 You should say Y if you are running a kernel on one of these SoC's. 707 708config IOSF_MBI_DEBUG 709 bool "Enable IOSF sideband access through debugfs" 710 depends on IOSF_MBI && DEBUG_FS 711 help 712 Select this option to expose the IOSF sideband access registers (MCR, 713 MDR, MCRX) through debugfs to write and read register information from 714 different units on the SoC. This is most useful for obtaining device 715 state information for debug and analysis. As this is a general access 716 mechanism, users of this option would have specific knowledge of the 717 device they want to access. 718 719 If you don't require the option or are in doubt, say N. 720 721config X86_RDC321X 722 bool "RDC R-321x SoC" 723 depends on X86_32 724 depends on X86_EXTENDED_PLATFORM 725 select M486 726 select X86_REBOOTFIXUPS 727 help 728 This option is needed for RDC R-321x system-on-chip, also known 729 as R-8610-(G). 730 If you don't have one of these chips, you should say N here. 731 732config X86_32_NON_STANDARD 733 bool "Support non-standard 32-bit SMP architectures" 734 depends on X86_32 && SMP 735 depends on X86_EXTENDED_PLATFORM 736 help 737 This option compiles in the bigsmp and STA2X11 default 738 subarchitectures. It is intended for a generic binary 739 kernel. If you select them all, kernel will probe it one by 740 one and will fallback to default. 741 742# Alphabetically sorted list of Non standard 32 bit platforms 743 744config X86_SUPPORTS_MEMORY_FAILURE 745 def_bool y 746 # MCE code calls memory_failure(): 747 depends on X86_MCE 748 # On 32-bit this adds too big of NODES_SHIFT and we run out of page flags: 749 # On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH: 750 depends on X86_64 || !SPARSEMEM 751 select ARCH_SUPPORTS_MEMORY_FAILURE 752 753config STA2X11 754 bool "STA2X11 Companion Chip Support" 755 depends on X86_32_NON_STANDARD && PCI 756 select SWIOTLB 757 select MFD_STA2X11 758 select GPIOLIB 759 help 760 This adds support for boards based on the STA2X11 IO-Hub, 761 a.k.a. "ConneXt". The chip is used in place of the standard 762 PC chipset, so all "standard" peripherals are missing. If this 763 option is selected the kernel will still be able to boot on 764 standard PC machines. 765 766config X86_32_IRIS 767 tristate "Eurobraille/Iris poweroff module" 768 depends on X86_32 769 help 770 The Iris machines from EuroBraille do not have APM or ACPI support 771 to shut themselves down properly. A special I/O sequence is 772 needed to do so, which is what this module does at 773 kernel shutdown. 774 775 This is only for Iris machines from EuroBraille. 776 777 If unused, say N. 778 779config SCHED_OMIT_FRAME_POINTER 780 def_bool y 781 prompt "Single-depth WCHAN output" 782 depends on X86 783 help 784 Calculate simpler /proc/<PID>/wchan values. If this option 785 is disabled then wchan values will recurse back to the 786 caller function. This provides more accurate wchan values, 787 at the expense of slightly more scheduling overhead. 788 789 If in doubt, say "Y". 790 791menuconfig HYPERVISOR_GUEST 792 bool "Linux guest support" 793 help 794 Say Y here to enable options for running Linux under various hyper- 795 visors. This option enables basic hypervisor detection and platform 796 setup. 797 798 If you say N, all options in this submenu will be skipped and 799 disabled, and Linux guest support won't be built in. 800 801if HYPERVISOR_GUEST 802 803config PARAVIRT 804 bool "Enable paravirtualization code" 805 depends on HAVE_STATIC_CALL 806 help 807 This changes the kernel so it can modify itself when it is run 808 under a hypervisor, potentially improving performance significantly 809 over full virtualization. However, when run without a hypervisor 810 the kernel is theoretically slower and slightly larger. 811 812config PARAVIRT_XXL 813 bool 814 815config PARAVIRT_DEBUG 816 bool "paravirt-ops debugging" 817 depends on PARAVIRT && DEBUG_KERNEL 818 help 819 Enable to debug paravirt_ops internals. Specifically, BUG if 820 a paravirt_op is missing when it is called. 821 822config PARAVIRT_SPINLOCKS 823 bool "Paravirtualization layer for spinlocks" 824 depends on PARAVIRT && SMP 825 help 826 Paravirtualized spinlocks allow a pvops backend to replace the 827 spinlock implementation with something virtualization-friendly 828 (for example, block the virtual CPU rather than spinning). 829 830 It has a minimal impact on native kernels and gives a nice performance 831 benefit on paravirtualized KVM / Xen kernels. 832 833 If you are unsure how to answer this question, answer Y. 834 835config X86_HV_CALLBACK_VECTOR 836 def_bool n 837 838source "arch/x86/xen/Kconfig" 839 840config KVM_GUEST 841 bool "KVM Guest support (including kvmclock)" 842 depends on PARAVIRT 843 select PARAVIRT_CLOCK 844 select ARCH_CPUIDLE_HALTPOLL 845 select X86_HV_CALLBACK_VECTOR 846 default y 847 help 848 This option enables various optimizations for running under the KVM 849 hypervisor. It includes a paravirtualized clock, so that instead 850 of relying on a PIT (or probably other) emulation by the 851 underlying device model, the host provides the guest with 852 timing infrastructure such as time of day, and system time 853 854config ARCH_CPUIDLE_HALTPOLL 855 def_bool n 856 prompt "Disable host haltpoll when loading haltpoll driver" 857 help 858 If virtualized under KVM, disable host haltpoll. 859 860config PVH 861 bool "Support for running PVH guests" 862 help 863 This option enables the PVH entry point for guest virtual machines 864 as specified in the x86/HVM direct boot ABI. 865 866config PARAVIRT_TIME_ACCOUNTING 867 bool "Paravirtual steal time accounting" 868 depends on PARAVIRT 869 help 870 Select this option to enable fine granularity task steal time 871 accounting. Time spent executing other tasks in parallel with 872 the current vCPU is discounted from the vCPU power. To account for 873 that, there can be a small performance impact. 874 875 If in doubt, say N here. 876 877config PARAVIRT_CLOCK 878 bool 879 880config JAILHOUSE_GUEST 881 bool "Jailhouse non-root cell support" 882 depends on X86_64 && PCI 883 select X86_PM_TIMER 884 help 885 This option allows to run Linux as guest in a Jailhouse non-root 886 cell. You can leave this option disabled if you only want to start 887 Jailhouse and run Linux afterwards in the root cell. 888 889config ACRN_GUEST 890 bool "ACRN Guest support" 891 depends on X86_64 892 select X86_HV_CALLBACK_VECTOR 893 help 894 This option allows to run Linux as guest in the ACRN hypervisor. ACRN is 895 a flexible, lightweight reference open-source hypervisor, built with 896 real-time and safety-criticality in mind. It is built for embedded 897 IOT with small footprint and real-time features. More details can be 898 found in https://projectacrn.org/. 899 900config INTEL_TDX_GUEST 901 bool "Intel TDX (Trust Domain Extensions) - Guest Support" 902 depends on X86_64 && CPU_SUP_INTEL 903 depends on X86_X2APIC 904 depends on EFI_STUB 905 select ARCH_HAS_CC_PLATFORM 906 select X86_MEM_ENCRYPT 907 select X86_MCE 908 select UNACCEPTED_MEMORY 909 help 910 Support running as a guest under Intel TDX. Without this support, 911 the guest kernel can not boot or run under TDX. 912 TDX includes memory encryption and integrity capabilities 913 which protect the confidentiality and integrity of guest 914 memory contents and CPU state. TDX guests are protected from 915 some attacks from the VMM. 916 917endif # HYPERVISOR_GUEST 918 919source "arch/x86/Kconfig.cpu" 920 921config HPET_TIMER 922 def_bool X86_64 923 prompt "HPET Timer Support" if X86_32 924 help 925 Use the IA-PC HPET (High Precision Event Timer) to manage 926 time in preference to the PIT and RTC, if a HPET is 927 present. 928 HPET is the next generation timer replacing legacy 8254s. 929 The HPET provides a stable time base on SMP 930 systems, unlike the TSC, but it is more expensive to access, 931 as it is off-chip. The interface used is documented 932 in the HPET spec, revision 1. 933 934 You can safely choose Y here. However, HPET will only be 935 activated if the platform and the BIOS support this feature. 936 Otherwise the 8254 will be used for timing services. 937 938 Choose N to continue using the legacy 8254 timer. 939 940config HPET_EMULATE_RTC 941 def_bool y 942 depends on HPET_TIMER && (RTC_DRV_CMOS=m || RTC_DRV_CMOS=y) 943 944# Mark as expert because too many people got it wrong. 945# The code disables itself when not needed. 946config DMI 947 default y 948 select DMI_SCAN_MACHINE_NON_EFI_FALLBACK 949 bool "Enable DMI scanning" if EXPERT 950 help 951 Enabled scanning of DMI to identify machine quirks. Say Y 952 here unless you have verified that your setup is not 953 affected by entries in the DMI blacklist. Required by PNP 954 BIOS code. 955 956config GART_IOMMU 957 bool "Old AMD GART IOMMU support" 958 select IOMMU_HELPER 959 select SWIOTLB 960 depends on X86_64 && PCI && AMD_NB 961 help 962 Provides a driver for older AMD Athlon64/Opteron/Turion/Sempron 963 GART based hardware IOMMUs. 964 965 The GART supports full DMA access for devices with 32-bit access 966 limitations, on systems with more than 3 GB. This is usually needed 967 for USB, sound, many IDE/SATA chipsets and some other devices. 968 969 Newer systems typically have a modern AMD IOMMU, supported via 970 the CONFIG_AMD_IOMMU=y config option. 971 972 In normal configurations this driver is only active when needed: 973 there's more than 3 GB of memory and the system contains a 974 32-bit limited device. 975 976 If unsure, say Y. 977 978config BOOT_VESA_SUPPORT 979 bool 980 help 981 If true, at least one selected framebuffer driver can take advantage 982 of VESA video modes set at an early boot stage via the vga= parameter. 983 984config MAXSMP 985 bool "Enable Maximum number of SMP Processors and NUMA Nodes" 986 depends on X86_64 && SMP && DEBUG_KERNEL 987 select CPUMASK_OFFSTACK 988 help 989 Enable maximum number of CPUS and NUMA Nodes for this architecture. 990 If unsure, say N. 991 992# 993# The maximum number of CPUs supported: 994# 995# The main config value is NR_CPUS, which defaults to NR_CPUS_DEFAULT, 996# and which can be configured interactively in the 997# [NR_CPUS_RANGE_BEGIN ... NR_CPUS_RANGE_END] range. 998# 999# The ranges are different on 32-bit and 64-bit kernels, depending on 1000# hardware capabilities and scalability features of the kernel. 1001# 1002# ( If MAXSMP is enabled we just use the highest possible value and disable 1003# interactive configuration. ) 1004# 1005 1006config NR_CPUS_RANGE_BEGIN 1007 int 1008 default NR_CPUS_RANGE_END if MAXSMP 1009 default 1 if !SMP 1010 default 2 1011 1012config NR_CPUS_RANGE_END 1013 int 1014 depends on X86_32 1015 default 64 if SMP && X86_BIGSMP 1016 default 8 if SMP && !X86_BIGSMP 1017 default 1 if !SMP 1018 1019config NR_CPUS_RANGE_END 1020 int 1021 depends on X86_64 1022 default 8192 if SMP && CPUMASK_OFFSTACK 1023 default 512 if SMP && !CPUMASK_OFFSTACK 1024 default 1 if !SMP 1025 1026config NR_CPUS_DEFAULT 1027 int 1028 depends on X86_32 1029 default 32 if X86_BIGSMP 1030 default 8 if SMP 1031 default 1 if !SMP 1032 1033config NR_CPUS_DEFAULT 1034 int 1035 depends on X86_64 1036 default 8192 if MAXSMP 1037 default 64 if SMP 1038 default 1 if !SMP 1039 1040config NR_CPUS 1041 int "Maximum number of CPUs" if SMP && !MAXSMP 1042 range NR_CPUS_RANGE_BEGIN NR_CPUS_RANGE_END 1043 default NR_CPUS_DEFAULT 1044 help 1045 This allows you to specify the maximum number of CPUs which this 1046 kernel will support. If CPUMASK_OFFSTACK is enabled, the maximum 1047 supported value is 8192, otherwise the maximum value is 512. The 1048 minimum value which makes sense is 2. 1049 1050 This is purely to save memory: each supported CPU adds about 8KB 1051 to the kernel image. 1052 1053config SCHED_CLUSTER 1054 bool "Cluster scheduler support" 1055 depends on SMP 1056 default y 1057 help 1058 Cluster scheduler support improves the CPU scheduler's decision 1059 making when dealing with machines that have clusters of CPUs. 1060 Cluster usually means a couple of CPUs which are placed closely 1061 by sharing mid-level caches, last-level cache tags or internal 1062 busses. 1063 1064config SCHED_SMT 1065 def_bool y if SMP 1066 1067config SCHED_MC 1068 def_bool y 1069 prompt "Multi-core scheduler support" 1070 depends on SMP 1071 help 1072 Multi-core scheduler support improves the CPU scheduler's decision 1073 making when dealing with multi-core CPU chips at a cost of slightly 1074 increased overhead in some places. If unsure say N here. 1075 1076config SCHED_MC_PRIO 1077 bool "CPU core priorities scheduler support" 1078 depends on SCHED_MC 1079 select X86_INTEL_PSTATE if CPU_SUP_INTEL 1080 select X86_AMD_PSTATE if CPU_SUP_AMD && ACPI 1081 select CPU_FREQ 1082 default y 1083 help 1084 Intel Turbo Boost Max Technology 3.0 enabled CPUs have a 1085 core ordering determined at manufacturing time, which allows 1086 certain cores to reach higher turbo frequencies (when running 1087 single threaded workloads) than others. 1088 1089 Enabling this kernel feature teaches the scheduler about 1090 the TBM3 (aka ITMT) priority order of the CPU cores and adjusts the 1091 scheduler's CPU selection logic accordingly, so that higher 1092 overall system performance can be achieved. 1093 1094 This feature will have no effect on CPUs without this feature. 1095 1096 If unsure say Y here. 1097 1098config UP_LATE_INIT 1099 def_bool y 1100 depends on !SMP && X86_LOCAL_APIC 1101 1102config X86_UP_APIC 1103 bool "Local APIC support on uniprocessors" if !PCI_MSI 1104 default PCI_MSI 1105 depends on X86_32 && !SMP && !X86_32_NON_STANDARD 1106 help 1107 A local APIC (Advanced Programmable Interrupt Controller) is an 1108 integrated interrupt controller in the CPU. If you have a single-CPU 1109 system which has a processor with a local APIC, you can say Y here to 1110 enable and use it. If you say Y here even though your machine doesn't 1111 have a local APIC, then the kernel will still run with no slowdown at 1112 all. The local APIC supports CPU-generated self-interrupts (timer, 1113 performance counters), and the NMI watchdog which detects hard 1114 lockups. 1115 1116config X86_UP_IOAPIC 1117 bool "IO-APIC support on uniprocessors" 1118 depends on X86_UP_APIC 1119 help 1120 An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an 1121 SMP-capable replacement for PC-style interrupt controllers. Most 1122 SMP systems and many recent uniprocessor systems have one. 1123 1124 If you have a single-CPU system with an IO-APIC, you can say Y here 1125 to use it. If you say Y here even though your machine doesn't have 1126 an IO-APIC, then the kernel will still run with no slowdown at all. 1127 1128config X86_LOCAL_APIC 1129 def_bool y 1130 depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC || PCI_MSI 1131 select IRQ_DOMAIN_HIERARCHY 1132 1133config ACPI_MADT_WAKEUP 1134 def_bool y 1135 depends on X86_64 1136 depends on ACPI 1137 depends on SMP 1138 depends on X86_LOCAL_APIC 1139 1140config X86_IO_APIC 1141 def_bool y 1142 depends on X86_LOCAL_APIC || X86_UP_IOAPIC 1143 1144config X86_REROUTE_FOR_BROKEN_BOOT_IRQS 1145 bool "Reroute for broken boot IRQs" 1146 depends on X86_IO_APIC 1147 help 1148 This option enables a workaround that fixes a source of 1149 spurious interrupts. This is recommended when threaded 1150 interrupt handling is used on systems where the generation of 1151 superfluous "boot interrupts" cannot be disabled. 1152 1153 Some chipsets generate a legacy INTx "boot IRQ" when the IRQ 1154 entry in the chipset's IO-APIC is masked (as, e.g. the RT 1155 kernel does during interrupt handling). On chipsets where this 1156 boot IRQ generation cannot be disabled, this workaround keeps 1157 the original IRQ line masked so that only the equivalent "boot 1158 IRQ" is delivered to the CPUs. The workaround also tells the 1159 kernel to set up the IRQ handler on the boot IRQ line. In this 1160 way only one interrupt is delivered to the kernel. Otherwise 1161 the spurious second interrupt may cause the kernel to bring 1162 down (vital) interrupt lines. 1163 1164 Only affects "broken" chipsets. Interrupt sharing may be 1165 increased on these systems. 1166 1167config X86_MCE 1168 bool "Machine Check / overheating reporting" 1169 select GENERIC_ALLOCATOR 1170 default y 1171 help 1172 Machine Check support allows the processor to notify the 1173 kernel if it detects a problem (e.g. overheating, data corruption). 1174 The action the kernel takes depends on the severity of the problem, 1175 ranging from warning messages to halting the machine. 1176 1177config X86_MCELOG_LEGACY 1178 bool "Support for deprecated /dev/mcelog character device" 1179 depends on X86_MCE 1180 help 1181 Enable support for /dev/mcelog which is needed by the old mcelog 1182 userspace logging daemon. Consider switching to the new generation 1183 rasdaemon solution. 1184 1185config X86_MCE_INTEL 1186 def_bool y 1187 prompt "Intel MCE features" 1188 depends on X86_MCE && X86_LOCAL_APIC 1189 help 1190 Additional support for intel specific MCE features such as 1191 the thermal monitor. 1192 1193config X86_MCE_AMD 1194 def_bool y 1195 prompt "AMD MCE features" 1196 depends on X86_MCE && X86_LOCAL_APIC 1197 help 1198 Additional support for AMD specific MCE features such as 1199 the DRAM Error Threshold. 1200 1201config X86_ANCIENT_MCE 1202 bool "Support for old Pentium 5 / WinChip machine checks" 1203 depends on X86_32 && X86_MCE 1204 help 1205 Include support for machine check handling on old Pentium 5 or WinChip 1206 systems. These typically need to be enabled explicitly on the command 1207 line. 1208 1209config X86_MCE_THRESHOLD 1210 depends on X86_MCE_AMD || X86_MCE_INTEL 1211 def_bool y 1212 1213config X86_MCE_INJECT 1214 depends on X86_MCE && X86_LOCAL_APIC && DEBUG_FS 1215 tristate "Machine check injector support" 1216 help 1217 Provide support for injecting machine checks for testing purposes. 1218 If you don't know what a machine check is and you don't do kernel 1219 QA it is safe to say n. 1220 1221source "arch/x86/events/Kconfig" 1222 1223config X86_LEGACY_VM86 1224 bool "Legacy VM86 support" 1225 depends on X86_32 1226 help 1227 This option allows user programs to put the CPU into V8086 1228 mode, which is an 80286-era approximation of 16-bit real mode. 1229 1230 Some very old versions of X and/or vbetool require this option 1231 for user mode setting. Similarly, DOSEMU will use it if 1232 available to accelerate real mode DOS programs. However, any 1233 recent version of DOSEMU, X, or vbetool should be fully 1234 functional even without kernel VM86 support, as they will all 1235 fall back to software emulation. Nevertheless, if you are using 1236 a 16-bit DOS program where 16-bit performance matters, vm86 1237 mode might be faster than emulation and you might want to 1238 enable this option. 1239 1240 Note that any app that works on a 64-bit kernel is unlikely to 1241 need this option, as 64-bit kernels don't, and can't, support 1242 V8086 mode. This option is also unrelated to 16-bit protected 1243 mode and is not needed to run most 16-bit programs under Wine. 1244 1245 Enabling this option increases the complexity of the kernel 1246 and slows down exception handling a tiny bit. 1247 1248 If unsure, say N here. 1249 1250config VM86 1251 bool 1252 default X86_LEGACY_VM86 1253 1254config X86_16BIT 1255 bool "Enable support for 16-bit segments" if EXPERT 1256 default y 1257 depends on MODIFY_LDT_SYSCALL 1258 help 1259 This option is required by programs like Wine to run 16-bit 1260 protected mode legacy code on x86 processors. Disabling 1261 this option saves about 300 bytes on i386, or around 6K text 1262 plus 16K runtime memory on x86-64, 1263 1264config X86_ESPFIX32 1265 def_bool y 1266 depends on X86_16BIT && X86_32 1267 1268config X86_ESPFIX64 1269 def_bool y 1270 depends on X86_16BIT && X86_64 1271 1272config X86_VSYSCALL_EMULATION 1273 bool "Enable vsyscall emulation" if EXPERT 1274 default y 1275 depends on X86_64 1276 help 1277 This enables emulation of the legacy vsyscall page. Disabling 1278 it is roughly equivalent to booting with vsyscall=none, except 1279 that it will also disable the helpful warning if a program 1280 tries to use a vsyscall. With this option set to N, offending 1281 programs will just segfault, citing addresses of the form 1282 0xffffffffff600?00. 1283 1284 This option is required by many programs built before 2013, and 1285 care should be used even with newer programs if set to N. 1286 1287 Disabling this option saves about 7K of kernel size and 1288 possibly 4K of additional runtime pagetable memory. 1289 1290config X86_IOPL_IOPERM 1291 bool "IOPERM and IOPL Emulation" 1292 default y 1293 help 1294 This enables the ioperm() and iopl() syscalls which are necessary 1295 for legacy applications. 1296 1297 Legacy IOPL support is an overbroad mechanism which allows user 1298 space aside of accessing all 65536 I/O ports also to disable 1299 interrupts. To gain this access the caller needs CAP_SYS_RAWIO 1300 capabilities and permission from potentially active security 1301 modules. 1302 1303 The emulation restricts the functionality of the syscall to 1304 only allowing the full range I/O port access, but prevents the 1305 ability to disable interrupts from user space which would be 1306 granted if the hardware IOPL mechanism would be used. 1307 1308config TOSHIBA 1309 tristate "Toshiba Laptop support" 1310 depends on X86_32 1311 help 1312 This adds a driver to safely access the System Management Mode of 1313 the CPU on Toshiba portables with a genuine Toshiba BIOS. It does 1314 not work on models with a Phoenix BIOS. The System Management Mode 1315 is used to set the BIOS and power saving options on Toshiba portables. 1316 1317 For information on utilities to make use of this driver see the 1318 Toshiba Linux utilities web site at: 1319 <http://www.buzzard.org.uk/toshiba/>. 1320 1321 Say Y if you intend to run this kernel on a Toshiba portable. 1322 Say N otherwise. 1323 1324config X86_REBOOTFIXUPS 1325 bool "Enable X86 board specific fixups for reboot" 1326 depends on X86_32 1327 help 1328 This enables chipset and/or board specific fixups to be done 1329 in order to get reboot to work correctly. This is only needed on 1330 some combinations of hardware and BIOS. The symptom, for which 1331 this config is intended, is when reboot ends with a stalled/hung 1332 system. 1333 1334 Currently, the only fixup is for the Geode machines using 1335 CS5530A and CS5536 chipsets and the RDC R-321x SoC. 1336 1337 Say Y if you want to enable the fixup. Currently, it's safe to 1338 enable this option even if you don't need it. 1339 Say N otherwise. 1340 1341config MICROCODE 1342 def_bool y 1343 depends on CPU_SUP_AMD || CPU_SUP_INTEL 1344 1345config MICROCODE_INITRD32 1346 def_bool y 1347 depends on MICROCODE && X86_32 && BLK_DEV_INITRD 1348 1349config MICROCODE_LATE_LOADING 1350 bool "Late microcode loading (DANGEROUS)" 1351 default n 1352 depends on MICROCODE && SMP 1353 help 1354 Loading microcode late, when the system is up and executing instructions 1355 is a tricky business and should be avoided if possible. Just the sequence 1356 of synchronizing all cores and SMT threads is one fragile dance which does 1357 not guarantee that cores might not softlock after the loading. Therefore, 1358 use this at your own risk. Late loading taints the kernel unless the 1359 microcode header indicates that it is safe for late loading via the 1360 minimal revision check. This minimal revision check can be enforced on 1361 the kernel command line with "microcode.minrev=Y". 1362 1363config MICROCODE_LATE_FORCE_MINREV 1364 bool "Enforce late microcode loading minimal revision check" 1365 default n 1366 depends on MICROCODE_LATE_LOADING 1367 help 1368 To prevent that users load microcode late which modifies already 1369 in use features, newer microcode patches have a minimum revision field 1370 in the microcode header, which tells the kernel which minimum 1371 revision must be active in the CPU to safely load that new microcode 1372 late into the running system. If disabled the check will not 1373 be enforced but the kernel will be tainted when the minimal 1374 revision check fails. 1375 1376 This minimal revision check can also be controlled via the 1377 "microcode.minrev" parameter on the kernel command line. 1378 1379 If unsure say Y. 1380 1381config X86_MSR 1382 tristate "/dev/cpu/*/msr - Model-specific register support" 1383 help 1384 This device gives privileged processes access to the x86 1385 Model-Specific Registers (MSRs). It is a character device with 1386 major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr. 1387 MSR accesses are directed to a specific CPU on multi-processor 1388 systems. 1389 1390config X86_CPUID 1391 tristate "/dev/cpu/*/cpuid - CPU information support" 1392 help 1393 This device gives processes access to the x86 CPUID instruction to 1394 be executed on a specific processor. It is a character device 1395 with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to 1396 /dev/cpu/31/cpuid. 1397 1398choice 1399 prompt "High Memory Support" 1400 default HIGHMEM4G 1401 depends on X86_32 1402 1403config NOHIGHMEM 1404 bool "off" 1405 help 1406 Linux can use up to 64 Gigabytes of physical memory on x86 systems. 1407 However, the address space of 32-bit x86 processors is only 4 1408 Gigabytes large. That means that, if you have a large amount of 1409 physical memory, not all of it can be "permanently mapped" by the 1410 kernel. The physical memory that's not permanently mapped is called 1411 "high memory". 1412 1413 If you are compiling a kernel which will never run on a machine with 1414 more than 1 Gigabyte total physical RAM, answer "off" here (default 1415 choice and suitable for most users). This will result in a "3GB/1GB" 1416 split: 3GB are mapped so that each process sees a 3GB virtual memory 1417 space and the remaining part of the 4GB virtual memory space is used 1418 by the kernel to permanently map as much physical memory as 1419 possible. 1420 1421 If the machine has between 1 and 4 Gigabytes physical RAM, then 1422 answer "4GB" here. 1423 1424 If more than 4 Gigabytes is used then answer "64GB" here. This 1425 selection turns Intel PAE (Physical Address Extension) mode on. 1426 PAE implements 3-level paging on IA32 processors. PAE is fully 1427 supported by Linux, PAE mode is implemented on all recent Intel 1428 processors (Pentium Pro and better). NOTE: If you say "64GB" here, 1429 then the kernel will not boot on CPUs that don't support PAE! 1430 1431 The actual amount of total physical memory will either be 1432 auto detected or can be forced by using a kernel command line option 1433 such as "mem=256M". (Try "man bootparam" or see the documentation of 1434 your boot loader (lilo or loadlin) about how to pass options to the 1435 kernel at boot time.) 1436 1437 If unsure, say "off". 1438 1439config HIGHMEM4G 1440 bool "4GB" 1441 help 1442 Select this if you have a 32-bit processor and between 1 and 4 1443 gigabytes of physical RAM. 1444 1445config HIGHMEM64G 1446 bool "64GB" 1447 depends on X86_HAVE_PAE 1448 select X86_PAE 1449 help 1450 Select this if you have a 32-bit processor and more than 4 1451 gigabytes of physical RAM. 1452 1453endchoice 1454 1455choice 1456 prompt "Memory split" if EXPERT 1457 default VMSPLIT_3G 1458 depends on X86_32 1459 help 1460 Select the desired split between kernel and user memory. 1461 1462 If the address range available to the kernel is less than the 1463 physical memory installed, the remaining memory will be available 1464 as "high memory". Accessing high memory is a little more costly 1465 than low memory, as it needs to be mapped into the kernel first. 1466 Note that increasing the kernel address space limits the range 1467 available to user programs, making the address space there 1468 tighter. Selecting anything other than the default 3G/1G split 1469 will also likely make your kernel incompatible with binary-only 1470 kernel modules. 1471 1472 If you are not absolutely sure what you are doing, leave this 1473 option alone! 1474 1475 config VMSPLIT_3G 1476 bool "3G/1G user/kernel split" 1477 config VMSPLIT_3G_OPT 1478 depends on !X86_PAE 1479 bool "3G/1G user/kernel split (for full 1G low memory)" 1480 config VMSPLIT_2G 1481 bool "2G/2G user/kernel split" 1482 config VMSPLIT_2G_OPT 1483 depends on !X86_PAE 1484 bool "2G/2G user/kernel split (for full 2G low memory)" 1485 config VMSPLIT_1G 1486 bool "1G/3G user/kernel split" 1487endchoice 1488 1489config PAGE_OFFSET 1490 hex 1491 default 0xB0000000 if VMSPLIT_3G_OPT 1492 default 0x80000000 if VMSPLIT_2G 1493 default 0x78000000 if VMSPLIT_2G_OPT 1494 default 0x40000000 if VMSPLIT_1G 1495 default 0xC0000000 1496 depends on X86_32 1497 1498config HIGHMEM 1499 def_bool y 1500 depends on X86_32 && (HIGHMEM64G || HIGHMEM4G) 1501 1502config X86_PAE 1503 bool "PAE (Physical Address Extension) Support" 1504 depends on X86_32 && X86_HAVE_PAE 1505 select PHYS_ADDR_T_64BIT 1506 select SWIOTLB 1507 help 1508 PAE is required for NX support, and furthermore enables 1509 larger swapspace support for non-overcommit purposes. It 1510 has the cost of more pagetable lookup overhead, and also 1511 consumes more pagetable space per process. 1512 1513config X86_5LEVEL 1514 bool "Enable 5-level page tables support" 1515 default y 1516 select DYNAMIC_MEMORY_LAYOUT 1517 select SPARSEMEM_VMEMMAP 1518 depends on X86_64 1519 help 1520 5-level paging enables access to larger address space: 1521 up to 128 PiB of virtual address space and 4 PiB of 1522 physical address space. 1523 1524 It will be supported by future Intel CPUs. 1525 1526 A kernel with the option enabled can be booted on machines that 1527 support 4- or 5-level paging. 1528 1529 See Documentation/arch/x86/x86_64/5level-paging.rst for more 1530 information. 1531 1532 Say N if unsure. 1533 1534config X86_DIRECT_GBPAGES 1535 def_bool y 1536 depends on X86_64 1537 help 1538 Certain kernel features effectively disable kernel 1539 linear 1 GB mappings (even if the CPU otherwise 1540 supports them), so don't confuse the user by printing 1541 that we have them enabled. 1542 1543config X86_CPA_STATISTICS 1544 bool "Enable statistic for Change Page Attribute" 1545 depends on DEBUG_FS 1546 help 1547 Expose statistics about the Change Page Attribute mechanism, which 1548 helps to determine the effectiveness of preserving large and huge 1549 page mappings when mapping protections are changed. 1550 1551config X86_MEM_ENCRYPT 1552 select ARCH_HAS_FORCE_DMA_UNENCRYPTED 1553 select DYNAMIC_PHYSICAL_MASK 1554 def_bool n 1555 1556config AMD_MEM_ENCRYPT 1557 bool "AMD Secure Memory Encryption (SME) support" 1558 depends on X86_64 && CPU_SUP_AMD 1559 depends on EFI_STUB 1560 select DMA_COHERENT_POOL 1561 select ARCH_USE_MEMREMAP_PROT 1562 select INSTRUCTION_DECODER 1563 select ARCH_HAS_CC_PLATFORM 1564 select X86_MEM_ENCRYPT 1565 select UNACCEPTED_MEMORY 1566 select CRYPTO_LIB_AESGCM 1567 help 1568 Say yes to enable support for the encryption of system memory. 1569 This requires an AMD processor that supports Secure Memory 1570 Encryption (SME). 1571 1572# Common NUMA Features 1573config NUMA 1574 bool "NUMA Memory Allocation and Scheduler Support" 1575 depends on SMP 1576 depends on X86_64 || (X86_32 && HIGHMEM64G && X86_BIGSMP) 1577 default y if X86_BIGSMP 1578 select USE_PERCPU_NUMA_NODE_ID 1579 select OF_NUMA if OF 1580 help 1581 Enable NUMA (Non-Uniform Memory Access) support. 1582 1583 The kernel will try to allocate memory used by a CPU on the 1584 local memory controller of the CPU and add some more 1585 NUMA awareness to the kernel. 1586 1587 For 64-bit this is recommended if the system is Intel Core i7 1588 (or later), AMD Opteron, or EM64T NUMA. 1589 1590 For 32-bit this is only needed if you boot a 32-bit 1591 kernel on a 64-bit NUMA platform. 1592 1593 Otherwise, you should say N. 1594 1595config AMD_NUMA 1596 def_bool y 1597 prompt "Old style AMD Opteron NUMA detection" 1598 depends on X86_64 && NUMA && PCI 1599 help 1600 Enable AMD NUMA node topology detection. You should say Y here if 1601 you have a multi processor AMD system. This uses an old method to 1602 read the NUMA configuration directly from the builtin Northbridge 1603 of Opteron. It is recommended to use X86_64_ACPI_NUMA instead, 1604 which also takes priority if both are compiled in. 1605 1606config X86_64_ACPI_NUMA 1607 def_bool y 1608 prompt "ACPI NUMA detection" 1609 depends on X86_64 && NUMA && ACPI && PCI 1610 select ACPI_NUMA 1611 help 1612 Enable ACPI SRAT based node topology detection. 1613 1614config NODES_SHIFT 1615 int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP 1616 range 1 10 1617 default "10" if MAXSMP 1618 default "6" if X86_64 1619 default "3" 1620 depends on NUMA 1621 help 1622 Specify the maximum number of NUMA Nodes available on the target 1623 system. Increases memory reserved to accommodate various tables. 1624 1625config ARCH_FLATMEM_ENABLE 1626 def_bool y 1627 depends on X86_32 && !NUMA 1628 1629config ARCH_SPARSEMEM_ENABLE 1630 def_bool y 1631 depends on X86_64 || NUMA || X86_32 || X86_32_NON_STANDARD 1632 select SPARSEMEM_STATIC if X86_32 1633 select SPARSEMEM_VMEMMAP_ENABLE if X86_64 1634 1635config ARCH_SPARSEMEM_DEFAULT 1636 def_bool X86_64 || (NUMA && X86_32) 1637 1638config ARCH_SELECT_MEMORY_MODEL 1639 def_bool y 1640 depends on ARCH_SPARSEMEM_ENABLE && ARCH_FLATMEM_ENABLE 1641 1642config ARCH_MEMORY_PROBE 1643 bool "Enable sysfs memory/probe interface" 1644 depends on MEMORY_HOTPLUG 1645 help 1646 This option enables a sysfs memory/probe interface for testing. 1647 See Documentation/admin-guide/mm/memory-hotplug.rst for more information. 1648 If you are unsure how to answer this question, answer N. 1649 1650config ARCH_PROC_KCORE_TEXT 1651 def_bool y 1652 depends on X86_64 && PROC_KCORE 1653 1654config ILLEGAL_POINTER_VALUE 1655 hex 1656 default 0 if X86_32 1657 default 0xdead000000000000 if X86_64 1658 1659config X86_PMEM_LEGACY_DEVICE 1660 bool 1661 1662config X86_PMEM_LEGACY 1663 tristate "Support non-standard NVDIMMs and ADR protected memory" 1664 depends on PHYS_ADDR_T_64BIT 1665 depends on BLK_DEV 1666 select X86_PMEM_LEGACY_DEVICE 1667 select NUMA_KEEP_MEMINFO if NUMA 1668 select LIBNVDIMM 1669 help 1670 Treat memory marked using the non-standard e820 type of 12 as used 1671 by the Intel Sandy Bridge-EP reference BIOS as protected memory. 1672 The kernel will offer these regions to the 'pmem' driver so 1673 they can be used for persistent storage. 1674 1675 Say Y if unsure. 1676 1677config HIGHPTE 1678 bool "Allocate 3rd-level pagetables from highmem" 1679 depends on HIGHMEM 1680 help 1681 The VM uses one page table entry for each page of physical memory. 1682 For systems with a lot of RAM, this can be wasteful of precious 1683 low memory. Setting this option will put user-space page table 1684 entries in high memory. 1685 1686config X86_CHECK_BIOS_CORRUPTION 1687 bool "Check for low memory corruption" 1688 help 1689 Periodically check for memory corruption in low memory, which 1690 is suspected to be caused by BIOS. Even when enabled in the 1691 configuration, it is disabled at runtime. Enable it by 1692 setting "memory_corruption_check=1" on the kernel command 1693 line. By default it scans the low 64k of memory every 60 1694 seconds; see the memory_corruption_check_size and 1695 memory_corruption_check_period parameters in 1696 Documentation/admin-guide/kernel-parameters.rst to adjust this. 1697 1698 When enabled with the default parameters, this option has 1699 almost no overhead, as it reserves a relatively small amount 1700 of memory and scans it infrequently. It both detects corruption 1701 and prevents it from affecting the running system. 1702 1703 It is, however, intended as a diagnostic tool; if repeatable 1704 BIOS-originated corruption always affects the same memory, 1705 you can use memmap= to prevent the kernel from using that 1706 memory. 1707 1708config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK 1709 bool "Set the default setting of memory_corruption_check" 1710 depends on X86_CHECK_BIOS_CORRUPTION 1711 default y 1712 help 1713 Set whether the default state of memory_corruption_check is 1714 on or off. 1715 1716config MATH_EMULATION 1717 bool 1718 depends on MODIFY_LDT_SYSCALL 1719 prompt "Math emulation" if X86_32 && (M486SX || MELAN) 1720 help 1721 Linux can emulate a math coprocessor (used for floating point 1722 operations) if you don't have one. 486DX and Pentium processors have 1723 a math coprocessor built in, 486SX and 386 do not, unless you added 1724 a 487DX or 387, respectively. (The messages during boot time can 1725 give you some hints here ["man dmesg"].) Everyone needs either a 1726 coprocessor or this emulation. 1727 1728 If you don't have a math coprocessor, you need to say Y here; if you 1729 say Y here even though you have a coprocessor, the coprocessor will 1730 be used nevertheless. (This behavior can be changed with the kernel 1731 command line option "no387", which comes handy if your coprocessor 1732 is broken. Try "man bootparam" or see the documentation of your boot 1733 loader (lilo or loadlin) about how to pass options to the kernel at 1734 boot time.) This means that it is a good idea to say Y here if you 1735 intend to use this kernel on different machines. 1736 1737 More information about the internals of the Linux math coprocessor 1738 emulation can be found in <file:arch/x86/math-emu/README>. 1739 1740 If you are not sure, say Y; apart from resulting in a 66 KB bigger 1741 kernel, it won't hurt. 1742 1743config MTRR 1744 def_bool y 1745 prompt "MTRR (Memory Type Range Register) support" if EXPERT 1746 help 1747 On Intel P6 family processors (Pentium Pro, Pentium II and later) 1748 the Memory Type Range Registers (MTRRs) may be used to control 1749 processor access to memory ranges. This is most useful if you have 1750 a video (VGA) card on a PCI or AGP bus. Enabling write-combining 1751 allows bus write transfers to be combined into a larger transfer 1752 before bursting over the PCI/AGP bus. This can increase performance 1753 of image write operations 2.5 times or more. Saying Y here creates a 1754 /proc/mtrr file which may be used to manipulate your processor's 1755 MTRRs. Typically the X server should use this. 1756 1757 This code has a reasonably generic interface so that similar 1758 control registers on other processors can be easily supported 1759 as well: 1760 1761 The Cyrix 6x86, 6x86MX and M II processors have Address Range 1762 Registers (ARRs) which provide a similar functionality to MTRRs. For 1763 these, the ARRs are used to emulate the MTRRs. 1764 The AMD K6-2 (stepping 8 and above) and K6-3 processors have two 1765 MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing 1766 write-combining. All of these processors are supported by this code 1767 and it makes sense to say Y here if you have one of them. 1768 1769 Saying Y here also fixes a problem with buggy SMP BIOSes which only 1770 set the MTRRs for the boot CPU and not for the secondary CPUs. This 1771 can lead to all sorts of problems, so it's good to say Y here. 1772 1773 You can safely say Y even if your machine doesn't have MTRRs, you'll 1774 just add about 9 KB to your kernel. 1775 1776 See <file:Documentation/arch/x86/mtrr.rst> for more information. 1777 1778config MTRR_SANITIZER 1779 def_bool y 1780 prompt "MTRR cleanup support" 1781 depends on MTRR 1782 help 1783 Convert MTRR layout from continuous to discrete, so X drivers can 1784 add writeback entries. 1785 1786 Can be disabled with disable_mtrr_cleanup on the kernel command line. 1787 The largest mtrr entry size for a continuous block can be set with 1788 mtrr_chunk_size. 1789 1790 If unsure, say Y. 1791 1792config MTRR_SANITIZER_ENABLE_DEFAULT 1793 int "MTRR cleanup enable value (0-1)" 1794 range 0 1 1795 default "0" 1796 depends on MTRR_SANITIZER 1797 help 1798 Enable mtrr cleanup default value 1799 1800config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT 1801 int "MTRR cleanup spare reg num (0-7)" 1802 range 0 7 1803 default "1" 1804 depends on MTRR_SANITIZER 1805 help 1806 mtrr cleanup spare entries default, it can be changed via 1807 mtrr_spare_reg_nr=N on the kernel command line. 1808 1809config X86_PAT 1810 def_bool y 1811 prompt "x86 PAT support" if EXPERT 1812 depends on MTRR 1813 select ARCH_USES_PG_ARCH_2 1814 help 1815 Use PAT attributes to setup page level cache control. 1816 1817 PATs are the modern equivalents of MTRRs and are much more 1818 flexible than MTRRs. 1819 1820 Say N here if you see bootup problems (boot crash, boot hang, 1821 spontaneous reboots) or a non-working video driver. 1822 1823 If unsure, say Y. 1824 1825config X86_UMIP 1826 def_bool y 1827 prompt "User Mode Instruction Prevention" if EXPERT 1828 help 1829 User Mode Instruction Prevention (UMIP) is a security feature in 1830 some x86 processors. If enabled, a general protection fault is 1831 issued if the SGDT, SLDT, SIDT, SMSW or STR instructions are 1832 executed in user mode. These instructions unnecessarily expose 1833 information about the hardware state. 1834 1835 The vast majority of applications do not use these instructions. 1836 For the very few that do, software emulation is provided in 1837 specific cases in protected and virtual-8086 modes. Emulated 1838 results are dummy. 1839 1840config CC_HAS_IBT 1841 # GCC >= 9 and binutils >= 2.29 1842 # Retpoline check to work around https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93654 1843 # Clang/LLVM >= 14 1844 # https://github.com/llvm/llvm-project/commit/e0b89df2e0f0130881bf6c39bf31d7f6aac00e0f 1845 # https://github.com/llvm/llvm-project/commit/dfcf69770bc522b9e411c66454934a37c1f35332 1846 def_bool ((CC_IS_GCC && $(cc-option, -fcf-protection=branch -mindirect-branch-register)) || \ 1847 (CC_IS_CLANG && CLANG_VERSION >= 140000)) && \ 1848 $(as-instr,endbr64) 1849 1850config X86_CET 1851 def_bool n 1852 help 1853 CET features configured (Shadow stack or IBT) 1854 1855config X86_KERNEL_IBT 1856 prompt "Indirect Branch Tracking" 1857 def_bool y 1858 depends on X86_64 && CC_HAS_IBT && HAVE_OBJTOOL 1859 # https://github.com/llvm/llvm-project/commit/9d7001eba9c4cb311e03cd8cdc231f9e579f2d0f 1860 depends on !LD_IS_LLD || LLD_VERSION >= 140000 1861 select OBJTOOL 1862 select X86_CET 1863 help 1864 Build the kernel with support for Indirect Branch Tracking, a 1865 hardware support course-grain forward-edge Control Flow Integrity 1866 protection. It enforces that all indirect calls must land on 1867 an ENDBR instruction, as such, the compiler will instrument the 1868 code with them to make this happen. 1869 1870 In addition to building the kernel with IBT, seal all functions that 1871 are not indirect call targets, avoiding them ever becoming one. 1872 1873 This requires LTO like objtool runs and will slow down the build. It 1874 does significantly reduce the number of ENDBR instructions in the 1875 kernel image. 1876 1877config X86_INTEL_MEMORY_PROTECTION_KEYS 1878 prompt "Memory Protection Keys" 1879 def_bool y 1880 # Note: only available in 64-bit mode 1881 depends on X86_64 && (CPU_SUP_INTEL || CPU_SUP_AMD) 1882 select ARCH_USES_HIGH_VMA_FLAGS 1883 select ARCH_HAS_PKEYS 1884 help 1885 Memory Protection Keys provides a mechanism for enforcing 1886 page-based protections, but without requiring modification of the 1887 page tables when an application changes protection domains. 1888 1889 For details, see Documentation/core-api/protection-keys.rst 1890 1891 If unsure, say y. 1892 1893config ARCH_PKEY_BITS 1894 int 1895 default 4 1896 1897choice 1898 prompt "TSX enable mode" 1899 depends on CPU_SUP_INTEL 1900 default X86_INTEL_TSX_MODE_OFF 1901 help 1902 Intel's TSX (Transactional Synchronization Extensions) feature 1903 allows to optimize locking protocols through lock elision which 1904 can lead to a noticeable performance boost. 1905 1906 On the other hand it has been shown that TSX can be exploited 1907 to form side channel attacks (e.g. TAA) and chances are there 1908 will be more of those attacks discovered in the future. 1909 1910 Therefore TSX is not enabled by default (aka tsx=off). An admin 1911 might override this decision by tsx=on the command line parameter. 1912 Even with TSX enabled, the kernel will attempt to enable the best 1913 possible TAA mitigation setting depending on the microcode available 1914 for the particular machine. 1915 1916 This option allows to set the default tsx mode between tsx=on, =off 1917 and =auto. See Documentation/admin-guide/kernel-parameters.txt for more 1918 details. 1919 1920 Say off if not sure, auto if TSX is in use but it should be used on safe 1921 platforms or on if TSX is in use and the security aspect of tsx is not 1922 relevant. 1923 1924config X86_INTEL_TSX_MODE_OFF 1925 bool "off" 1926 help 1927 TSX is disabled if possible - equals to tsx=off command line parameter. 1928 1929config X86_INTEL_TSX_MODE_ON 1930 bool "on" 1931 help 1932 TSX is always enabled on TSX capable HW - equals the tsx=on command 1933 line parameter. 1934 1935config X86_INTEL_TSX_MODE_AUTO 1936 bool "auto" 1937 help 1938 TSX is enabled on TSX capable HW that is believed to be safe against 1939 side channel attacks- equals the tsx=auto command line parameter. 1940endchoice 1941 1942config X86_SGX 1943 bool "Software Guard eXtensions (SGX)" 1944 depends on X86_64 && CPU_SUP_INTEL && X86_X2APIC 1945 depends on CRYPTO=y 1946 depends on CRYPTO_SHA256=y 1947 select MMU_NOTIFIER 1948 select NUMA_KEEP_MEMINFO if NUMA 1949 select XARRAY_MULTI 1950 help 1951 Intel(R) Software Guard eXtensions (SGX) is a set of CPU instructions 1952 that can be used by applications to set aside private regions of code 1953 and data, referred to as enclaves. An enclave's private memory can 1954 only be accessed by code running within the enclave. Accesses from 1955 outside the enclave, including other enclaves, are disallowed by 1956 hardware. 1957 1958 If unsure, say N. 1959 1960config X86_USER_SHADOW_STACK 1961 bool "X86 userspace shadow stack" 1962 depends on AS_WRUSS 1963 depends on X86_64 1964 select ARCH_USES_HIGH_VMA_FLAGS 1965 select ARCH_HAS_USER_SHADOW_STACK 1966 select X86_CET 1967 help 1968 Shadow stack protection is a hardware feature that detects function 1969 return address corruption. This helps mitigate ROP attacks. 1970 Applications must be enabled to use it, and old userspace does not 1971 get protection "for free". 1972 1973 CPUs supporting shadow stacks were first released in 2020. 1974 1975 See Documentation/arch/x86/shstk.rst for more information. 1976 1977 If unsure, say N. 1978 1979config INTEL_TDX_HOST 1980 bool "Intel Trust Domain Extensions (TDX) host support" 1981 depends on CPU_SUP_INTEL 1982 depends on X86_64 1983 depends on KVM_INTEL 1984 depends on X86_X2APIC 1985 select ARCH_KEEP_MEMBLOCK 1986 depends on CONTIG_ALLOC 1987 depends on !KEXEC_CORE 1988 depends on X86_MCE 1989 help 1990 Intel Trust Domain Extensions (TDX) protects guest VMs from malicious 1991 host and certain physical attacks. This option enables necessary TDX 1992 support in the host kernel to run confidential VMs. 1993 1994 If unsure, say N. 1995 1996config EFI 1997 bool "EFI runtime service support" 1998 depends on ACPI 1999 select UCS2_STRING 2000 select EFI_RUNTIME_WRAPPERS 2001 select ARCH_USE_MEMREMAP_PROT 2002 select EFI_RUNTIME_MAP if KEXEC_CORE 2003 help 2004 This enables the kernel to use EFI runtime services that are 2005 available (such as the EFI variable services). 2006 2007 This option is only useful on systems that have EFI firmware. 2008 In addition, you should use the latest ELILO loader available 2009 at <http://elilo.sourceforge.net> in order to take advantage 2010 of EFI runtime services. However, even with this option, the 2011 resultant kernel should continue to boot on existing non-EFI 2012 platforms. 2013 2014config EFI_STUB 2015 bool "EFI stub support" 2016 depends on EFI 2017 select RELOCATABLE 2018 help 2019 This kernel feature allows a bzImage to be loaded directly 2020 by EFI firmware without the use of a bootloader. 2021 2022 See Documentation/admin-guide/efi-stub.rst for more information. 2023 2024config EFI_HANDOVER_PROTOCOL 2025 bool "EFI handover protocol (DEPRECATED)" 2026 depends on EFI_STUB 2027 default y 2028 help 2029 Select this in order to include support for the deprecated EFI 2030 handover protocol, which defines alternative entry points into the 2031 EFI stub. This is a practice that has no basis in the UEFI 2032 specification, and requires a priori knowledge on the part of the 2033 bootloader about Linux/x86 specific ways of passing the command line 2034 and initrd, and where in memory those assets may be loaded. 2035 2036 If in doubt, say Y. Even though the corresponding support is not 2037 present in upstream GRUB or other bootloaders, most distros build 2038 GRUB with numerous downstream patches applied, and may rely on the 2039 handover protocol as as result. 2040 2041config EFI_MIXED 2042 bool "EFI mixed-mode support" 2043 depends on EFI_STUB && X86_64 2044 help 2045 Enabling this feature allows a 64-bit kernel to be booted 2046 on a 32-bit firmware, provided that your CPU supports 64-bit 2047 mode. 2048 2049 Note that it is not possible to boot a mixed-mode enabled 2050 kernel via the EFI boot stub - a bootloader that supports 2051 the EFI handover protocol must be used. 2052 2053 If unsure, say N. 2054 2055config EFI_RUNTIME_MAP 2056 bool "Export EFI runtime maps to sysfs" if EXPERT 2057 depends on EFI 2058 help 2059 Export EFI runtime memory regions to /sys/firmware/efi/runtime-map. 2060 That memory map is required by the 2nd kernel to set up EFI virtual 2061 mappings after kexec, but can also be used for debugging purposes. 2062 2063 See also Documentation/ABI/testing/sysfs-firmware-efi-runtime-map. 2064 2065source "kernel/Kconfig.hz" 2066 2067config ARCH_SUPPORTS_KEXEC 2068 def_bool y 2069 2070config ARCH_SUPPORTS_KEXEC_FILE 2071 def_bool X86_64 2072 2073config ARCH_SELECTS_KEXEC_FILE 2074 def_bool y 2075 depends on KEXEC_FILE 2076 select HAVE_IMA_KEXEC if IMA 2077 2078config ARCH_SUPPORTS_KEXEC_PURGATORY 2079 def_bool y 2080 2081config ARCH_SUPPORTS_KEXEC_SIG 2082 def_bool y 2083 2084config ARCH_SUPPORTS_KEXEC_SIG_FORCE 2085 def_bool y 2086 2087config ARCH_SUPPORTS_KEXEC_BZIMAGE_VERIFY_SIG 2088 def_bool y 2089 2090config ARCH_SUPPORTS_KEXEC_JUMP 2091 def_bool y 2092 2093config ARCH_SUPPORTS_CRASH_DUMP 2094 def_bool X86_64 || (X86_32 && HIGHMEM) 2095 2096config ARCH_DEFAULT_CRASH_DUMP 2097 def_bool y 2098 2099config ARCH_SUPPORTS_CRASH_HOTPLUG 2100 def_bool y 2101 2102config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION 2103 def_bool CRASH_RESERVE 2104 2105config PHYSICAL_START 2106 hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP) 2107 default "0x1000000" 2108 help 2109 This gives the physical address where the kernel is loaded. 2110 2111 If the kernel is not relocatable (CONFIG_RELOCATABLE=n) then bzImage 2112 will decompress itself to above physical address and run from there. 2113 Otherwise, bzImage will run from the address where it has been loaded 2114 by the boot loader. The only exception is if it is loaded below the 2115 above physical address, in which case it will relocate itself there. 2116 2117 In normal kdump cases one does not have to set/change this option 2118 as now bzImage can be compiled as a completely relocatable image 2119 (CONFIG_RELOCATABLE=y) and be used to load and run from a different 2120 address. This option is mainly useful for the folks who don't want 2121 to use a bzImage for capturing the crash dump and want to use a 2122 vmlinux instead. vmlinux is not relocatable hence a kernel needs 2123 to be specifically compiled to run from a specific memory area 2124 (normally a reserved region) and this option comes handy. 2125 2126 So if you are using bzImage for capturing the crash dump, 2127 leave the value here unchanged to 0x1000000 and set 2128 CONFIG_RELOCATABLE=y. Otherwise if you plan to use vmlinux 2129 for capturing the crash dump change this value to start of 2130 the reserved region. In other words, it can be set based on 2131 the "X" value as specified in the "crashkernel=YM@XM" 2132 command line boot parameter passed to the panic-ed 2133 kernel. Please take a look at Documentation/admin-guide/kdump/kdump.rst 2134 for more details about crash dumps. 2135 2136 Usage of bzImage for capturing the crash dump is recommended as 2137 one does not have to build two kernels. Same kernel can be used 2138 as production kernel and capture kernel. Above option should have 2139 gone away after relocatable bzImage support is introduced. But it 2140 is present because there are users out there who continue to use 2141 vmlinux for dump capture. This option should go away down the 2142 line. 2143 2144 Don't change this unless you know what you are doing. 2145 2146config RELOCATABLE 2147 bool "Build a relocatable kernel" 2148 default y 2149 help 2150 This builds a kernel image that retains relocation information 2151 so it can be loaded someplace besides the default 1MB. 2152 The relocations tend to make the kernel binary about 10% larger, 2153 but are discarded at runtime. 2154 2155 One use is for the kexec on panic case where the recovery kernel 2156 must live at a different physical address than the primary 2157 kernel. 2158 2159 Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address 2160 it has been loaded at and the compile time physical address 2161 (CONFIG_PHYSICAL_START) is used as the minimum location. 2162 2163config RANDOMIZE_BASE 2164 bool "Randomize the address of the kernel image (KASLR)" 2165 depends on RELOCATABLE 2166 default y 2167 help 2168 In support of Kernel Address Space Layout Randomization (KASLR), 2169 this randomizes the physical address at which the kernel image 2170 is decompressed and the virtual address where the kernel 2171 image is mapped, as a security feature that deters exploit 2172 attempts relying on knowledge of the location of kernel 2173 code internals. 2174 2175 On 64-bit, the kernel physical and virtual addresses are 2176 randomized separately. The physical address will be anywhere 2177 between 16MB and the top of physical memory (up to 64TB). The 2178 virtual address will be randomized from 16MB up to 1GB (9 bits 2179 of entropy). Note that this also reduces the memory space 2180 available to kernel modules from 1.5GB to 1GB. 2181 2182 On 32-bit, the kernel physical and virtual addresses are 2183 randomized together. They will be randomized from 16MB up to 2184 512MB (8 bits of entropy). 2185 2186 Entropy is generated using the RDRAND instruction if it is 2187 supported. If RDTSC is supported, its value is mixed into 2188 the entropy pool as well. If neither RDRAND nor RDTSC are 2189 supported, then entropy is read from the i8254 timer. The 2190 usable entropy is limited by the kernel being built using 2191 2GB addressing, and that PHYSICAL_ALIGN must be at a 2192 minimum of 2MB. As a result, only 10 bits of entropy are 2193 theoretically possible, but the implementations are further 2194 limited due to memory layouts. 2195 2196 If unsure, say Y. 2197 2198# Relocation on x86 needs some additional build support 2199config X86_NEED_RELOCS 2200 def_bool y 2201 depends on RANDOMIZE_BASE || (X86_32 && RELOCATABLE) 2202 2203config PHYSICAL_ALIGN 2204 hex "Alignment value to which kernel should be aligned" 2205 default "0x200000" 2206 range 0x2000 0x1000000 if X86_32 2207 range 0x200000 0x1000000 if X86_64 2208 help 2209 This value puts the alignment restrictions on physical address 2210 where kernel is loaded and run from. Kernel is compiled for an 2211 address which meets above alignment restriction. 2212 2213 If bootloader loads the kernel at a non-aligned address and 2214 CONFIG_RELOCATABLE is set, kernel will move itself to nearest 2215 address aligned to above value and run from there. 2216 2217 If bootloader loads the kernel at a non-aligned address and 2218 CONFIG_RELOCATABLE is not set, kernel will ignore the run time 2219 load address and decompress itself to the address it has been 2220 compiled for and run from there. The address for which kernel is 2221 compiled already meets above alignment restrictions. Hence the 2222 end result is that kernel runs from a physical address meeting 2223 above alignment restrictions. 2224 2225 On 32-bit this value must be a multiple of 0x2000. On 64-bit 2226 this value must be a multiple of 0x200000. 2227 2228 Don't change this unless you know what you are doing. 2229 2230config DYNAMIC_MEMORY_LAYOUT 2231 bool 2232 help 2233 This option makes base addresses of vmalloc and vmemmap as well as 2234 __PAGE_OFFSET movable during boot. 2235 2236config RANDOMIZE_MEMORY 2237 bool "Randomize the kernel memory sections" 2238 depends on X86_64 2239 depends on RANDOMIZE_BASE 2240 select DYNAMIC_MEMORY_LAYOUT 2241 default RANDOMIZE_BASE 2242 help 2243 Randomizes the base virtual address of kernel memory sections 2244 (physical memory mapping, vmalloc & vmemmap). This security feature 2245 makes exploits relying on predictable memory locations less reliable. 2246 2247 The order of allocations remains unchanged. Entropy is generated in 2248 the same way as RANDOMIZE_BASE. Current implementation in the optimal 2249 configuration have in average 30,000 different possible virtual 2250 addresses for each memory section. 2251 2252 If unsure, say Y. 2253 2254config RANDOMIZE_MEMORY_PHYSICAL_PADDING 2255 hex "Physical memory mapping padding" if EXPERT 2256 depends on RANDOMIZE_MEMORY 2257 default "0xa" if MEMORY_HOTPLUG 2258 default "0x0" 2259 range 0x1 0x40 if MEMORY_HOTPLUG 2260 range 0x0 0x40 2261 help 2262 Define the padding in terabytes added to the existing physical 2263 memory size during kernel memory randomization. It is useful 2264 for memory hotplug support but reduces the entropy available for 2265 address randomization. 2266 2267 If unsure, leave at the default value. 2268 2269config ADDRESS_MASKING 2270 bool "Linear Address Masking support" 2271 depends on X86_64 2272 depends on COMPILE_TEST || !CPU_MITIGATIONS # wait for LASS 2273 help 2274 Linear Address Masking (LAM) modifies the checking that is applied 2275 to 64-bit linear addresses, allowing software to use of the 2276 untranslated address bits for metadata. 2277 2278 The capability can be used for efficient address sanitizers (ASAN) 2279 implementation and for optimizations in JITs. 2280 2281config HOTPLUG_CPU 2282 def_bool y 2283 depends on SMP 2284 2285config COMPAT_VDSO 2286 def_bool n 2287 prompt "Disable the 32-bit vDSO (needed for glibc 2.3.3)" 2288 depends on COMPAT_32 2289 help 2290 Certain buggy versions of glibc will crash if they are 2291 presented with a 32-bit vDSO that is not mapped at the address 2292 indicated in its segment table. 2293 2294 The bug was introduced by f866314b89d56845f55e6f365e18b31ec978ec3a 2295 and fixed by 3b3ddb4f7db98ec9e912ccdf54d35df4aa30e04a and 2296 49ad572a70b8aeb91e57483a11dd1b77e31c4468. Glibc 2.3.3 is 2297 the only released version with the bug, but OpenSUSE 9 2298 contains a buggy "glibc 2.3.2". 2299 2300 The symptom of the bug is that everything crashes on startup, saying: 2301 dl_main: Assertion `(void *) ph->p_vaddr == _rtld_local._dl_sysinfo_dso' failed! 2302 2303 Saying Y here changes the default value of the vdso32 boot 2304 option from 1 to 0, which turns off the 32-bit vDSO entirely. 2305 This works around the glibc bug but hurts performance. 2306 2307 If unsure, say N: if you are compiling your own kernel, you 2308 are unlikely to be using a buggy version of glibc. 2309 2310choice 2311 prompt "vsyscall table for legacy applications" 2312 depends on X86_64 2313 default LEGACY_VSYSCALL_XONLY 2314 help 2315 Legacy user code that does not know how to find the vDSO expects 2316 to be able to issue three syscalls by calling fixed addresses in 2317 kernel space. Since this location is not randomized with ASLR, 2318 it can be used to assist security vulnerability exploitation. 2319 2320 This setting can be changed at boot time via the kernel command 2321 line parameter vsyscall=[emulate|xonly|none]. Emulate mode 2322 is deprecated and can only be enabled using the kernel command 2323 line. 2324 2325 On a system with recent enough glibc (2.14 or newer) and no 2326 static binaries, you can say None without a performance penalty 2327 to improve security. 2328 2329 If unsure, select "Emulate execution only". 2330 2331 config LEGACY_VSYSCALL_XONLY 2332 bool "Emulate execution only" 2333 help 2334 The kernel traps and emulates calls into the fixed vsyscall 2335 address mapping and does not allow reads. This 2336 configuration is recommended when userspace might use the 2337 legacy vsyscall area but support for legacy binary 2338 instrumentation of legacy code is not needed. It mitigates 2339 certain uses of the vsyscall area as an ASLR-bypassing 2340 buffer. 2341 2342 config LEGACY_VSYSCALL_NONE 2343 bool "None" 2344 help 2345 There will be no vsyscall mapping at all. This will 2346 eliminate any risk of ASLR bypass due to the vsyscall 2347 fixed address mapping. Attempts to use the vsyscalls 2348 will be reported to dmesg, so that either old or 2349 malicious userspace programs can be identified. 2350 2351endchoice 2352 2353config CMDLINE_BOOL 2354 bool "Built-in kernel command line" 2355 help 2356 Allow for specifying boot arguments to the kernel at 2357 build time. On some systems (e.g. embedded ones), it is 2358 necessary or convenient to provide some or all of the 2359 kernel boot arguments with the kernel itself (that is, 2360 to not rely on the boot loader to provide them.) 2361 2362 To compile command line arguments into the kernel, 2363 set this option to 'Y', then fill in the 2364 boot arguments in CONFIG_CMDLINE. 2365 2366 Systems with fully functional boot loaders (i.e. non-embedded) 2367 should leave this option set to 'N'. 2368 2369config CMDLINE 2370 string "Built-in kernel command string" 2371 depends on CMDLINE_BOOL 2372 default "" 2373 help 2374 Enter arguments here that should be compiled into the kernel 2375 image and used at boot time. If the boot loader provides a 2376 command line at boot time, it is appended to this string to 2377 form the full kernel command line, when the system boots. 2378 2379 However, you can use the CONFIG_CMDLINE_OVERRIDE option to 2380 change this behavior. 2381 2382 In most cases, the command line (whether built-in or provided 2383 by the boot loader) should specify the device for the root 2384 file system. 2385 2386config CMDLINE_OVERRIDE 2387 bool "Built-in command line overrides boot loader arguments" 2388 depends on CMDLINE_BOOL && CMDLINE != "" 2389 help 2390 Set this option to 'Y' to have the kernel ignore the boot loader 2391 command line, and use ONLY the built-in command line. 2392 2393 This is used to work around broken boot loaders. This should 2394 be set to 'N' under normal conditions. 2395 2396config MODIFY_LDT_SYSCALL 2397 bool "Enable the LDT (local descriptor table)" if EXPERT 2398 default y 2399 help 2400 Linux can allow user programs to install a per-process x86 2401 Local Descriptor Table (LDT) using the modify_ldt(2) system 2402 call. This is required to run 16-bit or segmented code such as 2403 DOSEMU or some Wine programs. It is also used by some very old 2404 threading libraries. 2405 2406 Enabling this feature adds a small amount of overhead to 2407 context switches and increases the low-level kernel attack 2408 surface. Disabling it removes the modify_ldt(2) system call. 2409 2410 Saying 'N' here may make sense for embedded or server kernels. 2411 2412config STRICT_SIGALTSTACK_SIZE 2413 bool "Enforce strict size checking for sigaltstack" 2414 depends on DYNAMIC_SIGFRAME 2415 help 2416 For historical reasons MINSIGSTKSZ is a constant which became 2417 already too small with AVX512 support. Add a mechanism to 2418 enforce strict checking of the sigaltstack size against the 2419 real size of the FPU frame. This option enables the check 2420 by default. It can also be controlled via the kernel command 2421 line option 'strict_sas_size' independent of this config 2422 switch. Enabling it might break existing applications which 2423 allocate a too small sigaltstack but 'work' because they 2424 never get a signal delivered. 2425 2426 Say 'N' unless you want to really enforce this check. 2427 2428config CFI_AUTO_DEFAULT 2429 bool "Attempt to use FineIBT by default at boot time" 2430 depends on FINEIBT 2431 default y 2432 help 2433 Attempt to use FineIBT by default at boot time. If enabled, 2434 this is the same as booting with "cfi=auto". If disabled, 2435 this is the same as booting with "cfi=kcfi". 2436 2437source "kernel/livepatch/Kconfig" 2438 2439config X86_BUS_LOCK_DETECT 2440 bool "Split Lock Detect and Bus Lock Detect support" 2441 depends on CPU_SUP_INTEL || CPU_SUP_AMD 2442 default y 2443 help 2444 Enable Split Lock Detect and Bus Lock Detect functionalities. 2445 See <file:Documentation/arch/x86/buslock.rst> for more information. 2446 2447endmenu 2448 2449config CC_HAS_NAMED_AS 2450 def_bool $(success,echo 'int __seg_fs fs; int __seg_gs gs;' | $(CC) -x c - -S -o /dev/null) 2451 depends on CC_IS_GCC 2452 2453config CC_HAS_NAMED_AS_FIXED_SANITIZERS 2454 def_bool CC_IS_GCC && GCC_VERSION >= 130300 2455 2456config USE_X86_SEG_SUPPORT 2457 def_bool y 2458 depends on CC_HAS_NAMED_AS 2459 # 2460 # -fsanitize=kernel-address (KASAN) and -fsanitize=thread 2461 # (KCSAN) are incompatible with named address spaces with 2462 # GCC < 13.3 - see GCC PR sanitizer/111736. 2463 # 2464 depends on !(KASAN || KCSAN) || CC_HAS_NAMED_AS_FIXED_SANITIZERS 2465 2466config CC_HAS_SLS 2467 def_bool $(cc-option,-mharden-sls=all) 2468 2469config CC_HAS_RETURN_THUNK 2470 def_bool $(cc-option,-mfunction-return=thunk-extern) 2471 2472config CC_HAS_ENTRY_PADDING 2473 def_bool $(cc-option,-fpatchable-function-entry=16,16) 2474 2475config FUNCTION_PADDING_CFI 2476 int 2477 default 59 if FUNCTION_ALIGNMENT_64B 2478 default 27 if FUNCTION_ALIGNMENT_32B 2479 default 11 if FUNCTION_ALIGNMENT_16B 2480 default 3 if FUNCTION_ALIGNMENT_8B 2481 default 0 2482 2483# Basically: FUNCTION_ALIGNMENT - 5*CFI_CLANG 2484# except Kconfig can't do arithmetic :/ 2485config FUNCTION_PADDING_BYTES 2486 int 2487 default FUNCTION_PADDING_CFI if CFI_CLANG 2488 default FUNCTION_ALIGNMENT 2489 2490config CALL_PADDING 2491 def_bool n 2492 depends on CC_HAS_ENTRY_PADDING && OBJTOOL 2493 select FUNCTION_ALIGNMENT_16B 2494 2495config FINEIBT 2496 def_bool y 2497 depends on X86_KERNEL_IBT && CFI_CLANG && MITIGATION_RETPOLINE 2498 select CALL_PADDING 2499 2500config HAVE_CALL_THUNKS 2501 def_bool y 2502 depends on CC_HAS_ENTRY_PADDING && MITIGATION_RETHUNK && OBJTOOL 2503 2504config CALL_THUNKS 2505 def_bool n 2506 select CALL_PADDING 2507 2508config PREFIX_SYMBOLS 2509 def_bool y 2510 depends on CALL_PADDING && !CFI_CLANG 2511 2512menuconfig CPU_MITIGATIONS 2513 bool "Mitigations for CPU vulnerabilities" 2514 default y 2515 help 2516 Say Y here to enable options which enable mitigations for hardware 2517 vulnerabilities (usually related to speculative execution). 2518 Mitigations can be disabled or restricted to SMT systems at runtime 2519 via the "mitigations" kernel parameter. 2520 2521 If you say N, all mitigations will be disabled. This CANNOT be 2522 overridden at runtime. 2523 2524 Say 'Y', unless you really know what you are doing. 2525 2526if CPU_MITIGATIONS 2527 2528config MITIGATION_PAGE_TABLE_ISOLATION 2529 bool "Remove the kernel mapping in user mode" 2530 default y 2531 depends on (X86_64 || X86_PAE) 2532 help 2533 This feature reduces the number of hardware side channels by 2534 ensuring that the majority of kernel addresses are not mapped 2535 into userspace. 2536 2537 See Documentation/arch/x86/pti.rst for more details. 2538 2539config MITIGATION_RETPOLINE 2540 bool "Avoid speculative indirect branches in kernel" 2541 select OBJTOOL if HAVE_OBJTOOL 2542 default y 2543 help 2544 Compile kernel with the retpoline compiler options to guard against 2545 kernel-to-user data leaks by avoiding speculative indirect 2546 branches. Requires a compiler with -mindirect-branch=thunk-extern 2547 support for full protection. The kernel may run slower. 2548 2549config MITIGATION_RETHUNK 2550 bool "Enable return-thunks" 2551 depends on MITIGATION_RETPOLINE && CC_HAS_RETURN_THUNK 2552 select OBJTOOL if HAVE_OBJTOOL 2553 default y if X86_64 2554 help 2555 Compile the kernel with the return-thunks compiler option to guard 2556 against kernel-to-user data leaks by avoiding return speculation. 2557 Requires a compiler with -mfunction-return=thunk-extern 2558 support for full protection. The kernel may run slower. 2559 2560config MITIGATION_UNRET_ENTRY 2561 bool "Enable UNRET on kernel entry" 2562 depends on CPU_SUP_AMD && MITIGATION_RETHUNK && X86_64 2563 default y 2564 help 2565 Compile the kernel with support for the retbleed=unret mitigation. 2566 2567config MITIGATION_CALL_DEPTH_TRACKING 2568 bool "Mitigate RSB underflow with call depth tracking" 2569 depends on CPU_SUP_INTEL && HAVE_CALL_THUNKS 2570 select HAVE_DYNAMIC_FTRACE_NO_PATCHABLE 2571 select CALL_THUNKS 2572 default y 2573 help 2574 Compile the kernel with call depth tracking to mitigate the Intel 2575 SKL Return-Stack-Buffer (RSB) underflow issue. The mitigation is off 2576 by default and needs to be enabled on the kernel command line via the 2577 retbleed=stuff option. For non-affected systems the overhead of this 2578 option is marginal as the call depth tracking is using run-time 2579 generated call thunks in a compiler generated padding area and call 2580 patching. This increases text size by ~5%. For non affected systems 2581 this space is unused. On affected SKL systems this results in a 2582 significant performance gain over the IBRS mitigation. 2583 2584config CALL_THUNKS_DEBUG 2585 bool "Enable call thunks and call depth tracking debugging" 2586 depends on MITIGATION_CALL_DEPTH_TRACKING 2587 select FUNCTION_ALIGNMENT_32B 2588 default n 2589 help 2590 Enable call/ret counters for imbalance detection and build in 2591 a noisy dmesg about callthunks generation and call patching for 2592 trouble shooting. The debug prints need to be enabled on the 2593 kernel command line with 'debug-callthunks'. 2594 Only enable this when you are debugging call thunks as this 2595 creates a noticeable runtime overhead. If unsure say N. 2596 2597config MITIGATION_IBPB_ENTRY 2598 bool "Enable IBPB on kernel entry" 2599 depends on CPU_SUP_AMD && X86_64 2600 default y 2601 help 2602 Compile the kernel with support for the retbleed=ibpb mitigation. 2603 2604config MITIGATION_IBRS_ENTRY 2605 bool "Enable IBRS on kernel entry" 2606 depends on CPU_SUP_INTEL && X86_64 2607 default y 2608 help 2609 Compile the kernel with support for the spectre_v2=ibrs mitigation. 2610 This mitigates both spectre_v2 and retbleed at great cost to 2611 performance. 2612 2613config MITIGATION_SRSO 2614 bool "Mitigate speculative RAS overflow on AMD" 2615 depends on CPU_SUP_AMD && X86_64 && MITIGATION_RETHUNK 2616 default y 2617 help 2618 Enable the SRSO mitigation needed on AMD Zen1-4 machines. 2619 2620config MITIGATION_SLS 2621 bool "Mitigate Straight-Line-Speculation" 2622 depends on CC_HAS_SLS && X86_64 2623 select OBJTOOL if HAVE_OBJTOOL 2624 default n 2625 help 2626 Compile the kernel with straight-line-speculation options to guard 2627 against straight line speculation. The kernel image might be slightly 2628 larger. 2629 2630config MITIGATION_GDS 2631 bool "Mitigate Gather Data Sampling" 2632 depends on CPU_SUP_INTEL 2633 default y 2634 help 2635 Enable mitigation for Gather Data Sampling (GDS). GDS is a hardware 2636 vulnerability which allows unprivileged speculative access to data 2637 which was previously stored in vector registers. The attacker uses gather 2638 instructions to infer the stale vector register data. 2639 2640config MITIGATION_RFDS 2641 bool "RFDS Mitigation" 2642 depends on CPU_SUP_INTEL 2643 default y 2644 help 2645 Enable mitigation for Register File Data Sampling (RFDS) by default. 2646 RFDS is a hardware vulnerability which affects Intel Atom CPUs. It 2647 allows unprivileged speculative access to stale data previously 2648 stored in floating point, vector and integer registers. 2649 See also <file:Documentation/admin-guide/hw-vuln/reg-file-data-sampling.rst> 2650 2651config MITIGATION_SPECTRE_BHI 2652 bool "Mitigate Spectre-BHB (Branch History Injection)" 2653 depends on CPU_SUP_INTEL 2654 default y 2655 help 2656 Enable BHI mitigations. BHI attacks are a form of Spectre V2 attacks 2657 where the branch history buffer is poisoned to speculatively steer 2658 indirect branches. 2659 See <file:Documentation/admin-guide/hw-vuln/spectre.rst> 2660 2661config MITIGATION_MDS 2662 bool "Mitigate Microarchitectural Data Sampling (MDS) hardware bug" 2663 depends on CPU_SUP_INTEL 2664 default y 2665 help 2666 Enable mitigation for Microarchitectural Data Sampling (MDS). MDS is 2667 a hardware vulnerability which allows unprivileged speculative access 2668 to data which is available in various CPU internal buffers. 2669 See also <file:Documentation/admin-guide/hw-vuln/mds.rst> 2670 2671config MITIGATION_TAA 2672 bool "Mitigate TSX Asynchronous Abort (TAA) hardware bug" 2673 depends on CPU_SUP_INTEL 2674 default y 2675 help 2676 Enable mitigation for TSX Asynchronous Abort (TAA). TAA is a hardware 2677 vulnerability that allows unprivileged speculative access to data 2678 which is available in various CPU internal buffers by using 2679 asynchronous aborts within an Intel TSX transactional region. 2680 See also <file:Documentation/admin-guide/hw-vuln/tsx_async_abort.rst> 2681 2682config MITIGATION_MMIO_STALE_DATA 2683 bool "Mitigate MMIO Stale Data hardware bug" 2684 depends on CPU_SUP_INTEL 2685 default y 2686 help 2687 Enable mitigation for MMIO Stale Data hardware bugs. Processor MMIO 2688 Stale Data Vulnerabilities are a class of memory-mapped I/O (MMIO) 2689 vulnerabilities that can expose data. The vulnerabilities require the 2690 attacker to have access to MMIO. 2691 See also 2692 <file:Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst> 2693 2694config MITIGATION_L1TF 2695 bool "Mitigate L1 Terminal Fault (L1TF) hardware bug" 2696 depends on CPU_SUP_INTEL 2697 default y 2698 help 2699 Mitigate L1 Terminal Fault (L1TF) hardware bug. L1 Terminal Fault is a 2700 hardware vulnerability which allows unprivileged speculative access to data 2701 available in the Level 1 Data Cache. 2702 See <file:Documentation/admin-guide/hw-vuln/l1tf.rst 2703 2704config MITIGATION_RETBLEED 2705 bool "Mitigate RETBleed hardware bug" 2706 depends on (CPU_SUP_INTEL && MITIGATION_SPECTRE_V2) || MITIGATION_UNRET_ENTRY || MITIGATION_IBPB_ENTRY 2707 default y 2708 help 2709 Enable mitigation for RETBleed (Arbitrary Speculative Code Execution 2710 with Return Instructions) vulnerability. RETBleed is a speculative 2711 execution attack which takes advantage of microarchitectural behavior 2712 in many modern microprocessors, similar to Spectre v2. An 2713 unprivileged attacker can use these flaws to bypass conventional 2714 memory security restrictions to gain read access to privileged memory 2715 that would otherwise be inaccessible. 2716 2717config MITIGATION_SPECTRE_V1 2718 bool "Mitigate SPECTRE V1 hardware bug" 2719 default y 2720 help 2721 Enable mitigation for Spectre V1 (Bounds Check Bypass). Spectre V1 is a 2722 class of side channel attacks that takes advantage of speculative 2723 execution that bypasses conditional branch instructions used for 2724 memory access bounds check. 2725 See also <file:Documentation/admin-guide/hw-vuln/spectre.rst> 2726 2727config MITIGATION_SPECTRE_V2 2728 bool "Mitigate SPECTRE V2 hardware bug" 2729 default y 2730 help 2731 Enable mitigation for Spectre V2 (Branch Target Injection). Spectre 2732 V2 is a class of side channel attacks that takes advantage of 2733 indirect branch predictors inside the processor. In Spectre variant 2 2734 attacks, the attacker can steer speculative indirect branches in the 2735 victim to gadget code by poisoning the branch target buffer of a CPU 2736 used for predicting indirect branch addresses. 2737 See also <file:Documentation/admin-guide/hw-vuln/spectre.rst> 2738 2739config MITIGATION_SRBDS 2740 bool "Mitigate Special Register Buffer Data Sampling (SRBDS) hardware bug" 2741 depends on CPU_SUP_INTEL 2742 default y 2743 help 2744 Enable mitigation for Special Register Buffer Data Sampling (SRBDS). 2745 SRBDS is a hardware vulnerability that allows Microarchitectural Data 2746 Sampling (MDS) techniques to infer values returned from special 2747 register accesses. An unprivileged user can extract values returned 2748 from RDRAND and RDSEED executed on another core or sibling thread 2749 using MDS techniques. 2750 See also 2751 <file:Documentation/admin-guide/hw-vuln/special-register-buffer-data-sampling.rst> 2752 2753config MITIGATION_SSB 2754 bool "Mitigate Speculative Store Bypass (SSB) hardware bug" 2755 default y 2756 help 2757 Enable mitigation for Speculative Store Bypass (SSB). SSB is a 2758 hardware security vulnerability and its exploitation takes advantage 2759 of speculative execution in a similar way to the Meltdown and Spectre 2760 security vulnerabilities. 2761 2762endif 2763 2764config ARCH_HAS_ADD_PAGES 2765 def_bool y 2766 depends on ARCH_ENABLE_MEMORY_HOTPLUG 2767 2768menu "Power management and ACPI options" 2769 2770config ARCH_HIBERNATION_HEADER 2771 def_bool y 2772 depends on HIBERNATION 2773 2774source "kernel/power/Kconfig" 2775 2776source "drivers/acpi/Kconfig" 2777 2778config X86_APM_BOOT 2779 def_bool y 2780 depends on APM 2781 2782menuconfig APM 2783 tristate "APM (Advanced Power Management) BIOS support" 2784 depends on X86_32 && PM_SLEEP 2785 help 2786 APM is a BIOS specification for saving power using several different 2787 techniques. This is mostly useful for battery powered laptops with 2788 APM compliant BIOSes. If you say Y here, the system time will be 2789 reset after a RESUME operation, the /proc/apm device will provide 2790 battery status information, and user-space programs will receive 2791 notification of APM "events" (e.g. battery status change). 2792 2793 If you select "Y" here, you can disable actual use of the APM 2794 BIOS by passing the "apm=off" option to the kernel at boot time. 2795 2796 Note that the APM support is almost completely disabled for 2797 machines with more than one CPU. 2798 2799 In order to use APM, you will need supporting software. For location 2800 and more information, read <file:Documentation/power/apm-acpi.rst> 2801 and the Battery Powered Linux mini-HOWTO, available from 2802 <http://www.tldp.org/docs.html#howto>. 2803 2804 This driver does not spin down disk drives (see the hdparm(8) 2805 manpage ("man 8 hdparm") for that), and it doesn't turn off 2806 VESA-compliant "green" monitors. 2807 2808 This driver does not support the TI 4000M TravelMate and the ACER 2809 486/DX4/75 because they don't have compliant BIOSes. Many "green" 2810 desktop machines also don't have compliant BIOSes, and this driver 2811 may cause those machines to panic during the boot phase. 2812 2813 Generally, if you don't have a battery in your machine, there isn't 2814 much point in using this driver and you should say N. If you get 2815 random kernel OOPSes or reboots that don't seem to be related to 2816 anything, try disabling/enabling this option (or disabling/enabling 2817 APM in your BIOS). 2818 2819 Some other things you should try when experiencing seemingly random, 2820 "weird" problems: 2821 2822 1) make sure that you have enough swap space and that it is 2823 enabled. 2824 2) pass the "idle=poll" option to the kernel 2825 3) switch on floating point emulation in the kernel and pass 2826 the "no387" option to the kernel 2827 4) pass the "floppy=nodma" option to the kernel 2828 5) pass the "mem=4M" option to the kernel (thereby disabling 2829 all but the first 4 MB of RAM) 2830 6) make sure that the CPU is not over clocked. 2831 7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/> 2832 8) disable the cache from your BIOS settings 2833 9) install a fan for the video card or exchange video RAM 2834 10) install a better fan for the CPU 2835 11) exchange RAM chips 2836 12) exchange the motherboard. 2837 2838 To compile this driver as a module, choose M here: the 2839 module will be called apm. 2840 2841if APM 2842 2843config APM_IGNORE_USER_SUSPEND 2844 bool "Ignore USER SUSPEND" 2845 help 2846 This option will ignore USER SUSPEND requests. On machines with a 2847 compliant APM BIOS, you want to say N. However, on the NEC Versa M 2848 series notebooks, it is necessary to say Y because of a BIOS bug. 2849 2850config APM_DO_ENABLE 2851 bool "Enable PM at boot time" 2852 help 2853 Enable APM features at boot time. From page 36 of the APM BIOS 2854 specification: "When disabled, the APM BIOS does not automatically 2855 power manage devices, enter the Standby State, enter the Suspend 2856 State, or take power saving steps in response to CPU Idle calls." 2857 This driver will make CPU Idle calls when Linux is idle (unless this 2858 feature is turned off -- see "Do CPU IDLE calls", below). This 2859 should always save battery power, but more complicated APM features 2860 will be dependent on your BIOS implementation. You may need to turn 2861 this option off if your computer hangs at boot time when using APM 2862 support, or if it beeps continuously instead of suspending. Turn 2863 this off if you have a NEC UltraLite Versa 33/C or a Toshiba 2864 T400CDT. This is off by default since most machines do fine without 2865 this feature. 2866 2867config APM_CPU_IDLE 2868 depends on CPU_IDLE 2869 bool "Make CPU Idle calls when idle" 2870 help 2871 Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop. 2872 On some machines, this can activate improved power savings, such as 2873 a slowed CPU clock rate, when the machine is idle. These idle calls 2874 are made after the idle loop has run for some length of time (e.g., 2875 333 mS). On some machines, this will cause a hang at boot time or 2876 whenever the CPU becomes idle. (On machines with more than one CPU, 2877 this option does nothing.) 2878 2879config APM_DISPLAY_BLANK 2880 bool "Enable console blanking using APM" 2881 help 2882 Enable console blanking using the APM. Some laptops can use this to 2883 turn off the LCD backlight when the screen blanker of the Linux 2884 virtual console blanks the screen. Note that this is only used by 2885 the virtual console screen blanker, and won't turn off the backlight 2886 when using the X Window system. This also doesn't have anything to 2887 do with your VESA-compliant power-saving monitor. Further, this 2888 option doesn't work for all laptops -- it might not turn off your 2889 backlight at all, or it might print a lot of errors to the console, 2890 especially if you are using gpm. 2891 2892config APM_ALLOW_INTS 2893 bool "Allow interrupts during APM BIOS calls" 2894 help 2895 Normally we disable external interrupts while we are making calls to 2896 the APM BIOS as a measure to lessen the effects of a badly behaving 2897 BIOS implementation. The BIOS should reenable interrupts if it 2898 needs to. Unfortunately, some BIOSes do not -- especially those in 2899 many of the newer IBM Thinkpads. If you experience hangs when you 2900 suspend, try setting this to Y. Otherwise, say N. 2901 2902endif # APM 2903 2904source "drivers/cpufreq/Kconfig" 2905 2906source "drivers/cpuidle/Kconfig" 2907 2908source "drivers/idle/Kconfig" 2909 2910endmenu 2911 2912menu "Bus options (PCI etc.)" 2913 2914choice 2915 prompt "PCI access mode" 2916 depends on X86_32 && PCI 2917 default PCI_GOANY 2918 help 2919 On PCI systems, the BIOS can be used to detect the PCI devices and 2920 determine their configuration. However, some old PCI motherboards 2921 have BIOS bugs and may crash if this is done. Also, some embedded 2922 PCI-based systems don't have any BIOS at all. Linux can also try to 2923 detect the PCI hardware directly without using the BIOS. 2924 2925 With this option, you can specify how Linux should detect the 2926 PCI devices. If you choose "BIOS", the BIOS will be used, 2927 if you choose "Direct", the BIOS won't be used, and if you 2928 choose "MMConfig", then PCI Express MMCONFIG will be used. 2929 If you choose "Any", the kernel will try MMCONFIG, then the 2930 direct access method and falls back to the BIOS if that doesn't 2931 work. If unsure, go with the default, which is "Any". 2932 2933config PCI_GOBIOS 2934 bool "BIOS" 2935 2936config PCI_GOMMCONFIG 2937 bool "MMConfig" 2938 2939config PCI_GODIRECT 2940 bool "Direct" 2941 2942config PCI_GOOLPC 2943 bool "OLPC XO-1" 2944 depends on OLPC 2945 2946config PCI_GOANY 2947 bool "Any" 2948 2949endchoice 2950 2951config PCI_BIOS 2952 def_bool y 2953 depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY) 2954 2955# x86-64 doesn't support PCI BIOS access from long mode so always go direct. 2956config PCI_DIRECT 2957 def_bool y 2958 depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC || PCI_GOMMCONFIG)) 2959 2960config PCI_MMCONFIG 2961 bool "Support mmconfig PCI config space access" if X86_64 2962 default y 2963 depends on PCI && (ACPI || JAILHOUSE_GUEST) 2964 depends on X86_64 || (PCI_GOANY || PCI_GOMMCONFIG) 2965 2966config PCI_OLPC 2967 def_bool y 2968 depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY) 2969 2970config PCI_XEN 2971 def_bool y 2972 depends on PCI && XEN 2973 2974config MMCONF_FAM10H 2975 def_bool y 2976 depends on X86_64 && PCI_MMCONFIG && ACPI 2977 2978config PCI_CNB20LE_QUIRK 2979 bool "Read CNB20LE Host Bridge Windows" if EXPERT 2980 depends on PCI 2981 help 2982 Read the PCI windows out of the CNB20LE host bridge. This allows 2983 PCI hotplug to work on systems with the CNB20LE chipset which do 2984 not have ACPI. 2985 2986 There's no public spec for this chipset, and this functionality 2987 is known to be incomplete. 2988 2989 You should say N unless you know you need this. 2990 2991config ISA_BUS 2992 bool "ISA bus support on modern systems" if EXPERT 2993 help 2994 Expose ISA bus device drivers and options available for selection and 2995 configuration. Enable this option if your target machine has an ISA 2996 bus. ISA is an older system, displaced by PCI and newer bus 2997 architectures -- if your target machine is modern, it probably does 2998 not have an ISA bus. 2999 3000 If unsure, say N. 3001 3002# x86_64 have no ISA slots, but can have ISA-style DMA. 3003config ISA_DMA_API 3004 bool "ISA-style DMA support" if (X86_64 && EXPERT) 3005 default y 3006 help 3007 Enables ISA-style DMA support for devices requiring such controllers. 3008 If unsure, say Y. 3009 3010if X86_32 3011 3012config ISA 3013 bool "ISA support" 3014 help 3015 Find out whether you have ISA slots on your motherboard. ISA is the 3016 name of a bus system, i.e. the way the CPU talks to the other stuff 3017 inside your box. Other bus systems are PCI, EISA, MicroChannel 3018 (MCA) or VESA. ISA is an older system, now being displaced by PCI; 3019 newer boards don't support it. If you have ISA, say Y, otherwise N. 3020 3021config SCx200 3022 tristate "NatSemi SCx200 support" 3023 help 3024 This provides basic support for National Semiconductor's 3025 (now AMD's) Geode processors. The driver probes for the 3026 PCI-IDs of several on-chip devices, so its a good dependency 3027 for other scx200_* drivers. 3028 3029 If compiled as a module, the driver is named scx200. 3030 3031config SCx200HR_TIMER 3032 tristate "NatSemi SCx200 27MHz High-Resolution Timer Support" 3033 depends on SCx200 3034 default y 3035 help 3036 This driver provides a clocksource built upon the on-chip 3037 27MHz high-resolution timer. Its also a workaround for 3038 NSC Geode SC-1100's buggy TSC, which loses time when the 3039 processor goes idle (as is done by the scheduler). The 3040 other workaround is idle=poll boot option. 3041 3042config OLPC 3043 bool "One Laptop Per Child support" 3044 depends on !X86_PAE 3045 select GPIOLIB 3046 select OF 3047 select OF_PROMTREE 3048 select IRQ_DOMAIN 3049 select OLPC_EC 3050 help 3051 Add support for detecting the unique features of the OLPC 3052 XO hardware. 3053 3054config OLPC_XO1_PM 3055 bool "OLPC XO-1 Power Management" 3056 depends on OLPC && MFD_CS5535=y && PM_SLEEP 3057 help 3058 Add support for poweroff and suspend of the OLPC XO-1 laptop. 3059 3060config OLPC_XO1_RTC 3061 bool "OLPC XO-1 Real Time Clock" 3062 depends on OLPC_XO1_PM && RTC_DRV_CMOS 3063 help 3064 Add support for the XO-1 real time clock, which can be used as a 3065 programmable wakeup source. 3066 3067config OLPC_XO1_SCI 3068 bool "OLPC XO-1 SCI extras" 3069 depends on OLPC && OLPC_XO1_PM && GPIO_CS5535=y 3070 depends on INPUT=y 3071 select POWER_SUPPLY 3072 help 3073 Add support for SCI-based features of the OLPC XO-1 laptop: 3074 - EC-driven system wakeups 3075 - Power button 3076 - Ebook switch 3077 - Lid switch 3078 - AC adapter status updates 3079 - Battery status updates 3080 3081config OLPC_XO15_SCI 3082 bool "OLPC XO-1.5 SCI extras" 3083 depends on OLPC && ACPI 3084 select POWER_SUPPLY 3085 help 3086 Add support for SCI-based features of the OLPC XO-1.5 laptop: 3087 - EC-driven system wakeups 3088 - AC adapter status updates 3089 - Battery status updates 3090 3091config GEODE_COMMON 3092 bool 3093 3094config ALIX 3095 bool "PCEngines ALIX System Support (LED setup)" 3096 select GPIOLIB 3097 select GEODE_COMMON 3098 help 3099 This option enables system support for the PCEngines ALIX. 3100 At present this just sets up LEDs for GPIO control on 3101 ALIX2/3/6 boards. However, other system specific setup should 3102 get added here. 3103 3104 Note: You must still enable the drivers for GPIO and LED support 3105 (GPIO_CS5535 & LEDS_GPIO) to actually use the LEDs 3106 3107 Note: You have to set alix.force=1 for boards with Award BIOS. 3108 3109config NET5501 3110 bool "Soekris Engineering net5501 System Support (LEDS, GPIO, etc)" 3111 select GPIOLIB 3112 select GEODE_COMMON 3113 help 3114 This option enables system support for the Soekris Engineering net5501. 3115 3116config GEOS 3117 bool "Traverse Technologies GEOS System Support (LEDS, GPIO, etc)" 3118 select GPIOLIB 3119 select GEODE_COMMON 3120 depends on DMI 3121 help 3122 This option enables system support for the Traverse Technologies GEOS. 3123 3124config TS5500 3125 bool "Technologic Systems TS-5500 platform support" 3126 depends on MELAN 3127 select CHECK_SIGNATURE 3128 select NEW_LEDS 3129 select LEDS_CLASS 3130 help 3131 This option enables system support for the Technologic Systems TS-5500. 3132 3133endif # X86_32 3134 3135config AMD_NB 3136 def_bool y 3137 depends on AMD_NODE 3138 3139config AMD_NODE 3140 def_bool y 3141 depends on CPU_SUP_AMD && PCI 3142 3143endmenu 3144 3145menu "Binary Emulations" 3146 3147config IA32_EMULATION 3148 bool "IA32 Emulation" 3149 depends on X86_64 3150 select ARCH_WANT_OLD_COMPAT_IPC 3151 select BINFMT_ELF 3152 select COMPAT_OLD_SIGACTION 3153 help 3154 Include code to run legacy 32-bit programs under a 3155 64-bit kernel. You should likely turn this on, unless you're 3156 100% sure that you don't have any 32-bit programs left. 3157 3158config IA32_EMULATION_DEFAULT_DISABLED 3159 bool "IA32 emulation disabled by default" 3160 default n 3161 depends on IA32_EMULATION 3162 help 3163 Make IA32 emulation disabled by default. This prevents loading 32-bit 3164 processes and access to 32-bit syscalls. If unsure, leave it to its 3165 default value. 3166 3167config X86_X32_ABI 3168 bool "x32 ABI for 64-bit mode" 3169 depends on X86_64 3170 # llvm-objcopy does not convert x86_64 .note.gnu.property or 3171 # compressed debug sections to x86_x32 properly: 3172 # https://github.com/ClangBuiltLinux/linux/issues/514 3173 # https://github.com/ClangBuiltLinux/linux/issues/1141 3174 depends on $(success,$(OBJCOPY) --version | head -n1 | grep -qv llvm) 3175 help 3176 Include code to run binaries for the x32 native 32-bit ABI 3177 for 64-bit processors. An x32 process gets access to the 3178 full 64-bit register file and wide data path while leaving 3179 pointers at 32 bits for smaller memory footprint. 3180 3181config COMPAT_32 3182 def_bool y 3183 depends on IA32_EMULATION || X86_32 3184 select HAVE_UID16 3185 select OLD_SIGSUSPEND3 3186 3187config COMPAT 3188 def_bool y 3189 depends on IA32_EMULATION || X86_X32_ABI 3190 3191config COMPAT_FOR_U64_ALIGNMENT 3192 def_bool y 3193 depends on COMPAT 3194 3195endmenu 3196 3197config HAVE_ATOMIC_IOMAP 3198 def_bool y 3199 depends on X86_32 3200 3201source "arch/x86/kvm/Kconfig" 3202 3203source "arch/x86/Kconfig.assembler" 3204