1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance event support for s390x - CPU-measurement Counter Facility 4 * 5 * Copyright IBM Corp. 2012, 2023 6 * Author(s): Hendrik Brueckner <brueckner@linux.ibm.com> 7 * Thomas Richter <tmricht@linux.ibm.com> 8 */ 9 #define KMSG_COMPONENT "cpum_cf" 10 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/percpu.h> 15 #include <linux/notifier.h> 16 #include <linux/init.h> 17 #include <linux/export.h> 18 #include <linux/miscdevice.h> 19 #include <linux/perf_event.h> 20 21 #include <asm/cpu_mf.h> 22 #include <asm/hwctrset.h> 23 #include <asm/debug.h> 24 25 /* Perf PMU definitions for the counter facility */ 26 #define PERF_CPUM_CF_MAX_CTR 0xffffUL /* Max ctr for ECCTR */ 27 #define PERF_EVENT_CPUM_CF_DIAG 0xBC000UL /* Event: Counter sets */ 28 29 enum cpumf_ctr_set { 30 CPUMF_CTR_SET_BASIC = 0, /* Basic Counter Set */ 31 CPUMF_CTR_SET_USER = 1, /* Problem-State Counter Set */ 32 CPUMF_CTR_SET_CRYPTO = 2, /* Crypto-Activity Counter Set */ 33 CPUMF_CTR_SET_EXT = 3, /* Extended Counter Set */ 34 CPUMF_CTR_SET_MT_DIAG = 4, /* MT-diagnostic Counter Set */ 35 36 /* Maximum number of counter sets */ 37 CPUMF_CTR_SET_MAX, 38 }; 39 40 #define CPUMF_LCCTL_ENABLE_SHIFT 16 41 #define CPUMF_LCCTL_ACTCTL_SHIFT 0 42 43 static inline void ctr_set_enable(u64 *state, u64 ctrsets) 44 { 45 *state |= ctrsets << CPUMF_LCCTL_ENABLE_SHIFT; 46 } 47 48 static inline void ctr_set_disable(u64 *state, u64 ctrsets) 49 { 50 *state &= ~(ctrsets << CPUMF_LCCTL_ENABLE_SHIFT); 51 } 52 53 static inline void ctr_set_start(u64 *state, u64 ctrsets) 54 { 55 *state |= ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT; 56 } 57 58 static inline void ctr_set_stop(u64 *state, u64 ctrsets) 59 { 60 *state &= ~(ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT); 61 } 62 63 static inline int ctr_stcctm(enum cpumf_ctr_set set, u64 range, u64 *dest) 64 { 65 switch (set) { 66 case CPUMF_CTR_SET_BASIC: 67 return stcctm(BASIC, range, dest); 68 case CPUMF_CTR_SET_USER: 69 return stcctm(PROBLEM_STATE, range, dest); 70 case CPUMF_CTR_SET_CRYPTO: 71 return stcctm(CRYPTO_ACTIVITY, range, dest); 72 case CPUMF_CTR_SET_EXT: 73 return stcctm(EXTENDED, range, dest); 74 case CPUMF_CTR_SET_MT_DIAG: 75 return stcctm(MT_DIAG_CLEARING, range, dest); 76 case CPUMF_CTR_SET_MAX: 77 return 3; 78 } 79 return 3; 80 } 81 82 struct cpu_cf_events { 83 refcount_t refcnt; /* Reference count */ 84 atomic_t ctr_set[CPUMF_CTR_SET_MAX]; 85 u64 state; /* For perf_event_open SVC */ 86 u64 dev_state; /* For /dev/hwctr */ 87 unsigned int flags; 88 size_t used; /* Bytes used in data */ 89 size_t usedss; /* Bytes used in start/stop */ 90 unsigned char start[PAGE_SIZE]; /* Counter set at event add */ 91 unsigned char stop[PAGE_SIZE]; /* Counter set at event delete */ 92 unsigned char data[PAGE_SIZE]; /* Counter set at /dev/hwctr */ 93 unsigned int sets; /* # Counter set saved in memory */ 94 }; 95 96 static unsigned int cfdiag_cpu_speed; /* CPU speed for CF_DIAG trailer */ 97 static debug_info_t *cf_dbg; 98 99 /* 100 * The CPU Measurement query counter information instruction contains 101 * information which varies per machine generation, but is constant and 102 * does not change when running on a particular machine, such as counter 103 * first and second version number. This is needed to determine the size 104 * of counter sets. Extract this information at device driver initialization. 105 */ 106 static struct cpumf_ctr_info cpumf_ctr_info; 107 108 struct cpu_cf_ptr { 109 struct cpu_cf_events *cpucf; 110 }; 111 112 static struct cpu_cf_root { /* Anchor to per CPU data */ 113 refcount_t refcnt; /* Overall active events */ 114 struct cpu_cf_ptr __percpu *cfptr; 115 } cpu_cf_root; 116 117 /* 118 * Serialize event initialization and event removal. Both are called from 119 * user space in task context with perf_event_open() and close() 120 * system calls. 121 * 122 * This mutex serializes functions cpum_cf_alloc_cpu() called at event 123 * initialization via cpumf_pmu_event_init() and function cpum_cf_free_cpu() 124 * called at event removal via call back function hw_perf_event_destroy() 125 * when the event is deleted. They are serialized to enforce correct 126 * bookkeeping of pointer and reference counts anchored by 127 * struct cpu_cf_root and the access to cpu_cf_root::refcnt and the 128 * per CPU pointers stored in cpu_cf_root::cfptr. 129 */ 130 static DEFINE_MUTEX(pmc_reserve_mutex); 131 132 /* 133 * Get pointer to per-cpu structure. 134 * 135 * Function get_cpu_cfhw() is called from 136 * - cfset_copy_all(): This function is protected by cpus_read_lock(), so 137 * CPU hot plug remove can not happen. Event removal requires a close() 138 * first. 139 * 140 * Function this_cpu_cfhw() is called from perf common code functions: 141 * - pmu_{en|dis}able(), pmu_{add|del}()and pmu_{start|stop}(): 142 * All functions execute with interrupts disabled on that particular CPU. 143 * - cfset_ioctl_{on|off}, cfset_cpu_read(): see comment cfset_copy_all(). 144 * 145 * Therefore it is safe to access the CPU specific pointer to the event. 146 */ 147 static struct cpu_cf_events *get_cpu_cfhw(int cpu) 148 { 149 struct cpu_cf_ptr __percpu *p = cpu_cf_root.cfptr; 150 151 if (p) { 152 struct cpu_cf_ptr *q = per_cpu_ptr(p, cpu); 153 154 return q->cpucf; 155 } 156 return NULL; 157 } 158 159 static struct cpu_cf_events *this_cpu_cfhw(void) 160 { 161 return get_cpu_cfhw(smp_processor_id()); 162 } 163 164 /* Disable counter sets on dedicated CPU */ 165 static void cpum_cf_reset_cpu(void *flags) 166 { 167 lcctl(0); 168 } 169 170 /* Free per CPU data when the last event is removed. */ 171 static void cpum_cf_free_root(void) 172 { 173 if (!refcount_dec_and_test(&cpu_cf_root.refcnt)) 174 return; 175 free_percpu(cpu_cf_root.cfptr); 176 cpu_cf_root.cfptr = NULL; 177 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT); 178 on_each_cpu(cpum_cf_reset_cpu, NULL, 1); 179 debug_sprintf_event(cf_dbg, 4, "%s root.refcnt %u cfptr %d\n", 180 __func__, refcount_read(&cpu_cf_root.refcnt), 181 !cpu_cf_root.cfptr); 182 } 183 184 /* 185 * On initialization of first event also allocate per CPU data dynamically. 186 * Start with an array of pointers, the array size is the maximum number of 187 * CPUs possible, which might be larger than the number of CPUs currently 188 * online. 189 */ 190 static int cpum_cf_alloc_root(void) 191 { 192 int rc = 0; 193 194 if (refcount_inc_not_zero(&cpu_cf_root.refcnt)) 195 return rc; 196 197 /* The memory is already zeroed. */ 198 cpu_cf_root.cfptr = alloc_percpu(struct cpu_cf_ptr); 199 if (cpu_cf_root.cfptr) { 200 refcount_set(&cpu_cf_root.refcnt, 1); 201 on_each_cpu(cpum_cf_reset_cpu, NULL, 1); 202 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT); 203 } else { 204 rc = -ENOMEM; 205 } 206 207 return rc; 208 } 209 210 /* Free CPU counter data structure for a PMU */ 211 static void cpum_cf_free_cpu(int cpu) 212 { 213 struct cpu_cf_events *cpuhw; 214 struct cpu_cf_ptr *p; 215 216 mutex_lock(&pmc_reserve_mutex); 217 /* 218 * When invoked via CPU hotplug handler, there might be no events 219 * installed or that particular CPU might not have an 220 * event installed. This anchor pointer can be NULL! 221 */ 222 if (!cpu_cf_root.cfptr) 223 goto out; 224 p = per_cpu_ptr(cpu_cf_root.cfptr, cpu); 225 cpuhw = p->cpucf; 226 /* 227 * Might be zero when called from CPU hotplug handler and no event 228 * installed on that CPU, but on different CPUs. 229 */ 230 if (!cpuhw) 231 goto out; 232 233 if (refcount_dec_and_test(&cpuhw->refcnt)) { 234 kfree(cpuhw); 235 p->cpucf = NULL; 236 } 237 cpum_cf_free_root(); 238 out: 239 mutex_unlock(&pmc_reserve_mutex); 240 } 241 242 /* Allocate CPU counter data structure for a PMU. Called under mutex lock. */ 243 static int cpum_cf_alloc_cpu(int cpu) 244 { 245 struct cpu_cf_events *cpuhw; 246 struct cpu_cf_ptr *p; 247 int rc; 248 249 mutex_lock(&pmc_reserve_mutex); 250 rc = cpum_cf_alloc_root(); 251 if (rc) 252 goto unlock; 253 p = per_cpu_ptr(cpu_cf_root.cfptr, cpu); 254 cpuhw = p->cpucf; 255 256 if (!cpuhw) { 257 cpuhw = kzalloc(sizeof(*cpuhw), GFP_KERNEL); 258 if (cpuhw) { 259 p->cpucf = cpuhw; 260 refcount_set(&cpuhw->refcnt, 1); 261 } else { 262 rc = -ENOMEM; 263 } 264 } else { 265 refcount_inc(&cpuhw->refcnt); 266 } 267 if (rc) { 268 /* 269 * Error in allocation of event, decrement anchor. Since 270 * cpu_cf_event in not created, its destroy() function is not 271 * invoked. Adjust the reference counter for the anchor. 272 */ 273 cpum_cf_free_root(); 274 } 275 unlock: 276 mutex_unlock(&pmc_reserve_mutex); 277 return rc; 278 } 279 280 /* 281 * Create/delete per CPU data structures for /dev/hwctr interface and events 282 * created by perf_event_open(). 283 * If cpu is -1, track task on all available CPUs. This requires 284 * allocation of hardware data structures for all CPUs. This setup handles 285 * perf_event_open() with task context and /dev/hwctr interface. 286 * If cpu is non-zero install event on this CPU only. This setup handles 287 * perf_event_open() with CPU context. 288 */ 289 static int cpum_cf_alloc(int cpu) 290 { 291 cpumask_var_t mask; 292 int rc; 293 294 if (cpu == -1) { 295 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 296 return -ENOMEM; 297 for_each_online_cpu(cpu) { 298 rc = cpum_cf_alloc_cpu(cpu); 299 if (rc) { 300 for_each_cpu(cpu, mask) 301 cpum_cf_free_cpu(cpu); 302 break; 303 } 304 cpumask_set_cpu(cpu, mask); 305 } 306 free_cpumask_var(mask); 307 } else { 308 rc = cpum_cf_alloc_cpu(cpu); 309 } 310 return rc; 311 } 312 313 static void cpum_cf_free(int cpu) 314 { 315 if (cpu == -1) { 316 for_each_online_cpu(cpu) 317 cpum_cf_free_cpu(cpu); 318 } else { 319 cpum_cf_free_cpu(cpu); 320 } 321 } 322 323 #define CF_DIAG_CTRSET_DEF 0xfeef /* Counter set header mark */ 324 /* interval in seconds */ 325 326 /* Counter sets are stored as data stream in a page sized memory buffer and 327 * exported to user space via raw data attached to the event sample data. 328 * Each counter set starts with an eight byte header consisting of: 329 * - a two byte eye catcher (0xfeef) 330 * - a one byte counter set number 331 * - a two byte counter set size (indicates the number of counters in this set) 332 * - a three byte reserved value (must be zero) to make the header the same 333 * size as a counter value. 334 * All counter values are eight byte in size. 335 * 336 * All counter sets are followed by a 64 byte trailer. 337 * The trailer consists of a: 338 * - flag field indicating valid fields when corresponding bit set 339 * - the counter facility first and second version number 340 * - the CPU speed if nonzero 341 * - the time stamp the counter sets have been collected 342 * - the time of day (TOD) base value 343 * - the machine type. 344 * 345 * The counter sets are saved when the process is prepared to be executed on a 346 * CPU and saved again when the process is going to be removed from a CPU. 347 * The difference of both counter sets are calculated and stored in the event 348 * sample data area. 349 */ 350 struct cf_ctrset_entry { /* CPU-M CF counter set entry (8 byte) */ 351 unsigned int def:16; /* 0-15 Data Entry Format */ 352 unsigned int set:16; /* 16-31 Counter set identifier */ 353 unsigned int ctr:16; /* 32-47 Number of stored counters */ 354 unsigned int res1:16; /* 48-63 Reserved */ 355 }; 356 357 struct cf_trailer_entry { /* CPU-M CF_DIAG trailer (64 byte) */ 358 /* 0 - 7 */ 359 union { 360 struct { 361 unsigned int clock_base:1; /* TOD clock base set */ 362 unsigned int speed:1; /* CPU speed set */ 363 /* Measurement alerts */ 364 unsigned int mtda:1; /* Loss of MT ctr. data alert */ 365 unsigned int caca:1; /* Counter auth. change alert */ 366 unsigned int lcda:1; /* Loss of counter data alert */ 367 }; 368 unsigned long flags; /* 0-63 All indicators */ 369 }; 370 /* 8 - 15 */ 371 unsigned int cfvn:16; /* 64-79 Ctr First Version */ 372 unsigned int csvn:16; /* 80-95 Ctr Second Version */ 373 unsigned int cpu_speed:32; /* 96-127 CPU speed */ 374 /* 16 - 23 */ 375 unsigned long timestamp; /* 128-191 Timestamp (TOD) */ 376 /* 24 - 55 */ 377 union { 378 struct { 379 unsigned long progusage1; 380 unsigned long progusage2; 381 unsigned long progusage3; 382 unsigned long tod_base; 383 }; 384 unsigned long progusage[4]; 385 }; 386 /* 56 - 63 */ 387 unsigned int mach_type:16; /* Machine type */ 388 unsigned int res1:16; /* Reserved */ 389 unsigned int res2:32; /* Reserved */ 390 }; 391 392 /* Create the trailer data at the end of a page. */ 393 static void cfdiag_trailer(struct cf_trailer_entry *te) 394 { 395 struct cpuid cpuid; 396 397 te->cfvn = cpumf_ctr_info.cfvn; /* Counter version numbers */ 398 te->csvn = cpumf_ctr_info.csvn; 399 400 get_cpu_id(&cpuid); /* Machine type */ 401 te->mach_type = cpuid.machine; 402 te->cpu_speed = cfdiag_cpu_speed; 403 if (te->cpu_speed) 404 te->speed = 1; 405 te->clock_base = 1; /* Save clock base */ 406 te->tod_base = tod_clock_base.tod; 407 te->timestamp = get_tod_clock_fast(); 408 } 409 410 /* 411 * The number of counters per counter set varies between machine generations, 412 * but is constant when running on a particular machine generation. 413 * Determine each counter set size at device driver initialization and 414 * retrieve it later. 415 */ 416 static size_t cpumf_ctr_setsizes[CPUMF_CTR_SET_MAX]; 417 static void cpum_cf_make_setsize(enum cpumf_ctr_set ctrset) 418 { 419 size_t ctrset_size = 0; 420 421 switch (ctrset) { 422 case CPUMF_CTR_SET_BASIC: 423 if (cpumf_ctr_info.cfvn >= 1) 424 ctrset_size = 6; 425 break; 426 case CPUMF_CTR_SET_USER: 427 if (cpumf_ctr_info.cfvn == 1) 428 ctrset_size = 6; 429 else if (cpumf_ctr_info.cfvn >= 3) 430 ctrset_size = 2; 431 break; 432 case CPUMF_CTR_SET_CRYPTO: 433 if (cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5) 434 ctrset_size = 16; 435 else if (cpumf_ctr_info.csvn >= 6) 436 ctrset_size = 20; 437 break; 438 case CPUMF_CTR_SET_EXT: 439 if (cpumf_ctr_info.csvn == 1) 440 ctrset_size = 32; 441 else if (cpumf_ctr_info.csvn == 2) 442 ctrset_size = 48; 443 else if (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5) 444 ctrset_size = 128; 445 else if (cpumf_ctr_info.csvn >= 6 && cpumf_ctr_info.csvn <= 8) 446 ctrset_size = 160; 447 break; 448 case CPUMF_CTR_SET_MT_DIAG: 449 if (cpumf_ctr_info.csvn > 3) 450 ctrset_size = 48; 451 break; 452 case CPUMF_CTR_SET_MAX: 453 break; 454 } 455 cpumf_ctr_setsizes[ctrset] = ctrset_size; 456 } 457 458 /* 459 * Return the maximum possible counter set size (in number of 8 byte counters) 460 * depending on type and model number. 461 */ 462 static size_t cpum_cf_read_setsize(enum cpumf_ctr_set ctrset) 463 { 464 return cpumf_ctr_setsizes[ctrset]; 465 } 466 467 /* Read a counter set. The counter set number determines the counter set and 468 * the CPUM-CF first and second version number determine the number of 469 * available counters in each counter set. 470 * Each counter set starts with header containing the counter set number and 471 * the number of eight byte counters. 472 * 473 * The functions returns the number of bytes occupied by this counter set 474 * including the header. 475 * If there is no counter in the counter set, this counter set is useless and 476 * zero is returned on this case. 477 * 478 * Note that the counter sets may not be enabled or active and the stcctm 479 * instruction might return error 3. Depending on error_ok value this is ok, 480 * for example when called from cpumf_pmu_start() call back function. 481 */ 482 static size_t cfdiag_getctrset(struct cf_ctrset_entry *ctrdata, int ctrset, 483 size_t room, bool error_ok) 484 { 485 size_t ctrset_size, need = 0; 486 int rc = 3; /* Assume write failure */ 487 488 ctrdata->def = CF_DIAG_CTRSET_DEF; 489 ctrdata->set = ctrset; 490 ctrdata->res1 = 0; 491 ctrset_size = cpum_cf_read_setsize(ctrset); 492 493 if (ctrset_size) { /* Save data */ 494 need = ctrset_size * sizeof(u64) + sizeof(*ctrdata); 495 if (need <= room) { 496 rc = ctr_stcctm(ctrset, ctrset_size, 497 (u64 *)(ctrdata + 1)); 498 } 499 if (rc != 3 || error_ok) 500 ctrdata->ctr = ctrset_size; 501 else 502 need = 0; 503 } 504 505 return need; 506 } 507 508 static const u64 cpumf_ctr_ctl[CPUMF_CTR_SET_MAX] = { 509 [CPUMF_CTR_SET_BASIC] = 0x02, 510 [CPUMF_CTR_SET_USER] = 0x04, 511 [CPUMF_CTR_SET_CRYPTO] = 0x08, 512 [CPUMF_CTR_SET_EXT] = 0x01, 513 [CPUMF_CTR_SET_MT_DIAG] = 0x20, 514 }; 515 516 /* Read out all counter sets and save them in the provided data buffer. 517 * The last 64 byte host an artificial trailer entry. 518 */ 519 static size_t cfdiag_getctr(void *data, size_t sz, unsigned long auth, 520 bool error_ok) 521 { 522 struct cf_trailer_entry *trailer; 523 size_t offset = 0, done; 524 int i; 525 526 memset(data, 0, sz); 527 sz -= sizeof(*trailer); /* Always room for trailer */ 528 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 529 struct cf_ctrset_entry *ctrdata = data + offset; 530 531 if (!(auth & cpumf_ctr_ctl[i])) 532 continue; /* Counter set not authorized */ 533 534 done = cfdiag_getctrset(ctrdata, i, sz - offset, error_ok); 535 offset += done; 536 } 537 trailer = data + offset; 538 cfdiag_trailer(trailer); 539 return offset + sizeof(*trailer); 540 } 541 542 /* Calculate the difference for each counter in a counter set. */ 543 static void cfdiag_diffctrset(u64 *pstart, u64 *pstop, int counters) 544 { 545 for (; --counters >= 0; ++pstart, ++pstop) 546 if (*pstop >= *pstart) 547 *pstop -= *pstart; 548 else 549 *pstop = *pstart - *pstop + 1; 550 } 551 552 /* Scan the counter sets and calculate the difference of each counter 553 * in each set. The result is the increment of each counter during the 554 * period the counter set has been activated. 555 * 556 * Return true on success. 557 */ 558 static int cfdiag_diffctr(struct cpu_cf_events *cpuhw, unsigned long auth) 559 { 560 struct cf_trailer_entry *trailer_start, *trailer_stop; 561 struct cf_ctrset_entry *ctrstart, *ctrstop; 562 size_t offset = 0; 563 int i; 564 565 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 566 ctrstart = (struct cf_ctrset_entry *)(cpuhw->start + offset); 567 ctrstop = (struct cf_ctrset_entry *)(cpuhw->stop + offset); 568 569 /* Counter set not authorized */ 570 if (!(auth & cpumf_ctr_ctl[i])) 571 continue; 572 /* Counter set size zero was not saved */ 573 if (!cpum_cf_read_setsize(i)) 574 continue; 575 576 if (memcmp(ctrstop, ctrstart, sizeof(*ctrstop))) { 577 pr_err_once("cpum_cf_diag counter set compare error " 578 "in set %i\n", ctrstart->set); 579 return 0; 580 } 581 if (ctrstart->def == CF_DIAG_CTRSET_DEF) { 582 cfdiag_diffctrset((u64 *)(ctrstart + 1), 583 (u64 *)(ctrstop + 1), ctrstart->ctr); 584 offset += ctrstart->ctr * sizeof(u64) + 585 sizeof(*ctrstart); 586 } 587 } 588 589 /* Save time_stamp from start of event in stop's trailer */ 590 trailer_start = (struct cf_trailer_entry *)(cpuhw->start + offset); 591 trailer_stop = (struct cf_trailer_entry *)(cpuhw->stop + offset); 592 trailer_stop->progusage[0] = trailer_start->timestamp; 593 594 return 1; 595 } 596 597 static enum cpumf_ctr_set get_counter_set(u64 event) 598 { 599 int set = CPUMF_CTR_SET_MAX; 600 601 if (event < 32) 602 set = CPUMF_CTR_SET_BASIC; 603 else if (event < 64) 604 set = CPUMF_CTR_SET_USER; 605 else if (event < 128) 606 set = CPUMF_CTR_SET_CRYPTO; 607 else if (event < 288) 608 set = CPUMF_CTR_SET_EXT; 609 else if (event >= 448 && event < 496) 610 set = CPUMF_CTR_SET_MT_DIAG; 611 612 return set; 613 } 614 615 static int validate_ctr_version(const u64 config, enum cpumf_ctr_set set) 616 { 617 u16 mtdiag_ctl; 618 int err = 0; 619 620 /* check required version for counter sets */ 621 switch (set) { 622 case CPUMF_CTR_SET_BASIC: 623 case CPUMF_CTR_SET_USER: 624 if (cpumf_ctr_info.cfvn < 1) 625 err = -EOPNOTSUPP; 626 break; 627 case CPUMF_CTR_SET_CRYPTO: 628 if ((cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5 && 629 config > 79) || (cpumf_ctr_info.csvn >= 6 && config > 83)) 630 err = -EOPNOTSUPP; 631 break; 632 case CPUMF_CTR_SET_EXT: 633 if (cpumf_ctr_info.csvn < 1) 634 err = -EOPNOTSUPP; 635 if ((cpumf_ctr_info.csvn == 1 && config > 159) || 636 (cpumf_ctr_info.csvn == 2 && config > 175) || 637 (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5 && 638 config > 255) || 639 (cpumf_ctr_info.csvn >= 6 && config > 287)) 640 err = -EOPNOTSUPP; 641 break; 642 case CPUMF_CTR_SET_MT_DIAG: 643 if (cpumf_ctr_info.csvn <= 3) 644 err = -EOPNOTSUPP; 645 /* 646 * MT-diagnostic counters are read-only. The counter set 647 * is automatically enabled and activated on all CPUs with 648 * multithreading (SMT). Deactivation of multithreading 649 * also disables the counter set. State changes are ignored 650 * by lcctl(). Because Linux controls SMT enablement through 651 * a kernel parameter only, the counter set is either disabled 652 * or enabled and active. 653 * 654 * Thus, the counters can only be used if SMT is on and the 655 * counter set is enabled and active. 656 */ 657 mtdiag_ctl = cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG]; 658 if (!((cpumf_ctr_info.auth_ctl & mtdiag_ctl) && 659 (cpumf_ctr_info.enable_ctl & mtdiag_ctl) && 660 (cpumf_ctr_info.act_ctl & mtdiag_ctl))) 661 err = -EOPNOTSUPP; 662 break; 663 case CPUMF_CTR_SET_MAX: 664 err = -EOPNOTSUPP; 665 } 666 667 return err; 668 } 669 670 /* 671 * Change the CPUMF state to active. 672 * Enable and activate the CPU-counter sets according 673 * to the per-cpu control state. 674 */ 675 static void cpumf_pmu_enable(struct pmu *pmu) 676 { 677 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 678 int err; 679 680 if (!cpuhw || (cpuhw->flags & PMU_F_ENABLED)) 681 return; 682 683 err = lcctl(cpuhw->state | cpuhw->dev_state); 684 if (err) 685 pr_err("Enabling the performance measuring unit failed with rc=%x\n", err); 686 else 687 cpuhw->flags |= PMU_F_ENABLED; 688 } 689 690 /* 691 * Change the CPUMF state to inactive. 692 * Disable and enable (inactive) the CPU-counter sets according 693 * to the per-cpu control state. 694 */ 695 static void cpumf_pmu_disable(struct pmu *pmu) 696 { 697 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 698 u64 inactive; 699 int err; 700 701 if (!cpuhw || !(cpuhw->flags & PMU_F_ENABLED)) 702 return; 703 704 inactive = cpuhw->state & ~((1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1); 705 inactive |= cpuhw->dev_state; 706 err = lcctl(inactive); 707 if (err) 708 pr_err("Disabling the performance measuring unit failed with rc=%x\n", err); 709 else 710 cpuhw->flags &= ~PMU_F_ENABLED; 711 } 712 713 /* Release the PMU if event is the last perf event */ 714 static void hw_perf_event_destroy(struct perf_event *event) 715 { 716 cpum_cf_free(event->cpu); 717 } 718 719 /* CPUMF <-> perf event mappings for kernel+userspace (basic set) */ 720 static const int cpumf_generic_events_basic[] = { 721 [PERF_COUNT_HW_CPU_CYCLES] = 0, 722 [PERF_COUNT_HW_INSTRUCTIONS] = 1, 723 [PERF_COUNT_HW_CACHE_REFERENCES] = -1, 724 [PERF_COUNT_HW_CACHE_MISSES] = -1, 725 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1, 726 [PERF_COUNT_HW_BRANCH_MISSES] = -1, 727 [PERF_COUNT_HW_BUS_CYCLES] = -1, 728 }; 729 /* CPUMF <-> perf event mappings for userspace (problem-state set) */ 730 static const int cpumf_generic_events_user[] = { 731 [PERF_COUNT_HW_CPU_CYCLES] = 32, 732 [PERF_COUNT_HW_INSTRUCTIONS] = 33, 733 [PERF_COUNT_HW_CACHE_REFERENCES] = -1, 734 [PERF_COUNT_HW_CACHE_MISSES] = -1, 735 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1, 736 [PERF_COUNT_HW_BRANCH_MISSES] = -1, 737 [PERF_COUNT_HW_BUS_CYCLES] = -1, 738 }; 739 740 static int is_userspace_event(u64 ev) 741 { 742 return cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev || 743 cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev; 744 } 745 746 static int __hw_perf_event_init(struct perf_event *event, unsigned int type) 747 { 748 struct perf_event_attr *attr = &event->attr; 749 struct hw_perf_event *hwc = &event->hw; 750 enum cpumf_ctr_set set; 751 u64 ev; 752 753 switch (type) { 754 case PERF_TYPE_RAW: 755 /* Raw events are used to access counters directly, 756 * hence do not permit excludes */ 757 if (attr->exclude_kernel || attr->exclude_user || 758 attr->exclude_hv) 759 return -EOPNOTSUPP; 760 ev = attr->config; 761 break; 762 763 case PERF_TYPE_HARDWARE: 764 if (is_sampling_event(event)) /* No sampling support */ 765 return -ENOENT; 766 ev = attr->config; 767 if (!attr->exclude_user && attr->exclude_kernel) { 768 /* 769 * Count user space (problem-state) only 770 * Handle events 32 and 33 as 0:u and 1:u 771 */ 772 if (!is_userspace_event(ev)) { 773 if (ev >= ARRAY_SIZE(cpumf_generic_events_user)) 774 return -EOPNOTSUPP; 775 ev = cpumf_generic_events_user[ev]; 776 } 777 } else if (!attr->exclude_kernel && attr->exclude_user) { 778 /* No support for kernel space counters only */ 779 return -EOPNOTSUPP; 780 } else { 781 /* Count user and kernel space, incl. events 32 + 33 */ 782 if (!is_userspace_event(ev)) { 783 if (ev >= ARRAY_SIZE(cpumf_generic_events_basic)) 784 return -EOPNOTSUPP; 785 ev = cpumf_generic_events_basic[ev]; 786 } 787 } 788 break; 789 790 default: 791 return -ENOENT; 792 } 793 794 if (ev == -1) 795 return -ENOENT; 796 797 if (ev > PERF_CPUM_CF_MAX_CTR) 798 return -ENOENT; 799 800 /* Obtain the counter set to which the specified counter belongs */ 801 set = get_counter_set(ev); 802 switch (set) { 803 case CPUMF_CTR_SET_BASIC: 804 case CPUMF_CTR_SET_USER: 805 case CPUMF_CTR_SET_CRYPTO: 806 case CPUMF_CTR_SET_EXT: 807 case CPUMF_CTR_SET_MT_DIAG: 808 /* 809 * Use the hardware perf event structure to store the 810 * counter number in the 'config' member and the counter 811 * set number in the 'config_base' as bit mask. 812 * It is later used to enable/disable the counter(s). 813 */ 814 hwc->config = ev; 815 hwc->config_base = cpumf_ctr_ctl[set]; 816 break; 817 case CPUMF_CTR_SET_MAX: 818 /* The counter could not be associated to a counter set */ 819 return -EINVAL; 820 } 821 822 /* Initialize for using the CPU-measurement counter facility */ 823 if (cpum_cf_alloc(event->cpu)) 824 return -ENOMEM; 825 event->destroy = hw_perf_event_destroy; 826 827 /* 828 * Finally, validate version and authorization of the counter set. 829 * If the particular CPU counter set is not authorized, 830 * return with -ENOENT in order to fall back to other 831 * PMUs that might suffice the event request. 832 */ 833 if (!(hwc->config_base & cpumf_ctr_info.auth_ctl)) 834 return -ENOENT; 835 return validate_ctr_version(hwc->config, set); 836 } 837 838 /* Events CPU_CYCLES and INSTRUCTIONS can be submitted with two different 839 * attribute::type values: 840 * - PERF_TYPE_HARDWARE: 841 * - pmu->type: 842 * Handle both type of invocations identical. They address the same hardware. 843 * The result is different when event modifiers exclude_kernel and/or 844 * exclude_user are also set. 845 */ 846 static int cpumf_pmu_event_type(struct perf_event *event) 847 { 848 u64 ev = event->attr.config; 849 850 if (cpumf_generic_events_basic[PERF_COUNT_HW_CPU_CYCLES] == ev || 851 cpumf_generic_events_basic[PERF_COUNT_HW_INSTRUCTIONS] == ev || 852 cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev || 853 cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev) 854 return PERF_TYPE_HARDWARE; 855 return PERF_TYPE_RAW; 856 } 857 858 static int cpumf_pmu_event_init(struct perf_event *event) 859 { 860 unsigned int type = event->attr.type; 861 int err = -ENOENT; 862 863 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_RAW) 864 err = __hw_perf_event_init(event, type); 865 else if (event->pmu->type == type) 866 /* Registered as unknown PMU */ 867 err = __hw_perf_event_init(event, cpumf_pmu_event_type(event)); 868 869 return err; 870 } 871 872 static int hw_perf_event_reset(struct perf_event *event) 873 { 874 u64 prev, new; 875 int err; 876 877 prev = local64_read(&event->hw.prev_count); 878 do { 879 err = ecctr(event->hw.config, &new); 880 if (err) { 881 if (err != 3) 882 break; 883 /* The counter is not (yet) available. This 884 * might happen if the counter set to which 885 * this counter belongs is in the disabled 886 * state. 887 */ 888 new = 0; 889 } 890 } while (!local64_try_cmpxchg(&event->hw.prev_count, &prev, new)); 891 892 return err; 893 } 894 895 static void hw_perf_event_update(struct perf_event *event) 896 { 897 u64 prev, new, delta; 898 int err; 899 900 prev = local64_read(&event->hw.prev_count); 901 do { 902 err = ecctr(event->hw.config, &new); 903 if (err) 904 return; 905 } while (!local64_try_cmpxchg(&event->hw.prev_count, &prev, new)); 906 907 delta = (prev <= new) ? new - prev 908 : (-1ULL - prev) + new + 1; /* overflow */ 909 local64_add(delta, &event->count); 910 } 911 912 static void cpumf_pmu_read(struct perf_event *event) 913 { 914 if (event->hw.state & PERF_HES_STOPPED) 915 return; 916 917 hw_perf_event_update(event); 918 } 919 920 static void cpumf_pmu_start(struct perf_event *event, int flags) 921 { 922 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 923 struct hw_perf_event *hwc = &event->hw; 924 int i; 925 926 if (!(hwc->state & PERF_HES_STOPPED)) 927 return; 928 929 hwc->state = 0; 930 931 /* (Re-)enable and activate the counter set */ 932 ctr_set_enable(&cpuhw->state, hwc->config_base); 933 ctr_set_start(&cpuhw->state, hwc->config_base); 934 935 /* The counter set to which this counter belongs can be already active. 936 * Because all counters in a set are active, the event->hw.prev_count 937 * needs to be synchronized. At this point, the counter set can be in 938 * the inactive or disabled state. 939 */ 940 if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) { 941 cpuhw->usedss = cfdiag_getctr(cpuhw->start, 942 sizeof(cpuhw->start), 943 hwc->config_base, true); 944 } else { 945 hw_perf_event_reset(event); 946 } 947 948 /* Increment refcount for counter sets */ 949 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) 950 if ((hwc->config_base & cpumf_ctr_ctl[i])) 951 atomic_inc(&cpuhw->ctr_set[i]); 952 } 953 954 /* Create perf event sample with the counter sets as raw data. The sample 955 * is then pushed to the event subsystem and the function checks for 956 * possible event overflows. If an event overflow occurs, the PMU is 957 * stopped. 958 * 959 * Return non-zero if an event overflow occurred. 960 */ 961 static int cfdiag_push_sample(struct perf_event *event, 962 struct cpu_cf_events *cpuhw) 963 { 964 struct perf_sample_data data; 965 struct perf_raw_record raw; 966 struct pt_regs regs; 967 int overflow; 968 969 /* Setup perf sample */ 970 perf_sample_data_init(&data, 0, event->hw.last_period); 971 memset(®s, 0, sizeof(regs)); 972 memset(&raw, 0, sizeof(raw)); 973 974 if (event->attr.sample_type & PERF_SAMPLE_CPU) 975 data.cpu_entry.cpu = event->cpu; 976 if (event->attr.sample_type & PERF_SAMPLE_RAW) { 977 raw.frag.size = cpuhw->usedss; 978 raw.frag.data = cpuhw->stop; 979 perf_sample_save_raw_data(&data, event, &raw); 980 } 981 982 overflow = perf_event_overflow(event, &data, ®s); 983 if (overflow) 984 event->pmu->stop(event, 0); 985 986 perf_event_update_userpage(event); 987 return overflow; 988 } 989 990 static void cpumf_pmu_stop(struct perf_event *event, int flags) 991 { 992 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 993 struct hw_perf_event *hwc = &event->hw; 994 int i; 995 996 if (!(hwc->state & PERF_HES_STOPPED)) { 997 /* Decrement reference count for this counter set and if this 998 * is the last used counter in the set, clear activation 999 * control and set the counter set state to inactive. 1000 */ 1001 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 1002 if (!(hwc->config_base & cpumf_ctr_ctl[i])) 1003 continue; 1004 if (!atomic_dec_return(&cpuhw->ctr_set[i])) 1005 ctr_set_stop(&cpuhw->state, cpumf_ctr_ctl[i]); 1006 } 1007 hwc->state |= PERF_HES_STOPPED; 1008 } 1009 1010 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { 1011 if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) { 1012 local64_inc(&event->count); 1013 cpuhw->usedss = cfdiag_getctr(cpuhw->stop, 1014 sizeof(cpuhw->stop), 1015 event->hw.config_base, 1016 false); 1017 if (cfdiag_diffctr(cpuhw, event->hw.config_base)) 1018 cfdiag_push_sample(event, cpuhw); 1019 } else { 1020 hw_perf_event_update(event); 1021 } 1022 hwc->state |= PERF_HES_UPTODATE; 1023 } 1024 } 1025 1026 static int cpumf_pmu_add(struct perf_event *event, int flags) 1027 { 1028 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1029 1030 ctr_set_enable(&cpuhw->state, event->hw.config_base); 1031 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 1032 1033 if (flags & PERF_EF_START) 1034 cpumf_pmu_start(event, PERF_EF_RELOAD); 1035 1036 return 0; 1037 } 1038 1039 static void cpumf_pmu_del(struct perf_event *event, int flags) 1040 { 1041 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1042 int i; 1043 1044 cpumf_pmu_stop(event, PERF_EF_UPDATE); 1045 1046 /* Check if any counter in the counter set is still used. If not used, 1047 * change the counter set to the disabled state. This also clears the 1048 * content of all counters in the set. 1049 * 1050 * When a new perf event has been added but not yet started, this can 1051 * clear enable control and resets all counters in a set. Therefore, 1052 * cpumf_pmu_start() always has to re-enable a counter set. 1053 */ 1054 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) 1055 if (!atomic_read(&cpuhw->ctr_set[i])) 1056 ctr_set_disable(&cpuhw->state, cpumf_ctr_ctl[i]); 1057 } 1058 1059 /* Performance monitoring unit for s390x */ 1060 static struct pmu cpumf_pmu = { 1061 .task_ctx_nr = perf_sw_context, 1062 .capabilities = PERF_PMU_CAP_NO_INTERRUPT, 1063 .pmu_enable = cpumf_pmu_enable, 1064 .pmu_disable = cpumf_pmu_disable, 1065 .event_init = cpumf_pmu_event_init, 1066 .add = cpumf_pmu_add, 1067 .del = cpumf_pmu_del, 1068 .start = cpumf_pmu_start, 1069 .stop = cpumf_pmu_stop, 1070 .read = cpumf_pmu_read, 1071 }; 1072 1073 static struct cfset_session { /* CPUs and counter set bit mask */ 1074 struct list_head head; /* Head of list of active processes */ 1075 } cfset_session = { 1076 .head = LIST_HEAD_INIT(cfset_session.head) 1077 }; 1078 1079 static refcount_t cfset_opencnt = REFCOUNT_INIT(0); /* Access count */ 1080 /* 1081 * Synchronize access to device /dev/hwc. This mutex protects against 1082 * concurrent access to functions cfset_open() and cfset_release(). 1083 * Same for CPU hotplug add and remove events triggering 1084 * cpum_cf_online_cpu() and cpum_cf_offline_cpu(). 1085 * It also serializes concurrent device ioctl access from multiple 1086 * processes accessing /dev/hwc. 1087 * 1088 * The mutex protects concurrent access to the /dev/hwctr session management 1089 * struct cfset_session and reference counting variable cfset_opencnt. 1090 */ 1091 static DEFINE_MUTEX(cfset_ctrset_mutex); 1092 1093 /* 1094 * CPU hotplug handles only /dev/hwctr device. 1095 * For perf_event_open() the CPU hotplug handling is done on kernel common 1096 * code: 1097 * - CPU add: Nothing is done since a file descriptor can not be created 1098 * and returned to the user. 1099 * - CPU delete: Handled by common code via pmu_disable(), pmu_stop() and 1100 * pmu_delete(). The event itself is removed when the file descriptor is 1101 * closed. 1102 */ 1103 static int cfset_online_cpu(unsigned int cpu); 1104 1105 static int cpum_cf_online_cpu(unsigned int cpu) 1106 { 1107 int rc = 0; 1108 1109 /* 1110 * Ignore notification for perf_event_open(). 1111 * Handle only /dev/hwctr device sessions. 1112 */ 1113 mutex_lock(&cfset_ctrset_mutex); 1114 if (refcount_read(&cfset_opencnt)) { 1115 rc = cpum_cf_alloc_cpu(cpu); 1116 if (!rc) 1117 cfset_online_cpu(cpu); 1118 } 1119 mutex_unlock(&cfset_ctrset_mutex); 1120 return rc; 1121 } 1122 1123 static int cfset_offline_cpu(unsigned int cpu); 1124 1125 static int cpum_cf_offline_cpu(unsigned int cpu) 1126 { 1127 /* 1128 * During task exit processing of grouped perf events triggered by CPU 1129 * hotplug processing, pmu_disable() is called as part of perf context 1130 * removal process. Therefore do not trigger event removal now for 1131 * perf_event_open() created events. Perf common code triggers event 1132 * destruction when the event file descriptor is closed. 1133 * 1134 * Handle only /dev/hwctr device sessions. 1135 */ 1136 mutex_lock(&cfset_ctrset_mutex); 1137 if (refcount_read(&cfset_opencnt)) { 1138 cfset_offline_cpu(cpu); 1139 cpum_cf_free_cpu(cpu); 1140 } 1141 mutex_unlock(&cfset_ctrset_mutex); 1142 return 0; 1143 } 1144 1145 /* Return true if store counter set multiple instruction is available */ 1146 static inline int stccm_avail(void) 1147 { 1148 return test_facility(142); 1149 } 1150 1151 /* CPU-measurement alerts for the counter facility */ 1152 static void cpumf_measurement_alert(struct ext_code ext_code, 1153 unsigned int alert, unsigned long unused) 1154 { 1155 struct cpu_cf_events *cpuhw; 1156 1157 if (!(alert & CPU_MF_INT_CF_MASK)) 1158 return; 1159 1160 inc_irq_stat(IRQEXT_CMC); 1161 1162 /* 1163 * Measurement alerts are shared and might happen when the PMU 1164 * is not reserved. Ignore these alerts in this case. 1165 */ 1166 cpuhw = this_cpu_cfhw(); 1167 if (!cpuhw) 1168 return; 1169 1170 /* counter authorization change alert */ 1171 if (alert & CPU_MF_INT_CF_CACA) 1172 qctri(&cpumf_ctr_info); 1173 1174 /* loss of counter data alert */ 1175 if (alert & CPU_MF_INT_CF_LCDA) 1176 pr_err("CPU[%i] Counter data was lost\n", smp_processor_id()); 1177 1178 /* loss of MT counter data alert */ 1179 if (alert & CPU_MF_INT_CF_MTDA) 1180 pr_warn("CPU[%i] MT counter data was lost\n", 1181 smp_processor_id()); 1182 } 1183 1184 static int cfset_init(void); 1185 static int __init cpumf_pmu_init(void) 1186 { 1187 int rc; 1188 1189 /* Extract counter measurement facility information */ 1190 if (!cpum_cf_avail() || qctri(&cpumf_ctr_info)) 1191 return -ENODEV; 1192 1193 /* Determine and store counter set sizes for later reference */ 1194 for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc) 1195 cpum_cf_make_setsize(rc); 1196 1197 /* 1198 * Clear bit 15 of cr0 to unauthorize problem-state to 1199 * extract measurement counters 1200 */ 1201 system_ctl_clear_bit(0, CR0_CPUMF_EXTRACTION_AUTH_BIT); 1202 1203 /* register handler for measurement-alert interruptions */ 1204 rc = register_external_irq(EXT_IRQ_MEASURE_ALERT, 1205 cpumf_measurement_alert); 1206 if (rc) { 1207 pr_err("Registering for CPU-measurement alerts failed with rc=%i\n", rc); 1208 return rc; 1209 } 1210 1211 /* Setup s390dbf facility */ 1212 cf_dbg = debug_register(KMSG_COMPONENT, 2, 1, 128); 1213 if (!cf_dbg) { 1214 pr_err("Registration of s390dbf(cpum_cf) failed\n"); 1215 rc = -ENOMEM; 1216 goto out1; 1217 } 1218 debug_register_view(cf_dbg, &debug_sprintf_view); 1219 1220 cpumf_pmu.attr_groups = cpumf_cf_event_group(); 1221 rc = perf_pmu_register(&cpumf_pmu, "cpum_cf", -1); 1222 if (rc) { 1223 pr_err("Registering the cpum_cf PMU failed with rc=%i\n", rc); 1224 goto out2; 1225 } else if (stccm_avail()) { /* Setup counter set device */ 1226 cfset_init(); 1227 } 1228 1229 rc = cpuhp_setup_state(CPUHP_AP_PERF_S390_CF_ONLINE, 1230 "perf/s390/cf:online", 1231 cpum_cf_online_cpu, cpum_cf_offline_cpu); 1232 return rc; 1233 1234 out2: 1235 debug_unregister_view(cf_dbg, &debug_sprintf_view); 1236 debug_unregister(cf_dbg); 1237 out1: 1238 unregister_external_irq(EXT_IRQ_MEASURE_ALERT, cpumf_measurement_alert); 1239 return rc; 1240 } 1241 1242 /* Support for the CPU Measurement Facility counter set extraction using 1243 * device /dev/hwctr. This allows user space programs to extract complete 1244 * counter set via normal file operations. 1245 */ 1246 1247 struct cfset_call_on_cpu_parm { /* Parm struct for smp_call_on_cpu */ 1248 unsigned int sets; /* Counter set bit mask */ 1249 atomic_t cpus_ack; /* # CPUs successfully executed func */ 1250 }; 1251 1252 struct cfset_request { /* CPUs and counter set bit mask */ 1253 unsigned long ctrset; /* Bit mask of counter set to read */ 1254 cpumask_t mask; /* CPU mask to read from */ 1255 struct list_head node; /* Chain to cfset_session.head */ 1256 }; 1257 1258 static void cfset_session_init(void) 1259 { 1260 INIT_LIST_HEAD(&cfset_session.head); 1261 } 1262 1263 /* Remove current request from global bookkeeping. Maintain a counter set bit 1264 * mask on a per CPU basis. 1265 * Done in process context under mutex protection. 1266 */ 1267 static void cfset_session_del(struct cfset_request *p) 1268 { 1269 list_del(&p->node); 1270 } 1271 1272 /* Add current request to global bookkeeping. Maintain a counter set bit mask 1273 * on a per CPU basis. 1274 * Done in process context under mutex protection. 1275 */ 1276 static void cfset_session_add(struct cfset_request *p) 1277 { 1278 list_add(&p->node, &cfset_session.head); 1279 } 1280 1281 /* The /dev/hwctr device access uses PMU_F_IN_USE to mark the device access 1282 * path is currently used. 1283 * The cpu_cf_events::dev_state is used to denote counter sets in use by this 1284 * interface. It is always or'ed in. If this interface is not active, its 1285 * value is zero and no additional counter sets will be included. 1286 * 1287 * The cpu_cf_events::state is used by the perf_event_open SVC and remains 1288 * unchanged. 1289 * 1290 * perf_pmu_enable() and perf_pmu_enable() and its call backs 1291 * cpumf_pmu_enable() and cpumf_pmu_disable() are called by the 1292 * performance measurement subsystem to enable per process 1293 * CPU Measurement counter facility. 1294 * The XXX_enable() and XXX_disable functions are used to turn off 1295 * x86 performance monitoring interrupt (PMI) during scheduling. 1296 * s390 uses these calls to temporarily stop and resume the active CPU 1297 * counters sets during scheduling. 1298 * 1299 * We do allow concurrent access of perf_event_open() SVC and /dev/hwctr 1300 * device access. The perf_event_open() SVC interface makes a lot of effort 1301 * to only run the counters while the calling process is actively scheduled 1302 * to run. 1303 * When /dev/hwctr interface is also used at the same time, the counter sets 1304 * will keep running, even when the process is scheduled off a CPU. 1305 * However this is not a problem and does not lead to wrong counter values 1306 * for the perf_event_open() SVC. The current counter value will be recorded 1307 * during schedule-in. At schedule-out time the current counter value is 1308 * extracted again and the delta is calculated and added to the event. 1309 */ 1310 /* Stop all counter sets via ioctl interface */ 1311 static void cfset_ioctl_off(void *parm) 1312 { 1313 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1314 struct cfset_call_on_cpu_parm *p = parm; 1315 int rc; 1316 1317 /* Check if any counter set used by /dev/hwctr */ 1318 for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc) 1319 if ((p->sets & cpumf_ctr_ctl[rc])) { 1320 if (!atomic_dec_return(&cpuhw->ctr_set[rc])) { 1321 ctr_set_disable(&cpuhw->dev_state, 1322 cpumf_ctr_ctl[rc]); 1323 ctr_set_stop(&cpuhw->dev_state, 1324 cpumf_ctr_ctl[rc]); 1325 } 1326 } 1327 /* Keep perf_event_open counter sets */ 1328 rc = lcctl(cpuhw->dev_state | cpuhw->state); 1329 if (rc) 1330 pr_err("Counter set stop %#llx of /dev/%s failed rc=%i\n", 1331 cpuhw->state, S390_HWCTR_DEVICE, rc); 1332 if (!cpuhw->dev_state) 1333 cpuhw->flags &= ~PMU_F_IN_USE; 1334 } 1335 1336 /* Start counter sets on particular CPU */ 1337 static void cfset_ioctl_on(void *parm) 1338 { 1339 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1340 struct cfset_call_on_cpu_parm *p = parm; 1341 int rc; 1342 1343 cpuhw->flags |= PMU_F_IN_USE; 1344 ctr_set_enable(&cpuhw->dev_state, p->sets); 1345 ctr_set_start(&cpuhw->dev_state, p->sets); 1346 for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc) 1347 if ((p->sets & cpumf_ctr_ctl[rc])) 1348 atomic_inc(&cpuhw->ctr_set[rc]); 1349 rc = lcctl(cpuhw->dev_state | cpuhw->state); /* Start counter sets */ 1350 if (!rc) 1351 atomic_inc(&p->cpus_ack); 1352 else 1353 pr_err("Counter set start %#llx of /dev/%s failed rc=%i\n", 1354 cpuhw->dev_state | cpuhw->state, S390_HWCTR_DEVICE, rc); 1355 } 1356 1357 static void cfset_release_cpu(void *p) 1358 { 1359 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1360 int rc; 1361 1362 cpuhw->dev_state = 0; 1363 rc = lcctl(cpuhw->state); /* Keep perf_event_open counter sets */ 1364 if (rc) 1365 pr_err("Counter set release %#llx of /dev/%s failed rc=%i\n", 1366 cpuhw->state, S390_HWCTR_DEVICE, rc); 1367 } 1368 1369 /* This modifies the process CPU mask to adopt it to the currently online 1370 * CPUs. Offline CPUs can not be addresses. This call terminates the access 1371 * and is usually followed by close() or a new iotcl(..., START, ...) which 1372 * creates a new request structure. 1373 */ 1374 static void cfset_all_stop(struct cfset_request *req) 1375 { 1376 struct cfset_call_on_cpu_parm p = { 1377 .sets = req->ctrset, 1378 }; 1379 1380 cpumask_and(&req->mask, &req->mask, cpu_online_mask); 1381 on_each_cpu_mask(&req->mask, cfset_ioctl_off, &p, 1); 1382 } 1383 1384 /* Release function is also called when application gets terminated without 1385 * doing a proper ioctl(..., S390_HWCTR_STOP, ...) command. 1386 */ 1387 static int cfset_release(struct inode *inode, struct file *file) 1388 { 1389 mutex_lock(&cfset_ctrset_mutex); 1390 /* Open followed by close/exit has no private_data */ 1391 if (file->private_data) { 1392 cfset_all_stop(file->private_data); 1393 cfset_session_del(file->private_data); 1394 kfree(file->private_data); 1395 file->private_data = NULL; 1396 } 1397 if (refcount_dec_and_test(&cfset_opencnt)) { /* Last close */ 1398 on_each_cpu(cfset_release_cpu, NULL, 1); 1399 cpum_cf_free(-1); 1400 } 1401 mutex_unlock(&cfset_ctrset_mutex); 1402 return 0; 1403 } 1404 1405 /* 1406 * Open via /dev/hwctr device. Allocate all per CPU resources on the first 1407 * open of the device. The last close releases all per CPU resources. 1408 * Parallel perf_event_open system calls also use per CPU resources. 1409 * These invocations are handled via reference counting on the per CPU data 1410 * structures. 1411 */ 1412 static int cfset_open(struct inode *inode, struct file *file) 1413 { 1414 int rc = 0; 1415 1416 if (!perfmon_capable()) 1417 return -EPERM; 1418 file->private_data = NULL; 1419 1420 mutex_lock(&cfset_ctrset_mutex); 1421 if (!refcount_inc_not_zero(&cfset_opencnt)) { /* First open */ 1422 rc = cpum_cf_alloc(-1); 1423 if (!rc) { 1424 cfset_session_init(); 1425 refcount_set(&cfset_opencnt, 1); 1426 } 1427 } 1428 mutex_unlock(&cfset_ctrset_mutex); 1429 1430 /* nonseekable_open() never fails */ 1431 return rc ?: nonseekable_open(inode, file); 1432 } 1433 1434 static int cfset_all_start(struct cfset_request *req) 1435 { 1436 struct cfset_call_on_cpu_parm p = { 1437 .sets = req->ctrset, 1438 .cpus_ack = ATOMIC_INIT(0), 1439 }; 1440 cpumask_var_t mask; 1441 int rc = 0; 1442 1443 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1444 return -ENOMEM; 1445 cpumask_and(mask, &req->mask, cpu_online_mask); 1446 on_each_cpu_mask(mask, cfset_ioctl_on, &p, 1); 1447 if (atomic_read(&p.cpus_ack) != cpumask_weight(mask)) { 1448 on_each_cpu_mask(mask, cfset_ioctl_off, &p, 1); 1449 rc = -EIO; 1450 } 1451 free_cpumask_var(mask); 1452 return rc; 1453 } 1454 1455 /* Return the maximum required space for all possible CPUs in case one 1456 * CPU will be onlined during the START, READ, STOP cycles. 1457 * To find out the size of the counter sets, any one CPU will do. They 1458 * all have the same counter sets. 1459 */ 1460 static size_t cfset_needspace(unsigned int sets) 1461 { 1462 size_t bytes = 0; 1463 int i; 1464 1465 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 1466 if (!(sets & cpumf_ctr_ctl[i])) 1467 continue; 1468 bytes += cpum_cf_read_setsize(i) * sizeof(u64) + 1469 sizeof(((struct s390_ctrset_setdata *)0)->set) + 1470 sizeof(((struct s390_ctrset_setdata *)0)->no_cnts); 1471 } 1472 bytes = sizeof(((struct s390_ctrset_read *)0)->no_cpus) + nr_cpu_ids * 1473 (bytes + sizeof(((struct s390_ctrset_cpudata *)0)->cpu_nr) + 1474 sizeof(((struct s390_ctrset_cpudata *)0)->no_sets)); 1475 return bytes; 1476 } 1477 1478 static int cfset_all_copy(unsigned long arg, cpumask_t *mask) 1479 { 1480 struct s390_ctrset_read __user *ctrset_read; 1481 unsigned int cpu, cpus, rc = 0; 1482 void __user *uptr; 1483 1484 ctrset_read = (struct s390_ctrset_read __user *)arg; 1485 uptr = ctrset_read->data; 1486 for_each_cpu(cpu, mask) { 1487 struct cpu_cf_events *cpuhw = get_cpu_cfhw(cpu); 1488 struct s390_ctrset_cpudata __user *ctrset_cpudata; 1489 1490 ctrset_cpudata = uptr; 1491 rc = put_user(cpu, &ctrset_cpudata->cpu_nr); 1492 rc |= put_user(cpuhw->sets, &ctrset_cpudata->no_sets); 1493 rc |= copy_to_user(ctrset_cpudata->data, cpuhw->data, 1494 cpuhw->used); 1495 if (rc) { 1496 rc = -EFAULT; 1497 goto out; 1498 } 1499 uptr += sizeof(struct s390_ctrset_cpudata) + cpuhw->used; 1500 cond_resched(); 1501 } 1502 cpus = cpumask_weight(mask); 1503 if (put_user(cpus, &ctrset_read->no_cpus)) 1504 rc = -EFAULT; 1505 out: 1506 return rc; 1507 } 1508 1509 static size_t cfset_cpuset_read(struct s390_ctrset_setdata *p, int ctrset, 1510 int ctrset_size, size_t room) 1511 { 1512 size_t need = 0; 1513 int rc = -1; 1514 1515 need = sizeof(*p) + sizeof(u64) * ctrset_size; 1516 if (need <= room) { 1517 p->set = cpumf_ctr_ctl[ctrset]; 1518 p->no_cnts = ctrset_size; 1519 rc = ctr_stcctm(ctrset, ctrset_size, (u64 *)p->cv); 1520 if (rc == 3) /* Nothing stored */ 1521 need = 0; 1522 } 1523 return need; 1524 } 1525 1526 /* Read all counter sets. */ 1527 static void cfset_cpu_read(void *parm) 1528 { 1529 struct cpu_cf_events *cpuhw = this_cpu_cfhw(); 1530 struct cfset_call_on_cpu_parm *p = parm; 1531 int set, set_size; 1532 size_t space; 1533 1534 /* No data saved yet */ 1535 cpuhw->used = 0; 1536 cpuhw->sets = 0; 1537 memset(cpuhw->data, 0, sizeof(cpuhw->data)); 1538 1539 /* Scan the counter sets */ 1540 for (set = CPUMF_CTR_SET_BASIC; set < CPUMF_CTR_SET_MAX; ++set) { 1541 struct s390_ctrset_setdata *sp = (void *)cpuhw->data + 1542 cpuhw->used; 1543 1544 if (!(p->sets & cpumf_ctr_ctl[set])) 1545 continue; /* Counter set not in list */ 1546 set_size = cpum_cf_read_setsize(set); 1547 space = sizeof(cpuhw->data) - cpuhw->used; 1548 space = cfset_cpuset_read(sp, set, set_size, space); 1549 if (space) { 1550 cpuhw->used += space; 1551 cpuhw->sets += 1; 1552 } 1553 } 1554 } 1555 1556 static int cfset_all_read(unsigned long arg, struct cfset_request *req) 1557 { 1558 struct cfset_call_on_cpu_parm p; 1559 cpumask_var_t mask; 1560 int rc; 1561 1562 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1563 return -ENOMEM; 1564 1565 p.sets = req->ctrset; 1566 cpumask_and(mask, &req->mask, cpu_online_mask); 1567 on_each_cpu_mask(mask, cfset_cpu_read, &p, 1); 1568 rc = cfset_all_copy(arg, mask); 1569 free_cpumask_var(mask); 1570 return rc; 1571 } 1572 1573 static long cfset_ioctl_read(unsigned long arg, struct cfset_request *req) 1574 { 1575 int ret = -ENODATA; 1576 1577 if (req && req->ctrset) 1578 ret = cfset_all_read(arg, req); 1579 return ret; 1580 } 1581 1582 static long cfset_ioctl_stop(struct file *file) 1583 { 1584 struct cfset_request *req = file->private_data; 1585 int ret = -ENXIO; 1586 1587 if (req) { 1588 cfset_all_stop(req); 1589 cfset_session_del(req); 1590 kfree(req); 1591 file->private_data = NULL; 1592 ret = 0; 1593 } 1594 return ret; 1595 } 1596 1597 static long cfset_ioctl_start(unsigned long arg, struct file *file) 1598 { 1599 struct s390_ctrset_start __user *ustart; 1600 struct s390_ctrset_start start; 1601 struct cfset_request *preq; 1602 void __user *umask; 1603 unsigned int len; 1604 int ret = 0; 1605 size_t need; 1606 1607 if (file->private_data) 1608 return -EBUSY; 1609 ustart = (struct s390_ctrset_start __user *)arg; 1610 if (copy_from_user(&start, ustart, sizeof(start))) 1611 return -EFAULT; 1612 if (start.version != S390_HWCTR_START_VERSION) 1613 return -EINVAL; 1614 if (start.counter_sets & ~(cpumf_ctr_ctl[CPUMF_CTR_SET_BASIC] | 1615 cpumf_ctr_ctl[CPUMF_CTR_SET_USER] | 1616 cpumf_ctr_ctl[CPUMF_CTR_SET_CRYPTO] | 1617 cpumf_ctr_ctl[CPUMF_CTR_SET_EXT] | 1618 cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG])) 1619 return -EINVAL; /* Invalid counter set */ 1620 if (!start.counter_sets) 1621 return -EINVAL; /* No counter set at all? */ 1622 1623 preq = kzalloc(sizeof(*preq), GFP_KERNEL); 1624 if (!preq) 1625 return -ENOMEM; 1626 cpumask_clear(&preq->mask); 1627 len = min_t(u64, start.cpumask_len, cpumask_size()); 1628 umask = (void __user *)start.cpumask; 1629 if (copy_from_user(&preq->mask, umask, len)) { 1630 kfree(preq); 1631 return -EFAULT; 1632 } 1633 if (cpumask_empty(&preq->mask)) { 1634 kfree(preq); 1635 return -EINVAL; 1636 } 1637 need = cfset_needspace(start.counter_sets); 1638 if (put_user(need, &ustart->data_bytes)) { 1639 kfree(preq); 1640 return -EFAULT; 1641 } 1642 preq->ctrset = start.counter_sets; 1643 ret = cfset_all_start(preq); 1644 if (!ret) { 1645 cfset_session_add(preq); 1646 file->private_data = preq; 1647 } else { 1648 kfree(preq); 1649 } 1650 return ret; 1651 } 1652 1653 /* Entry point to the /dev/hwctr device interface. 1654 * The ioctl system call supports three subcommands: 1655 * S390_HWCTR_START: Start the specified counter sets on a CPU list. The 1656 * counter set keeps running until explicitly stopped. Returns the number 1657 * of bytes needed to store the counter values. If another S390_HWCTR_START 1658 * ioctl subcommand is called without a previous S390_HWCTR_STOP stop 1659 * command on the same file descriptor, -EBUSY is returned. 1660 * S390_HWCTR_READ: Read the counter set values from specified CPU list given 1661 * with the S390_HWCTR_START command. 1662 * S390_HWCTR_STOP: Stops the counter sets on the CPU list given with the 1663 * previous S390_HWCTR_START subcommand. 1664 */ 1665 static long cfset_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1666 { 1667 int ret; 1668 1669 cpus_read_lock(); 1670 mutex_lock(&cfset_ctrset_mutex); 1671 switch (cmd) { 1672 case S390_HWCTR_START: 1673 ret = cfset_ioctl_start(arg, file); 1674 break; 1675 case S390_HWCTR_STOP: 1676 ret = cfset_ioctl_stop(file); 1677 break; 1678 case S390_HWCTR_READ: 1679 ret = cfset_ioctl_read(arg, file->private_data); 1680 break; 1681 default: 1682 ret = -ENOTTY; 1683 break; 1684 } 1685 mutex_unlock(&cfset_ctrset_mutex); 1686 cpus_read_unlock(); 1687 return ret; 1688 } 1689 1690 static const struct file_operations cfset_fops = { 1691 .owner = THIS_MODULE, 1692 .open = cfset_open, 1693 .release = cfset_release, 1694 .unlocked_ioctl = cfset_ioctl, 1695 .compat_ioctl = cfset_ioctl, 1696 }; 1697 1698 static struct miscdevice cfset_dev = { 1699 .name = S390_HWCTR_DEVICE, 1700 .minor = MISC_DYNAMIC_MINOR, 1701 .fops = &cfset_fops, 1702 .mode = 0666, 1703 }; 1704 1705 /* Hotplug add of a CPU. Scan through all active processes and add 1706 * that CPU to the list of CPUs supplied with ioctl(..., START, ...). 1707 */ 1708 static int cfset_online_cpu(unsigned int cpu) 1709 { 1710 struct cfset_call_on_cpu_parm p; 1711 struct cfset_request *rp; 1712 1713 if (!list_empty(&cfset_session.head)) { 1714 list_for_each_entry(rp, &cfset_session.head, node) { 1715 p.sets = rp->ctrset; 1716 cfset_ioctl_on(&p); 1717 cpumask_set_cpu(cpu, &rp->mask); 1718 } 1719 } 1720 return 0; 1721 } 1722 1723 /* Hotplug remove of a CPU. Scan through all active processes and clear 1724 * that CPU from the list of CPUs supplied with ioctl(..., START, ...). 1725 * Adjust reference counts. 1726 */ 1727 static int cfset_offline_cpu(unsigned int cpu) 1728 { 1729 struct cfset_call_on_cpu_parm p; 1730 struct cfset_request *rp; 1731 1732 if (!list_empty(&cfset_session.head)) { 1733 list_for_each_entry(rp, &cfset_session.head, node) { 1734 p.sets = rp->ctrset; 1735 cfset_ioctl_off(&p); 1736 cpumask_clear_cpu(cpu, &rp->mask); 1737 } 1738 } 1739 return 0; 1740 } 1741 1742 static void cfdiag_read(struct perf_event *event) 1743 { 1744 } 1745 1746 static int get_authctrsets(void) 1747 { 1748 unsigned long auth = 0; 1749 enum cpumf_ctr_set i; 1750 1751 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 1752 if (cpumf_ctr_info.auth_ctl & cpumf_ctr_ctl[i]) 1753 auth |= cpumf_ctr_ctl[i]; 1754 } 1755 return auth; 1756 } 1757 1758 /* Setup the event. Test for authorized counter sets and only include counter 1759 * sets which are authorized at the time of the setup. Including unauthorized 1760 * counter sets result in specification exception (and panic). 1761 */ 1762 static int cfdiag_event_init2(struct perf_event *event) 1763 { 1764 struct perf_event_attr *attr = &event->attr; 1765 int err = 0; 1766 1767 /* Set sample_period to indicate sampling */ 1768 event->hw.config = attr->config; 1769 event->hw.sample_period = attr->sample_period; 1770 local64_set(&event->hw.period_left, event->hw.sample_period); 1771 local64_set(&event->count, 0); 1772 event->hw.last_period = event->hw.sample_period; 1773 1774 /* Add all authorized counter sets to config_base. The 1775 * the hardware init function is either called per-cpu or just once 1776 * for all CPUS (event->cpu == -1). This depends on the whether 1777 * counting is started for all CPUs or on a per workload base where 1778 * the perf event moves from one CPU to another CPU. 1779 * Checking the authorization on any CPU is fine as the hardware 1780 * applies the same authorization settings to all CPUs. 1781 */ 1782 event->hw.config_base = get_authctrsets(); 1783 1784 /* No authorized counter sets, nothing to count/sample */ 1785 if (!event->hw.config_base) 1786 err = -EINVAL; 1787 1788 return err; 1789 } 1790 1791 static int cfdiag_event_init(struct perf_event *event) 1792 { 1793 struct perf_event_attr *attr = &event->attr; 1794 int err = -ENOENT; 1795 1796 if (event->attr.config != PERF_EVENT_CPUM_CF_DIAG || 1797 event->attr.type != event->pmu->type) 1798 goto out; 1799 1800 /* Raw events are used to access counters directly, 1801 * hence do not permit excludes. 1802 * This event is useless without PERF_SAMPLE_RAW to return counter set 1803 * values as raw data. 1804 */ 1805 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv || 1806 !(attr->sample_type & (PERF_SAMPLE_CPU | PERF_SAMPLE_RAW))) { 1807 err = -EOPNOTSUPP; 1808 goto out; 1809 } 1810 1811 /* Initialize for using the CPU-measurement counter facility */ 1812 if (cpum_cf_alloc(event->cpu)) 1813 return -ENOMEM; 1814 event->destroy = hw_perf_event_destroy; 1815 1816 err = cfdiag_event_init2(event); 1817 out: 1818 return err; 1819 } 1820 1821 /* Create cf_diag/events/CF_DIAG event sysfs file. This counter is used 1822 * to collect the complete counter sets for a scheduled process. Target 1823 * are complete counter sets attached as raw data to the artificial event. 1824 * This results in complete counter sets available when a process is 1825 * scheduled. Contains the delta of every counter while the process was 1826 * running. 1827 */ 1828 CPUMF_EVENT_ATTR(CF_DIAG, CF_DIAG, PERF_EVENT_CPUM_CF_DIAG); 1829 1830 static struct attribute *cfdiag_events_attr[] = { 1831 CPUMF_EVENT_PTR(CF_DIAG, CF_DIAG), 1832 NULL, 1833 }; 1834 1835 PMU_FORMAT_ATTR(event, "config:0-63"); 1836 1837 static struct attribute *cfdiag_format_attr[] = { 1838 &format_attr_event.attr, 1839 NULL, 1840 }; 1841 1842 static struct attribute_group cfdiag_events_group = { 1843 .name = "events", 1844 .attrs = cfdiag_events_attr, 1845 }; 1846 static struct attribute_group cfdiag_format_group = { 1847 .name = "format", 1848 .attrs = cfdiag_format_attr, 1849 }; 1850 static const struct attribute_group *cfdiag_attr_groups[] = { 1851 &cfdiag_events_group, 1852 &cfdiag_format_group, 1853 NULL, 1854 }; 1855 1856 /* Performance monitoring unit for event CF_DIAG. Since this event 1857 * is also started and stopped via the perf_event_open() system call, use 1858 * the same event enable/disable call back functions. They do not 1859 * have a pointer to the perf_event structure as first parameter. 1860 * 1861 * The functions XXX_add, XXX_del, XXX_start and XXX_stop are also common. 1862 * Reuse them and distinguish the event (always first parameter) via 1863 * 'config' member. 1864 */ 1865 static struct pmu cf_diag = { 1866 .task_ctx_nr = perf_sw_context, 1867 .event_init = cfdiag_event_init, 1868 .pmu_enable = cpumf_pmu_enable, 1869 .pmu_disable = cpumf_pmu_disable, 1870 .add = cpumf_pmu_add, 1871 .del = cpumf_pmu_del, 1872 .start = cpumf_pmu_start, 1873 .stop = cpumf_pmu_stop, 1874 .read = cfdiag_read, 1875 1876 .attr_groups = cfdiag_attr_groups 1877 }; 1878 1879 /* Calculate memory needed to store all counter sets together with header and 1880 * trailer data. This is independent of the counter set authorization which 1881 * can vary depending on the configuration. 1882 */ 1883 static size_t cfdiag_maxsize(struct cpumf_ctr_info *info) 1884 { 1885 size_t max_size = sizeof(struct cf_trailer_entry); 1886 enum cpumf_ctr_set i; 1887 1888 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) { 1889 size_t size = cpum_cf_read_setsize(i); 1890 1891 if (size) 1892 max_size += size * sizeof(u64) + 1893 sizeof(struct cf_ctrset_entry); 1894 } 1895 return max_size; 1896 } 1897 1898 /* Get the CPU speed, try sampling facility first and CPU attributes second. */ 1899 static void cfdiag_get_cpu_speed(void) 1900 { 1901 unsigned long mhz; 1902 1903 if (cpum_sf_avail()) { /* Sampling facility first */ 1904 struct hws_qsi_info_block si; 1905 1906 memset(&si, 0, sizeof(si)); 1907 if (!qsi(&si)) { 1908 cfdiag_cpu_speed = si.cpu_speed; 1909 return; 1910 } 1911 } 1912 1913 /* Fallback: CPU speed extract static part. Used in case 1914 * CPU Measurement Sampling Facility is turned off. 1915 */ 1916 mhz = __ecag(ECAG_CPU_ATTRIBUTE, 0); 1917 if (mhz != -1UL) 1918 cfdiag_cpu_speed = mhz & 0xffffffff; 1919 } 1920 1921 static int cfset_init(void) 1922 { 1923 size_t need; 1924 int rc; 1925 1926 cfdiag_get_cpu_speed(); 1927 /* Make sure the counter set data fits into predefined buffer. */ 1928 need = cfdiag_maxsize(&cpumf_ctr_info); 1929 if (need > sizeof(((struct cpu_cf_events *)0)->start)) { 1930 pr_err("Insufficient memory for PMU(cpum_cf_diag) need=%zu\n", 1931 need); 1932 return -ENOMEM; 1933 } 1934 1935 rc = misc_register(&cfset_dev); 1936 if (rc) { 1937 pr_err("Registration of /dev/%s failed rc=%i\n", 1938 cfset_dev.name, rc); 1939 goto out; 1940 } 1941 1942 rc = perf_pmu_register(&cf_diag, "cpum_cf_diag", -1); 1943 if (rc) { 1944 misc_deregister(&cfset_dev); 1945 pr_err("Registration of PMU(cpum_cf_diag) failed with rc=%i\n", 1946 rc); 1947 } 1948 out: 1949 return rc; 1950 } 1951 1952 device_initcall(cpumf_pmu_init); 1953