1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/mm_types.h> 8 #include <linux/memblock.h> 9 #include <linux/memremap.h> 10 #include <linux/pkeys.h> 11 #include <linux/debugfs.h> 12 #include <linux/proc_fs.h> 13 14 #include <asm/pgalloc.h> 15 #include <asm/tlb.h> 16 #include <asm/trace.h> 17 #include <asm/powernv.h> 18 #include <asm/firmware.h> 19 #include <asm/ultravisor.h> 20 #include <asm/kexec.h> 21 22 #include <mm/mmu_decl.h> 23 #include <trace/events/thp.h> 24 25 #include "internal.h" 26 27 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; 28 EXPORT_SYMBOL_GPL(mmu_psize_defs); 29 30 #ifdef CONFIG_SPARSEMEM_VMEMMAP 31 int mmu_vmemmap_psize = MMU_PAGE_4K; 32 #endif 33 34 unsigned long __pmd_frag_nr; 35 EXPORT_SYMBOL(__pmd_frag_nr); 36 unsigned long __pmd_frag_size_shift; 37 EXPORT_SYMBOL(__pmd_frag_size_shift); 38 39 #ifdef CONFIG_KFENCE 40 extern bool kfence_early_init; 41 static int __init parse_kfence_early_init(char *arg) 42 { 43 int val; 44 45 if (get_option(&arg, &val)) 46 kfence_early_init = !!val; 47 return 0; 48 } 49 early_param("kfence.sample_interval", parse_kfence_early_init); 50 #endif 51 52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 53 /* 54 * This is called when relaxing access to a hugepage. It's also called in the page 55 * fault path when we don't hit any of the major fault cases, ie, a minor 56 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 57 * handled those two for us, we additionally deal with missing execute 58 * permission here on some processors 59 */ 60 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 61 pmd_t *pmdp, pmd_t entry, int dirty) 62 { 63 int changed; 64 #ifdef CONFIG_DEBUG_VM 65 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); 66 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); 67 #endif 68 changed = !pmd_same(*(pmdp), entry); 69 if (changed) { 70 /* 71 * We can use MMU_PAGE_2M here, because only radix 72 * path look at the psize. 73 */ 74 __ptep_set_access_flags(vma, pmdp_ptep(pmdp), 75 pmd_pte(entry), address, MMU_PAGE_2M); 76 } 77 return changed; 78 } 79 80 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 81 pud_t *pudp, pud_t entry, int dirty) 82 { 83 int changed; 84 #ifdef CONFIG_DEBUG_VM 85 WARN_ON(!pud_devmap(*pudp)); 86 assert_spin_locked(pud_lockptr(vma->vm_mm, pudp)); 87 #endif 88 changed = !pud_same(*(pudp), entry); 89 if (changed) { 90 /* 91 * We can use MMU_PAGE_1G here, because only radix 92 * path look at the psize. 93 */ 94 __ptep_set_access_flags(vma, pudp_ptep(pudp), 95 pud_pte(entry), address, MMU_PAGE_1G); 96 } 97 return changed; 98 } 99 100 101 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 102 unsigned long address, pmd_t *pmdp) 103 { 104 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 105 } 106 107 int pudp_test_and_clear_young(struct vm_area_struct *vma, 108 unsigned long address, pud_t *pudp) 109 { 110 return __pudp_test_and_clear_young(vma->vm_mm, address, pudp); 111 } 112 113 /* 114 * set a new huge pmd. We should not be called for updating 115 * an existing pmd entry. That should go via pmd_hugepage_update. 116 */ 117 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 118 pmd_t *pmdp, pmd_t pmd) 119 { 120 #ifdef CONFIG_DEBUG_VM 121 /* 122 * Make sure hardware valid bit is not set. We don't do 123 * tlb flush for this update. 124 */ 125 126 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); 127 assert_spin_locked(pmd_lockptr(mm, pmdp)); 128 WARN_ON(!(pmd_leaf(pmd))); 129 #endif 130 trace_hugepage_set_pmd(addr, pmd_val(pmd)); 131 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); 132 } 133 134 void set_pud_at(struct mm_struct *mm, unsigned long addr, 135 pud_t *pudp, pud_t pud) 136 { 137 #ifdef CONFIG_DEBUG_VM 138 /* 139 * Make sure hardware valid bit is not set. We don't do 140 * tlb flush for this update. 141 */ 142 143 WARN_ON(pte_hw_valid(pud_pte(*pudp))); 144 assert_spin_locked(pud_lockptr(mm, pudp)); 145 WARN_ON(!(pud_leaf(pud))); 146 #endif 147 trace_hugepage_set_pud(addr, pud_val(pud)); 148 return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud)); 149 } 150 151 static void do_serialize(void *arg) 152 { 153 /* We've taken the IPI, so try to trim the mask while here */ 154 if (radix_enabled()) { 155 struct mm_struct *mm = arg; 156 exit_lazy_flush_tlb(mm, false); 157 } 158 } 159 160 /* 161 * Serialize against __find_linux_pte() which does lock-less 162 * lookup in page tables with local interrupts disabled. For huge pages 163 * it casts pmd_t to pte_t. Since format of pte_t is different from 164 * pmd_t we want to prevent transit from pmd pointing to page table 165 * to pmd pointing to huge page (and back) while interrupts are disabled. 166 * We clear pmd to possibly replace it with page table pointer in 167 * different code paths. So make sure we wait for the parallel 168 * __find_linux_pte() to finish. 169 */ 170 void serialize_against_pte_lookup(struct mm_struct *mm) 171 { 172 smp_mb(); 173 smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1); 174 } 175 176 /* 177 * We use this to invalidate a pmdp entry before switching from a 178 * hugepte to regular pmd entry. 179 */ 180 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 181 pmd_t *pmdp) 182 { 183 unsigned long old_pmd; 184 185 VM_WARN_ON_ONCE(!pmd_present(*pmdp)); 186 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); 187 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 188 return __pmd(old_pmd); 189 } 190 191 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address, 192 pud_t *pudp) 193 { 194 unsigned long old_pud; 195 196 VM_WARN_ON_ONCE(!pud_present(*pudp)); 197 old_pud = pud_hugepage_update(vma->vm_mm, address, pudp, _PAGE_PRESENT, _PAGE_INVALID); 198 flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE); 199 return __pud(old_pud); 200 } 201 202 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 203 unsigned long addr, pmd_t *pmdp, int full) 204 { 205 pmd_t pmd; 206 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 207 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) && 208 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp)); 209 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 210 /* 211 * if it not a fullmm flush, then we can possibly end up converting 212 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 213 * Make sure we flush the tlb in this case. 214 */ 215 if (!full) 216 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); 217 return pmd; 218 } 219 220 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 221 unsigned long addr, pud_t *pudp, int full) 222 { 223 pud_t pud; 224 225 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 226 VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) || 227 !pud_present(*pudp)); 228 pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp); 229 /* 230 * if it not a fullmm flush, then we can possibly end up converting 231 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 232 * Make sure we flush the tlb in this case. 233 */ 234 if (!full) 235 flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE); 236 return pud; 237 } 238 239 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) 240 { 241 return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); 242 } 243 244 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot) 245 { 246 return __pud(pud_val(pud) | pgprot_val(pgprot)); 247 } 248 249 /* 250 * At some point we should be able to get rid of 251 * pmd_mkhuge() and mk_huge_pmd() when we update all the 252 * other archs to mark the pmd huge in pfn_pmd() 253 */ 254 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 255 { 256 unsigned long pmdv; 257 258 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 259 260 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot)); 261 } 262 263 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot) 264 { 265 unsigned long pudv; 266 267 pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 268 269 return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot)); 270 } 271 272 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 273 { 274 unsigned long pmdv; 275 276 pmdv = pmd_val(pmd); 277 pmdv &= _HPAGE_CHG_MASK; 278 return pmd_set_protbits(__pmd(pmdv), newprot); 279 } 280 281 pud_t pud_modify(pud_t pud, pgprot_t newprot) 282 { 283 unsigned long pudv; 284 285 pudv = pud_val(pud); 286 pudv &= _HPAGE_CHG_MASK; 287 return pud_set_protbits(__pud(pudv), newprot); 288 } 289 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 290 291 /* For use by kexec, called with MMU off */ 292 notrace void mmu_cleanup_all(void) 293 { 294 if (radix_enabled()) 295 radix__mmu_cleanup_all(); 296 else if (mmu_hash_ops.hpte_clear_all) 297 mmu_hash_ops.hpte_clear_all(); 298 299 reset_sprs(); 300 } 301 302 #ifdef CONFIG_MEMORY_HOTPLUG 303 int __meminit create_section_mapping(unsigned long start, unsigned long end, 304 int nid, pgprot_t prot) 305 { 306 if (radix_enabled()) 307 return radix__create_section_mapping(start, end, nid, prot); 308 309 return hash__create_section_mapping(start, end, nid, prot); 310 } 311 312 int __meminit remove_section_mapping(unsigned long start, unsigned long end) 313 { 314 if (radix_enabled()) 315 return radix__remove_section_mapping(start, end); 316 317 return hash__remove_section_mapping(start, end); 318 } 319 #endif /* CONFIG_MEMORY_HOTPLUG */ 320 321 void __init mmu_partition_table_init(void) 322 { 323 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; 324 unsigned long ptcr; 325 326 /* Initialize the Partition Table with no entries */ 327 partition_tb = memblock_alloc_or_panic(patb_size, patb_size); 328 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); 329 set_ptcr_when_no_uv(ptcr); 330 powernv_set_nmmu_ptcr(ptcr); 331 } 332 333 static void flush_partition(unsigned int lpid, bool radix) 334 { 335 if (radix) { 336 radix__flush_all_lpid(lpid); 337 radix__flush_all_lpid_guest(lpid); 338 } else { 339 asm volatile("ptesync" : : : "memory"); 340 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : 341 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 342 /* do we need fixup here ?*/ 343 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 344 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); 345 } 346 } 347 348 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, 349 unsigned long dw1, bool flush) 350 { 351 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); 352 353 /* 354 * When ultravisor is enabled, the partition table is stored in secure 355 * memory and can only be accessed doing an ultravisor call. However, we 356 * maintain a copy of the partition table in normal memory to allow Nest 357 * MMU translations to occur (for normal VMs). 358 * 359 * Therefore, here we always update partition_tb, regardless of whether 360 * we are running under an ultravisor or not. 361 */ 362 partition_tb[lpid].patb0 = cpu_to_be64(dw0); 363 partition_tb[lpid].patb1 = cpu_to_be64(dw1); 364 365 /* 366 * If ultravisor is enabled, we do an ultravisor call to register the 367 * partition table entry (PATE), which also do a global flush of TLBs 368 * and partition table caches for the lpid. Otherwise, just do the 369 * flush. The type of flush (hash or radix) depends on what the previous 370 * use of the partition ID was, not the new use. 371 */ 372 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) { 373 uv_register_pate(lpid, dw0, dw1); 374 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n", 375 dw0, dw1); 376 } else if (flush) { 377 /* 378 * Boot does not need to flush, because MMU is off and each 379 * CPU does a tlbiel_all() before switching them on, which 380 * flushes everything. 381 */ 382 flush_partition(lpid, (old & PATB_HR)); 383 } 384 } 385 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); 386 387 static pmd_t *get_pmd_from_cache(struct mm_struct *mm) 388 { 389 void *pmd_frag, *ret; 390 391 if (PMD_FRAG_NR == 1) 392 return NULL; 393 394 spin_lock(&mm->page_table_lock); 395 ret = mm->context.pmd_frag; 396 if (ret) { 397 pmd_frag = ret + PMD_FRAG_SIZE; 398 /* 399 * If we have taken up all the fragments mark PTE page NULL 400 */ 401 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) 402 pmd_frag = NULL; 403 mm->context.pmd_frag = pmd_frag; 404 } 405 spin_unlock(&mm->page_table_lock); 406 return (pmd_t *)ret; 407 } 408 409 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) 410 { 411 void *ret = NULL; 412 struct ptdesc *ptdesc; 413 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; 414 415 if (mm == &init_mm) 416 gfp &= ~__GFP_ACCOUNT; 417 ptdesc = pagetable_alloc(gfp, 0); 418 if (!ptdesc) 419 return NULL; 420 if (!pagetable_pmd_ctor(mm, ptdesc)) { 421 pagetable_free(ptdesc); 422 return NULL; 423 } 424 425 atomic_set(&ptdesc->pt_frag_refcount, 1); 426 427 ret = ptdesc_address(ptdesc); 428 /* 429 * if we support only one fragment just return the 430 * allocated page. 431 */ 432 if (PMD_FRAG_NR == 1) 433 return ret; 434 435 spin_lock(&mm->page_table_lock); 436 /* 437 * If we find ptdesc_page set, we return 438 * the allocated page with single fragment 439 * count. 440 */ 441 if (likely(!mm->context.pmd_frag)) { 442 atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR); 443 mm->context.pmd_frag = ret + PMD_FRAG_SIZE; 444 } 445 spin_unlock(&mm->page_table_lock); 446 447 return (pmd_t *)ret; 448 } 449 450 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) 451 { 452 pmd_t *pmd; 453 454 pmd = get_pmd_from_cache(mm); 455 if (pmd) 456 return pmd; 457 458 return __alloc_for_pmdcache(mm); 459 } 460 461 void pmd_fragment_free(unsigned long *pmd) 462 { 463 struct ptdesc *ptdesc = virt_to_ptdesc(pmd); 464 465 if (pagetable_is_reserved(ptdesc)) 466 return free_reserved_ptdesc(ptdesc); 467 468 BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0); 469 if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) { 470 pagetable_dtor(ptdesc); 471 pagetable_free(ptdesc); 472 } 473 } 474 475 static inline void pgtable_free(void *table, int index) 476 { 477 switch (index) { 478 case PTE_INDEX: 479 pte_fragment_free(table, 0); 480 break; 481 case PMD_INDEX: 482 pmd_fragment_free(table); 483 break; 484 case PUD_INDEX: 485 __pud_free(table); 486 break; 487 /* We don't free pgd table via RCU callback */ 488 default: 489 BUG(); 490 } 491 } 492 493 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 494 { 495 unsigned long pgf = (unsigned long)table; 496 497 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); 498 pgf |= index; 499 tlb_remove_table(tlb, (void *)pgf); 500 } 501 502 void __tlb_remove_table(void *_table) 503 { 504 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 505 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 506 507 return pgtable_free(table, index); 508 } 509 510 #ifdef CONFIG_PROC_FS 511 atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 512 513 void arch_report_meminfo(struct seq_file *m) 514 { 515 /* 516 * Hash maps the memory with one size mmu_linear_psize. 517 * So don't bother to print these on hash 518 */ 519 if (!radix_enabled()) 520 return; 521 seq_printf(m, "DirectMap4k: %8lu kB\n", 522 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); 523 seq_printf(m, "DirectMap64k: %8lu kB\n", 524 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); 525 seq_printf(m, "DirectMap2M: %8lu kB\n", 526 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); 527 seq_printf(m, "DirectMap1G: %8lu kB\n", 528 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); 529 } 530 #endif /* CONFIG_PROC_FS */ 531 532 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, 533 pte_t *ptep) 534 { 535 unsigned long pte_val; 536 537 /* 538 * Clear the _PAGE_PRESENT so that no hardware parallel update is 539 * possible. Also keep the pte_present true so that we don't take 540 * wrong fault. 541 */ 542 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); 543 544 return __pte(pte_val); 545 546 } 547 548 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 549 pte_t *ptep, pte_t old_pte, pte_t pte) 550 { 551 if (radix_enabled()) 552 return radix__ptep_modify_prot_commit(vma, addr, 553 ptep, old_pte, pte); 554 set_pte_at(vma->vm_mm, addr, ptep, pte); 555 } 556 557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 558 /* 559 * For hash translation mode, we use the deposited table to store hash slot 560 * information and they are stored at PTRS_PER_PMD offset from related pmd 561 * location. Hence a pmd move requires deposit and withdraw. 562 * 563 * For radix translation with split pmd ptl, we store the deposited table in the 564 * pmd page. Hence if we have different pmd page we need to withdraw during pmd 565 * move. 566 * 567 * With hash we use deposited table always irrespective of anon or not. 568 * With radix we use deposited table only for anonymous mapping. 569 */ 570 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 571 struct spinlock *old_pmd_ptl, 572 struct vm_area_struct *vma) 573 { 574 if (radix_enabled()) 575 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 576 577 return true; 578 } 579 #endif 580 581 /* 582 * Does the CPU support tlbie? 583 */ 584 bool tlbie_capable __read_mostly = IS_ENABLED(CONFIG_PPC_RADIX_BROADCAST_TLBIE); 585 EXPORT_SYMBOL(tlbie_capable); 586 587 /* 588 * Should tlbie be used for management of CPU TLBs, for kernel and process 589 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM 590 * guest address spaces. 591 */ 592 bool tlbie_enabled __read_mostly = IS_ENABLED(CONFIG_PPC_RADIX_BROADCAST_TLBIE); 593 594 static int __init setup_disable_tlbie(char *str) 595 { 596 if (!radix_enabled()) { 597 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n"); 598 return 1; 599 } 600 601 tlbie_capable = false; 602 tlbie_enabled = false; 603 604 return 1; 605 } 606 __setup("disable_tlbie", setup_disable_tlbie); 607 608 static int __init pgtable_debugfs_setup(void) 609 { 610 if (!tlbie_capable) 611 return 0; 612 613 /* 614 * There is no locking vs tlb flushing when changing this value. 615 * The tlb flushers will see one value or another, and use either 616 * tlbie or tlbiel with IPIs. In both cases the TLBs will be 617 * invalidated as expected. 618 */ 619 debugfs_create_bool("tlbie_enabled", 0600, 620 arch_debugfs_dir, 621 &tlbie_enabled); 622 623 return 0; 624 } 625 arch_initcall(pgtable_debugfs_setup); 626 627 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN) 628 /* 629 * Override the generic version in mm/memremap.c. 630 * 631 * With hash translation, the direct-map range is mapped with just one 632 * page size selected by htab_init_page_sizes(). Consult 633 * mmu_psize_defs[] to determine the minimum page size alignment. 634 */ 635 unsigned long memremap_compat_align(void) 636 { 637 if (!radix_enabled()) { 638 unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift; 639 return max(SUBSECTION_SIZE, 1UL << shift); 640 } 641 642 return SUBSECTION_SIZE; 643 } 644 EXPORT_SYMBOL_GPL(memremap_compat_align); 645 #endif 646 647 pgprot_t vm_get_page_prot(unsigned long vm_flags) 648 { 649 unsigned long prot; 650 651 /* Radix supports execute-only, but protection_map maps X -> RX */ 652 if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)) 653 vm_flags |= VM_READ; 654 655 prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]); 656 657 if (vm_flags & VM_SAO) 658 prot |= _PAGE_SAO; 659 660 #ifdef CONFIG_PPC_MEM_KEYS 661 prot |= vmflag_to_pte_pkey_bits(vm_flags); 662 #endif 663 664 return __pgprot(prot); 665 } 666 EXPORT_SYMBOL(vm_get_page_prot); 667