1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #include <linux/irqchip/arm-gic-v3.h> 4 #include <linux/irq.h> 5 #include <linux/irqdomain.h> 6 #include <linux/kstrtox.h> 7 #include <linux/kvm.h> 8 #include <linux/kvm_host.h> 9 #include <linux/string_choices.h> 10 #include <kvm/arm_vgic.h> 11 #include <asm/kvm_hyp.h> 12 #include <asm/kvm_mmu.h> 13 #include <asm/kvm_asm.h> 14 15 #include "vgic.h" 16 17 static bool group0_trap; 18 static bool group1_trap; 19 static bool common_trap; 20 static bool dir_trap; 21 static bool gicv4_enable; 22 23 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu) 24 { 25 struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3; 26 27 cpuif->vgic_hcr |= ICH_HCR_UIE; 28 } 29 30 static bool lr_signals_eoi_mi(u64 lr_val) 31 { 32 return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) && 33 !(lr_val & ICH_LR_HW); 34 } 35 36 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu) 37 { 38 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 39 struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3; 40 u32 model = vcpu->kvm->arch.vgic.vgic_model; 41 int lr; 42 43 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); 44 45 cpuif->vgic_hcr &= ~ICH_HCR_UIE; 46 47 for (lr = 0; lr < cpuif->used_lrs; lr++) { 48 u64 val = cpuif->vgic_lr[lr]; 49 u32 intid, cpuid; 50 struct vgic_irq *irq; 51 bool is_v2_sgi = false; 52 bool deactivated; 53 54 cpuid = val & GICH_LR_PHYSID_CPUID; 55 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; 56 57 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) { 58 intid = val & ICH_LR_VIRTUAL_ID_MASK; 59 } else { 60 intid = val & GICH_LR_VIRTUALID; 61 is_v2_sgi = vgic_irq_is_sgi(intid); 62 } 63 64 /* Notify fds when the guest EOI'ed a level-triggered IRQ */ 65 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) 66 kvm_notify_acked_irq(vcpu->kvm, 0, 67 intid - VGIC_NR_PRIVATE_IRQS); 68 69 irq = vgic_get_vcpu_irq(vcpu, intid); 70 if (!irq) /* An LPI could have been unmapped. */ 71 continue; 72 73 raw_spin_lock(&irq->irq_lock); 74 75 /* Always preserve the active bit, note deactivation */ 76 deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT); 77 irq->active = !!(val & ICH_LR_ACTIVE_BIT); 78 79 if (irq->active && is_v2_sgi) 80 irq->active_source = cpuid; 81 82 /* Edge is the only case where we preserve the pending bit */ 83 if (irq->config == VGIC_CONFIG_EDGE && 84 (val & ICH_LR_PENDING_BIT)) { 85 irq->pending_latch = true; 86 87 if (is_v2_sgi) 88 irq->source |= (1 << cpuid); 89 } 90 91 /* 92 * Clear soft pending state when level irqs have been acked. 93 */ 94 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE)) 95 irq->pending_latch = false; 96 97 /* Handle resampling for mapped interrupts if required */ 98 vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT); 99 100 raw_spin_unlock(&irq->irq_lock); 101 vgic_put_irq(vcpu->kvm, irq); 102 } 103 104 cpuif->used_lrs = 0; 105 } 106 107 /* Requires the irq to be locked already */ 108 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) 109 { 110 u32 model = vcpu->kvm->arch.vgic.vgic_model; 111 u64 val = irq->intid; 112 bool allow_pending = true, is_v2_sgi; 113 114 is_v2_sgi = (vgic_irq_is_sgi(irq->intid) && 115 model == KVM_DEV_TYPE_ARM_VGIC_V2); 116 117 if (irq->active) { 118 val |= ICH_LR_ACTIVE_BIT; 119 if (is_v2_sgi) 120 val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT; 121 if (vgic_irq_is_multi_sgi(irq)) { 122 allow_pending = false; 123 val |= ICH_LR_EOI; 124 } 125 } 126 127 if (irq->hw && !vgic_irq_needs_resampling(irq)) { 128 val |= ICH_LR_HW; 129 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT; 130 /* 131 * Never set pending+active on a HW interrupt, as the 132 * pending state is kept at the physical distributor 133 * level. 134 */ 135 if (irq->active) 136 allow_pending = false; 137 } else { 138 if (irq->config == VGIC_CONFIG_LEVEL) { 139 val |= ICH_LR_EOI; 140 141 /* 142 * Software resampling doesn't work very well 143 * if we allow P+A, so let's not do that. 144 */ 145 if (irq->active) 146 allow_pending = false; 147 } 148 } 149 150 if (allow_pending && irq_is_pending(irq)) { 151 val |= ICH_LR_PENDING_BIT; 152 153 if (irq->config == VGIC_CONFIG_EDGE) 154 irq->pending_latch = false; 155 156 if (vgic_irq_is_sgi(irq->intid) && 157 model == KVM_DEV_TYPE_ARM_VGIC_V2) { 158 u32 src = ffs(irq->source); 159 160 if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n", 161 irq->intid)) 162 return; 163 164 val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; 165 irq->source &= ~(1 << (src - 1)); 166 if (irq->source) { 167 irq->pending_latch = true; 168 val |= ICH_LR_EOI; 169 } 170 } 171 } 172 173 /* 174 * Level-triggered mapped IRQs are special because we only observe 175 * rising edges as input to the VGIC. We therefore lower the line 176 * level here, so that we can take new virtual IRQs. See 177 * vgic_v3_fold_lr_state for more info. 178 */ 179 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) 180 irq->line_level = false; 181 182 if (irq->group) 183 val |= ICH_LR_GROUP; 184 185 val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT; 186 187 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val; 188 } 189 190 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr) 191 { 192 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0; 193 } 194 195 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 196 { 197 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 198 u32 model = vcpu->kvm->arch.vgic.vgic_model; 199 u32 vmcr; 200 201 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { 202 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) & 203 ICH_VMCR_ACK_CTL_MASK; 204 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) & 205 ICH_VMCR_FIQ_EN_MASK; 206 } else { 207 /* 208 * When emulating GICv3 on GICv3 with SRE=1 on the 209 * VFIQEn bit is RES1 and the VAckCtl bit is RES0. 210 */ 211 vmcr = ICH_VMCR_FIQ_EN_MASK; 212 } 213 214 vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK; 215 vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK; 216 vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK; 217 vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK; 218 vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK; 219 vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK; 220 vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK; 221 222 cpu_if->vgic_vmcr = vmcr; 223 } 224 225 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 226 { 227 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 228 u32 model = vcpu->kvm->arch.vgic.vgic_model; 229 u32 vmcr; 230 231 vmcr = cpu_if->vgic_vmcr; 232 233 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { 234 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >> 235 ICH_VMCR_ACK_CTL_SHIFT; 236 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >> 237 ICH_VMCR_FIQ_EN_SHIFT; 238 } else { 239 /* 240 * When emulating GICv3 on GICv3 with SRE=1 on the 241 * VFIQEn bit is RES1 and the VAckCtl bit is RES0. 242 */ 243 vmcrp->fiqen = 1; 244 vmcrp->ackctl = 0; 245 } 246 247 vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; 248 vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT; 249 vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; 250 vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; 251 vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; 252 vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT; 253 vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT; 254 } 255 256 #define INITIAL_PENDBASER_VALUE \ 257 (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \ 258 GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \ 259 GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable)) 260 261 void vgic_v3_enable(struct kvm_vcpu *vcpu) 262 { 263 struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; 264 265 /* 266 * By forcing VMCR to zero, the GIC will restore the binary 267 * points to their reset values. Anything else resets to zero 268 * anyway. 269 */ 270 vgic_v3->vgic_vmcr = 0; 271 272 /* 273 * If we are emulating a GICv3, we do it in an non-GICv2-compatible 274 * way, so we force SRE to 1 to demonstrate this to the guest. 275 * Also, we don't support any form of IRQ/FIQ bypass. 276 * This goes with the spec allowing the value to be RAO/WI. 277 */ 278 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 279 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB | 280 ICC_SRE_EL1_DFB | 281 ICC_SRE_EL1_SRE); 282 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE; 283 } else { 284 vgic_v3->vgic_sre = 0; 285 } 286 287 vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 & 288 ICH_VTR_ID_BITS_MASK) >> 289 ICH_VTR_ID_BITS_SHIFT; 290 vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 & 291 ICH_VTR_PRI_BITS_MASK) >> 292 ICH_VTR_PRI_BITS_SHIFT) + 1; 293 294 /* Get the show on the road... */ 295 vgic_v3->vgic_hcr = ICH_HCR_EN; 296 } 297 298 void vcpu_set_ich_hcr(struct kvm_vcpu *vcpu) 299 { 300 struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; 301 302 /* Hide GICv3 sysreg if necessary */ 303 if (!kvm_has_gicv3(vcpu->kvm)) { 304 vgic_v3->vgic_hcr |= ICH_HCR_TALL0 | ICH_HCR_TALL1 | ICH_HCR_TC; 305 return; 306 } 307 308 if (group0_trap) 309 vgic_v3->vgic_hcr |= ICH_HCR_TALL0; 310 if (group1_trap) 311 vgic_v3->vgic_hcr |= ICH_HCR_TALL1; 312 if (common_trap) 313 vgic_v3->vgic_hcr |= ICH_HCR_TC; 314 if (dir_trap) 315 vgic_v3->vgic_hcr |= ICH_HCR_TDIR; 316 } 317 318 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq) 319 { 320 struct kvm_vcpu *vcpu; 321 int byte_offset, bit_nr; 322 gpa_t pendbase, ptr; 323 bool status; 324 u8 val; 325 int ret; 326 unsigned long flags; 327 328 retry: 329 vcpu = irq->target_vcpu; 330 if (!vcpu) 331 return 0; 332 333 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 334 335 byte_offset = irq->intid / BITS_PER_BYTE; 336 bit_nr = irq->intid % BITS_PER_BYTE; 337 ptr = pendbase + byte_offset; 338 339 ret = kvm_read_guest_lock(kvm, ptr, &val, 1); 340 if (ret) 341 return ret; 342 343 status = val & (1 << bit_nr); 344 345 raw_spin_lock_irqsave(&irq->irq_lock, flags); 346 if (irq->target_vcpu != vcpu) { 347 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 348 goto retry; 349 } 350 irq->pending_latch = status; 351 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 352 353 if (status) { 354 /* clear consumed data */ 355 val &= ~(1 << bit_nr); 356 ret = vgic_write_guest_lock(kvm, ptr, &val, 1); 357 if (ret) 358 return ret; 359 } 360 return 0; 361 } 362 363 /* 364 * The deactivation of the doorbell interrupt will trigger the 365 * unmapping of the associated vPE. 366 */ 367 static void unmap_all_vpes(struct kvm *kvm) 368 { 369 struct vgic_dist *dist = &kvm->arch.vgic; 370 int i; 371 372 for (i = 0; i < dist->its_vm.nr_vpes; i++) 373 free_irq(dist->its_vm.vpes[i]->irq, kvm_get_vcpu(kvm, i)); 374 } 375 376 static void map_all_vpes(struct kvm *kvm) 377 { 378 struct vgic_dist *dist = &kvm->arch.vgic; 379 int i; 380 381 for (i = 0; i < dist->its_vm.nr_vpes; i++) 382 WARN_ON(vgic_v4_request_vpe_irq(kvm_get_vcpu(kvm, i), 383 dist->its_vm.vpes[i]->irq)); 384 } 385 386 /* 387 * vgic_v3_save_pending_tables - Save the pending tables into guest RAM 388 * kvm lock and all vcpu lock must be held 389 */ 390 int vgic_v3_save_pending_tables(struct kvm *kvm) 391 { 392 struct vgic_dist *dist = &kvm->arch.vgic; 393 struct vgic_irq *irq; 394 gpa_t last_ptr = ~(gpa_t)0; 395 bool vlpi_avail = false; 396 unsigned long index; 397 int ret = 0; 398 u8 val; 399 400 if (unlikely(!vgic_initialized(kvm))) 401 return -ENXIO; 402 403 /* 404 * A preparation for getting any VLPI states. 405 * The above vgic initialized check also ensures that the allocation 406 * and enabling of the doorbells have already been done. 407 */ 408 if (kvm_vgic_global_state.has_gicv4_1) { 409 unmap_all_vpes(kvm); 410 vlpi_avail = true; 411 } 412 413 xa_for_each(&dist->lpi_xa, index, irq) { 414 int byte_offset, bit_nr; 415 struct kvm_vcpu *vcpu; 416 gpa_t pendbase, ptr; 417 bool is_pending; 418 bool stored; 419 420 vcpu = irq->target_vcpu; 421 if (!vcpu) 422 continue; 423 424 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 425 426 byte_offset = irq->intid / BITS_PER_BYTE; 427 bit_nr = irq->intid % BITS_PER_BYTE; 428 ptr = pendbase + byte_offset; 429 430 if (ptr != last_ptr) { 431 ret = kvm_read_guest_lock(kvm, ptr, &val, 1); 432 if (ret) 433 goto out; 434 last_ptr = ptr; 435 } 436 437 stored = val & (1U << bit_nr); 438 439 is_pending = irq->pending_latch; 440 441 if (irq->hw && vlpi_avail) 442 vgic_v4_get_vlpi_state(irq, &is_pending); 443 444 if (stored == is_pending) 445 continue; 446 447 if (is_pending) 448 val |= 1 << bit_nr; 449 else 450 val &= ~(1 << bit_nr); 451 452 ret = vgic_write_guest_lock(kvm, ptr, &val, 1); 453 if (ret) 454 goto out; 455 } 456 457 out: 458 if (vlpi_avail) 459 map_all_vpes(kvm); 460 461 return ret; 462 } 463 464 /** 465 * vgic_v3_rdist_overlap - check if a region overlaps with any 466 * existing redistributor region 467 * 468 * @kvm: kvm handle 469 * @base: base of the region 470 * @size: size of region 471 * 472 * Return: true if there is an overlap 473 */ 474 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size) 475 { 476 struct vgic_dist *d = &kvm->arch.vgic; 477 struct vgic_redist_region *rdreg; 478 479 list_for_each_entry(rdreg, &d->rd_regions, list) { 480 if ((base + size > rdreg->base) && 481 (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg))) 482 return true; 483 } 484 return false; 485 } 486 487 /* 488 * Check for overlapping regions and for regions crossing the end of memory 489 * for base addresses which have already been set. 490 */ 491 bool vgic_v3_check_base(struct kvm *kvm) 492 { 493 struct vgic_dist *d = &kvm->arch.vgic; 494 struct vgic_redist_region *rdreg; 495 496 if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && 497 d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) 498 return false; 499 500 list_for_each_entry(rdreg, &d->rd_regions, list) { 501 size_t sz = vgic_v3_rd_region_size(kvm, rdreg); 502 503 if (vgic_check_iorange(kvm, VGIC_ADDR_UNDEF, 504 rdreg->base, SZ_64K, sz)) 505 return false; 506 } 507 508 if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base)) 509 return true; 510 511 return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base, 512 KVM_VGIC_V3_DIST_SIZE); 513 } 514 515 /** 516 * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one 517 * which has free space to put a new rdist region. 518 * 519 * @rd_regions: redistributor region list head 520 * 521 * A redistributor regions maps n redistributors, n = region size / (2 x 64kB). 522 * Stride between redistributors is 0 and regions are filled in the index order. 523 * 524 * Return: the redist region handle, if any, that has space to map a new rdist 525 * region. 526 */ 527 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions) 528 { 529 struct vgic_redist_region *rdreg; 530 531 list_for_each_entry(rdreg, rd_regions, list) { 532 if (!vgic_v3_redist_region_full(rdreg)) 533 return rdreg; 534 } 535 return NULL; 536 } 537 538 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm, 539 u32 index) 540 { 541 struct list_head *rd_regions = &kvm->arch.vgic.rd_regions; 542 struct vgic_redist_region *rdreg; 543 544 list_for_each_entry(rdreg, rd_regions, list) { 545 if (rdreg->index == index) 546 return rdreg; 547 } 548 return NULL; 549 } 550 551 552 int vgic_v3_map_resources(struct kvm *kvm) 553 { 554 struct vgic_dist *dist = &kvm->arch.vgic; 555 struct kvm_vcpu *vcpu; 556 unsigned long c; 557 558 kvm_for_each_vcpu(c, vcpu, kvm) { 559 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 560 561 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) { 562 kvm_debug("vcpu %ld redistributor base not set\n", c); 563 return -ENXIO; 564 } 565 } 566 567 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) { 568 kvm_debug("Need to set vgic distributor addresses first\n"); 569 return -ENXIO; 570 } 571 572 if (!vgic_v3_check_base(kvm)) { 573 kvm_debug("VGIC redist and dist frames overlap\n"); 574 return -EINVAL; 575 } 576 577 /* 578 * For a VGICv3 we require the userland to explicitly initialize 579 * the VGIC before we need to use it. 580 */ 581 if (!vgic_initialized(kvm)) { 582 return -EBUSY; 583 } 584 585 if (kvm_vgic_global_state.has_gicv4_1) 586 vgic_v4_configure_vsgis(kvm); 587 588 return 0; 589 } 590 591 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap); 592 593 static int __init early_group0_trap_cfg(char *buf) 594 { 595 return kstrtobool(buf, &group0_trap); 596 } 597 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg); 598 599 static int __init early_group1_trap_cfg(char *buf) 600 { 601 return kstrtobool(buf, &group1_trap); 602 } 603 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg); 604 605 static int __init early_common_trap_cfg(char *buf) 606 { 607 return kstrtobool(buf, &common_trap); 608 } 609 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg); 610 611 static int __init early_gicv4_enable(char *buf) 612 { 613 return kstrtobool(buf, &gicv4_enable); 614 } 615 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable); 616 617 static const struct midr_range broken_seis[] = { 618 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM), 619 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM), 620 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_PRO), 621 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_PRO), 622 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_MAX), 623 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_MAX), 624 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD), 625 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE), 626 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO), 627 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO), 628 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX), 629 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX), 630 {}, 631 }; 632 633 static bool vgic_v3_broken_seis(void) 634 { 635 return ((kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK) && 636 is_midr_in_range_list(read_cpuid_id(), broken_seis)); 637 } 638 639 /** 640 * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller 641 * @info: pointer to the GIC description 642 * 643 * Returns 0 if the VGICv3 has been probed successfully, returns an error code 644 * otherwise 645 */ 646 int vgic_v3_probe(const struct gic_kvm_info *info) 647 { 648 u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config); 649 bool has_v2; 650 int ret; 651 652 has_v2 = ich_vtr_el2 >> 63; 653 ich_vtr_el2 = (u32)ich_vtr_el2; 654 655 /* 656 * The ListRegs field is 5 bits, but there is an architectural 657 * maximum of 16 list registers. Just ignore bit 4... 658 */ 659 kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1; 660 kvm_vgic_global_state.can_emulate_gicv2 = false; 661 kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2; 662 663 /* GICv4 support? */ 664 if (info->has_v4) { 665 kvm_vgic_global_state.has_gicv4 = gicv4_enable; 666 kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable; 667 kvm_info("GICv4%s support %s\n", 668 kvm_vgic_global_state.has_gicv4_1 ? ".1" : "", 669 str_enabled_disabled(gicv4_enable)); 670 } 671 672 kvm_vgic_global_state.vcpu_base = 0; 673 674 if (!info->vcpu.start) { 675 kvm_info("GICv3: no GICV resource entry\n"); 676 } else if (!has_v2) { 677 pr_warn(FW_BUG "CPU interface incapable of MMIO access\n"); 678 } else if (!PAGE_ALIGNED(info->vcpu.start)) { 679 pr_warn("GICV physical address 0x%llx not page aligned\n", 680 (unsigned long long)info->vcpu.start); 681 } else if (kvm_get_mode() != KVM_MODE_PROTECTED) { 682 kvm_vgic_global_state.vcpu_base = info->vcpu.start; 683 kvm_vgic_global_state.can_emulate_gicv2 = true; 684 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); 685 if (ret) { 686 kvm_err("Cannot register GICv2 KVM device.\n"); 687 return ret; 688 } 689 kvm_info("vgic-v2@%llx\n", info->vcpu.start); 690 } 691 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3); 692 if (ret) { 693 kvm_err("Cannot register GICv3 KVM device.\n"); 694 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2); 695 return ret; 696 } 697 698 if (kvm_vgic_global_state.vcpu_base == 0) 699 kvm_info("disabling GICv2 emulation\n"); 700 701 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_30115)) { 702 group0_trap = true; 703 group1_trap = true; 704 } 705 706 if (vgic_v3_broken_seis()) { 707 kvm_info("GICv3 with broken locally generated SEI\n"); 708 709 kvm_vgic_global_state.ich_vtr_el2 &= ~ICH_VTR_SEIS_MASK; 710 group0_trap = true; 711 group1_trap = true; 712 if (ich_vtr_el2 & ICH_VTR_TDS_MASK) 713 dir_trap = true; 714 else 715 common_trap = true; 716 } 717 718 if (group0_trap || group1_trap || common_trap | dir_trap) { 719 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s%s], reduced performance)\n", 720 group0_trap ? "G0" : "", 721 group1_trap ? "G1" : "", 722 common_trap ? "C" : "", 723 dir_trap ? "D" : ""); 724 static_branch_enable(&vgic_v3_cpuif_trap); 725 } 726 727 kvm_vgic_global_state.vctrl_base = NULL; 728 kvm_vgic_global_state.type = VGIC_V3; 729 kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS; 730 731 return 0; 732 } 733 734 void vgic_v3_load(struct kvm_vcpu *vcpu) 735 { 736 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 737 738 if (likely(!is_protected_kvm_enabled())) 739 kvm_call_hyp(__vgic_v3_restore_vmcr_aprs, cpu_if); 740 741 if (has_vhe()) 742 __vgic_v3_activate_traps(cpu_if); 743 744 WARN_ON(vgic_v4_load(vcpu)); 745 } 746 747 void vgic_v3_put(struct kvm_vcpu *vcpu) 748 { 749 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 750 751 if (likely(!is_protected_kvm_enabled())) 752 kvm_call_hyp(__vgic_v3_save_vmcr_aprs, cpu_if); 753 WARN_ON(vgic_v4_put(vcpu)); 754 755 if (has_vhe()) 756 __vgic_v3_deactivate_traps(cpu_if); 757 } 758