1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015, 2016 ARM Ltd. 4 */ 5 6 #include <linux/uaccess.h> 7 #include <linux/interrupt.h> 8 #include <linux/cpu.h> 9 #include <linux/kvm_host.h> 10 #include <kvm/arm_vgic.h> 11 #include <asm/kvm_emulate.h> 12 #include <asm/kvm_mmu.h> 13 #include "vgic.h" 14 15 /* 16 * Initialization rules: there are multiple stages to the vgic 17 * initialization, both for the distributor and the CPU interfaces. The basic 18 * idea is that even though the VGIC is not functional or not requested from 19 * user space, the critical path of the run loop can still call VGIC functions 20 * that just won't do anything, without them having to check additional 21 * initialization flags to ensure they don't look at uninitialized data 22 * structures. 23 * 24 * Distributor: 25 * 26 * - kvm_vgic_early_init(): initialization of static data that doesn't 27 * depend on any sizing information or emulation type. No allocation 28 * is allowed there. 29 * 30 * - vgic_init(): allocation and initialization of the generic data 31 * structures that depend on sizing information (number of CPUs, 32 * number of interrupts). Also initializes the vcpu specific data 33 * structures. Can be executed lazily for GICv2. 34 * 35 * CPU Interface: 36 * 37 * - kvm_vgic_vcpu_init(): initialization of static data that doesn't depend 38 * on any sizing information. Private interrupts are allocated if not 39 * already allocated at vgic-creation time. 40 */ 41 42 /* EARLY INIT */ 43 44 /** 45 * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures 46 * @kvm: The VM whose VGIC districutor should be initialized 47 * 48 * Only do initialization of static structures that don't require any 49 * allocation or sizing information from userspace. vgic_init() called 50 * kvm_vgic_dist_init() which takes care of the rest. 51 */ 52 void kvm_vgic_early_init(struct kvm *kvm) 53 { 54 struct vgic_dist *dist = &kvm->arch.vgic; 55 56 xa_init_flags(&dist->lpi_xa, XA_FLAGS_LOCK_IRQ); 57 } 58 59 /* CREATION */ 60 61 static int vgic_allocate_private_irqs_locked(struct kvm_vcpu *vcpu, u32 type); 62 63 /** 64 * kvm_vgic_create: triggered by the instantiation of the VGIC device by 65 * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only) 66 * or through the generic KVM_CREATE_DEVICE API ioctl. 67 * irqchip_in_kernel() tells you if this function succeeded or not. 68 * @kvm: kvm struct pointer 69 * @type: KVM_DEV_TYPE_ARM_VGIC_V[23] 70 */ 71 int kvm_vgic_create(struct kvm *kvm, u32 type) 72 { 73 struct kvm_vcpu *vcpu; 74 unsigned long i; 75 int ret; 76 77 /* 78 * This function is also called by the KVM_CREATE_IRQCHIP handler, 79 * which had no chance yet to check the availability of the GICv2 80 * emulation. So check this here again. KVM_CREATE_DEVICE does 81 * the proper checks already. 82 */ 83 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && 84 !kvm_vgic_global_state.can_emulate_gicv2) 85 return -ENODEV; 86 87 /* Must be held to avoid race with vCPU creation */ 88 lockdep_assert_held(&kvm->lock); 89 90 ret = -EBUSY; 91 if (!lock_all_vcpus(kvm)) 92 return ret; 93 94 mutex_lock(&kvm->arch.config_lock); 95 96 if (irqchip_in_kernel(kvm)) { 97 ret = -EEXIST; 98 goto out_unlock; 99 } 100 101 kvm_for_each_vcpu(i, vcpu, kvm) { 102 if (vcpu_has_run_once(vcpu)) 103 goto out_unlock; 104 } 105 ret = 0; 106 107 if (type == KVM_DEV_TYPE_ARM_VGIC_V2) 108 kvm->max_vcpus = VGIC_V2_MAX_CPUS; 109 else 110 kvm->max_vcpus = VGIC_V3_MAX_CPUS; 111 112 if (atomic_read(&kvm->online_vcpus) > kvm->max_vcpus) { 113 ret = -E2BIG; 114 goto out_unlock; 115 } 116 117 kvm_for_each_vcpu(i, vcpu, kvm) { 118 ret = vgic_allocate_private_irqs_locked(vcpu, type); 119 if (ret) 120 break; 121 } 122 123 if (ret) { 124 kvm_for_each_vcpu(i, vcpu, kvm) { 125 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 126 kfree(vgic_cpu->private_irqs); 127 vgic_cpu->private_irqs = NULL; 128 } 129 130 goto out_unlock; 131 } 132 133 kvm->arch.vgic.in_kernel = true; 134 kvm->arch.vgic.vgic_model = type; 135 136 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; 137 138 if (type == KVM_DEV_TYPE_ARM_VGIC_V2) 139 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; 140 else 141 INIT_LIST_HEAD(&kvm->arch.vgic.rd_regions); 142 143 out_unlock: 144 mutex_unlock(&kvm->arch.config_lock); 145 unlock_all_vcpus(kvm); 146 return ret; 147 } 148 149 /* INIT/DESTROY */ 150 151 /** 152 * kvm_vgic_dist_init: initialize the dist data structures 153 * @kvm: kvm struct pointer 154 * @nr_spis: number of spis, frozen by caller 155 */ 156 static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis) 157 { 158 struct vgic_dist *dist = &kvm->arch.vgic; 159 struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0); 160 int i; 161 162 dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT); 163 if (!dist->spis) 164 return -ENOMEM; 165 166 /* 167 * In the following code we do not take the irq struct lock since 168 * no other action on irq structs can happen while the VGIC is 169 * not initialized yet: 170 * If someone wants to inject an interrupt or does a MMIO access, we 171 * require prior initialization in case of a virtual GICv3 or trigger 172 * initialization when using a virtual GICv2. 173 */ 174 for (i = 0; i < nr_spis; i++) { 175 struct vgic_irq *irq = &dist->spis[i]; 176 177 irq->intid = i + VGIC_NR_PRIVATE_IRQS; 178 INIT_LIST_HEAD(&irq->ap_list); 179 raw_spin_lock_init(&irq->irq_lock); 180 irq->vcpu = NULL; 181 irq->target_vcpu = vcpu0; 182 kref_init(&irq->refcount); 183 switch (dist->vgic_model) { 184 case KVM_DEV_TYPE_ARM_VGIC_V2: 185 irq->targets = 0; 186 irq->group = 0; 187 break; 188 case KVM_DEV_TYPE_ARM_VGIC_V3: 189 irq->mpidr = 0; 190 irq->group = 1; 191 break; 192 default: 193 kfree(dist->spis); 194 dist->spis = NULL; 195 return -EINVAL; 196 } 197 } 198 return 0; 199 } 200 201 /* Default GICv3 Maintenance Interrupt INTID, as per SBSA */ 202 #define DEFAULT_MI_INTID 25 203 204 int kvm_vgic_vcpu_nv_init(struct kvm_vcpu *vcpu) 205 { 206 int ret; 207 208 guard(mutex)(&vcpu->kvm->arch.config_lock); 209 210 /* 211 * Matching the tradition established with the timers, provide 212 * a default PPI for the maintenance interrupt. It makes 213 * things easier to reason about. 214 */ 215 if (vcpu->kvm->arch.vgic.mi_intid == 0) 216 vcpu->kvm->arch.vgic.mi_intid = DEFAULT_MI_INTID; 217 ret = kvm_vgic_set_owner(vcpu, vcpu->kvm->arch.vgic.mi_intid, vcpu); 218 219 return ret; 220 } 221 222 static int vgic_allocate_private_irqs_locked(struct kvm_vcpu *vcpu, u32 type) 223 { 224 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 225 int i; 226 227 lockdep_assert_held(&vcpu->kvm->arch.config_lock); 228 229 if (vgic_cpu->private_irqs) 230 return 0; 231 232 vgic_cpu->private_irqs = kcalloc(VGIC_NR_PRIVATE_IRQS, 233 sizeof(struct vgic_irq), 234 GFP_KERNEL_ACCOUNT); 235 236 if (!vgic_cpu->private_irqs) 237 return -ENOMEM; 238 239 /* 240 * Enable and configure all SGIs to be edge-triggered and 241 * configure all PPIs as level-triggered. 242 */ 243 for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) { 244 struct vgic_irq *irq = &vgic_cpu->private_irqs[i]; 245 246 INIT_LIST_HEAD(&irq->ap_list); 247 raw_spin_lock_init(&irq->irq_lock); 248 irq->intid = i; 249 irq->vcpu = NULL; 250 irq->target_vcpu = vcpu; 251 kref_init(&irq->refcount); 252 if (vgic_irq_is_sgi(i)) { 253 /* SGIs */ 254 irq->enabled = 1; 255 irq->config = VGIC_CONFIG_EDGE; 256 } else { 257 /* PPIs */ 258 irq->config = VGIC_CONFIG_LEVEL; 259 } 260 261 switch (type) { 262 case KVM_DEV_TYPE_ARM_VGIC_V3: 263 irq->group = 1; 264 irq->mpidr = kvm_vcpu_get_mpidr_aff(vcpu); 265 break; 266 case KVM_DEV_TYPE_ARM_VGIC_V2: 267 irq->group = 0; 268 irq->targets = BIT(vcpu->vcpu_id); 269 break; 270 } 271 } 272 273 return 0; 274 } 275 276 static int vgic_allocate_private_irqs(struct kvm_vcpu *vcpu, u32 type) 277 { 278 int ret; 279 280 mutex_lock(&vcpu->kvm->arch.config_lock); 281 ret = vgic_allocate_private_irqs_locked(vcpu, type); 282 mutex_unlock(&vcpu->kvm->arch.config_lock); 283 284 return ret; 285 } 286 287 /** 288 * kvm_vgic_vcpu_init() - Initialize static VGIC VCPU data 289 * structures and register VCPU-specific KVM iodevs 290 * 291 * @vcpu: pointer to the VCPU being created and initialized 292 * 293 * Only do initialization, but do not actually enable the 294 * VGIC CPU interface 295 */ 296 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) 297 { 298 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 299 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 300 int ret = 0; 301 302 vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF; 303 304 INIT_LIST_HEAD(&vgic_cpu->ap_list_head); 305 raw_spin_lock_init(&vgic_cpu->ap_list_lock); 306 atomic_set(&vgic_cpu->vgic_v3.its_vpe.vlpi_count, 0); 307 308 if (!irqchip_in_kernel(vcpu->kvm)) 309 return 0; 310 311 ret = vgic_allocate_private_irqs(vcpu, dist->vgic_model); 312 if (ret) 313 return ret; 314 315 /* 316 * If we are creating a VCPU with a GICv3 we must also register the 317 * KVM io device for the redistributor that belongs to this VCPU. 318 */ 319 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 320 mutex_lock(&vcpu->kvm->slots_lock); 321 ret = vgic_register_redist_iodev(vcpu); 322 mutex_unlock(&vcpu->kvm->slots_lock); 323 } 324 return ret; 325 } 326 327 static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu) 328 { 329 if (kvm_vgic_global_state.type == VGIC_V2) 330 vgic_v2_enable(vcpu); 331 else 332 vgic_v3_enable(vcpu); 333 } 334 335 /* 336 * vgic_init: allocates and initializes dist and vcpu data structures 337 * depending on two dimensioning parameters: 338 * - the number of spis 339 * - the number of vcpus 340 * The function is generally called when nr_spis has been explicitly set 341 * by the guest through the KVM DEVICE API. If not nr_spis is set to 256. 342 * vgic_initialized() returns true when this function has succeeded. 343 */ 344 int vgic_init(struct kvm *kvm) 345 { 346 struct vgic_dist *dist = &kvm->arch.vgic; 347 struct kvm_vcpu *vcpu; 348 int ret = 0; 349 unsigned long idx; 350 351 lockdep_assert_held(&kvm->arch.config_lock); 352 353 if (vgic_initialized(kvm)) 354 return 0; 355 356 /* Are we also in the middle of creating a VCPU? */ 357 if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus)) 358 return -EBUSY; 359 360 /* freeze the number of spis */ 361 if (!dist->nr_spis) 362 dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS; 363 364 ret = kvm_vgic_dist_init(kvm, dist->nr_spis); 365 if (ret) 366 goto out; 367 368 /* 369 * If we have GICv4.1 enabled, unconditionally request enable the 370 * v4 support so that we get HW-accelerated vSGIs. Otherwise, only 371 * enable it if we present a virtual ITS to the guest. 372 */ 373 if (vgic_supports_direct_msis(kvm)) { 374 ret = vgic_v4_init(kvm); 375 if (ret) 376 goto out; 377 } 378 379 kvm_for_each_vcpu(idx, vcpu, kvm) 380 kvm_vgic_vcpu_enable(vcpu); 381 382 ret = kvm_vgic_setup_default_irq_routing(kvm); 383 if (ret) 384 goto out; 385 386 vgic_debug_init(kvm); 387 388 /* 389 * If userspace didn't set the GIC implementation revision, 390 * default to the latest and greatest. You know want it. 391 */ 392 if (!dist->implementation_rev) 393 dist->implementation_rev = KVM_VGIC_IMP_REV_LATEST; 394 dist->initialized = true; 395 396 out: 397 return ret; 398 } 399 400 static void kvm_vgic_dist_destroy(struct kvm *kvm) 401 { 402 struct vgic_dist *dist = &kvm->arch.vgic; 403 struct vgic_redist_region *rdreg, *next; 404 405 dist->ready = false; 406 dist->initialized = false; 407 408 kfree(dist->spis); 409 dist->spis = NULL; 410 dist->nr_spis = 0; 411 dist->vgic_dist_base = VGIC_ADDR_UNDEF; 412 413 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 414 list_for_each_entry_safe(rdreg, next, &dist->rd_regions, list) 415 vgic_v3_free_redist_region(kvm, rdreg); 416 INIT_LIST_HEAD(&dist->rd_regions); 417 } else { 418 dist->vgic_cpu_base = VGIC_ADDR_UNDEF; 419 } 420 421 if (vgic_supports_direct_msis(kvm)) 422 vgic_v4_teardown(kvm); 423 424 xa_destroy(&dist->lpi_xa); 425 } 426 427 static void __kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) 428 { 429 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 430 431 /* 432 * Retire all pending LPIs on this vcpu anyway as we're 433 * going to destroy it. 434 */ 435 vgic_flush_pending_lpis(vcpu); 436 437 INIT_LIST_HEAD(&vgic_cpu->ap_list_head); 438 kfree(vgic_cpu->private_irqs); 439 vgic_cpu->private_irqs = NULL; 440 441 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 442 /* 443 * If this vCPU is being destroyed because of a failed creation 444 * then unregister the redistributor to avoid leaving behind a 445 * dangling pointer to the vCPU struct. 446 * 447 * vCPUs that have been successfully created (i.e. added to 448 * kvm->vcpu_array) get unregistered in kvm_vgic_destroy(), as 449 * this function gets called while holding kvm->arch.config_lock 450 * in the VM teardown path and would otherwise introduce a lock 451 * inversion w.r.t. kvm->srcu. 452 * 453 * vCPUs that failed creation are torn down outside of the 454 * kvm->arch.config_lock and do not get unregistered in 455 * kvm_vgic_destroy(), meaning it is both safe and necessary to 456 * do so here. 457 */ 458 if (kvm_get_vcpu_by_id(vcpu->kvm, vcpu->vcpu_id) != vcpu) 459 vgic_unregister_redist_iodev(vcpu); 460 461 vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF; 462 } 463 } 464 465 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) 466 { 467 struct kvm *kvm = vcpu->kvm; 468 469 mutex_lock(&kvm->slots_lock); 470 __kvm_vgic_vcpu_destroy(vcpu); 471 mutex_unlock(&kvm->slots_lock); 472 } 473 474 void kvm_vgic_destroy(struct kvm *kvm) 475 { 476 struct kvm_vcpu *vcpu; 477 unsigned long i; 478 479 mutex_lock(&kvm->slots_lock); 480 mutex_lock(&kvm->arch.config_lock); 481 482 vgic_debug_destroy(kvm); 483 484 kvm_for_each_vcpu(i, vcpu, kvm) 485 __kvm_vgic_vcpu_destroy(vcpu); 486 487 kvm_vgic_dist_destroy(kvm); 488 489 mutex_unlock(&kvm->arch.config_lock); 490 491 if (kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) 492 kvm_for_each_vcpu(i, vcpu, kvm) 493 vgic_unregister_redist_iodev(vcpu); 494 495 mutex_unlock(&kvm->slots_lock); 496 } 497 498 /** 499 * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest 500 * is a GICv2. A GICv3 must be explicitly initialized by userspace using the 501 * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group. 502 * @kvm: kvm struct pointer 503 */ 504 int vgic_lazy_init(struct kvm *kvm) 505 { 506 int ret = 0; 507 508 if (unlikely(!vgic_initialized(kvm))) { 509 /* 510 * We only provide the automatic initialization of the VGIC 511 * for the legacy case of a GICv2. Any other type must 512 * be explicitly initialized once setup with the respective 513 * KVM device call. 514 */ 515 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) 516 return -EBUSY; 517 518 mutex_lock(&kvm->arch.config_lock); 519 ret = vgic_init(kvm); 520 mutex_unlock(&kvm->arch.config_lock); 521 } 522 523 return ret; 524 } 525 526 /* RESOURCE MAPPING */ 527 528 /** 529 * kvm_vgic_map_resources - map the MMIO regions 530 * @kvm: kvm struct pointer 531 * 532 * Map the MMIO regions depending on the VGIC model exposed to the guest 533 * called on the first VCPU run. 534 * Also map the virtual CPU interface into the VM. 535 * v2 calls vgic_init() if not already done. 536 * v3 and derivatives return an error if the VGIC is not initialized. 537 * vgic_ready() returns true if this function has succeeded. 538 */ 539 int kvm_vgic_map_resources(struct kvm *kvm) 540 { 541 struct vgic_dist *dist = &kvm->arch.vgic; 542 enum vgic_type type; 543 gpa_t dist_base; 544 int ret = 0; 545 546 if (likely(vgic_ready(kvm))) 547 return 0; 548 549 mutex_lock(&kvm->slots_lock); 550 mutex_lock(&kvm->arch.config_lock); 551 if (vgic_ready(kvm)) 552 goto out; 553 554 if (!irqchip_in_kernel(kvm)) 555 goto out; 556 557 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) { 558 ret = vgic_v2_map_resources(kvm); 559 type = VGIC_V2; 560 } else { 561 ret = vgic_v3_map_resources(kvm); 562 type = VGIC_V3; 563 } 564 565 if (ret) 566 goto out; 567 568 dist_base = dist->vgic_dist_base; 569 mutex_unlock(&kvm->arch.config_lock); 570 571 ret = vgic_register_dist_iodev(kvm, dist_base, type); 572 if (ret) { 573 kvm_err("Unable to register VGIC dist MMIO regions\n"); 574 goto out_slots; 575 } 576 577 /* 578 * kvm_io_bus_register_dev() guarantees all readers see the new MMIO 579 * registration before returning through synchronize_srcu(), which also 580 * implies a full memory barrier. As such, marking the distributor as 581 * 'ready' here is guaranteed to be ordered after all vCPUs having seen 582 * a completely configured distributor. 583 */ 584 dist->ready = true; 585 goto out_slots; 586 out: 587 mutex_unlock(&kvm->arch.config_lock); 588 out_slots: 589 if (ret) 590 kvm_vm_dead(kvm); 591 592 mutex_unlock(&kvm->slots_lock); 593 594 return ret; 595 } 596 597 /* GENERIC PROBE */ 598 599 void kvm_vgic_cpu_up(void) 600 { 601 enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0); 602 } 603 604 605 void kvm_vgic_cpu_down(void) 606 { 607 disable_percpu_irq(kvm_vgic_global_state.maint_irq); 608 } 609 610 static irqreturn_t vgic_maintenance_handler(int irq, void *data) 611 { 612 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)data; 613 614 /* 615 * We cannot rely on the vgic maintenance interrupt to be 616 * delivered synchronously. This means we can only use it to 617 * exit the VM, and we perform the handling of EOIed 618 * interrupts on the exit path (see vgic_fold_lr_state). 619 * 620 * Of course, NV throws a wrench in this plan, and needs 621 * something special. 622 */ 623 if (vcpu && vgic_state_is_nested(vcpu)) 624 vgic_v3_handle_nested_maint_irq(vcpu); 625 626 return IRQ_HANDLED; 627 } 628 629 static struct gic_kvm_info *gic_kvm_info; 630 631 void __init vgic_set_kvm_info(const struct gic_kvm_info *info) 632 { 633 BUG_ON(gic_kvm_info != NULL); 634 gic_kvm_info = kmalloc(sizeof(*info), GFP_KERNEL); 635 if (gic_kvm_info) 636 *gic_kvm_info = *info; 637 } 638 639 /** 640 * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware 641 * 642 * For a specific CPU, initialize the GIC VE hardware. 643 */ 644 void kvm_vgic_init_cpu_hardware(void) 645 { 646 BUG_ON(preemptible()); 647 648 /* 649 * We want to make sure the list registers start out clear so that we 650 * only have the program the used registers. 651 */ 652 if (kvm_vgic_global_state.type == VGIC_V2) 653 vgic_v2_init_lrs(); 654 else 655 kvm_call_hyp(__vgic_v3_init_lrs); 656 } 657 658 /** 659 * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable 660 * according to the host GIC model. Accordingly calls either 661 * vgic_v2/v3_probe which registers the KVM_DEVICE that can be 662 * instantiated by a guest later on . 663 */ 664 int kvm_vgic_hyp_init(void) 665 { 666 bool has_mask; 667 int ret; 668 669 if (!gic_kvm_info) 670 return -ENODEV; 671 672 has_mask = !gic_kvm_info->no_maint_irq_mask; 673 674 if (has_mask && !gic_kvm_info->maint_irq) { 675 kvm_err("No vgic maintenance irq\n"); 676 return -ENXIO; 677 } 678 679 /* 680 * If we get one of these oddball non-GICs, taint the kernel, 681 * as we have no idea of how they *really* behave. 682 */ 683 if (gic_kvm_info->no_hw_deactivation) { 684 kvm_info("Non-architectural vgic, tainting kernel\n"); 685 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 686 kvm_vgic_global_state.no_hw_deactivation = true; 687 } 688 689 switch (gic_kvm_info->type) { 690 case GIC_V2: 691 ret = vgic_v2_probe(gic_kvm_info); 692 break; 693 case GIC_V3: 694 ret = vgic_v3_probe(gic_kvm_info); 695 if (!ret) { 696 static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif); 697 kvm_info("GIC system register CPU interface enabled\n"); 698 } 699 break; 700 default: 701 ret = -ENODEV; 702 } 703 704 kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq; 705 706 kfree(gic_kvm_info); 707 gic_kvm_info = NULL; 708 709 if (ret) 710 return ret; 711 712 if (!has_mask && !kvm_vgic_global_state.maint_irq) 713 return 0; 714 715 ret = request_percpu_irq(kvm_vgic_global_state.maint_irq, 716 vgic_maintenance_handler, 717 "vgic", kvm_get_running_vcpus()); 718 if (ret) { 719 kvm_err("Cannot register interrupt %d\n", 720 kvm_vgic_global_state.maint_irq); 721 return ret; 722 } 723 724 kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq); 725 return 0; 726 } 727