xref: /linux/arch/arm64/kvm/arch_timer.c (revision f7f0adfe64de08803990dc4cbecd2849c04e314a) !
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/irqdomain.h>
13 #include <linux/uaccess.h>
14 
15 #include <clocksource/arm_arch_timer.h>
16 #include <asm/arch_timer.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_hyp.h>
19 #include <asm/kvm_nested.h>
20 
21 #include <kvm/arm_vgic.h>
22 #include <kvm/arm_arch_timer.h>
23 
24 #include "trace.h"
25 
26 static struct timecounter *timecounter;
27 static unsigned int host_vtimer_irq;
28 static unsigned int host_ptimer_irq;
29 static u32 host_vtimer_irq_flags;
30 static u32 host_ptimer_irq_flags;
31 
32 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
33 DEFINE_STATIC_KEY_FALSE(broken_cntvoff_key);
34 
35 static const u8 default_ppi[] = {
36 	[TIMER_PTIMER]  = 30,
37 	[TIMER_VTIMER]  = 27,
38 	[TIMER_HPTIMER] = 26,
39 	[TIMER_HVTIMER] = 28,
40 };
41 
42 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
43 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
44 				 struct arch_timer_context *timer_ctx);
45 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
46 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
47 				struct arch_timer_context *timer,
48 				enum kvm_arch_timer_regs treg,
49 				u64 val);
50 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
51 			      struct arch_timer_context *timer,
52 			      enum kvm_arch_timer_regs treg);
53 static bool kvm_arch_timer_get_input_level(int vintid);
54 
55 static struct irq_ops arch_timer_irq_ops = {
56 	.get_input_level = kvm_arch_timer_get_input_level,
57 };
58 
59 static int nr_timers(struct kvm_vcpu *vcpu)
60 {
61 	if (!vcpu_has_nv(vcpu))
62 		return NR_KVM_EL0_TIMERS;
63 
64 	return NR_KVM_TIMERS;
65 }
66 
67 u32 timer_get_ctl(struct arch_timer_context *ctxt)
68 {
69 	struct kvm_vcpu *vcpu = ctxt->vcpu;
70 
71 	switch(arch_timer_ctx_index(ctxt)) {
72 	case TIMER_VTIMER:
73 		return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
74 	case TIMER_PTIMER:
75 		return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
76 	case TIMER_HVTIMER:
77 		return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
78 	case TIMER_HPTIMER:
79 		return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
80 	default:
81 		WARN_ON(1);
82 		return 0;
83 	}
84 }
85 
86 u64 timer_get_cval(struct arch_timer_context *ctxt)
87 {
88 	struct kvm_vcpu *vcpu = ctxt->vcpu;
89 
90 	switch(arch_timer_ctx_index(ctxt)) {
91 	case TIMER_VTIMER:
92 		return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
93 	case TIMER_PTIMER:
94 		return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
95 	case TIMER_HVTIMER:
96 		return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
97 	case TIMER_HPTIMER:
98 		return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
99 	default:
100 		WARN_ON(1);
101 		return 0;
102 	}
103 }
104 
105 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
106 {
107 	struct kvm_vcpu *vcpu = ctxt->vcpu;
108 
109 	switch(arch_timer_ctx_index(ctxt)) {
110 	case TIMER_VTIMER:
111 		__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
112 		break;
113 	case TIMER_PTIMER:
114 		__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
115 		break;
116 	case TIMER_HVTIMER:
117 		__vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
118 		break;
119 	case TIMER_HPTIMER:
120 		__vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
121 		break;
122 	default:
123 		WARN_ON(1);
124 	}
125 }
126 
127 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
128 {
129 	struct kvm_vcpu *vcpu = ctxt->vcpu;
130 
131 	switch(arch_timer_ctx_index(ctxt)) {
132 	case TIMER_VTIMER:
133 		__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
134 		break;
135 	case TIMER_PTIMER:
136 		__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
137 		break;
138 	case TIMER_HVTIMER:
139 		__vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
140 		break;
141 	case TIMER_HPTIMER:
142 		__vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
143 		break;
144 	default:
145 		WARN_ON(1);
146 	}
147 }
148 
149 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
150 {
151 	if (!ctxt->offset.vm_offset) {
152 		WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
153 		return;
154 	}
155 
156 	WRITE_ONCE(*ctxt->offset.vm_offset, offset);
157 }
158 
159 u64 kvm_phys_timer_read(void)
160 {
161 	return timecounter->cc->read(timecounter->cc);
162 }
163 
164 void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
165 {
166 	if (vcpu_has_nv(vcpu)) {
167 		if (is_hyp_ctxt(vcpu)) {
168 			map->direct_vtimer = vcpu_hvtimer(vcpu);
169 			map->direct_ptimer = vcpu_hptimer(vcpu);
170 			map->emul_vtimer = vcpu_vtimer(vcpu);
171 			map->emul_ptimer = vcpu_ptimer(vcpu);
172 		} else {
173 			map->direct_vtimer = vcpu_vtimer(vcpu);
174 			map->direct_ptimer = vcpu_ptimer(vcpu);
175 			map->emul_vtimer = vcpu_hvtimer(vcpu);
176 			map->emul_ptimer = vcpu_hptimer(vcpu);
177 		}
178 	} else if (has_vhe()) {
179 		map->direct_vtimer = vcpu_vtimer(vcpu);
180 		map->direct_ptimer = vcpu_ptimer(vcpu);
181 		map->emul_vtimer = NULL;
182 		map->emul_ptimer = NULL;
183 	} else {
184 		map->direct_vtimer = vcpu_vtimer(vcpu);
185 		map->direct_ptimer = NULL;
186 		map->emul_vtimer = NULL;
187 		map->emul_ptimer = vcpu_ptimer(vcpu);
188 	}
189 
190 	trace_kvm_get_timer_map(vcpu->vcpu_id, map);
191 }
192 
193 static inline bool userspace_irqchip(struct kvm *kvm)
194 {
195 	return unlikely(!irqchip_in_kernel(kvm));
196 }
197 
198 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
199 {
200 	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
201 		      HRTIMER_MODE_ABS_HARD);
202 }
203 
204 static void soft_timer_cancel(struct hrtimer *hrt)
205 {
206 	hrtimer_cancel(hrt);
207 }
208 
209 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
210 {
211 	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
212 	struct arch_timer_context *ctx;
213 	struct timer_map map;
214 
215 	/*
216 	 * We may see a timer interrupt after vcpu_put() has been called which
217 	 * sets the CPU's vcpu pointer to NULL, because even though the timer
218 	 * has been disabled in timer_save_state(), the hardware interrupt
219 	 * signal may not have been retired from the interrupt controller yet.
220 	 */
221 	if (!vcpu)
222 		return IRQ_HANDLED;
223 
224 	get_timer_map(vcpu, &map);
225 
226 	if (irq == host_vtimer_irq)
227 		ctx = map.direct_vtimer;
228 	else
229 		ctx = map.direct_ptimer;
230 
231 	if (kvm_timer_should_fire(ctx))
232 		kvm_timer_update_irq(vcpu, true, ctx);
233 
234 	if (userspace_irqchip(vcpu->kvm) &&
235 	    !static_branch_unlikely(&has_gic_active_state))
236 		disable_percpu_irq(host_vtimer_irq);
237 
238 	return IRQ_HANDLED;
239 }
240 
241 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
242 				     u64 val)
243 {
244 	u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
245 
246 	if (now < val) {
247 		u64 ns;
248 
249 		ns = cyclecounter_cyc2ns(timecounter->cc,
250 					 val - now,
251 					 timecounter->mask,
252 					 &timer_ctx->ns_frac);
253 		return ns;
254 	}
255 
256 	return 0;
257 }
258 
259 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
260 {
261 	return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
262 }
263 
264 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
265 {
266 	WARN_ON(timer_ctx && timer_ctx->loaded);
267 	return timer_ctx &&
268 		((timer_get_ctl(timer_ctx) &
269 		  (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
270 }
271 
272 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
273 {
274 	return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
275 		vcpu_get_flag(vcpu, IN_WFIT));
276 }
277 
278 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
279 {
280 	u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
281 	struct arch_timer_context *ctx;
282 
283 	ctx = is_hyp_ctxt(vcpu) ? vcpu_hvtimer(vcpu) : vcpu_vtimer(vcpu);
284 
285 	return kvm_counter_compute_delta(ctx, val);
286 }
287 
288 /*
289  * Returns the earliest expiration time in ns among guest timers.
290  * Note that it will return 0 if none of timers can fire.
291  */
292 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
293 {
294 	u64 min_delta = ULLONG_MAX;
295 	int i;
296 
297 	for (i = 0; i < nr_timers(vcpu); i++) {
298 		struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
299 
300 		WARN(ctx->loaded, "timer %d loaded\n", i);
301 		if (kvm_timer_irq_can_fire(ctx))
302 			min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
303 	}
304 
305 	if (vcpu_has_wfit_active(vcpu))
306 		min_delta = min(min_delta, wfit_delay_ns(vcpu));
307 
308 	/* If none of timers can fire, then return 0 */
309 	if (min_delta == ULLONG_MAX)
310 		return 0;
311 
312 	return min_delta;
313 }
314 
315 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
316 {
317 	struct arch_timer_cpu *timer;
318 	struct kvm_vcpu *vcpu;
319 	u64 ns;
320 
321 	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
322 	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
323 
324 	/*
325 	 * Check that the timer has really expired from the guest's
326 	 * PoV (NTP on the host may have forced it to expire
327 	 * early). If we should have slept longer, restart it.
328 	 */
329 	ns = kvm_timer_earliest_exp(vcpu);
330 	if (unlikely(ns)) {
331 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
332 		return HRTIMER_RESTART;
333 	}
334 
335 	kvm_vcpu_wake_up(vcpu);
336 	return HRTIMER_NORESTART;
337 }
338 
339 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
340 {
341 	struct arch_timer_context *ctx;
342 	struct kvm_vcpu *vcpu;
343 	u64 ns;
344 
345 	ctx = container_of(hrt, struct arch_timer_context, hrtimer);
346 	vcpu = ctx->vcpu;
347 
348 	trace_kvm_timer_hrtimer_expire(ctx);
349 
350 	/*
351 	 * Check that the timer has really expired from the guest's
352 	 * PoV (NTP on the host may have forced it to expire
353 	 * early). If not ready, schedule for a later time.
354 	 */
355 	ns = kvm_timer_compute_delta(ctx);
356 	if (unlikely(ns)) {
357 		hrtimer_forward_now(hrt, ns_to_ktime(ns));
358 		return HRTIMER_RESTART;
359 	}
360 
361 	kvm_timer_update_irq(vcpu, true, ctx);
362 	return HRTIMER_NORESTART;
363 }
364 
365 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
366 {
367 	enum kvm_arch_timers index;
368 	u64 cval, now;
369 
370 	if (!timer_ctx)
371 		return false;
372 
373 	index = arch_timer_ctx_index(timer_ctx);
374 
375 	if (timer_ctx->loaded) {
376 		u32 cnt_ctl = 0;
377 
378 		switch (index) {
379 		case TIMER_VTIMER:
380 		case TIMER_HVTIMER:
381 			cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
382 			break;
383 		case TIMER_PTIMER:
384 		case TIMER_HPTIMER:
385 			cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
386 			break;
387 		case NR_KVM_TIMERS:
388 			/* GCC is braindead */
389 			cnt_ctl = 0;
390 			break;
391 		}
392 
393 		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
394 		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
395 		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
396 	}
397 
398 	if (!kvm_timer_irq_can_fire(timer_ctx))
399 		return false;
400 
401 	cval = timer_get_cval(timer_ctx);
402 	now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
403 
404 	return cval <= now;
405 }
406 
407 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
408 {
409 	return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
410 }
411 
412 /*
413  * Reflect the timer output level into the kvm_run structure
414  */
415 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
416 {
417 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
418 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
419 	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
420 
421 	/* Populate the device bitmap with the timer states */
422 	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
423 				    KVM_ARM_DEV_EL1_PTIMER);
424 	if (kvm_timer_should_fire(vtimer))
425 		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
426 	if (kvm_timer_should_fire(ptimer))
427 		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
428 }
429 
430 static void kvm_timer_update_status(struct arch_timer_context *ctx, bool level)
431 {
432 	/*
433 	 * Paper over NV2 brokenness by publishing the interrupt status
434 	 * bit. This still results in a poor quality of emulation (guest
435 	 * writes will have no effect until the next exit).
436 	 *
437 	 * But hey, it's fast, right?
438 	 */
439 	if (is_hyp_ctxt(ctx->vcpu) &&
440 	    (ctx == vcpu_vtimer(ctx->vcpu) || ctx == vcpu_ptimer(ctx->vcpu))) {
441 		unsigned long val = timer_get_ctl(ctx);
442 		__assign_bit(__ffs(ARCH_TIMER_CTRL_IT_STAT), &val, level);
443 		timer_set_ctl(ctx, val);
444 	}
445 }
446 
447 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
448 				 struct arch_timer_context *timer_ctx)
449 {
450 	int ret;
451 
452 	kvm_timer_update_status(timer_ctx, new_level);
453 
454 	timer_ctx->irq.level = new_level;
455 	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
456 				   timer_ctx->irq.level);
457 
458 	if (!userspace_irqchip(vcpu->kvm)) {
459 		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
460 					  timer_irq(timer_ctx),
461 					  timer_ctx->irq.level,
462 					  timer_ctx);
463 		WARN_ON(ret);
464 	}
465 }
466 
467 /* Only called for a fully emulated timer */
468 static void timer_emulate(struct arch_timer_context *ctx)
469 {
470 	bool should_fire = kvm_timer_should_fire(ctx);
471 
472 	trace_kvm_timer_emulate(ctx, should_fire);
473 
474 	if (should_fire != ctx->irq.level) {
475 		kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
476 		return;
477 	}
478 
479 	kvm_timer_update_status(ctx, should_fire);
480 
481 	/*
482 	 * If the timer can fire now, we don't need to have a soft timer
483 	 * scheduled for the future.  If the timer cannot fire at all,
484 	 * then we also don't need a soft timer.
485 	 */
486 	if (should_fire || !kvm_timer_irq_can_fire(ctx))
487 		return;
488 
489 	soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
490 }
491 
492 static void set_cntvoff(u64 cntvoff)
493 {
494 	kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
495 }
496 
497 static void set_cntpoff(u64 cntpoff)
498 {
499 	if (has_cntpoff())
500 		write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
501 }
502 
503 static void timer_save_state(struct arch_timer_context *ctx)
504 {
505 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
506 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
507 	unsigned long flags;
508 
509 	if (!timer->enabled)
510 		return;
511 
512 	local_irq_save(flags);
513 
514 	if (!ctx->loaded)
515 		goto out;
516 
517 	switch (index) {
518 		u64 cval;
519 
520 	case TIMER_VTIMER:
521 	case TIMER_HVTIMER:
522 		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
523 		cval = read_sysreg_el0(SYS_CNTV_CVAL);
524 
525 		if (has_broken_cntvoff())
526 			cval -= timer_get_offset(ctx);
527 
528 		timer_set_cval(ctx, cval);
529 
530 		/* Disable the timer */
531 		write_sysreg_el0(0, SYS_CNTV_CTL);
532 		isb();
533 
534 		/*
535 		 * The kernel may decide to run userspace after
536 		 * calling vcpu_put, so we reset cntvoff to 0 to
537 		 * ensure a consistent read between user accesses to
538 		 * the virtual counter and kernel access to the
539 		 * physical counter of non-VHE case.
540 		 *
541 		 * For VHE, the virtual counter uses a fixed virtual
542 		 * offset of zero, so no need to zero CNTVOFF_EL2
543 		 * register, but this is actually useful when switching
544 		 * between EL1/vEL2 with NV.
545 		 *
546 		 * Do it unconditionally, as this is either unavoidable
547 		 * or dirt cheap.
548 		 */
549 		set_cntvoff(0);
550 		break;
551 	case TIMER_PTIMER:
552 	case TIMER_HPTIMER:
553 		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
554 		cval = read_sysreg_el0(SYS_CNTP_CVAL);
555 
556 		cval -= timer_get_offset(ctx);
557 
558 		timer_set_cval(ctx, cval);
559 
560 		/* Disable the timer */
561 		write_sysreg_el0(0, SYS_CNTP_CTL);
562 		isb();
563 
564 		set_cntpoff(0);
565 		break;
566 	case NR_KVM_TIMERS:
567 		BUG();
568 	}
569 
570 	trace_kvm_timer_save_state(ctx);
571 
572 	ctx->loaded = false;
573 out:
574 	local_irq_restore(flags);
575 }
576 
577 /*
578  * Schedule the background timer before calling kvm_vcpu_halt, so that this
579  * thread is removed from its waitqueue and made runnable when there's a timer
580  * interrupt to handle.
581  */
582 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
583 {
584 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
585 	struct timer_map map;
586 
587 	get_timer_map(vcpu, &map);
588 
589 	/*
590 	 * If no timers are capable of raising interrupts (disabled or
591 	 * masked), then there's no more work for us to do.
592 	 */
593 	if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
594 	    !kvm_timer_irq_can_fire(map.direct_ptimer) &&
595 	    !kvm_timer_irq_can_fire(map.emul_vtimer) &&
596 	    !kvm_timer_irq_can_fire(map.emul_ptimer) &&
597 	    !vcpu_has_wfit_active(vcpu))
598 		return;
599 
600 	/*
601 	 * At least one guest time will expire. Schedule a background timer.
602 	 * Set the earliest expiration time among the guest timers.
603 	 */
604 	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
605 }
606 
607 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
608 {
609 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
610 
611 	soft_timer_cancel(&timer->bg_timer);
612 }
613 
614 static void timer_restore_state(struct arch_timer_context *ctx)
615 {
616 	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
617 	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
618 	unsigned long flags;
619 
620 	if (!timer->enabled)
621 		return;
622 
623 	local_irq_save(flags);
624 
625 	if (ctx->loaded)
626 		goto out;
627 
628 	switch (index) {
629 		u64 cval, offset;
630 
631 	case TIMER_VTIMER:
632 	case TIMER_HVTIMER:
633 		cval = timer_get_cval(ctx);
634 		offset = timer_get_offset(ctx);
635 		if (has_broken_cntvoff()) {
636 			set_cntvoff(0);
637 			cval += offset;
638 		} else {
639 			set_cntvoff(offset);
640 		}
641 		write_sysreg_el0(cval, SYS_CNTV_CVAL);
642 		isb();
643 		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
644 		break;
645 	case TIMER_PTIMER:
646 	case TIMER_HPTIMER:
647 		cval = timer_get_cval(ctx);
648 		offset = timer_get_offset(ctx);
649 		set_cntpoff(offset);
650 		cval += offset;
651 		write_sysreg_el0(cval, SYS_CNTP_CVAL);
652 		isb();
653 		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
654 		break;
655 	case NR_KVM_TIMERS:
656 		BUG();
657 	}
658 
659 	trace_kvm_timer_restore_state(ctx);
660 
661 	ctx->loaded = true;
662 out:
663 	local_irq_restore(flags);
664 }
665 
666 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
667 {
668 	int r;
669 	r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
670 	WARN_ON(r);
671 }
672 
673 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
674 {
675 	struct kvm_vcpu *vcpu = ctx->vcpu;
676 	bool phys_active = false;
677 
678 	/*
679 	 * Update the timer output so that it is likely to match the
680 	 * state we're about to restore. If the timer expires between
681 	 * this point and the register restoration, we'll take the
682 	 * interrupt anyway.
683 	 */
684 	kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
685 
686 	if (irqchip_in_kernel(vcpu->kvm))
687 		phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
688 
689 	phys_active |= ctx->irq.level;
690 
691 	set_timer_irq_phys_active(ctx, phys_active);
692 }
693 
694 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
695 {
696 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
697 
698 	/*
699 	 * Update the timer output so that it is likely to match the
700 	 * state we're about to restore. If the timer expires between
701 	 * this point and the register restoration, we'll take the
702 	 * interrupt anyway.
703 	 */
704 	kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
705 
706 	/*
707 	 * When using a userspace irqchip with the architected timers and a
708 	 * host interrupt controller that doesn't support an active state, we
709 	 * must still prevent continuously exiting from the guest, and
710 	 * therefore mask the physical interrupt by disabling it on the host
711 	 * interrupt controller when the virtual level is high, such that the
712 	 * guest can make forward progress.  Once we detect the output level
713 	 * being de-asserted, we unmask the interrupt again so that we exit
714 	 * from the guest when the timer fires.
715 	 */
716 	if (vtimer->irq.level)
717 		disable_percpu_irq(host_vtimer_irq);
718 	else
719 		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
720 }
721 
722 /* If _pred is true, set bit in _set, otherwise set it in _clr */
723 #define assign_clear_set_bit(_pred, _bit, _clr, _set)			\
724 	do {								\
725 		if (_pred)						\
726 			(_set) |= (_bit);				\
727 		else							\
728 			(_clr) |= (_bit);				\
729 	} while (0)
730 
731 static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
732 					      struct timer_map *map)
733 {
734 	int hw, ret;
735 
736 	if (!irqchip_in_kernel(vcpu->kvm))
737 		return;
738 
739 	/*
740 	 * We only ever unmap the vtimer irq on a VHE system that runs nested
741 	 * virtualization, in which case we have both a valid emul_vtimer,
742 	 * emul_ptimer, direct_vtimer, and direct_ptimer.
743 	 *
744 	 * Since this is called from kvm_timer_vcpu_load(), a change between
745 	 * vEL2 and vEL1/0 will have just happened, and the timer_map will
746 	 * represent this, and therefore we switch the emul/direct mappings
747 	 * below.
748 	 */
749 	hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
750 	if (hw < 0) {
751 		kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
752 		kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
753 
754 		ret = kvm_vgic_map_phys_irq(vcpu,
755 					    map->direct_vtimer->host_timer_irq,
756 					    timer_irq(map->direct_vtimer),
757 					    &arch_timer_irq_ops);
758 		WARN_ON_ONCE(ret);
759 		ret = kvm_vgic_map_phys_irq(vcpu,
760 					    map->direct_ptimer->host_timer_irq,
761 					    timer_irq(map->direct_ptimer),
762 					    &arch_timer_irq_ops);
763 		WARN_ON_ONCE(ret);
764 
765 		/*
766 		 * The virtual offset behaviour is "interesting", as it
767 		 * always applies when HCR_EL2.E2H==0, but only when
768 		 * accessed from EL1 when HCR_EL2.E2H==1. So make sure we
769 		 * track E2H when putting the HV timer in "direct" mode.
770 		 */
771 		if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
772 			struct arch_timer_offset *offs = &map->direct_vtimer->offset;
773 
774 			if (vcpu_el2_e2h_is_set(vcpu))
775 				offs->vcpu_offset = NULL;
776 			else
777 				offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
778 		}
779 	}
780 }
781 
782 static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
783 {
784 	bool tvt, tpt, tvc, tpc, tvt02, tpt02;
785 	u64 clr, set;
786 
787 	/*
788 	 * No trapping gets configured here with nVHE. See
789 	 * __timer_enable_traps(), which is where the stuff happens.
790 	 */
791 	if (!has_vhe())
792 		return;
793 
794 	/*
795 	 * Our default policy is not to trap anything. As we progress
796 	 * within this function, reality kicks in and we start adding
797 	 * traps based on emulation requirements.
798 	 */
799 	tvt = tpt = tvc = tpc = false;
800 	tvt02 = tpt02 = false;
801 
802 	/*
803 	 * NV2 badly breaks the timer semantics by redirecting accesses to
804 	 * the EL1 timer state to memory, so let's call ECV to the rescue if
805 	 * available: we trap all CNT{P,V}_{CTL,CVAL,TVAL}_EL0 accesses.
806 	 *
807 	 * The treatment slightly varies depending whether we run a nVHE or
808 	 * VHE guest: nVHE will use the _EL0 registers directly, while VHE
809 	 * will use the _EL02 accessors. This translates in different trap
810 	 * bits.
811 	 *
812 	 * None of the trapping is required when running in non-HYP context,
813 	 * unless required by the L1 hypervisor settings once we advertise
814 	 * ECV+NV in the guest, or that we need trapping for other reasons.
815 	 */
816 	if (cpus_have_final_cap(ARM64_HAS_ECV) && is_hyp_ctxt(vcpu)) {
817 		if (vcpu_el2_e2h_is_set(vcpu))
818 			tvt02 = tpt02 = true;
819 		else
820 			tvt = tpt = true;
821 	}
822 
823 	/*
824 	 * We have two possibility to deal with a physical offset:
825 	 *
826 	 * - Either we have CNTPOFF (yay!) or the offset is 0:
827 	 *   we let the guest freely access the HW
828 	 *
829 	 * - or neither of these condition apply:
830 	 *   we trap accesses to the HW, but still use it
831 	 *   after correcting the physical offset
832 	 */
833 	if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
834 		tpt = tpc = true;
835 
836 	/*
837 	 * For the poor sods that could not correctly substract one value
838 	 * from another, trap the full virtual timer and counter.
839 	 */
840 	if (has_broken_cntvoff() && timer_get_offset(map->direct_vtimer))
841 		tvt = tvc = true;
842 
843 	/*
844 	 * Apply the enable bits that the guest hypervisor has requested for
845 	 * its own guest. We can only add traps that wouldn't have been set
846 	 * above.
847 	 * Implementation choices: we do not support NV when E2H=0 in the
848 	 * guest, and we don't support configuration where E2H is writable
849 	 * by the guest (either FEAT_VHE or FEAT_E2H0 is implemented, but
850 	 * not both). This simplifies the handling of the EL1NV* bits.
851 	 */
852 	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
853 		u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
854 
855 		/* Use the VHE format for mental sanity */
856 		if (!vcpu_el2_e2h_is_set(vcpu))
857 			val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
858 
859 		tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
860 		tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
861 
862 		tpt02 |= (val & CNTHCTL_EL1NVPCT);
863 		tvt02 |= (val & CNTHCTL_EL1NVVCT);
864 	}
865 
866 	/*
867 	 * Now that we have collected our requirements, compute the
868 	 * trap and enable bits.
869 	 */
870 	set = 0;
871 	clr = 0;
872 
873 	assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
874 	assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
875 	assign_clear_set_bit(tvt, CNTHCTL_EL1TVT, clr, set);
876 	assign_clear_set_bit(tvc, CNTHCTL_EL1TVCT, clr, set);
877 	assign_clear_set_bit(tvt02, CNTHCTL_EL1NVVCT, clr, set);
878 	assign_clear_set_bit(tpt02, CNTHCTL_EL1NVPCT, clr, set);
879 
880 	/* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
881 	sysreg_clear_set(cnthctl_el2, clr, set);
882 }
883 
884 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
885 {
886 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
887 	struct timer_map map;
888 
889 	if (unlikely(!timer->enabled))
890 		return;
891 
892 	get_timer_map(vcpu, &map);
893 
894 	if (static_branch_likely(&has_gic_active_state)) {
895 		if (vcpu_has_nv(vcpu))
896 			kvm_timer_vcpu_load_nested_switch(vcpu, &map);
897 
898 		kvm_timer_vcpu_load_gic(map.direct_vtimer);
899 		if (map.direct_ptimer)
900 			kvm_timer_vcpu_load_gic(map.direct_ptimer);
901 	} else {
902 		kvm_timer_vcpu_load_nogic(vcpu);
903 	}
904 
905 	kvm_timer_unblocking(vcpu);
906 
907 	timer_restore_state(map.direct_vtimer);
908 	if (map.direct_ptimer)
909 		timer_restore_state(map.direct_ptimer);
910 	if (map.emul_vtimer)
911 		timer_emulate(map.emul_vtimer);
912 	if (map.emul_ptimer)
913 		timer_emulate(map.emul_ptimer);
914 
915 	timer_set_traps(vcpu, &map);
916 }
917 
918 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
919 {
920 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
921 	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
922 	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
923 	bool vlevel, plevel;
924 
925 	if (likely(irqchip_in_kernel(vcpu->kvm)))
926 		return false;
927 
928 	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
929 	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
930 
931 	return kvm_timer_should_fire(vtimer) != vlevel ||
932 	       kvm_timer_should_fire(ptimer) != plevel;
933 }
934 
935 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
936 {
937 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
938 	struct timer_map map;
939 
940 	if (unlikely(!timer->enabled))
941 		return;
942 
943 	get_timer_map(vcpu, &map);
944 
945 	timer_save_state(map.direct_vtimer);
946 	if (map.direct_ptimer)
947 		timer_save_state(map.direct_ptimer);
948 
949 	/*
950 	 * Cancel soft timer emulation, because the only case where we
951 	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
952 	 * in that case we already factor in the deadline for the physical
953 	 * timer when scheduling the bg_timer.
954 	 *
955 	 * In any case, we re-schedule the hrtimer for the physical timer when
956 	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
957 	 */
958 	if (map.emul_vtimer)
959 		soft_timer_cancel(&map.emul_vtimer->hrtimer);
960 	if (map.emul_ptimer)
961 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
962 
963 	if (kvm_vcpu_is_blocking(vcpu))
964 		kvm_timer_blocking(vcpu);
965 }
966 
967 void kvm_timer_sync_nested(struct kvm_vcpu *vcpu)
968 {
969 	/*
970 	 * When NV2 is on, guest hypervisors have their EL1 timer register
971 	 * accesses redirected to the VNCR page. Any guest action taken on
972 	 * the timer is postponed until the next exit, leading to a very
973 	 * poor quality of emulation.
974 	 *
975 	 * This is an unmitigated disaster, only papered over by FEAT_ECV,
976 	 * which allows trapping of the timer registers even with NV2.
977 	 * Still, this is still worse than FEAT_NV on its own. Meh.
978 	 */
979 	if (!vcpu_el2_e2h_is_set(vcpu)) {
980 		if (cpus_have_final_cap(ARM64_HAS_ECV))
981 			return;
982 
983 		/*
984 		 * A non-VHE guest hypervisor doesn't have any direct access
985 		 * to its timers: the EL2 registers trap (and the HW is
986 		 * fully emulated), while the EL0 registers access memory
987 		 * despite the access being notionally direct. Boo.
988 		 *
989 		 * We update the hardware timer registers with the
990 		 * latest value written by the guest to the VNCR page
991 		 * and let the hardware take care of the rest.
992 		 */
993 		write_sysreg_el0(__vcpu_sys_reg(vcpu, CNTV_CTL_EL0),  SYS_CNTV_CTL);
994 		write_sysreg_el0(__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0), SYS_CNTV_CVAL);
995 		write_sysreg_el0(__vcpu_sys_reg(vcpu, CNTP_CTL_EL0),  SYS_CNTP_CTL);
996 		write_sysreg_el0(__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0), SYS_CNTP_CVAL);
997 	} else {
998 		/*
999 		 * For a VHE guest hypervisor, the EL2 state is directly
1000 		 * stored in the host EL1 timers, while the emulated EL0
1001 		 * state is stored in the VNCR page. The latter could have
1002 		 * been updated behind our back, and we must reset the
1003 		 * emulation of the timers.
1004 		 */
1005 		struct timer_map map;
1006 		get_timer_map(vcpu, &map);
1007 
1008 		soft_timer_cancel(&map.emul_vtimer->hrtimer);
1009 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
1010 		timer_emulate(map.emul_vtimer);
1011 		timer_emulate(map.emul_ptimer);
1012 	}
1013 }
1014 
1015 /*
1016  * With a userspace irqchip we have to check if the guest de-asserted the
1017  * timer and if so, unmask the timer irq signal on the host interrupt
1018  * controller to ensure that we see future timer signals.
1019  */
1020 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
1021 {
1022 	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
1023 
1024 	if (!kvm_timer_should_fire(vtimer)) {
1025 		kvm_timer_update_irq(vcpu, false, vtimer);
1026 		if (static_branch_likely(&has_gic_active_state))
1027 			set_timer_irq_phys_active(vtimer, false);
1028 		else
1029 			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1030 	}
1031 }
1032 
1033 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
1034 {
1035 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1036 
1037 	if (unlikely(!timer->enabled))
1038 		return;
1039 
1040 	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
1041 		unmask_vtimer_irq_user(vcpu);
1042 }
1043 
1044 void kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
1045 {
1046 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1047 	struct timer_map map;
1048 
1049 	get_timer_map(vcpu, &map);
1050 
1051 	/*
1052 	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
1053 	 * and to 0 for ARMv7.  We provide an implementation that always
1054 	 * resets the timer to be disabled and unmasked and is compliant with
1055 	 * the ARMv7 architecture.
1056 	 */
1057 	for (int i = 0; i < nr_timers(vcpu); i++)
1058 		timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
1059 
1060 	/*
1061 	 * A vcpu running at EL2 is in charge of the offset applied to
1062 	 * the virtual timer, so use the physical VM offset, and point
1063 	 * the vcpu offset to CNTVOFF_EL2.
1064 	 */
1065 	if (vcpu_has_nv(vcpu)) {
1066 		struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
1067 
1068 		offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
1069 		offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
1070 	}
1071 
1072 	if (timer->enabled) {
1073 		for (int i = 0; i < nr_timers(vcpu); i++)
1074 			kvm_timer_update_irq(vcpu, false,
1075 					     vcpu_get_timer(vcpu, i));
1076 
1077 		if (irqchip_in_kernel(vcpu->kvm)) {
1078 			kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
1079 			if (map.direct_ptimer)
1080 				kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
1081 		}
1082 	}
1083 
1084 	if (map.emul_vtimer)
1085 		soft_timer_cancel(&map.emul_vtimer->hrtimer);
1086 	if (map.emul_ptimer)
1087 		soft_timer_cancel(&map.emul_ptimer->hrtimer);
1088 }
1089 
1090 static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
1091 {
1092 	struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
1093 	struct kvm *kvm = vcpu->kvm;
1094 
1095 	ctxt->vcpu = vcpu;
1096 
1097 	if (timerid == TIMER_VTIMER)
1098 		ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
1099 	else
1100 		ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
1101 
1102 	hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1103 	ctxt->hrtimer.function = kvm_hrtimer_expire;
1104 
1105 	switch (timerid) {
1106 	case TIMER_PTIMER:
1107 	case TIMER_HPTIMER:
1108 		ctxt->host_timer_irq = host_ptimer_irq;
1109 		break;
1110 	case TIMER_VTIMER:
1111 	case TIMER_HVTIMER:
1112 		ctxt->host_timer_irq = host_vtimer_irq;
1113 		break;
1114 	}
1115 }
1116 
1117 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
1118 {
1119 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1120 
1121 	for (int i = 0; i < NR_KVM_TIMERS; i++)
1122 		timer_context_init(vcpu, i);
1123 
1124 	/* Synchronize offsets across timers of a VM if not already provided */
1125 	if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
1126 		timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
1127 		timer_set_offset(vcpu_ptimer(vcpu), 0);
1128 	}
1129 
1130 	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1131 	timer->bg_timer.function = kvm_bg_timer_expire;
1132 }
1133 
1134 void kvm_timer_init_vm(struct kvm *kvm)
1135 {
1136 	for (int i = 0; i < NR_KVM_TIMERS; i++)
1137 		kvm->arch.timer_data.ppi[i] = default_ppi[i];
1138 }
1139 
1140 void kvm_timer_cpu_up(void)
1141 {
1142 	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1143 	if (host_ptimer_irq)
1144 		enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
1145 }
1146 
1147 void kvm_timer_cpu_down(void)
1148 {
1149 	disable_percpu_irq(host_vtimer_irq);
1150 	if (host_ptimer_irq)
1151 		disable_percpu_irq(host_ptimer_irq);
1152 }
1153 
1154 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
1155 {
1156 	struct arch_timer_context *timer;
1157 
1158 	switch (regid) {
1159 	case KVM_REG_ARM_TIMER_CTL:
1160 		timer = vcpu_vtimer(vcpu);
1161 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1162 		break;
1163 	case KVM_REG_ARM_TIMER_CNT:
1164 		if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1165 			      &vcpu->kvm->arch.flags)) {
1166 			timer = vcpu_vtimer(vcpu);
1167 			timer_set_offset(timer, kvm_phys_timer_read() - value);
1168 		}
1169 		break;
1170 	case KVM_REG_ARM_TIMER_CVAL:
1171 		timer = vcpu_vtimer(vcpu);
1172 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1173 		break;
1174 	case KVM_REG_ARM_PTIMER_CTL:
1175 		timer = vcpu_ptimer(vcpu);
1176 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1177 		break;
1178 	case KVM_REG_ARM_PTIMER_CNT:
1179 		if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1180 			      &vcpu->kvm->arch.flags)) {
1181 			timer = vcpu_ptimer(vcpu);
1182 			timer_set_offset(timer, kvm_phys_timer_read() - value);
1183 		}
1184 		break;
1185 	case KVM_REG_ARM_PTIMER_CVAL:
1186 		timer = vcpu_ptimer(vcpu);
1187 		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1188 		break;
1189 
1190 	default:
1191 		return -1;
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 static u64 read_timer_ctl(struct arch_timer_context *timer)
1198 {
1199 	/*
1200 	 * Set ISTATUS bit if it's expired.
1201 	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
1202 	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
1203 	 * regardless of ENABLE bit for our implementation convenience.
1204 	 */
1205 	u32 ctl = timer_get_ctl(timer);
1206 
1207 	if (!kvm_timer_compute_delta(timer))
1208 		ctl |= ARCH_TIMER_CTRL_IT_STAT;
1209 
1210 	return ctl;
1211 }
1212 
1213 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
1214 {
1215 	switch (regid) {
1216 	case KVM_REG_ARM_TIMER_CTL:
1217 		return kvm_arm_timer_read(vcpu,
1218 					  vcpu_vtimer(vcpu), TIMER_REG_CTL);
1219 	case KVM_REG_ARM_TIMER_CNT:
1220 		return kvm_arm_timer_read(vcpu,
1221 					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
1222 	case KVM_REG_ARM_TIMER_CVAL:
1223 		return kvm_arm_timer_read(vcpu,
1224 					  vcpu_vtimer(vcpu), TIMER_REG_CVAL);
1225 	case KVM_REG_ARM_PTIMER_CTL:
1226 		return kvm_arm_timer_read(vcpu,
1227 					  vcpu_ptimer(vcpu), TIMER_REG_CTL);
1228 	case KVM_REG_ARM_PTIMER_CNT:
1229 		return kvm_arm_timer_read(vcpu,
1230 					  vcpu_ptimer(vcpu), TIMER_REG_CNT);
1231 	case KVM_REG_ARM_PTIMER_CVAL:
1232 		return kvm_arm_timer_read(vcpu,
1233 					  vcpu_ptimer(vcpu), TIMER_REG_CVAL);
1234 	}
1235 	return (u64)-1;
1236 }
1237 
1238 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
1239 			      struct arch_timer_context *timer,
1240 			      enum kvm_arch_timer_regs treg)
1241 {
1242 	u64 val;
1243 
1244 	switch (treg) {
1245 	case TIMER_REG_TVAL:
1246 		val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
1247 		val = lower_32_bits(val);
1248 		break;
1249 
1250 	case TIMER_REG_CTL:
1251 		val = read_timer_ctl(timer);
1252 		break;
1253 
1254 	case TIMER_REG_CVAL:
1255 		val = timer_get_cval(timer);
1256 		break;
1257 
1258 	case TIMER_REG_CNT:
1259 		val = kvm_phys_timer_read() - timer_get_offset(timer);
1260 		break;
1261 
1262 	case TIMER_REG_VOFF:
1263 		val = *timer->offset.vcpu_offset;
1264 		break;
1265 
1266 	default:
1267 		BUG();
1268 	}
1269 
1270 	return val;
1271 }
1272 
1273 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
1274 			      enum kvm_arch_timers tmr,
1275 			      enum kvm_arch_timer_regs treg)
1276 {
1277 	struct arch_timer_context *timer;
1278 	struct timer_map map;
1279 	u64 val;
1280 
1281 	get_timer_map(vcpu, &map);
1282 	timer = vcpu_get_timer(vcpu, tmr);
1283 
1284 	if (timer == map.emul_vtimer || timer == map.emul_ptimer)
1285 		return kvm_arm_timer_read(vcpu, timer, treg);
1286 
1287 	preempt_disable();
1288 	timer_save_state(timer);
1289 
1290 	val = kvm_arm_timer_read(vcpu, timer, treg);
1291 
1292 	timer_restore_state(timer);
1293 	preempt_enable();
1294 
1295 	return val;
1296 }
1297 
1298 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
1299 				struct arch_timer_context *timer,
1300 				enum kvm_arch_timer_regs treg,
1301 				u64 val)
1302 {
1303 	switch (treg) {
1304 	case TIMER_REG_TVAL:
1305 		timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
1306 		break;
1307 
1308 	case TIMER_REG_CTL:
1309 		timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
1310 		break;
1311 
1312 	case TIMER_REG_CVAL:
1313 		timer_set_cval(timer, val);
1314 		break;
1315 
1316 	case TIMER_REG_VOFF:
1317 		*timer->offset.vcpu_offset = val;
1318 		break;
1319 
1320 	default:
1321 		BUG();
1322 	}
1323 }
1324 
1325 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
1326 				enum kvm_arch_timers tmr,
1327 				enum kvm_arch_timer_regs treg,
1328 				u64 val)
1329 {
1330 	struct arch_timer_context *timer;
1331 	struct timer_map map;
1332 
1333 	get_timer_map(vcpu, &map);
1334 	timer = vcpu_get_timer(vcpu, tmr);
1335 	if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
1336 		soft_timer_cancel(&timer->hrtimer);
1337 		kvm_arm_timer_write(vcpu, timer, treg, val);
1338 		timer_emulate(timer);
1339 	} else {
1340 		preempt_disable();
1341 		timer_save_state(timer);
1342 		kvm_arm_timer_write(vcpu, timer, treg, val);
1343 		timer_restore_state(timer);
1344 		preempt_enable();
1345 	}
1346 }
1347 
1348 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
1349 {
1350 	if (vcpu)
1351 		irqd_set_forwarded_to_vcpu(d);
1352 	else
1353 		irqd_clr_forwarded_to_vcpu(d);
1354 
1355 	return 0;
1356 }
1357 
1358 static int timer_irq_set_irqchip_state(struct irq_data *d,
1359 				       enum irqchip_irq_state which, bool val)
1360 {
1361 	if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1362 		return irq_chip_set_parent_state(d, which, val);
1363 
1364 	if (val)
1365 		irq_chip_mask_parent(d);
1366 	else
1367 		irq_chip_unmask_parent(d);
1368 
1369 	return 0;
1370 }
1371 
1372 static void timer_irq_eoi(struct irq_data *d)
1373 {
1374 	if (!irqd_is_forwarded_to_vcpu(d))
1375 		irq_chip_eoi_parent(d);
1376 }
1377 
1378 static void timer_irq_ack(struct irq_data *d)
1379 {
1380 	d = d->parent_data;
1381 	if (d->chip->irq_ack)
1382 		d->chip->irq_ack(d);
1383 }
1384 
1385 static struct irq_chip timer_chip = {
1386 	.name			= "KVM",
1387 	.irq_ack		= timer_irq_ack,
1388 	.irq_mask		= irq_chip_mask_parent,
1389 	.irq_unmask		= irq_chip_unmask_parent,
1390 	.irq_eoi		= timer_irq_eoi,
1391 	.irq_set_type		= irq_chip_set_type_parent,
1392 	.irq_set_vcpu_affinity	= timer_irq_set_vcpu_affinity,
1393 	.irq_set_irqchip_state	= timer_irq_set_irqchip_state,
1394 };
1395 
1396 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1397 				  unsigned int nr_irqs, void *arg)
1398 {
1399 	irq_hw_number_t hwirq = (uintptr_t)arg;
1400 
1401 	return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1402 					     &timer_chip, NULL);
1403 }
1404 
1405 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1406 				  unsigned int nr_irqs)
1407 {
1408 }
1409 
1410 static const struct irq_domain_ops timer_domain_ops = {
1411 	.alloc	= timer_irq_domain_alloc,
1412 	.free	= timer_irq_domain_free,
1413 };
1414 
1415 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1416 {
1417 	*flags = irq_get_trigger_type(virq);
1418 	if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1419 		kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1420 			virq);
1421 		*flags = IRQF_TRIGGER_LOW;
1422 	}
1423 }
1424 
1425 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1426 {
1427 	struct irq_domain *domain = NULL;
1428 
1429 	if (info->virtual_irq <= 0) {
1430 		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1431 			info->virtual_irq);
1432 		return -ENODEV;
1433 	}
1434 
1435 	host_vtimer_irq = info->virtual_irq;
1436 	kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1437 
1438 	if (kvm_vgic_global_state.no_hw_deactivation) {
1439 		struct fwnode_handle *fwnode;
1440 		struct irq_data *data;
1441 
1442 		fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1443 		if (!fwnode)
1444 			return -ENOMEM;
1445 
1446 		/* Assume both vtimer and ptimer in the same parent */
1447 		data = irq_get_irq_data(host_vtimer_irq);
1448 		domain = irq_domain_create_hierarchy(data->domain, 0,
1449 						     NR_KVM_TIMERS, fwnode,
1450 						     &timer_domain_ops, NULL);
1451 		if (!domain) {
1452 			irq_domain_free_fwnode(fwnode);
1453 			return -ENOMEM;
1454 		}
1455 
1456 		arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1457 		WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1458 					    (void *)TIMER_VTIMER));
1459 	}
1460 
1461 	if (info->physical_irq > 0) {
1462 		host_ptimer_irq = info->physical_irq;
1463 		kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1464 
1465 		if (domain)
1466 			WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1467 						    (void *)TIMER_PTIMER));
1468 	}
1469 
1470 	return 0;
1471 }
1472 
1473 static void kvm_timer_handle_errata(void)
1474 {
1475 	u64 mmfr0, mmfr1, mmfr4;
1476 
1477 	/*
1478 	 * CNTVOFF_EL2 is broken on some implementations. For those, we trap
1479 	 * all virtual timer/counter accesses, requiring FEAT_ECV.
1480 	 *
1481 	 * However, a hypervisor supporting nesting is likely to mitigate the
1482 	 * erratum at L0, and not require other levels to mitigate it (which
1483 	 * would otherwise be a terrible performance sink due to trap
1484 	 * amplification).
1485 	 *
1486 	 * Given that the affected HW implements both FEAT_VHE and FEAT_E2H0,
1487 	 * and that NV is likely not to (because of limitations of the
1488 	 * architecture), only enable the workaround when FEAT_VHE and
1489 	 * FEAT_E2H0 are both detected. Time will tell if this actually holds.
1490 	 */
1491 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1492 	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1493 	mmfr4 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR4_EL1);
1494 	if (SYS_FIELD_GET(ID_AA64MMFR1_EL1, VH, mmfr1)		&&
1495 	    !SYS_FIELD_GET(ID_AA64MMFR4_EL1, E2H0, mmfr4)	&&
1496 	    SYS_FIELD_GET(ID_AA64MMFR0_EL1, ECV, mmfr0)		&&
1497 	    (has_vhe() || has_hvhe())				&&
1498 	    cpus_have_final_cap(ARM64_WORKAROUND_QCOM_ORYON_CNTVOFF)) {
1499 		static_branch_enable(&broken_cntvoff_key);
1500 		kvm_info("Broken CNTVOFF_EL2, trapping virtual timer\n");
1501 	}
1502 }
1503 
1504 int __init kvm_timer_hyp_init(bool has_gic)
1505 {
1506 	struct arch_timer_kvm_info *info;
1507 	int err;
1508 
1509 	info = arch_timer_get_kvm_info();
1510 	timecounter = &info->timecounter;
1511 
1512 	if (!timecounter->cc) {
1513 		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1514 		return -ENODEV;
1515 	}
1516 
1517 	err = kvm_irq_init(info);
1518 	if (err)
1519 		return err;
1520 
1521 	/* First, do the virtual EL1 timer irq */
1522 
1523 	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1524 				 "kvm guest vtimer", kvm_get_running_vcpus());
1525 	if (err) {
1526 		kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1527 			host_vtimer_irq, err);
1528 		return err;
1529 	}
1530 
1531 	if (has_gic) {
1532 		err = irq_set_vcpu_affinity(host_vtimer_irq,
1533 					    kvm_get_running_vcpus());
1534 		if (err) {
1535 			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1536 			goto out_free_vtimer_irq;
1537 		}
1538 
1539 		static_branch_enable(&has_gic_active_state);
1540 	}
1541 
1542 	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1543 
1544 	/* Now let's do the physical EL1 timer irq */
1545 
1546 	if (info->physical_irq > 0) {
1547 		err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1548 					 "kvm guest ptimer", kvm_get_running_vcpus());
1549 		if (err) {
1550 			kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1551 				host_ptimer_irq, err);
1552 			goto out_free_vtimer_irq;
1553 		}
1554 
1555 		if (has_gic) {
1556 			err = irq_set_vcpu_affinity(host_ptimer_irq,
1557 						    kvm_get_running_vcpus());
1558 			if (err) {
1559 				kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1560 				goto out_free_ptimer_irq;
1561 			}
1562 		}
1563 
1564 		kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1565 	} else if (has_vhe()) {
1566 		kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1567 			info->physical_irq);
1568 		err = -ENODEV;
1569 		goto out_free_vtimer_irq;
1570 	}
1571 
1572 	kvm_timer_handle_errata();
1573 	return 0;
1574 
1575 out_free_ptimer_irq:
1576 	if (info->physical_irq > 0)
1577 		free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
1578 out_free_vtimer_irq:
1579 	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1580 	return err;
1581 }
1582 
1583 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1584 {
1585 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1586 
1587 	soft_timer_cancel(&timer->bg_timer);
1588 }
1589 
1590 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1591 {
1592 	u32 ppis = 0;
1593 	bool valid;
1594 
1595 	mutex_lock(&vcpu->kvm->arch.config_lock);
1596 
1597 	for (int i = 0; i < nr_timers(vcpu); i++) {
1598 		struct arch_timer_context *ctx;
1599 		int irq;
1600 
1601 		ctx = vcpu_get_timer(vcpu, i);
1602 		irq = timer_irq(ctx);
1603 		if (kvm_vgic_set_owner(vcpu, irq, ctx))
1604 			break;
1605 
1606 		/*
1607 		 * We know by construction that we only have PPIs, so
1608 		 * all values are less than 32.
1609 		 */
1610 		ppis |= BIT(irq);
1611 	}
1612 
1613 	valid = hweight32(ppis) == nr_timers(vcpu);
1614 
1615 	if (valid)
1616 		set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
1617 
1618 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1619 
1620 	return valid;
1621 }
1622 
1623 static bool kvm_arch_timer_get_input_level(int vintid)
1624 {
1625 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1626 
1627 	if (WARN(!vcpu, "No vcpu context!\n"))
1628 		return false;
1629 
1630 	for (int i = 0; i < nr_timers(vcpu); i++) {
1631 		struct arch_timer_context *ctx;
1632 
1633 		ctx = vcpu_get_timer(vcpu, i);
1634 		if (timer_irq(ctx) == vintid)
1635 			return kvm_timer_should_fire(ctx);
1636 	}
1637 
1638 	/* A timer IRQ has fired, but no matching timer was found? */
1639 	WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
1640 
1641 	return false;
1642 }
1643 
1644 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1645 {
1646 	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1647 	struct timer_map map;
1648 	int ret;
1649 
1650 	if (timer->enabled)
1651 		return 0;
1652 
1653 	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
1654 	if (!irqchip_in_kernel(vcpu->kvm))
1655 		goto no_vgic;
1656 
1657 	/*
1658 	 * At this stage, we have the guarantee that the vgic is both
1659 	 * available and initialized.
1660 	 */
1661 	if (!timer_irqs_are_valid(vcpu)) {
1662 		kvm_debug("incorrectly configured timer irqs\n");
1663 		return -EINVAL;
1664 	}
1665 
1666 	get_timer_map(vcpu, &map);
1667 
1668 	ret = kvm_vgic_map_phys_irq(vcpu,
1669 				    map.direct_vtimer->host_timer_irq,
1670 				    timer_irq(map.direct_vtimer),
1671 				    &arch_timer_irq_ops);
1672 	if (ret)
1673 		return ret;
1674 
1675 	if (map.direct_ptimer) {
1676 		ret = kvm_vgic_map_phys_irq(vcpu,
1677 					    map.direct_ptimer->host_timer_irq,
1678 					    timer_irq(map.direct_ptimer),
1679 					    &arch_timer_irq_ops);
1680 	}
1681 
1682 	if (ret)
1683 		return ret;
1684 
1685 no_vgic:
1686 	timer->enabled = 1;
1687 	return 0;
1688 }
1689 
1690 /* If we have CNTPOFF, permanently set ECV to enable it */
1691 void kvm_timer_init_vhe(void)
1692 {
1693 	if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
1694 		sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
1695 }
1696 
1697 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1698 {
1699 	int __user *uaddr = (int __user *)(long)attr->addr;
1700 	int irq, idx, ret = 0;
1701 
1702 	if (!irqchip_in_kernel(vcpu->kvm))
1703 		return -EINVAL;
1704 
1705 	if (get_user(irq, uaddr))
1706 		return -EFAULT;
1707 
1708 	if (!(irq_is_ppi(irq)))
1709 		return -EINVAL;
1710 
1711 	mutex_lock(&vcpu->kvm->arch.config_lock);
1712 
1713 	if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
1714 		     &vcpu->kvm->arch.flags)) {
1715 		ret = -EBUSY;
1716 		goto out;
1717 	}
1718 
1719 	switch (attr->attr) {
1720 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1721 		idx = TIMER_VTIMER;
1722 		break;
1723 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1724 		idx = TIMER_PTIMER;
1725 		break;
1726 	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1727 		idx = TIMER_HVTIMER;
1728 		break;
1729 	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1730 		idx = TIMER_HPTIMER;
1731 		break;
1732 	default:
1733 		ret = -ENXIO;
1734 		goto out;
1735 	}
1736 
1737 	/*
1738 	 * We cannot validate the IRQ unicity before we run, so take it at
1739 	 * face value. The verdict will be given on first vcpu run, for each
1740 	 * vcpu. Yes this is late. Blame it on the stupid API.
1741 	 */
1742 	vcpu->kvm->arch.timer_data.ppi[idx] = irq;
1743 
1744 out:
1745 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1746 	return ret;
1747 }
1748 
1749 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1750 {
1751 	int __user *uaddr = (int __user *)(long)attr->addr;
1752 	struct arch_timer_context *timer;
1753 	int irq;
1754 
1755 	switch (attr->attr) {
1756 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1757 		timer = vcpu_vtimer(vcpu);
1758 		break;
1759 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1760 		timer = vcpu_ptimer(vcpu);
1761 		break;
1762 	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1763 		timer = vcpu_hvtimer(vcpu);
1764 		break;
1765 	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1766 		timer = vcpu_hptimer(vcpu);
1767 		break;
1768 	default:
1769 		return -ENXIO;
1770 	}
1771 
1772 	irq = timer_irq(timer);
1773 	return put_user(irq, uaddr);
1774 }
1775 
1776 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1777 {
1778 	switch (attr->attr) {
1779 	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1780 	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1781 	case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1782 	case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1783 		return 0;
1784 	}
1785 
1786 	return -ENXIO;
1787 }
1788 
1789 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1790 				    struct kvm_arm_counter_offset *offset)
1791 {
1792 	int ret = 0;
1793 
1794 	if (offset->reserved)
1795 		return -EINVAL;
1796 
1797 	mutex_lock(&kvm->lock);
1798 
1799 	if (lock_all_vcpus(kvm)) {
1800 		set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
1801 
1802 		/*
1803 		 * If userspace decides to set the offset using this
1804 		 * API rather than merely restoring the counter
1805 		 * values, the offset applies to both the virtual and
1806 		 * physical views.
1807 		 */
1808 		kvm->arch.timer_data.voffset = offset->counter_offset;
1809 		kvm->arch.timer_data.poffset = offset->counter_offset;
1810 
1811 		unlock_all_vcpus(kvm);
1812 	} else {
1813 		ret = -EBUSY;
1814 	}
1815 
1816 	mutex_unlock(&kvm->lock);
1817 
1818 	return ret;
1819 }
1820