xref: /linux/arch/arm64/include/asm/kvm_host.h (revision f7f0adfe64de08803990dc4cbecd2849c04e314a)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13 
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/vncr_mapping.h>
31 
32 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
33 
34 #define KVM_HALT_POLL_NS_DEFAULT 500000
35 
36 #include <kvm/arm_vgic.h>
37 #include <kvm/arm_arch_timer.h>
38 #include <kvm/arm_pmu.h>
39 
40 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
41 
42 #define KVM_VCPU_MAX_FEATURES 7
43 #define KVM_VCPU_VALID_FEATURES	(BIT(KVM_VCPU_MAX_FEATURES) - 1)
44 
45 #define KVM_REQ_SLEEP \
46 	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
47 #define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
48 #define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
49 #define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
50 #define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
51 #define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
52 #define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
53 #define KVM_REQ_RESYNC_PMU_EL0	KVM_ARCH_REQ(7)
54 #define KVM_REQ_NESTED_S2_UNMAP	KVM_ARCH_REQ(8)
55 
56 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
57 				     KVM_DIRTY_LOG_INITIALLY_SET)
58 
59 #define KVM_HAVE_MMU_RWLOCK
60 
61 /*
62  * Mode of operation configurable with kvm-arm.mode early param.
63  * See Documentation/admin-guide/kernel-parameters.txt for more information.
64  */
65 enum kvm_mode {
66 	KVM_MODE_DEFAULT,
67 	KVM_MODE_PROTECTED,
68 	KVM_MODE_NV,
69 	KVM_MODE_NONE,
70 };
71 #ifdef CONFIG_KVM
72 enum kvm_mode kvm_get_mode(void);
73 #else
74 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
75 #endif
76 
77 extern unsigned int __ro_after_init kvm_sve_max_vl;
78 extern unsigned int __ro_after_init kvm_host_sve_max_vl;
79 int __init kvm_arm_init_sve(void);
80 
81 u32 __attribute_const__ kvm_target_cpu(void);
82 void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
83 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
84 
85 struct kvm_hyp_memcache {
86 	phys_addr_t head;
87 	unsigned long nr_pages;
88 	struct pkvm_mapping *mapping; /* only used from EL1 */
89 };
90 
91 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
92 				     phys_addr_t *p,
93 				     phys_addr_t (*to_pa)(void *virt))
94 {
95 	*p = mc->head;
96 	mc->head = to_pa(p);
97 	mc->nr_pages++;
98 }
99 
100 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
101 				     void *(*to_va)(phys_addr_t phys))
102 {
103 	phys_addr_t *p = to_va(mc->head);
104 
105 	if (!mc->nr_pages)
106 		return NULL;
107 
108 	mc->head = *p;
109 	mc->nr_pages--;
110 
111 	return p;
112 }
113 
114 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
115 				       unsigned long min_pages,
116 				       void *(*alloc_fn)(void *arg),
117 				       phys_addr_t (*to_pa)(void *virt),
118 				       void *arg)
119 {
120 	while (mc->nr_pages < min_pages) {
121 		phys_addr_t *p = alloc_fn(arg);
122 
123 		if (!p)
124 			return -ENOMEM;
125 		push_hyp_memcache(mc, p, to_pa);
126 	}
127 
128 	return 0;
129 }
130 
131 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
132 				       void (*free_fn)(void *virt, void *arg),
133 				       void *(*to_va)(phys_addr_t phys),
134 				       void *arg)
135 {
136 	while (mc->nr_pages)
137 		free_fn(pop_hyp_memcache(mc, to_va), arg);
138 }
139 
140 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
141 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
142 
143 struct kvm_vmid {
144 	atomic64_t id;
145 };
146 
147 struct kvm_s2_mmu {
148 	struct kvm_vmid vmid;
149 
150 	/*
151 	 * stage2 entry level table
152 	 *
153 	 * Two kvm_s2_mmu structures in the same VM can point to the same
154 	 * pgd here.  This happens when running a guest using a
155 	 * translation regime that isn't affected by its own stage-2
156 	 * translation, such as a non-VHE hypervisor running at vEL2, or
157 	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
158 	 * canonical stage-2 page tables.
159 	 */
160 	phys_addr_t	pgd_phys;
161 	struct kvm_pgtable *pgt;
162 
163 	/*
164 	 * VTCR value used on the host. For a non-NV guest (or a NV
165 	 * guest that runs in a context where its own S2 doesn't
166 	 * apply), its T0SZ value reflects that of the IPA size.
167 	 *
168 	 * For a shadow S2 MMU, T0SZ reflects the PARange exposed to
169 	 * the guest.
170 	 */
171 	u64	vtcr;
172 
173 	/* The last vcpu id that ran on each physical CPU */
174 	int __percpu *last_vcpu_ran;
175 
176 #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
177 	/*
178 	 * Memory cache used to split
179 	 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
180 	 * is used to allocate stage2 page tables while splitting huge
181 	 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
182 	 * influences both the capacity of the split page cache, and
183 	 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
184 	 * too high.
185 	 *
186 	 * Protected by kvm->slots_lock.
187 	 */
188 	struct kvm_mmu_memory_cache split_page_cache;
189 	uint64_t split_page_chunk_size;
190 
191 	struct kvm_arch *arch;
192 
193 	/*
194 	 * For a shadow stage-2 MMU, the virtual vttbr used by the
195 	 * host to parse the guest S2.
196 	 * This either contains:
197 	 * - the virtual VTTBR programmed by the guest hypervisor with
198          *   CnP cleared
199 	 * - The value 1 (VMID=0, BADDR=0, CnP=1) if invalid
200 	 *
201 	 * We also cache the full VTCR which gets used for TLB invalidation,
202 	 * taking the ARM ARM's "Any of the bits in VTCR_EL2 are permitted
203 	 * to be cached in a TLB" to the letter.
204 	 */
205 	u64	tlb_vttbr;
206 	u64	tlb_vtcr;
207 
208 	/*
209 	 * true when this represents a nested context where virtual
210 	 * HCR_EL2.VM == 1
211 	 */
212 	bool	nested_stage2_enabled;
213 
214 	/*
215 	 * true when this MMU needs to be unmapped before being used for a new
216 	 * purpose.
217 	 */
218 	bool	pending_unmap;
219 
220 	/*
221 	 *  0: Nobody is currently using this, check vttbr for validity
222 	 * >0: Somebody is actively using this.
223 	 */
224 	atomic_t refcnt;
225 };
226 
227 struct kvm_arch_memory_slot {
228 };
229 
230 /**
231  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
232  *
233  * @std_bmap: Bitmap of standard secure service calls
234  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
235  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
236  */
237 struct kvm_smccc_features {
238 	unsigned long std_bmap;
239 	unsigned long std_hyp_bmap;
240 	unsigned long vendor_hyp_bmap;
241 };
242 
243 typedef unsigned int pkvm_handle_t;
244 
245 struct kvm_protected_vm {
246 	pkvm_handle_t handle;
247 	struct kvm_hyp_memcache teardown_mc;
248 	bool enabled;
249 };
250 
251 struct kvm_mpidr_data {
252 	u64			mpidr_mask;
253 	DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
254 };
255 
256 static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
257 {
258 	unsigned long index = 0, mask = data->mpidr_mask;
259 	unsigned long aff = mpidr & MPIDR_HWID_BITMASK;
260 
261 	bitmap_gather(&index, &aff, &mask, fls(mask));
262 
263 	return index;
264 }
265 
266 struct kvm_sysreg_masks;
267 
268 enum fgt_group_id {
269 	__NO_FGT_GROUP__,
270 	HFGxTR_GROUP,
271 	HDFGRTR_GROUP,
272 	HDFGWTR_GROUP = HDFGRTR_GROUP,
273 	HFGITR_GROUP,
274 	HAFGRTR_GROUP,
275 
276 	/* Must be last */
277 	__NR_FGT_GROUP_IDS__
278 };
279 
280 struct kvm_arch {
281 	struct kvm_s2_mmu mmu;
282 
283 	/*
284 	 * Fine-Grained UNDEF, mimicking the FGT layout defined by the
285 	 * architecture. We track them globally, as we present the
286 	 * same feature-set to all vcpus.
287 	 *
288 	 * Index 0 is currently spare.
289 	 */
290 	u64 fgu[__NR_FGT_GROUP_IDS__];
291 
292 	/*
293 	 * Stage 2 paging state for VMs with nested S2 using a virtual
294 	 * VMID.
295 	 */
296 	struct kvm_s2_mmu *nested_mmus;
297 	size_t nested_mmus_size;
298 	int nested_mmus_next;
299 
300 	/* Interrupt controller */
301 	struct vgic_dist	vgic;
302 
303 	/* Timers */
304 	struct arch_timer_vm_data timer_data;
305 
306 	/* Mandated version of PSCI */
307 	u32 psci_version;
308 
309 	/* Protects VM-scoped configuration data */
310 	struct mutex config_lock;
311 
312 	/*
313 	 * If we encounter a data abort without valid instruction syndrome
314 	 * information, report this to user space.  User space can (and
315 	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
316 	 * supported.
317 	 */
318 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
319 	/* Memory Tagging Extension enabled for the guest */
320 #define KVM_ARCH_FLAG_MTE_ENABLED			1
321 	/* At least one vCPU has ran in the VM */
322 #define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
323 	/* The vCPU feature set for the VM is configured */
324 #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED		3
325 	/* PSCI SYSTEM_SUSPEND enabled for the guest */
326 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		4
327 	/* VM counter offset */
328 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET			5
329 	/* Timer PPIs made immutable */
330 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE		6
331 	/* Initial ID reg values loaded */
332 #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED		7
333 	/* Fine-Grained UNDEF initialised */
334 #define KVM_ARCH_FLAG_FGU_INITIALIZED			8
335 	/* SVE exposed to guest */
336 #define KVM_ARCH_FLAG_GUEST_HAS_SVE			9
337 	unsigned long flags;
338 
339 	/* VM-wide vCPU feature set */
340 	DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
341 
342 	/* MPIDR to vcpu index mapping, optional */
343 	struct kvm_mpidr_data *mpidr_data;
344 
345 	/*
346 	 * VM-wide PMU filter, implemented as a bitmap and big enough for
347 	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
348 	 */
349 	unsigned long *pmu_filter;
350 	struct arm_pmu *arm_pmu;
351 
352 	cpumask_var_t supported_cpus;
353 
354 	/* PMCR_EL0.N value for the guest */
355 	u8 pmcr_n;
356 
357 	/* Iterator for idreg debugfs */
358 	u8	idreg_debugfs_iter;
359 
360 	/* Hypercall features firmware registers' descriptor */
361 	struct kvm_smccc_features smccc_feat;
362 	struct maple_tree smccc_filter;
363 
364 	/*
365 	 * Emulated CPU ID registers per VM
366 	 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
367 	 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
368 	 *
369 	 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
370 	 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
371 	 */
372 #define IDREG_IDX(id)		(((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
373 #define KVM_ARM_ID_REG_NUM	(IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
374 	u64 id_regs[KVM_ARM_ID_REG_NUM];
375 
376 	u64 ctr_el0;
377 
378 	/* Masks for VNCR-backed and general EL2 sysregs */
379 	struct kvm_sysreg_masks	*sysreg_masks;
380 
381 	/*
382 	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
383 	 * the associated pKVM instance in the hypervisor.
384 	 */
385 	struct kvm_protected_vm pkvm;
386 };
387 
388 struct kvm_vcpu_fault_info {
389 	u64 esr_el2;		/* Hyp Syndrom Register */
390 	u64 far_el2;		/* Hyp Fault Address Register */
391 	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
392 	u64 disr_el1;		/* Deferred [SError] Status Register */
393 };
394 
395 /*
396  * VNCR() just places the VNCR_capable registers in the enum after
397  * __VNCR_START__, and the value (after correction) to be an 8-byte offset
398  * from the VNCR base. As we don't require the enum to be otherwise ordered,
399  * we need the terrible hack below to ensure that we correctly size the
400  * sys_regs array, no matter what.
401  *
402  * The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful
403  * treasure trove of bit hacks:
404  * https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
405  */
406 #define __MAX__(x,y)	((x) ^ (((x) ^ (y)) & -((x) < (y))))
407 #define VNCR(r)						\
408 	__before_##r,					\
409 	r = __VNCR_START__ + ((VNCR_ ## r) / 8),	\
410 	__after_##r = __MAX__(__before_##r - 1, r)
411 
412 #define MARKER(m)				\
413 	m, __after_##m = m - 1
414 
415 enum vcpu_sysreg {
416 	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
417 	MPIDR_EL1,	/* MultiProcessor Affinity Register */
418 	CLIDR_EL1,	/* Cache Level ID Register */
419 	CSSELR_EL1,	/* Cache Size Selection Register */
420 	TPIDR_EL0,	/* Thread ID, User R/W */
421 	TPIDRRO_EL0,	/* Thread ID, User R/O */
422 	TPIDR_EL1,	/* Thread ID, Privileged */
423 	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
424 	PAR_EL1,	/* Physical Address Register */
425 	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
426 	OSLSR_EL1,	/* OS Lock Status Register */
427 	DISR_EL1,	/* Deferred Interrupt Status Register */
428 
429 	/* Performance Monitors Registers */
430 	PMCR_EL0,	/* Control Register */
431 	PMSELR_EL0,	/* Event Counter Selection Register */
432 	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
433 	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
434 	PMCCNTR_EL0,	/* Cycle Counter Register */
435 	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
436 	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
437 	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
438 	PMCNTENSET_EL0,	/* Count Enable Set Register */
439 	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
440 	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
441 	PMUSERENR_EL0,	/* User Enable Register */
442 
443 	/* Pointer Authentication Registers in a strict increasing order. */
444 	APIAKEYLO_EL1,
445 	APIAKEYHI_EL1,
446 	APIBKEYLO_EL1,
447 	APIBKEYHI_EL1,
448 	APDAKEYLO_EL1,
449 	APDAKEYHI_EL1,
450 	APDBKEYLO_EL1,
451 	APDBKEYHI_EL1,
452 	APGAKEYLO_EL1,
453 	APGAKEYHI_EL1,
454 
455 	/* Memory Tagging Extension registers */
456 	RGSR_EL1,	/* Random Allocation Tag Seed Register */
457 	GCR_EL1,	/* Tag Control Register */
458 	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
459 
460 	POR_EL0,	/* Permission Overlay Register 0 (EL0) */
461 
462 	/* FP/SIMD/SVE */
463 	SVCR,
464 	FPMR,
465 
466 	/* 32bit specific registers. */
467 	DACR32_EL2,	/* Domain Access Control Register */
468 	IFSR32_EL2,	/* Instruction Fault Status Register */
469 	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
470 	DBGVCR32_EL2,	/* Debug Vector Catch Register */
471 
472 	/* EL2 registers */
473 	SCTLR_EL2,	/* System Control Register (EL2) */
474 	ACTLR_EL2,	/* Auxiliary Control Register (EL2) */
475 	CPTR_EL2,	/* Architectural Feature Trap Register (EL2) */
476 	HACR_EL2,	/* Hypervisor Auxiliary Control Register */
477 	ZCR_EL2,	/* SVE Control Register (EL2) */
478 	TTBR0_EL2,	/* Translation Table Base Register 0 (EL2) */
479 	TTBR1_EL2,	/* Translation Table Base Register 1 (EL2) */
480 	TCR_EL2,	/* Translation Control Register (EL2) */
481 	PIRE0_EL2,	/* Permission Indirection Register 0 (EL2) */
482 	PIR_EL2,	/* Permission Indirection Register 1 (EL2) */
483 	POR_EL2,	/* Permission Overlay Register 2 (EL2) */
484 	SPSR_EL2,	/* EL2 saved program status register */
485 	ELR_EL2,	/* EL2 exception link register */
486 	AFSR0_EL2,	/* Auxiliary Fault Status Register 0 (EL2) */
487 	AFSR1_EL2,	/* Auxiliary Fault Status Register 1 (EL2) */
488 	ESR_EL2,	/* Exception Syndrome Register (EL2) */
489 	FAR_EL2,	/* Fault Address Register (EL2) */
490 	HPFAR_EL2,	/* Hypervisor IPA Fault Address Register */
491 	MAIR_EL2,	/* Memory Attribute Indirection Register (EL2) */
492 	AMAIR_EL2,	/* Auxiliary Memory Attribute Indirection Register (EL2) */
493 	VBAR_EL2,	/* Vector Base Address Register (EL2) */
494 	RVBAR_EL2,	/* Reset Vector Base Address Register */
495 	CONTEXTIDR_EL2,	/* Context ID Register (EL2) */
496 	SP_EL2,		/* EL2 Stack Pointer */
497 	CNTHP_CTL_EL2,
498 	CNTHP_CVAL_EL2,
499 	CNTHV_CTL_EL2,
500 	CNTHV_CVAL_EL2,
501 
502 	/* Anything from this can be RES0/RES1 sanitised */
503 	MARKER(__SANITISED_REG_START__),
504 	TCR2_EL2,	/* Extended Translation Control Register (EL2) */
505 	MDCR_EL2,	/* Monitor Debug Configuration Register (EL2) */
506 	CNTHCTL_EL2,	/* Counter-timer Hypervisor Control register */
507 
508 	/* Any VNCR-capable reg goes after this point */
509 	MARKER(__VNCR_START__),
510 
511 	VNCR(SCTLR_EL1),/* System Control Register */
512 	VNCR(ACTLR_EL1),/* Auxiliary Control Register */
513 	VNCR(CPACR_EL1),/* Coprocessor Access Control */
514 	VNCR(ZCR_EL1),	/* SVE Control */
515 	VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */
516 	VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */
517 	VNCR(TCR_EL1),	/* Translation Control Register */
518 	VNCR(TCR2_EL1),	/* Extended Translation Control Register */
519 	VNCR(ESR_EL1),	/* Exception Syndrome Register */
520 	VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */
521 	VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */
522 	VNCR(FAR_EL1),	/* Fault Address Register */
523 	VNCR(MAIR_EL1),	/* Memory Attribute Indirection Register */
524 	VNCR(VBAR_EL1),	/* Vector Base Address Register */
525 	VNCR(CONTEXTIDR_EL1),	/* Context ID Register */
526 	VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */
527 	VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */
528 	VNCR(ELR_EL1),
529 	VNCR(SP_EL1),
530 	VNCR(SPSR_EL1),
531 	VNCR(TFSR_EL1),	/* Tag Fault Status Register (EL1) */
532 	VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */
533 	VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */
534 	VNCR(HCR_EL2),	/* Hypervisor Configuration Register */
535 	VNCR(HSTR_EL2),	/* Hypervisor System Trap Register */
536 	VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */
537 	VNCR(VTCR_EL2),	/* Virtualization Translation Control Register */
538 	VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */
539 	VNCR(HCRX_EL2),	/* Extended Hypervisor Configuration Register */
540 
541 	/* Permission Indirection Extension registers */
542 	VNCR(PIR_EL1),	 /* Permission Indirection Register 1 (EL1) */
543 	VNCR(PIRE0_EL1), /*  Permission Indirection Register 0 (EL1) */
544 
545 	VNCR(POR_EL1),	/* Permission Overlay Register 1 (EL1) */
546 
547 	VNCR(HFGRTR_EL2),
548 	VNCR(HFGWTR_EL2),
549 	VNCR(HFGITR_EL2),
550 	VNCR(HDFGRTR_EL2),
551 	VNCR(HDFGWTR_EL2),
552 	VNCR(HAFGRTR_EL2),
553 
554 	VNCR(CNTVOFF_EL2),
555 	VNCR(CNTV_CVAL_EL0),
556 	VNCR(CNTV_CTL_EL0),
557 	VNCR(CNTP_CVAL_EL0),
558 	VNCR(CNTP_CTL_EL0),
559 
560 	VNCR(ICH_HCR_EL2),
561 
562 	NR_SYS_REGS	/* Nothing after this line! */
563 };
564 
565 struct kvm_sysreg_masks {
566 	struct {
567 		u64	res0;
568 		u64	res1;
569 	} mask[NR_SYS_REGS - __SANITISED_REG_START__];
570 };
571 
572 struct kvm_cpu_context {
573 	struct user_pt_regs regs;	/* sp = sp_el0 */
574 
575 	u64	spsr_abt;
576 	u64	spsr_und;
577 	u64	spsr_irq;
578 	u64	spsr_fiq;
579 
580 	struct user_fpsimd_state fp_regs;
581 
582 	u64 sys_regs[NR_SYS_REGS];
583 
584 	struct kvm_vcpu *__hyp_running_vcpu;
585 
586 	/* This pointer has to be 4kB aligned. */
587 	u64 *vncr_array;
588 };
589 
590 struct cpu_sve_state {
591 	__u64 zcr_el1;
592 
593 	/*
594 	 * Ordering is important since __sve_save_state/__sve_restore_state
595 	 * relies on it.
596 	 */
597 	__u32 fpsr;
598 	__u32 fpcr;
599 
600 	/* Must be SVE_VQ_BYTES (128 bit) aligned. */
601 	__u8 sve_regs[];
602 };
603 
604 /*
605  * This structure is instantiated on a per-CPU basis, and contains
606  * data that is:
607  *
608  * - tied to a single physical CPU, and
609  * - either have a lifetime that does not extend past vcpu_put()
610  * - or is an invariant for the lifetime of the system
611  *
612  * Use host_data_ptr(field) as a way to access a pointer to such a
613  * field.
614  */
615 struct kvm_host_data {
616 #define KVM_HOST_DATA_FLAG_HAS_SPE			0
617 #define KVM_HOST_DATA_FLAG_HAS_TRBE			1
618 #define KVM_HOST_DATA_FLAG_HOST_SVE_ENABLED		2
619 #define KVM_HOST_DATA_FLAG_HOST_SME_ENABLED		3
620 #define KVM_HOST_DATA_FLAG_TRBE_ENABLED			4
621 #define KVM_HOST_DATA_FLAG_EL1_TRACING_CONFIGURED	5
622 	unsigned long flags;
623 
624 	struct kvm_cpu_context host_ctxt;
625 
626 	/*
627 	 * All pointers in this union are hyp VA.
628 	 * sve_state is only used in pKVM and if system_supports_sve().
629 	 */
630 	union {
631 		struct user_fpsimd_state *fpsimd_state;
632 		struct cpu_sve_state *sve_state;
633 	};
634 
635 	union {
636 		/* HYP VA pointer to the host storage for FPMR */
637 		u64	*fpmr_ptr;
638 		/*
639 		 * Used by pKVM only, as it needs to provide storage
640 		 * for the host
641 		 */
642 		u64	fpmr;
643 	};
644 
645 	/* Ownership of the FP regs */
646 	enum {
647 		FP_STATE_FREE,
648 		FP_STATE_HOST_OWNED,
649 		FP_STATE_GUEST_OWNED,
650 	} fp_owner;
651 
652 	/*
653 	 * host_debug_state contains the host registers which are
654 	 * saved and restored during world switches.
655 	 */
656 	struct {
657 		/* {Break,watch}point registers */
658 		struct kvm_guest_debug_arch regs;
659 		/* Statistical profiling extension */
660 		u64 pmscr_el1;
661 		/* Self-hosted trace */
662 		u64 trfcr_el1;
663 		/* Values of trap registers for the host before guest entry. */
664 		u64 mdcr_el2;
665 	} host_debug_state;
666 
667 	/* Guest trace filter value */
668 	u64 trfcr_while_in_guest;
669 
670 	/* Number of programmable event counters (PMCR_EL0.N) for this CPU */
671 	unsigned int nr_event_counters;
672 
673 	/* Number of debug breakpoints/watchpoints for this CPU (minus 1) */
674 	unsigned int debug_brps;
675 	unsigned int debug_wrps;
676 };
677 
678 struct kvm_host_psci_config {
679 	/* PSCI version used by host. */
680 	u32 version;
681 	u32 smccc_version;
682 
683 	/* Function IDs used by host if version is v0.1. */
684 	struct psci_0_1_function_ids function_ids_0_1;
685 
686 	bool psci_0_1_cpu_suspend_implemented;
687 	bool psci_0_1_cpu_on_implemented;
688 	bool psci_0_1_cpu_off_implemented;
689 	bool psci_0_1_migrate_implemented;
690 };
691 
692 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
693 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
694 
695 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
696 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
697 
698 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
699 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
700 
701 struct vcpu_reset_state {
702 	unsigned long	pc;
703 	unsigned long	r0;
704 	bool		be;
705 	bool		reset;
706 };
707 
708 struct kvm_vcpu_arch {
709 	struct kvm_cpu_context ctxt;
710 
711 	/*
712 	 * Guest floating point state
713 	 *
714 	 * The architecture has two main floating point extensions,
715 	 * the original FPSIMD and SVE.  These have overlapping
716 	 * register views, with the FPSIMD V registers occupying the
717 	 * low 128 bits of the SVE Z registers.  When the core
718 	 * floating point code saves the register state of a task it
719 	 * records which view it saved in fp_type.
720 	 */
721 	void *sve_state;
722 	enum fp_type fp_type;
723 	unsigned int sve_max_vl;
724 
725 	/* Stage 2 paging state used by the hardware on next switch */
726 	struct kvm_s2_mmu *hw_mmu;
727 
728 	/* Values of trap registers for the guest. */
729 	u64 hcr_el2;
730 	u64 hcrx_el2;
731 	u64 mdcr_el2;
732 
733 	/* Exception Information */
734 	struct kvm_vcpu_fault_info fault;
735 
736 	/* Configuration flags, set once and for all before the vcpu can run */
737 	u8 cflags;
738 
739 	/* Input flags to the hypervisor code, potentially cleared after use */
740 	u8 iflags;
741 
742 	/* State flags for kernel bookkeeping, unused by the hypervisor code */
743 	u8 sflags;
744 
745 	/*
746 	 * Don't run the guest (internal implementation need).
747 	 *
748 	 * Contrary to the flags above, this is set/cleared outside of
749 	 * a vcpu context, and thus cannot be mixed with the flags
750 	 * themselves (or the flag accesses need to be made atomic).
751 	 */
752 	bool pause;
753 
754 	/*
755 	 * We maintain more than a single set of debug registers to support
756 	 * debugging the guest from the host and to maintain separate host and
757 	 * guest state during world switches. vcpu_debug_state are the debug
758 	 * registers of the vcpu as the guest sees them.
759 	 *
760 	 * external_debug_state contains the debug values we want to debug the
761 	 * guest. This is set via the KVM_SET_GUEST_DEBUG ioctl.
762 	 */
763 	struct kvm_guest_debug_arch vcpu_debug_state;
764 	struct kvm_guest_debug_arch external_debug_state;
765 	u64 external_mdscr_el1;
766 
767 	enum {
768 		VCPU_DEBUG_FREE,
769 		VCPU_DEBUG_HOST_OWNED,
770 		VCPU_DEBUG_GUEST_OWNED,
771 	} debug_owner;
772 
773 	/* VGIC state */
774 	struct vgic_cpu vgic_cpu;
775 	struct arch_timer_cpu timer_cpu;
776 	struct kvm_pmu pmu;
777 
778 	/* vcpu power state */
779 	struct kvm_mp_state mp_state;
780 	spinlock_t mp_state_lock;
781 
782 	/* Cache some mmu pages needed inside spinlock regions */
783 	struct kvm_mmu_memory_cache mmu_page_cache;
784 
785 	/* Pages to top-up the pKVM/EL2 guest pool */
786 	struct kvm_hyp_memcache pkvm_memcache;
787 
788 	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
789 	u64 vsesr_el2;
790 
791 	/* Additional reset state */
792 	struct vcpu_reset_state	reset_state;
793 
794 	/* Guest PV state */
795 	struct {
796 		u64 last_steal;
797 		gpa_t base;
798 	} steal;
799 
800 	/* Per-vcpu CCSIDR override or NULL */
801 	u32 *ccsidr;
802 };
803 
804 /*
805  * Each 'flag' is composed of a comma-separated triplet:
806  *
807  * - the flag-set it belongs to in the vcpu->arch structure
808  * - the value for that flag
809  * - the mask for that flag
810  *
811  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
812  * unpack_vcpu_flag() extract the flag value from the triplet for
813  * direct use outside of the flag accessors.
814  */
815 #define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
816 
817 #define __unpack_flag(_set, _f, _m)	_f
818 #define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
819 
820 #define __build_check_flag(v, flagset, f, m)			\
821 	do {							\
822 		typeof(v->arch.flagset) *_fset;			\
823 								\
824 		/* Check that the flags fit in the mask */	\
825 		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
826 		/* Check that the flags fit in the type */	\
827 		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
828 	} while (0)
829 
830 #define __vcpu_get_flag(v, flagset, f, m)			\
831 	({							\
832 		__build_check_flag(v, flagset, f, m);		\
833 								\
834 		READ_ONCE(v->arch.flagset) & (m);		\
835 	})
836 
837 /*
838  * Note that the set/clear accessors must be preempt-safe in order to
839  * avoid nesting them with load/put which also manipulate flags...
840  */
841 #ifdef __KVM_NVHE_HYPERVISOR__
842 /* the nVHE hypervisor is always non-preemptible */
843 #define __vcpu_flags_preempt_disable()
844 #define __vcpu_flags_preempt_enable()
845 #else
846 #define __vcpu_flags_preempt_disable()	preempt_disable()
847 #define __vcpu_flags_preempt_enable()	preempt_enable()
848 #endif
849 
850 #define __vcpu_set_flag(v, flagset, f, m)			\
851 	do {							\
852 		typeof(v->arch.flagset) *fset;			\
853 								\
854 		__build_check_flag(v, flagset, f, m);		\
855 								\
856 		fset = &v->arch.flagset;			\
857 		__vcpu_flags_preempt_disable();			\
858 		if (HWEIGHT(m) > 1)				\
859 			*fset &= ~(m);				\
860 		*fset |= (f);					\
861 		__vcpu_flags_preempt_enable();			\
862 	} while (0)
863 
864 #define __vcpu_clear_flag(v, flagset, f, m)			\
865 	do {							\
866 		typeof(v->arch.flagset) *fset;			\
867 								\
868 		__build_check_flag(v, flagset, f, m);		\
869 								\
870 		fset = &v->arch.flagset;			\
871 		__vcpu_flags_preempt_disable();			\
872 		*fset &= ~(m);					\
873 		__vcpu_flags_preempt_enable();			\
874 	} while (0)
875 
876 #define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
877 #define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
878 #define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
879 
880 /* KVM_ARM_VCPU_INIT completed */
881 #define VCPU_INITIALIZED	__vcpu_single_flag(cflags, BIT(0))
882 /* SVE config completed */
883 #define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
884 
885 /* Exception pending */
886 #define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
887 /*
888  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
889  * be set together with an exception...
890  */
891 #define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
892 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
893 #define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
894 
895 /* Helpers to encode exceptions with minimum fuss */
896 #define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
897 #define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
898 #define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
899 
900 /*
901  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
902  * values:
903  *
904  * For AArch32 EL1:
905  */
906 #define EXCEPT_AA32_UND		__vcpu_except_flags(0)
907 #define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
908 #define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
909 /* For AArch64: */
910 #define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
911 #define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
912 #define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
913 #define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
914 /* For AArch64 with NV: */
915 #define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
916 #define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
917 #define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
918 #define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
919 
920 /* Physical CPU not in supported_cpus */
921 #define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(0))
922 /* WFIT instruction trapped */
923 #define IN_WFIT			__vcpu_single_flag(sflags, BIT(1))
924 /* vcpu system registers loaded on physical CPU */
925 #define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(2))
926 /* Software step state is Active-pending for external debug */
927 #define HOST_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(3))
928 /* Software step state is Active pending for guest debug */
929 #define GUEST_SS_ACTIVE_PENDING __vcpu_single_flag(sflags, BIT(4))
930 /* PMUSERENR for the guest EL0 is on physical CPU */
931 #define PMUSERENR_ON_CPU	__vcpu_single_flag(sflags, BIT(5))
932 /* WFI instruction trapped */
933 #define IN_WFI			__vcpu_single_flag(sflags, BIT(6))
934 
935 
936 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
937 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
938 			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
939 
940 #define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
941 
942 #define vcpu_sve_zcr_elx(vcpu)						\
943 	(unlikely(is_hyp_ctxt(vcpu)) ? ZCR_EL2 : ZCR_EL1)
944 
945 #define vcpu_sve_state_size(vcpu) ({					\
946 	size_t __size_ret;						\
947 	unsigned int __vcpu_vq;						\
948 									\
949 	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
950 		__size_ret = 0;						\
951 	} else {							\
952 		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
953 		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
954 	}								\
955 									\
956 	__size_ret;							\
957 })
958 
959 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
960 				 KVM_GUESTDBG_USE_SW_BP | \
961 				 KVM_GUESTDBG_USE_HW | \
962 				 KVM_GUESTDBG_SINGLESTEP)
963 
964 #define kvm_has_sve(kvm)	(system_supports_sve() &&		\
965 				 test_bit(KVM_ARCH_FLAG_GUEST_HAS_SVE, &(kvm)->arch.flags))
966 
967 #ifdef __KVM_NVHE_HYPERVISOR__
968 #define vcpu_has_sve(vcpu)	kvm_has_sve(kern_hyp_va((vcpu)->kvm))
969 #else
970 #define vcpu_has_sve(vcpu)	kvm_has_sve((vcpu)->kvm)
971 #endif
972 
973 #ifdef CONFIG_ARM64_PTR_AUTH
974 #define vcpu_has_ptrauth(vcpu)						\
975 	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
976 	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
977 	 (vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_ADDRESS) ||       \
978 	  vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_GENERIC)))
979 #else
980 #define vcpu_has_ptrauth(vcpu)		false
981 #endif
982 
983 #define vcpu_on_unsupported_cpu(vcpu)					\
984 	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
985 
986 #define vcpu_set_on_unsupported_cpu(vcpu)				\
987 	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
988 
989 #define vcpu_clear_on_unsupported_cpu(vcpu)				\
990 	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
991 
992 #define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
993 
994 /*
995  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
996  * memory backed version of a register, and not the one most recently
997  * accessed by a running VCPU.  For example, for userspace access or
998  * for system registers that are never context switched, but only
999  * emulated.
1000  *
1001  * Don't bother with VNCR-based accesses in the nVHE code, it has no
1002  * business dealing with NV.
1003  */
1004 static inline u64 *___ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r)
1005 {
1006 #if !defined (__KVM_NVHE_HYPERVISOR__)
1007 	if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) &&
1008 		     r >= __VNCR_START__ && ctxt->vncr_array))
1009 		return &ctxt->vncr_array[r - __VNCR_START__];
1010 #endif
1011 	return (u64 *)&ctxt->sys_regs[r];
1012 }
1013 
1014 #define __ctxt_sys_reg(c,r)						\
1015 	({								\
1016 		BUILD_BUG_ON(__builtin_constant_p(r) &&			\
1017 			     (r) >= NR_SYS_REGS);			\
1018 		___ctxt_sys_reg(c, r);					\
1019 	})
1020 
1021 #define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
1022 
1023 u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *, enum vcpu_sysreg, u64);
1024 #define __vcpu_sys_reg(v,r)						\
1025 	(*({								\
1026 		const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt;	\
1027 		u64 *__r = __ctxt_sys_reg(ctxt, (r));			\
1028 		if (vcpu_has_nv((v)) && (r) >= __SANITISED_REG_START__)	\
1029 			*__r = kvm_vcpu_apply_reg_masks((v), (r), *__r);\
1030 		__r;							\
1031 	}))
1032 
1033 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
1034 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
1035 
1036 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
1037 {
1038 	/*
1039 	 * *** VHE ONLY ***
1040 	 *
1041 	 * System registers listed in the switch are not saved on every
1042 	 * exit from the guest but are only saved on vcpu_put.
1043 	 *
1044 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1045 	 * should never be listed below, because the guest cannot modify its
1046 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
1047 	 * thread when emulating cross-VCPU communication.
1048 	 */
1049 	if (!has_vhe())
1050 		return false;
1051 
1052 	switch (reg) {
1053 	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
1054 	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
1055 	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
1056 	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
1057 	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
1058 	case TCR2_EL1:		*val = read_sysreg_s(SYS_TCR2_EL12);	break;
1059 	case PIR_EL1:		*val = read_sysreg_s(SYS_PIR_EL12);	break;
1060 	case PIRE0_EL1:		*val = read_sysreg_s(SYS_PIRE0_EL12);	break;
1061 	case POR_EL1:		*val = read_sysreg_s(SYS_POR_EL12);	break;
1062 	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
1063 	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
1064 	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
1065 	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
1066 	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
1067 	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
1068 	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
1069 	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
1070 	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
1071 	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
1072 	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
1073 	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
1074 	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
1075 	case SPSR_EL1:		*val = read_sysreg_s(SYS_SPSR_EL12);	break;
1076 	case PAR_EL1:		*val = read_sysreg_par();		break;
1077 	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
1078 	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
1079 	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
1080 	case ZCR_EL1:		*val = read_sysreg_s(SYS_ZCR_EL12);	break;
1081 	default:		return false;
1082 	}
1083 
1084 	return true;
1085 }
1086 
1087 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
1088 {
1089 	/*
1090 	 * *** VHE ONLY ***
1091 	 *
1092 	 * System registers listed in the switch are not restored on every
1093 	 * entry to the guest but are only restored on vcpu_load.
1094 	 *
1095 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
1096 	 * should never be listed below, because the MPIDR should only be set
1097 	 * once, before running the VCPU, and never changed later.
1098 	 */
1099 	if (!has_vhe())
1100 		return false;
1101 
1102 	switch (reg) {
1103 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
1104 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
1105 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
1106 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
1107 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
1108 	case TCR2_EL1:		write_sysreg_s(val, SYS_TCR2_EL12);	break;
1109 	case PIR_EL1:		write_sysreg_s(val, SYS_PIR_EL12);	break;
1110 	case PIRE0_EL1:		write_sysreg_s(val, SYS_PIRE0_EL12);	break;
1111 	case POR_EL1:		write_sysreg_s(val, SYS_POR_EL12);	break;
1112 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
1113 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
1114 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
1115 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
1116 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
1117 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
1118 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
1119 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
1120 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
1121 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
1122 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
1123 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
1124 	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
1125 	case SPSR_EL1:		write_sysreg_s(val, SYS_SPSR_EL12);	break;
1126 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
1127 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
1128 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
1129 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
1130 	case ZCR_EL1:		write_sysreg_s(val, SYS_ZCR_EL12);	break;
1131 	default:		return false;
1132 	}
1133 
1134 	return true;
1135 }
1136 
1137 struct kvm_vm_stat {
1138 	struct kvm_vm_stat_generic generic;
1139 };
1140 
1141 struct kvm_vcpu_stat {
1142 	struct kvm_vcpu_stat_generic generic;
1143 	u64 hvc_exit_stat;
1144 	u64 wfe_exit_stat;
1145 	u64 wfi_exit_stat;
1146 	u64 mmio_exit_user;
1147 	u64 mmio_exit_kernel;
1148 	u64 signal_exits;
1149 	u64 exits;
1150 };
1151 
1152 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
1153 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
1154 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1155 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1156 
1157 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
1158 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
1159 
1160 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1161 			      struct kvm_vcpu_events *events);
1162 
1163 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1164 			      struct kvm_vcpu_events *events);
1165 
1166 void kvm_arm_halt_guest(struct kvm *kvm);
1167 void kvm_arm_resume_guest(struct kvm *kvm);
1168 
1169 #define vcpu_has_run_once(vcpu)	(!!READ_ONCE((vcpu)->pid))
1170 
1171 #ifndef __KVM_NVHE_HYPERVISOR__
1172 #define kvm_call_hyp_nvhe(f, ...)						\
1173 	({								\
1174 		struct arm_smccc_res res;				\
1175 									\
1176 		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
1177 				  ##__VA_ARGS__, &res);			\
1178 		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
1179 									\
1180 		res.a1;							\
1181 	})
1182 
1183 /*
1184  * The couple of isb() below are there to guarantee the same behaviour
1185  * on VHE as on !VHE, where the eret to EL1 acts as a context
1186  * synchronization event.
1187  */
1188 #define kvm_call_hyp(f, ...)						\
1189 	do {								\
1190 		if (has_vhe()) {					\
1191 			f(__VA_ARGS__);					\
1192 			isb();						\
1193 		} else {						\
1194 			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
1195 		}							\
1196 	} while(0)
1197 
1198 #define kvm_call_hyp_ret(f, ...)					\
1199 	({								\
1200 		typeof(f(__VA_ARGS__)) ret;				\
1201 									\
1202 		if (has_vhe()) {					\
1203 			ret = f(__VA_ARGS__);				\
1204 			isb();						\
1205 		} else {						\
1206 			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
1207 		}							\
1208 									\
1209 		ret;							\
1210 	})
1211 #else /* __KVM_NVHE_HYPERVISOR__ */
1212 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
1213 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
1214 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
1215 #endif /* __KVM_NVHE_HYPERVISOR__ */
1216 
1217 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
1218 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
1219 
1220 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
1221 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
1222 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
1223 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
1224 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
1225 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
1226 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
1227 
1228 void kvm_sys_regs_create_debugfs(struct kvm *kvm);
1229 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
1230 
1231 int __init kvm_sys_reg_table_init(void);
1232 struct sys_reg_desc;
1233 int __init populate_sysreg_config(const struct sys_reg_desc *sr,
1234 				  unsigned int idx);
1235 int __init populate_nv_trap_config(void);
1236 
1237 bool lock_all_vcpus(struct kvm *kvm);
1238 void unlock_all_vcpus(struct kvm *kvm);
1239 
1240 void kvm_calculate_traps(struct kvm_vcpu *vcpu);
1241 
1242 /* MMIO helpers */
1243 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
1244 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
1245 
1246 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1247 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1248 
1249 /*
1250  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1251  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1252  * loaded is considered to be "in guest".
1253  */
1254 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1255 {
1256 	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1257 }
1258 
1259 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1260 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1261 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1262 
1263 bool kvm_arm_pvtime_supported(void);
1264 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1265 			    struct kvm_device_attr *attr);
1266 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1267 			    struct kvm_device_attr *attr);
1268 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1269 			    struct kvm_device_attr *attr);
1270 
1271 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1272 int __init kvm_arm_vmid_alloc_init(void);
1273 void __init kvm_arm_vmid_alloc_free(void);
1274 bool kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1275 void kvm_arm_vmid_clear_active(void);
1276 
1277 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1278 {
1279 	vcpu_arch->steal.base = INVALID_GPA;
1280 }
1281 
1282 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1283 {
1284 	return (vcpu_arch->steal.base != INVALID_GPA);
1285 }
1286 
1287 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1288 
1289 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1290 
1291 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1292 
1293 /*
1294  * How we access per-CPU host data depends on the where we access it from,
1295  * and the mode we're in:
1296  *
1297  * - VHE and nVHE hypervisor bits use their locally defined instance
1298  *
1299  * - the rest of the kernel use either the VHE or nVHE one, depending on
1300  *   the mode we're running in.
1301  *
1302  *   Unless we're in protected mode, fully deprivileged, and the nVHE
1303  *   per-CPU stuff is exclusively accessible to the protected EL2 code.
1304  *   In this case, the EL1 code uses the *VHE* data as its private state
1305  *   (which makes sense in a way as there shouldn't be any shared state
1306  *   between the host and the hypervisor).
1307  *
1308  * Yes, this is all totally trivial. Shoot me now.
1309  */
1310 #if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
1311 #define host_data_ptr(f)	(&this_cpu_ptr(&kvm_host_data)->f)
1312 #else
1313 #define host_data_ptr(f)						\
1314 	(static_branch_unlikely(&kvm_protected_mode_initialized) ?	\
1315 	 &this_cpu_ptr(&kvm_host_data)->f :				\
1316 	 &this_cpu_ptr_hyp_sym(kvm_host_data)->f)
1317 #endif
1318 
1319 #define host_data_test_flag(flag)					\
1320 	(test_bit(KVM_HOST_DATA_FLAG_##flag, host_data_ptr(flags)))
1321 #define host_data_set_flag(flag)					\
1322 	set_bit(KVM_HOST_DATA_FLAG_##flag, host_data_ptr(flags))
1323 #define host_data_clear_flag(flag)					\
1324 	clear_bit(KVM_HOST_DATA_FLAG_##flag, host_data_ptr(flags))
1325 
1326 /* Check whether the FP regs are owned by the guest */
1327 static inline bool guest_owns_fp_regs(void)
1328 {
1329 	return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED;
1330 }
1331 
1332 /* Check whether the FP regs are owned by the host */
1333 static inline bool host_owns_fp_regs(void)
1334 {
1335 	return *host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED;
1336 }
1337 
1338 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1339 {
1340 	/* The host's MPIDR is immutable, so let's set it up at boot time */
1341 	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1342 }
1343 
1344 static inline bool kvm_system_needs_idmapped_vectors(void)
1345 {
1346 	return cpus_have_final_cap(ARM64_SPECTRE_V3A);
1347 }
1348 
1349 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1350 
1351 void kvm_init_host_debug_data(void);
1352 void kvm_vcpu_load_debug(struct kvm_vcpu *vcpu);
1353 void kvm_vcpu_put_debug(struct kvm_vcpu *vcpu);
1354 void kvm_debug_set_guest_ownership(struct kvm_vcpu *vcpu);
1355 void kvm_debug_handle_oslar(struct kvm_vcpu *vcpu, u64 val);
1356 
1357 #define kvm_vcpu_os_lock_enabled(vcpu)		\
1358 	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1359 
1360 #define kvm_debug_regs_in_use(vcpu)		\
1361 	((vcpu)->arch.debug_owner != VCPU_DEBUG_FREE)
1362 #define kvm_host_owns_debug_regs(vcpu)		\
1363 	((vcpu)->arch.debug_owner == VCPU_DEBUG_HOST_OWNED)
1364 #define kvm_guest_owns_debug_regs(vcpu)		\
1365 	((vcpu)->arch.debug_owner == VCPU_DEBUG_GUEST_OWNED)
1366 
1367 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1368 			       struct kvm_device_attr *attr);
1369 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1370 			       struct kvm_device_attr *attr);
1371 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1372 			       struct kvm_device_attr *attr);
1373 
1374 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1375 			       struct kvm_arm_copy_mte_tags *copy_tags);
1376 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1377 				    struct kvm_arm_counter_offset *offset);
1378 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
1379 					struct reg_mask_range *range);
1380 
1381 /* Guest/host FPSIMD coordination helpers */
1382 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1383 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1384 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1385 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1386 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1387 
1388 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1389 {
1390 	return (!has_vhe() && attr->exclude_host);
1391 }
1392 
1393 #ifdef CONFIG_KVM
1394 void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr);
1395 void kvm_clr_pmu_events(u64 clr);
1396 bool kvm_set_pmuserenr(u64 val);
1397 void kvm_enable_trbe(void);
1398 void kvm_disable_trbe(void);
1399 void kvm_tracing_set_el1_configuration(u64 trfcr_while_in_guest);
1400 #else
1401 static inline void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr) {}
1402 static inline void kvm_clr_pmu_events(u64 clr) {}
1403 static inline bool kvm_set_pmuserenr(u64 val)
1404 {
1405 	return false;
1406 }
1407 static inline void kvm_enable_trbe(void) {}
1408 static inline void kvm_disable_trbe(void) {}
1409 static inline void kvm_tracing_set_el1_configuration(u64 trfcr_while_in_guest) {}
1410 #endif
1411 
1412 void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
1413 void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
1414 
1415 int __init kvm_set_ipa_limit(void);
1416 u32 kvm_get_pa_bits(struct kvm *kvm);
1417 
1418 #define __KVM_HAVE_ARCH_VM_ALLOC
1419 struct kvm *kvm_arch_alloc_vm(void);
1420 
1421 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1422 
1423 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1424 
1425 #define kvm_vm_is_protected(kvm)	(is_protected_kvm_enabled() && (kvm)->arch.pkvm.enabled)
1426 
1427 #define vcpu_is_protected(vcpu)		kvm_vm_is_protected((vcpu)->kvm)
1428 
1429 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1430 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1431 
1432 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1433 
1434 #define kvm_has_mte(kvm)					\
1435 	(system_supports_mte() &&				\
1436 	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1437 
1438 #define kvm_supports_32bit_el0()				\
1439 	(system_supports_32bit_el0() &&				\
1440 	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1441 
1442 #define kvm_vm_has_ran_once(kvm)					\
1443 	(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1444 
1445 static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature)
1446 {
1447 	return test_bit(feature, ka->vcpu_features);
1448 }
1449 
1450 #define kvm_vcpu_has_feature(k, f)	__vcpu_has_feature(&(k)->arch, (f))
1451 #define vcpu_has_feature(v, f)	__vcpu_has_feature(&(v)->kvm->arch, (f))
1452 
1453 #define kvm_vcpu_initialized(v) vcpu_get_flag(vcpu, VCPU_INITIALIZED)
1454 
1455 int kvm_trng_call(struct kvm_vcpu *vcpu);
1456 #ifdef CONFIG_KVM
1457 extern phys_addr_t hyp_mem_base;
1458 extern phys_addr_t hyp_mem_size;
1459 void __init kvm_hyp_reserve(void);
1460 #else
1461 static inline void kvm_hyp_reserve(void) { }
1462 #endif
1463 
1464 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1465 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1466 
1467 static inline u64 *__vm_id_reg(struct kvm_arch *ka, u32 reg)
1468 {
1469 	switch (reg) {
1470 	case sys_reg(3, 0, 0, 1, 0) ... sys_reg(3, 0, 0, 7, 7):
1471 		return &ka->id_regs[IDREG_IDX(reg)];
1472 	case SYS_CTR_EL0:
1473 		return &ka->ctr_el0;
1474 	default:
1475 		WARN_ON_ONCE(1);
1476 		return NULL;
1477 	}
1478 }
1479 
1480 #define kvm_read_vm_id_reg(kvm, reg)					\
1481 	({ u64 __val = *__vm_id_reg(&(kvm)->arch, reg); __val; })
1482 
1483 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val);
1484 
1485 #define __expand_field_sign_unsigned(id, fld, val)			\
1486 	((u64)SYS_FIELD_VALUE(id, fld, val))
1487 
1488 #define __expand_field_sign_signed(id, fld, val)			\
1489 	({								\
1490 		u64 __val = SYS_FIELD_VALUE(id, fld, val);		\
1491 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1492 	})
1493 
1494 #define get_idreg_field_unsigned(kvm, id, fld)				\
1495 	({								\
1496 		u64 __val = kvm_read_vm_id_reg((kvm), SYS_##id);	\
1497 		FIELD_GET(id##_##fld##_MASK, __val);			\
1498 	})
1499 
1500 #define get_idreg_field_signed(kvm, id, fld)				\
1501 	({								\
1502 		u64 __val = get_idreg_field_unsigned(kvm, id, fld);	\
1503 		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1504 	})
1505 
1506 #define get_idreg_field_enum(kvm, id, fld)				\
1507 	get_idreg_field_unsigned(kvm, id, fld)
1508 
1509 #define kvm_cmp_feat_signed(kvm, id, fld, op, limit)			\
1510 	(get_idreg_field_signed((kvm), id, fld) op __expand_field_sign_signed(id, fld, limit))
1511 
1512 #define kvm_cmp_feat_unsigned(kvm, id, fld, op, limit)			\
1513 	(get_idreg_field_unsigned((kvm), id, fld) op __expand_field_sign_unsigned(id, fld, limit))
1514 
1515 #define kvm_cmp_feat(kvm, id, fld, op, limit)				\
1516 	(id##_##fld##_SIGNED ?						\
1517 	 kvm_cmp_feat_signed(kvm, id, fld, op, limit) :			\
1518 	 kvm_cmp_feat_unsigned(kvm, id, fld, op, limit))
1519 
1520 #define kvm_has_feat(kvm, id, fld, limit)				\
1521 	kvm_cmp_feat(kvm, id, fld, >=, limit)
1522 
1523 #define kvm_has_feat_enum(kvm, id, fld, val)				\
1524 	kvm_cmp_feat_unsigned(kvm, id, fld, ==, val)
1525 
1526 #define kvm_has_feat_range(kvm, id, fld, min, max)			\
1527 	(kvm_cmp_feat(kvm, id, fld, >=, min) &&				\
1528 	kvm_cmp_feat(kvm, id, fld, <=, max))
1529 
1530 /* Check for a given level of PAuth support */
1531 #define kvm_has_pauth(k, l)						\
1532 	({								\
1533 		bool pa, pi, pa3;					\
1534 									\
1535 		pa  = kvm_has_feat((k), ID_AA64ISAR1_EL1, APA, l);	\
1536 		pa &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPA, IMP);	\
1537 		pi  = kvm_has_feat((k), ID_AA64ISAR1_EL1, API, l);	\
1538 		pi &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPI, IMP);	\
1539 		pa3  = kvm_has_feat((k), ID_AA64ISAR2_EL1, APA3, l);	\
1540 		pa3 &= kvm_has_feat((k), ID_AA64ISAR2_EL1, GPA3, IMP);	\
1541 									\
1542 		(pa + pi + pa3) == 1;					\
1543 	})
1544 
1545 #define kvm_has_fpmr(k)					\
1546 	(system_supports_fpmr() &&			\
1547 	 kvm_has_feat((k), ID_AA64PFR2_EL1, FPMR, IMP))
1548 
1549 #define kvm_has_tcr2(k)				\
1550 	(kvm_has_feat((k), ID_AA64MMFR3_EL1, TCRX, IMP))
1551 
1552 #define kvm_has_s1pie(k)				\
1553 	(kvm_has_feat((k), ID_AA64MMFR3_EL1, S1PIE, IMP))
1554 
1555 #define kvm_has_s1poe(k)				\
1556 	(kvm_has_feat((k), ID_AA64MMFR3_EL1, S1POE, IMP))
1557 
1558 #endif /* __ARM64_KVM_HOST_H__ */
1559