xref: /linux/Documentation/admin-guide/mm/userfaultfd.rst (revision 353b7a55dcaf5fb8758e09ebe2ddf5f3adbac7c5)
1f9451df2SMike Rapoport.. _userfaultfd:
225edd8bfSAndrea Arcangeli
3f9451df2SMike Rapoport===========
4f9451df2SMike RapoportUserfaultfd
5f9451df2SMike Rapoport===========
6f9451df2SMike Rapoport
7f9451df2SMike RapoportObjective
8f9451df2SMike Rapoport=========
925edd8bfSAndrea Arcangeli
1025edd8bfSAndrea ArcangeliUserfaults allow the implementation of on-demand paging from userland
1125edd8bfSAndrea Arcangeliand more generally they allow userland to take control of various
1225edd8bfSAndrea Arcangelimemory page faults, something otherwise only the kernel code could do.
1325edd8bfSAndrea Arcangeli
1425edd8bfSAndrea ArcangeliFor example userfaults allows a proper and more optimal implementation
1514a7e51fSMauro Carvalho Chehabof the ``PROT_NONE+SIGSEGV`` trick.
1625edd8bfSAndrea Arcangeli
17f9451df2SMike RapoportDesign
18f9451df2SMike Rapoport======
1925edd8bfSAndrea Arcangeli
2014a7e51fSMauro Carvalho ChehabUserfaults are delivered and resolved through the ``userfaultfd`` syscall.
2125edd8bfSAndrea Arcangeli
2214a7e51fSMauro Carvalho ChehabThe ``userfaultfd`` (aside from registering and unregistering virtual
2325edd8bfSAndrea Arcangelimemory ranges) provides two primary functionalities:
2425edd8bfSAndrea Arcangeli
2514a7e51fSMauro Carvalho Chehab1) ``read/POLLIN`` protocol to notify a userland thread of the faults
2625edd8bfSAndrea Arcangeli   happening
2725edd8bfSAndrea Arcangeli
2814a7e51fSMauro Carvalho Chehab2) various ``UFFDIO_*`` ioctls that can manage the virtual memory regions
2914a7e51fSMauro Carvalho Chehab   registered in the ``userfaultfd`` that allows userland to efficiently
3025edd8bfSAndrea Arcangeli   resolve the userfaults it receives via 1) or to manage the virtual
3125edd8bfSAndrea Arcangeli   memory in the background
3225edd8bfSAndrea Arcangeli
3325edd8bfSAndrea ArcangeliThe real advantage of userfaults if compared to regular virtual memory
3425edd8bfSAndrea Arcangelimanagement of mremap/mprotect is that the userfaults in all their
3525edd8bfSAndrea Arcangelioperations never involve heavyweight structures like vmas (in fact the
36c1e8d7c6SMichel Lespinasse``userfaultfd`` runtime load never takes the mmap_lock for writing).
3725edd8bfSAndrea Arcangeli
3825edd8bfSAndrea ArcangeliVmas are not suitable for page- (or hugepage) granular fault tracking
3925edd8bfSAndrea Arcangeliwhen dealing with virtual address spaces that could span
4025edd8bfSAndrea ArcangeliTerabytes. Too many vmas would be needed for that.
4125edd8bfSAndrea Arcangeli
4214a7e51fSMauro Carvalho ChehabThe ``userfaultfd`` once opened by invoking the syscall, can also be
4325edd8bfSAndrea Arcangelipassed using unix domain sockets to a manager process, so the same
4425edd8bfSAndrea Arcangelimanager process could handle the userfaults of a multitude of
4525edd8bfSAndrea Arcangelidifferent processes without them being aware about what is going on
4614a7e51fSMauro Carvalho Chehab(well of course unless they later try to use the ``userfaultfd``
4725edd8bfSAndrea Arcangelithemselves on the same region the manager is already tracking, which
4814a7e51fSMauro Carvalho Chehabis a corner case that would currently return ``-EBUSY``).
4925edd8bfSAndrea Arcangeli
50f9451df2SMike RapoportAPI
51f9451df2SMike Rapoport===
5225edd8bfSAndrea Arcangeli
5314a7e51fSMauro Carvalho ChehabWhen first opened the ``userfaultfd`` must be enabled invoking the
5414a7e51fSMauro Carvalho Chehab``UFFDIO_API`` ioctl specifying a ``uffdio_api.api`` value set to ``UFFD_API`` (or
5514a7e51fSMauro Carvalho Chehaba later API version) which will specify the ``read/POLLIN`` protocol
5614a7e51fSMauro Carvalho Chehabuserland intends to speak on the ``UFFD`` and the ``uffdio_api.features``
5714a7e51fSMauro Carvalho Chehabuserland requires. The ``UFFDIO_API`` ioctl if successful (i.e. if the
5814a7e51fSMauro Carvalho Chehabrequested ``uffdio_api.api`` is spoken also by the running kernel and the
59a9b85f94SAndrea Arcangelirequested features are going to be enabled) will return into
6014a7e51fSMauro Carvalho Chehab``uffdio_api.features`` and ``uffdio_api.ioctls`` two 64bit bitmasks of
61a9b85f94SAndrea Arcangelirespectively all the available features of the read(2) protocol and
62a9b85f94SAndrea Arcangelithe generic ioctl available.
6325edd8bfSAndrea Arcangeli
6414a7e51fSMauro Carvalho ChehabThe ``uffdio_api.features`` bitmask returned by the ``UFFDIO_API`` ioctl
6514a7e51fSMauro Carvalho Chehabdefines what memory types are supported by the ``userfaultfd`` and what
66b8da5cd4SAxel Rasmussenevents, except page fault notifications, may be generated:
675a02026dSMike Rapoport
68b8da5cd4SAxel Rasmussen- The ``UFFD_FEATURE_EVENT_*`` flags indicate that various other events
69b8da5cd4SAxel Rasmussen  other than page faults are supported. These events are described in more
70b8da5cd4SAxel Rasmussen  detail below in the `Non-cooperative userfaultfd`_ section.
715a02026dSMike Rapoport
72b8da5cd4SAxel Rasmussen- ``UFFD_FEATURE_MISSING_HUGETLBFS`` and ``UFFD_FEATURE_MISSING_SHMEM``
73b8da5cd4SAxel Rasmussen  indicate that the kernel supports ``UFFDIO_REGISTER_MODE_MISSING``
74b8da5cd4SAxel Rasmussen  registrations for hugetlbfs and shared memory (covering all shmem APIs,
75b8da5cd4SAxel Rasmussen  i.e. tmpfs, ``IPCSHM``, ``/dev/zero``, ``MAP_SHARED``, ``memfd_create``,
76b8da5cd4SAxel Rasmussen  etc) virtual memory areas, respectively.
775a02026dSMike Rapoport
78b8da5cd4SAxel Rasmussen- ``UFFD_FEATURE_MINOR_HUGETLBFS`` indicates that the kernel supports
79b8da5cd4SAxel Rasmussen  ``UFFDIO_REGISTER_MODE_MINOR`` registration for hugetlbfs virtual memory
80*964ab004SAxel Rasmussen  areas. ``UFFD_FEATURE_MINOR_SHMEM`` is the analogous feature indicating
81*964ab004SAxel Rasmussen  support for shmem virtual memory areas.
825a02026dSMike Rapoport
83b8da5cd4SAxel RasmussenThe userland application should set the feature flags it intends to use
84b8da5cd4SAxel Rasmussenwhen invoking the ``UFFDIO_API`` ioctl, to request that those features be
85b8da5cd4SAxel Rasmussenenabled if supported.
86b8da5cd4SAxel Rasmussen
87b8da5cd4SAxel RasmussenOnce the ``userfaultfd`` API has been enabled the ``UFFDIO_REGISTER``
88b8da5cd4SAxel Rasmussenioctl should be invoked (if present in the returned ``uffdio_api.ioctls``
89b8da5cd4SAxel Rasmussenbitmask) to register a memory range in the ``userfaultfd`` by setting the
9014a7e51fSMauro Carvalho Chehabuffdio_register structure accordingly. The ``uffdio_register.mode``
9125edd8bfSAndrea Arcangelibitmask will specify to the kernel which kind of faults to track for
92b8da5cd4SAxel Rasmussenthe range. The ``UFFDIO_REGISTER`` ioctl will return the
9314a7e51fSMauro Carvalho Chehab``uffdio_register.ioctls`` bitmask of ioctls that are suitable to resolve
9425edd8bfSAndrea Arcangeliuserfaults on the range registered. Not all ioctls will necessarily be
95b8da5cd4SAxel Rasmussensupported for all memory types (e.g. anonymous memory vs. shmem vs.
96b8da5cd4SAxel Rasmussenhugetlbfs), or all types of intercepted faults.
9725edd8bfSAndrea Arcangeli
9814a7e51fSMauro Carvalho ChehabUserland can use the ``uffdio_register.ioctls`` to manage the virtual
9925edd8bfSAndrea Arcangeliaddress space in the background (to add or potentially also remove
10014a7e51fSMauro Carvalho Chehabmemory from the ``userfaultfd`` registered range). This means a userfault
10125edd8bfSAndrea Arcangelicould be triggering just before userland maps in the background the
10225edd8bfSAndrea Arcangeliuser-faulted page.
10325edd8bfSAndrea Arcangeli
104b8da5cd4SAxel RasmussenResolving Userfaults
105b8da5cd4SAxel Rasmussen--------------------
106b8da5cd4SAxel Rasmussen
107b8da5cd4SAxel RasmussenThere are three basic ways to resolve userfaults:
108b8da5cd4SAxel Rasmussen
109b8da5cd4SAxel Rasmussen- ``UFFDIO_COPY`` atomically copies some existing page contents from
110b8da5cd4SAxel Rasmussen  userspace.
111b8da5cd4SAxel Rasmussen
112b8da5cd4SAxel Rasmussen- ``UFFDIO_ZEROPAGE`` atomically zeros the new page.
113b8da5cd4SAxel Rasmussen
114b8da5cd4SAxel Rasmussen- ``UFFDIO_CONTINUE`` maps an existing, previously-populated page.
115b8da5cd4SAxel Rasmussen
116b8da5cd4SAxel RasmussenThese operations are atomic in the sense that they guarantee nothing can
117b8da5cd4SAxel Rasmussensee a half-populated page, since readers will keep userfaulting until the
118b8da5cd4SAxel Rasmussenoperation has finished.
119b8da5cd4SAxel Rasmussen
120b8da5cd4SAxel RasmussenBy default, these wake up userfaults blocked on the range in question.
121b8da5cd4SAxel RasmussenThey support a ``UFFDIO_*_MODE_DONTWAKE`` ``mode`` flag, which indicates
122b8da5cd4SAxel Rasmussenthat waking will be done separately at some later time.
123b8da5cd4SAxel Rasmussen
124b8da5cd4SAxel RasmussenWhich ioctl to choose depends on the kind of page fault, and what we'd
125b8da5cd4SAxel Rasmussenlike to do to resolve it:
126b8da5cd4SAxel Rasmussen
127b8da5cd4SAxel Rasmussen- For ``UFFDIO_REGISTER_MODE_MISSING`` faults, the fault needs to be
128b8da5cd4SAxel Rasmussen  resolved by either providing a new page (``UFFDIO_COPY``), or mapping
129b8da5cd4SAxel Rasmussen  the zero page (``UFFDIO_ZEROPAGE``). By default, the kernel would map
130b8da5cd4SAxel Rasmussen  the zero page for a missing fault. With userfaultfd, userspace can
131b8da5cd4SAxel Rasmussen  decide what content to provide before the faulting thread continues.
132b8da5cd4SAxel Rasmussen
133b8da5cd4SAxel Rasmussen- For ``UFFDIO_REGISTER_MODE_MINOR`` faults, there is an existing page (in
134b8da5cd4SAxel Rasmussen  the page cache). Userspace has the option of modifying the page's
135b8da5cd4SAxel Rasmussen  contents before resolving the fault. Once the contents are correct
136b8da5cd4SAxel Rasmussen  (modified or not), userspace asks the kernel to map the page and let the
137b8da5cd4SAxel Rasmussen  faulting thread continue with ``UFFDIO_CONTINUE``.
13825edd8bfSAndrea Arcangeli
13957e5d4f2SMartin CracauerNotes:
14057e5d4f2SMartin Cracauer
141b8da5cd4SAxel Rasmussen- You can tell which kind of fault occurred by examining
142b8da5cd4SAxel Rasmussen  ``pagefault.flags`` within the ``uffd_msg``, checking for the
143b8da5cd4SAxel Rasmussen  ``UFFD_PAGEFAULT_FLAG_*`` flags.
14457e5d4f2SMartin Cracauer
14557e5d4f2SMartin Cracauer- None of the page-delivering ioctls default to the range that you
14657e5d4f2SMartin Cracauer  registered with.  You must fill in all fields for the appropriate
14757e5d4f2SMartin Cracauer  ioctl struct including the range.
14857e5d4f2SMartin Cracauer
14957e5d4f2SMartin Cracauer- You get the address of the access that triggered the missing page
15057e5d4f2SMartin Cracauer  event out of a struct uffd_msg that you read in the thread from the
151b8da5cd4SAxel Rasmussen  uffd.  You can supply as many pages as you want with these IOCTLs.
152b8da5cd4SAxel Rasmussen  Keep in mind that unless you used DONTWAKE then the first of any of
153b8da5cd4SAxel Rasmussen  those IOCTLs wakes up the faulting thread.
15457e5d4f2SMartin Cracauer
15514a7e51fSMauro Carvalho Chehab- Be sure to test for all errors including
15614a7e51fSMauro Carvalho Chehab  (``pollfd[0].revents & POLLERR``).  This can happen, e.g. when ranges
15714a7e51fSMauro Carvalho Chehab  supplied were incorrect.
15857e5d4f2SMartin Cracauer
15957e5d4f2SMartin CracauerWrite Protect Notifications
16057e5d4f2SMartin Cracauer---------------------------
16157e5d4f2SMartin Cracauer
16257e5d4f2SMartin CracauerThis is equivalent to (but faster than) using mprotect and a SIGSEGV
16357e5d4f2SMartin Cracauersignal handler.
16457e5d4f2SMartin Cracauer
16514a7e51fSMauro Carvalho ChehabFirstly you need to register a range with ``UFFDIO_REGISTER_MODE_WP``.
16614a7e51fSMauro Carvalho ChehabInstead of using mprotect(2) you use
16714a7e51fSMauro Carvalho Chehab``ioctl(uffd, UFFDIO_WRITEPROTECT, struct *uffdio_writeprotect)``
16814a7e51fSMauro Carvalho Chehabwhile ``mode = UFFDIO_WRITEPROTECT_MODE_WP``
16957e5d4f2SMartin Cracauerin the struct passed in.  The range does not default to and does not
17057e5d4f2SMartin Cracauerhave to be identical to the range you registered with.  You can write
17157e5d4f2SMartin Cracauerprotect as many ranges as you like (inside the registered range).
17257e5d4f2SMartin CracauerThen, in the thread reading from uffd the struct will have
17314a7e51fSMauro Carvalho Chehab``msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WP`` set. Now you send
17414a7e51fSMauro Carvalho Chehab``ioctl(uffd, UFFDIO_WRITEPROTECT, struct *uffdio_writeprotect)``
17514a7e51fSMauro Carvalho Chehabagain while ``pagefault.mode`` does not have ``UFFDIO_WRITEPROTECT_MODE_WP``
17614a7e51fSMauro Carvalho Chehabset. This wakes up the thread which will continue to run with writes. This
17757e5d4f2SMartin Cracauerallows you to do the bookkeeping about the write in the uffd reading
17857e5d4f2SMartin Cracauerthread before the ioctl.
17957e5d4f2SMartin Cracauer
18014a7e51fSMauro Carvalho ChehabIf you registered with both ``UFFDIO_REGISTER_MODE_MISSING`` and
18114a7e51fSMauro Carvalho Chehab``UFFDIO_REGISTER_MODE_WP`` then you need to think about the sequence in
18257e5d4f2SMartin Cracauerwhich you supply a page and undo write protect.  Note that there is a
18357e5d4f2SMartin Cracauerdifference between writes into a WP area and into a !WP area.  The
18414a7e51fSMauro Carvalho Chehabformer will have ``UFFD_PAGEFAULT_FLAG_WP`` set, the latter
18514a7e51fSMauro Carvalho Chehab``UFFD_PAGEFAULT_FLAG_WRITE``.  The latter did not fail on protection but
18614a7e51fSMauro Carvalho Chehabyou still need to supply a page when ``UFFDIO_REGISTER_MODE_MISSING`` was
18757e5d4f2SMartin Cracauerused.
18857e5d4f2SMartin Cracauer
189f9451df2SMike RapoportQEMU/KVM
190f9451df2SMike Rapoport========
19125edd8bfSAndrea Arcangeli
19214a7e51fSMauro Carvalho ChehabQEMU/KVM is using the ``userfaultfd`` syscall to implement postcopy live
19325edd8bfSAndrea Arcangelimigration. Postcopy live migration is one form of memory
19425edd8bfSAndrea Arcangeliexternalization consisting of a virtual machine running with part or
19525edd8bfSAndrea Arcangeliall of its memory residing on a different node in the cloud. The
19614a7e51fSMauro Carvalho Chehab``userfaultfd`` abstraction is generic enough that not a single line of
19725edd8bfSAndrea ArcangeliKVM kernel code had to be modified in order to add postcopy live
19825edd8bfSAndrea Arcangelimigration to QEMU.
19925edd8bfSAndrea Arcangeli
20014a7e51fSMauro Carvalho ChehabGuest async page faults, ``FOLL_NOWAIT`` and all other ``GUP*`` features work
20125edd8bfSAndrea Arcangelijust fine in combination with userfaults. Userfaults trigger async
20225edd8bfSAndrea Arcangelipage faults in the guest scheduler so those guest processes that
20325edd8bfSAndrea Arcangeliaren't waiting for userfaults (i.e. network bound) can keep running in
20425edd8bfSAndrea Arcangelithe guest vcpus.
20525edd8bfSAndrea Arcangeli
20625edd8bfSAndrea ArcangeliIt is generally beneficial to run one pass of precopy live migration
20725edd8bfSAndrea Arcangelijust before starting postcopy live migration, in order to avoid
20825edd8bfSAndrea Arcangeligenerating userfaults for readonly guest regions.
20925edd8bfSAndrea Arcangeli
21025edd8bfSAndrea ArcangeliThe implementation of postcopy live migration currently uses one
21125edd8bfSAndrea Arcangelisingle bidirectional socket but in the future two different sockets
21225edd8bfSAndrea Arcangeliwill be used (to reduce the latency of the userfaults to the minimum
21314a7e51fSMauro Carvalho Chehabpossible without having to decrease ``/proc/sys/net/ipv4/tcp_wmem``).
21425edd8bfSAndrea Arcangeli
21525edd8bfSAndrea ArcangeliThe QEMU in the source node writes all pages that it knows are missing
21625edd8bfSAndrea Arcangeliin the destination node, into the socket, and the migration thread of
21714a7e51fSMauro Carvalho Chehabthe QEMU running in the destination node runs ``UFFDIO_COPY|ZEROPAGE``
21814a7e51fSMauro Carvalho Chehabioctls on the ``userfaultfd`` in order to map the received pages into the
21914a7e51fSMauro Carvalho Chehabguest (``UFFDIO_ZEROCOPY`` is used if the source page was a zero page).
22025edd8bfSAndrea Arcangeli
22125edd8bfSAndrea ArcangeliA different postcopy thread in the destination node listens with
22214a7e51fSMauro Carvalho Chehabpoll() to the ``userfaultfd`` in parallel. When a ``POLLIN`` event is
22325edd8bfSAndrea Arcangeligenerated after a userfault triggers, the postcopy thread read() from
22414a7e51fSMauro Carvalho Chehabthe ``userfaultfd`` and receives the fault address (or ``-EAGAIN`` in case the
22514a7e51fSMauro Carvalho Chehabuserfault was already resolved and waken by a ``UFFDIO_COPY|ZEROPAGE`` run
22625edd8bfSAndrea Arcangeliby the parallel QEMU migration thread).
22725edd8bfSAndrea Arcangeli
22825edd8bfSAndrea ArcangeliAfter the QEMU postcopy thread (running in the destination node) gets
22925edd8bfSAndrea Arcangelithe userfault address it writes the information about the missing page
23025edd8bfSAndrea Arcangeliinto the socket. The QEMU source node receives the information and
23125edd8bfSAndrea Arcangeliroughly "seeks" to that page address and continues sending all
23225edd8bfSAndrea Arcangeliremaining missing pages from that new page offset. Soon after that
23325edd8bfSAndrea Arcangeli(just the time to flush the tcp_wmem queue through the network) the
23425edd8bfSAndrea Arcangelimigration thread in the QEMU running in the destination node will
23525edd8bfSAndrea Arcangelireceive the page that triggered the userfault and it'll map it as
23614a7e51fSMauro Carvalho Chehabusual with the ``UFFDIO_COPY|ZEROPAGE`` (without actually knowing if it
23725edd8bfSAndrea Arcangeliwas spontaneously sent by the source or if it was an urgent page
2389332ef9dSMasahiro Yamadarequested through a userfault).
23925edd8bfSAndrea Arcangeli
24025edd8bfSAndrea ArcangeliBy the time the userfaults start, the QEMU in the destination node
24125edd8bfSAndrea Arcangelidoesn't need to keep any per-page state bitmap relative to the live
24225edd8bfSAndrea Arcangelimigration around and a single per-page bitmap has to be maintained in
24325edd8bfSAndrea Arcangelithe QEMU running in the source node to know which pages are still
24425edd8bfSAndrea Arcangelimissing in the destination node. The bitmap in the source node is
24525edd8bfSAndrea Arcangelichecked to find which missing pages to send in round robin and we seek
24625edd8bfSAndrea Arcangeliover it when receiving incoming userfaults. After sending each page of
24725edd8bfSAndrea Arcangelicourse the bitmap is updated accordingly. It's also useful to avoid
24825edd8bfSAndrea Arcangelisending the same page twice (in case the userfault is read by the
24914a7e51fSMauro Carvalho Chehabpostcopy thread just before ``UFFDIO_COPY|ZEROPAGE`` runs in the migration
25025edd8bfSAndrea Arcangelithread).
2515a02026dSMike Rapoport
252f9451df2SMike RapoportNon-cooperative userfaultfd
253f9451df2SMike Rapoport===========================
2545a02026dSMike Rapoport
25514a7e51fSMauro Carvalho ChehabWhen the ``userfaultfd`` is monitored by an external manager, the manager
2565a02026dSMike Rapoportmust be able to track changes in the process virtual memory
2575a02026dSMike Rapoportlayout. Userfaultfd can notify the manager about such changes using
2585a02026dSMike Rapoportthe same read(2) protocol as for the page fault notifications. The
2595a02026dSMike Rapoportmanager has to explicitly enable these events by setting appropriate
26014a7e51fSMauro Carvalho Chehabbits in ``uffdio_api.features`` passed to ``UFFDIO_API`` ioctl:
2615a02026dSMike Rapoport
26214a7e51fSMauro Carvalho Chehab``UFFD_FEATURE_EVENT_FORK``
26314a7e51fSMauro Carvalho Chehab	enable ``userfaultfd`` hooks for fork(). When this feature is
26414a7e51fSMauro Carvalho Chehab	enabled, the ``userfaultfd`` context of the parent process is
265f9451df2SMike Rapoport	duplicated into the newly created process. The manager
26614a7e51fSMauro Carvalho Chehab	receives ``UFFD_EVENT_FORK`` with file descriptor of the new
26714a7e51fSMauro Carvalho Chehab	``userfaultfd`` context in the ``uffd_msg.fork``.
2685a02026dSMike Rapoport
26914a7e51fSMauro Carvalho Chehab``UFFD_FEATURE_EVENT_REMAP``
270f9451df2SMike Rapoport	enable notifications about mremap() calls. When the
271f9451df2SMike Rapoport	non-cooperative process moves a virtual memory area to a
272f9451df2SMike Rapoport	different location, the manager will receive
27314a7e51fSMauro Carvalho Chehab	``UFFD_EVENT_REMAP``. The ``uffd_msg.remap`` will contain the old and
274f9451df2SMike Rapoport	new addresses of the area and its original length.
2755a02026dSMike Rapoport
27614a7e51fSMauro Carvalho Chehab``UFFD_FEATURE_EVENT_REMOVE``
277f9451df2SMike Rapoport	enable notifications about madvise(MADV_REMOVE) and
27814a7e51fSMauro Carvalho Chehab	madvise(MADV_DONTNEED) calls. The event ``UFFD_EVENT_REMOVE`` will
27914a7e51fSMauro Carvalho Chehab	be generated upon these calls to madvise(). The ``uffd_msg.remove``
280f9451df2SMike Rapoport	will contain start and end addresses of the removed area.
2815a02026dSMike Rapoport
28214a7e51fSMauro Carvalho Chehab``UFFD_FEATURE_EVENT_UNMAP``
283f9451df2SMike Rapoport	enable notifications about memory unmapping. The manager will
28414a7e51fSMauro Carvalho Chehab	get ``UFFD_EVENT_UNMAP`` with ``uffd_msg.remove`` containing start and
285f9451df2SMike Rapoport	end addresses of the unmapped area.
2865a02026dSMike Rapoport
28714a7e51fSMauro Carvalho ChehabAlthough the ``UFFD_FEATURE_EVENT_REMOVE`` and ``UFFD_FEATURE_EVENT_UNMAP``
2885a02026dSMike Rapoportare pretty similar, they quite differ in the action expected from the
28914a7e51fSMauro Carvalho Chehab``userfaultfd`` manager. In the former case, the virtual memory is
2905a02026dSMike Rapoportremoved, but the area is not, the area remains monitored by the
29114a7e51fSMauro Carvalho Chehab``userfaultfd``, and if a page fault occurs in that area it will be
2925a02026dSMike Rapoportdelivered to the manager. The proper resolution for such page fault is
2935a02026dSMike Rapoportto zeromap the faulting address. However, in the latter case, when an
2945a02026dSMike Rapoportarea is unmapped, either explicitly (with munmap() system call), or
2955a02026dSMike Rapoportimplicitly (e.g. during mremap()), the area is removed and in turn the
29614a7e51fSMauro Carvalho Chehab``userfaultfd`` context for such area disappears too and the manager will
2975a02026dSMike Rapoportnot get further userland page faults from the removed area. Still, the
2985a02026dSMike Rapoportnotification is required in order to prevent manager from using
29914a7e51fSMauro Carvalho Chehab``UFFDIO_COPY`` on the unmapped area.
3005a02026dSMike Rapoport
3015a02026dSMike RapoportUnlike userland page faults which have to be synchronous and require
3025a02026dSMike Rapoportexplicit or implicit wakeup, all the events are delivered
3035a02026dSMike Rapoportasynchronously and the non-cooperative process resumes execution as
30414a7e51fSMauro Carvalho Chehabsoon as manager executes read(). The ``userfaultfd`` manager should
30514a7e51fSMauro Carvalho Chehabcarefully synchronize calls to ``UFFDIO_COPY`` with the events
30614a7e51fSMauro Carvalho Chehabprocessing. To aid the synchronization, the ``UFFDIO_COPY`` ioctl will
30714a7e51fSMauro Carvalho Chehabreturn ``-ENOSPC`` when the monitored process exits at the time of
30814a7e51fSMauro Carvalho Chehab``UFFDIO_COPY``, and ``-ENOENT``, when the non-cooperative process has changed
30914a7e51fSMauro Carvalho Chehabits virtual memory layout simultaneously with outstanding ``UFFDIO_COPY``
3105a02026dSMike Rapoportoperation.
3115a02026dSMike Rapoport
3125a02026dSMike RapoportThe current asynchronous model of the event delivery is optimal for
31314a7e51fSMauro Carvalho Chehabsingle threaded non-cooperative ``userfaultfd`` manager implementations. A
3145a02026dSMike Rapoportsynchronous event delivery model can be added later as a new
31514a7e51fSMauro Carvalho Chehab``userfaultfd`` feature to facilitate multithreading enhancements of the
31614a7e51fSMauro Carvalho Chehabnon cooperative manager, for example to allow ``UFFDIO_COPY`` ioctls to
3175a02026dSMike Rapoportrun in parallel to the event reception. Single threaded
3185a02026dSMike Rapoportimplementations should continue to use the current async event
3195a02026dSMike Rapoportdelivery model instead.
320