1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HIGHMEM_H
3 #define _LINUX_HIGHMEM_H
4 
5 #include <linux/fs.h>
6 #include <linux/kernel.h>
7 #include <linux/bug.h>
8 #include <linux/cacheflush.h>
9 #include <linux/kmsan.h>
10 #include <linux/mm.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 
14 #include "highmem-internal.h"
15 
16 /**
17  * kmap - Map a page for long term usage
18  * @page:	Pointer to the page to be mapped
19  *
20  * Returns: The virtual address of the mapping
21  *
22  * Can only be invoked from preemptible task context because on 32bit
23  * systems with CONFIG_HIGHMEM enabled this function might sleep.
24  *
25  * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area
26  * this returns the virtual address of the direct kernel mapping.
27  *
28  * The returned virtual address is globally visible and valid up to the
29  * point where it is unmapped via kunmap(). The pointer can be handed to
30  * other contexts.
31  *
32  * For highmem pages on 32bit systems this can be slow as the mapping space
33  * is limited and protected by a global lock. In case that there is no
34  * mapping slot available the function blocks until a slot is released via
35  * kunmap().
36  */
37 static inline void *kmap(struct page *page);
38 
39 /**
40  * kunmap - Unmap the virtual address mapped by kmap()
41  * @page:	Pointer to the page which was mapped by kmap()
42  *
43  * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of
44  * pages in the low memory area.
45  */
46 static inline void kunmap(struct page *page);
47 
48 /**
49  * kmap_to_page - Get the page for a kmap'ed address
50  * @addr:	The address to look up
51  *
52  * Returns: The page which is mapped to @addr.
53  */
54 static inline struct page *kmap_to_page(void *addr);
55 
56 /**
57  * kmap_flush_unused - Flush all unused kmap mappings in order to
58  *		       remove stray mappings
59  */
60 static inline void kmap_flush_unused(void);
61 
62 /**
63  * kmap_local_page - Map a page for temporary usage
64  * @page: Pointer to the page to be mapped
65  *
66  * Returns: The virtual address of the mapping
67  *
68  * Can be invoked from any context, including interrupts.
69  *
70  * Requires careful handling when nesting multiple mappings because the map
71  * management is stack based. The unmap has to be in the reverse order of
72  * the map operation:
73  *
74  * addr1 = kmap_local_page(page1);
75  * addr2 = kmap_local_page(page2);
76  * ...
77  * kunmap_local(addr2);
78  * kunmap_local(addr1);
79  *
80  * Unmapping addr1 before addr2 is invalid and causes malfunction.
81  *
82  * Contrary to kmap() mappings the mapping is only valid in the context of
83  * the caller and cannot be handed to other contexts.
84  *
85  * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
86  * virtual address of the direct mapping. Only real highmem pages are
87  * temporarily mapped.
88  *
89  * While kmap_local_page() is significantly faster than kmap() for the highmem
90  * case it comes with restrictions about the pointer validity.
91  *
92  * On HIGHMEM enabled systems mapping a highmem page has the side effect of
93  * disabling migration in order to keep the virtual address stable across
94  * preemption. No caller of kmap_local_page() can rely on this side effect.
95  */
96 static inline void *kmap_local_page(struct page *page);
97 
98 /**
99  * kmap_local_folio - Map a page in this folio for temporary usage
100  * @folio: The folio containing the page.
101  * @offset: The byte offset within the folio which identifies the page.
102  *
103  * Requires careful handling when nesting multiple mappings because the map
104  * management is stack based. The unmap has to be in the reverse order of
105  * the map operation::
106  *
107  *   addr1 = kmap_local_folio(folio1, offset1);
108  *   addr2 = kmap_local_folio(folio2, offset2);
109  *   ...
110  *   kunmap_local(addr2);
111  *   kunmap_local(addr1);
112  *
113  * Unmapping addr1 before addr2 is invalid and causes malfunction.
114  *
115  * Contrary to kmap() mappings the mapping is only valid in the context of
116  * the caller and cannot be handed to other contexts.
117  *
118  * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
119  * virtual address of the direct mapping. Only real highmem pages are
120  * temporarily mapped.
121  *
122  * While it is significantly faster than kmap() for the highmem case it
123  * comes with restrictions about the pointer validity.
124  *
125  * On HIGHMEM enabled systems mapping a highmem page has the side effect of
126  * disabling migration in order to keep the virtual address stable across
127  * preemption. No caller of kmap_local_folio() can rely on this side effect.
128  *
129  * Context: Can be invoked from any context.
130  * Return: The virtual address of @offset.
131  */
132 static inline void *kmap_local_folio(struct folio *folio, size_t offset);
133 
134 /**
135  * kmap_atomic - Atomically map a page for temporary usage - Deprecated!
136  * @page:	Pointer to the page to be mapped
137  *
138  * Returns: The virtual address of the mapping
139  *
140  * In fact a wrapper around kmap_local_page() which also disables pagefaults
141  * and, depending on PREEMPT_RT configuration, also CPU migration and
142  * preemption. Therefore users should not count on the latter two side effects.
143  *
144  * Mappings should always be released by kunmap_atomic().
145  *
146  * Do not use in new code. Use kmap_local_page() instead.
147  *
148  * It is used in atomic context when code wants to access the contents of a
149  * page that might be allocated from high memory (see __GFP_HIGHMEM), for
150  * example a page in the pagecache.  The API has two functions, and they
151  * can be used in a manner similar to the following::
152  *
153  *   // Find the page of interest.
154  *   struct page *page = find_get_page(mapping, offset);
155  *
156  *   // Gain access to the contents of that page.
157  *   void *vaddr = kmap_atomic(page);
158  *
159  *   // Do something to the contents of that page.
160  *   memset(vaddr, 0, PAGE_SIZE);
161  *
162  *   // Unmap that page.
163  *   kunmap_atomic(vaddr);
164  *
165  * Note that the kunmap_atomic() call takes the result of the kmap_atomic()
166  * call, not the argument.
167  *
168  * If you need to map two pages because you want to copy from one page to
169  * another you need to keep the kmap_atomic calls strictly nested, like:
170  *
171  * vaddr1 = kmap_atomic(page1);
172  * vaddr2 = kmap_atomic(page2);
173  *
174  * memcpy(vaddr1, vaddr2, PAGE_SIZE);
175  *
176  * kunmap_atomic(vaddr2);
177  * kunmap_atomic(vaddr1);
178  */
179 static inline void *kmap_atomic(struct page *page);
180 
181 /* Highmem related interfaces for management code */
182 static inline unsigned int nr_free_highpages(void);
183 static inline unsigned long totalhigh_pages(void);
184 
185 #ifndef ARCH_HAS_FLUSH_ANON_PAGE
flush_anon_page(struct vm_area_struct * vma,struct page * page,unsigned long vmaddr)186 static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
187 {
188 }
189 #endif
190 
191 #ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
flush_kernel_vmap_range(void * vaddr,int size)192 static inline void flush_kernel_vmap_range(void *vaddr, int size)
193 {
194 }
invalidate_kernel_vmap_range(void * vaddr,int size)195 static inline void invalidate_kernel_vmap_range(void *vaddr, int size)
196 {
197 }
198 #endif
199 
200 /* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */
201 #ifndef clear_user_highpage
clear_user_highpage(struct page * page,unsigned long vaddr)202 static inline void clear_user_highpage(struct page *page, unsigned long vaddr)
203 {
204 	void *addr = kmap_local_page(page);
205 	clear_user_page(addr, vaddr, page);
206 	kunmap_local(addr);
207 }
208 #endif
209 
210 #ifndef vma_alloc_zeroed_movable_folio
211 /**
212  * vma_alloc_zeroed_movable_folio - Allocate a zeroed page for a VMA.
213  * @vma: The VMA the page is to be allocated for.
214  * @vaddr: The virtual address the page will be inserted into.
215  *
216  * This function will allocate a page suitable for inserting into this
217  * VMA at this virtual address.  It may be allocated from highmem or
218  * the movable zone.  An architecture may provide its own implementation.
219  *
220  * Return: A folio containing one allocated and zeroed page or NULL if
221  * we are out of memory.
222  */
223 static inline
vma_alloc_zeroed_movable_folio(struct vm_area_struct * vma,unsigned long vaddr)224 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
225 				   unsigned long vaddr)
226 {
227 	struct folio *folio;
228 
229 	folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vaddr, false);
230 	if (folio)
231 		clear_user_highpage(&folio->page, vaddr);
232 
233 	return folio;
234 }
235 #endif
236 
clear_highpage(struct page * page)237 static inline void clear_highpage(struct page *page)
238 {
239 	void *kaddr = kmap_local_page(page);
240 	clear_page(kaddr);
241 	kunmap_local(kaddr);
242 }
243 
clear_highpage_kasan_tagged(struct page * page)244 static inline void clear_highpage_kasan_tagged(struct page *page)
245 {
246 	void *kaddr = kmap_local_page(page);
247 
248 	clear_page(kasan_reset_tag(kaddr));
249 	kunmap_local(kaddr);
250 }
251 
252 #ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE
253 
tag_clear_highpage(struct page * page)254 static inline void tag_clear_highpage(struct page *page)
255 {
256 }
257 
258 #endif
259 
260 /*
261  * If we pass in a base or tail page, we can zero up to PAGE_SIZE.
262  * If we pass in a head page, we can zero up to the size of the compound page.
263  */
264 #ifdef CONFIG_HIGHMEM
265 void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
266 		unsigned start2, unsigned end2);
267 #else
zero_user_segments(struct page * page,unsigned start1,unsigned end1,unsigned start2,unsigned end2)268 static inline void zero_user_segments(struct page *page,
269 		unsigned start1, unsigned end1,
270 		unsigned start2, unsigned end2)
271 {
272 	void *kaddr = kmap_local_page(page);
273 	unsigned int i;
274 
275 	BUG_ON(end1 > page_size(page) || end2 > page_size(page));
276 
277 	if (end1 > start1)
278 		memset(kaddr + start1, 0, end1 - start1);
279 
280 	if (end2 > start2)
281 		memset(kaddr + start2, 0, end2 - start2);
282 
283 	kunmap_local(kaddr);
284 	for (i = 0; i < compound_nr(page); i++)
285 		flush_dcache_page(page + i);
286 }
287 #endif
288 
zero_user_segment(struct page * page,unsigned start,unsigned end)289 static inline void zero_user_segment(struct page *page,
290 	unsigned start, unsigned end)
291 {
292 	zero_user_segments(page, start, end, 0, 0);
293 }
294 
zero_user(struct page * page,unsigned start,unsigned size)295 static inline void zero_user(struct page *page,
296 	unsigned start, unsigned size)
297 {
298 	zero_user_segments(page, start, start + size, 0, 0);
299 }
300 
301 #ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE
302 
copy_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)303 static inline void copy_user_highpage(struct page *to, struct page *from,
304 	unsigned long vaddr, struct vm_area_struct *vma)
305 {
306 	char *vfrom, *vto;
307 
308 	vfrom = kmap_local_page(from);
309 	vto = kmap_local_page(to);
310 	copy_user_page(vto, vfrom, vaddr, to);
311 	kmsan_unpoison_memory(page_address(to), PAGE_SIZE);
312 	kunmap_local(vto);
313 	kunmap_local(vfrom);
314 }
315 
316 #endif
317 
318 #ifndef __HAVE_ARCH_COPY_HIGHPAGE
319 
copy_highpage(struct page * to,struct page * from)320 static inline void copy_highpage(struct page *to, struct page *from)
321 {
322 	char *vfrom, *vto;
323 
324 	vfrom = kmap_local_page(from);
325 	vto = kmap_local_page(to);
326 	copy_page(vto, vfrom);
327 	kmsan_copy_page_meta(to, from);
328 	kunmap_local(vto);
329 	kunmap_local(vfrom);
330 }
331 
332 #endif
333 
334 #ifdef copy_mc_to_kernel
335 /*
336  * If architecture supports machine check exception handling, define the
337  * #MC versions of copy_user_highpage and copy_highpage. They copy a memory
338  * page with #MC in source page (@from) handled, and return the number
339  * of bytes not copied if there was a #MC, otherwise 0 for success.
340  */
copy_mc_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)341 static inline int copy_mc_user_highpage(struct page *to, struct page *from,
342 					unsigned long vaddr, struct vm_area_struct *vma)
343 {
344 	unsigned long ret;
345 	char *vfrom, *vto;
346 
347 	vfrom = kmap_local_page(from);
348 	vto = kmap_local_page(to);
349 	ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE);
350 	if (!ret)
351 		kmsan_unpoison_memory(page_address(to), PAGE_SIZE);
352 	kunmap_local(vto);
353 	kunmap_local(vfrom);
354 
355 	return ret;
356 }
357 
copy_mc_highpage(struct page * to,struct page * from)358 static inline int copy_mc_highpage(struct page *to, struct page *from)
359 {
360 	unsigned long ret;
361 	char *vfrom, *vto;
362 
363 	vfrom = kmap_local_page(from);
364 	vto = kmap_local_page(to);
365 	ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE);
366 	if (!ret)
367 		kmsan_copy_page_meta(to, from);
368 	kunmap_local(vto);
369 	kunmap_local(vfrom);
370 
371 	return ret;
372 }
373 #else
copy_mc_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)374 static inline int copy_mc_user_highpage(struct page *to, struct page *from,
375 					unsigned long vaddr, struct vm_area_struct *vma)
376 {
377 	copy_user_highpage(to, from, vaddr, vma);
378 	return 0;
379 }
380 
copy_mc_highpage(struct page * to,struct page * from)381 static inline int copy_mc_highpage(struct page *to, struct page *from)
382 {
383 	copy_highpage(to, from);
384 	return 0;
385 }
386 #endif
387 
memcpy_page(struct page * dst_page,size_t dst_off,struct page * src_page,size_t src_off,size_t len)388 static inline void memcpy_page(struct page *dst_page, size_t dst_off,
389 			       struct page *src_page, size_t src_off,
390 			       size_t len)
391 {
392 	char *dst = kmap_local_page(dst_page);
393 	char *src = kmap_local_page(src_page);
394 
395 	VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
396 	memcpy(dst + dst_off, src + src_off, len);
397 	kunmap_local(src);
398 	kunmap_local(dst);
399 }
400 
memset_page(struct page * page,size_t offset,int val,size_t len)401 static inline void memset_page(struct page *page, size_t offset, int val,
402 			       size_t len)
403 {
404 	char *addr = kmap_local_page(page);
405 
406 	VM_BUG_ON(offset + len > PAGE_SIZE);
407 	memset(addr + offset, val, len);
408 	kunmap_local(addr);
409 }
410 
memcpy_from_page(char * to,struct page * page,size_t offset,size_t len)411 static inline void memcpy_from_page(char *to, struct page *page,
412 				    size_t offset, size_t len)
413 {
414 	char *from = kmap_local_page(page);
415 
416 	VM_BUG_ON(offset + len > PAGE_SIZE);
417 	memcpy(to, from + offset, len);
418 	kunmap_local(from);
419 }
420 
memcpy_to_page(struct page * page,size_t offset,const char * from,size_t len)421 static inline void memcpy_to_page(struct page *page, size_t offset,
422 				  const char *from, size_t len)
423 {
424 	char *to = kmap_local_page(page);
425 
426 	VM_BUG_ON(offset + len > PAGE_SIZE);
427 	memcpy(to + offset, from, len);
428 	flush_dcache_page(page);
429 	kunmap_local(to);
430 }
431 
memzero_page(struct page * page,size_t offset,size_t len)432 static inline void memzero_page(struct page *page, size_t offset, size_t len)
433 {
434 	char *addr = kmap_local_page(page);
435 
436 	VM_BUG_ON(offset + len > PAGE_SIZE);
437 	memset(addr + offset, 0, len);
438 	flush_dcache_page(page);
439 	kunmap_local(addr);
440 }
441 
memcpy_from_folio(char * to,struct folio * folio,size_t offset,size_t len)442 static inline void memcpy_from_folio(char *to, struct folio *folio,
443 		size_t offset, size_t len)
444 {
445 	VM_BUG_ON(offset + len > folio_size(folio));
446 
447 	do {
448 		const char *from = kmap_local_folio(folio, offset);
449 		size_t chunk = len;
450 
451 		if (folio_test_highmem(folio) &&
452 		    chunk > PAGE_SIZE - offset_in_page(offset))
453 			chunk = PAGE_SIZE - offset_in_page(offset);
454 		memcpy(to, from, chunk);
455 		kunmap_local(from);
456 
457 		to += chunk;
458 		offset += chunk;
459 		len -= chunk;
460 	} while (len > 0);
461 }
462 
memcpy_to_folio(struct folio * folio,size_t offset,const char * from,size_t len)463 static inline void memcpy_to_folio(struct folio *folio, size_t offset,
464 		const char *from, size_t len)
465 {
466 	VM_BUG_ON(offset + len > folio_size(folio));
467 
468 	do {
469 		char *to = kmap_local_folio(folio, offset);
470 		size_t chunk = len;
471 
472 		if (folio_test_highmem(folio) &&
473 		    chunk > PAGE_SIZE - offset_in_page(offset))
474 			chunk = PAGE_SIZE - offset_in_page(offset);
475 		memcpy(to, from, chunk);
476 		kunmap_local(to);
477 
478 		from += chunk;
479 		offset += chunk;
480 		len -= chunk;
481 	} while (len > 0);
482 
483 	flush_dcache_folio(folio);
484 }
485 
486 /**
487  * folio_zero_tail - Zero the tail of a folio.
488  * @folio: The folio to zero.
489  * @offset: The byte offset in the folio to start zeroing at.
490  * @kaddr: The address the folio is currently mapped to.
491  *
492  * If you have already used kmap_local_folio() to map a folio, written
493  * some data to it and now need to zero the end of the folio (and flush
494  * the dcache), you can use this function.  If you do not have the
495  * folio kmapped (eg the folio has been partially populated by DMA),
496  * use folio_zero_range() or folio_zero_segment() instead.
497  *
498  * Return: An address which can be passed to kunmap_local().
499  */
folio_zero_tail(struct folio * folio,size_t offset,void * kaddr)500 static inline __must_check void *folio_zero_tail(struct folio *folio,
501 		size_t offset, void *kaddr)
502 {
503 	size_t len = folio_size(folio) - offset;
504 
505 	if (folio_test_highmem(folio)) {
506 		size_t max = PAGE_SIZE - offset_in_page(offset);
507 
508 		while (len > max) {
509 			memset(kaddr, 0, max);
510 			kunmap_local(kaddr);
511 			len -= max;
512 			offset += max;
513 			max = PAGE_SIZE;
514 			kaddr = kmap_local_folio(folio, offset);
515 		}
516 	}
517 
518 	memset(kaddr, 0, len);
519 	flush_dcache_folio(folio);
520 
521 	return kaddr;
522 }
523 
524 /**
525  * folio_fill_tail - Copy some data to a folio and pad with zeroes.
526  * @folio: The destination folio.
527  * @offset: The offset into @folio at which to start copying.
528  * @from: The data to copy.
529  * @len: How many bytes of data to copy.
530  *
531  * This function is most useful for filesystems which support inline data.
532  * When they want to copy data from the inode into the page cache, this
533  * function does everything for them.  It supports large folios even on
534  * HIGHMEM configurations.
535  */
folio_fill_tail(struct folio * folio,size_t offset,const char * from,size_t len)536 static inline void folio_fill_tail(struct folio *folio, size_t offset,
537 		const char *from, size_t len)
538 {
539 	char *to = kmap_local_folio(folio, offset);
540 
541 	VM_BUG_ON(offset + len > folio_size(folio));
542 
543 	if (folio_test_highmem(folio)) {
544 		size_t max = PAGE_SIZE - offset_in_page(offset);
545 
546 		while (len > max) {
547 			memcpy(to, from, max);
548 			kunmap_local(to);
549 			len -= max;
550 			from += max;
551 			offset += max;
552 			max = PAGE_SIZE;
553 			to = kmap_local_folio(folio, offset);
554 		}
555 	}
556 
557 	memcpy(to, from, len);
558 	to = folio_zero_tail(folio, offset + len, to + len);
559 	kunmap_local(to);
560 }
561 
562 /**
563  * memcpy_from_file_folio - Copy some bytes from a file folio.
564  * @to: The destination buffer.
565  * @folio: The folio to copy from.
566  * @pos: The position in the file.
567  * @len: The maximum number of bytes to copy.
568  *
569  * Copy up to @len bytes from this folio.  This may be limited by PAGE_SIZE
570  * if the folio comes from HIGHMEM, and by the size of the folio.
571  *
572  * Return: The number of bytes copied from the folio.
573  */
memcpy_from_file_folio(char * to,struct folio * folio,loff_t pos,size_t len)574 static inline size_t memcpy_from_file_folio(char *to, struct folio *folio,
575 		loff_t pos, size_t len)
576 {
577 	size_t offset = offset_in_folio(folio, pos);
578 	char *from = kmap_local_folio(folio, offset);
579 
580 	if (folio_test_highmem(folio)) {
581 		offset = offset_in_page(offset);
582 		len = min_t(size_t, len, PAGE_SIZE - offset);
583 	} else
584 		len = min(len, folio_size(folio) - offset);
585 
586 	memcpy(to, from, len);
587 	kunmap_local(from);
588 
589 	return len;
590 }
591 
592 /**
593  * folio_zero_segments() - Zero two byte ranges in a folio.
594  * @folio: The folio to write to.
595  * @start1: The first byte to zero.
596  * @xend1: One more than the last byte in the first range.
597  * @start2: The first byte to zero in the second range.
598  * @xend2: One more than the last byte in the second range.
599  */
folio_zero_segments(struct folio * folio,size_t start1,size_t xend1,size_t start2,size_t xend2)600 static inline void folio_zero_segments(struct folio *folio,
601 		size_t start1, size_t xend1, size_t start2, size_t xend2)
602 {
603 	zero_user_segments(&folio->page, start1, xend1, start2, xend2);
604 }
605 
606 /**
607  * folio_zero_segment() - Zero a byte range in a folio.
608  * @folio: The folio to write to.
609  * @start: The first byte to zero.
610  * @xend: One more than the last byte to zero.
611  */
folio_zero_segment(struct folio * folio,size_t start,size_t xend)612 static inline void folio_zero_segment(struct folio *folio,
613 		size_t start, size_t xend)
614 {
615 	zero_user_segments(&folio->page, start, xend, 0, 0);
616 }
617 
618 /**
619  * folio_zero_range() - Zero a byte range in a folio.
620  * @folio: The folio to write to.
621  * @start: The first byte to zero.
622  * @length: The number of bytes to zero.
623  */
folio_zero_range(struct folio * folio,size_t start,size_t length)624 static inline void folio_zero_range(struct folio *folio,
625 		size_t start, size_t length)
626 {
627 	zero_user_segments(&folio->page, start, start + length, 0, 0);
628 }
629 
630 /**
631  * folio_release_kmap - Unmap a folio and drop a refcount.
632  * @folio: The folio to release.
633  * @addr: The address previously returned by a call to kmap_local_folio().
634  *
635  * It is common, eg in directory handling to kmap a folio.  This function
636  * unmaps the folio and drops the refcount that was being held to keep the
637  * folio alive while we accessed it.
638  */
folio_release_kmap(struct folio * folio,void * addr)639 static inline void folio_release_kmap(struct folio *folio, void *addr)
640 {
641 	kunmap_local(addr);
642 	folio_put(folio);
643 }
644 
unmap_and_put_page(struct page * page,void * addr)645 static inline void unmap_and_put_page(struct page *page, void *addr)
646 {
647 	folio_release_kmap(page_folio(page), addr);
648 }
649 
650 #endif /* _LINUX_HIGHMEM_H */
651