1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt driver - bus logic (NHI independent)
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2019, Intel Corporation
7 */
8
9 #include <linux/slab.h>
10 #include <linux/errno.h>
11 #include <linux/delay.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/platform_data/x86/apple.h>
14
15 #include "tb.h"
16 #include "tb_regs.h"
17 #include "tunnel.h"
18
19 #define TB_TIMEOUT 100 /* ms */
20 #define TB_RELEASE_BW_TIMEOUT 10000 /* ms */
21
22 /*
23 * How many time bandwidth allocation request from graphics driver is
24 * retried if the DP tunnel is still activating.
25 */
26 #define TB_BW_ALLOC_RETRIES 3
27
28 /*
29 * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver
30 * direction. This is 40G - 10% guard band bandwidth.
31 */
32 #define TB_ASYM_MIN (40000 * 90 / 100)
33
34 /*
35 * Threshold bandwidth (in Mb/s) that is used to switch the links to
36 * asymmetric and back. This is selected as 45G which means when the
37 * request is higher than this, we switch the link to asymmetric, and
38 * when it is less than this we switch it back. The 45G is selected so
39 * that we still have 27G (of the total 72G) for bulk PCIe traffic when
40 * switching back to symmetric.
41 */
42 #define TB_ASYM_THRESHOLD 45000
43
44 #define MAX_GROUPS 7 /* max Group_ID is 7 */
45
46 static unsigned int asym_threshold = TB_ASYM_THRESHOLD;
47 module_param_named(asym_threshold, asym_threshold, uint, 0444);
48 MODULE_PARM_DESC(asym_threshold,
49 "threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: "
50 __MODULE_STRING(TB_ASYM_THRESHOLD) ")");
51
52 /**
53 * struct tb_cm - Simple Thunderbolt connection manager
54 * @tunnel_list: List of active tunnels
55 * @dp_resources: List of available DP resources for DP tunneling
56 * @hotplug_active: tb_handle_hotplug will stop progressing plug
57 * events and exit if this is not set (it needs to
58 * acquire the lock one more time). Used to drain wq
59 * after cfg has been paused.
60 * @remove_work: Work used to remove any unplugged routers after
61 * runtime resume
62 * @groups: Bandwidth groups used in this domain.
63 */
64 struct tb_cm {
65 struct list_head tunnel_list;
66 struct list_head dp_resources;
67 bool hotplug_active;
68 struct delayed_work remove_work;
69 struct tb_bandwidth_group groups[MAX_GROUPS];
70 };
71
tcm_to_tb(struct tb_cm * tcm)72 static inline struct tb *tcm_to_tb(struct tb_cm *tcm)
73 {
74 return ((void *)tcm - sizeof(struct tb));
75 }
76
77 struct tb_hotplug_event {
78 struct delayed_work work;
79 struct tb *tb;
80 u64 route;
81 u8 port;
82 bool unplug;
83 int retry;
84 };
85
86 static void tb_scan_port(struct tb_port *port);
87 static void tb_handle_hotplug(struct work_struct *work);
88 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port,
89 const char *reason);
90 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port,
91 int retry, unsigned long delay);
92
tb_queue_hotplug(struct tb * tb,u64 route,u8 port,bool unplug)93 static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug)
94 {
95 struct tb_hotplug_event *ev;
96
97 ev = kmalloc(sizeof(*ev), GFP_KERNEL);
98 if (!ev)
99 return;
100
101 ev->tb = tb;
102 ev->route = route;
103 ev->port = port;
104 ev->unplug = unplug;
105 INIT_DELAYED_WORK(&ev->work, tb_handle_hotplug);
106 queue_delayed_work(tb->wq, &ev->work, 0);
107 }
108
109 /* enumeration & hot plug handling */
110
tb_add_dp_resources(struct tb_switch * sw)111 static void tb_add_dp_resources(struct tb_switch *sw)
112 {
113 struct tb_cm *tcm = tb_priv(sw->tb);
114 struct tb_port *port;
115
116 tb_switch_for_each_port(sw, port) {
117 if (!tb_port_is_dpin(port))
118 continue;
119
120 if (!tb_switch_query_dp_resource(sw, port))
121 continue;
122
123 /*
124 * If DP IN on device router exist, position it at the
125 * beginning of the DP resources list, so that it is used
126 * before DP IN of the host router. This way external GPU(s)
127 * will be prioritized when pairing DP IN to a DP OUT.
128 */
129 if (tb_route(sw))
130 list_add(&port->list, &tcm->dp_resources);
131 else
132 list_add_tail(&port->list, &tcm->dp_resources);
133
134 tb_port_dbg(port, "DP IN resource available\n");
135 }
136 }
137
tb_remove_dp_resources(struct tb_switch * sw)138 static void tb_remove_dp_resources(struct tb_switch *sw)
139 {
140 struct tb_cm *tcm = tb_priv(sw->tb);
141 struct tb_port *port, *tmp;
142
143 /* Clear children resources first */
144 tb_switch_for_each_port(sw, port) {
145 if (tb_port_has_remote(port))
146 tb_remove_dp_resources(port->remote->sw);
147 }
148
149 list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) {
150 if (port->sw == sw) {
151 tb_port_dbg(port, "DP OUT resource unavailable\n");
152 list_del_init(&port->list);
153 }
154 }
155 }
156
tb_discover_dp_resource(struct tb * tb,struct tb_port * port)157 static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port)
158 {
159 struct tb_cm *tcm = tb_priv(tb);
160 struct tb_port *p;
161
162 list_for_each_entry(p, &tcm->dp_resources, list) {
163 if (p == port)
164 return;
165 }
166
167 tb_port_dbg(port, "DP %s resource available discovered\n",
168 tb_port_is_dpin(port) ? "IN" : "OUT");
169 list_add_tail(&port->list, &tcm->dp_resources);
170 }
171
tb_discover_dp_resources(struct tb * tb)172 static void tb_discover_dp_resources(struct tb *tb)
173 {
174 struct tb_cm *tcm = tb_priv(tb);
175 struct tb_tunnel *tunnel;
176
177 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
178 if (tb_tunnel_is_dp(tunnel))
179 tb_discover_dp_resource(tb, tunnel->dst_port);
180 }
181 }
182
183 /* Enables CL states up to host router */
tb_enable_clx(struct tb_switch * sw)184 static int tb_enable_clx(struct tb_switch *sw)
185 {
186 struct tb_cm *tcm = tb_priv(sw->tb);
187 unsigned int clx = TB_CL0S | TB_CL1;
188 const struct tb_tunnel *tunnel;
189 int ret;
190
191 /*
192 * Currently only enable CLx for the first link. This is enough
193 * to allow the CPU to save energy at least on Intel hardware
194 * and makes it slightly simpler to implement. We may change
195 * this in the future to cover the whole topology if it turns
196 * out to be beneficial.
197 */
198 while (sw && tb_switch_depth(sw) > 1)
199 sw = tb_switch_parent(sw);
200
201 if (!sw)
202 return 0;
203
204 if (tb_switch_depth(sw) != 1)
205 return 0;
206
207 /*
208 * If we are re-enabling then check if there is an active DMA
209 * tunnel and in that case bail out.
210 */
211 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
212 if (tb_tunnel_is_dma(tunnel)) {
213 if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw)))
214 return 0;
215 }
216 }
217
218 /*
219 * Initially try with CL2. If that's not supported by the
220 * topology try with CL0s and CL1 and then give up.
221 */
222 ret = tb_switch_clx_enable(sw, clx | TB_CL2);
223 if (ret == -EOPNOTSUPP)
224 ret = tb_switch_clx_enable(sw, clx);
225 return ret == -EOPNOTSUPP ? 0 : ret;
226 }
227
228 /**
229 * tb_disable_clx() - Disable CL states up to host router
230 * @sw: Router to start
231 *
232 * Disables CL states from @sw up to the host router. Returns true if
233 * any CL state were disabled. This can be used to figure out whether
234 * the link was setup by us or the boot firmware so we don't
235 * accidentally enable them if they were not enabled during discovery.
236 */
tb_disable_clx(struct tb_switch * sw)237 static bool tb_disable_clx(struct tb_switch *sw)
238 {
239 bool disabled = false;
240
241 do {
242 int ret;
243
244 ret = tb_switch_clx_disable(sw);
245 if (ret > 0)
246 disabled = true;
247 else if (ret < 0)
248 tb_sw_warn(sw, "failed to disable CL states\n");
249
250 sw = tb_switch_parent(sw);
251 } while (sw);
252
253 return disabled;
254 }
255
tb_increase_switch_tmu_accuracy(struct device * dev,void * data)256 static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data)
257 {
258 struct tb_switch *sw;
259
260 sw = tb_to_switch(dev);
261 if (!sw)
262 return 0;
263
264 if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) {
265 enum tb_switch_tmu_mode mode;
266 int ret;
267
268 if (tb_switch_clx_is_enabled(sw, TB_CL1))
269 mode = TB_SWITCH_TMU_MODE_HIFI_UNI;
270 else
271 mode = TB_SWITCH_TMU_MODE_HIFI_BI;
272
273 ret = tb_switch_tmu_configure(sw, mode);
274 if (ret)
275 return ret;
276
277 return tb_switch_tmu_enable(sw);
278 }
279
280 return 0;
281 }
282
tb_increase_tmu_accuracy(struct tb_tunnel * tunnel)283 static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel)
284 {
285 struct tb_switch *sw;
286
287 if (!tunnel)
288 return;
289
290 /*
291 * Once first DP tunnel is established we change the TMU
292 * accuracy of first depth child routers (and the host router)
293 * to the highest. This is needed for the DP tunneling to work
294 * but also allows CL0s.
295 *
296 * If both routers are v2 then we don't need to do anything as
297 * they are using enhanced TMU mode that allows all CLx.
298 */
299 sw = tunnel->tb->root_switch;
300 device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy);
301 }
302
tb_switch_tmu_hifi_uni_required(struct device * dev,void * not_used)303 static int tb_switch_tmu_hifi_uni_required(struct device *dev, void *not_used)
304 {
305 struct tb_switch *sw = tb_to_switch(dev);
306
307 if (sw && tb_switch_tmu_is_enabled(sw) &&
308 tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_HIFI_UNI))
309 return 1;
310
311 return device_for_each_child(dev, NULL,
312 tb_switch_tmu_hifi_uni_required);
313 }
314
tb_tmu_hifi_uni_required(struct tb * tb)315 static bool tb_tmu_hifi_uni_required(struct tb *tb)
316 {
317 return device_for_each_child(&tb->dev, NULL,
318 tb_switch_tmu_hifi_uni_required) == 1;
319 }
320
tb_enable_tmu(struct tb_switch * sw)321 static int tb_enable_tmu(struct tb_switch *sw)
322 {
323 int ret;
324
325 /*
326 * If both routers at the end of the link are v2 we simply
327 * enable the enhanched uni-directional mode. That covers all
328 * the CL states. For v1 and before we need to use the normal
329 * rate to allow CL1 (when supported). Otherwise we keep the TMU
330 * running at the highest accuracy.
331 */
332 ret = tb_switch_tmu_configure(sw,
333 TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI);
334 if (ret == -EOPNOTSUPP) {
335 if (tb_switch_clx_is_enabled(sw, TB_CL1)) {
336 /*
337 * Figure out uni-directional HiFi TMU requirements
338 * currently in the domain. If there are no
339 * uni-directional HiFi requirements we can put the TMU
340 * into LowRes mode.
341 *
342 * Deliberately skip bi-directional HiFi links
343 * as these work independently of other links
344 * (and they do not allow any CL states anyway).
345 */
346 if (tb_tmu_hifi_uni_required(sw->tb))
347 ret = tb_switch_tmu_configure(sw,
348 TB_SWITCH_TMU_MODE_HIFI_UNI);
349 else
350 ret = tb_switch_tmu_configure(sw,
351 TB_SWITCH_TMU_MODE_LOWRES);
352 } else {
353 ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI);
354 }
355
356 /* If not supported, fallback to bi-directional HiFi */
357 if (ret == -EOPNOTSUPP)
358 ret = tb_switch_tmu_configure(sw, TB_SWITCH_TMU_MODE_HIFI_BI);
359 }
360 if (ret)
361 return ret;
362
363 /* If it is already enabled in correct mode, don't touch it */
364 if (tb_switch_tmu_is_enabled(sw))
365 return 0;
366
367 ret = tb_switch_tmu_disable(sw);
368 if (ret)
369 return ret;
370
371 ret = tb_switch_tmu_post_time(sw);
372 if (ret)
373 return ret;
374
375 return tb_switch_tmu_enable(sw);
376 }
377
tb_switch_discover_tunnels(struct tb_switch * sw,struct list_head * list,bool alloc_hopids)378 static void tb_switch_discover_tunnels(struct tb_switch *sw,
379 struct list_head *list,
380 bool alloc_hopids)
381 {
382 struct tb *tb = sw->tb;
383 struct tb_port *port;
384
385 tb_switch_for_each_port(sw, port) {
386 struct tb_tunnel *tunnel = NULL;
387
388 switch (port->config.type) {
389 case TB_TYPE_DP_HDMI_IN:
390 tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids);
391 tb_increase_tmu_accuracy(tunnel);
392 break;
393
394 case TB_TYPE_PCIE_DOWN:
395 tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids);
396 break;
397
398 case TB_TYPE_USB3_DOWN:
399 tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids);
400 break;
401
402 default:
403 break;
404 }
405
406 if (tunnel)
407 list_add_tail(&tunnel->list, list);
408 }
409
410 tb_switch_for_each_port(sw, port) {
411 if (tb_port_has_remote(port)) {
412 tb_switch_discover_tunnels(port->remote->sw, list,
413 alloc_hopids);
414 }
415 }
416 }
417
tb_port_configure_xdomain(struct tb_port * port,struct tb_xdomain * xd)418 static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
419 {
420 if (tb_switch_is_usb4(port->sw))
421 return usb4_port_configure_xdomain(port, xd);
422 return tb_lc_configure_xdomain(port);
423 }
424
tb_port_unconfigure_xdomain(struct tb_port * port)425 static void tb_port_unconfigure_xdomain(struct tb_port *port)
426 {
427 if (tb_switch_is_usb4(port->sw))
428 usb4_port_unconfigure_xdomain(port);
429 else
430 tb_lc_unconfigure_xdomain(port);
431 }
432
tb_scan_xdomain(struct tb_port * port)433 static void tb_scan_xdomain(struct tb_port *port)
434 {
435 struct tb_switch *sw = port->sw;
436 struct tb *tb = sw->tb;
437 struct tb_xdomain *xd;
438 u64 route;
439
440 if (!tb_is_xdomain_enabled())
441 return;
442
443 route = tb_downstream_route(port);
444 xd = tb_xdomain_find_by_route(tb, route);
445 if (xd) {
446 tb_xdomain_put(xd);
447 return;
448 }
449
450 xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid,
451 NULL);
452 if (xd) {
453 tb_port_at(route, sw)->xdomain = xd;
454 tb_port_configure_xdomain(port, xd);
455 tb_xdomain_add(xd);
456 }
457 }
458
459 /**
460 * tb_find_unused_port() - return the first inactive port on @sw
461 * @sw: Switch to find the port on
462 * @type: Port type to look for
463 */
tb_find_unused_port(struct tb_switch * sw,enum tb_port_type type)464 static struct tb_port *tb_find_unused_port(struct tb_switch *sw,
465 enum tb_port_type type)
466 {
467 struct tb_port *port;
468
469 tb_switch_for_each_port(sw, port) {
470 if (tb_is_upstream_port(port))
471 continue;
472 if (port->config.type != type)
473 continue;
474 if (!port->cap_adap)
475 continue;
476 if (tb_port_is_enabled(port))
477 continue;
478 return port;
479 }
480 return NULL;
481 }
482
tb_find_usb3_down(struct tb_switch * sw,const struct tb_port * port)483 static struct tb_port *tb_find_usb3_down(struct tb_switch *sw,
484 const struct tb_port *port)
485 {
486 struct tb_port *down;
487
488 down = usb4_switch_map_usb3_down(sw, port);
489 if (down && !tb_usb3_port_is_enabled(down))
490 return down;
491 return NULL;
492 }
493
tb_find_tunnel(struct tb * tb,enum tb_tunnel_type type,struct tb_port * src_port,struct tb_port * dst_port)494 static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type,
495 struct tb_port *src_port,
496 struct tb_port *dst_port)
497 {
498 struct tb_cm *tcm = tb_priv(tb);
499 struct tb_tunnel *tunnel;
500
501 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
502 if (tunnel->type == type &&
503 ((src_port && src_port == tunnel->src_port) ||
504 (dst_port && dst_port == tunnel->dst_port))) {
505 return tunnel;
506 }
507 }
508
509 return NULL;
510 }
511
tb_find_first_usb3_tunnel(struct tb * tb,struct tb_port * src_port,struct tb_port * dst_port)512 static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb,
513 struct tb_port *src_port,
514 struct tb_port *dst_port)
515 {
516 struct tb_port *port, *usb3_down;
517 struct tb_switch *sw;
518
519 /* Pick the router that is deepest in the topology */
520 if (tb_port_path_direction_downstream(src_port, dst_port))
521 sw = dst_port->sw;
522 else
523 sw = src_port->sw;
524
525 /* Can't be the host router */
526 if (sw == tb->root_switch)
527 return NULL;
528
529 /* Find the downstream USB4 port that leads to this router */
530 port = tb_port_at(tb_route(sw), tb->root_switch);
531 /* Find the corresponding host router USB3 downstream port */
532 usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port);
533 if (!usb3_down)
534 return NULL;
535
536 return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL);
537 }
538
539 /**
540 * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link
541 * @tb: Domain structure
542 * @src_port: Source protocol adapter
543 * @dst_port: Destination protocol adapter
544 * @port: USB4 port the consumed bandwidth is calculated
545 * @consumed_up: Consumed upsream bandwidth (Mb/s)
546 * @consumed_down: Consumed downstream bandwidth (Mb/s)
547 *
548 * Calculates consumed USB3 and PCIe bandwidth at @port between path
549 * from @src_port to @dst_port. Does not take USB3 tunnel starting from
550 * @src_port and ending on @src_port into account because that bandwidth is
551 * already included in as part of the "first hop" USB3 tunnel.
552 */
tb_consumed_usb3_pcie_bandwidth(struct tb * tb,struct tb_port * src_port,struct tb_port * dst_port,struct tb_port * port,int * consumed_up,int * consumed_down)553 static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb,
554 struct tb_port *src_port,
555 struct tb_port *dst_port,
556 struct tb_port *port,
557 int *consumed_up,
558 int *consumed_down)
559 {
560 int pci_consumed_up, pci_consumed_down;
561 struct tb_tunnel *tunnel;
562
563 *consumed_up = *consumed_down = 0;
564
565 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
566 if (tunnel && !tb_port_is_usb3_down(src_port) &&
567 !tb_port_is_usb3_up(dst_port)) {
568 int ret;
569
570 ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up,
571 consumed_down);
572 if (ret)
573 return ret;
574 }
575
576 /*
577 * If there is anything reserved for PCIe bulk traffic take it
578 * into account here too.
579 */
580 if (tb_tunnel_reserved_pci(port, &pci_consumed_up, &pci_consumed_down)) {
581 *consumed_up += pci_consumed_up;
582 *consumed_down += pci_consumed_down;
583 }
584
585 return 0;
586 }
587
588 /**
589 * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link
590 * @tb: Domain structure
591 * @src_port: Source protocol adapter
592 * @dst_port: Destination protocol adapter
593 * @port: USB4 port the consumed bandwidth is calculated
594 * @consumed_up: Consumed upsream bandwidth (Mb/s)
595 * @consumed_down: Consumed downstream bandwidth (Mb/s)
596 *
597 * Calculates consumed DP bandwidth at @port between path from @src_port
598 * to @dst_port. Does not take tunnel starting from @src_port and ending
599 * from @src_port into account.
600 *
601 * If there is bandwidth reserved for any of the groups between
602 * @src_port and @dst_port (but not yet used) that is also taken into
603 * account in the returned consumed bandwidth.
604 */
tb_consumed_dp_bandwidth(struct tb * tb,struct tb_port * src_port,struct tb_port * dst_port,struct tb_port * port,int * consumed_up,int * consumed_down)605 static int tb_consumed_dp_bandwidth(struct tb *tb,
606 struct tb_port *src_port,
607 struct tb_port *dst_port,
608 struct tb_port *port,
609 int *consumed_up,
610 int *consumed_down)
611 {
612 int group_reserved[MAX_GROUPS] = {};
613 struct tb_cm *tcm = tb_priv(tb);
614 struct tb_tunnel *tunnel;
615 bool downstream;
616 int i, ret;
617
618 *consumed_up = *consumed_down = 0;
619
620 /*
621 * Find all DP tunnels that cross the port and reduce
622 * their consumed bandwidth from the available.
623 */
624 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
625 const struct tb_bandwidth_group *group;
626 int dp_consumed_up, dp_consumed_down;
627
628 if (tb_tunnel_is_invalid(tunnel))
629 continue;
630
631 if (!tb_tunnel_is_dp(tunnel))
632 continue;
633
634 if (!tb_tunnel_port_on_path(tunnel, port))
635 continue;
636
637 /*
638 * Calculate what is reserved for groups crossing the
639 * same ports only once (as that is reserved for all the
640 * tunnels in the group).
641 */
642 group = tunnel->src_port->group;
643 if (group && group->reserved && !group_reserved[group->index])
644 group_reserved[group->index] = group->reserved;
645
646 /*
647 * Ignore the DP tunnel between src_port and dst_port
648 * because it is the same tunnel and we may be
649 * re-calculating estimated bandwidth.
650 */
651 if (tunnel->src_port == src_port &&
652 tunnel->dst_port == dst_port)
653 continue;
654
655 ret = tb_tunnel_consumed_bandwidth(tunnel, &dp_consumed_up,
656 &dp_consumed_down);
657 if (ret)
658 return ret;
659
660 *consumed_up += dp_consumed_up;
661 *consumed_down += dp_consumed_down;
662 }
663
664 downstream = tb_port_path_direction_downstream(src_port, dst_port);
665 for (i = 0; i < ARRAY_SIZE(group_reserved); i++) {
666 if (downstream)
667 *consumed_down += group_reserved[i];
668 else
669 *consumed_up += group_reserved[i];
670 }
671
672 return 0;
673 }
674
tb_asym_supported(struct tb_port * src_port,struct tb_port * dst_port,struct tb_port * port)675 static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port,
676 struct tb_port *port)
677 {
678 bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
679 enum tb_link_width width;
680
681 if (tb_is_upstream_port(port))
682 width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX;
683 else
684 width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX;
685
686 return tb_port_width_supported(port, width);
687 }
688
689 /**
690 * tb_maximum_bandwidth() - Maximum bandwidth over a single link
691 * @tb: Domain structure
692 * @src_port: Source protocol adapter
693 * @dst_port: Destination protocol adapter
694 * @port: USB4 port the total bandwidth is calculated
695 * @max_up: Maximum upstream bandwidth (Mb/s)
696 * @max_down: Maximum downstream bandwidth (Mb/s)
697 * @include_asym: Include bandwidth if the link is switched from
698 * symmetric to asymmetric
699 *
700 * Returns maximum possible bandwidth in @max_up and @max_down over a
701 * single link at @port. If @include_asym is set then includes the
702 * additional banwdith if the links are transitioned into asymmetric to
703 * direction from @src_port to @dst_port.
704 */
tb_maximum_bandwidth(struct tb * tb,struct tb_port * src_port,struct tb_port * dst_port,struct tb_port * port,int * max_up,int * max_down,bool include_asym)705 static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port,
706 struct tb_port *dst_port, struct tb_port *port,
707 int *max_up, int *max_down, bool include_asym)
708 {
709 bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
710 int link_speed, link_width, up_bw, down_bw;
711
712 /*
713 * Can include asymmetric, only if it is actually supported by
714 * the lane adapter.
715 */
716 if (!tb_asym_supported(src_port, dst_port, port))
717 include_asym = false;
718
719 if (tb_is_upstream_port(port)) {
720 link_speed = port->sw->link_speed;
721 /*
722 * sw->link_width is from upstream perspective so we use
723 * the opposite for downstream of the host router.
724 */
725 if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) {
726 up_bw = link_speed * 3 * 1000;
727 down_bw = link_speed * 1 * 1000;
728 } else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
729 up_bw = link_speed * 1 * 1000;
730 down_bw = link_speed * 3 * 1000;
731 } else if (include_asym) {
732 /*
733 * The link is symmetric at the moment but we
734 * can switch it to asymmetric as needed. Report
735 * this bandwidth as available (even though it
736 * is not yet enabled).
737 */
738 if (downstream) {
739 up_bw = link_speed * 1 * 1000;
740 down_bw = link_speed * 3 * 1000;
741 } else {
742 up_bw = link_speed * 3 * 1000;
743 down_bw = link_speed * 1 * 1000;
744 }
745 } else {
746 up_bw = link_speed * port->sw->link_width * 1000;
747 down_bw = up_bw;
748 }
749 } else {
750 link_speed = tb_port_get_link_speed(port);
751 if (link_speed < 0)
752 return link_speed;
753
754 link_width = tb_port_get_link_width(port);
755 if (link_width < 0)
756 return link_width;
757
758 if (link_width == TB_LINK_WIDTH_ASYM_TX) {
759 up_bw = link_speed * 1 * 1000;
760 down_bw = link_speed * 3 * 1000;
761 } else if (link_width == TB_LINK_WIDTH_ASYM_RX) {
762 up_bw = link_speed * 3 * 1000;
763 down_bw = link_speed * 1 * 1000;
764 } else if (include_asym) {
765 /*
766 * The link is symmetric at the moment but we
767 * can switch it to asymmetric as needed. Report
768 * this bandwidth as available (even though it
769 * is not yet enabled).
770 */
771 if (downstream) {
772 up_bw = link_speed * 1 * 1000;
773 down_bw = link_speed * 3 * 1000;
774 } else {
775 up_bw = link_speed * 3 * 1000;
776 down_bw = link_speed * 1 * 1000;
777 }
778 } else {
779 up_bw = link_speed * link_width * 1000;
780 down_bw = up_bw;
781 }
782 }
783
784 /* Leave 10% guard band */
785 *max_up = up_bw - up_bw / 10;
786 *max_down = down_bw - down_bw / 10;
787
788 tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down);
789 return 0;
790 }
791
792 /**
793 * tb_available_bandwidth() - Available bandwidth for tunneling
794 * @tb: Domain structure
795 * @src_port: Source protocol adapter
796 * @dst_port: Destination protocol adapter
797 * @available_up: Available bandwidth upstream (Mb/s)
798 * @available_down: Available bandwidth downstream (Mb/s)
799 * @include_asym: Include bandwidth if the link is switched from
800 * symmetric to asymmetric
801 *
802 * Calculates maximum available bandwidth for protocol tunneling between
803 * @src_port and @dst_port at the moment. This is minimum of maximum
804 * link bandwidth across all links reduced by currently consumed
805 * bandwidth on that link.
806 *
807 * If @include_asym is true then includes also bandwidth that can be
808 * added when the links are transitioned into asymmetric (but does not
809 * transition the links).
810 */
tb_available_bandwidth(struct tb * tb,struct tb_port * src_port,struct tb_port * dst_port,int * available_up,int * available_down,bool include_asym)811 static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port,
812 struct tb_port *dst_port, int *available_up,
813 int *available_down, bool include_asym)
814 {
815 struct tb_port *port;
816 int ret;
817
818 /* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */
819 *available_up = *available_down = 120000;
820
821 /* Find the minimum available bandwidth over all links */
822 tb_for_each_port_on_path(src_port, dst_port, port) {
823 int max_up, max_down, consumed_up, consumed_down;
824
825 if (!tb_port_is_null(port))
826 continue;
827
828 ret = tb_maximum_bandwidth(tb, src_port, dst_port, port,
829 &max_up, &max_down, include_asym);
830 if (ret)
831 return ret;
832
833 ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port,
834 port, &consumed_up,
835 &consumed_down);
836 if (ret)
837 return ret;
838 max_up -= consumed_up;
839 max_down -= consumed_down;
840
841 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port,
842 &consumed_up, &consumed_down);
843 if (ret)
844 return ret;
845 max_up -= consumed_up;
846 max_down -= consumed_down;
847
848 if (max_up < *available_up)
849 *available_up = max_up;
850 if (max_down < *available_down)
851 *available_down = max_down;
852 }
853
854 if (*available_up < 0)
855 *available_up = 0;
856 if (*available_down < 0)
857 *available_down = 0;
858
859 return 0;
860 }
861
tb_release_unused_usb3_bandwidth(struct tb * tb,struct tb_port * src_port,struct tb_port * dst_port)862 static int tb_release_unused_usb3_bandwidth(struct tb *tb,
863 struct tb_port *src_port,
864 struct tb_port *dst_port)
865 {
866 struct tb_tunnel *tunnel;
867
868 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
869 return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0;
870 }
871
tb_reclaim_usb3_bandwidth(struct tb * tb,struct tb_port * src_port,struct tb_port * dst_port)872 static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port,
873 struct tb_port *dst_port)
874 {
875 int ret, available_up, available_down;
876 struct tb_tunnel *tunnel;
877
878 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
879 if (!tunnel)
880 return;
881
882 tb_tunnel_dbg(tunnel, "reclaiming unused bandwidth\n");
883
884 /*
885 * Calculate available bandwidth for the first hop USB3 tunnel.
886 * That determines the whole USB3 bandwidth for this branch.
887 */
888 ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port,
889 &available_up, &available_down, false);
890 if (ret) {
891 tb_tunnel_warn(tunnel, "failed to calculate available bandwidth\n");
892 return;
893 }
894
895 tb_tunnel_dbg(tunnel, "available bandwidth %d/%d Mb/s\n", available_up,
896 available_down);
897
898 tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down);
899 }
900
tb_tunnel_usb3(struct tb * tb,struct tb_switch * sw)901 static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw)
902 {
903 struct tb_switch *parent = tb_switch_parent(sw);
904 int ret, available_up, available_down;
905 struct tb_port *up, *down, *port;
906 struct tb_cm *tcm = tb_priv(tb);
907 struct tb_tunnel *tunnel;
908
909 if (!tb_acpi_may_tunnel_usb3()) {
910 tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n");
911 return 0;
912 }
913
914 up = tb_switch_find_port(sw, TB_TYPE_USB3_UP);
915 if (!up)
916 return 0;
917
918 if (!sw->link_usb4)
919 return 0;
920
921 /*
922 * Look up available down port. Since we are chaining it should
923 * be found right above this switch.
924 */
925 port = tb_switch_downstream_port(sw);
926 down = tb_find_usb3_down(parent, port);
927 if (!down)
928 return 0;
929
930 if (tb_route(parent)) {
931 struct tb_port *parent_up;
932 /*
933 * Check first that the parent switch has its upstream USB3
934 * port enabled. Otherwise the chain is not complete and
935 * there is no point setting up a new tunnel.
936 */
937 parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP);
938 if (!parent_up || !tb_port_is_enabled(parent_up))
939 return 0;
940
941 /* Make all unused bandwidth available for the new tunnel */
942 ret = tb_release_unused_usb3_bandwidth(tb, down, up);
943 if (ret)
944 return ret;
945 }
946
947 ret = tb_available_bandwidth(tb, down, up, &available_up, &available_down,
948 false);
949 if (ret)
950 goto err_reclaim;
951
952 tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n",
953 available_up, available_down);
954
955 tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up,
956 available_down);
957 if (!tunnel) {
958 ret = -ENOMEM;
959 goto err_reclaim;
960 }
961
962 if (tb_tunnel_activate(tunnel)) {
963 tb_port_info(up,
964 "USB3 tunnel activation failed, aborting\n");
965 ret = -EIO;
966 goto err_free;
967 }
968
969 list_add_tail(&tunnel->list, &tcm->tunnel_list);
970 if (tb_route(parent))
971 tb_reclaim_usb3_bandwidth(tb, down, up);
972
973 return 0;
974
975 err_free:
976 tb_tunnel_put(tunnel);
977 err_reclaim:
978 if (tb_route(parent))
979 tb_reclaim_usb3_bandwidth(tb, down, up);
980
981 return ret;
982 }
983
tb_create_usb3_tunnels(struct tb_switch * sw)984 static int tb_create_usb3_tunnels(struct tb_switch *sw)
985 {
986 struct tb_port *port;
987 int ret;
988
989 if (!tb_acpi_may_tunnel_usb3())
990 return 0;
991
992 if (tb_route(sw)) {
993 ret = tb_tunnel_usb3(sw->tb, sw);
994 if (ret)
995 return ret;
996 }
997
998 tb_switch_for_each_port(sw, port) {
999 if (!tb_port_has_remote(port))
1000 continue;
1001 ret = tb_create_usb3_tunnels(port->remote->sw);
1002 if (ret)
1003 return ret;
1004 }
1005
1006 return 0;
1007 }
1008
1009 /**
1010 * tb_configure_asym() - Transition links to asymmetric if needed
1011 * @tb: Domain structure
1012 * @src_port: Source adapter to start the transition
1013 * @dst_port: Destination adapter
1014 * @requested_up: Additional bandwidth (Mb/s) required upstream
1015 * @requested_down: Additional bandwidth (Mb/s) required downstream
1016 *
1017 * Transition links between @src_port and @dst_port into asymmetric, with
1018 * three lanes in the direction from @src_port towards @dst_port and one lane
1019 * in the opposite direction, if the bandwidth requirements
1020 * (requested + currently consumed) on that link exceed @asym_threshold.
1021 *
1022 * Must be called with available >= requested over all links.
1023 */
tb_configure_asym(struct tb * tb,struct tb_port * src_port,struct tb_port * dst_port,int requested_up,int requested_down)1024 static int tb_configure_asym(struct tb *tb, struct tb_port *src_port,
1025 struct tb_port *dst_port, int requested_up,
1026 int requested_down)
1027 {
1028 bool clx = false, clx_disabled = false, downstream;
1029 struct tb_switch *sw;
1030 struct tb_port *up;
1031 int ret = 0;
1032
1033 if (!asym_threshold)
1034 return 0;
1035
1036 downstream = tb_port_path_direction_downstream(src_port, dst_port);
1037 /* Pick up router deepest in the hierarchy */
1038 if (downstream)
1039 sw = dst_port->sw;
1040 else
1041 sw = src_port->sw;
1042
1043 tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1044 struct tb_port *down = tb_switch_downstream_port(up->sw);
1045 enum tb_link_width width_up, width_down;
1046 int consumed_up, consumed_down;
1047
1048 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1049 &consumed_up, &consumed_down);
1050 if (ret)
1051 break;
1052
1053 if (downstream) {
1054 /*
1055 * Downstream so make sure upstream is within the 36G
1056 * (40G - guard band 10%), and the requested is above
1057 * what the threshold is.
1058 */
1059 if (consumed_up + requested_up >= TB_ASYM_MIN) {
1060 ret = -ENOBUFS;
1061 break;
1062 }
1063 /* Does consumed + requested exceed the threshold */
1064 if (consumed_down + requested_down < asym_threshold)
1065 continue;
1066
1067 width_up = TB_LINK_WIDTH_ASYM_RX;
1068 width_down = TB_LINK_WIDTH_ASYM_TX;
1069 } else {
1070 /* Upstream, the opposite of above */
1071 if (consumed_down + requested_down >= TB_ASYM_MIN) {
1072 ret = -ENOBUFS;
1073 break;
1074 }
1075 if (consumed_up + requested_up < asym_threshold)
1076 continue;
1077
1078 width_up = TB_LINK_WIDTH_ASYM_TX;
1079 width_down = TB_LINK_WIDTH_ASYM_RX;
1080 }
1081
1082 if (up->sw->link_width == width_up)
1083 continue;
1084
1085 if (!tb_port_width_supported(up, width_up) ||
1086 !tb_port_width_supported(down, width_down))
1087 continue;
1088
1089 /*
1090 * Disable CL states before doing any transitions. We
1091 * delayed it until now that we know there is a real
1092 * transition taking place.
1093 */
1094 if (!clx_disabled) {
1095 clx = tb_disable_clx(sw);
1096 clx_disabled = true;
1097 }
1098
1099 tb_sw_dbg(up->sw, "configuring asymmetric link\n");
1100
1101 /*
1102 * Here requested + consumed > threshold so we need to
1103 * transtion the link into asymmetric now.
1104 */
1105 ret = tb_switch_set_link_width(up->sw, width_up);
1106 if (ret) {
1107 tb_sw_warn(up->sw, "failed to set link width\n");
1108 break;
1109 }
1110 }
1111
1112 /* Re-enable CL states if they were previosly enabled */
1113 if (clx)
1114 tb_enable_clx(sw);
1115
1116 return ret;
1117 }
1118
1119 /**
1120 * tb_configure_sym() - Transition links to symmetric if possible
1121 * @tb: Domain structure
1122 * @src_port: Source adapter to start the transition
1123 * @dst_port: Destination adapter
1124 * @keep_asym: Keep asymmetric link if preferred
1125 *
1126 * Goes over each link from @src_port to @dst_port and tries to
1127 * transition the link to symmetric if the currently consumed bandwidth
1128 * allows and link asymmetric preference is ignored (if @keep_asym is %false).
1129 */
tb_configure_sym(struct tb * tb,struct tb_port * src_port,struct tb_port * dst_port,bool keep_asym)1130 static int tb_configure_sym(struct tb *tb, struct tb_port *src_port,
1131 struct tb_port *dst_port, bool keep_asym)
1132 {
1133 bool clx = false, clx_disabled = false, downstream;
1134 struct tb_switch *sw;
1135 struct tb_port *up;
1136 int ret = 0;
1137
1138 if (!asym_threshold)
1139 return 0;
1140
1141 downstream = tb_port_path_direction_downstream(src_port, dst_port);
1142 /* Pick up router deepest in the hierarchy */
1143 if (downstream)
1144 sw = dst_port->sw;
1145 else
1146 sw = src_port->sw;
1147
1148 tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1149 int consumed_up, consumed_down;
1150
1151 /* Already symmetric */
1152 if (up->sw->link_width <= TB_LINK_WIDTH_DUAL)
1153 continue;
1154 /* Unplugged, no need to switch */
1155 if (up->sw->is_unplugged)
1156 continue;
1157
1158 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
1159 &consumed_up, &consumed_down);
1160 if (ret)
1161 break;
1162
1163 if (downstream) {
1164 /*
1165 * Downstream so we want the consumed_down < threshold.
1166 * Upstream traffic should be less than 36G (40G
1167 * guard band 10%) as the link was configured asymmetric
1168 * already.
1169 */
1170 if (consumed_down >= asym_threshold)
1171 continue;
1172 } else {
1173 if (consumed_up >= asym_threshold)
1174 continue;
1175 }
1176
1177 if (up->sw->link_width == TB_LINK_WIDTH_DUAL)
1178 continue;
1179
1180 /*
1181 * Here consumed < threshold so we can transition the
1182 * link to symmetric.
1183 *
1184 * However, if the router prefers asymmetric link we
1185 * honor that (unless @keep_asym is %false).
1186 */
1187 if (keep_asym &&
1188 up->sw->preferred_link_width > TB_LINK_WIDTH_DUAL) {
1189 tb_sw_dbg(up->sw, "keeping preferred asymmetric link\n");
1190 continue;
1191 }
1192
1193 /* Disable CL states before doing any transitions */
1194 if (!clx_disabled) {
1195 clx = tb_disable_clx(sw);
1196 clx_disabled = true;
1197 }
1198
1199 tb_sw_dbg(up->sw, "configuring symmetric link\n");
1200
1201 ret = tb_switch_set_link_width(up->sw, TB_LINK_WIDTH_DUAL);
1202 if (ret) {
1203 tb_sw_warn(up->sw, "failed to set link width\n");
1204 break;
1205 }
1206 }
1207
1208 /* Re-enable CL states if they were previosly enabled */
1209 if (clx)
1210 tb_enable_clx(sw);
1211
1212 return ret;
1213 }
1214
tb_configure_link(struct tb_port * down,struct tb_port * up,struct tb_switch * sw)1215 static void tb_configure_link(struct tb_port *down, struct tb_port *up,
1216 struct tb_switch *sw)
1217 {
1218 struct tb *tb = sw->tb;
1219
1220 /* Link the routers using both links if available */
1221 down->remote = up;
1222 up->remote = down;
1223 if (down->dual_link_port && up->dual_link_port) {
1224 down->dual_link_port->remote = up->dual_link_port;
1225 up->dual_link_port->remote = down->dual_link_port;
1226 }
1227
1228 /*
1229 * Enable lane bonding if the link is currently two single lane
1230 * links.
1231 */
1232 if (sw->link_width < TB_LINK_WIDTH_DUAL)
1233 tb_switch_set_link_width(sw, TB_LINK_WIDTH_DUAL);
1234
1235 /*
1236 * Device router that comes up as symmetric link is
1237 * connected deeper in the hierarchy, we transition the links
1238 * above into symmetric if bandwidth allows.
1239 */
1240 if (tb_switch_depth(sw) > 1 &&
1241 tb_port_get_link_generation(up) >= 4 &&
1242 up->sw->link_width == TB_LINK_WIDTH_DUAL) {
1243 struct tb_port *host_port;
1244
1245 host_port = tb_port_at(tb_route(sw), tb->root_switch);
1246 tb_configure_sym(tb, host_port, up, false);
1247 }
1248
1249 /* Set the link configured */
1250 tb_switch_configure_link(sw);
1251 }
1252
1253 /*
1254 * tb_scan_switch() - scan for and initialize downstream switches
1255 */
tb_scan_switch(struct tb_switch * sw)1256 static void tb_scan_switch(struct tb_switch *sw)
1257 {
1258 struct tb_port *port;
1259
1260 pm_runtime_get_sync(&sw->dev);
1261
1262 tb_switch_for_each_port(sw, port)
1263 tb_scan_port(port);
1264
1265 pm_runtime_mark_last_busy(&sw->dev);
1266 pm_runtime_put_autosuspend(&sw->dev);
1267 }
1268
1269 /*
1270 * tb_scan_port() - check for and initialize switches below port
1271 */
tb_scan_port(struct tb_port * port)1272 static void tb_scan_port(struct tb_port *port)
1273 {
1274 struct tb_cm *tcm = tb_priv(port->sw->tb);
1275 struct tb_port *upstream_port;
1276 bool discovery = false;
1277 struct tb_switch *sw;
1278
1279 if (tb_is_upstream_port(port))
1280 return;
1281
1282 if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 &&
1283 !tb_dp_port_is_enabled(port)) {
1284 tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n");
1285 tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port,
1286 false);
1287 return;
1288 }
1289
1290 if (port->config.type != TB_TYPE_PORT)
1291 return;
1292 if (port->dual_link_port && port->link_nr)
1293 return; /*
1294 * Downstream switch is reachable through two ports.
1295 * Only scan on the primary port (link_nr == 0).
1296 */
1297
1298 if (port->usb4)
1299 pm_runtime_get_sync(&port->usb4->dev);
1300
1301 if (tb_wait_for_port(port, false) <= 0)
1302 goto out_rpm_put;
1303 if (port->remote) {
1304 tb_port_dbg(port, "port already has a remote\n");
1305 goto out_rpm_put;
1306 }
1307
1308 sw = tb_switch_alloc(port->sw->tb, &port->sw->dev,
1309 tb_downstream_route(port));
1310 if (IS_ERR(sw)) {
1311 /*
1312 * Make the downstream retimers available even if there
1313 * is no router connected.
1314 */
1315 tb_retimer_scan(port, true);
1316
1317 /*
1318 * If there is an error accessing the connected switch
1319 * it may be connected to another domain. Also we allow
1320 * the other domain to be connected to a max depth switch.
1321 */
1322 if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL)
1323 tb_scan_xdomain(port);
1324 goto out_rpm_put;
1325 }
1326
1327 if (tb_switch_configure(sw)) {
1328 tb_switch_put(sw);
1329 goto out_rpm_put;
1330 }
1331
1332 /*
1333 * If there was previously another domain connected remove it
1334 * first.
1335 */
1336 if (port->xdomain) {
1337 tb_xdomain_remove(port->xdomain);
1338 tb_port_unconfigure_xdomain(port);
1339 port->xdomain = NULL;
1340 }
1341
1342 /*
1343 * Do not send uevents until we have discovered all existing
1344 * tunnels and know which switches were authorized already by
1345 * the boot firmware.
1346 */
1347 if (!tcm->hotplug_active) {
1348 dev_set_uevent_suppress(&sw->dev, true);
1349 discovery = true;
1350 }
1351
1352 /*
1353 * At the moment Thunderbolt 2 and beyond (devices with LC) we
1354 * can support runtime PM.
1355 */
1356 sw->rpm = sw->generation > 1;
1357
1358 if (tb_switch_add(sw)) {
1359 tb_switch_put(sw);
1360 goto out_rpm_put;
1361 }
1362
1363 upstream_port = tb_upstream_port(sw);
1364 tb_configure_link(port, upstream_port, sw);
1365
1366 /*
1367 * Scan for downstream retimers. We only scan them after the
1368 * router has been enumerated to avoid issues with certain
1369 * Pluggable devices that expect the host to enumerate them
1370 * within certain timeout.
1371 */
1372 tb_retimer_scan(port, true);
1373
1374 /*
1375 * CL0s and CL1 are enabled and supported together.
1376 * Silently ignore CLx enabling in case CLx is not supported.
1377 */
1378 if (discovery)
1379 tb_sw_dbg(sw, "discovery, not touching CL states\n");
1380 else if (tb_enable_clx(sw))
1381 tb_sw_warn(sw, "failed to enable CL states\n");
1382
1383 if (tb_enable_tmu(sw))
1384 tb_sw_warn(sw, "failed to enable TMU\n");
1385
1386 /*
1387 * Configuration valid needs to be set after the TMU has been
1388 * enabled for the upstream port of the router so we do it here.
1389 */
1390 tb_switch_configuration_valid(sw);
1391
1392 /* Scan upstream retimers */
1393 tb_retimer_scan(upstream_port, true);
1394
1395 /*
1396 * Create USB 3.x tunnels only when the switch is plugged to the
1397 * domain. This is because we scan the domain also during discovery
1398 * and want to discover existing USB 3.x tunnels before we create
1399 * any new.
1400 */
1401 if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw))
1402 tb_sw_warn(sw, "USB3 tunnel creation failed\n");
1403
1404 tb_add_dp_resources(sw);
1405 tb_scan_switch(sw);
1406
1407 out_rpm_put:
1408 if (port->usb4) {
1409 pm_runtime_mark_last_busy(&port->usb4->dev);
1410 pm_runtime_put_autosuspend(&port->usb4->dev);
1411 }
1412 }
1413
1414 static void
tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group * group)1415 tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group)
1416 {
1417 struct tb_tunnel *first_tunnel;
1418 struct tb *tb = group->tb;
1419 struct tb_port *in;
1420 int ret;
1421
1422 tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n",
1423 group->index);
1424
1425 first_tunnel = NULL;
1426 list_for_each_entry(in, &group->ports, group_list) {
1427 int estimated_bw, estimated_up, estimated_down;
1428 struct tb_tunnel *tunnel;
1429 struct tb_port *out;
1430
1431 if (!usb4_dp_port_bandwidth_mode_enabled(in))
1432 continue;
1433
1434 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
1435 if (WARN_ON(!tunnel))
1436 break;
1437
1438 if (!first_tunnel) {
1439 /*
1440 * Since USB3 bandwidth is shared by all DP
1441 * tunnels under the host router USB4 port, even
1442 * if they do not begin from the host router, we
1443 * can release USB3 bandwidth just once and not
1444 * for each tunnel separately.
1445 */
1446 first_tunnel = tunnel;
1447 ret = tb_release_unused_usb3_bandwidth(tb,
1448 first_tunnel->src_port, first_tunnel->dst_port);
1449 if (ret) {
1450 tb_tunnel_warn(tunnel,
1451 "failed to release unused bandwidth\n");
1452 break;
1453 }
1454 }
1455
1456 out = tunnel->dst_port;
1457 ret = tb_available_bandwidth(tb, in, out, &estimated_up,
1458 &estimated_down, true);
1459 if (ret) {
1460 tb_tunnel_warn(tunnel,
1461 "failed to re-calculate estimated bandwidth\n");
1462 break;
1463 }
1464
1465 /*
1466 * Estimated bandwidth includes:
1467 * - already allocated bandwidth for the DP tunnel
1468 * - available bandwidth along the path
1469 * - bandwidth allocated for USB 3.x but not used.
1470 */
1471 if (tb_tunnel_direction_downstream(tunnel))
1472 estimated_bw = estimated_down;
1473 else
1474 estimated_bw = estimated_up;
1475
1476 /*
1477 * If there is reserved bandwidth for the group that is
1478 * not yet released we report that too.
1479 */
1480 tb_tunnel_dbg(tunnel,
1481 "re-calculated estimated bandwidth %u (+ %u reserved) = %u Mb/s\n",
1482 estimated_bw, group->reserved,
1483 estimated_bw + group->reserved);
1484
1485 if (usb4_dp_port_set_estimated_bandwidth(in,
1486 estimated_bw + group->reserved))
1487 tb_tunnel_warn(tunnel,
1488 "failed to update estimated bandwidth\n");
1489 }
1490
1491 if (first_tunnel)
1492 tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port,
1493 first_tunnel->dst_port);
1494
1495 tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index);
1496 }
1497
tb_recalc_estimated_bandwidth(struct tb * tb)1498 static void tb_recalc_estimated_bandwidth(struct tb *tb)
1499 {
1500 struct tb_cm *tcm = tb_priv(tb);
1501 int i;
1502
1503 tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n");
1504
1505 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1506 struct tb_bandwidth_group *group = &tcm->groups[i];
1507
1508 if (!list_empty(&group->ports))
1509 tb_recalc_estimated_bandwidth_for_group(group);
1510 }
1511
1512 tb_dbg(tb, "bandwidth re-calculation done\n");
1513 }
1514
__release_group_bandwidth(struct tb_bandwidth_group * group)1515 static bool __release_group_bandwidth(struct tb_bandwidth_group *group)
1516 {
1517 if (group->reserved) {
1518 tb_dbg(group->tb, "group %d released total %d Mb/s\n", group->index,
1519 group->reserved);
1520 group->reserved = 0;
1521 return true;
1522 }
1523 return false;
1524 }
1525
__configure_group_sym(struct tb_bandwidth_group * group)1526 static void __configure_group_sym(struct tb_bandwidth_group *group)
1527 {
1528 struct tb_tunnel *tunnel;
1529 struct tb_port *in;
1530
1531 if (list_empty(&group->ports))
1532 return;
1533
1534 /*
1535 * All the tunnels in the group go through the same USB4 links
1536 * so we find the first one here and pass the IN and OUT
1537 * adapters to tb_configure_sym() which now transitions the
1538 * links back to symmetric if bandwidth requirement < asym_threshold.
1539 *
1540 * We do this here to avoid unnecessary transitions (for example
1541 * if the graphics released bandwidth for other tunnel in the
1542 * same group).
1543 */
1544 in = list_first_entry(&group->ports, struct tb_port, group_list);
1545 tunnel = tb_find_tunnel(group->tb, TB_TUNNEL_DP, in, NULL);
1546 if (tunnel)
1547 tb_configure_sym(group->tb, in, tunnel->dst_port, true);
1548 }
1549
tb_bandwidth_group_release_work(struct work_struct * work)1550 static void tb_bandwidth_group_release_work(struct work_struct *work)
1551 {
1552 struct tb_bandwidth_group *group =
1553 container_of(work, typeof(*group), release_work.work);
1554 struct tb *tb = group->tb;
1555
1556 mutex_lock(&tb->lock);
1557 if (__release_group_bandwidth(group))
1558 tb_recalc_estimated_bandwidth(tb);
1559 __configure_group_sym(group);
1560 mutex_unlock(&tb->lock);
1561 }
1562
tb_init_bandwidth_groups(struct tb_cm * tcm)1563 static void tb_init_bandwidth_groups(struct tb_cm *tcm)
1564 {
1565 int i;
1566
1567 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1568 struct tb_bandwidth_group *group = &tcm->groups[i];
1569
1570 group->tb = tcm_to_tb(tcm);
1571 group->index = i + 1;
1572 INIT_LIST_HEAD(&group->ports);
1573 INIT_DELAYED_WORK(&group->release_work,
1574 tb_bandwidth_group_release_work);
1575 }
1576 }
1577
tb_bandwidth_group_attach_port(struct tb_bandwidth_group * group,struct tb_port * in)1578 static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group,
1579 struct tb_port *in)
1580 {
1581 if (!group || WARN_ON(in->group))
1582 return;
1583
1584 in->group = group;
1585 list_add_tail(&in->group_list, &group->ports);
1586
1587 tb_port_dbg(in, "attached to bandwidth group %d\n", group->index);
1588 }
1589
tb_find_free_bandwidth_group(struct tb_cm * tcm)1590 static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm)
1591 {
1592 int i;
1593
1594 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1595 struct tb_bandwidth_group *group = &tcm->groups[i];
1596
1597 if (list_empty(&group->ports))
1598 return group;
1599 }
1600
1601 return NULL;
1602 }
1603
1604 static struct tb_bandwidth_group *
tb_attach_bandwidth_group(struct tb_cm * tcm,struct tb_port * in,struct tb_port * out)1605 tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
1606 struct tb_port *out)
1607 {
1608 struct tb_bandwidth_group *group;
1609 struct tb_tunnel *tunnel;
1610
1611 /*
1612 * Find all DP tunnels that go through all the same USB4 links
1613 * as this one. Because we always setup tunnels the same way we
1614 * can just check for the routers at both ends of the tunnels
1615 * and if they are the same we have a match.
1616 */
1617 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1618 if (!tb_tunnel_is_dp(tunnel))
1619 continue;
1620
1621 if (tunnel->src_port->sw == in->sw &&
1622 tunnel->dst_port->sw == out->sw) {
1623 group = tunnel->src_port->group;
1624 if (group) {
1625 tb_bandwidth_group_attach_port(group, in);
1626 return group;
1627 }
1628 }
1629 }
1630
1631 /* Pick up next available group then */
1632 group = tb_find_free_bandwidth_group(tcm);
1633 if (group)
1634 tb_bandwidth_group_attach_port(group, in);
1635 else
1636 tb_port_warn(in, "no available bandwidth groups\n");
1637
1638 return group;
1639 }
1640
tb_discover_bandwidth_group(struct tb_cm * tcm,struct tb_port * in,struct tb_port * out)1641 static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
1642 struct tb_port *out)
1643 {
1644 if (usb4_dp_port_bandwidth_mode_enabled(in)) {
1645 int index, i;
1646
1647 index = usb4_dp_port_group_id(in);
1648 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1649 if (tcm->groups[i].index == index) {
1650 tb_bandwidth_group_attach_port(&tcm->groups[i], in);
1651 return;
1652 }
1653 }
1654 }
1655
1656 tb_attach_bandwidth_group(tcm, in, out);
1657 }
1658
tb_detach_bandwidth_group(struct tb_port * in)1659 static void tb_detach_bandwidth_group(struct tb_port *in)
1660 {
1661 struct tb_bandwidth_group *group = in->group;
1662
1663 if (group) {
1664 in->group = NULL;
1665 list_del_init(&in->group_list);
1666
1667 tb_port_dbg(in, "detached from bandwidth group %d\n", group->index);
1668
1669 /* No more tunnels so release the reserved bandwidth if any */
1670 if (list_empty(&group->ports)) {
1671 cancel_delayed_work(&group->release_work);
1672 __release_group_bandwidth(group);
1673 }
1674 }
1675 }
1676
tb_discover_tunnels(struct tb * tb)1677 static void tb_discover_tunnels(struct tb *tb)
1678 {
1679 struct tb_cm *tcm = tb_priv(tb);
1680 struct tb_tunnel *tunnel;
1681
1682 tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true);
1683
1684 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1685 if (tb_tunnel_is_pci(tunnel)) {
1686 struct tb_switch *parent = tunnel->dst_port->sw;
1687
1688 while (parent != tunnel->src_port->sw) {
1689 parent->boot = true;
1690 parent = tb_switch_parent(parent);
1691 }
1692 } else if (tb_tunnel_is_dp(tunnel)) {
1693 struct tb_port *in = tunnel->src_port;
1694 struct tb_port *out = tunnel->dst_port;
1695
1696 /* Keep the domain from powering down */
1697 pm_runtime_get_sync(&in->sw->dev);
1698 pm_runtime_get_sync(&out->sw->dev);
1699
1700 tb_discover_bandwidth_group(tcm, in, out);
1701 }
1702 }
1703 }
1704
tb_deactivate_and_free_tunnel(struct tb_tunnel * tunnel)1705 static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel)
1706 {
1707 struct tb_port *src_port, *dst_port;
1708 struct tb *tb;
1709
1710 if (!tunnel)
1711 return;
1712
1713 tb_tunnel_deactivate(tunnel);
1714 list_del(&tunnel->list);
1715
1716 tb = tunnel->tb;
1717 src_port = tunnel->src_port;
1718 dst_port = tunnel->dst_port;
1719
1720 switch (tunnel->type) {
1721 case TB_TUNNEL_DP:
1722 tb_detach_bandwidth_group(src_port);
1723 /*
1724 * In case of DP tunnel make sure the DP IN resource is
1725 * deallocated properly.
1726 */
1727 tb_switch_dealloc_dp_resource(src_port->sw, src_port);
1728 /*
1729 * If bandwidth on a link is < asym_threshold
1730 * transition the link to symmetric.
1731 */
1732 tb_configure_sym(tb, src_port, dst_port, true);
1733 /* Now we can allow the domain to runtime suspend again */
1734 pm_runtime_mark_last_busy(&dst_port->sw->dev);
1735 pm_runtime_put_autosuspend(&dst_port->sw->dev);
1736 pm_runtime_mark_last_busy(&src_port->sw->dev);
1737 pm_runtime_put_autosuspend(&src_port->sw->dev);
1738 fallthrough;
1739
1740 case TB_TUNNEL_USB3:
1741 tb_reclaim_usb3_bandwidth(tb, src_port, dst_port);
1742 break;
1743
1744 default:
1745 /*
1746 * PCIe and DMA tunnels do not consume guaranteed
1747 * bandwidth.
1748 */
1749 break;
1750 }
1751
1752 tb_tunnel_put(tunnel);
1753 }
1754
1755 /*
1756 * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away
1757 */
tb_free_invalid_tunnels(struct tb * tb)1758 static void tb_free_invalid_tunnels(struct tb *tb)
1759 {
1760 struct tb_cm *tcm = tb_priv(tb);
1761 struct tb_tunnel *tunnel;
1762 struct tb_tunnel *n;
1763
1764 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
1765 if (tb_tunnel_is_invalid(tunnel))
1766 tb_deactivate_and_free_tunnel(tunnel);
1767 }
1768 }
1769
1770 /*
1771 * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches
1772 */
tb_free_unplugged_children(struct tb_switch * sw)1773 static void tb_free_unplugged_children(struct tb_switch *sw)
1774 {
1775 struct tb_port *port;
1776
1777 tb_switch_for_each_port(sw, port) {
1778 if (!tb_port_has_remote(port))
1779 continue;
1780
1781 if (port->remote->sw->is_unplugged) {
1782 tb_retimer_remove_all(port);
1783 tb_remove_dp_resources(port->remote->sw);
1784 tb_switch_unconfigure_link(port->remote->sw);
1785 tb_switch_set_link_width(port->remote->sw,
1786 TB_LINK_WIDTH_SINGLE);
1787 tb_switch_remove(port->remote->sw);
1788 port->remote = NULL;
1789 if (port->dual_link_port)
1790 port->dual_link_port->remote = NULL;
1791 } else {
1792 tb_free_unplugged_children(port->remote->sw);
1793 }
1794 }
1795 }
1796
tb_find_pcie_down(struct tb_switch * sw,const struct tb_port * port)1797 static struct tb_port *tb_find_pcie_down(struct tb_switch *sw,
1798 const struct tb_port *port)
1799 {
1800 struct tb_port *down = NULL;
1801
1802 /*
1803 * To keep plugging devices consistently in the same PCIe
1804 * hierarchy, do mapping here for switch downstream PCIe ports.
1805 */
1806 if (tb_switch_is_usb4(sw)) {
1807 down = usb4_switch_map_pcie_down(sw, port);
1808 } else if (!tb_route(sw)) {
1809 int phy_port = tb_phy_port_from_link(port->port);
1810 int index;
1811
1812 /*
1813 * Hard-coded Thunderbolt port to PCIe down port mapping
1814 * per controller.
1815 */
1816 if (tb_switch_is_cactus_ridge(sw) ||
1817 tb_switch_is_alpine_ridge(sw))
1818 index = !phy_port ? 6 : 7;
1819 else if (tb_switch_is_falcon_ridge(sw))
1820 index = !phy_port ? 6 : 8;
1821 else if (tb_switch_is_titan_ridge(sw))
1822 index = !phy_port ? 8 : 9;
1823 else
1824 goto out;
1825
1826 /* Validate the hard-coding */
1827 if (WARN_ON(index > sw->config.max_port_number))
1828 goto out;
1829
1830 down = &sw->ports[index];
1831 }
1832
1833 if (down) {
1834 if (WARN_ON(!tb_port_is_pcie_down(down)))
1835 goto out;
1836 if (tb_pci_port_is_enabled(down))
1837 goto out;
1838
1839 return down;
1840 }
1841
1842 out:
1843 return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN);
1844 }
1845
tb_find_dp_out(struct tb * tb,struct tb_port * in)1846 static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in)
1847 {
1848 struct tb_port *host_port, *port;
1849 struct tb_cm *tcm = tb_priv(tb);
1850
1851 host_port = tb_route(in->sw) ?
1852 tb_port_at(tb_route(in->sw), tb->root_switch) : NULL;
1853
1854 list_for_each_entry(port, &tcm->dp_resources, list) {
1855 if (!tb_port_is_dpout(port))
1856 continue;
1857
1858 if (tb_port_is_enabled(port)) {
1859 tb_port_dbg(port, "DP OUT in use\n");
1860 continue;
1861 }
1862
1863 /* Needs to be on different routers */
1864 if (in->sw == port->sw) {
1865 tb_port_dbg(port, "skipping DP OUT on same router\n");
1866 continue;
1867 }
1868
1869 tb_port_dbg(port, "DP OUT available\n");
1870
1871 /*
1872 * Keep the DP tunnel under the topology starting from
1873 * the same host router downstream port.
1874 */
1875 if (host_port && tb_route(port->sw)) {
1876 struct tb_port *p;
1877
1878 p = tb_port_at(tb_route(port->sw), tb->root_switch);
1879 if (p != host_port)
1880 continue;
1881 }
1882
1883 return port;
1884 }
1885
1886 return NULL;
1887 }
1888
tb_dp_tunnel_active(struct tb_tunnel * tunnel,void * data)1889 static void tb_dp_tunnel_active(struct tb_tunnel *tunnel, void *data)
1890 {
1891 struct tb_port *in = tunnel->src_port;
1892 struct tb_port *out = tunnel->dst_port;
1893 struct tb *tb = data;
1894
1895 mutex_lock(&tb->lock);
1896 if (tb_tunnel_is_active(tunnel)) {
1897 int consumed_up, consumed_down, ret;
1898
1899 tb_tunnel_dbg(tunnel, "DPRX capabilities read completed\n");
1900
1901 /* If fail reading tunnel's consumed bandwidth, tear it down */
1902 ret = tb_tunnel_consumed_bandwidth(tunnel, &consumed_up,
1903 &consumed_down);
1904 if (ret) {
1905 tb_tunnel_warn(tunnel,
1906 "failed to read consumed bandwidth, tearing down\n");
1907 tb_deactivate_and_free_tunnel(tunnel);
1908 } else {
1909 tb_reclaim_usb3_bandwidth(tb, in, out);
1910 /*
1911 * Transition the links to asymmetric if the
1912 * consumption exceeds the threshold.
1913 */
1914 tb_configure_asym(tb, in, out, consumed_up,
1915 consumed_down);
1916 /*
1917 * Update the domain with the new bandwidth
1918 * estimation.
1919 */
1920 tb_recalc_estimated_bandwidth(tb);
1921 /*
1922 * In case of DP tunnel exists, change host
1923 * router's 1st children TMU mode to HiFi for
1924 * CL0s to work.
1925 */
1926 tb_increase_tmu_accuracy(tunnel);
1927 }
1928 } else {
1929 struct tb_port *in = tunnel->src_port;
1930
1931 /*
1932 * This tunnel failed to establish. This means DPRX
1933 * negotiation most likely did not complete which
1934 * happens either because there is no graphics driver
1935 * loaded or not all DP cables where connected to the
1936 * discrete router.
1937 *
1938 * In both cases we remove the DP IN adapter from the
1939 * available resources as it is not usable. This will
1940 * also tear down the tunnel and try to re-use the
1941 * released DP OUT.
1942 *
1943 * It will be added back only if there is hotplug for
1944 * the DP IN again.
1945 */
1946 tb_tunnel_warn(tunnel, "not active, tearing down\n");
1947 tb_dp_resource_unavailable(tb, in, "DPRX negotiation failed");
1948 }
1949 mutex_unlock(&tb->lock);
1950
1951 tb_domain_put(tb);
1952 }
1953
tb_tunnel_one_dp(struct tb * tb,struct tb_port * in,struct tb_port * out)1954 static void tb_tunnel_one_dp(struct tb *tb, struct tb_port *in,
1955 struct tb_port *out)
1956 {
1957 int available_up, available_down, ret, link_nr;
1958 struct tb_cm *tcm = tb_priv(tb);
1959 struct tb_tunnel *tunnel;
1960
1961 /*
1962 * This is only applicable to links that are not bonded (so
1963 * when Thunderbolt 1 hardware is involved somewhere in the
1964 * topology). For these try to share the DP bandwidth between
1965 * the two lanes.
1966 */
1967 link_nr = 1;
1968 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1969 if (tb_tunnel_is_dp(tunnel)) {
1970 link_nr = 0;
1971 break;
1972 }
1973 }
1974
1975 /*
1976 * DP stream needs the domain to be active so runtime resume
1977 * both ends of the tunnel.
1978 *
1979 * This should bring the routers in the middle active as well
1980 * and keeps the domain from runtime suspending while the DP
1981 * tunnel is active.
1982 */
1983 pm_runtime_get_sync(&in->sw->dev);
1984 pm_runtime_get_sync(&out->sw->dev);
1985
1986 if (tb_switch_alloc_dp_resource(in->sw, in)) {
1987 tb_port_dbg(in, "no resource available for DP IN, not tunneling\n");
1988 goto err_rpm_put;
1989 }
1990
1991 if (!tb_attach_bandwidth_group(tcm, in, out))
1992 goto err_dealloc_dp;
1993
1994 /* Make all unused USB3 bandwidth available for the new DP tunnel */
1995 ret = tb_release_unused_usb3_bandwidth(tb, in, out);
1996 if (ret) {
1997 tb_warn(tb, "failed to release unused bandwidth\n");
1998 goto err_detach_group;
1999 }
2000
2001 ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
2002 true);
2003 if (ret)
2004 goto err_reclaim_usb;
2005
2006 tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n",
2007 available_up, available_down);
2008
2009 tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up,
2010 available_down, tb_dp_tunnel_active,
2011 tb_domain_get(tb));
2012 if (!tunnel) {
2013 tb_port_dbg(out, "could not allocate DP tunnel\n");
2014 goto err_reclaim_usb;
2015 }
2016
2017 list_add_tail(&tunnel->list, &tcm->tunnel_list);
2018
2019 ret = tb_tunnel_activate(tunnel);
2020 if (ret && ret != -EINPROGRESS) {
2021 tb_port_info(out, "DP tunnel activation failed, aborting\n");
2022 list_del(&tunnel->list);
2023 goto err_free;
2024 }
2025
2026 return;
2027
2028 err_free:
2029 tb_tunnel_put(tunnel);
2030 err_reclaim_usb:
2031 tb_reclaim_usb3_bandwidth(tb, in, out);
2032 tb_domain_put(tb);
2033 err_detach_group:
2034 tb_detach_bandwidth_group(in);
2035 err_dealloc_dp:
2036 tb_switch_dealloc_dp_resource(in->sw, in);
2037 err_rpm_put:
2038 pm_runtime_mark_last_busy(&out->sw->dev);
2039 pm_runtime_put_autosuspend(&out->sw->dev);
2040 pm_runtime_mark_last_busy(&in->sw->dev);
2041 pm_runtime_put_autosuspend(&in->sw->dev);
2042 }
2043
tb_tunnel_dp(struct tb * tb)2044 static void tb_tunnel_dp(struct tb *tb)
2045 {
2046 struct tb_cm *tcm = tb_priv(tb);
2047 struct tb_port *port, *in, *out;
2048
2049 if (!tb_acpi_may_tunnel_dp()) {
2050 tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n");
2051 return;
2052 }
2053
2054 /*
2055 * Find pair of inactive DP IN and DP OUT adapters and then
2056 * establish a DP tunnel between them.
2057 */
2058 tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n");
2059
2060 in = NULL;
2061 out = NULL;
2062 list_for_each_entry(port, &tcm->dp_resources, list) {
2063 if (!tb_port_is_dpin(port))
2064 continue;
2065
2066 if (tb_port_is_enabled(port)) {
2067 tb_port_dbg(port, "DP IN in use\n");
2068 continue;
2069 }
2070
2071 in = port;
2072 tb_port_dbg(in, "DP IN available\n");
2073
2074 out = tb_find_dp_out(tb, port);
2075 if (out)
2076 tb_tunnel_one_dp(tb, in, out);
2077 else
2078 tb_port_dbg(in, "no suitable DP OUT adapter available, not tunneling\n");
2079 }
2080
2081 if (!in)
2082 tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n");
2083 }
2084
tb_enter_redrive(struct tb_port * port)2085 static void tb_enter_redrive(struct tb_port *port)
2086 {
2087 struct tb_switch *sw = port->sw;
2088
2089 if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
2090 return;
2091
2092 /*
2093 * If we get hot-unplug for the DP IN port of the host router
2094 * and the DP resource is not available anymore it means there
2095 * is a monitor connected directly to the Type-C port and we are
2096 * in "redrive" mode. For this to work we cannot enter RTD3 so
2097 * we bump up the runtime PM reference count here.
2098 */
2099 if (!tb_port_is_dpin(port))
2100 return;
2101 if (tb_route(sw))
2102 return;
2103 if (!tb_switch_query_dp_resource(sw, port)) {
2104 port->redrive = true;
2105 pm_runtime_get(&sw->dev);
2106 tb_port_dbg(port, "enter redrive mode, keeping powered\n");
2107 }
2108 }
2109
tb_exit_redrive(struct tb_port * port)2110 static void tb_exit_redrive(struct tb_port *port)
2111 {
2112 struct tb_switch *sw = port->sw;
2113
2114 if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
2115 return;
2116
2117 if (!tb_port_is_dpin(port))
2118 return;
2119 if (tb_route(sw))
2120 return;
2121 if (port->redrive && tb_switch_query_dp_resource(sw, port)) {
2122 port->redrive = false;
2123 pm_runtime_put(&sw->dev);
2124 tb_port_dbg(port, "exit redrive mode\n");
2125 }
2126 }
2127
tb_switch_enter_redrive(struct tb_switch * sw)2128 static void tb_switch_enter_redrive(struct tb_switch *sw)
2129 {
2130 struct tb_port *port;
2131
2132 tb_switch_for_each_port(sw, port)
2133 tb_enter_redrive(port);
2134 }
2135
2136 /*
2137 * Called during system and runtime suspend to forcefully exit redrive
2138 * mode without querying whether the resource is available.
2139 */
tb_switch_exit_redrive(struct tb_switch * sw)2140 static void tb_switch_exit_redrive(struct tb_switch *sw)
2141 {
2142 struct tb_port *port;
2143
2144 if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
2145 return;
2146
2147 tb_switch_for_each_port(sw, port) {
2148 if (!tb_port_is_dpin(port))
2149 continue;
2150
2151 if (port->redrive) {
2152 port->redrive = false;
2153 pm_runtime_put(&sw->dev);
2154 tb_port_dbg(port, "exit redrive mode\n");
2155 }
2156 }
2157 }
2158
tb_dp_resource_unavailable(struct tb * tb,struct tb_port * port,const char * reason)2159 static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port,
2160 const char *reason)
2161 {
2162 struct tb_port *in, *out;
2163 struct tb_tunnel *tunnel;
2164
2165 if (tb_port_is_dpin(port)) {
2166 tb_port_dbg(port, "DP IN resource unavailable: %s\n", reason);
2167 in = port;
2168 out = NULL;
2169 } else {
2170 tb_port_dbg(port, "DP OUT resource unavailable: %s\n", reason);
2171 in = NULL;
2172 out = port;
2173 }
2174
2175 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out);
2176 if (tunnel)
2177 tb_deactivate_and_free_tunnel(tunnel);
2178 else
2179 tb_enter_redrive(port);
2180 list_del_init(&port->list);
2181
2182 /*
2183 * See if there is another DP OUT port that can be used for
2184 * to create another tunnel.
2185 */
2186 tb_recalc_estimated_bandwidth(tb);
2187 tb_tunnel_dp(tb);
2188 }
2189
tb_dp_resource_available(struct tb * tb,struct tb_port * port)2190 static void tb_dp_resource_available(struct tb *tb, struct tb_port *port)
2191 {
2192 struct tb_cm *tcm = tb_priv(tb);
2193 struct tb_port *p;
2194
2195 if (tb_port_is_enabled(port))
2196 return;
2197
2198 list_for_each_entry(p, &tcm->dp_resources, list) {
2199 if (p == port)
2200 return;
2201 }
2202
2203 tb_port_dbg(port, "DP %s resource available after hotplug\n",
2204 tb_port_is_dpin(port) ? "IN" : "OUT");
2205 list_add_tail(&port->list, &tcm->dp_resources);
2206 tb_exit_redrive(port);
2207
2208 /* Look for suitable DP IN <-> DP OUT pairs now */
2209 tb_tunnel_dp(tb);
2210 }
2211
tb_disconnect_and_release_dp(struct tb * tb)2212 static void tb_disconnect_and_release_dp(struct tb *tb)
2213 {
2214 struct tb_cm *tcm = tb_priv(tb);
2215 struct tb_tunnel *tunnel, *n;
2216
2217 /*
2218 * Tear down all DP tunnels and release their resources. They
2219 * will be re-established after resume based on plug events.
2220 */
2221 list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) {
2222 if (tb_tunnel_is_dp(tunnel))
2223 tb_deactivate_and_free_tunnel(tunnel);
2224 }
2225
2226 while (!list_empty(&tcm->dp_resources)) {
2227 struct tb_port *port;
2228
2229 port = list_first_entry(&tcm->dp_resources,
2230 struct tb_port, list);
2231 list_del_init(&port->list);
2232 }
2233 }
2234
tb_disconnect_pci(struct tb * tb,struct tb_switch * sw)2235 static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw)
2236 {
2237 struct tb_tunnel *tunnel;
2238 struct tb_port *up;
2239
2240 up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
2241 if (WARN_ON(!up))
2242 return -ENODEV;
2243
2244 tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up);
2245 if (WARN_ON(!tunnel))
2246 return -ENODEV;
2247
2248 tb_switch_xhci_disconnect(sw);
2249
2250 tb_tunnel_deactivate(tunnel);
2251 list_del(&tunnel->list);
2252 tb_tunnel_put(tunnel);
2253 return 0;
2254 }
2255
tb_tunnel_pci(struct tb * tb,struct tb_switch * sw)2256 static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw)
2257 {
2258 struct tb_port *up, *down, *port;
2259 struct tb_cm *tcm = tb_priv(tb);
2260 struct tb_tunnel *tunnel;
2261
2262 up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
2263 if (!up)
2264 return 0;
2265
2266 /*
2267 * Look up available down port. Since we are chaining it should
2268 * be found right above this switch.
2269 */
2270 port = tb_switch_downstream_port(sw);
2271 down = tb_find_pcie_down(tb_switch_parent(sw), port);
2272 if (!down)
2273 return 0;
2274
2275 tunnel = tb_tunnel_alloc_pci(tb, up, down);
2276 if (!tunnel)
2277 return -ENOMEM;
2278
2279 if (tb_tunnel_activate(tunnel)) {
2280 tb_port_info(up,
2281 "PCIe tunnel activation failed, aborting\n");
2282 tb_tunnel_put(tunnel);
2283 return -EIO;
2284 }
2285
2286 /*
2287 * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it
2288 * here.
2289 */
2290 if (tb_switch_pcie_l1_enable(sw))
2291 tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n");
2292
2293 if (tb_switch_xhci_connect(sw))
2294 tb_sw_warn(sw, "failed to connect xHCI\n");
2295
2296 list_add_tail(&tunnel->list, &tcm->tunnel_list);
2297 return 0;
2298 }
2299
tb_approve_xdomain_paths(struct tb * tb,struct tb_xdomain * xd,int transmit_path,int transmit_ring,int receive_path,int receive_ring)2300 static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2301 int transmit_path, int transmit_ring,
2302 int receive_path, int receive_ring)
2303 {
2304 struct tb_cm *tcm = tb_priv(tb);
2305 struct tb_port *nhi_port, *dst_port;
2306 struct tb_tunnel *tunnel;
2307 struct tb_switch *sw;
2308 int ret;
2309
2310 sw = tb_to_switch(xd->dev.parent);
2311 dst_port = tb_port_at(xd->route, sw);
2312 nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2313
2314 mutex_lock(&tb->lock);
2315
2316 /*
2317 * When tunneling DMA paths the link should not enter CL states
2318 * so disable them now.
2319 */
2320 tb_disable_clx(sw);
2321
2322 tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path,
2323 transmit_ring, receive_path, receive_ring);
2324 if (!tunnel) {
2325 ret = -ENOMEM;
2326 goto err_clx;
2327 }
2328
2329 if (tb_tunnel_activate(tunnel)) {
2330 tb_port_info(nhi_port,
2331 "DMA tunnel activation failed, aborting\n");
2332 ret = -EIO;
2333 goto err_free;
2334 }
2335
2336 list_add_tail(&tunnel->list, &tcm->tunnel_list);
2337 mutex_unlock(&tb->lock);
2338 return 0;
2339
2340 err_free:
2341 tb_tunnel_put(tunnel);
2342 err_clx:
2343 tb_enable_clx(sw);
2344 mutex_unlock(&tb->lock);
2345
2346 return ret;
2347 }
2348
__tb_disconnect_xdomain_paths(struct tb * tb,struct tb_xdomain * xd,int transmit_path,int transmit_ring,int receive_path,int receive_ring)2349 static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2350 int transmit_path, int transmit_ring,
2351 int receive_path, int receive_ring)
2352 {
2353 struct tb_cm *tcm = tb_priv(tb);
2354 struct tb_port *nhi_port, *dst_port;
2355 struct tb_tunnel *tunnel, *n;
2356 struct tb_switch *sw;
2357
2358 sw = tb_to_switch(xd->dev.parent);
2359 dst_port = tb_port_at(xd->route, sw);
2360 nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
2361
2362 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2363 if (!tb_tunnel_is_dma(tunnel))
2364 continue;
2365 if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port)
2366 continue;
2367
2368 if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring,
2369 receive_path, receive_ring))
2370 tb_deactivate_and_free_tunnel(tunnel);
2371 }
2372
2373 /*
2374 * Try to re-enable CL states now, it is OK if this fails
2375 * because we may still have another DMA tunnel active through
2376 * the same host router USB4 downstream port.
2377 */
2378 tb_enable_clx(sw);
2379 }
2380
tb_disconnect_xdomain_paths(struct tb * tb,struct tb_xdomain * xd,int transmit_path,int transmit_ring,int receive_path,int receive_ring)2381 static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2382 int transmit_path, int transmit_ring,
2383 int receive_path, int receive_ring)
2384 {
2385 if (!xd->is_unplugged) {
2386 mutex_lock(&tb->lock);
2387 __tb_disconnect_xdomain_paths(tb, xd, transmit_path,
2388 transmit_ring, receive_path,
2389 receive_ring);
2390 mutex_unlock(&tb->lock);
2391 }
2392 return 0;
2393 }
2394
2395 /* hotplug handling */
2396
2397 /*
2398 * tb_handle_hotplug() - handle hotplug event
2399 *
2400 * Executes on tb->wq.
2401 */
tb_handle_hotplug(struct work_struct * work)2402 static void tb_handle_hotplug(struct work_struct *work)
2403 {
2404 struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work.work);
2405 struct tb *tb = ev->tb;
2406 struct tb_cm *tcm = tb_priv(tb);
2407 struct tb_switch *sw;
2408 struct tb_port *port;
2409
2410 /* Bring the domain back from sleep if it was suspended */
2411 pm_runtime_get_sync(&tb->dev);
2412
2413 mutex_lock(&tb->lock);
2414 if (!tcm->hotplug_active)
2415 goto out; /* during init, suspend or shutdown */
2416
2417 sw = tb_switch_find_by_route(tb, ev->route);
2418 if (!sw) {
2419 tb_warn(tb,
2420 "hotplug event from non existent switch %llx:%x (unplug: %d)\n",
2421 ev->route, ev->port, ev->unplug);
2422 goto out;
2423 }
2424 if (ev->port > sw->config.max_port_number) {
2425 tb_warn(tb,
2426 "hotplug event from non existent port %llx:%x (unplug: %d)\n",
2427 ev->route, ev->port, ev->unplug);
2428 goto put_sw;
2429 }
2430 port = &sw->ports[ev->port];
2431 if (tb_is_upstream_port(port)) {
2432 tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n",
2433 ev->route, ev->port, ev->unplug);
2434 goto put_sw;
2435 }
2436
2437 pm_runtime_get_sync(&sw->dev);
2438
2439 if (ev->unplug) {
2440 tb_retimer_remove_all(port);
2441
2442 if (tb_port_has_remote(port)) {
2443 tb_port_dbg(port, "switch unplugged\n");
2444 tb_sw_set_unplugged(port->remote->sw);
2445 tb_free_invalid_tunnels(tb);
2446 tb_remove_dp_resources(port->remote->sw);
2447 tb_switch_tmu_disable(port->remote->sw);
2448 tb_switch_unconfigure_link(port->remote->sw);
2449 tb_switch_set_link_width(port->remote->sw,
2450 TB_LINK_WIDTH_SINGLE);
2451 tb_switch_remove(port->remote->sw);
2452 port->remote = NULL;
2453 if (port->dual_link_port)
2454 port->dual_link_port->remote = NULL;
2455 /* Maybe we can create another DP tunnel */
2456 tb_recalc_estimated_bandwidth(tb);
2457 tb_tunnel_dp(tb);
2458 } else if (port->xdomain) {
2459 struct tb_xdomain *xd = tb_xdomain_get(port->xdomain);
2460
2461 tb_port_dbg(port, "xdomain unplugged\n");
2462 /*
2463 * Service drivers are unbound during
2464 * tb_xdomain_remove() so setting XDomain as
2465 * unplugged here prevents deadlock if they call
2466 * tb_xdomain_disable_paths(). We will tear down
2467 * all the tunnels below.
2468 */
2469 xd->is_unplugged = true;
2470 tb_xdomain_remove(xd);
2471 port->xdomain = NULL;
2472 __tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1);
2473 tb_xdomain_put(xd);
2474 tb_port_unconfigure_xdomain(port);
2475 } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2476 tb_dp_resource_unavailable(tb, port, "adapter unplug");
2477 } else if (!port->port) {
2478 tb_sw_dbg(sw, "xHCI disconnect request\n");
2479 tb_switch_xhci_disconnect(sw);
2480 } else {
2481 tb_port_dbg(port,
2482 "got unplug event for disconnected port, ignoring\n");
2483 }
2484 } else if (port->remote) {
2485 tb_port_dbg(port, "got plug event for connected port, ignoring\n");
2486 } else if (!port->port && sw->authorized) {
2487 tb_sw_dbg(sw, "xHCI connect request\n");
2488 tb_switch_xhci_connect(sw);
2489 } else {
2490 if (tb_port_is_null(port)) {
2491 tb_port_dbg(port, "hotplug: scanning\n");
2492 tb_scan_port(port);
2493 if (!port->remote)
2494 tb_port_dbg(port, "hotplug: no switch found\n");
2495 } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2496 tb_dp_resource_available(tb, port);
2497 }
2498 }
2499
2500 pm_runtime_mark_last_busy(&sw->dev);
2501 pm_runtime_put_autosuspend(&sw->dev);
2502
2503 put_sw:
2504 tb_switch_put(sw);
2505 out:
2506 mutex_unlock(&tb->lock);
2507
2508 pm_runtime_mark_last_busy(&tb->dev);
2509 pm_runtime_put_autosuspend(&tb->dev);
2510
2511 kfree(ev);
2512 }
2513
tb_alloc_dp_bandwidth(struct tb_tunnel * tunnel,int * requested_up,int * requested_down)2514 static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up,
2515 int *requested_down)
2516 {
2517 int allocated_up, allocated_down, available_up, available_down, ret;
2518 int requested_up_corrected, requested_down_corrected, granularity;
2519 int max_up, max_down, max_up_rounded, max_down_rounded;
2520 struct tb_bandwidth_group *group;
2521 struct tb *tb = tunnel->tb;
2522 struct tb_port *in, *out;
2523 bool downstream;
2524
2525 ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down);
2526 if (ret)
2527 return ret;
2528
2529 in = tunnel->src_port;
2530 out = tunnel->dst_port;
2531
2532 tb_tunnel_dbg(tunnel, "bandwidth allocated currently %d/%d Mb/s\n",
2533 allocated_up, allocated_down);
2534
2535 /*
2536 * If we get rounded up request from graphics side, say HBR2 x 4
2537 * that is 17500 instead of 17280 (this is because of the
2538 * granularity), we allow it too. Here the graphics has already
2539 * negotiated with the DPRX the maximum possible rates (which is
2540 * 17280 in this case).
2541 *
2542 * Since the link cannot go higher than 17280 we use that in our
2543 * calculations but the DP IN adapter Allocated BW write must be
2544 * the same value (17500) otherwise the adapter will mark it as
2545 * failed for graphics.
2546 */
2547 ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down);
2548 if (ret)
2549 goto fail;
2550
2551 ret = usb4_dp_port_granularity(in);
2552 if (ret < 0)
2553 goto fail;
2554 granularity = ret;
2555
2556 max_up_rounded = roundup(max_up, granularity);
2557 max_down_rounded = roundup(max_down, granularity);
2558
2559 /*
2560 * This will "fix" the request down to the maximum supported
2561 * rate * lanes if it is at the maximum rounded up level.
2562 */
2563 requested_up_corrected = *requested_up;
2564 if (requested_up_corrected == max_up_rounded)
2565 requested_up_corrected = max_up;
2566 else if (requested_up_corrected < 0)
2567 requested_up_corrected = 0;
2568 requested_down_corrected = *requested_down;
2569 if (requested_down_corrected == max_down_rounded)
2570 requested_down_corrected = max_down;
2571 else if (requested_down_corrected < 0)
2572 requested_down_corrected = 0;
2573
2574 tb_tunnel_dbg(tunnel, "corrected bandwidth request %d/%d Mb/s\n",
2575 requested_up_corrected, requested_down_corrected);
2576
2577 if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) ||
2578 (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) {
2579 tb_tunnel_dbg(tunnel,
2580 "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n",
2581 requested_up_corrected, requested_down_corrected,
2582 max_up_rounded, max_down_rounded);
2583 ret = -ENOBUFS;
2584 goto fail;
2585 }
2586
2587 downstream = tb_tunnel_direction_downstream(tunnel);
2588 group = in->group;
2589
2590 if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) ||
2591 (*requested_down >= 0 && requested_down_corrected <= allocated_down)) {
2592 if (tunnel->bw_mode) {
2593 int reserved;
2594 /*
2595 * If requested bandwidth is less or equal than
2596 * what is currently allocated to that tunnel we
2597 * simply change the reservation of the tunnel
2598 * and add the released bandwidth for the group
2599 * for the next 10s. Then we release it for
2600 * others to use.
2601 */
2602 if (downstream)
2603 reserved = allocated_down - *requested_down;
2604 else
2605 reserved = allocated_up - *requested_up;
2606
2607 if (reserved > 0) {
2608 group->reserved += reserved;
2609 tb_dbg(tb, "group %d reserved %d total %d Mb/s\n",
2610 group->index, reserved, group->reserved);
2611
2612 /*
2613 * If it was not already pending,
2614 * schedule release now. If it is then
2615 * postpone it for the next 10s (unless
2616 * it is already running in which case
2617 * the 10s already expired and we should
2618 * give the reserved back to others).
2619 */
2620 mod_delayed_work(system_wq, &group->release_work,
2621 msecs_to_jiffies(TB_RELEASE_BW_TIMEOUT));
2622 }
2623 }
2624
2625 return tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2626 requested_down);
2627 }
2628
2629 /*
2630 * More bandwidth is requested. Release all the potential
2631 * bandwidth from USB3 first.
2632 */
2633 ret = tb_release_unused_usb3_bandwidth(tb, in, out);
2634 if (ret)
2635 goto fail;
2636
2637 /*
2638 * Then go over all tunnels that cross the same USB4 ports (they
2639 * are also in the same group but we use the same function here
2640 * that we use with the normal bandwidth allocation).
2641 */
2642 ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
2643 true);
2644 if (ret)
2645 goto reclaim;
2646
2647 tb_tunnel_dbg(tunnel, "bandwidth available for allocation %d/%d (+ %u reserved) Mb/s\n",
2648 available_up, available_down, group->reserved);
2649
2650 if ((*requested_up >= 0 &&
2651 available_up + group->reserved >= requested_up_corrected) ||
2652 (*requested_down >= 0 &&
2653 available_down + group->reserved >= requested_down_corrected)) {
2654 int released = 0;
2655
2656 /*
2657 * If bandwidth on a link is >= asym_threshold
2658 * transition the link to asymmetric.
2659 */
2660 ret = tb_configure_asym(tb, in, out, *requested_up,
2661 *requested_down);
2662 if (ret) {
2663 tb_configure_sym(tb, in, out, true);
2664 goto fail;
2665 }
2666
2667 ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up,
2668 requested_down);
2669 if (ret) {
2670 tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n");
2671 tb_configure_sym(tb, in, out, true);
2672 }
2673
2674 if (downstream) {
2675 if (*requested_down > available_down)
2676 released = *requested_down - available_down;
2677 } else {
2678 if (*requested_up > available_up)
2679 released = *requested_up - available_up;
2680 }
2681 if (released) {
2682 group->reserved -= released;
2683 tb_dbg(tb, "group %d released %d total %d Mb/s\n",
2684 group->index, released, group->reserved);
2685 }
2686 } else {
2687 ret = -ENOBUFS;
2688 }
2689
2690 reclaim:
2691 tb_reclaim_usb3_bandwidth(tb, in, out);
2692 fail:
2693 if (ret && ret != -ENODEV) {
2694 /*
2695 * Write back the same allocated (so no change), this
2696 * makes the DPTX request fail on graphics side.
2697 */
2698 tb_tunnel_dbg(tunnel,
2699 "failing the request by rewriting allocated %d/%d Mb/s\n",
2700 allocated_up, allocated_down);
2701 tb_tunnel_alloc_bandwidth(tunnel, &allocated_up, &allocated_down);
2702 }
2703
2704 return ret;
2705 }
2706
tb_handle_dp_bandwidth_request(struct work_struct * work)2707 static void tb_handle_dp_bandwidth_request(struct work_struct *work)
2708 {
2709 struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work.work);
2710 int requested_bw, requested_up, requested_down, ret;
2711 struct tb_tunnel *tunnel;
2712 struct tb *tb = ev->tb;
2713 struct tb_cm *tcm = tb_priv(tb);
2714 struct tb_switch *sw;
2715 struct tb_port *in;
2716
2717 pm_runtime_get_sync(&tb->dev);
2718
2719 mutex_lock(&tb->lock);
2720 if (!tcm->hotplug_active)
2721 goto unlock;
2722
2723 sw = tb_switch_find_by_route(tb, ev->route);
2724 if (!sw) {
2725 tb_warn(tb, "bandwidth request from non-existent router %llx\n",
2726 ev->route);
2727 goto unlock;
2728 }
2729
2730 in = &sw->ports[ev->port];
2731 if (!tb_port_is_dpin(in)) {
2732 tb_port_warn(in, "bandwidth request to non-DP IN adapter\n");
2733 goto put_sw;
2734 }
2735
2736 tb_port_dbg(in, "handling bandwidth allocation request, retry %d\n", ev->retry);
2737
2738 tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
2739 if (!tunnel) {
2740 tb_port_warn(in, "failed to find tunnel\n");
2741 goto put_sw;
2742 }
2743
2744 if (!usb4_dp_port_bandwidth_mode_enabled(in)) {
2745 if (tunnel->bw_mode) {
2746 /*
2747 * Reset the tunnel back to use the legacy
2748 * allocation.
2749 */
2750 tunnel->bw_mode = false;
2751 tb_port_dbg(in, "DPTX disabled bandwidth allocation mode\n");
2752 } else {
2753 tb_port_warn(in, "bandwidth allocation mode not enabled\n");
2754 }
2755 goto put_sw;
2756 }
2757
2758 ret = usb4_dp_port_requested_bandwidth(in);
2759 if (ret < 0) {
2760 if (ret == -ENODATA) {
2761 /*
2762 * There is no request active so this means the
2763 * BW allocation mode was enabled from graphics
2764 * side. At this point we know that the graphics
2765 * driver has read the DRPX capabilities so we
2766 * can offer an better bandwidth estimatation.
2767 */
2768 tb_port_dbg(in, "DPTX enabled bandwidth allocation mode, updating estimated bandwidth\n");
2769 tb_recalc_estimated_bandwidth(tb);
2770 } else {
2771 tb_port_warn(in, "failed to read requested bandwidth\n");
2772 }
2773 goto put_sw;
2774 }
2775 requested_bw = ret;
2776
2777 tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw);
2778
2779 if (tb_tunnel_direction_downstream(tunnel)) {
2780 requested_up = -1;
2781 requested_down = requested_bw;
2782 } else {
2783 requested_up = requested_bw;
2784 requested_down = -1;
2785 }
2786
2787 ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down);
2788 if (ret) {
2789 if (ret == -ENOBUFS) {
2790 tb_tunnel_warn(tunnel,
2791 "not enough bandwidth available\n");
2792 } else if (ret == -ENOTCONN) {
2793 tb_tunnel_dbg(tunnel, "not active yet\n");
2794 /*
2795 * We got bandwidth allocation request but the
2796 * tunnel is not yet active. This means that
2797 * tb_dp_tunnel_active() is not yet called for
2798 * this tunnel. Allow it some time and retry
2799 * this request a couple of times.
2800 */
2801 if (ev->retry < TB_BW_ALLOC_RETRIES) {
2802 tb_tunnel_dbg(tunnel,
2803 "retrying bandwidth allocation request\n");
2804 tb_queue_dp_bandwidth_request(tb, ev->route,
2805 ev->port,
2806 ev->retry + 1,
2807 msecs_to_jiffies(50));
2808 } else {
2809 tb_tunnel_dbg(tunnel,
2810 "run out of retries, failing the request");
2811 }
2812 } else {
2813 tb_tunnel_warn(tunnel,
2814 "failed to change bandwidth allocation\n");
2815 }
2816 } else {
2817 tb_tunnel_dbg(tunnel,
2818 "bandwidth allocation changed to %d/%d Mb/s\n",
2819 requested_up, requested_down);
2820
2821 /* Update other clients about the allocation change */
2822 tb_recalc_estimated_bandwidth(tb);
2823 }
2824
2825 put_sw:
2826 tb_switch_put(sw);
2827 unlock:
2828 mutex_unlock(&tb->lock);
2829
2830 pm_runtime_mark_last_busy(&tb->dev);
2831 pm_runtime_put_autosuspend(&tb->dev);
2832
2833 kfree(ev);
2834 }
2835
tb_queue_dp_bandwidth_request(struct tb * tb,u64 route,u8 port,int retry,unsigned long delay)2836 static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port,
2837 int retry, unsigned long delay)
2838 {
2839 struct tb_hotplug_event *ev;
2840
2841 ev = kmalloc(sizeof(*ev), GFP_KERNEL);
2842 if (!ev)
2843 return;
2844
2845 ev->tb = tb;
2846 ev->route = route;
2847 ev->port = port;
2848 ev->retry = retry;
2849 INIT_DELAYED_WORK(&ev->work, tb_handle_dp_bandwidth_request);
2850 queue_delayed_work(tb->wq, &ev->work, delay);
2851 }
2852
tb_handle_notification(struct tb * tb,u64 route,const struct cfg_error_pkg * error)2853 static void tb_handle_notification(struct tb *tb, u64 route,
2854 const struct cfg_error_pkg *error)
2855 {
2856
2857 switch (error->error) {
2858 case TB_CFG_ERROR_PCIE_WAKE:
2859 case TB_CFG_ERROR_DP_CON_CHANGE:
2860 case TB_CFG_ERROR_DPTX_DISCOVERY:
2861 if (tb_cfg_ack_notification(tb->ctl, route, error))
2862 tb_warn(tb, "could not ack notification on %llx\n",
2863 route);
2864 break;
2865
2866 case TB_CFG_ERROR_DP_BW:
2867 if (tb_cfg_ack_notification(tb->ctl, route, error))
2868 tb_warn(tb, "could not ack notification on %llx\n",
2869 route);
2870 tb_queue_dp_bandwidth_request(tb, route, error->port, 0, 0);
2871 break;
2872
2873 default:
2874 /* Ignore for now */
2875 break;
2876 }
2877 }
2878
2879 /*
2880 * tb_schedule_hotplug_handler() - callback function for the control channel
2881 *
2882 * Delegates to tb_handle_hotplug.
2883 */
tb_handle_event(struct tb * tb,enum tb_cfg_pkg_type type,const void * buf,size_t size)2884 static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type,
2885 const void *buf, size_t size)
2886 {
2887 const struct cfg_event_pkg *pkg = buf;
2888 u64 route = tb_cfg_get_route(&pkg->header);
2889
2890 switch (type) {
2891 case TB_CFG_PKG_ERROR:
2892 tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf);
2893 return;
2894 case TB_CFG_PKG_EVENT:
2895 break;
2896 default:
2897 tb_warn(tb, "unexpected event %#x, ignoring\n", type);
2898 return;
2899 }
2900
2901 if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) {
2902 tb_warn(tb, "could not ack plug event on %llx:%x\n", route,
2903 pkg->port);
2904 }
2905
2906 tb_queue_hotplug(tb, route, pkg->port, pkg->unplug);
2907 }
2908
tb_stop(struct tb * tb)2909 static void tb_stop(struct tb *tb)
2910 {
2911 struct tb_cm *tcm = tb_priv(tb);
2912 struct tb_tunnel *tunnel;
2913 struct tb_tunnel *n;
2914
2915 cancel_delayed_work(&tcm->remove_work);
2916 /* tunnels are only present after everything has been initialized */
2917 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2918 /*
2919 * DMA tunnels require the driver to be functional so we
2920 * tear them down. Other protocol tunnels can be left
2921 * intact.
2922 */
2923 if (tb_tunnel_is_dma(tunnel))
2924 tb_tunnel_deactivate(tunnel);
2925 tb_tunnel_put(tunnel);
2926 }
2927 tb_switch_remove(tb->root_switch);
2928 tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2929 }
2930
tb_deinit(struct tb * tb)2931 static void tb_deinit(struct tb *tb)
2932 {
2933 struct tb_cm *tcm = tb_priv(tb);
2934 int i;
2935
2936 /* Cancel all the release bandwidth workers */
2937 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++)
2938 cancel_delayed_work_sync(&tcm->groups[i].release_work);
2939 }
2940
tb_scan_finalize_switch(struct device * dev,void * data)2941 static int tb_scan_finalize_switch(struct device *dev, void *data)
2942 {
2943 if (tb_is_switch(dev)) {
2944 struct tb_switch *sw = tb_to_switch(dev);
2945
2946 /*
2947 * If we found that the switch was already setup by the
2948 * boot firmware, mark it as authorized now before we
2949 * send uevent to userspace.
2950 */
2951 if (sw->boot)
2952 sw->authorized = 1;
2953
2954 dev_set_uevent_suppress(dev, false);
2955 kobject_uevent(&dev->kobj, KOBJ_ADD);
2956 device_for_each_child(dev, NULL, tb_scan_finalize_switch);
2957 }
2958
2959 return 0;
2960 }
2961
tb_start(struct tb * tb,bool reset)2962 static int tb_start(struct tb *tb, bool reset)
2963 {
2964 struct tb_cm *tcm = tb_priv(tb);
2965 bool discover = true;
2966 int ret;
2967
2968 tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0);
2969 if (IS_ERR(tb->root_switch))
2970 return PTR_ERR(tb->root_switch);
2971
2972 /*
2973 * ICM firmware upgrade needs running firmware and in native
2974 * mode that is not available so disable firmware upgrade of the
2975 * root switch.
2976 *
2977 * However, USB4 routers support NVM firmware upgrade if they
2978 * implement the necessary router operations.
2979 */
2980 tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch);
2981 /* All USB4 routers support runtime PM */
2982 tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch);
2983
2984 ret = tb_switch_configure(tb->root_switch);
2985 if (ret) {
2986 tb_switch_put(tb->root_switch);
2987 return ret;
2988 }
2989
2990 /* Announce the switch to the world */
2991 ret = tb_switch_add(tb->root_switch);
2992 if (ret) {
2993 tb_switch_put(tb->root_switch);
2994 return ret;
2995 }
2996
2997 /*
2998 * To support highest CLx state, we set host router's TMU to
2999 * Normal mode.
3000 */
3001 tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES);
3002 /* Enable TMU if it is off */
3003 tb_switch_tmu_enable(tb->root_switch);
3004
3005 /*
3006 * Boot firmware might have created tunnels of its own. Since we
3007 * cannot be sure they are usable for us, tear them down and
3008 * reset the ports to handle it as new hotplug for USB4 v1
3009 * routers (for USB4 v2 and beyond we already do host reset).
3010 */
3011 if (reset && tb_switch_is_usb4(tb->root_switch)) {
3012 discover = false;
3013 if (usb4_switch_version(tb->root_switch) == 1)
3014 tb_switch_reset(tb->root_switch);
3015 }
3016
3017 if (discover) {
3018 /* Full scan to discover devices added before the driver was loaded. */
3019 tb_scan_switch(tb->root_switch);
3020 /* Find out tunnels created by the boot firmware */
3021 tb_discover_tunnels(tb);
3022 /* Add DP resources from the DP tunnels created by the boot firmware */
3023 tb_discover_dp_resources(tb);
3024 }
3025
3026 /*
3027 * If the boot firmware did not create USB 3.x tunnels create them
3028 * now for the whole topology.
3029 */
3030 tb_create_usb3_tunnels(tb->root_switch);
3031 /* Add DP IN resources for the root switch */
3032 tb_add_dp_resources(tb->root_switch);
3033 tb_switch_enter_redrive(tb->root_switch);
3034 /* Make the discovered switches available to the userspace */
3035 device_for_each_child(&tb->root_switch->dev, NULL,
3036 tb_scan_finalize_switch);
3037
3038 /* Allow tb_handle_hotplug to progress events */
3039 tcm->hotplug_active = true;
3040 return 0;
3041 }
3042
tb_suspend_noirq(struct tb * tb)3043 static int tb_suspend_noirq(struct tb *tb)
3044 {
3045 struct tb_cm *tcm = tb_priv(tb);
3046
3047 tb_dbg(tb, "suspending...\n");
3048 tb_disconnect_and_release_dp(tb);
3049 tb_switch_exit_redrive(tb->root_switch);
3050 tb_switch_suspend(tb->root_switch, false);
3051 tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
3052 tb_dbg(tb, "suspend finished\n");
3053
3054 return 0;
3055 }
3056
tb_restore_children(struct tb_switch * sw)3057 static void tb_restore_children(struct tb_switch *sw)
3058 {
3059 struct tb_port *port;
3060
3061 /* No need to restore if the router is already unplugged */
3062 if (sw->is_unplugged)
3063 return;
3064
3065 if (tb_enable_clx(sw))
3066 tb_sw_warn(sw, "failed to re-enable CL states\n");
3067
3068 if (tb_enable_tmu(sw))
3069 tb_sw_warn(sw, "failed to restore TMU configuration\n");
3070
3071 tb_switch_configuration_valid(sw);
3072
3073 tb_switch_for_each_port(sw, port) {
3074 if (!tb_port_has_remote(port) && !port->xdomain)
3075 continue;
3076
3077 if (port->remote) {
3078 tb_switch_set_link_width(port->remote->sw,
3079 port->remote->sw->link_width);
3080 tb_switch_configure_link(port->remote->sw);
3081
3082 tb_restore_children(port->remote->sw);
3083 } else if (port->xdomain) {
3084 tb_port_configure_xdomain(port, port->xdomain);
3085 }
3086 }
3087 }
3088
tb_resume_noirq(struct tb * tb)3089 static int tb_resume_noirq(struct tb *tb)
3090 {
3091 struct tb_cm *tcm = tb_priv(tb);
3092 struct tb_tunnel *tunnel, *n;
3093 unsigned int usb3_delay = 0;
3094 LIST_HEAD(tunnels);
3095
3096 tb_dbg(tb, "resuming...\n");
3097
3098 /*
3099 * For non-USB4 hosts (Apple systems) remove any PCIe devices
3100 * the firmware might have setup.
3101 */
3102 if (!tb_switch_is_usb4(tb->root_switch))
3103 tb_switch_reset(tb->root_switch);
3104
3105 tb_switch_resume(tb->root_switch, false);
3106 tb_free_invalid_tunnels(tb);
3107 tb_free_unplugged_children(tb->root_switch);
3108 tb_restore_children(tb->root_switch);
3109
3110 /*
3111 * If we get here from suspend to disk the boot firmware or the
3112 * restore kernel might have created tunnels of its own. Since
3113 * we cannot be sure they are usable for us we find and tear
3114 * them down.
3115 */
3116 tb_switch_discover_tunnels(tb->root_switch, &tunnels, false);
3117 list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) {
3118 if (tb_tunnel_is_usb3(tunnel))
3119 usb3_delay = 500;
3120 tb_tunnel_deactivate(tunnel);
3121 tb_tunnel_put(tunnel);
3122 }
3123
3124 /* Re-create our tunnels now */
3125 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
3126 /* USB3 requires delay before it can be re-activated */
3127 if (tb_tunnel_is_usb3(tunnel)) {
3128 msleep(usb3_delay);
3129 /* Only need to do it once */
3130 usb3_delay = 0;
3131 }
3132 tb_tunnel_activate(tunnel);
3133 }
3134 if (!list_empty(&tcm->tunnel_list)) {
3135 /*
3136 * the pcie links need some time to get going.
3137 * 100ms works for me...
3138 */
3139 tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n");
3140 msleep(100);
3141 }
3142 tb_switch_enter_redrive(tb->root_switch);
3143 /* Allow tb_handle_hotplug to progress events */
3144 tcm->hotplug_active = true;
3145 tb_dbg(tb, "resume finished\n");
3146
3147 return 0;
3148 }
3149
tb_free_unplugged_xdomains(struct tb_switch * sw)3150 static int tb_free_unplugged_xdomains(struct tb_switch *sw)
3151 {
3152 struct tb_port *port;
3153 int ret = 0;
3154
3155 tb_switch_for_each_port(sw, port) {
3156 if (tb_is_upstream_port(port))
3157 continue;
3158 if (port->xdomain && port->xdomain->is_unplugged) {
3159 tb_retimer_remove_all(port);
3160 tb_xdomain_remove(port->xdomain);
3161 tb_port_unconfigure_xdomain(port);
3162 port->xdomain = NULL;
3163 ret++;
3164 } else if (port->remote) {
3165 ret += tb_free_unplugged_xdomains(port->remote->sw);
3166 }
3167 }
3168
3169 return ret;
3170 }
3171
tb_freeze_noirq(struct tb * tb)3172 static int tb_freeze_noirq(struct tb *tb)
3173 {
3174 struct tb_cm *tcm = tb_priv(tb);
3175
3176 tcm->hotplug_active = false;
3177 return 0;
3178 }
3179
tb_thaw_noirq(struct tb * tb)3180 static int tb_thaw_noirq(struct tb *tb)
3181 {
3182 struct tb_cm *tcm = tb_priv(tb);
3183
3184 tcm->hotplug_active = true;
3185 return 0;
3186 }
3187
tb_complete(struct tb * tb)3188 static void tb_complete(struct tb *tb)
3189 {
3190 /*
3191 * Release any unplugged XDomains and if there is a case where
3192 * another domain is swapped in place of unplugged XDomain we
3193 * need to run another rescan.
3194 */
3195 mutex_lock(&tb->lock);
3196 if (tb_free_unplugged_xdomains(tb->root_switch))
3197 tb_scan_switch(tb->root_switch);
3198 mutex_unlock(&tb->lock);
3199 }
3200
tb_runtime_suspend(struct tb * tb)3201 static int tb_runtime_suspend(struct tb *tb)
3202 {
3203 struct tb_cm *tcm = tb_priv(tb);
3204
3205 mutex_lock(&tb->lock);
3206 /*
3207 * The below call only releases DP resources to allow exiting and
3208 * re-entering redrive mode.
3209 */
3210 tb_disconnect_and_release_dp(tb);
3211 tb_switch_exit_redrive(tb->root_switch);
3212 tb_switch_suspend(tb->root_switch, true);
3213 tcm->hotplug_active = false;
3214 mutex_unlock(&tb->lock);
3215
3216 return 0;
3217 }
3218
tb_remove_work(struct work_struct * work)3219 static void tb_remove_work(struct work_struct *work)
3220 {
3221 struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work);
3222 struct tb *tb = tcm_to_tb(tcm);
3223
3224 mutex_lock(&tb->lock);
3225 if (tb->root_switch) {
3226 tb_free_unplugged_children(tb->root_switch);
3227 tb_free_unplugged_xdomains(tb->root_switch);
3228 }
3229 mutex_unlock(&tb->lock);
3230 }
3231
tb_runtime_resume(struct tb * tb)3232 static int tb_runtime_resume(struct tb *tb)
3233 {
3234 struct tb_cm *tcm = tb_priv(tb);
3235 struct tb_tunnel *tunnel, *n;
3236
3237 mutex_lock(&tb->lock);
3238 tb_switch_resume(tb->root_switch, true);
3239 tb_free_invalid_tunnels(tb);
3240 tb_restore_children(tb->root_switch);
3241 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list)
3242 tb_tunnel_activate(tunnel);
3243 tb_switch_enter_redrive(tb->root_switch);
3244 tcm->hotplug_active = true;
3245 mutex_unlock(&tb->lock);
3246
3247 /*
3248 * Schedule cleanup of any unplugged devices. Run this in a
3249 * separate thread to avoid possible deadlock if the device
3250 * removal runtime resumes the unplugged device.
3251 */
3252 queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50));
3253 return 0;
3254 }
3255
3256 static const struct tb_cm_ops tb_cm_ops = {
3257 .start = tb_start,
3258 .stop = tb_stop,
3259 .deinit = tb_deinit,
3260 .suspend_noirq = tb_suspend_noirq,
3261 .resume_noirq = tb_resume_noirq,
3262 .freeze_noirq = tb_freeze_noirq,
3263 .thaw_noirq = tb_thaw_noirq,
3264 .complete = tb_complete,
3265 .runtime_suspend = tb_runtime_suspend,
3266 .runtime_resume = tb_runtime_resume,
3267 .handle_event = tb_handle_event,
3268 .disapprove_switch = tb_disconnect_pci,
3269 .approve_switch = tb_tunnel_pci,
3270 .approve_xdomain_paths = tb_approve_xdomain_paths,
3271 .disconnect_xdomain_paths = tb_disconnect_xdomain_paths,
3272 };
3273
3274 /*
3275 * During suspend the Thunderbolt controller is reset and all PCIe
3276 * tunnels are lost. The NHI driver will try to reestablish all tunnels
3277 * during resume. This adds device links between the tunneled PCIe
3278 * downstream ports and the NHI so that the device core will make sure
3279 * NHI is resumed first before the rest.
3280 */
tb_apple_add_links(struct tb_nhi * nhi)3281 static bool tb_apple_add_links(struct tb_nhi *nhi)
3282 {
3283 struct pci_dev *upstream, *pdev;
3284 bool ret;
3285
3286 if (!x86_apple_machine)
3287 return false;
3288
3289 switch (nhi->pdev->device) {
3290 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
3291 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
3292 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
3293 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
3294 break;
3295 default:
3296 return false;
3297 }
3298
3299 upstream = pci_upstream_bridge(nhi->pdev);
3300 while (upstream) {
3301 if (!pci_is_pcie(upstream))
3302 return false;
3303 if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
3304 break;
3305 upstream = pci_upstream_bridge(upstream);
3306 }
3307
3308 if (!upstream)
3309 return false;
3310
3311 /*
3312 * For each hotplug downstream port, create add device link
3313 * back to NHI so that PCIe tunnels can be re-established after
3314 * sleep.
3315 */
3316 ret = false;
3317 for_each_pci_bridge(pdev, upstream->subordinate) {
3318 const struct device_link *link;
3319
3320 if (!pci_is_pcie(pdev))
3321 continue;
3322 if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
3323 !pdev->is_hotplug_bridge)
3324 continue;
3325
3326 link = device_link_add(&pdev->dev, &nhi->pdev->dev,
3327 DL_FLAG_AUTOREMOVE_SUPPLIER |
3328 DL_FLAG_PM_RUNTIME);
3329 if (link) {
3330 dev_dbg(&nhi->pdev->dev, "created link from %s\n",
3331 dev_name(&pdev->dev));
3332 ret = true;
3333 } else {
3334 dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
3335 dev_name(&pdev->dev));
3336 }
3337 }
3338
3339 return ret;
3340 }
3341
tb_probe(struct tb_nhi * nhi)3342 struct tb *tb_probe(struct tb_nhi *nhi)
3343 {
3344 struct tb_cm *tcm;
3345 struct tb *tb;
3346
3347 tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm));
3348 if (!tb)
3349 return NULL;
3350
3351 if (tb_acpi_may_tunnel_pcie())
3352 tb->security_level = TB_SECURITY_USER;
3353 else
3354 tb->security_level = TB_SECURITY_NOPCIE;
3355
3356 tb->cm_ops = &tb_cm_ops;
3357
3358 tcm = tb_priv(tb);
3359 INIT_LIST_HEAD(&tcm->tunnel_list);
3360 INIT_LIST_HEAD(&tcm->dp_resources);
3361 INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work);
3362 tb_init_bandwidth_groups(tcm);
3363
3364 tb_dbg(tb, "using software connection manager\n");
3365
3366 /*
3367 * Device links are needed to make sure we establish tunnels
3368 * before the PCIe/USB stack is resumed so complain here if we
3369 * found them missing.
3370 */
3371 if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi))
3372 tb_warn(tb, "device links to tunneled native ports are missing!\n");
3373
3374 return tb;
3375 }
3376