1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_VERIFIER_H
5 #define _LINUX_BPF_VERIFIER_H 1
6 
7 #include <linux/bpf.h> /* for enum bpf_reg_type */
8 #include <linux/filter.h> /* for MAX_BPF_STACK */
9 #include <linux/tnum.h>
10 
11 /* Maximum variable offset umax_value permitted when resolving memory accesses.
12  * In practice this is far bigger than any realistic pointer offset; this limit
13  * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
14  */
15 #define BPF_MAX_VAR_OFF	(1 << 29)
16 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
17  * that converting umax_value to int cannot overflow.
18  */
19 #define BPF_MAX_VAR_SIZ	(1 << 29)
20 
21 /* Liveness marks, used for registers and spilled-regs (in stack slots).
22  * Read marks propagate upwards until they find a write mark; they record that
23  * "one of this state's descendants read this reg" (and therefore the reg is
24  * relevant for states_equal() checks).
25  * Write marks collect downwards and do not propagate; they record that "the
26  * straight-line code that reached this state (from its parent) wrote this reg"
27  * (and therefore that reads propagated from this state or its descendants
28  * should not propagate to its parent).
29  * A state with a write mark can receive read marks; it just won't propagate
30  * them to its parent, since the write mark is a property, not of the state,
31  * but of the link between it and its parent.  See mark_reg_read() and
32  * mark_stack_slot_read() in kernel/bpf/verifier.c.
33  */
34 enum bpf_reg_liveness {
35 	REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
36 	REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
37 	REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
38 	REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
39 	REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
40 	REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
41 };
42 
43 struct bpf_reg_state {
44 	/* Ordering of fields matters.  See states_equal() */
45 	enum bpf_reg_type type;
46 	union {
47 		/* valid when type == PTR_TO_PACKET */
48 		u16 range;
49 
50 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
51 		 *   PTR_TO_MAP_VALUE_OR_NULL
52 		 */
53 		struct bpf_map *map_ptr;
54 
55 		u32 btf_id; /* for PTR_TO_BTF_ID */
56 
57 		u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
58 
59 		/* Max size from any of the above. */
60 		unsigned long raw;
61 	};
62 	/* Fixed part of pointer offset, pointer types only */
63 	s32 off;
64 	/* For PTR_TO_PACKET, used to find other pointers with the same variable
65 	 * offset, so they can share range knowledge.
66 	 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
67 	 * came from, when one is tested for != NULL.
68 	 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
69 	 * for the purpose of tracking that it's freed.
70 	 * For PTR_TO_SOCKET this is used to share which pointers retain the
71 	 * same reference to the socket, to determine proper reference freeing.
72 	 */
73 	u32 id;
74 	/* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
75 	 * from a pointer-cast helper, bpf_sk_fullsock() and
76 	 * bpf_tcp_sock().
77 	 *
78 	 * Consider the following where "sk" is a reference counted
79 	 * pointer returned from "sk = bpf_sk_lookup_tcp();":
80 	 *
81 	 * 1: sk = bpf_sk_lookup_tcp();
82 	 * 2: if (!sk) { return 0; }
83 	 * 3: fullsock = bpf_sk_fullsock(sk);
84 	 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
85 	 * 5: tp = bpf_tcp_sock(fullsock);
86 	 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
87 	 * 7: bpf_sk_release(sk);
88 	 * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
89 	 *
90 	 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
91 	 * "tp" ptr should be invalidated also.  In order to do that,
92 	 * the reg holding "fullsock" and "sk" need to remember
93 	 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
94 	 * such that the verifier can reset all regs which have
95 	 * ref_obj_id matching the sk_reg->id.
96 	 *
97 	 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
98 	 * sk_reg->id will stay as NULL-marking purpose only.
99 	 * After NULL-marking is done, sk_reg->id can be reset to 0.
100 	 *
101 	 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
102 	 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
103 	 *
104 	 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
105 	 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
106 	 * which is the same as sk_reg->ref_obj_id.
107 	 *
108 	 * From the verifier perspective, if sk, fullsock and tp
109 	 * are not NULL, they are the same ptr with different
110 	 * reg->type.  In particular, bpf_sk_release(tp) is also
111 	 * allowed and has the same effect as bpf_sk_release(sk).
112 	 */
113 	u32 ref_obj_id;
114 	/* For scalar types (SCALAR_VALUE), this represents our knowledge of
115 	 * the actual value.
116 	 * For pointer types, this represents the variable part of the offset
117 	 * from the pointed-to object, and is shared with all bpf_reg_states
118 	 * with the same id as us.
119 	 */
120 	struct tnum var_off;
121 	/* Used to determine if any memory access using this register will
122 	 * result in a bad access.
123 	 * These refer to the same value as var_off, not necessarily the actual
124 	 * contents of the register.
125 	 */
126 	s64 smin_value; /* minimum possible (s64)value */
127 	s64 smax_value; /* maximum possible (s64)value */
128 	u64 umin_value; /* minimum possible (u64)value */
129 	u64 umax_value; /* maximum possible (u64)value */
130 	s32 s32_min_value; /* minimum possible (s32)value */
131 	s32 s32_max_value; /* maximum possible (s32)value */
132 	u32 u32_min_value; /* minimum possible (u32)value */
133 	u32 u32_max_value; /* maximum possible (u32)value */
134 	/* parentage chain for liveness checking */
135 	struct bpf_reg_state *parent;
136 	/* Inside the callee two registers can be both PTR_TO_STACK like
137 	 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
138 	 * while another to the caller's stack. To differentiate them 'frameno'
139 	 * is used which is an index in bpf_verifier_state->frame[] array
140 	 * pointing to bpf_func_state.
141 	 */
142 	u32 frameno;
143 	/* Tracks subreg definition. The stored value is the insn_idx of the
144 	 * writing insn. This is safe because subreg_def is used before any insn
145 	 * patching which only happens after main verification finished.
146 	 */
147 	s32 subreg_def;
148 	enum bpf_reg_liveness live;
149 	/* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
150 	bool precise;
151 };
152 
153 enum bpf_stack_slot_type {
154 	STACK_INVALID,    /* nothing was stored in this stack slot */
155 	STACK_SPILL,      /* register spilled into stack */
156 	STACK_MISC,	  /* BPF program wrote some data into this slot */
157 	STACK_ZERO,	  /* BPF program wrote constant zero */
158 };
159 
160 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
161 
162 struct bpf_stack_state {
163 	struct bpf_reg_state spilled_ptr;
164 	u8 slot_type[BPF_REG_SIZE];
165 };
166 
167 struct bpf_reference_state {
168 	/* Track each reference created with a unique id, even if the same
169 	 * instruction creates the reference multiple times (eg, via CALL).
170 	 */
171 	int id;
172 	/* Instruction where the allocation of this reference occurred. This
173 	 * is used purely to inform the user of a reference leak.
174 	 */
175 	int insn_idx;
176 };
177 
178 /* state of the program:
179  * type of all registers and stack info
180  */
181 struct bpf_func_state {
182 	struct bpf_reg_state regs[MAX_BPF_REG];
183 	/* index of call instruction that called into this func */
184 	int callsite;
185 	/* stack frame number of this function state from pov of
186 	 * enclosing bpf_verifier_state.
187 	 * 0 = main function, 1 = first callee.
188 	 */
189 	u32 frameno;
190 	/* subprog number == index within subprog_stack_depth
191 	 * zero == main subprog
192 	 */
193 	u32 subprogno;
194 
195 	/* The following fields should be last. See copy_func_state() */
196 	int acquired_refs;
197 	struct bpf_reference_state *refs;
198 	int allocated_stack;
199 	struct bpf_stack_state *stack;
200 };
201 
202 struct bpf_idx_pair {
203 	u32 prev_idx;
204 	u32 idx;
205 };
206 
207 #define MAX_CALL_FRAMES 8
208 struct bpf_verifier_state {
209 	/* call stack tracking */
210 	struct bpf_func_state *frame[MAX_CALL_FRAMES];
211 	struct bpf_verifier_state *parent;
212 	/*
213 	 * 'branches' field is the number of branches left to explore:
214 	 * 0 - all possible paths from this state reached bpf_exit or
215 	 * were safely pruned
216 	 * 1 - at least one path is being explored.
217 	 * This state hasn't reached bpf_exit
218 	 * 2 - at least two paths are being explored.
219 	 * This state is an immediate parent of two children.
220 	 * One is fallthrough branch with branches==1 and another
221 	 * state is pushed into stack (to be explored later) also with
222 	 * branches==1. The parent of this state has branches==1.
223 	 * The verifier state tree connected via 'parent' pointer looks like:
224 	 * 1
225 	 * 1
226 	 * 2 -> 1 (first 'if' pushed into stack)
227 	 * 1
228 	 * 2 -> 1 (second 'if' pushed into stack)
229 	 * 1
230 	 * 1
231 	 * 1 bpf_exit.
232 	 *
233 	 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
234 	 * and the verifier state tree will look:
235 	 * 1
236 	 * 1
237 	 * 2 -> 1 (first 'if' pushed into stack)
238 	 * 1
239 	 * 1 -> 1 (second 'if' pushed into stack)
240 	 * 0
241 	 * 0
242 	 * 0 bpf_exit.
243 	 * After pop_stack() the do_check() will resume at second 'if'.
244 	 *
245 	 * If is_state_visited() sees a state with branches > 0 it means
246 	 * there is a loop. If such state is exactly equal to the current state
247 	 * it's an infinite loop. Note states_equal() checks for states
248 	 * equvalency, so two states being 'states_equal' does not mean
249 	 * infinite loop. The exact comparison is provided by
250 	 * states_maybe_looping() function. It's a stronger pre-check and
251 	 * much faster than states_equal().
252 	 *
253 	 * This algorithm may not find all possible infinite loops or
254 	 * loop iteration count may be too high.
255 	 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
256 	 */
257 	u32 branches;
258 	u32 insn_idx;
259 	u32 curframe;
260 	u32 active_spin_lock;
261 	bool speculative;
262 
263 	/* first and last insn idx of this verifier state */
264 	u32 first_insn_idx;
265 	u32 last_insn_idx;
266 	/* jmp history recorded from first to last.
267 	 * backtracking is using it to go from last to first.
268 	 * For most states jmp_history_cnt is [0-3].
269 	 * For loops can go up to ~40.
270 	 */
271 	struct bpf_idx_pair *jmp_history;
272 	u32 jmp_history_cnt;
273 };
274 
275 #define bpf_get_spilled_reg(slot, frame)				\
276 	(((slot < frame->allocated_stack / BPF_REG_SIZE) &&		\
277 	  (frame->stack[slot].slot_type[0] == STACK_SPILL))		\
278 	 ? &frame->stack[slot].spilled_ptr : NULL)
279 
280 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
281 #define bpf_for_each_spilled_reg(iter, frame, reg)			\
282 	for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);		\
283 	     iter < frame->allocated_stack / BPF_REG_SIZE;		\
284 	     iter++, reg = bpf_get_spilled_reg(iter, frame))
285 
286 /* linked list of verifier states used to prune search */
287 struct bpf_verifier_state_list {
288 	struct bpf_verifier_state state;
289 	struct bpf_verifier_state_list *next;
290 	int miss_cnt, hit_cnt;
291 };
292 
293 /* Possible states for alu_state member. */
294 #define BPF_ALU_SANITIZE_SRC		1U
295 #define BPF_ALU_SANITIZE_DST		2U
296 #define BPF_ALU_NEG_VALUE		(1U << 2)
297 #define BPF_ALU_NON_POINTER		(1U << 3)
298 #define BPF_ALU_SANITIZE		(BPF_ALU_SANITIZE_SRC | \
299 					 BPF_ALU_SANITIZE_DST)
300 
301 struct bpf_insn_aux_data {
302 	union {
303 		enum bpf_reg_type ptr_type;	/* pointer type for load/store insns */
304 		unsigned long map_ptr_state;	/* pointer/poison value for maps */
305 		s32 call_imm;			/* saved imm field of call insn */
306 		u32 alu_limit;			/* limit for add/sub register with pointer */
307 		struct {
308 			u32 map_index;		/* index into used_maps[] */
309 			u32 map_off;		/* offset from value base address */
310 		};
311 		struct {
312 			enum bpf_reg_type reg_type;	/* type of pseudo_btf_id */
313 			union {
314 				u32 btf_id;	/* btf_id for struct typed var */
315 				u32 mem_size;	/* mem_size for non-struct typed var */
316 			};
317 		} btf_var;
318 	};
319 	u64 map_key_state; /* constant (32 bit) key tracking for maps */
320 	int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
321 	int sanitize_stack_off; /* stack slot to be cleared */
322 	u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
323 	bool zext_dst; /* this insn zero extends dst reg */
324 	u8 alu_state; /* used in combination with alu_limit */
325 
326 	/* below fields are initialized once */
327 	unsigned int orig_idx; /* original instruction index */
328 	bool prune_point;
329 };
330 
331 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
332 
333 #define BPF_VERIFIER_TMP_LOG_SIZE	1024
334 
335 struct bpf_verifier_log {
336 	u32 level;
337 	char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
338 	char __user *ubuf;
339 	u32 len_used;
340 	u32 len_total;
341 };
342 
bpf_verifier_log_full(const struct bpf_verifier_log * log)343 static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
344 {
345 	return log->len_used >= log->len_total - 1;
346 }
347 
348 #define BPF_LOG_LEVEL1	1
349 #define BPF_LOG_LEVEL2	2
350 #define BPF_LOG_STATS	4
351 #define BPF_LOG_LEVEL	(BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
352 #define BPF_LOG_MASK	(BPF_LOG_LEVEL | BPF_LOG_STATS)
353 #define BPF_LOG_KERNEL	(BPF_LOG_MASK + 1) /* kernel internal flag */
354 
bpf_verifier_log_needed(const struct bpf_verifier_log * log)355 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
356 {
357 	return log &&
358 		((log->level && log->ubuf && !bpf_verifier_log_full(log)) ||
359 		 log->level == BPF_LOG_KERNEL);
360 }
361 
362 #define BPF_MAX_SUBPROGS 256
363 
364 struct bpf_subprog_info {
365 	/* 'start' has to be the first field otherwise find_subprog() won't work */
366 	u32 start; /* insn idx of function entry point */
367 	u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
368 	u16 stack_depth; /* max. stack depth used by this function */
369 	bool has_tail_call;
370 	bool tail_call_reachable;
371 	bool has_ld_abs;
372 };
373 
374 /* single container for all structs
375  * one verifier_env per bpf_check() call
376  */
377 struct bpf_verifier_env {
378 	u32 insn_idx;
379 	u32 prev_insn_idx;
380 	struct bpf_prog *prog;		/* eBPF program being verified */
381 	const struct bpf_verifier_ops *ops;
382 	struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
383 	int stack_size;			/* number of states to be processed */
384 	bool strict_alignment;		/* perform strict pointer alignment checks */
385 	bool test_state_freq;		/* test verifier with different pruning frequency */
386 	struct bpf_verifier_state *cur_state; /* current verifier state */
387 	struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
388 	struct bpf_verifier_state_list *free_list;
389 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
390 	u32 used_map_cnt;		/* number of used maps */
391 	u32 id_gen;			/* used to generate unique reg IDs */
392 	bool allow_ptr_leaks;
393 	bool allow_ptr_to_map_access;
394 	bool bpf_capable;
395 	bool bypass_spec_v1;
396 	bool bypass_spec_v4;
397 	bool seen_direct_write;
398 	struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
399 	const struct bpf_line_info *prev_linfo;
400 	struct bpf_verifier_log log;
401 	struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
402 	struct {
403 		int *insn_state;
404 		int *insn_stack;
405 		int cur_stack;
406 	} cfg;
407 	u32 pass_cnt; /* number of times do_check() was called */
408 	u32 subprog_cnt;
409 	/* number of instructions analyzed by the verifier */
410 	u32 prev_insn_processed, insn_processed;
411 	/* number of jmps, calls, exits analyzed so far */
412 	u32 prev_jmps_processed, jmps_processed;
413 	/* total verification time */
414 	u64 verification_time;
415 	/* maximum number of verifier states kept in 'branching' instructions */
416 	u32 max_states_per_insn;
417 	/* total number of allocated verifier states */
418 	u32 total_states;
419 	/* some states are freed during program analysis.
420 	 * this is peak number of states. this number dominates kernel
421 	 * memory consumption during verification
422 	 */
423 	u32 peak_states;
424 	/* longest register parentage chain walked for liveness marking */
425 	u32 longest_mark_read_walk;
426 };
427 
428 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
429 				      const char *fmt, va_list args);
430 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
431 					   const char *fmt, ...);
432 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
433 			    const char *fmt, ...);
434 
cur_func(struct bpf_verifier_env * env)435 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
436 {
437 	struct bpf_verifier_state *cur = env->cur_state;
438 
439 	return cur->frame[cur->curframe];
440 }
441 
cur_regs(struct bpf_verifier_env * env)442 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
443 {
444 	return cur_func(env)->regs;
445 }
446 
447 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
448 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
449 				 int insn_idx, int prev_insn_idx);
450 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
451 void
452 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
453 			      struct bpf_insn *insn);
454 void
455 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
456 
457 int check_ctx_reg(struct bpf_verifier_env *env,
458 		  const struct bpf_reg_state *reg, int regno);
459 
460 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
bpf_trampoline_compute_key(const struct bpf_prog * tgt_prog,u32 btf_id)461 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
462 					     u32 btf_id)
463 {
464         return tgt_prog ? (((u64)tgt_prog->aux->id) << 32 | btf_id) : btf_id;
465 }
466 
467 int bpf_check_attach_target(struct bpf_verifier_log *log,
468 			    const struct bpf_prog *prog,
469 			    const struct bpf_prog *tgt_prog,
470 			    u32 btf_id,
471 			    struct bpf_attach_target_info *tgt_info);
472 
473 #endif /* _LINUX_BPF_VERIFIER_H */
474