1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "inode-map.h"
22 #include "qgroup.h"
23 #include "print-tree.h"
24 #include "delalloc-space.h"
25 #include "block-group.h"
26 #include "backref.h"
27 #include "misc.h"
28
29 /*
30 * Relocation overview
31 *
32 * [What does relocation do]
33 *
34 * The objective of relocation is to relocate all extents of the target block
35 * group to other block groups.
36 * This is utilized by resize (shrink only), profile converting, compacting
37 * space, or balance routine to spread chunks over devices.
38 *
39 * Before | After
40 * ------------------------------------------------------------------
41 * BG A: 10 data extents | BG A: deleted
42 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
43 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
44 *
45 * [How does relocation work]
46 *
47 * 1. Mark the target block group read-only
48 * New extents won't be allocated from the target block group.
49 *
50 * 2.1 Record each extent in the target block group
51 * To build a proper map of extents to be relocated.
52 *
53 * 2.2 Build data reloc tree and reloc trees
54 * Data reloc tree will contain an inode, recording all newly relocated
55 * data extents.
56 * There will be only one data reloc tree for one data block group.
57 *
58 * Reloc tree will be a special snapshot of its source tree, containing
59 * relocated tree blocks.
60 * Each tree referring to a tree block in target block group will get its
61 * reloc tree built.
62 *
63 * 2.3 Swap source tree with its corresponding reloc tree
64 * Each involved tree only refers to new extents after swap.
65 *
66 * 3. Cleanup reloc trees and data reloc tree.
67 * As old extents in the target block group are still referenced by reloc
68 * trees, we need to clean them up before really freeing the target block
69 * group.
70 *
71 * The main complexity is in steps 2.2 and 2.3.
72 *
73 * The entry point of relocation is relocate_block_group() function.
74 */
75
76 #define RELOCATION_RESERVED_NODES 256
77 /*
78 * map address of tree root to tree
79 */
80 struct mapping_node {
81 struct {
82 struct rb_node rb_node;
83 u64 bytenr;
84 }; /* Use rb_simle_node for search/insert */
85 void *data;
86 };
87
88 struct mapping_tree {
89 struct rb_root rb_root;
90 spinlock_t lock;
91 };
92
93 /*
94 * present a tree block to process
95 */
96 struct tree_block {
97 struct {
98 struct rb_node rb_node;
99 u64 bytenr;
100 }; /* Use rb_simple_node for search/insert */
101 struct btrfs_key key;
102 unsigned int level:8;
103 unsigned int key_ready:1;
104 };
105
106 #define MAX_EXTENTS 128
107
108 struct file_extent_cluster {
109 u64 start;
110 u64 end;
111 u64 boundary[MAX_EXTENTS];
112 unsigned int nr;
113 };
114
115 struct reloc_control {
116 /* block group to relocate */
117 struct btrfs_block_group *block_group;
118 /* extent tree */
119 struct btrfs_root *extent_root;
120 /* inode for moving data */
121 struct inode *data_inode;
122
123 struct btrfs_block_rsv *block_rsv;
124
125 struct btrfs_backref_cache backref_cache;
126
127 struct file_extent_cluster cluster;
128 /* tree blocks have been processed */
129 struct extent_io_tree processed_blocks;
130 /* map start of tree root to corresponding reloc tree */
131 struct mapping_tree reloc_root_tree;
132 /* list of reloc trees */
133 struct list_head reloc_roots;
134 /* list of subvolume trees that get relocated */
135 struct list_head dirty_subvol_roots;
136 /* size of metadata reservation for merging reloc trees */
137 u64 merging_rsv_size;
138 /* size of relocated tree nodes */
139 u64 nodes_relocated;
140 /* reserved size for block group relocation*/
141 u64 reserved_bytes;
142
143 u64 search_start;
144 u64 extents_found;
145
146 unsigned int stage:8;
147 unsigned int create_reloc_tree:1;
148 unsigned int merge_reloc_tree:1;
149 unsigned int found_file_extent:1;
150 };
151
152 /* stages of data relocation */
153 #define MOVE_DATA_EXTENTS 0
154 #define UPDATE_DATA_PTRS 1
155
mark_block_processed(struct reloc_control * rc,struct btrfs_backref_node * node)156 static void mark_block_processed(struct reloc_control *rc,
157 struct btrfs_backref_node *node)
158 {
159 u32 blocksize;
160
161 if (node->level == 0 ||
162 in_range(node->bytenr, rc->block_group->start,
163 rc->block_group->length)) {
164 blocksize = rc->extent_root->fs_info->nodesize;
165 set_extent_bits(&rc->processed_blocks, node->bytenr,
166 node->bytenr + blocksize - 1, EXTENT_DIRTY);
167 }
168 node->processed = 1;
169 }
170
171
mapping_tree_init(struct mapping_tree * tree)172 static void mapping_tree_init(struct mapping_tree *tree)
173 {
174 tree->rb_root = RB_ROOT;
175 spin_lock_init(&tree->lock);
176 }
177
178 /*
179 * walk up backref nodes until reach node presents tree root
180 */
walk_up_backref(struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[],int * index)181 static struct btrfs_backref_node *walk_up_backref(
182 struct btrfs_backref_node *node,
183 struct btrfs_backref_edge *edges[], int *index)
184 {
185 struct btrfs_backref_edge *edge;
186 int idx = *index;
187
188 while (!list_empty(&node->upper)) {
189 edge = list_entry(node->upper.next,
190 struct btrfs_backref_edge, list[LOWER]);
191 edges[idx++] = edge;
192 node = edge->node[UPPER];
193 }
194 BUG_ON(node->detached);
195 *index = idx;
196 return node;
197 }
198
199 /*
200 * walk down backref nodes to find start of next reference path
201 */
walk_down_backref(struct btrfs_backref_edge * edges[],int * index)202 static struct btrfs_backref_node *walk_down_backref(
203 struct btrfs_backref_edge *edges[], int *index)
204 {
205 struct btrfs_backref_edge *edge;
206 struct btrfs_backref_node *lower;
207 int idx = *index;
208
209 while (idx > 0) {
210 edge = edges[idx - 1];
211 lower = edge->node[LOWER];
212 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
213 idx--;
214 continue;
215 }
216 edge = list_entry(edge->list[LOWER].next,
217 struct btrfs_backref_edge, list[LOWER]);
218 edges[idx - 1] = edge;
219 *index = idx;
220 return edge->node[UPPER];
221 }
222 *index = 0;
223 return NULL;
224 }
225
update_backref_node(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node,u64 bytenr)226 static void update_backref_node(struct btrfs_backref_cache *cache,
227 struct btrfs_backref_node *node, u64 bytenr)
228 {
229 struct rb_node *rb_node;
230 rb_erase(&node->rb_node, &cache->rb_root);
231 node->bytenr = bytenr;
232 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
233 if (rb_node)
234 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
235 }
236
237 /*
238 * update backref cache after a transaction commit
239 */
update_backref_cache(struct btrfs_trans_handle * trans,struct btrfs_backref_cache * cache)240 static int update_backref_cache(struct btrfs_trans_handle *trans,
241 struct btrfs_backref_cache *cache)
242 {
243 struct btrfs_backref_node *node;
244 int level = 0;
245
246 if (cache->last_trans == 0) {
247 cache->last_trans = trans->transid;
248 return 0;
249 }
250
251 if (cache->last_trans == trans->transid)
252 return 0;
253
254 /*
255 * detached nodes are used to avoid unnecessary backref
256 * lookup. transaction commit changes the extent tree.
257 * so the detached nodes are no longer useful.
258 */
259 while (!list_empty(&cache->detached)) {
260 node = list_entry(cache->detached.next,
261 struct btrfs_backref_node, list);
262 btrfs_backref_cleanup_node(cache, node);
263 }
264
265 while (!list_empty(&cache->changed)) {
266 node = list_entry(cache->changed.next,
267 struct btrfs_backref_node, list);
268 list_del_init(&node->list);
269 BUG_ON(node->pending);
270 update_backref_node(cache, node, node->new_bytenr);
271 }
272
273 /*
274 * some nodes can be left in the pending list if there were
275 * errors during processing the pending nodes.
276 */
277 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
278 list_for_each_entry(node, &cache->pending[level], list) {
279 BUG_ON(!node->pending);
280 if (node->bytenr == node->new_bytenr)
281 continue;
282 update_backref_node(cache, node, node->new_bytenr);
283 }
284 }
285
286 cache->last_trans = 0;
287 return 1;
288 }
289
reloc_root_is_dead(struct btrfs_root * root)290 static bool reloc_root_is_dead(struct btrfs_root *root)
291 {
292 /*
293 * Pair with set_bit/clear_bit in clean_dirty_subvols and
294 * btrfs_update_reloc_root. We need to see the updated bit before
295 * trying to access reloc_root
296 */
297 smp_rmb();
298 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
299 return true;
300 return false;
301 }
302
303 /*
304 * Check if this subvolume tree has valid reloc tree.
305 *
306 * Reloc tree after swap is considered dead, thus not considered as valid.
307 * This is enough for most callers, as they don't distinguish dead reloc root
308 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
309 * special case.
310 */
have_reloc_root(struct btrfs_root * root)311 static bool have_reloc_root(struct btrfs_root *root)
312 {
313 if (reloc_root_is_dead(root))
314 return false;
315 if (!root->reloc_root)
316 return false;
317 return true;
318 }
319
btrfs_should_ignore_reloc_root(struct btrfs_root * root)320 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
321 {
322 struct btrfs_root *reloc_root;
323
324 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
325 return 0;
326
327 /* This root has been merged with its reloc tree, we can ignore it */
328 if (reloc_root_is_dead(root))
329 return 1;
330
331 reloc_root = root->reloc_root;
332 if (!reloc_root)
333 return 0;
334
335 if (btrfs_header_generation(reloc_root->commit_root) ==
336 root->fs_info->running_transaction->transid)
337 return 0;
338 /*
339 * if there is reloc tree and it was created in previous
340 * transaction backref lookup can find the reloc tree,
341 * so backref node for the fs tree root is useless for
342 * relocation.
343 */
344 return 1;
345 }
346
347 /*
348 * find reloc tree by address of tree root
349 */
find_reloc_root(struct btrfs_fs_info * fs_info,u64 bytenr)350 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
351 {
352 struct reloc_control *rc = fs_info->reloc_ctl;
353 struct rb_node *rb_node;
354 struct mapping_node *node;
355 struct btrfs_root *root = NULL;
356
357 ASSERT(rc);
358 spin_lock(&rc->reloc_root_tree.lock);
359 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
360 if (rb_node) {
361 node = rb_entry(rb_node, struct mapping_node, rb_node);
362 root = (struct btrfs_root *)node->data;
363 }
364 spin_unlock(&rc->reloc_root_tree.lock);
365 return btrfs_grab_root(root);
366 }
367
368 /*
369 * For useless nodes, do two major clean ups:
370 *
371 * - Cleanup the children edges and nodes
372 * If child node is also orphan (no parent) during cleanup, then the child
373 * node will also be cleaned up.
374 *
375 * - Freeing up leaves (level 0), keeps nodes detached
376 * For nodes, the node is still cached as "detached"
377 *
378 * Return false if @node is not in the @useless_nodes list.
379 * Return true if @node is in the @useless_nodes list.
380 */
handle_useless_nodes(struct reloc_control * rc,struct btrfs_backref_node * node)381 static bool handle_useless_nodes(struct reloc_control *rc,
382 struct btrfs_backref_node *node)
383 {
384 struct btrfs_backref_cache *cache = &rc->backref_cache;
385 struct list_head *useless_node = &cache->useless_node;
386 bool ret = false;
387
388 while (!list_empty(useless_node)) {
389 struct btrfs_backref_node *cur;
390
391 cur = list_first_entry(useless_node, struct btrfs_backref_node,
392 list);
393 list_del_init(&cur->list);
394
395 /* Only tree root nodes can be added to @useless_nodes */
396 ASSERT(list_empty(&cur->upper));
397
398 if (cur == node)
399 ret = true;
400
401 /* The node is the lowest node */
402 if (cur->lowest) {
403 list_del_init(&cur->lower);
404 cur->lowest = 0;
405 }
406
407 /* Cleanup the lower edges */
408 while (!list_empty(&cur->lower)) {
409 struct btrfs_backref_edge *edge;
410 struct btrfs_backref_node *lower;
411
412 edge = list_entry(cur->lower.next,
413 struct btrfs_backref_edge, list[UPPER]);
414 list_del(&edge->list[UPPER]);
415 list_del(&edge->list[LOWER]);
416 lower = edge->node[LOWER];
417 btrfs_backref_free_edge(cache, edge);
418
419 /* Child node is also orphan, queue for cleanup */
420 if (list_empty(&lower->upper))
421 list_add(&lower->list, useless_node);
422 }
423 /* Mark this block processed for relocation */
424 mark_block_processed(rc, cur);
425
426 /*
427 * Backref nodes for tree leaves are deleted from the cache.
428 * Backref nodes for upper level tree blocks are left in the
429 * cache to avoid unnecessary backref lookup.
430 */
431 if (cur->level > 0) {
432 list_add(&cur->list, &cache->detached);
433 cur->detached = 1;
434 } else {
435 rb_erase(&cur->rb_node, &cache->rb_root);
436 btrfs_backref_free_node(cache, cur);
437 }
438 }
439 return ret;
440 }
441
442 /*
443 * Build backref tree for a given tree block. Root of the backref tree
444 * corresponds the tree block, leaves of the backref tree correspond roots of
445 * b-trees that reference the tree block.
446 *
447 * The basic idea of this function is check backrefs of a given block to find
448 * upper level blocks that reference the block, and then check backrefs of
449 * these upper level blocks recursively. The recursion stops when tree root is
450 * reached or backrefs for the block is cached.
451 *
452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
453 * all upper level blocks that directly/indirectly reference the block are also
454 * cached.
455 */
build_backref_tree(struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)456 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
457 struct reloc_control *rc, struct btrfs_key *node_key,
458 int level, u64 bytenr)
459 {
460 struct btrfs_backref_iter *iter;
461 struct btrfs_backref_cache *cache = &rc->backref_cache;
462 /* For searching parent of TREE_BLOCK_REF */
463 struct btrfs_path *path;
464 struct btrfs_backref_node *cur;
465 struct btrfs_backref_node *node = NULL;
466 struct btrfs_backref_edge *edge;
467 int ret;
468 int err = 0;
469
470 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
471 if (!iter)
472 return ERR_PTR(-ENOMEM);
473 path = btrfs_alloc_path();
474 if (!path) {
475 err = -ENOMEM;
476 goto out;
477 }
478
479 node = btrfs_backref_alloc_node(cache, bytenr, level);
480 if (!node) {
481 err = -ENOMEM;
482 goto out;
483 }
484
485 node->lowest = 1;
486 cur = node;
487
488 /* Breadth-first search to build backref cache */
489 do {
490 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
491 cur);
492 if (ret < 0) {
493 err = ret;
494 goto out;
495 }
496 edge = list_first_entry_or_null(&cache->pending_edge,
497 struct btrfs_backref_edge, list[UPPER]);
498 /*
499 * The pending list isn't empty, take the first block to
500 * process
501 */
502 if (edge) {
503 list_del_init(&edge->list[UPPER]);
504 cur = edge->node[UPPER];
505 }
506 } while (edge);
507
508 /* Finish the upper linkage of newly added edges/nodes */
509 ret = btrfs_backref_finish_upper_links(cache, node);
510 if (ret < 0) {
511 err = ret;
512 goto out;
513 }
514
515 if (handle_useless_nodes(rc, node))
516 node = NULL;
517 out:
518 btrfs_backref_iter_free(iter);
519 btrfs_free_path(path);
520 if (err) {
521 btrfs_backref_error_cleanup(cache, node);
522 return ERR_PTR(err);
523 }
524 ASSERT(!node || !node->detached);
525 ASSERT(list_empty(&cache->useless_node) &&
526 list_empty(&cache->pending_edge));
527 return node;
528 }
529
530 /*
531 * helper to add backref node for the newly created snapshot.
532 * the backref node is created by cloning backref node that
533 * corresponds to root of source tree
534 */
clone_backref_node(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * src,struct btrfs_root * dest)535 static int clone_backref_node(struct btrfs_trans_handle *trans,
536 struct reloc_control *rc,
537 struct btrfs_root *src,
538 struct btrfs_root *dest)
539 {
540 struct btrfs_root *reloc_root = src->reloc_root;
541 struct btrfs_backref_cache *cache = &rc->backref_cache;
542 struct btrfs_backref_node *node = NULL;
543 struct btrfs_backref_node *new_node;
544 struct btrfs_backref_edge *edge;
545 struct btrfs_backref_edge *new_edge;
546 struct rb_node *rb_node;
547
548 if (cache->last_trans > 0)
549 update_backref_cache(trans, cache);
550
551 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
552 if (rb_node) {
553 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
554 if (node->detached)
555 node = NULL;
556 else
557 BUG_ON(node->new_bytenr != reloc_root->node->start);
558 }
559
560 if (!node) {
561 rb_node = rb_simple_search(&cache->rb_root,
562 reloc_root->commit_root->start);
563 if (rb_node) {
564 node = rb_entry(rb_node, struct btrfs_backref_node,
565 rb_node);
566 BUG_ON(node->detached);
567 }
568 }
569
570 if (!node)
571 return 0;
572
573 new_node = btrfs_backref_alloc_node(cache, dest->node->start,
574 node->level);
575 if (!new_node)
576 return -ENOMEM;
577
578 new_node->lowest = node->lowest;
579 new_node->checked = 1;
580 new_node->root = btrfs_grab_root(dest);
581 ASSERT(new_node->root);
582
583 if (!node->lowest) {
584 list_for_each_entry(edge, &node->lower, list[UPPER]) {
585 new_edge = btrfs_backref_alloc_edge(cache);
586 if (!new_edge)
587 goto fail;
588
589 btrfs_backref_link_edge(new_edge, edge->node[LOWER],
590 new_node, LINK_UPPER);
591 }
592 } else {
593 list_add_tail(&new_node->lower, &cache->leaves);
594 }
595
596 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
597 &new_node->rb_node);
598 if (rb_node)
599 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
600
601 if (!new_node->lowest) {
602 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
603 list_add_tail(&new_edge->list[LOWER],
604 &new_edge->node[LOWER]->upper);
605 }
606 }
607 return 0;
608 fail:
609 while (!list_empty(&new_node->lower)) {
610 new_edge = list_entry(new_node->lower.next,
611 struct btrfs_backref_edge, list[UPPER]);
612 list_del(&new_edge->list[UPPER]);
613 btrfs_backref_free_edge(cache, new_edge);
614 }
615 btrfs_backref_free_node(cache, new_node);
616 return -ENOMEM;
617 }
618
619 /*
620 * helper to add 'address of tree root -> reloc tree' mapping
621 */
__add_reloc_root(struct btrfs_root * root)622 static int __must_check __add_reloc_root(struct btrfs_root *root)
623 {
624 struct btrfs_fs_info *fs_info = root->fs_info;
625 struct rb_node *rb_node;
626 struct mapping_node *node;
627 struct reloc_control *rc = fs_info->reloc_ctl;
628
629 node = kmalloc(sizeof(*node), GFP_NOFS);
630 if (!node)
631 return -ENOMEM;
632
633 node->bytenr = root->commit_root->start;
634 node->data = root;
635
636 spin_lock(&rc->reloc_root_tree.lock);
637 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
638 node->bytenr, &node->rb_node);
639 spin_unlock(&rc->reloc_root_tree.lock);
640 if (rb_node) {
641 btrfs_panic(fs_info, -EEXIST,
642 "Duplicate root found for start=%llu while inserting into relocation tree",
643 node->bytenr);
644 }
645
646 list_add_tail(&root->root_list, &rc->reloc_roots);
647 return 0;
648 }
649
650 /*
651 * helper to delete the 'address of tree root -> reloc tree'
652 * mapping
653 */
__del_reloc_root(struct btrfs_root * root)654 static void __del_reloc_root(struct btrfs_root *root)
655 {
656 struct btrfs_fs_info *fs_info = root->fs_info;
657 struct rb_node *rb_node;
658 struct mapping_node *node = NULL;
659 struct reloc_control *rc = fs_info->reloc_ctl;
660 bool put_ref = false;
661
662 if (rc && root->node) {
663 spin_lock(&rc->reloc_root_tree.lock);
664 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
665 root->commit_root->start);
666 if (rb_node) {
667 node = rb_entry(rb_node, struct mapping_node, rb_node);
668 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
669 RB_CLEAR_NODE(&node->rb_node);
670 }
671 spin_unlock(&rc->reloc_root_tree.lock);
672 if (!node)
673 return;
674 BUG_ON((struct btrfs_root *)node->data != root);
675 }
676
677 /*
678 * We only put the reloc root here if it's on the list. There's a lot
679 * of places where the pattern is to splice the rc->reloc_roots, process
680 * the reloc roots, and then add the reloc root back onto
681 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
682 * list we don't want the reference being dropped, because the guy
683 * messing with the list is in charge of the reference.
684 */
685 spin_lock(&fs_info->trans_lock);
686 if (!list_empty(&root->root_list)) {
687 put_ref = true;
688 list_del_init(&root->root_list);
689 }
690 spin_unlock(&fs_info->trans_lock);
691 if (put_ref)
692 btrfs_put_root(root);
693 kfree(node);
694 }
695
696 /*
697 * helper to update the 'address of tree root -> reloc tree'
698 * mapping
699 */
__update_reloc_root(struct btrfs_root * root)700 static int __update_reloc_root(struct btrfs_root *root)
701 {
702 struct btrfs_fs_info *fs_info = root->fs_info;
703 struct rb_node *rb_node;
704 struct mapping_node *node = NULL;
705 struct reloc_control *rc = fs_info->reloc_ctl;
706
707 spin_lock(&rc->reloc_root_tree.lock);
708 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
709 root->commit_root->start);
710 if (rb_node) {
711 node = rb_entry(rb_node, struct mapping_node, rb_node);
712 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
713 }
714 spin_unlock(&rc->reloc_root_tree.lock);
715
716 if (!node)
717 return 0;
718 BUG_ON((struct btrfs_root *)node->data != root);
719
720 spin_lock(&rc->reloc_root_tree.lock);
721 node->bytenr = root->node->start;
722 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
723 node->bytenr, &node->rb_node);
724 spin_unlock(&rc->reloc_root_tree.lock);
725 if (rb_node)
726 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
727 return 0;
728 }
729
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)730 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
731 struct btrfs_root *root, u64 objectid)
732 {
733 struct btrfs_fs_info *fs_info = root->fs_info;
734 struct btrfs_root *reloc_root;
735 struct extent_buffer *eb;
736 struct btrfs_root_item *root_item;
737 struct btrfs_key root_key;
738 int ret;
739
740 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
741 BUG_ON(!root_item);
742
743 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
744 root_key.type = BTRFS_ROOT_ITEM_KEY;
745 root_key.offset = objectid;
746
747 if (root->root_key.objectid == objectid) {
748 u64 commit_root_gen;
749
750 /* called by btrfs_init_reloc_root */
751 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
752 BTRFS_TREE_RELOC_OBJECTID);
753 BUG_ON(ret);
754 /*
755 * Set the last_snapshot field to the generation of the commit
756 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
757 * correctly (returns true) when the relocation root is created
758 * either inside the critical section of a transaction commit
759 * (through transaction.c:qgroup_account_snapshot()) and when
760 * it's created before the transaction commit is started.
761 */
762 commit_root_gen = btrfs_header_generation(root->commit_root);
763 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
764 } else {
765 /*
766 * called by btrfs_reloc_post_snapshot_hook.
767 * the source tree is a reloc tree, all tree blocks
768 * modified after it was created have RELOC flag
769 * set in their headers. so it's OK to not update
770 * the 'last_snapshot'.
771 */
772 ret = btrfs_copy_root(trans, root, root->node, &eb,
773 BTRFS_TREE_RELOC_OBJECTID);
774 BUG_ON(ret);
775 }
776
777 memcpy(root_item, &root->root_item, sizeof(*root_item));
778 btrfs_set_root_bytenr(root_item, eb->start);
779 btrfs_set_root_level(root_item, btrfs_header_level(eb));
780 btrfs_set_root_generation(root_item, trans->transid);
781
782 if (root->root_key.objectid == objectid) {
783 btrfs_set_root_refs(root_item, 0);
784 memset(&root_item->drop_progress, 0,
785 sizeof(struct btrfs_disk_key));
786 root_item->drop_level = 0;
787 }
788
789 btrfs_tree_unlock(eb);
790 free_extent_buffer(eb);
791
792 ret = btrfs_insert_root(trans, fs_info->tree_root,
793 &root_key, root_item);
794 BUG_ON(ret);
795 kfree(root_item);
796
797 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
798 BUG_ON(IS_ERR(reloc_root));
799 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
800 reloc_root->last_trans = trans->transid;
801 return reloc_root;
802 }
803
804 /*
805 * create reloc tree for a given fs tree. reloc tree is just a
806 * snapshot of the fs tree with special root objectid.
807 *
808 * The reloc_root comes out of here with two references, one for
809 * root->reloc_root, and another for being on the rc->reloc_roots list.
810 */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)811 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
812 struct btrfs_root *root)
813 {
814 struct btrfs_fs_info *fs_info = root->fs_info;
815 struct btrfs_root *reloc_root;
816 struct reloc_control *rc = fs_info->reloc_ctl;
817 struct btrfs_block_rsv *rsv;
818 int clear_rsv = 0;
819 int ret;
820
821 if (!rc)
822 return 0;
823
824 /*
825 * The subvolume has reloc tree but the swap is finished, no need to
826 * create/update the dead reloc tree
827 */
828 if (reloc_root_is_dead(root))
829 return 0;
830
831 /*
832 * This is subtle but important. We do not do
833 * record_root_in_transaction for reloc roots, instead we record their
834 * corresponding fs root, and then here we update the last trans for the
835 * reloc root. This means that we have to do this for the entire life
836 * of the reloc root, regardless of which stage of the relocation we are
837 * in.
838 */
839 if (root->reloc_root) {
840 reloc_root = root->reloc_root;
841 reloc_root->last_trans = trans->transid;
842 return 0;
843 }
844
845 /*
846 * We are merging reloc roots, we do not need new reloc trees. Also
847 * reloc trees never need their own reloc tree.
848 */
849 if (!rc->create_reloc_tree ||
850 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
851 return 0;
852
853 if (!trans->reloc_reserved) {
854 rsv = trans->block_rsv;
855 trans->block_rsv = rc->block_rsv;
856 clear_rsv = 1;
857 }
858 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
859 if (clear_rsv)
860 trans->block_rsv = rsv;
861
862 ret = __add_reloc_root(reloc_root);
863 BUG_ON(ret < 0);
864 root->reloc_root = btrfs_grab_root(reloc_root);
865 return 0;
866 }
867
868 /*
869 * update root item of reloc tree
870 */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)871 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
872 struct btrfs_root *root)
873 {
874 struct btrfs_fs_info *fs_info = root->fs_info;
875 struct btrfs_root *reloc_root;
876 struct btrfs_root_item *root_item;
877 int ret;
878
879 if (!have_reloc_root(root))
880 goto out;
881
882 reloc_root = root->reloc_root;
883 root_item = &reloc_root->root_item;
884
885 /*
886 * We are probably ok here, but __del_reloc_root() will drop its ref of
887 * the root. We have the ref for root->reloc_root, but just in case
888 * hold it while we update the reloc root.
889 */
890 btrfs_grab_root(reloc_root);
891
892 /* root->reloc_root will stay until current relocation finished */
893 if (fs_info->reloc_ctl->merge_reloc_tree &&
894 btrfs_root_refs(root_item) == 0) {
895 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
896 /*
897 * Mark the tree as dead before we change reloc_root so
898 * have_reloc_root will not touch it from now on.
899 */
900 smp_wmb();
901 __del_reloc_root(reloc_root);
902 }
903
904 if (reloc_root->commit_root != reloc_root->node) {
905 __update_reloc_root(reloc_root);
906 btrfs_set_root_node(root_item, reloc_root->node);
907 free_extent_buffer(reloc_root->commit_root);
908 reloc_root->commit_root = btrfs_root_node(reloc_root);
909 }
910
911 ret = btrfs_update_root(trans, fs_info->tree_root,
912 &reloc_root->root_key, root_item);
913 BUG_ON(ret);
914 btrfs_put_root(reloc_root);
915 out:
916 return 0;
917 }
918
919 /*
920 * helper to find first cached inode with inode number >= objectid
921 * in a subvolume
922 */
find_next_inode(struct btrfs_root * root,u64 objectid)923 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
924 {
925 struct rb_node *node;
926 struct rb_node *prev;
927 struct btrfs_inode *entry;
928 struct inode *inode;
929
930 spin_lock(&root->inode_lock);
931 again:
932 node = root->inode_tree.rb_node;
933 prev = NULL;
934 while (node) {
935 prev = node;
936 entry = rb_entry(node, struct btrfs_inode, rb_node);
937
938 if (objectid < btrfs_ino(entry))
939 node = node->rb_left;
940 else if (objectid > btrfs_ino(entry))
941 node = node->rb_right;
942 else
943 break;
944 }
945 if (!node) {
946 while (prev) {
947 entry = rb_entry(prev, struct btrfs_inode, rb_node);
948 if (objectid <= btrfs_ino(entry)) {
949 node = prev;
950 break;
951 }
952 prev = rb_next(prev);
953 }
954 }
955 while (node) {
956 entry = rb_entry(node, struct btrfs_inode, rb_node);
957 inode = igrab(&entry->vfs_inode);
958 if (inode) {
959 spin_unlock(&root->inode_lock);
960 return inode;
961 }
962
963 objectid = btrfs_ino(entry) + 1;
964 if (cond_resched_lock(&root->inode_lock))
965 goto again;
966
967 node = rb_next(node);
968 }
969 spin_unlock(&root->inode_lock);
970 return NULL;
971 }
972
973 /*
974 * get new location of data
975 */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)976 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
977 u64 bytenr, u64 num_bytes)
978 {
979 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
980 struct btrfs_path *path;
981 struct btrfs_file_extent_item *fi;
982 struct extent_buffer *leaf;
983 int ret;
984
985 path = btrfs_alloc_path();
986 if (!path)
987 return -ENOMEM;
988
989 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
990 ret = btrfs_lookup_file_extent(NULL, root, path,
991 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
992 if (ret < 0)
993 goto out;
994 if (ret > 0) {
995 ret = -ENOENT;
996 goto out;
997 }
998
999 leaf = path->nodes[0];
1000 fi = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_file_extent_item);
1002
1003 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1004 btrfs_file_extent_compression(leaf, fi) ||
1005 btrfs_file_extent_encryption(leaf, fi) ||
1006 btrfs_file_extent_other_encoding(leaf, fi));
1007
1008 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1009 ret = -EINVAL;
1010 goto out;
1011 }
1012
1013 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1014 ret = 0;
1015 out:
1016 btrfs_free_path(path);
1017 return ret;
1018 }
1019
1020 /*
1021 * update file extent items in the tree leaf to point to
1022 * the new locations.
1023 */
1024 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)1025 int replace_file_extents(struct btrfs_trans_handle *trans,
1026 struct reloc_control *rc,
1027 struct btrfs_root *root,
1028 struct extent_buffer *leaf)
1029 {
1030 struct btrfs_fs_info *fs_info = root->fs_info;
1031 struct btrfs_key key;
1032 struct btrfs_file_extent_item *fi;
1033 struct inode *inode = NULL;
1034 u64 parent;
1035 u64 bytenr;
1036 u64 new_bytenr = 0;
1037 u64 num_bytes;
1038 u64 end;
1039 u32 nritems;
1040 u32 i;
1041 int ret = 0;
1042 int first = 1;
1043 int dirty = 0;
1044
1045 if (rc->stage != UPDATE_DATA_PTRS)
1046 return 0;
1047
1048 /* reloc trees always use full backref */
1049 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1050 parent = leaf->start;
1051 else
1052 parent = 0;
1053
1054 nritems = btrfs_header_nritems(leaf);
1055 for (i = 0; i < nritems; i++) {
1056 struct btrfs_ref ref = { 0 };
1057
1058 cond_resched();
1059 btrfs_item_key_to_cpu(leaf, &key, i);
1060 if (key.type != BTRFS_EXTENT_DATA_KEY)
1061 continue;
1062 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1063 if (btrfs_file_extent_type(leaf, fi) ==
1064 BTRFS_FILE_EXTENT_INLINE)
1065 continue;
1066 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1067 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1068 if (bytenr == 0)
1069 continue;
1070 if (!in_range(bytenr, rc->block_group->start,
1071 rc->block_group->length))
1072 continue;
1073
1074 /*
1075 * if we are modifying block in fs tree, wait for readpage
1076 * to complete and drop the extent cache
1077 */
1078 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1079 if (first) {
1080 inode = find_next_inode(root, key.objectid);
1081 first = 0;
1082 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1083 btrfs_add_delayed_iput(inode);
1084 inode = find_next_inode(root, key.objectid);
1085 }
1086 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1087 end = key.offset +
1088 btrfs_file_extent_num_bytes(leaf, fi);
1089 WARN_ON(!IS_ALIGNED(key.offset,
1090 fs_info->sectorsize));
1091 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1092 end--;
1093 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1094 key.offset, end);
1095 if (!ret)
1096 continue;
1097
1098 btrfs_drop_extent_cache(BTRFS_I(inode),
1099 key.offset, end, 1);
1100 unlock_extent(&BTRFS_I(inode)->io_tree,
1101 key.offset, end);
1102 }
1103 }
1104
1105 ret = get_new_location(rc->data_inode, &new_bytenr,
1106 bytenr, num_bytes);
1107 if (ret) {
1108 /*
1109 * Don't have to abort since we've not changed anything
1110 * in the file extent yet.
1111 */
1112 break;
1113 }
1114
1115 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1116 dirty = 1;
1117
1118 key.offset -= btrfs_file_extent_offset(leaf, fi);
1119 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1120 num_bytes, parent);
1121 ref.real_root = root->root_key.objectid;
1122 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1123 key.objectid, key.offset);
1124 ret = btrfs_inc_extent_ref(trans, &ref);
1125 if (ret) {
1126 btrfs_abort_transaction(trans, ret);
1127 break;
1128 }
1129
1130 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1131 num_bytes, parent);
1132 ref.real_root = root->root_key.objectid;
1133 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1134 key.objectid, key.offset);
1135 ret = btrfs_free_extent(trans, &ref);
1136 if (ret) {
1137 btrfs_abort_transaction(trans, ret);
1138 break;
1139 }
1140 }
1141 if (dirty)
1142 btrfs_mark_buffer_dirty(leaf);
1143 if (inode)
1144 btrfs_add_delayed_iput(inode);
1145 return ret;
1146 }
1147
1148 static noinline_for_stack
memcmp_node_keys(struct extent_buffer * eb,int slot,struct btrfs_path * path,int level)1149 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1150 struct btrfs_path *path, int level)
1151 {
1152 struct btrfs_disk_key key1;
1153 struct btrfs_disk_key key2;
1154 btrfs_node_key(eb, &key1, slot);
1155 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1156 return memcmp(&key1, &key2, sizeof(key1));
1157 }
1158
1159 /*
1160 * try to replace tree blocks in fs tree with the new blocks
1161 * in reloc tree. tree blocks haven't been modified since the
1162 * reloc tree was create can be replaced.
1163 *
1164 * if a block was replaced, level of the block + 1 is returned.
1165 * if no block got replaced, 0 is returned. if there are other
1166 * errors, a negative error number is returned.
1167 */
1168 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)1169 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1170 struct btrfs_root *dest, struct btrfs_root *src,
1171 struct btrfs_path *path, struct btrfs_key *next_key,
1172 int lowest_level, int max_level)
1173 {
1174 struct btrfs_fs_info *fs_info = dest->fs_info;
1175 struct extent_buffer *eb;
1176 struct extent_buffer *parent;
1177 struct btrfs_ref ref = { 0 };
1178 struct btrfs_key key;
1179 u64 old_bytenr;
1180 u64 new_bytenr;
1181 u64 old_ptr_gen;
1182 u64 new_ptr_gen;
1183 u64 last_snapshot;
1184 u32 blocksize;
1185 int cow = 0;
1186 int level;
1187 int ret;
1188 int slot;
1189
1190 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1191 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1192
1193 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1194 again:
1195 slot = path->slots[lowest_level];
1196 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1197
1198 eb = btrfs_lock_root_node(dest);
1199 btrfs_set_lock_blocking_write(eb);
1200 level = btrfs_header_level(eb);
1201
1202 if (level < lowest_level) {
1203 btrfs_tree_unlock(eb);
1204 free_extent_buffer(eb);
1205 return 0;
1206 }
1207
1208 if (cow) {
1209 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1210 BTRFS_NESTING_COW);
1211 BUG_ON(ret);
1212 }
1213 btrfs_set_lock_blocking_write(eb);
1214
1215 if (next_key) {
1216 next_key->objectid = (u64)-1;
1217 next_key->type = (u8)-1;
1218 next_key->offset = (u64)-1;
1219 }
1220
1221 parent = eb;
1222 while (1) {
1223 struct btrfs_key first_key;
1224
1225 level = btrfs_header_level(parent);
1226 BUG_ON(level < lowest_level);
1227
1228 ret = btrfs_bin_search(parent, &key, &slot);
1229 if (ret < 0)
1230 break;
1231 if (ret && slot > 0)
1232 slot--;
1233
1234 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1235 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1236
1237 old_bytenr = btrfs_node_blockptr(parent, slot);
1238 blocksize = fs_info->nodesize;
1239 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1240 btrfs_node_key_to_cpu(parent, &first_key, slot);
1241
1242 if (level <= max_level) {
1243 eb = path->nodes[level];
1244 new_bytenr = btrfs_node_blockptr(eb,
1245 path->slots[level]);
1246 new_ptr_gen = btrfs_node_ptr_generation(eb,
1247 path->slots[level]);
1248 } else {
1249 new_bytenr = 0;
1250 new_ptr_gen = 0;
1251 }
1252
1253 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1254 ret = level;
1255 break;
1256 }
1257
1258 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1259 memcmp_node_keys(parent, slot, path, level)) {
1260 if (level <= lowest_level) {
1261 ret = 0;
1262 break;
1263 }
1264
1265 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1266 level - 1, &first_key);
1267 if (IS_ERR(eb)) {
1268 ret = PTR_ERR(eb);
1269 break;
1270 } else if (!extent_buffer_uptodate(eb)) {
1271 ret = -EIO;
1272 free_extent_buffer(eb);
1273 break;
1274 }
1275 btrfs_tree_lock(eb);
1276 if (cow) {
1277 ret = btrfs_cow_block(trans, dest, eb, parent,
1278 slot, &eb,
1279 BTRFS_NESTING_COW);
1280 BUG_ON(ret);
1281 }
1282 btrfs_set_lock_blocking_write(eb);
1283
1284 btrfs_tree_unlock(parent);
1285 free_extent_buffer(parent);
1286
1287 parent = eb;
1288 continue;
1289 }
1290
1291 if (!cow) {
1292 btrfs_tree_unlock(parent);
1293 free_extent_buffer(parent);
1294 cow = 1;
1295 goto again;
1296 }
1297
1298 btrfs_node_key_to_cpu(path->nodes[level], &key,
1299 path->slots[level]);
1300 btrfs_release_path(path);
1301
1302 path->lowest_level = level;
1303 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1304 path->lowest_level = 0;
1305 BUG_ON(ret);
1306
1307 /*
1308 * Info qgroup to trace both subtrees.
1309 *
1310 * We must trace both trees.
1311 * 1) Tree reloc subtree
1312 * If not traced, we will leak data numbers
1313 * 2) Fs subtree
1314 * If not traced, we will double count old data
1315 *
1316 * We don't scan the subtree right now, but only record
1317 * the swapped tree blocks.
1318 * The real subtree rescan is delayed until we have new
1319 * CoW on the subtree root node before transaction commit.
1320 */
1321 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1322 rc->block_group, parent, slot,
1323 path->nodes[level], path->slots[level],
1324 last_snapshot);
1325 if (ret < 0)
1326 break;
1327 /*
1328 * swap blocks in fs tree and reloc tree.
1329 */
1330 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1331 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1332 btrfs_mark_buffer_dirty(parent);
1333
1334 btrfs_set_node_blockptr(path->nodes[level],
1335 path->slots[level], old_bytenr);
1336 btrfs_set_node_ptr_generation(path->nodes[level],
1337 path->slots[level], old_ptr_gen);
1338 btrfs_mark_buffer_dirty(path->nodes[level]);
1339
1340 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1341 blocksize, path->nodes[level]->start);
1342 ref.skip_qgroup = true;
1343 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1344 ret = btrfs_inc_extent_ref(trans, &ref);
1345 BUG_ON(ret);
1346 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1347 blocksize, 0);
1348 ref.skip_qgroup = true;
1349 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1350 ret = btrfs_inc_extent_ref(trans, &ref);
1351 BUG_ON(ret);
1352
1353 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1354 blocksize, path->nodes[level]->start);
1355 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1356 ref.skip_qgroup = true;
1357 ret = btrfs_free_extent(trans, &ref);
1358 BUG_ON(ret);
1359
1360 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1361 blocksize, 0);
1362 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1363 ref.skip_qgroup = true;
1364 ret = btrfs_free_extent(trans, &ref);
1365 BUG_ON(ret);
1366
1367 btrfs_unlock_up_safe(path, 0);
1368
1369 ret = level;
1370 break;
1371 }
1372 btrfs_tree_unlock(parent);
1373 free_extent_buffer(parent);
1374 return ret;
1375 }
1376
1377 /*
1378 * helper to find next relocated block in reloc tree
1379 */
1380 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1381 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1382 int *level)
1383 {
1384 struct extent_buffer *eb;
1385 int i;
1386 u64 last_snapshot;
1387 u32 nritems;
1388
1389 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1390
1391 for (i = 0; i < *level; i++) {
1392 free_extent_buffer(path->nodes[i]);
1393 path->nodes[i] = NULL;
1394 }
1395
1396 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1397 eb = path->nodes[i];
1398 nritems = btrfs_header_nritems(eb);
1399 while (path->slots[i] + 1 < nritems) {
1400 path->slots[i]++;
1401 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1402 last_snapshot)
1403 continue;
1404
1405 *level = i;
1406 return 0;
1407 }
1408 free_extent_buffer(path->nodes[i]);
1409 path->nodes[i] = NULL;
1410 }
1411 return 1;
1412 }
1413
1414 /*
1415 * walk down reloc tree to find relocated block of lowest level
1416 */
1417 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1418 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1419 int *level)
1420 {
1421 struct btrfs_fs_info *fs_info = root->fs_info;
1422 struct extent_buffer *eb = NULL;
1423 int i;
1424 u64 bytenr;
1425 u64 ptr_gen = 0;
1426 u64 last_snapshot;
1427 u32 nritems;
1428
1429 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1430
1431 for (i = *level; i > 0; i--) {
1432 struct btrfs_key first_key;
1433
1434 eb = path->nodes[i];
1435 nritems = btrfs_header_nritems(eb);
1436 while (path->slots[i] < nritems) {
1437 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1438 if (ptr_gen > last_snapshot)
1439 break;
1440 path->slots[i]++;
1441 }
1442 if (path->slots[i] >= nritems) {
1443 if (i == *level)
1444 break;
1445 *level = i + 1;
1446 return 0;
1447 }
1448 if (i == 1) {
1449 *level = i;
1450 return 0;
1451 }
1452
1453 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1454 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
1455 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
1456 &first_key);
1457 if (IS_ERR(eb)) {
1458 return PTR_ERR(eb);
1459 } else if (!extent_buffer_uptodate(eb)) {
1460 free_extent_buffer(eb);
1461 return -EIO;
1462 }
1463 BUG_ON(btrfs_header_level(eb) != i - 1);
1464 path->nodes[i - 1] = eb;
1465 path->slots[i - 1] = 0;
1466 }
1467 return 1;
1468 }
1469
1470 /*
1471 * invalidate extent cache for file extents whose key in range of
1472 * [min_key, max_key)
1473 */
invalidate_extent_cache(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_key * max_key)1474 static int invalidate_extent_cache(struct btrfs_root *root,
1475 struct btrfs_key *min_key,
1476 struct btrfs_key *max_key)
1477 {
1478 struct btrfs_fs_info *fs_info = root->fs_info;
1479 struct inode *inode = NULL;
1480 u64 objectid;
1481 u64 start, end;
1482 u64 ino;
1483
1484 objectid = min_key->objectid;
1485 while (1) {
1486 cond_resched();
1487 iput(inode);
1488
1489 if (objectid > max_key->objectid)
1490 break;
1491
1492 inode = find_next_inode(root, objectid);
1493 if (!inode)
1494 break;
1495 ino = btrfs_ino(BTRFS_I(inode));
1496
1497 if (ino > max_key->objectid) {
1498 iput(inode);
1499 break;
1500 }
1501
1502 objectid = ino + 1;
1503 if (!S_ISREG(inode->i_mode))
1504 continue;
1505
1506 if (unlikely(min_key->objectid == ino)) {
1507 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1508 continue;
1509 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1510 start = 0;
1511 else {
1512 start = min_key->offset;
1513 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1514 }
1515 } else {
1516 start = 0;
1517 }
1518
1519 if (unlikely(max_key->objectid == ino)) {
1520 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1521 continue;
1522 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1523 end = (u64)-1;
1524 } else {
1525 if (max_key->offset == 0)
1526 continue;
1527 end = max_key->offset;
1528 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1529 end--;
1530 }
1531 } else {
1532 end = (u64)-1;
1533 }
1534
1535 /* the lock_extent waits for readpage to complete */
1536 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1537 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1538 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1539 }
1540 return 0;
1541 }
1542
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1543 static int find_next_key(struct btrfs_path *path, int level,
1544 struct btrfs_key *key)
1545
1546 {
1547 while (level < BTRFS_MAX_LEVEL) {
1548 if (!path->nodes[level])
1549 break;
1550 if (path->slots[level] + 1 <
1551 btrfs_header_nritems(path->nodes[level])) {
1552 btrfs_node_key_to_cpu(path->nodes[level], key,
1553 path->slots[level] + 1);
1554 return 0;
1555 }
1556 level++;
1557 }
1558 return 1;
1559 }
1560
1561 /*
1562 * Insert current subvolume into reloc_control::dirty_subvol_roots
1563 */
insert_dirty_subvol(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root)1564 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
1565 struct reloc_control *rc,
1566 struct btrfs_root *root)
1567 {
1568 struct btrfs_root *reloc_root = root->reloc_root;
1569 struct btrfs_root_item *reloc_root_item;
1570
1571 /* @root must be a subvolume tree root with a valid reloc tree */
1572 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1573 ASSERT(reloc_root);
1574
1575 reloc_root_item = &reloc_root->root_item;
1576 memset(&reloc_root_item->drop_progress, 0,
1577 sizeof(reloc_root_item->drop_progress));
1578 reloc_root_item->drop_level = 0;
1579 btrfs_set_root_refs(reloc_root_item, 0);
1580 btrfs_update_reloc_root(trans, root);
1581
1582 if (list_empty(&root->reloc_dirty_list)) {
1583 btrfs_grab_root(root);
1584 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1585 }
1586 }
1587
clean_dirty_subvols(struct reloc_control * rc)1588 static int clean_dirty_subvols(struct reloc_control *rc)
1589 {
1590 struct btrfs_root *root;
1591 struct btrfs_root *next;
1592 int ret = 0;
1593 int ret2;
1594
1595 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1596 reloc_dirty_list) {
1597 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1598 /* Merged subvolume, cleanup its reloc root */
1599 struct btrfs_root *reloc_root = root->reloc_root;
1600
1601 list_del_init(&root->reloc_dirty_list);
1602 root->reloc_root = NULL;
1603 /*
1604 * Need barrier to ensure clear_bit() only happens after
1605 * root->reloc_root = NULL. Pairs with have_reloc_root.
1606 */
1607 smp_wmb();
1608 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1609 if (reloc_root) {
1610 /*
1611 * btrfs_drop_snapshot drops our ref we hold for
1612 * ->reloc_root. If it fails however we must
1613 * drop the ref ourselves.
1614 */
1615 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1616 if (ret2 < 0) {
1617 btrfs_put_root(reloc_root);
1618 if (!ret)
1619 ret = ret2;
1620 }
1621 }
1622 btrfs_put_root(root);
1623 } else {
1624 /* Orphan reloc tree, just clean it up */
1625 ret2 = btrfs_drop_snapshot(root, 0, 1);
1626 if (ret2 < 0) {
1627 btrfs_put_root(root);
1628 if (!ret)
1629 ret = ret2;
1630 }
1631 }
1632 }
1633 return ret;
1634 }
1635
1636 /*
1637 * merge the relocated tree blocks in reloc tree with corresponding
1638 * fs tree.
1639 */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)1640 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1641 struct btrfs_root *root)
1642 {
1643 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1644 struct btrfs_key key;
1645 struct btrfs_key next_key;
1646 struct btrfs_trans_handle *trans = NULL;
1647 struct btrfs_root *reloc_root;
1648 struct btrfs_root_item *root_item;
1649 struct btrfs_path *path;
1650 struct extent_buffer *leaf;
1651 int reserve_level;
1652 int level;
1653 int max_level;
1654 int replaced = 0;
1655 int ret;
1656 int err = 0;
1657 u32 min_reserved;
1658
1659 path = btrfs_alloc_path();
1660 if (!path)
1661 return -ENOMEM;
1662 path->reada = READA_FORWARD;
1663
1664 reloc_root = root->reloc_root;
1665 root_item = &reloc_root->root_item;
1666
1667 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1668 level = btrfs_root_level(root_item);
1669 atomic_inc(&reloc_root->node->refs);
1670 path->nodes[level] = reloc_root->node;
1671 path->slots[level] = 0;
1672 } else {
1673 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1674
1675 level = root_item->drop_level;
1676 BUG_ON(level == 0);
1677 path->lowest_level = level;
1678 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1679 path->lowest_level = 0;
1680 if (ret < 0) {
1681 btrfs_free_path(path);
1682 return ret;
1683 }
1684
1685 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1686 path->slots[level]);
1687 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1688
1689 btrfs_unlock_up_safe(path, 0);
1690 }
1691
1692 /*
1693 * In merge_reloc_root(), we modify the upper level pointer to swap the
1694 * tree blocks between reloc tree and subvolume tree. Thus for tree
1695 * block COW, we COW at most from level 1 to root level for each tree.
1696 *
1697 * Thus the needed metadata size is at most root_level * nodesize,
1698 * and * 2 since we have two trees to COW.
1699 */
1700 reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1701 min_reserved = fs_info->nodesize * reserve_level * 2;
1702 memset(&next_key, 0, sizeof(next_key));
1703
1704 while (1) {
1705 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1706 BTRFS_RESERVE_FLUSH_LIMIT);
1707 if (ret) {
1708 err = ret;
1709 goto out;
1710 }
1711 trans = btrfs_start_transaction(root, 0);
1712 if (IS_ERR(trans)) {
1713 err = PTR_ERR(trans);
1714 trans = NULL;
1715 goto out;
1716 }
1717
1718 /*
1719 * At this point we no longer have a reloc_control, so we can't
1720 * depend on btrfs_init_reloc_root to update our last_trans.
1721 *
1722 * But that's ok, we started the trans handle on our
1723 * corresponding fs_root, which means it's been added to the
1724 * dirty list. At commit time we'll still call
1725 * btrfs_update_reloc_root() and update our root item
1726 * appropriately.
1727 */
1728 reloc_root->last_trans = trans->transid;
1729 trans->block_rsv = rc->block_rsv;
1730
1731 replaced = 0;
1732 max_level = level;
1733
1734 ret = walk_down_reloc_tree(reloc_root, path, &level);
1735 if (ret < 0) {
1736 err = ret;
1737 goto out;
1738 }
1739 if (ret > 0)
1740 break;
1741
1742 if (!find_next_key(path, level, &key) &&
1743 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1744 ret = 0;
1745 } else {
1746 ret = replace_path(trans, rc, root, reloc_root, path,
1747 &next_key, level, max_level);
1748 }
1749 if (ret < 0) {
1750 err = ret;
1751 goto out;
1752 }
1753
1754 if (ret > 0) {
1755 level = ret;
1756 btrfs_node_key_to_cpu(path->nodes[level], &key,
1757 path->slots[level]);
1758 replaced = 1;
1759 }
1760
1761 ret = walk_up_reloc_tree(reloc_root, path, &level);
1762 if (ret > 0)
1763 break;
1764
1765 BUG_ON(level == 0);
1766 /*
1767 * save the merging progress in the drop_progress.
1768 * this is OK since root refs == 1 in this case.
1769 */
1770 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1771 path->slots[level]);
1772 root_item->drop_level = level;
1773
1774 btrfs_end_transaction_throttle(trans);
1775 trans = NULL;
1776
1777 btrfs_btree_balance_dirty(fs_info);
1778
1779 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1780 invalidate_extent_cache(root, &key, &next_key);
1781 }
1782
1783 /*
1784 * handle the case only one block in the fs tree need to be
1785 * relocated and the block is tree root.
1786 */
1787 leaf = btrfs_lock_root_node(root);
1788 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1789 BTRFS_NESTING_COW);
1790 btrfs_tree_unlock(leaf);
1791 free_extent_buffer(leaf);
1792 if (ret < 0)
1793 err = ret;
1794 out:
1795 btrfs_free_path(path);
1796
1797 if (err == 0)
1798 insert_dirty_subvol(trans, rc, root);
1799
1800 if (trans)
1801 btrfs_end_transaction_throttle(trans);
1802
1803 btrfs_btree_balance_dirty(fs_info);
1804
1805 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1806 invalidate_extent_cache(root, &key, &next_key);
1807
1808 return err;
1809 }
1810
1811 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)1812 int prepare_to_merge(struct reloc_control *rc, int err)
1813 {
1814 struct btrfs_root *root = rc->extent_root;
1815 struct btrfs_fs_info *fs_info = root->fs_info;
1816 struct btrfs_root *reloc_root;
1817 struct btrfs_trans_handle *trans;
1818 LIST_HEAD(reloc_roots);
1819 u64 num_bytes = 0;
1820 int ret;
1821
1822 mutex_lock(&fs_info->reloc_mutex);
1823 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1824 rc->merging_rsv_size += rc->nodes_relocated * 2;
1825 mutex_unlock(&fs_info->reloc_mutex);
1826
1827 again:
1828 if (!err) {
1829 num_bytes = rc->merging_rsv_size;
1830 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1831 BTRFS_RESERVE_FLUSH_ALL);
1832 if (ret)
1833 err = ret;
1834 }
1835
1836 trans = btrfs_join_transaction(rc->extent_root);
1837 if (IS_ERR(trans)) {
1838 if (!err)
1839 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1840 num_bytes, NULL);
1841 return PTR_ERR(trans);
1842 }
1843
1844 if (!err) {
1845 if (num_bytes != rc->merging_rsv_size) {
1846 btrfs_end_transaction(trans);
1847 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1848 num_bytes, NULL);
1849 goto again;
1850 }
1851 }
1852
1853 rc->merge_reloc_tree = 1;
1854
1855 while (!list_empty(&rc->reloc_roots)) {
1856 reloc_root = list_entry(rc->reloc_roots.next,
1857 struct btrfs_root, root_list);
1858 list_del_init(&reloc_root->root_list);
1859
1860 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1861 false);
1862 BUG_ON(IS_ERR(root));
1863 BUG_ON(root->reloc_root != reloc_root);
1864
1865 /*
1866 * set reference count to 1, so btrfs_recover_relocation
1867 * knows it should resumes merging
1868 */
1869 if (!err)
1870 btrfs_set_root_refs(&reloc_root->root_item, 1);
1871 btrfs_update_reloc_root(trans, root);
1872
1873 list_add(&reloc_root->root_list, &reloc_roots);
1874 btrfs_put_root(root);
1875 }
1876
1877 list_splice(&reloc_roots, &rc->reloc_roots);
1878
1879 if (!err)
1880 btrfs_commit_transaction(trans);
1881 else
1882 btrfs_end_transaction(trans);
1883 return err;
1884 }
1885
1886 static noinline_for_stack
free_reloc_roots(struct list_head * list)1887 void free_reloc_roots(struct list_head *list)
1888 {
1889 struct btrfs_root *reloc_root, *tmp;
1890
1891 list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1892 __del_reloc_root(reloc_root);
1893 }
1894
1895 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)1896 void merge_reloc_roots(struct reloc_control *rc)
1897 {
1898 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1899 struct btrfs_root *root;
1900 struct btrfs_root *reloc_root;
1901 LIST_HEAD(reloc_roots);
1902 int found = 0;
1903 int ret = 0;
1904 again:
1905 root = rc->extent_root;
1906
1907 /*
1908 * this serializes us with btrfs_record_root_in_transaction,
1909 * we have to make sure nobody is in the middle of
1910 * adding their roots to the list while we are
1911 * doing this splice
1912 */
1913 mutex_lock(&fs_info->reloc_mutex);
1914 list_splice_init(&rc->reloc_roots, &reloc_roots);
1915 mutex_unlock(&fs_info->reloc_mutex);
1916
1917 while (!list_empty(&reloc_roots)) {
1918 found = 1;
1919 reloc_root = list_entry(reloc_roots.next,
1920 struct btrfs_root, root_list);
1921
1922 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1923 false);
1924 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1925 BUG_ON(IS_ERR(root));
1926 BUG_ON(root->reloc_root != reloc_root);
1927 ret = merge_reloc_root(rc, root);
1928 btrfs_put_root(root);
1929 if (ret) {
1930 if (list_empty(&reloc_root->root_list))
1931 list_add_tail(&reloc_root->root_list,
1932 &reloc_roots);
1933 goto out;
1934 }
1935 } else {
1936 if (!IS_ERR(root)) {
1937 if (root->reloc_root == reloc_root) {
1938 root->reloc_root = NULL;
1939 btrfs_put_root(reloc_root);
1940 }
1941 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1942 &root->state);
1943 btrfs_put_root(root);
1944 }
1945
1946 list_del_init(&reloc_root->root_list);
1947 /* Don't forget to queue this reloc root for cleanup */
1948 list_add_tail(&reloc_root->reloc_dirty_list,
1949 &rc->dirty_subvol_roots);
1950 }
1951 }
1952
1953 if (found) {
1954 found = 0;
1955 goto again;
1956 }
1957 out:
1958 if (ret) {
1959 btrfs_handle_fs_error(fs_info, ret, NULL);
1960 free_reloc_roots(&reloc_roots);
1961
1962 /* new reloc root may be added */
1963 mutex_lock(&fs_info->reloc_mutex);
1964 list_splice_init(&rc->reloc_roots, &reloc_roots);
1965 mutex_unlock(&fs_info->reloc_mutex);
1966 free_reloc_roots(&reloc_roots);
1967 }
1968
1969 /*
1970 * We used to have
1971 *
1972 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1973 *
1974 * here, but it's wrong. If we fail to start the transaction in
1975 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1976 * have actually been removed from the reloc_root_tree rb tree. This is
1977 * fine because we're bailing here, and we hold a reference on the root
1978 * for the list that holds it, so these roots will be cleaned up when we
1979 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
1980 * will be cleaned up on unmount.
1981 *
1982 * The remaining nodes will be cleaned up by free_reloc_control.
1983 */
1984 }
1985
free_block_list(struct rb_root * blocks)1986 static void free_block_list(struct rb_root *blocks)
1987 {
1988 struct tree_block *block;
1989 struct rb_node *rb_node;
1990 while ((rb_node = rb_first(blocks))) {
1991 block = rb_entry(rb_node, struct tree_block, rb_node);
1992 rb_erase(rb_node, blocks);
1993 kfree(block);
1994 }
1995 }
1996
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)1997 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1998 struct btrfs_root *reloc_root)
1999 {
2000 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2001 struct btrfs_root *root;
2002 int ret;
2003
2004 if (reloc_root->last_trans == trans->transid)
2005 return 0;
2006
2007 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2008 BUG_ON(IS_ERR(root));
2009 BUG_ON(root->reloc_root != reloc_root);
2010 ret = btrfs_record_root_in_trans(trans, root);
2011 btrfs_put_root(root);
2012
2013 return ret;
2014 }
2015
2016 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[])2017 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2018 struct reloc_control *rc,
2019 struct btrfs_backref_node *node,
2020 struct btrfs_backref_edge *edges[])
2021 {
2022 struct btrfs_backref_node *next;
2023 struct btrfs_root *root;
2024 int index = 0;
2025
2026 next = node;
2027 while (1) {
2028 cond_resched();
2029 next = walk_up_backref(next, edges, &index);
2030 root = next->root;
2031 BUG_ON(!root);
2032 BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state));
2033
2034 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2035 record_reloc_root_in_trans(trans, root);
2036 break;
2037 }
2038
2039 btrfs_record_root_in_trans(trans, root);
2040 root = root->reloc_root;
2041
2042 if (next->new_bytenr != root->node->start) {
2043 BUG_ON(next->new_bytenr);
2044 BUG_ON(!list_empty(&next->list));
2045 next->new_bytenr = root->node->start;
2046 btrfs_put_root(next->root);
2047 next->root = btrfs_grab_root(root);
2048 ASSERT(next->root);
2049 list_add_tail(&next->list,
2050 &rc->backref_cache.changed);
2051 mark_block_processed(rc, next);
2052 break;
2053 }
2054
2055 WARN_ON(1);
2056 root = NULL;
2057 next = walk_down_backref(edges, &index);
2058 if (!next || next->level <= node->level)
2059 break;
2060 }
2061 if (!root)
2062 return NULL;
2063
2064 next = node;
2065 /* setup backref node path for btrfs_reloc_cow_block */
2066 while (1) {
2067 rc->backref_cache.path[next->level] = next;
2068 if (--index < 0)
2069 break;
2070 next = edges[index]->node[UPPER];
2071 }
2072 return root;
2073 }
2074
2075 /*
2076 * Select a tree root for relocation.
2077 *
2078 * Return NULL if the block is not shareable. We should use do_relocation() in
2079 * this case.
2080 *
2081 * Return a tree root pointer if the block is shareable.
2082 * Return -ENOENT if the block is root of reloc tree.
2083 */
2084 static noinline_for_stack
select_one_root(struct btrfs_backref_node * node)2085 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2086 {
2087 struct btrfs_backref_node *next;
2088 struct btrfs_root *root;
2089 struct btrfs_root *fs_root = NULL;
2090 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2091 int index = 0;
2092
2093 next = node;
2094 while (1) {
2095 cond_resched();
2096 next = walk_up_backref(next, edges, &index);
2097 root = next->root;
2098 BUG_ON(!root);
2099
2100 /* No other choice for non-shareable tree */
2101 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2102 return root;
2103
2104 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2105 fs_root = root;
2106
2107 if (next != node)
2108 return NULL;
2109
2110 next = walk_down_backref(edges, &index);
2111 if (!next || next->level <= node->level)
2112 break;
2113 }
2114
2115 if (!fs_root)
2116 return ERR_PTR(-ENOENT);
2117 return fs_root;
2118 }
2119
2120 static noinline_for_stack
calcu_metadata_size(struct reloc_control * rc,struct btrfs_backref_node * node,int reserve)2121 u64 calcu_metadata_size(struct reloc_control *rc,
2122 struct btrfs_backref_node *node, int reserve)
2123 {
2124 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2125 struct btrfs_backref_node *next = node;
2126 struct btrfs_backref_edge *edge;
2127 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2128 u64 num_bytes = 0;
2129 int index = 0;
2130
2131 BUG_ON(reserve && node->processed);
2132
2133 while (next) {
2134 cond_resched();
2135 while (1) {
2136 if (next->processed && (reserve || next != node))
2137 break;
2138
2139 num_bytes += fs_info->nodesize;
2140
2141 if (list_empty(&next->upper))
2142 break;
2143
2144 edge = list_entry(next->upper.next,
2145 struct btrfs_backref_edge, list[LOWER]);
2146 edges[index++] = edge;
2147 next = edge->node[UPPER];
2148 }
2149 next = walk_down_backref(edges, &index);
2150 }
2151 return num_bytes;
2152 }
2153
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node)2154 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2155 struct reloc_control *rc,
2156 struct btrfs_backref_node *node)
2157 {
2158 struct btrfs_root *root = rc->extent_root;
2159 struct btrfs_fs_info *fs_info = root->fs_info;
2160 u64 num_bytes;
2161 int ret;
2162 u64 tmp;
2163
2164 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2165
2166 trans->block_rsv = rc->block_rsv;
2167 rc->reserved_bytes += num_bytes;
2168
2169 /*
2170 * We are under a transaction here so we can only do limited flushing.
2171 * If we get an enospc just kick back -EAGAIN so we know to drop the
2172 * transaction and try to refill when we can flush all the things.
2173 */
2174 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2175 BTRFS_RESERVE_FLUSH_LIMIT);
2176 if (ret) {
2177 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2178 while (tmp <= rc->reserved_bytes)
2179 tmp <<= 1;
2180 /*
2181 * only one thread can access block_rsv at this point,
2182 * so we don't need hold lock to protect block_rsv.
2183 * we expand more reservation size here to allow enough
2184 * space for relocation and we will return earlier in
2185 * enospc case.
2186 */
2187 rc->block_rsv->size = tmp + fs_info->nodesize *
2188 RELOCATION_RESERVED_NODES;
2189 return -EAGAIN;
2190 }
2191
2192 return 0;
2193 }
2194
2195 /*
2196 * relocate a block tree, and then update pointers in upper level
2197 * blocks that reference the block to point to the new location.
2198 *
2199 * if called by link_to_upper, the block has already been relocated.
2200 * in that case this function just updates pointers.
2201 */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2202 static int do_relocation(struct btrfs_trans_handle *trans,
2203 struct reloc_control *rc,
2204 struct btrfs_backref_node *node,
2205 struct btrfs_key *key,
2206 struct btrfs_path *path, int lowest)
2207 {
2208 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2209 struct btrfs_backref_node *upper;
2210 struct btrfs_backref_edge *edge;
2211 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2212 struct btrfs_root *root;
2213 struct extent_buffer *eb;
2214 u32 blocksize;
2215 u64 bytenr;
2216 u64 generation;
2217 int slot;
2218 int ret;
2219 int err = 0;
2220
2221 BUG_ON(lowest && node->eb);
2222
2223 path->lowest_level = node->level + 1;
2224 rc->backref_cache.path[node->level] = node;
2225 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2226 struct btrfs_key first_key;
2227 struct btrfs_ref ref = { 0 };
2228
2229 cond_resched();
2230
2231 upper = edge->node[UPPER];
2232 root = select_reloc_root(trans, rc, upper, edges);
2233 BUG_ON(!root);
2234
2235 if (upper->eb && !upper->locked) {
2236 if (!lowest) {
2237 ret = btrfs_bin_search(upper->eb, key, &slot);
2238 if (ret < 0) {
2239 err = ret;
2240 goto next;
2241 }
2242 BUG_ON(ret);
2243 bytenr = btrfs_node_blockptr(upper->eb, slot);
2244 if (node->eb->start == bytenr)
2245 goto next;
2246 }
2247 btrfs_backref_drop_node_buffer(upper);
2248 }
2249
2250 if (!upper->eb) {
2251 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2252 if (ret) {
2253 if (ret < 0)
2254 err = ret;
2255 else
2256 err = -ENOENT;
2257
2258 btrfs_release_path(path);
2259 break;
2260 }
2261
2262 if (!upper->eb) {
2263 upper->eb = path->nodes[upper->level];
2264 path->nodes[upper->level] = NULL;
2265 } else {
2266 BUG_ON(upper->eb != path->nodes[upper->level]);
2267 }
2268
2269 upper->locked = 1;
2270 path->locks[upper->level] = 0;
2271
2272 slot = path->slots[upper->level];
2273 btrfs_release_path(path);
2274 } else {
2275 ret = btrfs_bin_search(upper->eb, key, &slot);
2276 if (ret < 0) {
2277 err = ret;
2278 goto next;
2279 }
2280 BUG_ON(ret);
2281 }
2282
2283 bytenr = btrfs_node_blockptr(upper->eb, slot);
2284 if (lowest) {
2285 if (bytenr != node->bytenr) {
2286 btrfs_err(root->fs_info,
2287 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2288 bytenr, node->bytenr, slot,
2289 upper->eb->start);
2290 err = -EIO;
2291 goto next;
2292 }
2293 } else {
2294 if (node->eb->start == bytenr)
2295 goto next;
2296 }
2297
2298 blocksize = root->fs_info->nodesize;
2299 generation = btrfs_node_ptr_generation(upper->eb, slot);
2300 btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2301 eb = read_tree_block(fs_info, bytenr, generation,
2302 upper->level - 1, &first_key);
2303 if (IS_ERR(eb)) {
2304 err = PTR_ERR(eb);
2305 goto next;
2306 } else if (!extent_buffer_uptodate(eb)) {
2307 free_extent_buffer(eb);
2308 err = -EIO;
2309 goto next;
2310 }
2311 btrfs_tree_lock(eb);
2312 btrfs_set_lock_blocking_write(eb);
2313
2314 if (!node->eb) {
2315 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2316 slot, &eb, BTRFS_NESTING_COW);
2317 btrfs_tree_unlock(eb);
2318 free_extent_buffer(eb);
2319 if (ret < 0) {
2320 err = ret;
2321 goto next;
2322 }
2323 BUG_ON(node->eb != eb);
2324 } else {
2325 btrfs_set_node_blockptr(upper->eb, slot,
2326 node->eb->start);
2327 btrfs_set_node_ptr_generation(upper->eb, slot,
2328 trans->transid);
2329 btrfs_mark_buffer_dirty(upper->eb);
2330
2331 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2332 node->eb->start, blocksize,
2333 upper->eb->start);
2334 ref.real_root = root->root_key.objectid;
2335 btrfs_init_tree_ref(&ref, node->level,
2336 btrfs_header_owner(upper->eb));
2337 ret = btrfs_inc_extent_ref(trans, &ref);
2338 BUG_ON(ret);
2339
2340 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2341 BUG_ON(ret);
2342 }
2343 next:
2344 if (!upper->pending)
2345 btrfs_backref_drop_node_buffer(upper);
2346 else
2347 btrfs_backref_unlock_node_buffer(upper);
2348 if (err)
2349 break;
2350 }
2351
2352 if (!err && node->pending) {
2353 btrfs_backref_drop_node_buffer(node);
2354 list_move_tail(&node->list, &rc->backref_cache.changed);
2355 node->pending = 0;
2356 }
2357
2358 path->lowest_level = 0;
2359 BUG_ON(err == -ENOSPC);
2360 return err;
2361 }
2362
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_path * path)2363 static int link_to_upper(struct btrfs_trans_handle *trans,
2364 struct reloc_control *rc,
2365 struct btrfs_backref_node *node,
2366 struct btrfs_path *path)
2367 {
2368 struct btrfs_key key;
2369
2370 btrfs_node_key_to_cpu(node->eb, &key, 0);
2371 return do_relocation(trans, rc, node, &key, path, 0);
2372 }
2373
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2374 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2375 struct reloc_control *rc,
2376 struct btrfs_path *path, int err)
2377 {
2378 LIST_HEAD(list);
2379 struct btrfs_backref_cache *cache = &rc->backref_cache;
2380 struct btrfs_backref_node *node;
2381 int level;
2382 int ret;
2383
2384 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2385 while (!list_empty(&cache->pending[level])) {
2386 node = list_entry(cache->pending[level].next,
2387 struct btrfs_backref_node, list);
2388 list_move_tail(&node->list, &list);
2389 BUG_ON(!node->pending);
2390
2391 if (!err) {
2392 ret = link_to_upper(trans, rc, node, path);
2393 if (ret < 0)
2394 err = ret;
2395 }
2396 }
2397 list_splice_init(&list, &cache->pending[level]);
2398 }
2399 return err;
2400 }
2401
2402 /*
2403 * mark a block and all blocks directly/indirectly reference the block
2404 * as processed.
2405 */
update_processed_blocks(struct reloc_control * rc,struct btrfs_backref_node * node)2406 static void update_processed_blocks(struct reloc_control *rc,
2407 struct btrfs_backref_node *node)
2408 {
2409 struct btrfs_backref_node *next = node;
2410 struct btrfs_backref_edge *edge;
2411 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2412 int index = 0;
2413
2414 while (next) {
2415 cond_resched();
2416 while (1) {
2417 if (next->processed)
2418 break;
2419
2420 mark_block_processed(rc, next);
2421
2422 if (list_empty(&next->upper))
2423 break;
2424
2425 edge = list_entry(next->upper.next,
2426 struct btrfs_backref_edge, list[LOWER]);
2427 edges[index++] = edge;
2428 next = edge->node[UPPER];
2429 }
2430 next = walk_down_backref(edges, &index);
2431 }
2432 }
2433
tree_block_processed(u64 bytenr,struct reloc_control * rc)2434 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2435 {
2436 u32 blocksize = rc->extent_root->fs_info->nodesize;
2437
2438 if (test_range_bit(&rc->processed_blocks, bytenr,
2439 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2440 return 1;
2441 return 0;
2442 }
2443
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)2444 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2445 struct tree_block *block)
2446 {
2447 struct extent_buffer *eb;
2448
2449 eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2450 block->level, NULL);
2451 if (IS_ERR(eb)) {
2452 return PTR_ERR(eb);
2453 } else if (!extent_buffer_uptodate(eb)) {
2454 free_extent_buffer(eb);
2455 return -EIO;
2456 }
2457 if (block->level == 0)
2458 btrfs_item_key_to_cpu(eb, &block->key, 0);
2459 else
2460 btrfs_node_key_to_cpu(eb, &block->key, 0);
2461 free_extent_buffer(eb);
2462 block->key_ready = 1;
2463 return 0;
2464 }
2465
2466 /*
2467 * helper function to relocate a tree block
2468 */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path)2469 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2470 struct reloc_control *rc,
2471 struct btrfs_backref_node *node,
2472 struct btrfs_key *key,
2473 struct btrfs_path *path)
2474 {
2475 struct btrfs_root *root;
2476 int ret = 0;
2477
2478 if (!node)
2479 return 0;
2480
2481 /*
2482 * If we fail here we want to drop our backref_node because we are going
2483 * to start over and regenerate the tree for it.
2484 */
2485 ret = reserve_metadata_space(trans, rc, node);
2486 if (ret)
2487 goto out;
2488
2489 BUG_ON(node->processed);
2490 root = select_one_root(node);
2491 if (root == ERR_PTR(-ENOENT)) {
2492 update_processed_blocks(rc, node);
2493 goto out;
2494 }
2495
2496 if (root) {
2497 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2498 BUG_ON(node->new_bytenr);
2499 BUG_ON(!list_empty(&node->list));
2500 btrfs_record_root_in_trans(trans, root);
2501 root = root->reloc_root;
2502 node->new_bytenr = root->node->start;
2503 btrfs_put_root(node->root);
2504 node->root = btrfs_grab_root(root);
2505 ASSERT(node->root);
2506 list_add_tail(&node->list, &rc->backref_cache.changed);
2507 } else {
2508 path->lowest_level = node->level;
2509 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2510 btrfs_release_path(path);
2511 if (ret > 0)
2512 ret = 0;
2513 }
2514 if (!ret)
2515 update_processed_blocks(rc, node);
2516 } else {
2517 ret = do_relocation(trans, rc, node, key, path, 1);
2518 }
2519 out:
2520 if (ret || node->level == 0 || node->cowonly)
2521 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2522 return ret;
2523 }
2524
2525 /*
2526 * relocate a list of blocks
2527 */
2528 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)2529 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2530 struct reloc_control *rc, struct rb_root *blocks)
2531 {
2532 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2533 struct btrfs_backref_node *node;
2534 struct btrfs_path *path;
2535 struct tree_block *block;
2536 struct tree_block *next;
2537 int ret;
2538 int err = 0;
2539
2540 path = btrfs_alloc_path();
2541 if (!path) {
2542 err = -ENOMEM;
2543 goto out_free_blocks;
2544 }
2545
2546 /* Kick in readahead for tree blocks with missing keys */
2547 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2548 if (!block->key_ready)
2549 readahead_tree_block(fs_info, block->bytenr);
2550 }
2551
2552 /* Get first keys */
2553 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2554 if (!block->key_ready) {
2555 err = get_tree_block_key(fs_info, block);
2556 if (err)
2557 goto out_free_path;
2558 }
2559 }
2560
2561 /* Do tree relocation */
2562 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2563 node = build_backref_tree(rc, &block->key,
2564 block->level, block->bytenr);
2565 if (IS_ERR(node)) {
2566 err = PTR_ERR(node);
2567 goto out;
2568 }
2569
2570 ret = relocate_tree_block(trans, rc, node, &block->key,
2571 path);
2572 if (ret < 0) {
2573 err = ret;
2574 break;
2575 }
2576 }
2577 out:
2578 err = finish_pending_nodes(trans, rc, path, err);
2579
2580 out_free_path:
2581 btrfs_free_path(path);
2582 out_free_blocks:
2583 free_block_list(blocks);
2584 return err;
2585 }
2586
prealloc_file_extent_cluster(struct btrfs_inode * inode,struct file_extent_cluster * cluster)2587 static noinline_for_stack int prealloc_file_extent_cluster(
2588 struct btrfs_inode *inode,
2589 struct file_extent_cluster *cluster)
2590 {
2591 u64 alloc_hint = 0;
2592 u64 start;
2593 u64 end;
2594 u64 offset = inode->index_cnt;
2595 u64 num_bytes;
2596 int nr;
2597 int ret = 0;
2598 u64 prealloc_start = cluster->start - offset;
2599 u64 prealloc_end = cluster->end - offset;
2600 u64 cur_offset = prealloc_start;
2601
2602 BUG_ON(cluster->start != cluster->boundary[0]);
2603 ret = btrfs_alloc_data_chunk_ondemand(inode,
2604 prealloc_end + 1 - prealloc_start);
2605 if (ret)
2606 return ret;
2607
2608 inode_lock(&inode->vfs_inode);
2609 for (nr = 0; nr < cluster->nr; nr++) {
2610 start = cluster->boundary[nr] - offset;
2611 if (nr + 1 < cluster->nr)
2612 end = cluster->boundary[nr + 1] - 1 - offset;
2613 else
2614 end = cluster->end - offset;
2615
2616 lock_extent(&inode->io_tree, start, end);
2617 num_bytes = end + 1 - start;
2618 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2619 num_bytes, num_bytes,
2620 end + 1, &alloc_hint);
2621 cur_offset = end + 1;
2622 unlock_extent(&inode->io_tree, start, end);
2623 if (ret)
2624 break;
2625 }
2626 inode_unlock(&inode->vfs_inode);
2627
2628 if (cur_offset < prealloc_end)
2629 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2630 prealloc_end + 1 - cur_offset);
2631 return ret;
2632 }
2633
2634 static noinline_for_stack
setup_extent_mapping(struct inode * inode,u64 start,u64 end,u64 block_start)2635 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2636 u64 block_start)
2637 {
2638 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2639 struct extent_map *em;
2640 int ret = 0;
2641
2642 em = alloc_extent_map();
2643 if (!em)
2644 return -ENOMEM;
2645
2646 em->start = start;
2647 em->len = end + 1 - start;
2648 em->block_len = em->len;
2649 em->block_start = block_start;
2650 set_bit(EXTENT_FLAG_PINNED, &em->flags);
2651
2652 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2653 while (1) {
2654 write_lock(&em_tree->lock);
2655 ret = add_extent_mapping(em_tree, em, 0);
2656 write_unlock(&em_tree->lock);
2657 if (ret != -EEXIST) {
2658 free_extent_map(em);
2659 break;
2660 }
2661 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2662 }
2663 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2664 return ret;
2665 }
2666
2667 /*
2668 * Allow error injection to test balance cancellation
2669 */
btrfs_should_cancel_balance(struct btrfs_fs_info * fs_info)2670 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2671 {
2672 return atomic_read(&fs_info->balance_cancel_req) ||
2673 fatal_signal_pending(current);
2674 }
2675 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2676
relocate_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)2677 static int relocate_file_extent_cluster(struct inode *inode,
2678 struct file_extent_cluster *cluster)
2679 {
2680 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2681 u64 page_start;
2682 u64 page_end;
2683 u64 offset = BTRFS_I(inode)->index_cnt;
2684 unsigned long index;
2685 unsigned long last_index;
2686 struct page *page;
2687 struct file_ra_state *ra;
2688 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2689 int nr = 0;
2690 int ret = 0;
2691
2692 if (!cluster->nr)
2693 return 0;
2694
2695 ra = kzalloc(sizeof(*ra), GFP_NOFS);
2696 if (!ra)
2697 return -ENOMEM;
2698
2699 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2700 if (ret)
2701 goto out;
2702
2703 file_ra_state_init(ra, inode->i_mapping);
2704
2705 ret = setup_extent_mapping(inode, cluster->start - offset,
2706 cluster->end - offset, cluster->start);
2707 if (ret)
2708 goto out;
2709
2710 index = (cluster->start - offset) >> PAGE_SHIFT;
2711 last_index = (cluster->end - offset) >> PAGE_SHIFT;
2712 while (index <= last_index) {
2713 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2714 PAGE_SIZE);
2715 if (ret)
2716 goto out;
2717
2718 page = find_lock_page(inode->i_mapping, index);
2719 if (!page) {
2720 page_cache_sync_readahead(inode->i_mapping,
2721 ra, NULL, index,
2722 last_index + 1 - index);
2723 page = find_or_create_page(inode->i_mapping, index,
2724 mask);
2725 if (!page) {
2726 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2727 PAGE_SIZE, true);
2728 btrfs_delalloc_release_extents(BTRFS_I(inode),
2729 PAGE_SIZE);
2730 ret = -ENOMEM;
2731 goto out;
2732 }
2733 }
2734
2735 if (PageReadahead(page)) {
2736 page_cache_async_readahead(inode->i_mapping,
2737 ra, NULL, page, index,
2738 last_index + 1 - index);
2739 }
2740
2741 if (!PageUptodate(page)) {
2742 btrfs_readpage(NULL, page);
2743 lock_page(page);
2744 if (!PageUptodate(page)) {
2745 unlock_page(page);
2746 put_page(page);
2747 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2748 PAGE_SIZE, true);
2749 btrfs_delalloc_release_extents(BTRFS_I(inode),
2750 PAGE_SIZE);
2751 ret = -EIO;
2752 goto out;
2753 }
2754 }
2755
2756 page_start = page_offset(page);
2757 page_end = page_start + PAGE_SIZE - 1;
2758
2759 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2760
2761 set_page_extent_mapped(page);
2762
2763 if (nr < cluster->nr &&
2764 page_start + offset == cluster->boundary[nr]) {
2765 set_extent_bits(&BTRFS_I(inode)->io_tree,
2766 page_start, page_end,
2767 EXTENT_BOUNDARY);
2768 nr++;
2769 }
2770
2771 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2772 page_end, 0, NULL);
2773 if (ret) {
2774 unlock_page(page);
2775 put_page(page);
2776 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2777 PAGE_SIZE, true);
2778 btrfs_delalloc_release_extents(BTRFS_I(inode),
2779 PAGE_SIZE);
2780
2781 clear_extent_bits(&BTRFS_I(inode)->io_tree,
2782 page_start, page_end,
2783 EXTENT_LOCKED | EXTENT_BOUNDARY);
2784 goto out;
2785
2786 }
2787 set_page_dirty(page);
2788
2789 unlock_extent(&BTRFS_I(inode)->io_tree,
2790 page_start, page_end);
2791 unlock_page(page);
2792 put_page(page);
2793
2794 index++;
2795 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2796 balance_dirty_pages_ratelimited(inode->i_mapping);
2797 btrfs_throttle(fs_info);
2798 if (btrfs_should_cancel_balance(fs_info)) {
2799 ret = -ECANCELED;
2800 goto out;
2801 }
2802 }
2803 WARN_ON(nr != cluster->nr);
2804 out:
2805 kfree(ra);
2806 return ret;
2807 }
2808
2809 static noinline_for_stack
relocate_data_extent(struct inode * inode,struct btrfs_key * extent_key,struct file_extent_cluster * cluster)2810 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
2811 struct file_extent_cluster *cluster)
2812 {
2813 int ret;
2814
2815 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2816 ret = relocate_file_extent_cluster(inode, cluster);
2817 if (ret)
2818 return ret;
2819 cluster->nr = 0;
2820 }
2821
2822 if (!cluster->nr)
2823 cluster->start = extent_key->objectid;
2824 else
2825 BUG_ON(cluster->nr >= MAX_EXTENTS);
2826 cluster->end = extent_key->objectid + extent_key->offset - 1;
2827 cluster->boundary[cluster->nr] = extent_key->objectid;
2828 cluster->nr++;
2829
2830 if (cluster->nr >= MAX_EXTENTS) {
2831 ret = relocate_file_extent_cluster(inode, cluster);
2832 if (ret)
2833 return ret;
2834 cluster->nr = 0;
2835 }
2836 return 0;
2837 }
2838
2839 /*
2840 * helper to add a tree block to the list.
2841 * the major work is getting the generation and level of the block
2842 */
add_tree_block(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)2843 static int add_tree_block(struct reloc_control *rc,
2844 struct btrfs_key *extent_key,
2845 struct btrfs_path *path,
2846 struct rb_root *blocks)
2847 {
2848 struct extent_buffer *eb;
2849 struct btrfs_extent_item *ei;
2850 struct btrfs_tree_block_info *bi;
2851 struct tree_block *block;
2852 struct rb_node *rb_node;
2853 u32 item_size;
2854 int level = -1;
2855 u64 generation;
2856
2857 eb = path->nodes[0];
2858 item_size = btrfs_item_size_nr(eb, path->slots[0]);
2859
2860 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
2861 item_size >= sizeof(*ei) + sizeof(*bi)) {
2862 ei = btrfs_item_ptr(eb, path->slots[0],
2863 struct btrfs_extent_item);
2864 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
2865 bi = (struct btrfs_tree_block_info *)(ei + 1);
2866 level = btrfs_tree_block_level(eb, bi);
2867 } else {
2868 level = (int)extent_key->offset;
2869 }
2870 generation = btrfs_extent_generation(eb, ei);
2871 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
2872 btrfs_print_v0_err(eb->fs_info);
2873 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
2874 return -EINVAL;
2875 } else {
2876 BUG();
2877 }
2878
2879 btrfs_release_path(path);
2880
2881 BUG_ON(level == -1);
2882
2883 block = kmalloc(sizeof(*block), GFP_NOFS);
2884 if (!block)
2885 return -ENOMEM;
2886
2887 block->bytenr = extent_key->objectid;
2888 block->key.objectid = rc->extent_root->fs_info->nodesize;
2889 block->key.offset = generation;
2890 block->level = level;
2891 block->key_ready = 0;
2892
2893 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
2894 if (rb_node)
2895 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
2896 -EEXIST);
2897
2898 return 0;
2899 }
2900
2901 /*
2902 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2903 */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)2904 static int __add_tree_block(struct reloc_control *rc,
2905 u64 bytenr, u32 blocksize,
2906 struct rb_root *blocks)
2907 {
2908 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2909 struct btrfs_path *path;
2910 struct btrfs_key key;
2911 int ret;
2912 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2913
2914 if (tree_block_processed(bytenr, rc))
2915 return 0;
2916
2917 if (rb_simple_search(blocks, bytenr))
2918 return 0;
2919
2920 path = btrfs_alloc_path();
2921 if (!path)
2922 return -ENOMEM;
2923 again:
2924 key.objectid = bytenr;
2925 if (skinny) {
2926 key.type = BTRFS_METADATA_ITEM_KEY;
2927 key.offset = (u64)-1;
2928 } else {
2929 key.type = BTRFS_EXTENT_ITEM_KEY;
2930 key.offset = blocksize;
2931 }
2932
2933 path->search_commit_root = 1;
2934 path->skip_locking = 1;
2935 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2936 if (ret < 0)
2937 goto out;
2938
2939 if (ret > 0 && skinny) {
2940 if (path->slots[0]) {
2941 path->slots[0]--;
2942 btrfs_item_key_to_cpu(path->nodes[0], &key,
2943 path->slots[0]);
2944 if (key.objectid == bytenr &&
2945 (key.type == BTRFS_METADATA_ITEM_KEY ||
2946 (key.type == BTRFS_EXTENT_ITEM_KEY &&
2947 key.offset == blocksize)))
2948 ret = 0;
2949 }
2950
2951 if (ret) {
2952 skinny = false;
2953 btrfs_release_path(path);
2954 goto again;
2955 }
2956 }
2957 if (ret) {
2958 ASSERT(ret == 1);
2959 btrfs_print_leaf(path->nodes[0]);
2960 btrfs_err(fs_info,
2961 "tree block extent item (%llu) is not found in extent tree",
2962 bytenr);
2963 WARN_ON(1);
2964 ret = -EINVAL;
2965 goto out;
2966 }
2967
2968 ret = add_tree_block(rc, &key, path, blocks);
2969 out:
2970 btrfs_free_path(path);
2971 return ret;
2972 }
2973
delete_block_group_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group * block_group,struct inode * inode,u64 ino)2974 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
2975 struct btrfs_block_group *block_group,
2976 struct inode *inode,
2977 u64 ino)
2978 {
2979 struct btrfs_root *root = fs_info->tree_root;
2980 struct btrfs_trans_handle *trans;
2981 int ret = 0;
2982
2983 if (inode)
2984 goto truncate;
2985
2986 inode = btrfs_iget(fs_info->sb, ino, root);
2987 if (IS_ERR(inode))
2988 return -ENOENT;
2989
2990 truncate:
2991 ret = btrfs_check_trunc_cache_free_space(fs_info,
2992 &fs_info->global_block_rsv);
2993 if (ret)
2994 goto out;
2995
2996 trans = btrfs_join_transaction(root);
2997 if (IS_ERR(trans)) {
2998 ret = PTR_ERR(trans);
2999 goto out;
3000 }
3001
3002 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3003
3004 btrfs_end_transaction(trans);
3005 btrfs_btree_balance_dirty(fs_info);
3006 out:
3007 iput(inode);
3008 return ret;
3009 }
3010
3011 /*
3012 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3013 * cache inode, to avoid free space cache data extent blocking data relocation.
3014 */
delete_v1_space_cache(struct extent_buffer * leaf,struct btrfs_block_group * block_group,u64 data_bytenr)3015 static int delete_v1_space_cache(struct extent_buffer *leaf,
3016 struct btrfs_block_group *block_group,
3017 u64 data_bytenr)
3018 {
3019 u64 space_cache_ino;
3020 struct btrfs_file_extent_item *ei;
3021 struct btrfs_key key;
3022 bool found = false;
3023 int i;
3024 int ret;
3025
3026 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3027 return 0;
3028
3029 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3030 btrfs_item_key_to_cpu(leaf, &key, i);
3031 if (key.type != BTRFS_EXTENT_DATA_KEY)
3032 continue;
3033 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3034 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG &&
3035 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3036 found = true;
3037 space_cache_ino = key.objectid;
3038 break;
3039 }
3040 }
3041 if (!found)
3042 return -ENOENT;
3043 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3044 space_cache_ino);
3045 return ret;
3046 }
3047
3048 /*
3049 * helper to find all tree blocks that reference a given data extent
3050 */
3051 static noinline_for_stack
add_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3052 int add_data_references(struct reloc_control *rc,
3053 struct btrfs_key *extent_key,
3054 struct btrfs_path *path,
3055 struct rb_root *blocks)
3056 {
3057 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3058 struct ulist *leaves = NULL;
3059 struct ulist_iterator leaf_uiter;
3060 struct ulist_node *ref_node = NULL;
3061 const u32 blocksize = fs_info->nodesize;
3062 int ret = 0;
3063
3064 btrfs_release_path(path);
3065 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3066 0, &leaves, NULL, true);
3067 if (ret < 0)
3068 return ret;
3069
3070 ULIST_ITER_INIT(&leaf_uiter);
3071 while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3072 struct extent_buffer *eb;
3073
3074 eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL);
3075 if (IS_ERR(eb)) {
3076 ret = PTR_ERR(eb);
3077 break;
3078 }
3079 ret = delete_v1_space_cache(eb, rc->block_group,
3080 extent_key->objectid);
3081 free_extent_buffer(eb);
3082 if (ret < 0)
3083 break;
3084 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3085 if (ret < 0)
3086 break;
3087 }
3088 if (ret < 0)
3089 free_block_list(blocks);
3090 ulist_free(leaves);
3091 return ret;
3092 }
3093
3094 /*
3095 * helper to find next unprocessed extent
3096 */
3097 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3098 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3099 struct btrfs_key *extent_key)
3100 {
3101 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3102 struct btrfs_key key;
3103 struct extent_buffer *leaf;
3104 u64 start, end, last;
3105 int ret;
3106
3107 last = rc->block_group->start + rc->block_group->length;
3108 while (1) {
3109 cond_resched();
3110 if (rc->search_start >= last) {
3111 ret = 1;
3112 break;
3113 }
3114
3115 key.objectid = rc->search_start;
3116 key.type = BTRFS_EXTENT_ITEM_KEY;
3117 key.offset = 0;
3118
3119 path->search_commit_root = 1;
3120 path->skip_locking = 1;
3121 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3122 0, 0);
3123 if (ret < 0)
3124 break;
3125 next:
3126 leaf = path->nodes[0];
3127 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3128 ret = btrfs_next_leaf(rc->extent_root, path);
3129 if (ret != 0)
3130 break;
3131 leaf = path->nodes[0];
3132 }
3133
3134 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3135 if (key.objectid >= last) {
3136 ret = 1;
3137 break;
3138 }
3139
3140 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3141 key.type != BTRFS_METADATA_ITEM_KEY) {
3142 path->slots[0]++;
3143 goto next;
3144 }
3145
3146 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3147 key.objectid + key.offset <= rc->search_start) {
3148 path->slots[0]++;
3149 goto next;
3150 }
3151
3152 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3153 key.objectid + fs_info->nodesize <=
3154 rc->search_start) {
3155 path->slots[0]++;
3156 goto next;
3157 }
3158
3159 ret = find_first_extent_bit(&rc->processed_blocks,
3160 key.objectid, &start, &end,
3161 EXTENT_DIRTY, NULL);
3162
3163 if (ret == 0 && start <= key.objectid) {
3164 btrfs_release_path(path);
3165 rc->search_start = end + 1;
3166 } else {
3167 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3168 rc->search_start = key.objectid + key.offset;
3169 else
3170 rc->search_start = key.objectid +
3171 fs_info->nodesize;
3172 memcpy(extent_key, &key, sizeof(key));
3173 return 0;
3174 }
3175 }
3176 btrfs_release_path(path);
3177 return ret;
3178 }
3179
set_reloc_control(struct reloc_control * rc)3180 static void set_reloc_control(struct reloc_control *rc)
3181 {
3182 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3183
3184 mutex_lock(&fs_info->reloc_mutex);
3185 fs_info->reloc_ctl = rc;
3186 mutex_unlock(&fs_info->reloc_mutex);
3187 }
3188
unset_reloc_control(struct reloc_control * rc)3189 static void unset_reloc_control(struct reloc_control *rc)
3190 {
3191 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3192
3193 mutex_lock(&fs_info->reloc_mutex);
3194 fs_info->reloc_ctl = NULL;
3195 mutex_unlock(&fs_info->reloc_mutex);
3196 }
3197
check_extent_flags(u64 flags)3198 static int check_extent_flags(u64 flags)
3199 {
3200 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3201 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3202 return 1;
3203 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3204 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3205 return 1;
3206 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3207 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3208 return 1;
3209 return 0;
3210 }
3211
3212 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)3213 int prepare_to_relocate(struct reloc_control *rc)
3214 {
3215 struct btrfs_trans_handle *trans;
3216 int ret;
3217
3218 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3219 BTRFS_BLOCK_RSV_TEMP);
3220 if (!rc->block_rsv)
3221 return -ENOMEM;
3222
3223 memset(&rc->cluster, 0, sizeof(rc->cluster));
3224 rc->search_start = rc->block_group->start;
3225 rc->extents_found = 0;
3226 rc->nodes_relocated = 0;
3227 rc->merging_rsv_size = 0;
3228 rc->reserved_bytes = 0;
3229 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3230 RELOCATION_RESERVED_NODES;
3231 ret = btrfs_block_rsv_refill(rc->extent_root,
3232 rc->block_rsv, rc->block_rsv->size,
3233 BTRFS_RESERVE_FLUSH_ALL);
3234 if (ret)
3235 return ret;
3236
3237 rc->create_reloc_tree = 1;
3238 set_reloc_control(rc);
3239
3240 trans = btrfs_join_transaction(rc->extent_root);
3241 if (IS_ERR(trans)) {
3242 unset_reloc_control(rc);
3243 /*
3244 * extent tree is not a ref_cow tree and has no reloc_root to
3245 * cleanup. And callers are responsible to free the above
3246 * block rsv.
3247 */
3248 return PTR_ERR(trans);
3249 }
3250 btrfs_commit_transaction(trans);
3251 return 0;
3252 }
3253
relocate_block_group(struct reloc_control * rc)3254 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3255 {
3256 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3257 struct rb_root blocks = RB_ROOT;
3258 struct btrfs_key key;
3259 struct btrfs_trans_handle *trans = NULL;
3260 struct btrfs_path *path;
3261 struct btrfs_extent_item *ei;
3262 u64 flags;
3263 u32 item_size;
3264 int ret;
3265 int err = 0;
3266 int progress = 0;
3267
3268 path = btrfs_alloc_path();
3269 if (!path)
3270 return -ENOMEM;
3271 path->reada = READA_FORWARD;
3272
3273 ret = prepare_to_relocate(rc);
3274 if (ret) {
3275 err = ret;
3276 goto out_free;
3277 }
3278
3279 while (1) {
3280 rc->reserved_bytes = 0;
3281 ret = btrfs_block_rsv_refill(rc->extent_root,
3282 rc->block_rsv, rc->block_rsv->size,
3283 BTRFS_RESERVE_FLUSH_ALL);
3284 if (ret) {
3285 err = ret;
3286 break;
3287 }
3288 progress++;
3289 trans = btrfs_start_transaction(rc->extent_root, 0);
3290 if (IS_ERR(trans)) {
3291 err = PTR_ERR(trans);
3292 trans = NULL;
3293 break;
3294 }
3295 restart:
3296 if (update_backref_cache(trans, &rc->backref_cache)) {
3297 btrfs_end_transaction(trans);
3298 trans = NULL;
3299 continue;
3300 }
3301
3302 ret = find_next_extent(rc, path, &key);
3303 if (ret < 0)
3304 err = ret;
3305 if (ret != 0)
3306 break;
3307
3308 rc->extents_found++;
3309
3310 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3311 struct btrfs_extent_item);
3312 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3313 if (item_size >= sizeof(*ei)) {
3314 flags = btrfs_extent_flags(path->nodes[0], ei);
3315 ret = check_extent_flags(flags);
3316 BUG_ON(ret);
3317 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3318 err = -EINVAL;
3319 btrfs_print_v0_err(trans->fs_info);
3320 btrfs_abort_transaction(trans, err);
3321 break;
3322 } else {
3323 BUG();
3324 }
3325
3326 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3327 ret = add_tree_block(rc, &key, path, &blocks);
3328 } else if (rc->stage == UPDATE_DATA_PTRS &&
3329 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3330 ret = add_data_references(rc, &key, path, &blocks);
3331 } else {
3332 btrfs_release_path(path);
3333 ret = 0;
3334 }
3335 if (ret < 0) {
3336 err = ret;
3337 break;
3338 }
3339
3340 if (!RB_EMPTY_ROOT(&blocks)) {
3341 ret = relocate_tree_blocks(trans, rc, &blocks);
3342 if (ret < 0) {
3343 if (ret != -EAGAIN) {
3344 err = ret;
3345 break;
3346 }
3347 rc->extents_found--;
3348 rc->search_start = key.objectid;
3349 }
3350 }
3351
3352 btrfs_end_transaction_throttle(trans);
3353 btrfs_btree_balance_dirty(fs_info);
3354 trans = NULL;
3355
3356 if (rc->stage == MOVE_DATA_EXTENTS &&
3357 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3358 rc->found_file_extent = 1;
3359 ret = relocate_data_extent(rc->data_inode,
3360 &key, &rc->cluster);
3361 if (ret < 0) {
3362 err = ret;
3363 break;
3364 }
3365 }
3366 if (btrfs_should_cancel_balance(fs_info)) {
3367 err = -ECANCELED;
3368 break;
3369 }
3370 }
3371 if (trans && progress && err == -ENOSPC) {
3372 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3373 if (ret == 1) {
3374 err = 0;
3375 progress = 0;
3376 goto restart;
3377 }
3378 }
3379
3380 btrfs_release_path(path);
3381 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3382
3383 if (trans) {
3384 btrfs_end_transaction_throttle(trans);
3385 btrfs_btree_balance_dirty(fs_info);
3386 }
3387
3388 if (!err) {
3389 ret = relocate_file_extent_cluster(rc->data_inode,
3390 &rc->cluster);
3391 if (ret < 0)
3392 err = ret;
3393 }
3394
3395 rc->create_reloc_tree = 0;
3396 set_reloc_control(rc);
3397
3398 btrfs_backref_release_cache(&rc->backref_cache);
3399 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3400
3401 /*
3402 * Even in the case when the relocation is cancelled, we should all go
3403 * through prepare_to_merge() and merge_reloc_roots().
3404 *
3405 * For error (including cancelled balance), prepare_to_merge() will
3406 * mark all reloc trees orphan, then queue them for cleanup in
3407 * merge_reloc_roots()
3408 */
3409 err = prepare_to_merge(rc, err);
3410
3411 merge_reloc_roots(rc);
3412
3413 rc->merge_reloc_tree = 0;
3414 unset_reloc_control(rc);
3415 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3416
3417 /* get rid of pinned extents */
3418 trans = btrfs_join_transaction(rc->extent_root);
3419 if (IS_ERR(trans)) {
3420 err = PTR_ERR(trans);
3421 goto out_free;
3422 }
3423 btrfs_commit_transaction(trans);
3424 out_free:
3425 ret = clean_dirty_subvols(rc);
3426 if (ret < 0 && !err)
3427 err = ret;
3428 btrfs_free_block_rsv(fs_info, rc->block_rsv);
3429 btrfs_free_path(path);
3430 return err;
3431 }
3432
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3433 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3434 struct btrfs_root *root, u64 objectid)
3435 {
3436 struct btrfs_path *path;
3437 struct btrfs_inode_item *item;
3438 struct extent_buffer *leaf;
3439 int ret;
3440
3441 path = btrfs_alloc_path();
3442 if (!path)
3443 return -ENOMEM;
3444
3445 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3446 if (ret)
3447 goto out;
3448
3449 leaf = path->nodes[0];
3450 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3451 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3452 btrfs_set_inode_generation(leaf, item, 1);
3453 btrfs_set_inode_size(leaf, item, 0);
3454 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3455 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3456 BTRFS_INODE_PREALLOC);
3457 btrfs_mark_buffer_dirty(leaf);
3458 out:
3459 btrfs_free_path(path);
3460 return ret;
3461 }
3462
3463 /*
3464 * helper to create inode for data relocation.
3465 * the inode is in data relocation tree and its link count is 0
3466 */
3467 static noinline_for_stack
create_reloc_inode(struct btrfs_fs_info * fs_info,struct btrfs_block_group * group)3468 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3469 struct btrfs_block_group *group)
3470 {
3471 struct inode *inode = NULL;
3472 struct btrfs_trans_handle *trans;
3473 struct btrfs_root *root;
3474 u64 objectid;
3475 int err = 0;
3476
3477 root = btrfs_grab_root(fs_info->data_reloc_root);
3478 trans = btrfs_start_transaction(root, 6);
3479 if (IS_ERR(trans)) {
3480 btrfs_put_root(root);
3481 return ERR_CAST(trans);
3482 }
3483
3484 err = btrfs_find_free_objectid(root, &objectid);
3485 if (err)
3486 goto out;
3487
3488 err = __insert_orphan_inode(trans, root, objectid);
3489 BUG_ON(err);
3490
3491 inode = btrfs_iget(fs_info->sb, objectid, root);
3492 BUG_ON(IS_ERR(inode));
3493 BTRFS_I(inode)->index_cnt = group->start;
3494
3495 err = btrfs_orphan_add(trans, BTRFS_I(inode));
3496 out:
3497 btrfs_put_root(root);
3498 btrfs_end_transaction(trans);
3499 btrfs_btree_balance_dirty(fs_info);
3500 if (err) {
3501 if (inode)
3502 iput(inode);
3503 inode = ERR_PTR(err);
3504 }
3505 return inode;
3506 }
3507
alloc_reloc_control(struct btrfs_fs_info * fs_info)3508 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3509 {
3510 struct reloc_control *rc;
3511
3512 rc = kzalloc(sizeof(*rc), GFP_NOFS);
3513 if (!rc)
3514 return NULL;
3515
3516 INIT_LIST_HEAD(&rc->reloc_roots);
3517 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3518 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3519 mapping_tree_init(&rc->reloc_root_tree);
3520 extent_io_tree_init(fs_info, &rc->processed_blocks,
3521 IO_TREE_RELOC_BLOCKS, NULL);
3522 return rc;
3523 }
3524
free_reloc_control(struct reloc_control * rc)3525 static void free_reloc_control(struct reloc_control *rc)
3526 {
3527 struct mapping_node *node, *tmp;
3528
3529 free_reloc_roots(&rc->reloc_roots);
3530 rbtree_postorder_for_each_entry_safe(node, tmp,
3531 &rc->reloc_root_tree.rb_root, rb_node)
3532 kfree(node);
3533
3534 kfree(rc);
3535 }
3536
3537 /*
3538 * Print the block group being relocated
3539 */
describe_relocation(struct btrfs_fs_info * fs_info,struct btrfs_block_group * block_group)3540 static void describe_relocation(struct btrfs_fs_info *fs_info,
3541 struct btrfs_block_group *block_group)
3542 {
3543 char buf[128] = {'\0'};
3544
3545 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3546
3547 btrfs_info(fs_info,
3548 "relocating block group %llu flags %s",
3549 block_group->start, buf);
3550 }
3551
stage_to_string(int stage)3552 static const char *stage_to_string(int stage)
3553 {
3554 if (stage == MOVE_DATA_EXTENTS)
3555 return "move data extents";
3556 if (stage == UPDATE_DATA_PTRS)
3557 return "update data pointers";
3558 return "unknown";
3559 }
3560
3561 /*
3562 * function to relocate all extents in a block group.
3563 */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start)3564 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3565 {
3566 struct btrfs_block_group *bg;
3567 struct btrfs_root *extent_root = fs_info->extent_root;
3568 struct reloc_control *rc;
3569 struct inode *inode;
3570 struct btrfs_path *path;
3571 int ret;
3572 int rw = 0;
3573 int err = 0;
3574
3575 bg = btrfs_lookup_block_group(fs_info, group_start);
3576 if (!bg)
3577 return -ENOENT;
3578
3579 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3580 btrfs_put_block_group(bg);
3581 return -ETXTBSY;
3582 }
3583
3584 rc = alloc_reloc_control(fs_info);
3585 if (!rc) {
3586 btrfs_put_block_group(bg);
3587 return -ENOMEM;
3588 }
3589
3590 rc->extent_root = extent_root;
3591 rc->block_group = bg;
3592
3593 ret = btrfs_inc_block_group_ro(rc->block_group, true);
3594 if (ret) {
3595 err = ret;
3596 goto out;
3597 }
3598 rw = 1;
3599
3600 path = btrfs_alloc_path();
3601 if (!path) {
3602 err = -ENOMEM;
3603 goto out;
3604 }
3605
3606 inode = lookup_free_space_inode(rc->block_group, path);
3607 btrfs_free_path(path);
3608
3609 if (!IS_ERR(inode))
3610 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3611 else
3612 ret = PTR_ERR(inode);
3613
3614 if (ret && ret != -ENOENT) {
3615 err = ret;
3616 goto out;
3617 }
3618
3619 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3620 if (IS_ERR(rc->data_inode)) {
3621 err = PTR_ERR(rc->data_inode);
3622 rc->data_inode = NULL;
3623 goto out;
3624 }
3625
3626 describe_relocation(fs_info, rc->block_group);
3627
3628 btrfs_wait_block_group_reservations(rc->block_group);
3629 btrfs_wait_nocow_writers(rc->block_group);
3630 btrfs_wait_ordered_roots(fs_info, U64_MAX,
3631 rc->block_group->start,
3632 rc->block_group->length);
3633
3634 while (1) {
3635 int finishes_stage;
3636
3637 mutex_lock(&fs_info->cleaner_mutex);
3638 ret = relocate_block_group(rc);
3639 mutex_unlock(&fs_info->cleaner_mutex);
3640 if (ret < 0)
3641 err = ret;
3642
3643 finishes_stage = rc->stage;
3644 /*
3645 * We may have gotten ENOSPC after we already dirtied some
3646 * extents. If writeout happens while we're relocating a
3647 * different block group we could end up hitting the
3648 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3649 * btrfs_reloc_cow_block. Make sure we write everything out
3650 * properly so we don't trip over this problem, and then break
3651 * out of the loop if we hit an error.
3652 */
3653 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3654 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3655 (u64)-1);
3656 if (ret)
3657 err = ret;
3658 invalidate_mapping_pages(rc->data_inode->i_mapping,
3659 0, -1);
3660 rc->stage = UPDATE_DATA_PTRS;
3661 }
3662
3663 if (err < 0)
3664 goto out;
3665
3666 if (rc->extents_found == 0)
3667 break;
3668
3669 btrfs_info(fs_info, "found %llu extents, stage: %s",
3670 rc->extents_found, stage_to_string(finishes_stage));
3671 }
3672
3673 WARN_ON(rc->block_group->pinned > 0);
3674 WARN_ON(rc->block_group->reserved > 0);
3675 WARN_ON(rc->block_group->used > 0);
3676 out:
3677 if (err && rw)
3678 btrfs_dec_block_group_ro(rc->block_group);
3679 iput(rc->data_inode);
3680 btrfs_put_block_group(rc->block_group);
3681 free_reloc_control(rc);
3682 return err;
3683 }
3684
mark_garbage_root(struct btrfs_root * root)3685 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
3686 {
3687 struct btrfs_fs_info *fs_info = root->fs_info;
3688 struct btrfs_trans_handle *trans;
3689 int ret, err;
3690
3691 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3692 if (IS_ERR(trans))
3693 return PTR_ERR(trans);
3694
3695 memset(&root->root_item.drop_progress, 0,
3696 sizeof(root->root_item.drop_progress));
3697 root->root_item.drop_level = 0;
3698 btrfs_set_root_refs(&root->root_item, 0);
3699 ret = btrfs_update_root(trans, fs_info->tree_root,
3700 &root->root_key, &root->root_item);
3701
3702 err = btrfs_end_transaction(trans);
3703 if (err)
3704 return err;
3705 return ret;
3706 }
3707
3708 /*
3709 * recover relocation interrupted by system crash.
3710 *
3711 * this function resumes merging reloc trees with corresponding fs trees.
3712 * this is important for keeping the sharing of tree blocks
3713 */
btrfs_recover_relocation(struct btrfs_root * root)3714 int btrfs_recover_relocation(struct btrfs_root *root)
3715 {
3716 struct btrfs_fs_info *fs_info = root->fs_info;
3717 LIST_HEAD(reloc_roots);
3718 struct btrfs_key key;
3719 struct btrfs_root *fs_root;
3720 struct btrfs_root *reloc_root;
3721 struct btrfs_path *path;
3722 struct extent_buffer *leaf;
3723 struct reloc_control *rc = NULL;
3724 struct btrfs_trans_handle *trans;
3725 int ret;
3726 int err = 0;
3727
3728 path = btrfs_alloc_path();
3729 if (!path)
3730 return -ENOMEM;
3731 path->reada = READA_BACK;
3732
3733 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3734 key.type = BTRFS_ROOT_ITEM_KEY;
3735 key.offset = (u64)-1;
3736
3737 while (1) {
3738 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
3739 path, 0, 0);
3740 if (ret < 0) {
3741 err = ret;
3742 goto out;
3743 }
3744 if (ret > 0) {
3745 if (path->slots[0] == 0)
3746 break;
3747 path->slots[0]--;
3748 }
3749 leaf = path->nodes[0];
3750 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3751 btrfs_release_path(path);
3752
3753 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3754 key.type != BTRFS_ROOT_ITEM_KEY)
3755 break;
3756
3757 reloc_root = btrfs_read_tree_root(root, &key);
3758 if (IS_ERR(reloc_root)) {
3759 err = PTR_ERR(reloc_root);
3760 goto out;
3761 }
3762
3763 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
3764 list_add(&reloc_root->root_list, &reloc_roots);
3765
3766 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3767 fs_root = btrfs_get_fs_root(fs_info,
3768 reloc_root->root_key.offset, false);
3769 if (IS_ERR(fs_root)) {
3770 ret = PTR_ERR(fs_root);
3771 if (ret != -ENOENT) {
3772 err = ret;
3773 goto out;
3774 }
3775 ret = mark_garbage_root(reloc_root);
3776 if (ret < 0) {
3777 err = ret;
3778 goto out;
3779 }
3780 } else {
3781 btrfs_put_root(fs_root);
3782 }
3783 }
3784
3785 if (key.offset == 0)
3786 break;
3787
3788 key.offset--;
3789 }
3790 btrfs_release_path(path);
3791
3792 if (list_empty(&reloc_roots))
3793 goto out;
3794
3795 rc = alloc_reloc_control(fs_info);
3796 if (!rc) {
3797 err = -ENOMEM;
3798 goto out;
3799 }
3800
3801 rc->extent_root = fs_info->extent_root;
3802
3803 set_reloc_control(rc);
3804
3805 trans = btrfs_join_transaction(rc->extent_root);
3806 if (IS_ERR(trans)) {
3807 err = PTR_ERR(trans);
3808 goto out_unset;
3809 }
3810
3811 rc->merge_reloc_tree = 1;
3812
3813 while (!list_empty(&reloc_roots)) {
3814 reloc_root = list_entry(reloc_roots.next,
3815 struct btrfs_root, root_list);
3816 list_del(&reloc_root->root_list);
3817
3818 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3819 list_add_tail(&reloc_root->root_list,
3820 &rc->reloc_roots);
3821 continue;
3822 }
3823
3824 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
3825 false);
3826 if (IS_ERR(fs_root)) {
3827 err = PTR_ERR(fs_root);
3828 list_add_tail(&reloc_root->root_list, &reloc_roots);
3829 btrfs_end_transaction(trans);
3830 goto out_unset;
3831 }
3832
3833 err = __add_reloc_root(reloc_root);
3834 BUG_ON(err < 0); /* -ENOMEM or logic error */
3835 fs_root->reloc_root = btrfs_grab_root(reloc_root);
3836 btrfs_put_root(fs_root);
3837 }
3838
3839 err = btrfs_commit_transaction(trans);
3840 if (err)
3841 goto out_unset;
3842
3843 merge_reloc_roots(rc);
3844
3845 unset_reloc_control(rc);
3846
3847 trans = btrfs_join_transaction(rc->extent_root);
3848 if (IS_ERR(trans)) {
3849 err = PTR_ERR(trans);
3850 goto out_clean;
3851 }
3852 err = btrfs_commit_transaction(trans);
3853 out_clean:
3854 ret = clean_dirty_subvols(rc);
3855 if (ret < 0 && !err)
3856 err = ret;
3857 out_unset:
3858 unset_reloc_control(rc);
3859 free_reloc_control(rc);
3860 out:
3861 free_reloc_roots(&reloc_roots);
3862
3863 btrfs_free_path(path);
3864
3865 if (err == 0) {
3866 /* cleanup orphan inode in data relocation tree */
3867 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
3868 ASSERT(fs_root);
3869 err = btrfs_orphan_cleanup(fs_root);
3870 btrfs_put_root(fs_root);
3871 }
3872 return err;
3873 }
3874
3875 /*
3876 * helper to add ordered checksum for data relocation.
3877 *
3878 * cloning checksum properly handles the nodatasum extents.
3879 * it also saves CPU time to re-calculate the checksum.
3880 */
btrfs_reloc_clone_csums(struct btrfs_inode * inode,u64 file_pos,u64 len)3881 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
3882 {
3883 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3884 struct btrfs_ordered_sum *sums;
3885 struct btrfs_ordered_extent *ordered;
3886 int ret;
3887 u64 disk_bytenr;
3888 u64 new_bytenr;
3889 LIST_HEAD(list);
3890
3891 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3892 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
3893
3894 disk_bytenr = file_pos + inode->index_cnt;
3895 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
3896 disk_bytenr + len - 1, &list, 0);
3897 if (ret)
3898 goto out;
3899
3900 while (!list_empty(&list)) {
3901 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3902 list_del_init(&sums->list);
3903
3904 /*
3905 * We need to offset the new_bytenr based on where the csum is.
3906 * We need to do this because we will read in entire prealloc
3907 * extents but we may have written to say the middle of the
3908 * prealloc extent, so we need to make sure the csum goes with
3909 * the right disk offset.
3910 *
3911 * We can do this because the data reloc inode refers strictly
3912 * to the on disk bytes, so we don't have to worry about
3913 * disk_len vs real len like with real inodes since it's all
3914 * disk length.
3915 */
3916 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
3917 sums->bytenr = new_bytenr;
3918
3919 btrfs_add_ordered_sum(ordered, sums);
3920 }
3921 out:
3922 btrfs_put_ordered_extent(ordered);
3923 return ret;
3924 }
3925
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow)3926 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3927 struct btrfs_root *root, struct extent_buffer *buf,
3928 struct extent_buffer *cow)
3929 {
3930 struct btrfs_fs_info *fs_info = root->fs_info;
3931 struct reloc_control *rc;
3932 struct btrfs_backref_node *node;
3933 int first_cow = 0;
3934 int level;
3935 int ret = 0;
3936
3937 rc = fs_info->reloc_ctl;
3938 if (!rc)
3939 return 0;
3940
3941 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
3942 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
3943
3944 level = btrfs_header_level(buf);
3945 if (btrfs_header_generation(buf) <=
3946 btrfs_root_last_snapshot(&root->root_item))
3947 first_cow = 1;
3948
3949 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
3950 rc->create_reloc_tree) {
3951 WARN_ON(!first_cow && level == 0);
3952
3953 node = rc->backref_cache.path[level];
3954 BUG_ON(node->bytenr != buf->start &&
3955 node->new_bytenr != buf->start);
3956
3957 btrfs_backref_drop_node_buffer(node);
3958 atomic_inc(&cow->refs);
3959 node->eb = cow;
3960 node->new_bytenr = cow->start;
3961
3962 if (!node->pending) {
3963 list_move_tail(&node->list,
3964 &rc->backref_cache.pending[level]);
3965 node->pending = 1;
3966 }
3967
3968 if (first_cow)
3969 mark_block_processed(rc, node);
3970
3971 if (first_cow && level > 0)
3972 rc->nodes_relocated += buf->len;
3973 }
3974
3975 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
3976 ret = replace_file_extents(trans, rc, root, cow);
3977 return ret;
3978 }
3979
3980 /*
3981 * called before creating snapshot. it calculates metadata reservation
3982 * required for relocating tree blocks in the snapshot
3983 */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)3984 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3985 u64 *bytes_to_reserve)
3986 {
3987 struct btrfs_root *root = pending->root;
3988 struct reloc_control *rc = root->fs_info->reloc_ctl;
3989
3990 if (!rc || !have_reloc_root(root))
3991 return;
3992
3993 if (!rc->merge_reloc_tree)
3994 return;
3995
3996 root = root->reloc_root;
3997 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
3998 /*
3999 * relocation is in the stage of merging trees. the space
4000 * used by merging a reloc tree is twice the size of
4001 * relocated tree nodes in the worst case. half for cowing
4002 * the reloc tree, half for cowing the fs tree. the space
4003 * used by cowing the reloc tree will be freed after the
4004 * tree is dropped. if we create snapshot, cowing the fs
4005 * tree may use more space than it frees. so we need
4006 * reserve extra space.
4007 */
4008 *bytes_to_reserve += rc->nodes_relocated;
4009 }
4010
4011 /*
4012 * called after snapshot is created. migrate block reservation
4013 * and create reloc root for the newly created snapshot
4014 *
4015 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4016 * references held on the reloc_root, one for root->reloc_root and one for
4017 * rc->reloc_roots.
4018 */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4019 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4020 struct btrfs_pending_snapshot *pending)
4021 {
4022 struct btrfs_root *root = pending->root;
4023 struct btrfs_root *reloc_root;
4024 struct btrfs_root *new_root;
4025 struct reloc_control *rc = root->fs_info->reloc_ctl;
4026 int ret;
4027
4028 if (!rc || !have_reloc_root(root))
4029 return 0;
4030
4031 rc = root->fs_info->reloc_ctl;
4032 rc->merging_rsv_size += rc->nodes_relocated;
4033
4034 if (rc->merge_reloc_tree) {
4035 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4036 rc->block_rsv,
4037 rc->nodes_relocated, true);
4038 if (ret)
4039 return ret;
4040 }
4041
4042 new_root = pending->snap;
4043 reloc_root = create_reloc_root(trans, root->reloc_root,
4044 new_root->root_key.objectid);
4045 if (IS_ERR(reloc_root))
4046 return PTR_ERR(reloc_root);
4047
4048 ret = __add_reloc_root(reloc_root);
4049 BUG_ON(ret < 0);
4050 new_root->reloc_root = btrfs_grab_root(reloc_root);
4051
4052 if (rc->create_reloc_tree)
4053 ret = clone_backref_node(trans, rc, root, reloc_root);
4054 return ret;
4055 }
4056