1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75 #include <net/secure_seq.h>
76 #include <net/tcp_memcontrol.h>
77
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83
84 #include <linux/crypto.h>
85 #include <linux/scatterlist.h>
86
87 int sysctl_tcp_tw_reuse __read_mostly;
88 int sysctl_tcp_low_latency __read_mostly;
89 EXPORT_SYMBOL(sysctl_tcp_low_latency);
90
91
92 #ifdef CONFIG_TCP_MD5SIG
93 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
94 __be32 addr);
95 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
96 __be32 daddr, __be32 saddr, const struct tcphdr *th);
97 #else
98 static inline
tcp_v4_md5_do_lookup(struct sock * sk,__be32 addr)99 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
100 {
101 return NULL;
102 }
103 #endif
104
105 struct inet_hashinfo tcp_hashinfo;
106 EXPORT_SYMBOL(tcp_hashinfo);
107
tcp_v4_init_sequence(const struct sk_buff * skb)108 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
109 {
110 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
111 ip_hdr(skb)->saddr,
112 tcp_hdr(skb)->dest,
113 tcp_hdr(skb)->source);
114 }
115
tcp_twsk_unique(struct sock * sk,struct sock * sktw,void * twp)116 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
117 {
118 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
119 struct tcp_sock *tp = tcp_sk(sk);
120
121 /* With PAWS, it is safe from the viewpoint
122 of data integrity. Even without PAWS it is safe provided sequence
123 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
124
125 Actually, the idea is close to VJ's one, only timestamp cache is
126 held not per host, but per port pair and TW bucket is used as state
127 holder.
128
129 If TW bucket has been already destroyed we fall back to VJ's scheme
130 and use initial timestamp retrieved from peer table.
131 */
132 if (tcptw->tw_ts_recent_stamp &&
133 (twp == NULL || (sysctl_tcp_tw_reuse &&
134 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
135 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
136 if (tp->write_seq == 0)
137 tp->write_seq = 1;
138 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
139 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
140 sock_hold(sktw);
141 return 1;
142 }
143
144 return 0;
145 }
146 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
147
148 /* This will initiate an outgoing connection. */
tcp_v4_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)149 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
150 {
151 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
152 struct inet_sock *inet = inet_sk(sk);
153 struct tcp_sock *tp = tcp_sk(sk);
154 __be16 orig_sport, orig_dport;
155 __be32 daddr, nexthop;
156 struct flowi4 *fl4;
157 struct rtable *rt;
158 int err;
159 struct ip_options_rcu *inet_opt;
160
161 if (addr_len < sizeof(struct sockaddr_in))
162 return -EINVAL;
163
164 if (usin->sin_family != AF_INET)
165 return -EAFNOSUPPORT;
166
167 nexthop = daddr = usin->sin_addr.s_addr;
168 inet_opt = rcu_dereference_protected(inet->inet_opt,
169 sock_owned_by_user(sk));
170 if (inet_opt && inet_opt->opt.srr) {
171 if (!daddr)
172 return -EINVAL;
173 nexthop = inet_opt->opt.faddr;
174 }
175
176 orig_sport = inet->inet_sport;
177 orig_dport = usin->sin_port;
178 fl4 = &inet->cork.fl.u.ip4;
179 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
180 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
181 IPPROTO_TCP,
182 orig_sport, orig_dport, sk, true);
183 if (IS_ERR(rt)) {
184 err = PTR_ERR(rt);
185 if (err == -ENETUNREACH)
186 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
187 return err;
188 }
189
190 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
191 ip_rt_put(rt);
192 return -ENETUNREACH;
193 }
194
195 if (!inet_opt || !inet_opt->opt.srr)
196 daddr = fl4->daddr;
197
198 if (!inet->inet_saddr)
199 inet->inet_saddr = fl4->saddr;
200 inet->inet_rcv_saddr = inet->inet_saddr;
201
202 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
203 /* Reset inherited state */
204 tp->rx_opt.ts_recent = 0;
205 tp->rx_opt.ts_recent_stamp = 0;
206 tp->write_seq = 0;
207 }
208
209 if (tcp_death_row.sysctl_tw_recycle &&
210 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
211 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
212 /*
213 * VJ's idea. We save last timestamp seen from
214 * the destination in peer table, when entering state
215 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
216 * when trying new connection.
217 */
218 if (peer) {
219 inet_peer_refcheck(peer);
220 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
221 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
222 tp->rx_opt.ts_recent = peer->tcp_ts;
223 }
224 }
225 }
226
227 inet->inet_dport = usin->sin_port;
228 inet->inet_daddr = daddr;
229
230 inet_csk(sk)->icsk_ext_hdr_len = 0;
231 if (inet_opt)
232 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
233
234 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
235
236 /* Socket identity is still unknown (sport may be zero).
237 * However we set state to SYN-SENT and not releasing socket
238 * lock select source port, enter ourselves into the hash tables and
239 * complete initialization after this.
240 */
241 tcp_set_state(sk, TCP_SYN_SENT);
242 err = inet_hash_connect(&tcp_death_row, sk);
243 if (err)
244 goto failure;
245
246 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
247 inet->inet_sport, inet->inet_dport, sk);
248 if (IS_ERR(rt)) {
249 err = PTR_ERR(rt);
250 rt = NULL;
251 goto failure;
252 }
253 /* OK, now commit destination to socket. */
254 sk->sk_gso_type = SKB_GSO_TCPV4;
255 sk_setup_caps(sk, &rt->dst);
256
257 if (!tp->write_seq)
258 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
259 inet->inet_daddr,
260 inet->inet_sport,
261 usin->sin_port);
262
263 inet->inet_id = tp->write_seq ^ jiffies;
264
265 err = tcp_connect(sk);
266 rt = NULL;
267 if (err)
268 goto failure;
269
270 return 0;
271
272 failure:
273 /*
274 * This unhashes the socket and releases the local port,
275 * if necessary.
276 */
277 tcp_set_state(sk, TCP_CLOSE);
278 ip_rt_put(rt);
279 sk->sk_route_caps = 0;
280 inet->inet_dport = 0;
281 return err;
282 }
283 EXPORT_SYMBOL(tcp_v4_connect);
284
285 /*
286 * This routine does path mtu discovery as defined in RFC1191.
287 */
do_pmtu_discovery(struct sock * sk,const struct iphdr * iph,u32 mtu)288 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
289 {
290 struct dst_entry *dst;
291 struct inet_sock *inet = inet_sk(sk);
292
293 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
294 * send out by Linux are always <576bytes so they should go through
295 * unfragmented).
296 */
297 if (sk->sk_state == TCP_LISTEN)
298 return;
299
300 /* We don't check in the destentry if pmtu discovery is forbidden
301 * on this route. We just assume that no packet_to_big packets
302 * are send back when pmtu discovery is not active.
303 * There is a small race when the user changes this flag in the
304 * route, but I think that's acceptable.
305 */
306 if ((dst = __sk_dst_check(sk, 0)) == NULL)
307 return;
308
309 dst->ops->update_pmtu(dst, mtu);
310
311 /* Something is about to be wrong... Remember soft error
312 * for the case, if this connection will not able to recover.
313 */
314 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
315 sk->sk_err_soft = EMSGSIZE;
316
317 mtu = dst_mtu(dst);
318
319 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
320 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
321 tcp_sync_mss(sk, mtu);
322
323 /* Resend the TCP packet because it's
324 * clear that the old packet has been
325 * dropped. This is the new "fast" path mtu
326 * discovery.
327 */
328 tcp_simple_retransmit(sk);
329 } /* else let the usual retransmit timer handle it */
330 }
331
332 /*
333 * This routine is called by the ICMP module when it gets some
334 * sort of error condition. If err < 0 then the socket should
335 * be closed and the error returned to the user. If err > 0
336 * it's just the icmp type << 8 | icmp code. After adjustment
337 * header points to the first 8 bytes of the tcp header. We need
338 * to find the appropriate port.
339 *
340 * The locking strategy used here is very "optimistic". When
341 * someone else accesses the socket the ICMP is just dropped
342 * and for some paths there is no check at all.
343 * A more general error queue to queue errors for later handling
344 * is probably better.
345 *
346 */
347
tcp_v4_err(struct sk_buff * icmp_skb,u32 info)348 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
349 {
350 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
351 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
352 struct inet_connection_sock *icsk;
353 struct tcp_sock *tp;
354 struct inet_sock *inet;
355 const int type = icmp_hdr(icmp_skb)->type;
356 const int code = icmp_hdr(icmp_skb)->code;
357 struct sock *sk;
358 struct sk_buff *skb;
359 __u32 seq;
360 __u32 remaining;
361 int err;
362 struct net *net = dev_net(icmp_skb->dev);
363
364 if (icmp_skb->len < (iph->ihl << 2) + 8) {
365 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
366 return;
367 }
368
369 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
370 iph->saddr, th->source, inet_iif(icmp_skb));
371 if (!sk) {
372 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
373 return;
374 }
375 if (sk->sk_state == TCP_TIME_WAIT) {
376 inet_twsk_put(inet_twsk(sk));
377 return;
378 }
379
380 bh_lock_sock(sk);
381 /* If too many ICMPs get dropped on busy
382 * servers this needs to be solved differently.
383 */
384 if (sock_owned_by_user(sk))
385 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
386
387 if (sk->sk_state == TCP_CLOSE)
388 goto out;
389
390 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
391 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
392 goto out;
393 }
394
395 icsk = inet_csk(sk);
396 tp = tcp_sk(sk);
397 seq = ntohl(th->seq);
398 if (sk->sk_state != TCP_LISTEN &&
399 !between(seq, tp->snd_una, tp->snd_nxt)) {
400 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
401 goto out;
402 }
403
404 switch (type) {
405 case ICMP_SOURCE_QUENCH:
406 /* Just silently ignore these. */
407 goto out;
408 case ICMP_PARAMETERPROB:
409 err = EPROTO;
410 break;
411 case ICMP_DEST_UNREACH:
412 if (code > NR_ICMP_UNREACH)
413 goto out;
414
415 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
416 if (!sock_owned_by_user(sk))
417 do_pmtu_discovery(sk, iph, info);
418 goto out;
419 }
420
421 err = icmp_err_convert[code].errno;
422 /* check if icmp_skb allows revert of backoff
423 * (see draft-zimmermann-tcp-lcd) */
424 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
425 break;
426 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
427 !icsk->icsk_backoff)
428 break;
429
430 if (sock_owned_by_user(sk))
431 break;
432
433 icsk->icsk_backoff--;
434 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
435 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
436 tcp_bound_rto(sk);
437
438 skb = tcp_write_queue_head(sk);
439 BUG_ON(!skb);
440
441 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
442 tcp_time_stamp - TCP_SKB_CB(skb)->when);
443
444 if (remaining) {
445 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
446 remaining, TCP_RTO_MAX);
447 } else {
448 /* RTO revert clocked out retransmission.
449 * Will retransmit now */
450 tcp_retransmit_timer(sk);
451 }
452
453 break;
454 case ICMP_TIME_EXCEEDED:
455 err = EHOSTUNREACH;
456 break;
457 default:
458 goto out;
459 }
460
461 switch (sk->sk_state) {
462 struct request_sock *req, **prev;
463 case TCP_LISTEN:
464 if (sock_owned_by_user(sk))
465 goto out;
466
467 req = inet_csk_search_req(sk, &prev, th->dest,
468 iph->daddr, iph->saddr);
469 if (!req)
470 goto out;
471
472 /* ICMPs are not backlogged, hence we cannot get
473 an established socket here.
474 */
475 WARN_ON(req->sk);
476
477 if (seq != tcp_rsk(req)->snt_isn) {
478 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
479 goto out;
480 }
481
482 /*
483 * Still in SYN_RECV, just remove it silently.
484 * There is no good way to pass the error to the newly
485 * created socket, and POSIX does not want network
486 * errors returned from accept().
487 */
488 inet_csk_reqsk_queue_drop(sk, req, prev);
489 goto out;
490
491 case TCP_SYN_SENT:
492 case TCP_SYN_RECV: /* Cannot happen.
493 It can f.e. if SYNs crossed.
494 */
495 if (!sock_owned_by_user(sk)) {
496 sk->sk_err = err;
497
498 sk->sk_error_report(sk);
499
500 tcp_done(sk);
501 } else {
502 sk->sk_err_soft = err;
503 }
504 goto out;
505 }
506
507 /* If we've already connected we will keep trying
508 * until we time out, or the user gives up.
509 *
510 * rfc1122 4.2.3.9 allows to consider as hard errors
511 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
512 * but it is obsoleted by pmtu discovery).
513 *
514 * Note, that in modern internet, where routing is unreliable
515 * and in each dark corner broken firewalls sit, sending random
516 * errors ordered by their masters even this two messages finally lose
517 * their original sense (even Linux sends invalid PORT_UNREACHs)
518 *
519 * Now we are in compliance with RFCs.
520 * --ANK (980905)
521 */
522
523 inet = inet_sk(sk);
524 if (!sock_owned_by_user(sk) && inet->recverr) {
525 sk->sk_err = err;
526 sk->sk_error_report(sk);
527 } else { /* Only an error on timeout */
528 sk->sk_err_soft = err;
529 }
530
531 out:
532 bh_unlock_sock(sk);
533 sock_put(sk);
534 }
535
__tcp_v4_send_check(struct sk_buff * skb,__be32 saddr,__be32 daddr)536 static void __tcp_v4_send_check(struct sk_buff *skb,
537 __be32 saddr, __be32 daddr)
538 {
539 struct tcphdr *th = tcp_hdr(skb);
540
541 if (skb->ip_summed == CHECKSUM_PARTIAL) {
542 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
543 skb->csum_start = skb_transport_header(skb) - skb->head;
544 skb->csum_offset = offsetof(struct tcphdr, check);
545 } else {
546 th->check = tcp_v4_check(skb->len, saddr, daddr,
547 csum_partial(th,
548 th->doff << 2,
549 skb->csum));
550 }
551 }
552
553 /* This routine computes an IPv4 TCP checksum. */
tcp_v4_send_check(struct sock * sk,struct sk_buff * skb)554 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
555 {
556 const struct inet_sock *inet = inet_sk(sk);
557
558 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
559 }
560 EXPORT_SYMBOL(tcp_v4_send_check);
561
tcp_v4_gso_send_check(struct sk_buff * skb)562 int tcp_v4_gso_send_check(struct sk_buff *skb)
563 {
564 const struct iphdr *iph;
565 struct tcphdr *th;
566
567 if (!pskb_may_pull(skb, sizeof(*th)))
568 return -EINVAL;
569
570 iph = ip_hdr(skb);
571 th = tcp_hdr(skb);
572
573 th->check = 0;
574 skb->ip_summed = CHECKSUM_PARTIAL;
575 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
576 return 0;
577 }
578
579 /*
580 * This routine will send an RST to the other tcp.
581 *
582 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
583 * for reset.
584 * Answer: if a packet caused RST, it is not for a socket
585 * existing in our system, if it is matched to a socket,
586 * it is just duplicate segment or bug in other side's TCP.
587 * So that we build reply only basing on parameters
588 * arrived with segment.
589 * Exception: precedence violation. We do not implement it in any case.
590 */
591
tcp_v4_send_reset(struct sock * sk,struct sk_buff * skb)592 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
593 {
594 const struct tcphdr *th = tcp_hdr(skb);
595 struct {
596 struct tcphdr th;
597 #ifdef CONFIG_TCP_MD5SIG
598 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
599 #endif
600 } rep;
601 struct ip_reply_arg arg;
602 #ifdef CONFIG_TCP_MD5SIG
603 struct tcp_md5sig_key *key;
604 #endif
605 struct net *net;
606
607 /* Never send a reset in response to a reset. */
608 if (th->rst)
609 return;
610
611 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
612 return;
613
614 /* Swap the send and the receive. */
615 memset(&rep, 0, sizeof(rep));
616 rep.th.dest = th->source;
617 rep.th.source = th->dest;
618 rep.th.doff = sizeof(struct tcphdr) / 4;
619 rep.th.rst = 1;
620
621 if (th->ack) {
622 rep.th.seq = th->ack_seq;
623 } else {
624 rep.th.ack = 1;
625 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
626 skb->len - (th->doff << 2));
627 }
628
629 memset(&arg, 0, sizeof(arg));
630 arg.iov[0].iov_base = (unsigned char *)&rep;
631 arg.iov[0].iov_len = sizeof(rep.th);
632
633 #ifdef CONFIG_TCP_MD5SIG
634 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->saddr) : NULL;
635 if (key) {
636 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
637 (TCPOPT_NOP << 16) |
638 (TCPOPT_MD5SIG << 8) |
639 TCPOLEN_MD5SIG);
640 /* Update length and the length the header thinks exists */
641 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
642 rep.th.doff = arg.iov[0].iov_len / 4;
643
644 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
645 key, ip_hdr(skb)->saddr,
646 ip_hdr(skb)->daddr, &rep.th);
647 }
648 #endif
649 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
650 ip_hdr(skb)->saddr, /* XXX */
651 arg.iov[0].iov_len, IPPROTO_TCP, 0);
652 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
653 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
654 /* When socket is gone, all binding information is lost.
655 * routing might fail in this case. using iif for oif to
656 * make sure we can deliver it
657 */
658 arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
659
660 net = dev_net(skb_dst(skb)->dev);
661 arg.tos = ip_hdr(skb)->tos;
662 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
663 &arg, arg.iov[0].iov_len);
664
665 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
666 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
667 }
668
669 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
670 outside socket context is ugly, certainly. What can I do?
671 */
672
tcp_v4_send_ack(struct sk_buff * skb,u32 seq,u32 ack,u32 win,u32 ts,int oif,struct tcp_md5sig_key * key,int reply_flags,u8 tos)673 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
674 u32 win, u32 ts, int oif,
675 struct tcp_md5sig_key *key,
676 int reply_flags, u8 tos)
677 {
678 const struct tcphdr *th = tcp_hdr(skb);
679 struct {
680 struct tcphdr th;
681 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
682 #ifdef CONFIG_TCP_MD5SIG
683 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
684 #endif
685 ];
686 } rep;
687 struct ip_reply_arg arg;
688 struct net *net = dev_net(skb_dst(skb)->dev);
689
690 memset(&rep.th, 0, sizeof(struct tcphdr));
691 memset(&arg, 0, sizeof(arg));
692
693 arg.iov[0].iov_base = (unsigned char *)&rep;
694 arg.iov[0].iov_len = sizeof(rep.th);
695 if (ts) {
696 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
697 (TCPOPT_TIMESTAMP << 8) |
698 TCPOLEN_TIMESTAMP);
699 rep.opt[1] = htonl(tcp_time_stamp);
700 rep.opt[2] = htonl(ts);
701 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
702 }
703
704 /* Swap the send and the receive. */
705 rep.th.dest = th->source;
706 rep.th.source = th->dest;
707 rep.th.doff = arg.iov[0].iov_len / 4;
708 rep.th.seq = htonl(seq);
709 rep.th.ack_seq = htonl(ack);
710 rep.th.ack = 1;
711 rep.th.window = htons(win);
712
713 #ifdef CONFIG_TCP_MD5SIG
714 if (key) {
715 int offset = (ts) ? 3 : 0;
716
717 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
718 (TCPOPT_NOP << 16) |
719 (TCPOPT_MD5SIG << 8) |
720 TCPOLEN_MD5SIG);
721 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
722 rep.th.doff = arg.iov[0].iov_len/4;
723
724 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
725 key, ip_hdr(skb)->saddr,
726 ip_hdr(skb)->daddr, &rep.th);
727 }
728 #endif
729 arg.flags = reply_flags;
730 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
731 ip_hdr(skb)->saddr, /* XXX */
732 arg.iov[0].iov_len, IPPROTO_TCP, 0);
733 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
734 if (oif)
735 arg.bound_dev_if = oif;
736 arg.tos = tos;
737 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
738 &arg, arg.iov[0].iov_len);
739
740 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
741 }
742
tcp_v4_timewait_ack(struct sock * sk,struct sk_buff * skb)743 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
744 {
745 struct inet_timewait_sock *tw = inet_twsk(sk);
746 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
747
748 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
749 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
750 tcptw->tw_ts_recent,
751 tw->tw_bound_dev_if,
752 tcp_twsk_md5_key(tcptw),
753 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
754 tw->tw_tos
755 );
756
757 inet_twsk_put(tw);
758 }
759
tcp_v4_reqsk_send_ack(struct sock * sk,struct sk_buff * skb,struct request_sock * req)760 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
761 struct request_sock *req)
762 {
763 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
764 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
765 req->ts_recent,
766 0,
767 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
768 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
769 ip_hdr(skb)->tos);
770 }
771
772 /*
773 * Send a SYN-ACK after having received a SYN.
774 * This still operates on a request_sock only, not on a big
775 * socket.
776 */
tcp_v4_send_synack(struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct request_values * rvp)777 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
778 struct request_sock *req,
779 struct request_values *rvp)
780 {
781 const struct inet_request_sock *ireq = inet_rsk(req);
782 struct flowi4 fl4;
783 int err = -1;
784 struct sk_buff * skb;
785
786 /* First, grab a route. */
787 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
788 return -1;
789
790 skb = tcp_make_synack(sk, dst, req, rvp);
791
792 if (skb) {
793 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
794
795 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
796 ireq->rmt_addr,
797 ireq->opt);
798 err = net_xmit_eval(err);
799 }
800
801 dst_release(dst);
802 return err;
803 }
804
tcp_v4_rtx_synack(struct sock * sk,struct request_sock * req,struct request_values * rvp)805 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
806 struct request_values *rvp)
807 {
808 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
809 return tcp_v4_send_synack(sk, NULL, req, rvp);
810 }
811
812 /*
813 * IPv4 request_sock destructor.
814 */
tcp_v4_reqsk_destructor(struct request_sock * req)815 static void tcp_v4_reqsk_destructor(struct request_sock *req)
816 {
817 kfree(inet_rsk(req)->opt);
818 }
819
820 /*
821 * Return 1 if a syncookie should be sent
822 */
tcp_syn_flood_action(struct sock * sk,const struct sk_buff * skb,const char * proto)823 int tcp_syn_flood_action(struct sock *sk,
824 const struct sk_buff *skb,
825 const char *proto)
826 {
827 const char *msg = "Dropping request";
828 int want_cookie = 0;
829 struct listen_sock *lopt;
830
831
832
833 #ifdef CONFIG_SYN_COOKIES
834 if (sysctl_tcp_syncookies) {
835 msg = "Sending cookies";
836 want_cookie = 1;
837 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
838 } else
839 #endif
840 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
841
842 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
843 if (!lopt->synflood_warned) {
844 lopt->synflood_warned = 1;
845 pr_info("%s: Possible SYN flooding on port %d. %s. "
846 " Check SNMP counters.\n",
847 proto, ntohs(tcp_hdr(skb)->dest), msg);
848 }
849 return want_cookie;
850 }
851 EXPORT_SYMBOL(tcp_syn_flood_action);
852
853 /*
854 * Save and compile IPv4 options into the request_sock if needed.
855 */
tcp_v4_save_options(struct sock * sk,struct sk_buff * skb)856 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
857 struct sk_buff *skb)
858 {
859 const struct ip_options *opt = &(IPCB(skb)->opt);
860 struct ip_options_rcu *dopt = NULL;
861
862 if (opt && opt->optlen) {
863 int opt_size = sizeof(*dopt) + opt->optlen;
864
865 dopt = kmalloc(opt_size, GFP_ATOMIC);
866 if (dopt) {
867 if (ip_options_echo(&dopt->opt, skb)) {
868 kfree(dopt);
869 dopt = NULL;
870 }
871 }
872 }
873 return dopt;
874 }
875
876 #ifdef CONFIG_TCP_MD5SIG
877 /*
878 * RFC2385 MD5 checksumming requires a mapping of
879 * IP address->MD5 Key.
880 * We need to maintain these in the sk structure.
881 */
882
883 /* Find the Key structure for an address. */
884 static struct tcp_md5sig_key *
tcp_v4_md5_do_lookup(struct sock * sk,__be32 addr)885 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
886 {
887 struct tcp_sock *tp = tcp_sk(sk);
888 int i;
889
890 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
891 return NULL;
892 for (i = 0; i < tp->md5sig_info->entries4; i++) {
893 if (tp->md5sig_info->keys4[i].addr == addr)
894 return &tp->md5sig_info->keys4[i].base;
895 }
896 return NULL;
897 }
898
tcp_v4_md5_lookup(struct sock * sk,struct sock * addr_sk)899 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
900 struct sock *addr_sk)
901 {
902 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
903 }
904 EXPORT_SYMBOL(tcp_v4_md5_lookup);
905
tcp_v4_reqsk_md5_lookup(struct sock * sk,struct request_sock * req)906 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
907 struct request_sock *req)
908 {
909 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
910 }
911
912 /* This can be called on a newly created socket, from other files */
tcp_v4_md5_do_add(struct sock * sk,__be32 addr,u8 * newkey,u8 newkeylen)913 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
914 u8 *newkey, u8 newkeylen)
915 {
916 /* Add Key to the list */
917 struct tcp_md5sig_key *key;
918 struct tcp_sock *tp = tcp_sk(sk);
919 struct tcp4_md5sig_key *keys;
920
921 key = tcp_v4_md5_do_lookup(sk, addr);
922 if (key) {
923 /* Pre-existing entry - just update that one. */
924 kfree(key->key);
925 key->key = newkey;
926 key->keylen = newkeylen;
927 } else {
928 struct tcp_md5sig_info *md5sig;
929
930 if (!tp->md5sig_info) {
931 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
932 GFP_ATOMIC);
933 if (!tp->md5sig_info) {
934 kfree(newkey);
935 return -ENOMEM;
936 }
937 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
938 }
939
940 md5sig = tp->md5sig_info;
941 if (md5sig->entries4 == 0 &&
942 tcp_alloc_md5sig_pool(sk) == NULL) {
943 kfree(newkey);
944 return -ENOMEM;
945 }
946
947 if (md5sig->alloced4 == md5sig->entries4) {
948 keys = kmalloc((sizeof(*keys) *
949 (md5sig->entries4 + 1)), GFP_ATOMIC);
950 if (!keys) {
951 kfree(newkey);
952 if (md5sig->entries4 == 0)
953 tcp_free_md5sig_pool();
954 return -ENOMEM;
955 }
956
957 if (md5sig->entries4)
958 memcpy(keys, md5sig->keys4,
959 sizeof(*keys) * md5sig->entries4);
960
961 /* Free old key list, and reference new one */
962 kfree(md5sig->keys4);
963 md5sig->keys4 = keys;
964 md5sig->alloced4++;
965 }
966 md5sig->entries4++;
967 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
968 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
969 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
970 }
971 return 0;
972 }
973 EXPORT_SYMBOL(tcp_v4_md5_do_add);
974
tcp_v4_md5_add_func(struct sock * sk,struct sock * addr_sk,u8 * newkey,u8 newkeylen)975 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
976 u8 *newkey, u8 newkeylen)
977 {
978 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
979 newkey, newkeylen);
980 }
981
tcp_v4_md5_do_del(struct sock * sk,__be32 addr)982 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
983 {
984 struct tcp_sock *tp = tcp_sk(sk);
985 int i;
986
987 for (i = 0; i < tp->md5sig_info->entries4; i++) {
988 if (tp->md5sig_info->keys4[i].addr == addr) {
989 /* Free the key */
990 kfree(tp->md5sig_info->keys4[i].base.key);
991 tp->md5sig_info->entries4--;
992
993 if (tp->md5sig_info->entries4 == 0) {
994 kfree(tp->md5sig_info->keys4);
995 tp->md5sig_info->keys4 = NULL;
996 tp->md5sig_info->alloced4 = 0;
997 tcp_free_md5sig_pool();
998 } else if (tp->md5sig_info->entries4 != i) {
999 /* Need to do some manipulation */
1000 memmove(&tp->md5sig_info->keys4[i],
1001 &tp->md5sig_info->keys4[i+1],
1002 (tp->md5sig_info->entries4 - i) *
1003 sizeof(struct tcp4_md5sig_key));
1004 }
1005 return 0;
1006 }
1007 }
1008 return -ENOENT;
1009 }
1010 EXPORT_SYMBOL(tcp_v4_md5_do_del);
1011
tcp_v4_clear_md5_list(struct sock * sk)1012 static void tcp_v4_clear_md5_list(struct sock *sk)
1013 {
1014 struct tcp_sock *tp = tcp_sk(sk);
1015
1016 /* Free each key, then the set of key keys,
1017 * the crypto element, and then decrement our
1018 * hold on the last resort crypto.
1019 */
1020 if (tp->md5sig_info->entries4) {
1021 int i;
1022 for (i = 0; i < tp->md5sig_info->entries4; i++)
1023 kfree(tp->md5sig_info->keys4[i].base.key);
1024 tp->md5sig_info->entries4 = 0;
1025 tcp_free_md5sig_pool();
1026 }
1027 if (tp->md5sig_info->keys4) {
1028 kfree(tp->md5sig_info->keys4);
1029 tp->md5sig_info->keys4 = NULL;
1030 tp->md5sig_info->alloced4 = 0;
1031 }
1032 }
1033
tcp_v4_parse_md5_keys(struct sock * sk,char __user * optval,int optlen)1034 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1035 int optlen)
1036 {
1037 struct tcp_md5sig cmd;
1038 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1039 u8 *newkey;
1040
1041 if (optlen < sizeof(cmd))
1042 return -EINVAL;
1043
1044 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1045 return -EFAULT;
1046
1047 if (sin->sin_family != AF_INET)
1048 return -EINVAL;
1049
1050 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1051 if (!tcp_sk(sk)->md5sig_info)
1052 return -ENOENT;
1053 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1054 }
1055
1056 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1057 return -EINVAL;
1058
1059 if (!tcp_sk(sk)->md5sig_info) {
1060 struct tcp_sock *tp = tcp_sk(sk);
1061 struct tcp_md5sig_info *p;
1062
1063 p = kzalloc(sizeof(*p), sk->sk_allocation);
1064 if (!p)
1065 return -EINVAL;
1066
1067 tp->md5sig_info = p;
1068 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1069 }
1070
1071 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1072 if (!newkey)
1073 return -ENOMEM;
1074 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1075 newkey, cmd.tcpm_keylen);
1076 }
1077
tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool * hp,__be32 daddr,__be32 saddr,int nbytes)1078 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1079 __be32 daddr, __be32 saddr, int nbytes)
1080 {
1081 struct tcp4_pseudohdr *bp;
1082 struct scatterlist sg;
1083
1084 bp = &hp->md5_blk.ip4;
1085
1086 /*
1087 * 1. the TCP pseudo-header (in the order: source IP address,
1088 * destination IP address, zero-padded protocol number, and
1089 * segment length)
1090 */
1091 bp->saddr = saddr;
1092 bp->daddr = daddr;
1093 bp->pad = 0;
1094 bp->protocol = IPPROTO_TCP;
1095 bp->len = cpu_to_be16(nbytes);
1096
1097 sg_init_one(&sg, bp, sizeof(*bp));
1098 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1099 }
1100
tcp_v4_md5_hash_hdr(char * md5_hash,struct tcp_md5sig_key * key,__be32 daddr,__be32 saddr,const struct tcphdr * th)1101 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1102 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1103 {
1104 struct tcp_md5sig_pool *hp;
1105 struct hash_desc *desc;
1106
1107 hp = tcp_get_md5sig_pool();
1108 if (!hp)
1109 goto clear_hash_noput;
1110 desc = &hp->md5_desc;
1111
1112 if (crypto_hash_init(desc))
1113 goto clear_hash;
1114 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1115 goto clear_hash;
1116 if (tcp_md5_hash_header(hp, th))
1117 goto clear_hash;
1118 if (tcp_md5_hash_key(hp, key))
1119 goto clear_hash;
1120 if (crypto_hash_final(desc, md5_hash))
1121 goto clear_hash;
1122
1123 tcp_put_md5sig_pool();
1124 return 0;
1125
1126 clear_hash:
1127 tcp_put_md5sig_pool();
1128 clear_hash_noput:
1129 memset(md5_hash, 0, 16);
1130 return 1;
1131 }
1132
tcp_v4_md5_hash_skb(char * md5_hash,struct tcp_md5sig_key * key,const struct sock * sk,const struct request_sock * req,const struct sk_buff * skb)1133 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1134 const struct sock *sk, const struct request_sock *req,
1135 const struct sk_buff *skb)
1136 {
1137 struct tcp_md5sig_pool *hp;
1138 struct hash_desc *desc;
1139 const struct tcphdr *th = tcp_hdr(skb);
1140 __be32 saddr, daddr;
1141
1142 if (sk) {
1143 saddr = inet_sk(sk)->inet_saddr;
1144 daddr = inet_sk(sk)->inet_daddr;
1145 } else if (req) {
1146 saddr = inet_rsk(req)->loc_addr;
1147 daddr = inet_rsk(req)->rmt_addr;
1148 } else {
1149 const struct iphdr *iph = ip_hdr(skb);
1150 saddr = iph->saddr;
1151 daddr = iph->daddr;
1152 }
1153
1154 hp = tcp_get_md5sig_pool();
1155 if (!hp)
1156 goto clear_hash_noput;
1157 desc = &hp->md5_desc;
1158
1159 if (crypto_hash_init(desc))
1160 goto clear_hash;
1161
1162 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1163 goto clear_hash;
1164 if (tcp_md5_hash_header(hp, th))
1165 goto clear_hash;
1166 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1167 goto clear_hash;
1168 if (tcp_md5_hash_key(hp, key))
1169 goto clear_hash;
1170 if (crypto_hash_final(desc, md5_hash))
1171 goto clear_hash;
1172
1173 tcp_put_md5sig_pool();
1174 return 0;
1175
1176 clear_hash:
1177 tcp_put_md5sig_pool();
1178 clear_hash_noput:
1179 memset(md5_hash, 0, 16);
1180 return 1;
1181 }
1182 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1183
tcp_v4_inbound_md5_hash(struct sock * sk,const struct sk_buff * skb)1184 static int tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1185 {
1186 /*
1187 * This gets called for each TCP segment that arrives
1188 * so we want to be efficient.
1189 * We have 3 drop cases:
1190 * o No MD5 hash and one expected.
1191 * o MD5 hash and we're not expecting one.
1192 * o MD5 hash and its wrong.
1193 */
1194 const __u8 *hash_location = NULL;
1195 struct tcp_md5sig_key *hash_expected;
1196 const struct iphdr *iph = ip_hdr(skb);
1197 const struct tcphdr *th = tcp_hdr(skb);
1198 int genhash;
1199 unsigned char newhash[16];
1200
1201 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1202 hash_location = tcp_parse_md5sig_option(th);
1203
1204 /* We've parsed the options - do we have a hash? */
1205 if (!hash_expected && !hash_location)
1206 return 0;
1207
1208 if (hash_expected && !hash_location) {
1209 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1210 return 1;
1211 }
1212
1213 if (!hash_expected && hash_location) {
1214 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1215 return 1;
1216 }
1217
1218 /* Okay, so this is hash_expected and hash_location -
1219 * so we need to calculate the checksum.
1220 */
1221 genhash = tcp_v4_md5_hash_skb(newhash,
1222 hash_expected,
1223 NULL, NULL, skb);
1224
1225 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1226 if (net_ratelimit()) {
1227 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1228 &iph->saddr, ntohs(th->source),
1229 &iph->daddr, ntohs(th->dest),
1230 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1231 }
1232 return 1;
1233 }
1234 return 0;
1235 }
1236
1237 #endif
1238
1239 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1240 .family = PF_INET,
1241 .obj_size = sizeof(struct tcp_request_sock),
1242 .rtx_syn_ack = tcp_v4_rtx_synack,
1243 .send_ack = tcp_v4_reqsk_send_ack,
1244 .destructor = tcp_v4_reqsk_destructor,
1245 .send_reset = tcp_v4_send_reset,
1246 .syn_ack_timeout = tcp_syn_ack_timeout,
1247 };
1248
1249 #ifdef CONFIG_TCP_MD5SIG
1250 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1251 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1252 .calc_md5_hash = tcp_v4_md5_hash_skb,
1253 };
1254 #endif
1255
tcp_v4_conn_request(struct sock * sk,struct sk_buff * skb)1256 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1257 {
1258 struct tcp_extend_values tmp_ext;
1259 struct tcp_options_received tmp_opt;
1260 const u8 *hash_location;
1261 struct request_sock *req;
1262 struct inet_request_sock *ireq;
1263 struct tcp_sock *tp = tcp_sk(sk);
1264 struct dst_entry *dst = NULL;
1265 __be32 saddr = ip_hdr(skb)->saddr;
1266 __be32 daddr = ip_hdr(skb)->daddr;
1267 __u32 isn = TCP_SKB_CB(skb)->when;
1268 int want_cookie = 0;
1269
1270 /* Never answer to SYNs send to broadcast or multicast */
1271 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1272 goto drop;
1273
1274 /* TW buckets are converted to open requests without
1275 * limitations, they conserve resources and peer is
1276 * evidently real one.
1277 */
1278 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1279 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1280 if (!want_cookie)
1281 goto drop;
1282 }
1283
1284 /* Accept backlog is full. If we have already queued enough
1285 * of warm entries in syn queue, drop request. It is better than
1286 * clogging syn queue with openreqs with exponentially increasing
1287 * timeout.
1288 */
1289 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1290 goto drop;
1291
1292 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1293 if (!req)
1294 goto drop;
1295
1296 #ifdef CONFIG_TCP_MD5SIG
1297 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1298 #endif
1299
1300 tcp_clear_options(&tmp_opt);
1301 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1302 tmp_opt.user_mss = tp->rx_opt.user_mss;
1303 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1304
1305 if (tmp_opt.cookie_plus > 0 &&
1306 tmp_opt.saw_tstamp &&
1307 !tp->rx_opt.cookie_out_never &&
1308 (sysctl_tcp_cookie_size > 0 ||
1309 (tp->cookie_values != NULL &&
1310 tp->cookie_values->cookie_desired > 0))) {
1311 u8 *c;
1312 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1313 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1314
1315 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1316 goto drop_and_release;
1317
1318 /* Secret recipe starts with IP addresses */
1319 *mess++ ^= (__force u32)daddr;
1320 *mess++ ^= (__force u32)saddr;
1321
1322 /* plus variable length Initiator Cookie */
1323 c = (u8 *)mess;
1324 while (l-- > 0)
1325 *c++ ^= *hash_location++;
1326
1327 want_cookie = 0; /* not our kind of cookie */
1328 tmp_ext.cookie_out_never = 0; /* false */
1329 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1330 } else if (!tp->rx_opt.cookie_in_always) {
1331 /* redundant indications, but ensure initialization. */
1332 tmp_ext.cookie_out_never = 1; /* true */
1333 tmp_ext.cookie_plus = 0;
1334 } else {
1335 goto drop_and_release;
1336 }
1337 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1338
1339 if (want_cookie && !tmp_opt.saw_tstamp)
1340 tcp_clear_options(&tmp_opt);
1341
1342 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1343 tcp_openreq_init(req, &tmp_opt, skb);
1344
1345 ireq = inet_rsk(req);
1346 ireq->loc_addr = daddr;
1347 ireq->rmt_addr = saddr;
1348 ireq->no_srccheck = inet_sk(sk)->transparent;
1349 ireq->opt = tcp_v4_save_options(sk, skb);
1350
1351 if (security_inet_conn_request(sk, skb, req))
1352 goto drop_and_free;
1353
1354 if (!want_cookie || tmp_opt.tstamp_ok)
1355 TCP_ECN_create_request(req, tcp_hdr(skb));
1356
1357 if (want_cookie) {
1358 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1359 req->cookie_ts = tmp_opt.tstamp_ok;
1360 } else if (!isn) {
1361 struct inet_peer *peer = NULL;
1362 struct flowi4 fl4;
1363
1364 /* VJ's idea. We save last timestamp seen
1365 * from the destination in peer table, when entering
1366 * state TIME-WAIT, and check against it before
1367 * accepting new connection request.
1368 *
1369 * If "isn" is not zero, this request hit alive
1370 * timewait bucket, so that all the necessary checks
1371 * are made in the function processing timewait state.
1372 */
1373 if (tmp_opt.saw_tstamp &&
1374 tcp_death_row.sysctl_tw_recycle &&
1375 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1376 fl4.daddr == saddr &&
1377 (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1378 inet_peer_refcheck(peer);
1379 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1380 (s32)(peer->tcp_ts - req->ts_recent) >
1381 TCP_PAWS_WINDOW) {
1382 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1383 goto drop_and_release;
1384 }
1385 }
1386 /* Kill the following clause, if you dislike this way. */
1387 else if (!sysctl_tcp_syncookies &&
1388 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1389 (sysctl_max_syn_backlog >> 2)) &&
1390 (!peer || !peer->tcp_ts_stamp) &&
1391 (!dst || !dst_metric(dst, RTAX_RTT))) {
1392 /* Without syncookies last quarter of
1393 * backlog is filled with destinations,
1394 * proven to be alive.
1395 * It means that we continue to communicate
1396 * to destinations, already remembered
1397 * to the moment of synflood.
1398 */
1399 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1400 &saddr, ntohs(tcp_hdr(skb)->source));
1401 goto drop_and_release;
1402 }
1403
1404 isn = tcp_v4_init_sequence(skb);
1405 }
1406 tcp_rsk(req)->snt_isn = isn;
1407 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1408
1409 if (tcp_v4_send_synack(sk, dst, req,
1410 (struct request_values *)&tmp_ext) ||
1411 want_cookie)
1412 goto drop_and_free;
1413
1414 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1415 return 0;
1416
1417 drop_and_release:
1418 dst_release(dst);
1419 drop_and_free:
1420 reqsk_free(req);
1421 drop:
1422 return 0;
1423 }
1424 EXPORT_SYMBOL(tcp_v4_conn_request);
1425
1426
1427 /*
1428 * The three way handshake has completed - we got a valid synack -
1429 * now create the new socket.
1430 */
tcp_v4_syn_recv_sock(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct dst_entry * dst)1431 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1432 struct request_sock *req,
1433 struct dst_entry *dst)
1434 {
1435 struct inet_request_sock *ireq;
1436 struct inet_sock *newinet;
1437 struct tcp_sock *newtp;
1438 struct sock *newsk;
1439 #ifdef CONFIG_TCP_MD5SIG
1440 struct tcp_md5sig_key *key;
1441 #endif
1442 struct ip_options_rcu *inet_opt;
1443
1444 if (sk_acceptq_is_full(sk))
1445 goto exit_overflow;
1446
1447 newsk = tcp_create_openreq_child(sk, req, skb);
1448 if (!newsk)
1449 goto exit_nonewsk;
1450
1451 newsk->sk_gso_type = SKB_GSO_TCPV4;
1452
1453 newtp = tcp_sk(newsk);
1454 newinet = inet_sk(newsk);
1455 ireq = inet_rsk(req);
1456 newinet->inet_daddr = ireq->rmt_addr;
1457 newinet->inet_rcv_saddr = ireq->loc_addr;
1458 newinet->inet_saddr = ireq->loc_addr;
1459 inet_opt = ireq->opt;
1460 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1461 ireq->opt = NULL;
1462 newinet->mc_index = inet_iif(skb);
1463 newinet->mc_ttl = ip_hdr(skb)->ttl;
1464 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1465 if (inet_opt)
1466 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1467 newinet->inet_id = newtp->write_seq ^ jiffies;
1468
1469 if (!dst) {
1470 dst = inet_csk_route_child_sock(sk, newsk, req);
1471 if (!dst)
1472 goto put_and_exit;
1473 } else {
1474 /* syncookie case : see end of cookie_v4_check() */
1475 }
1476 sk_setup_caps(newsk, dst);
1477
1478 tcp_mtup_init(newsk);
1479 tcp_sync_mss(newsk, dst_mtu(dst));
1480 newtp->advmss = dst_metric_advmss(dst);
1481 if (tcp_sk(sk)->rx_opt.user_mss &&
1482 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1483 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1484
1485 tcp_initialize_rcv_mss(newsk);
1486 if (tcp_rsk(req)->snt_synack)
1487 tcp_valid_rtt_meas(newsk,
1488 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1489 newtp->total_retrans = req->retrans;
1490
1491 #ifdef CONFIG_TCP_MD5SIG
1492 /* Copy over the MD5 key from the original socket */
1493 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1494 if (key != NULL) {
1495 /*
1496 * We're using one, so create a matching key
1497 * on the newsk structure. If we fail to get
1498 * memory, then we end up not copying the key
1499 * across. Shucks.
1500 */
1501 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1502 if (newkey != NULL)
1503 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1504 newkey, key->keylen);
1505 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1506 }
1507 #endif
1508
1509 if (__inet_inherit_port(sk, newsk) < 0)
1510 goto put_and_exit;
1511 __inet_hash_nolisten(newsk, NULL);
1512
1513 return newsk;
1514
1515 exit_overflow:
1516 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1517 exit_nonewsk:
1518 dst_release(dst);
1519 exit:
1520 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1521 return NULL;
1522 put_and_exit:
1523 tcp_clear_xmit_timers(newsk);
1524 tcp_cleanup_congestion_control(newsk);
1525 bh_unlock_sock(newsk);
1526 sock_put(newsk);
1527 goto exit;
1528 }
1529 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1530
tcp_v4_hnd_req(struct sock * sk,struct sk_buff * skb)1531 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1532 {
1533 struct tcphdr *th = tcp_hdr(skb);
1534 const struct iphdr *iph = ip_hdr(skb);
1535 struct sock *nsk;
1536 struct request_sock **prev;
1537 /* Find possible connection requests. */
1538 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1539 iph->saddr, iph->daddr);
1540 if (req)
1541 return tcp_check_req(sk, skb, req, prev);
1542
1543 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1544 th->source, iph->daddr, th->dest, inet_iif(skb));
1545
1546 if (nsk) {
1547 if (nsk->sk_state != TCP_TIME_WAIT) {
1548 bh_lock_sock(nsk);
1549 return nsk;
1550 }
1551 inet_twsk_put(inet_twsk(nsk));
1552 return NULL;
1553 }
1554
1555 #ifdef CONFIG_SYN_COOKIES
1556 if (!th->syn)
1557 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1558 #endif
1559 return sk;
1560 }
1561
tcp_v4_checksum_init(struct sk_buff * skb)1562 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1563 {
1564 const struct iphdr *iph = ip_hdr(skb);
1565
1566 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1567 if (!tcp_v4_check(skb->len, iph->saddr,
1568 iph->daddr, skb->csum)) {
1569 skb->ip_summed = CHECKSUM_UNNECESSARY;
1570 return 0;
1571 }
1572 }
1573
1574 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1575 skb->len, IPPROTO_TCP, 0);
1576
1577 if (skb->len <= 76) {
1578 return __skb_checksum_complete(skb);
1579 }
1580 return 0;
1581 }
1582
1583
1584 /* The socket must have it's spinlock held when we get
1585 * here.
1586 *
1587 * We have a potential double-lock case here, so even when
1588 * doing backlog processing we use the BH locking scheme.
1589 * This is because we cannot sleep with the original spinlock
1590 * held.
1591 */
tcp_v4_do_rcv(struct sock * sk,struct sk_buff * skb)1592 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1593 {
1594 struct sock *rsk;
1595 #ifdef CONFIG_TCP_MD5SIG
1596 /*
1597 * We really want to reject the packet as early as possible
1598 * if:
1599 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1600 * o There is an MD5 option and we're not expecting one
1601 */
1602 if (tcp_v4_inbound_md5_hash(sk, skb))
1603 goto discard;
1604 #endif
1605
1606 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1607 sock_rps_save_rxhash(sk, skb);
1608 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1609 rsk = sk;
1610 goto reset;
1611 }
1612 return 0;
1613 }
1614
1615 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1616 goto csum_err;
1617
1618 if (sk->sk_state == TCP_LISTEN) {
1619 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1620 if (!nsk)
1621 goto discard;
1622
1623 if (nsk != sk) {
1624 sock_rps_save_rxhash(nsk, skb);
1625 if (tcp_child_process(sk, nsk, skb)) {
1626 rsk = nsk;
1627 goto reset;
1628 }
1629 return 0;
1630 }
1631 } else
1632 sock_rps_save_rxhash(sk, skb);
1633
1634 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1635 rsk = sk;
1636 goto reset;
1637 }
1638 return 0;
1639
1640 reset:
1641 tcp_v4_send_reset(rsk, skb);
1642 discard:
1643 kfree_skb(skb);
1644 /* Be careful here. If this function gets more complicated and
1645 * gcc suffers from register pressure on the x86, sk (in %ebx)
1646 * might be destroyed here. This current version compiles correctly,
1647 * but you have been warned.
1648 */
1649 return 0;
1650
1651 csum_err:
1652 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1653 goto discard;
1654 }
1655 EXPORT_SYMBOL(tcp_v4_do_rcv);
1656
1657 /*
1658 * From tcp_input.c
1659 */
1660
tcp_v4_rcv(struct sk_buff * skb)1661 int tcp_v4_rcv(struct sk_buff *skb)
1662 {
1663 const struct iphdr *iph;
1664 const struct tcphdr *th;
1665 struct sock *sk;
1666 int ret;
1667 struct net *net = dev_net(skb->dev);
1668
1669 if (skb->pkt_type != PACKET_HOST)
1670 goto discard_it;
1671
1672 /* Count it even if it's bad */
1673 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1674
1675 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1676 goto discard_it;
1677
1678 th = tcp_hdr(skb);
1679
1680 if (th->doff < sizeof(struct tcphdr) / 4)
1681 goto bad_packet;
1682 if (!pskb_may_pull(skb, th->doff * 4))
1683 goto discard_it;
1684
1685 /* An explanation is required here, I think.
1686 * Packet length and doff are validated by header prediction,
1687 * provided case of th->doff==0 is eliminated.
1688 * So, we defer the checks. */
1689 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1690 goto bad_packet;
1691
1692 th = tcp_hdr(skb);
1693 iph = ip_hdr(skb);
1694 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1695 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1696 skb->len - th->doff * 4);
1697 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1698 TCP_SKB_CB(skb)->when = 0;
1699 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1700 TCP_SKB_CB(skb)->sacked = 0;
1701
1702 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1703 if (!sk)
1704 goto no_tcp_socket;
1705
1706 process:
1707 if (sk->sk_state == TCP_TIME_WAIT)
1708 goto do_time_wait;
1709
1710 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1711 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1712 goto discard_and_relse;
1713 }
1714
1715 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1716 goto discard_and_relse;
1717 nf_reset(skb);
1718
1719 if (sk_filter(sk, skb))
1720 goto discard_and_relse;
1721
1722 skb->dev = NULL;
1723
1724 bh_lock_sock_nested(sk);
1725 ret = 0;
1726 if (!sock_owned_by_user(sk)) {
1727 #ifdef CONFIG_NET_DMA
1728 struct tcp_sock *tp = tcp_sk(sk);
1729 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1730 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1731 if (tp->ucopy.dma_chan)
1732 ret = tcp_v4_do_rcv(sk, skb);
1733 else
1734 #endif
1735 {
1736 if (!tcp_prequeue(sk, skb))
1737 ret = tcp_v4_do_rcv(sk, skb);
1738 }
1739 } else if (unlikely(sk_add_backlog(sk, skb))) {
1740 bh_unlock_sock(sk);
1741 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1742 goto discard_and_relse;
1743 }
1744 bh_unlock_sock(sk);
1745
1746 sock_put(sk);
1747
1748 return ret;
1749
1750 no_tcp_socket:
1751 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1752 goto discard_it;
1753
1754 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1755 bad_packet:
1756 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1757 } else {
1758 tcp_v4_send_reset(NULL, skb);
1759 }
1760
1761 discard_it:
1762 /* Discard frame. */
1763 kfree_skb(skb);
1764 return 0;
1765
1766 discard_and_relse:
1767 sock_put(sk);
1768 goto discard_it;
1769
1770 do_time_wait:
1771 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1772 inet_twsk_put(inet_twsk(sk));
1773 goto discard_it;
1774 }
1775
1776 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1777 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1778 inet_twsk_put(inet_twsk(sk));
1779 goto discard_it;
1780 }
1781 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1782 case TCP_TW_SYN: {
1783 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1784 &tcp_hashinfo,
1785 iph->daddr, th->dest,
1786 inet_iif(skb));
1787 if (sk2) {
1788 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1789 inet_twsk_put(inet_twsk(sk));
1790 sk = sk2;
1791 goto process;
1792 }
1793 /* Fall through to ACK */
1794 }
1795 case TCP_TW_ACK:
1796 tcp_v4_timewait_ack(sk, skb);
1797 break;
1798 case TCP_TW_RST:
1799 goto no_tcp_socket;
1800 case TCP_TW_SUCCESS:;
1801 }
1802 goto discard_it;
1803 }
1804
tcp_v4_get_peer(struct sock * sk,bool * release_it)1805 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1806 {
1807 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1808 struct inet_sock *inet = inet_sk(sk);
1809 struct inet_peer *peer;
1810
1811 if (!rt ||
1812 inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1813 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1814 *release_it = true;
1815 } else {
1816 if (!rt->peer)
1817 rt_bind_peer(rt, inet->inet_daddr, 1);
1818 peer = rt->peer;
1819 *release_it = false;
1820 }
1821
1822 return peer;
1823 }
1824 EXPORT_SYMBOL(tcp_v4_get_peer);
1825
tcp_v4_tw_get_peer(struct sock * sk)1826 void *tcp_v4_tw_get_peer(struct sock *sk)
1827 {
1828 const struct inet_timewait_sock *tw = inet_twsk(sk);
1829
1830 return inet_getpeer_v4(tw->tw_daddr, 1);
1831 }
1832 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1833
1834 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1835 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1836 .twsk_unique = tcp_twsk_unique,
1837 .twsk_destructor= tcp_twsk_destructor,
1838 .twsk_getpeer = tcp_v4_tw_get_peer,
1839 };
1840
1841 const struct inet_connection_sock_af_ops ipv4_specific = {
1842 .queue_xmit = ip_queue_xmit,
1843 .send_check = tcp_v4_send_check,
1844 .rebuild_header = inet_sk_rebuild_header,
1845 .conn_request = tcp_v4_conn_request,
1846 .syn_recv_sock = tcp_v4_syn_recv_sock,
1847 .get_peer = tcp_v4_get_peer,
1848 .net_header_len = sizeof(struct iphdr),
1849 .setsockopt = ip_setsockopt,
1850 .getsockopt = ip_getsockopt,
1851 .addr2sockaddr = inet_csk_addr2sockaddr,
1852 .sockaddr_len = sizeof(struct sockaddr_in),
1853 .bind_conflict = inet_csk_bind_conflict,
1854 #ifdef CONFIG_COMPAT
1855 .compat_setsockopt = compat_ip_setsockopt,
1856 .compat_getsockopt = compat_ip_getsockopt,
1857 #endif
1858 };
1859 EXPORT_SYMBOL(ipv4_specific);
1860
1861 #ifdef CONFIG_TCP_MD5SIG
1862 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1863 .md5_lookup = tcp_v4_md5_lookup,
1864 .calc_md5_hash = tcp_v4_md5_hash_skb,
1865 .md5_add = tcp_v4_md5_add_func,
1866 .md5_parse = tcp_v4_parse_md5_keys,
1867 };
1868 #endif
1869
1870 /* NOTE: A lot of things set to zero explicitly by call to
1871 * sk_alloc() so need not be done here.
1872 */
tcp_v4_init_sock(struct sock * sk)1873 static int tcp_v4_init_sock(struct sock *sk)
1874 {
1875 struct inet_connection_sock *icsk = inet_csk(sk);
1876 struct tcp_sock *tp = tcp_sk(sk);
1877
1878 skb_queue_head_init(&tp->out_of_order_queue);
1879 tcp_init_xmit_timers(sk);
1880 tcp_prequeue_init(tp);
1881
1882 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1883 tp->mdev = TCP_TIMEOUT_INIT;
1884
1885 /* So many TCP implementations out there (incorrectly) count the
1886 * initial SYN frame in their delayed-ACK and congestion control
1887 * algorithms that we must have the following bandaid to talk
1888 * efficiently to them. -DaveM
1889 */
1890 tp->snd_cwnd = TCP_INIT_CWND;
1891
1892 /* See draft-stevens-tcpca-spec-01 for discussion of the
1893 * initialization of these values.
1894 */
1895 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1896 tp->snd_cwnd_clamp = ~0;
1897 tp->mss_cache = TCP_MSS_DEFAULT;
1898
1899 tp->reordering = sysctl_tcp_reordering;
1900 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1901
1902 sk->sk_state = TCP_CLOSE;
1903
1904 sk->sk_write_space = sk_stream_write_space;
1905 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1906
1907 icsk->icsk_af_ops = &ipv4_specific;
1908 icsk->icsk_sync_mss = tcp_sync_mss;
1909 #ifdef CONFIG_TCP_MD5SIG
1910 tp->af_specific = &tcp_sock_ipv4_specific;
1911 #endif
1912
1913 /* TCP Cookie Transactions */
1914 if (sysctl_tcp_cookie_size > 0) {
1915 /* Default, cookies without s_data_payload. */
1916 tp->cookie_values =
1917 kzalloc(sizeof(*tp->cookie_values),
1918 sk->sk_allocation);
1919 if (tp->cookie_values != NULL)
1920 kref_init(&tp->cookie_values->kref);
1921 }
1922 /* Presumed zeroed, in order of appearance:
1923 * cookie_in_always, cookie_out_never,
1924 * s_data_constant, s_data_in, s_data_out
1925 */
1926 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1927 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1928
1929 local_bh_disable();
1930 sock_update_memcg(sk);
1931 sk_sockets_allocated_inc(sk);
1932 local_bh_enable();
1933
1934 return 0;
1935 }
1936
tcp_v4_destroy_sock(struct sock * sk)1937 void tcp_v4_destroy_sock(struct sock *sk)
1938 {
1939 struct tcp_sock *tp = tcp_sk(sk);
1940
1941 tcp_clear_xmit_timers(sk);
1942
1943 tcp_cleanup_congestion_control(sk);
1944
1945 /* Cleanup up the write buffer. */
1946 tcp_write_queue_purge(sk);
1947
1948 /* Cleans up our, hopefully empty, out_of_order_queue. */
1949 __skb_queue_purge(&tp->out_of_order_queue);
1950
1951 #ifdef CONFIG_TCP_MD5SIG
1952 /* Clean up the MD5 key list, if any */
1953 if (tp->md5sig_info) {
1954 tcp_v4_clear_md5_list(sk);
1955 kfree(tp->md5sig_info);
1956 tp->md5sig_info = NULL;
1957 }
1958 #endif
1959
1960 #ifdef CONFIG_NET_DMA
1961 /* Cleans up our sk_async_wait_queue */
1962 __skb_queue_purge(&sk->sk_async_wait_queue);
1963 #endif
1964
1965 /* Clean prequeue, it must be empty really */
1966 __skb_queue_purge(&tp->ucopy.prequeue);
1967
1968 /* Clean up a referenced TCP bind bucket. */
1969 if (inet_csk(sk)->icsk_bind_hash)
1970 inet_put_port(sk);
1971
1972 /*
1973 * If sendmsg cached page exists, toss it.
1974 */
1975 if (sk->sk_sndmsg_page) {
1976 __free_page(sk->sk_sndmsg_page);
1977 sk->sk_sndmsg_page = NULL;
1978 }
1979
1980 /* TCP Cookie Transactions */
1981 if (tp->cookie_values != NULL) {
1982 kref_put(&tp->cookie_values->kref,
1983 tcp_cookie_values_release);
1984 tp->cookie_values = NULL;
1985 }
1986
1987 sk_sockets_allocated_dec(sk);
1988 sock_release_memcg(sk);
1989 }
1990 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1991
1992 #ifdef CONFIG_PROC_FS
1993 /* Proc filesystem TCP sock list dumping. */
1994
tw_head(struct hlist_nulls_head * head)1995 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1996 {
1997 return hlist_nulls_empty(head) ? NULL :
1998 list_entry(head->first, struct inet_timewait_sock, tw_node);
1999 }
2000
tw_next(struct inet_timewait_sock * tw)2001 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2002 {
2003 return !is_a_nulls(tw->tw_node.next) ?
2004 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2005 }
2006
2007 /*
2008 * Get next listener socket follow cur. If cur is NULL, get first socket
2009 * starting from bucket given in st->bucket; when st->bucket is zero the
2010 * very first socket in the hash table is returned.
2011 */
listening_get_next(struct seq_file * seq,void * cur)2012 static void *listening_get_next(struct seq_file *seq, void *cur)
2013 {
2014 struct inet_connection_sock *icsk;
2015 struct hlist_nulls_node *node;
2016 struct sock *sk = cur;
2017 struct inet_listen_hashbucket *ilb;
2018 struct tcp_iter_state *st = seq->private;
2019 struct net *net = seq_file_net(seq);
2020
2021 if (!sk) {
2022 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2023 spin_lock_bh(&ilb->lock);
2024 sk = sk_nulls_head(&ilb->head);
2025 st->offset = 0;
2026 goto get_sk;
2027 }
2028 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2029 ++st->num;
2030 ++st->offset;
2031
2032 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2033 struct request_sock *req = cur;
2034
2035 icsk = inet_csk(st->syn_wait_sk);
2036 req = req->dl_next;
2037 while (1) {
2038 while (req) {
2039 if (req->rsk_ops->family == st->family) {
2040 cur = req;
2041 goto out;
2042 }
2043 req = req->dl_next;
2044 }
2045 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2046 break;
2047 get_req:
2048 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2049 }
2050 sk = sk_nulls_next(st->syn_wait_sk);
2051 st->state = TCP_SEQ_STATE_LISTENING;
2052 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2053 } else {
2054 icsk = inet_csk(sk);
2055 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2056 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2057 goto start_req;
2058 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2059 sk = sk_nulls_next(sk);
2060 }
2061 get_sk:
2062 sk_nulls_for_each_from(sk, node) {
2063 if (!net_eq(sock_net(sk), net))
2064 continue;
2065 if (sk->sk_family == st->family) {
2066 cur = sk;
2067 goto out;
2068 }
2069 icsk = inet_csk(sk);
2070 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2071 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2072 start_req:
2073 st->uid = sock_i_uid(sk);
2074 st->syn_wait_sk = sk;
2075 st->state = TCP_SEQ_STATE_OPENREQ;
2076 st->sbucket = 0;
2077 goto get_req;
2078 }
2079 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2080 }
2081 spin_unlock_bh(&ilb->lock);
2082 st->offset = 0;
2083 if (++st->bucket < INET_LHTABLE_SIZE) {
2084 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2085 spin_lock_bh(&ilb->lock);
2086 sk = sk_nulls_head(&ilb->head);
2087 goto get_sk;
2088 }
2089 cur = NULL;
2090 out:
2091 return cur;
2092 }
2093
listening_get_idx(struct seq_file * seq,loff_t * pos)2094 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2095 {
2096 struct tcp_iter_state *st = seq->private;
2097 void *rc;
2098
2099 st->bucket = 0;
2100 st->offset = 0;
2101 rc = listening_get_next(seq, NULL);
2102
2103 while (rc && *pos) {
2104 rc = listening_get_next(seq, rc);
2105 --*pos;
2106 }
2107 return rc;
2108 }
2109
empty_bucket(struct tcp_iter_state * st)2110 static inline int empty_bucket(struct tcp_iter_state *st)
2111 {
2112 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2113 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2114 }
2115
2116 /*
2117 * Get first established socket starting from bucket given in st->bucket.
2118 * If st->bucket is zero, the very first socket in the hash is returned.
2119 */
established_get_first(struct seq_file * seq)2120 static void *established_get_first(struct seq_file *seq)
2121 {
2122 struct tcp_iter_state *st = seq->private;
2123 struct net *net = seq_file_net(seq);
2124 void *rc = NULL;
2125
2126 st->offset = 0;
2127 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2128 struct sock *sk;
2129 struct hlist_nulls_node *node;
2130 struct inet_timewait_sock *tw;
2131 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2132
2133 /* Lockless fast path for the common case of empty buckets */
2134 if (empty_bucket(st))
2135 continue;
2136
2137 spin_lock_bh(lock);
2138 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2139 if (sk->sk_family != st->family ||
2140 !net_eq(sock_net(sk), net)) {
2141 continue;
2142 }
2143 rc = sk;
2144 goto out;
2145 }
2146 st->state = TCP_SEQ_STATE_TIME_WAIT;
2147 inet_twsk_for_each(tw, node,
2148 &tcp_hashinfo.ehash[st->bucket].twchain) {
2149 if (tw->tw_family != st->family ||
2150 !net_eq(twsk_net(tw), net)) {
2151 continue;
2152 }
2153 rc = tw;
2154 goto out;
2155 }
2156 spin_unlock_bh(lock);
2157 st->state = TCP_SEQ_STATE_ESTABLISHED;
2158 }
2159 out:
2160 return rc;
2161 }
2162
established_get_next(struct seq_file * seq,void * cur)2163 static void *established_get_next(struct seq_file *seq, void *cur)
2164 {
2165 struct sock *sk = cur;
2166 struct inet_timewait_sock *tw;
2167 struct hlist_nulls_node *node;
2168 struct tcp_iter_state *st = seq->private;
2169 struct net *net = seq_file_net(seq);
2170
2171 ++st->num;
2172 ++st->offset;
2173
2174 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2175 tw = cur;
2176 tw = tw_next(tw);
2177 get_tw:
2178 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2179 tw = tw_next(tw);
2180 }
2181 if (tw) {
2182 cur = tw;
2183 goto out;
2184 }
2185 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2186 st->state = TCP_SEQ_STATE_ESTABLISHED;
2187
2188 /* Look for next non empty bucket */
2189 st->offset = 0;
2190 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2191 empty_bucket(st))
2192 ;
2193 if (st->bucket > tcp_hashinfo.ehash_mask)
2194 return NULL;
2195
2196 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2197 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2198 } else
2199 sk = sk_nulls_next(sk);
2200
2201 sk_nulls_for_each_from(sk, node) {
2202 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2203 goto found;
2204 }
2205
2206 st->state = TCP_SEQ_STATE_TIME_WAIT;
2207 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2208 goto get_tw;
2209 found:
2210 cur = sk;
2211 out:
2212 return cur;
2213 }
2214
established_get_idx(struct seq_file * seq,loff_t pos)2215 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2216 {
2217 struct tcp_iter_state *st = seq->private;
2218 void *rc;
2219
2220 st->bucket = 0;
2221 rc = established_get_first(seq);
2222
2223 while (rc && pos) {
2224 rc = established_get_next(seq, rc);
2225 --pos;
2226 }
2227 return rc;
2228 }
2229
tcp_get_idx(struct seq_file * seq,loff_t pos)2230 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2231 {
2232 void *rc;
2233 struct tcp_iter_state *st = seq->private;
2234
2235 st->state = TCP_SEQ_STATE_LISTENING;
2236 rc = listening_get_idx(seq, &pos);
2237
2238 if (!rc) {
2239 st->state = TCP_SEQ_STATE_ESTABLISHED;
2240 rc = established_get_idx(seq, pos);
2241 }
2242
2243 return rc;
2244 }
2245
tcp_seek_last_pos(struct seq_file * seq)2246 static void *tcp_seek_last_pos(struct seq_file *seq)
2247 {
2248 struct tcp_iter_state *st = seq->private;
2249 int offset = st->offset;
2250 int orig_num = st->num;
2251 void *rc = NULL;
2252
2253 switch (st->state) {
2254 case TCP_SEQ_STATE_OPENREQ:
2255 case TCP_SEQ_STATE_LISTENING:
2256 if (st->bucket >= INET_LHTABLE_SIZE)
2257 break;
2258 st->state = TCP_SEQ_STATE_LISTENING;
2259 rc = listening_get_next(seq, NULL);
2260 while (offset-- && rc)
2261 rc = listening_get_next(seq, rc);
2262 if (rc)
2263 break;
2264 st->bucket = 0;
2265 /* Fallthrough */
2266 case TCP_SEQ_STATE_ESTABLISHED:
2267 case TCP_SEQ_STATE_TIME_WAIT:
2268 st->state = TCP_SEQ_STATE_ESTABLISHED;
2269 if (st->bucket > tcp_hashinfo.ehash_mask)
2270 break;
2271 rc = established_get_first(seq);
2272 while (offset-- && rc)
2273 rc = established_get_next(seq, rc);
2274 }
2275
2276 st->num = orig_num;
2277
2278 return rc;
2279 }
2280
tcp_seq_start(struct seq_file * seq,loff_t * pos)2281 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2282 {
2283 struct tcp_iter_state *st = seq->private;
2284 void *rc;
2285
2286 if (*pos && *pos == st->last_pos) {
2287 rc = tcp_seek_last_pos(seq);
2288 if (rc)
2289 goto out;
2290 }
2291
2292 st->state = TCP_SEQ_STATE_LISTENING;
2293 st->num = 0;
2294 st->bucket = 0;
2295 st->offset = 0;
2296 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2297
2298 out:
2299 st->last_pos = *pos;
2300 return rc;
2301 }
2302
tcp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2303 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2304 {
2305 struct tcp_iter_state *st = seq->private;
2306 void *rc = NULL;
2307
2308 if (v == SEQ_START_TOKEN) {
2309 rc = tcp_get_idx(seq, 0);
2310 goto out;
2311 }
2312
2313 switch (st->state) {
2314 case TCP_SEQ_STATE_OPENREQ:
2315 case TCP_SEQ_STATE_LISTENING:
2316 rc = listening_get_next(seq, v);
2317 if (!rc) {
2318 st->state = TCP_SEQ_STATE_ESTABLISHED;
2319 st->bucket = 0;
2320 st->offset = 0;
2321 rc = established_get_first(seq);
2322 }
2323 break;
2324 case TCP_SEQ_STATE_ESTABLISHED:
2325 case TCP_SEQ_STATE_TIME_WAIT:
2326 rc = established_get_next(seq, v);
2327 break;
2328 }
2329 out:
2330 ++*pos;
2331 st->last_pos = *pos;
2332 return rc;
2333 }
2334
tcp_seq_stop(struct seq_file * seq,void * v)2335 static void tcp_seq_stop(struct seq_file *seq, void *v)
2336 {
2337 struct tcp_iter_state *st = seq->private;
2338
2339 switch (st->state) {
2340 case TCP_SEQ_STATE_OPENREQ:
2341 if (v) {
2342 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2343 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2344 }
2345 case TCP_SEQ_STATE_LISTENING:
2346 if (v != SEQ_START_TOKEN)
2347 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2348 break;
2349 case TCP_SEQ_STATE_TIME_WAIT:
2350 case TCP_SEQ_STATE_ESTABLISHED:
2351 if (v)
2352 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2353 break;
2354 }
2355 }
2356
tcp_seq_open(struct inode * inode,struct file * file)2357 int tcp_seq_open(struct inode *inode, struct file *file)
2358 {
2359 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2360 struct tcp_iter_state *s;
2361 int err;
2362
2363 err = seq_open_net(inode, file, &afinfo->seq_ops,
2364 sizeof(struct tcp_iter_state));
2365 if (err < 0)
2366 return err;
2367
2368 s = ((struct seq_file *)file->private_data)->private;
2369 s->family = afinfo->family;
2370 s->last_pos = 0;
2371 return 0;
2372 }
2373 EXPORT_SYMBOL(tcp_seq_open);
2374
tcp_proc_register(struct net * net,struct tcp_seq_afinfo * afinfo)2375 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2376 {
2377 int rc = 0;
2378 struct proc_dir_entry *p;
2379
2380 afinfo->seq_ops.start = tcp_seq_start;
2381 afinfo->seq_ops.next = tcp_seq_next;
2382 afinfo->seq_ops.stop = tcp_seq_stop;
2383
2384 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2385 afinfo->seq_fops, afinfo);
2386 if (!p)
2387 rc = -ENOMEM;
2388 return rc;
2389 }
2390 EXPORT_SYMBOL(tcp_proc_register);
2391
tcp_proc_unregister(struct net * net,struct tcp_seq_afinfo * afinfo)2392 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2393 {
2394 proc_net_remove(net, afinfo->name);
2395 }
2396 EXPORT_SYMBOL(tcp_proc_unregister);
2397
get_openreq4(const struct sock * sk,const struct request_sock * req,struct seq_file * f,int i,int uid,int * len)2398 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2399 struct seq_file *f, int i, int uid, int *len)
2400 {
2401 const struct inet_request_sock *ireq = inet_rsk(req);
2402 int ttd = req->expires - jiffies;
2403
2404 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2405 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2406 i,
2407 ireq->loc_addr,
2408 ntohs(inet_sk(sk)->inet_sport),
2409 ireq->rmt_addr,
2410 ntohs(ireq->rmt_port),
2411 TCP_SYN_RECV,
2412 0, 0, /* could print option size, but that is af dependent. */
2413 1, /* timers active (only the expire timer) */
2414 jiffies_to_clock_t(ttd),
2415 req->retrans,
2416 uid,
2417 0, /* non standard timer */
2418 0, /* open_requests have no inode */
2419 atomic_read(&sk->sk_refcnt),
2420 req,
2421 len);
2422 }
2423
get_tcp4_sock(struct sock * sk,struct seq_file * f,int i,int * len)2424 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2425 {
2426 int timer_active;
2427 unsigned long timer_expires;
2428 const struct tcp_sock *tp = tcp_sk(sk);
2429 const struct inet_connection_sock *icsk = inet_csk(sk);
2430 const struct inet_sock *inet = inet_sk(sk);
2431 __be32 dest = inet->inet_daddr;
2432 __be32 src = inet->inet_rcv_saddr;
2433 __u16 destp = ntohs(inet->inet_dport);
2434 __u16 srcp = ntohs(inet->inet_sport);
2435 int rx_queue;
2436
2437 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2438 timer_active = 1;
2439 timer_expires = icsk->icsk_timeout;
2440 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2441 timer_active = 4;
2442 timer_expires = icsk->icsk_timeout;
2443 } else if (timer_pending(&sk->sk_timer)) {
2444 timer_active = 2;
2445 timer_expires = sk->sk_timer.expires;
2446 } else {
2447 timer_active = 0;
2448 timer_expires = jiffies;
2449 }
2450
2451 if (sk->sk_state == TCP_LISTEN)
2452 rx_queue = sk->sk_ack_backlog;
2453 else
2454 /*
2455 * because we dont lock socket, we might find a transient negative value
2456 */
2457 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2458
2459 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2460 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2461 i, src, srcp, dest, destp, sk->sk_state,
2462 tp->write_seq - tp->snd_una,
2463 rx_queue,
2464 timer_active,
2465 jiffies_to_clock_t(timer_expires - jiffies),
2466 icsk->icsk_retransmits,
2467 sock_i_uid(sk),
2468 icsk->icsk_probes_out,
2469 sock_i_ino(sk),
2470 atomic_read(&sk->sk_refcnt), sk,
2471 jiffies_to_clock_t(icsk->icsk_rto),
2472 jiffies_to_clock_t(icsk->icsk_ack.ato),
2473 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2474 tp->snd_cwnd,
2475 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2476 len);
2477 }
2478
get_timewait4_sock(const struct inet_timewait_sock * tw,struct seq_file * f,int i,int * len)2479 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2480 struct seq_file *f, int i, int *len)
2481 {
2482 __be32 dest, src;
2483 __u16 destp, srcp;
2484 int ttd = tw->tw_ttd - jiffies;
2485
2486 if (ttd < 0)
2487 ttd = 0;
2488
2489 dest = tw->tw_daddr;
2490 src = tw->tw_rcv_saddr;
2491 destp = ntohs(tw->tw_dport);
2492 srcp = ntohs(tw->tw_sport);
2493
2494 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2495 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2496 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2497 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2498 atomic_read(&tw->tw_refcnt), tw, len);
2499 }
2500
2501 #define TMPSZ 150
2502
tcp4_seq_show(struct seq_file * seq,void * v)2503 static int tcp4_seq_show(struct seq_file *seq, void *v)
2504 {
2505 struct tcp_iter_state *st;
2506 int len;
2507
2508 if (v == SEQ_START_TOKEN) {
2509 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2510 " sl local_address rem_address st tx_queue "
2511 "rx_queue tr tm->when retrnsmt uid timeout "
2512 "inode");
2513 goto out;
2514 }
2515 st = seq->private;
2516
2517 switch (st->state) {
2518 case TCP_SEQ_STATE_LISTENING:
2519 case TCP_SEQ_STATE_ESTABLISHED:
2520 get_tcp4_sock(v, seq, st->num, &len);
2521 break;
2522 case TCP_SEQ_STATE_OPENREQ:
2523 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2524 break;
2525 case TCP_SEQ_STATE_TIME_WAIT:
2526 get_timewait4_sock(v, seq, st->num, &len);
2527 break;
2528 }
2529 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2530 out:
2531 return 0;
2532 }
2533
2534 static const struct file_operations tcp_afinfo_seq_fops = {
2535 .owner = THIS_MODULE,
2536 .open = tcp_seq_open,
2537 .read = seq_read,
2538 .llseek = seq_lseek,
2539 .release = seq_release_net
2540 };
2541
2542 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2543 .name = "tcp",
2544 .family = AF_INET,
2545 .seq_fops = &tcp_afinfo_seq_fops,
2546 .seq_ops = {
2547 .show = tcp4_seq_show,
2548 },
2549 };
2550
tcp4_proc_init_net(struct net * net)2551 static int __net_init tcp4_proc_init_net(struct net *net)
2552 {
2553 return tcp_proc_register(net, &tcp4_seq_afinfo);
2554 }
2555
tcp4_proc_exit_net(struct net * net)2556 static void __net_exit tcp4_proc_exit_net(struct net *net)
2557 {
2558 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2559 }
2560
2561 static struct pernet_operations tcp4_net_ops = {
2562 .init = tcp4_proc_init_net,
2563 .exit = tcp4_proc_exit_net,
2564 };
2565
tcp4_proc_init(void)2566 int __init tcp4_proc_init(void)
2567 {
2568 return register_pernet_subsys(&tcp4_net_ops);
2569 }
2570
tcp4_proc_exit(void)2571 void tcp4_proc_exit(void)
2572 {
2573 unregister_pernet_subsys(&tcp4_net_ops);
2574 }
2575 #endif /* CONFIG_PROC_FS */
2576
tcp4_gro_receive(struct sk_buff ** head,struct sk_buff * skb)2577 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2578 {
2579 const struct iphdr *iph = skb_gro_network_header(skb);
2580
2581 switch (skb->ip_summed) {
2582 case CHECKSUM_COMPLETE:
2583 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2584 skb->csum)) {
2585 skb->ip_summed = CHECKSUM_UNNECESSARY;
2586 break;
2587 }
2588
2589 /* fall through */
2590 case CHECKSUM_NONE:
2591 NAPI_GRO_CB(skb)->flush = 1;
2592 return NULL;
2593 }
2594
2595 return tcp_gro_receive(head, skb);
2596 }
2597
tcp4_gro_complete(struct sk_buff * skb)2598 int tcp4_gro_complete(struct sk_buff *skb)
2599 {
2600 const struct iphdr *iph = ip_hdr(skb);
2601 struct tcphdr *th = tcp_hdr(skb);
2602
2603 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2604 iph->saddr, iph->daddr, 0);
2605 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2606
2607 return tcp_gro_complete(skb);
2608 }
2609
2610 struct proto tcp_prot = {
2611 .name = "TCP",
2612 .owner = THIS_MODULE,
2613 .close = tcp_close,
2614 .connect = tcp_v4_connect,
2615 .disconnect = tcp_disconnect,
2616 .accept = inet_csk_accept,
2617 .ioctl = tcp_ioctl,
2618 .init = tcp_v4_init_sock,
2619 .destroy = tcp_v4_destroy_sock,
2620 .shutdown = tcp_shutdown,
2621 .setsockopt = tcp_setsockopt,
2622 .getsockopt = tcp_getsockopt,
2623 .recvmsg = tcp_recvmsg,
2624 .sendmsg = tcp_sendmsg,
2625 .sendpage = tcp_sendpage,
2626 .backlog_rcv = tcp_v4_do_rcv,
2627 .hash = inet_hash,
2628 .unhash = inet_unhash,
2629 .get_port = inet_csk_get_port,
2630 .enter_memory_pressure = tcp_enter_memory_pressure,
2631 .sockets_allocated = &tcp_sockets_allocated,
2632 .orphan_count = &tcp_orphan_count,
2633 .memory_allocated = &tcp_memory_allocated,
2634 .memory_pressure = &tcp_memory_pressure,
2635 .sysctl_wmem = sysctl_tcp_wmem,
2636 .sysctl_rmem = sysctl_tcp_rmem,
2637 .max_header = MAX_TCP_HEADER,
2638 .obj_size = sizeof(struct tcp_sock),
2639 .slab_flags = SLAB_DESTROY_BY_RCU,
2640 .twsk_prot = &tcp_timewait_sock_ops,
2641 .rsk_prot = &tcp_request_sock_ops,
2642 .h.hashinfo = &tcp_hashinfo,
2643 .no_autobind = true,
2644 #ifdef CONFIG_COMPAT
2645 .compat_setsockopt = compat_tcp_setsockopt,
2646 .compat_getsockopt = compat_tcp_getsockopt,
2647 #endif
2648 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2649 .init_cgroup = tcp_init_cgroup,
2650 .destroy_cgroup = tcp_destroy_cgroup,
2651 .proto_cgroup = tcp_proto_cgroup,
2652 #endif
2653 };
2654 EXPORT_SYMBOL(tcp_prot);
2655
tcp_sk_init(struct net * net)2656 static int __net_init tcp_sk_init(struct net *net)
2657 {
2658 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2659 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2660 }
2661
tcp_sk_exit(struct net * net)2662 static void __net_exit tcp_sk_exit(struct net *net)
2663 {
2664 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2665 }
2666
tcp_sk_exit_batch(struct list_head * net_exit_list)2667 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2668 {
2669 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2670 }
2671
2672 static struct pernet_operations __net_initdata tcp_sk_ops = {
2673 .init = tcp_sk_init,
2674 .exit = tcp_sk_exit,
2675 .exit_batch = tcp_sk_exit_batch,
2676 };
2677
tcp_v4_init(void)2678 void __init tcp_v4_init(void)
2679 {
2680 inet_hashinfo_init(&tcp_hashinfo);
2681 if (register_pernet_subsys(&tcp_sk_ops))
2682 panic("Failed to create the TCP control socket.\n");
2683 }
2684