1 /*
2  *  linux/kernel/signal.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7  *
8  *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9  *		Changes to use preallocated sigqueue structures
10  *		to allow signals to be sent reliably.
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #include <linux/user_namespace.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/signal.h>
34 
35 #include <asm/param.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/siginfo.h>
39 #include "audit.h"	/* audit_signal_info() */
40 
41 /*
42  * SLAB caches for signal bits.
43  */
44 
45 static struct kmem_cache *sigqueue_cachep;
46 
47 int print_fatal_signals __read_mostly;
48 
sig_handler(struct task_struct * t,int sig)49 static void __user *sig_handler(struct task_struct *t, int sig)
50 {
51 	return t->sighand->action[sig - 1].sa.sa_handler;
52 }
53 
sig_handler_ignored(void __user * handler,int sig)54 static int sig_handler_ignored(void __user *handler, int sig)
55 {
56 	/* Is it explicitly or implicitly ignored? */
57 	return handler == SIG_IGN ||
58 		(handler == SIG_DFL && sig_kernel_ignore(sig));
59 }
60 
sig_task_ignored(struct task_struct * t,int sig,int from_ancestor_ns)61 static int sig_task_ignored(struct task_struct *t, int sig,
62 		int from_ancestor_ns)
63 {
64 	void __user *handler;
65 
66 	handler = sig_handler(t, sig);
67 
68 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
69 			handler == SIG_DFL && !from_ancestor_ns)
70 		return 1;
71 
72 	return sig_handler_ignored(handler, sig);
73 }
74 
sig_ignored(struct task_struct * t,int sig,int from_ancestor_ns)75 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
76 {
77 	/*
78 	 * Blocked signals are never ignored, since the
79 	 * signal handler may change by the time it is
80 	 * unblocked.
81 	 */
82 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
83 		return 0;
84 
85 	if (!sig_task_ignored(t, sig, from_ancestor_ns))
86 		return 0;
87 
88 	/*
89 	 * Tracers may want to know about even ignored signals.
90 	 */
91 	return !t->ptrace;
92 }
93 
94 /*
95  * Re-calculate pending state from the set of locally pending
96  * signals, globally pending signals, and blocked signals.
97  */
has_pending_signals(sigset_t * signal,sigset_t * blocked)98 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
99 {
100 	unsigned long ready;
101 	long i;
102 
103 	switch (_NSIG_WORDS) {
104 	default:
105 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
106 			ready |= signal->sig[i] &~ blocked->sig[i];
107 		break;
108 
109 	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
110 		ready |= signal->sig[2] &~ blocked->sig[2];
111 		ready |= signal->sig[1] &~ blocked->sig[1];
112 		ready |= signal->sig[0] &~ blocked->sig[0];
113 		break;
114 
115 	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
116 		ready |= signal->sig[0] &~ blocked->sig[0];
117 		break;
118 
119 	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
120 	}
121 	return ready !=	0;
122 }
123 
124 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
125 
recalc_sigpending_tsk(struct task_struct * t)126 static int recalc_sigpending_tsk(struct task_struct *t)
127 {
128 	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
129 	    PENDING(&t->pending, &t->blocked) ||
130 	    PENDING(&t->signal->shared_pending, &t->blocked)) {
131 		set_tsk_thread_flag(t, TIF_SIGPENDING);
132 		return 1;
133 	}
134 	/*
135 	 * We must never clear the flag in another thread, or in current
136 	 * when it's possible the current syscall is returning -ERESTART*.
137 	 * So we don't clear it here, and only callers who know they should do.
138 	 */
139 	return 0;
140 }
141 
142 /*
143  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
144  * This is superfluous when called on current, the wakeup is a harmless no-op.
145  */
recalc_sigpending_and_wake(struct task_struct * t)146 void recalc_sigpending_and_wake(struct task_struct *t)
147 {
148 	if (recalc_sigpending_tsk(t))
149 		signal_wake_up(t, 0);
150 }
151 
recalc_sigpending(void)152 void recalc_sigpending(void)
153 {
154 	if (!recalc_sigpending_tsk(current) && !freezing(current))
155 		clear_thread_flag(TIF_SIGPENDING);
156 
157 }
158 
159 /* Given the mask, find the first available signal that should be serviced. */
160 
161 #define SYNCHRONOUS_MASK \
162 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
163 	 sigmask(SIGTRAP) | sigmask(SIGFPE))
164 
next_signal(struct sigpending * pending,sigset_t * mask)165 int next_signal(struct sigpending *pending, sigset_t *mask)
166 {
167 	unsigned long i, *s, *m, x;
168 	int sig = 0;
169 
170 	s = pending->signal.sig;
171 	m = mask->sig;
172 
173 	/*
174 	 * Handle the first word specially: it contains the
175 	 * synchronous signals that need to be dequeued first.
176 	 */
177 	x = *s &~ *m;
178 	if (x) {
179 		if (x & SYNCHRONOUS_MASK)
180 			x &= SYNCHRONOUS_MASK;
181 		sig = ffz(~x) + 1;
182 		return sig;
183 	}
184 
185 	switch (_NSIG_WORDS) {
186 	default:
187 		for (i = 1; i < _NSIG_WORDS; ++i) {
188 			x = *++s &~ *++m;
189 			if (!x)
190 				continue;
191 			sig = ffz(~x) + i*_NSIG_BPW + 1;
192 			break;
193 		}
194 		break;
195 
196 	case 2:
197 		x = s[1] &~ m[1];
198 		if (!x)
199 			break;
200 		sig = ffz(~x) + _NSIG_BPW + 1;
201 		break;
202 
203 	case 1:
204 		/* Nothing to do */
205 		break;
206 	}
207 
208 	return sig;
209 }
210 
print_dropped_signal(int sig)211 static inline void print_dropped_signal(int sig)
212 {
213 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
214 
215 	if (!print_fatal_signals)
216 		return;
217 
218 	if (!__ratelimit(&ratelimit_state))
219 		return;
220 
221 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
222 				current->comm, current->pid, sig);
223 }
224 
225 /**
226  * task_set_jobctl_pending - set jobctl pending bits
227  * @task: target task
228  * @mask: pending bits to set
229  *
230  * Clear @mask from @task->jobctl.  @mask must be subset of
231  * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
232  * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
233  * cleared.  If @task is already being killed or exiting, this function
234  * becomes noop.
235  *
236  * CONTEXT:
237  * Must be called with @task->sighand->siglock held.
238  *
239  * RETURNS:
240  * %true if @mask is set, %false if made noop because @task was dying.
241  */
task_set_jobctl_pending(struct task_struct * task,unsigned int mask)242 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
243 {
244 	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
245 			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
246 	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
247 
248 	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
249 		return false;
250 
251 	if (mask & JOBCTL_STOP_SIGMASK)
252 		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
253 
254 	task->jobctl |= mask;
255 	return true;
256 }
257 
258 /**
259  * task_clear_jobctl_trapping - clear jobctl trapping bit
260  * @task: target task
261  *
262  * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
263  * Clear it and wake up the ptracer.  Note that we don't need any further
264  * locking.  @task->siglock guarantees that @task->parent points to the
265  * ptracer.
266  *
267  * CONTEXT:
268  * Must be called with @task->sighand->siglock held.
269  */
task_clear_jobctl_trapping(struct task_struct * task)270 void task_clear_jobctl_trapping(struct task_struct *task)
271 {
272 	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
273 		task->jobctl &= ~JOBCTL_TRAPPING;
274 		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
275 	}
276 }
277 
278 /**
279  * task_clear_jobctl_pending - clear jobctl pending bits
280  * @task: target task
281  * @mask: pending bits to clear
282  *
283  * Clear @mask from @task->jobctl.  @mask must be subset of
284  * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
285  * STOP bits are cleared together.
286  *
287  * If clearing of @mask leaves no stop or trap pending, this function calls
288  * task_clear_jobctl_trapping().
289  *
290  * CONTEXT:
291  * Must be called with @task->sighand->siglock held.
292  */
task_clear_jobctl_pending(struct task_struct * task,unsigned int mask)293 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
294 {
295 	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
296 
297 	if (mask & JOBCTL_STOP_PENDING)
298 		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
299 
300 	task->jobctl &= ~mask;
301 
302 	if (!(task->jobctl & JOBCTL_PENDING_MASK))
303 		task_clear_jobctl_trapping(task);
304 }
305 
306 /**
307  * task_participate_group_stop - participate in a group stop
308  * @task: task participating in a group stop
309  *
310  * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
311  * Group stop states are cleared and the group stop count is consumed if
312  * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
313  * stop, the appropriate %SIGNAL_* flags are set.
314  *
315  * CONTEXT:
316  * Must be called with @task->sighand->siglock held.
317  *
318  * RETURNS:
319  * %true if group stop completion should be notified to the parent, %false
320  * otherwise.
321  */
task_participate_group_stop(struct task_struct * task)322 static bool task_participate_group_stop(struct task_struct *task)
323 {
324 	struct signal_struct *sig = task->signal;
325 	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
326 
327 	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
328 
329 	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
330 
331 	if (!consume)
332 		return false;
333 
334 	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
335 		sig->group_stop_count--;
336 
337 	/*
338 	 * Tell the caller to notify completion iff we are entering into a
339 	 * fresh group stop.  Read comment in do_signal_stop() for details.
340 	 */
341 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
342 		sig->flags = SIGNAL_STOP_STOPPED;
343 		return true;
344 	}
345 	return false;
346 }
347 
348 /*
349  * allocate a new signal queue record
350  * - this may be called without locks if and only if t == current, otherwise an
351  *   appropriate lock must be held to stop the target task from exiting
352  */
353 static struct sigqueue *
__sigqueue_alloc(int sig,struct task_struct * t,gfp_t flags,int override_rlimit)354 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
355 {
356 	struct sigqueue *q = NULL;
357 	struct user_struct *user;
358 
359 	/*
360 	 * Protect access to @t credentials. This can go away when all
361 	 * callers hold rcu read lock.
362 	 */
363 	rcu_read_lock();
364 	user = get_uid(__task_cred(t)->user);
365 	atomic_inc(&user->sigpending);
366 	rcu_read_unlock();
367 
368 	if (override_rlimit ||
369 	    atomic_read(&user->sigpending) <=
370 			task_rlimit(t, RLIMIT_SIGPENDING)) {
371 		q = kmem_cache_alloc(sigqueue_cachep, flags);
372 	} else {
373 		print_dropped_signal(sig);
374 	}
375 
376 	if (unlikely(q == NULL)) {
377 		atomic_dec(&user->sigpending);
378 		free_uid(user);
379 	} else {
380 		INIT_LIST_HEAD(&q->list);
381 		q->flags = 0;
382 		q->user = user;
383 	}
384 
385 	return q;
386 }
387 
__sigqueue_free(struct sigqueue * q)388 static void __sigqueue_free(struct sigqueue *q)
389 {
390 	if (q->flags & SIGQUEUE_PREALLOC)
391 		return;
392 	atomic_dec(&q->user->sigpending);
393 	free_uid(q->user);
394 	kmem_cache_free(sigqueue_cachep, q);
395 }
396 
flush_sigqueue(struct sigpending * queue)397 void flush_sigqueue(struct sigpending *queue)
398 {
399 	struct sigqueue *q;
400 
401 	sigemptyset(&queue->signal);
402 	while (!list_empty(&queue->list)) {
403 		q = list_entry(queue->list.next, struct sigqueue , list);
404 		list_del_init(&q->list);
405 		__sigqueue_free(q);
406 	}
407 }
408 
409 /*
410  * Flush all pending signals for a task.
411  */
__flush_signals(struct task_struct * t)412 void __flush_signals(struct task_struct *t)
413 {
414 	clear_tsk_thread_flag(t, TIF_SIGPENDING);
415 	flush_sigqueue(&t->pending);
416 	flush_sigqueue(&t->signal->shared_pending);
417 }
418 
flush_signals(struct task_struct * t)419 void flush_signals(struct task_struct *t)
420 {
421 	unsigned long flags;
422 
423 	spin_lock_irqsave(&t->sighand->siglock, flags);
424 	__flush_signals(t);
425 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
426 }
427 
__flush_itimer_signals(struct sigpending * pending)428 static void __flush_itimer_signals(struct sigpending *pending)
429 {
430 	sigset_t signal, retain;
431 	struct sigqueue *q, *n;
432 
433 	signal = pending->signal;
434 	sigemptyset(&retain);
435 
436 	list_for_each_entry_safe(q, n, &pending->list, list) {
437 		int sig = q->info.si_signo;
438 
439 		if (likely(q->info.si_code != SI_TIMER)) {
440 			sigaddset(&retain, sig);
441 		} else {
442 			sigdelset(&signal, sig);
443 			list_del_init(&q->list);
444 			__sigqueue_free(q);
445 		}
446 	}
447 
448 	sigorsets(&pending->signal, &signal, &retain);
449 }
450 
flush_itimer_signals(void)451 void flush_itimer_signals(void)
452 {
453 	struct task_struct *tsk = current;
454 	unsigned long flags;
455 
456 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
457 	__flush_itimer_signals(&tsk->pending);
458 	__flush_itimer_signals(&tsk->signal->shared_pending);
459 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
460 }
461 
ignore_signals(struct task_struct * t)462 void ignore_signals(struct task_struct *t)
463 {
464 	int i;
465 
466 	for (i = 0; i < _NSIG; ++i)
467 		t->sighand->action[i].sa.sa_handler = SIG_IGN;
468 
469 	flush_signals(t);
470 }
471 
472 /*
473  * Flush all handlers for a task.
474  */
475 
476 void
flush_signal_handlers(struct task_struct * t,int force_default)477 flush_signal_handlers(struct task_struct *t, int force_default)
478 {
479 	int i;
480 	struct k_sigaction *ka = &t->sighand->action[0];
481 	for (i = _NSIG ; i != 0 ; i--) {
482 		if (force_default || ka->sa.sa_handler != SIG_IGN)
483 			ka->sa.sa_handler = SIG_DFL;
484 		ka->sa.sa_flags = 0;
485 		sigemptyset(&ka->sa.sa_mask);
486 		ka++;
487 	}
488 }
489 
unhandled_signal(struct task_struct * tsk,int sig)490 int unhandled_signal(struct task_struct *tsk, int sig)
491 {
492 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
493 	if (is_global_init(tsk))
494 		return 1;
495 	if (handler != SIG_IGN && handler != SIG_DFL)
496 		return 0;
497 	/* if ptraced, let the tracer determine */
498 	return !tsk->ptrace;
499 }
500 
501 /*
502  * Notify the system that a driver wants to block all signals for this
503  * process, and wants to be notified if any signals at all were to be
504  * sent/acted upon.  If the notifier routine returns non-zero, then the
505  * signal will be acted upon after all.  If the notifier routine returns 0,
506  * then then signal will be blocked.  Only one block per process is
507  * allowed.  priv is a pointer to private data that the notifier routine
508  * can use to determine if the signal should be blocked or not.
509  */
510 void
block_all_signals(int (* notifier)(void * priv),void * priv,sigset_t * mask)511 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
512 {
513 	unsigned long flags;
514 
515 	spin_lock_irqsave(&current->sighand->siglock, flags);
516 	current->notifier_mask = mask;
517 	current->notifier_data = priv;
518 	current->notifier = notifier;
519 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
520 }
521 
522 /* Notify the system that blocking has ended. */
523 
524 void
unblock_all_signals(void)525 unblock_all_signals(void)
526 {
527 	unsigned long flags;
528 
529 	spin_lock_irqsave(&current->sighand->siglock, flags);
530 	current->notifier = NULL;
531 	current->notifier_data = NULL;
532 	recalc_sigpending();
533 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
534 }
535 
collect_signal(int sig,struct sigpending * list,siginfo_t * info)536 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
537 {
538 	struct sigqueue *q, *first = NULL;
539 
540 	/*
541 	 * Collect the siginfo appropriate to this signal.  Check if
542 	 * there is another siginfo for the same signal.
543 	*/
544 	list_for_each_entry(q, &list->list, list) {
545 		if (q->info.si_signo == sig) {
546 			if (first)
547 				goto still_pending;
548 			first = q;
549 		}
550 	}
551 
552 	sigdelset(&list->signal, sig);
553 
554 	if (first) {
555 still_pending:
556 		list_del_init(&first->list);
557 		copy_siginfo(info, &first->info);
558 		__sigqueue_free(first);
559 	} else {
560 		/*
561 		 * Ok, it wasn't in the queue.  This must be
562 		 * a fast-pathed signal or we must have been
563 		 * out of queue space.  So zero out the info.
564 		 */
565 		info->si_signo = sig;
566 		info->si_errno = 0;
567 		info->si_code = SI_USER;
568 		info->si_pid = 0;
569 		info->si_uid = 0;
570 	}
571 }
572 
__dequeue_signal(struct sigpending * pending,sigset_t * mask,siginfo_t * info)573 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
574 			siginfo_t *info)
575 {
576 	int sig = next_signal(pending, mask);
577 
578 	if (sig) {
579 		if (current->notifier) {
580 			if (sigismember(current->notifier_mask, sig)) {
581 				if (!(current->notifier)(current->notifier_data)) {
582 					clear_thread_flag(TIF_SIGPENDING);
583 					return 0;
584 				}
585 			}
586 		}
587 
588 		collect_signal(sig, pending, info);
589 	}
590 
591 	return sig;
592 }
593 
594 /*
595  * Dequeue a signal and return the element to the caller, which is
596  * expected to free it.
597  *
598  * All callers have to hold the siglock.
599  */
dequeue_signal(struct task_struct * tsk,sigset_t * mask,siginfo_t * info)600 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
601 {
602 	int signr;
603 
604 	/* We only dequeue private signals from ourselves, we don't let
605 	 * signalfd steal them
606 	 */
607 	signr = __dequeue_signal(&tsk->pending, mask, info);
608 	if (!signr) {
609 		signr = __dequeue_signal(&tsk->signal->shared_pending,
610 					 mask, info);
611 		/*
612 		 * itimer signal ?
613 		 *
614 		 * itimers are process shared and we restart periodic
615 		 * itimers in the signal delivery path to prevent DoS
616 		 * attacks in the high resolution timer case. This is
617 		 * compliant with the old way of self-restarting
618 		 * itimers, as the SIGALRM is a legacy signal and only
619 		 * queued once. Changing the restart behaviour to
620 		 * restart the timer in the signal dequeue path is
621 		 * reducing the timer noise on heavy loaded !highres
622 		 * systems too.
623 		 */
624 		if (unlikely(signr == SIGALRM)) {
625 			struct hrtimer *tmr = &tsk->signal->real_timer;
626 
627 			if (!hrtimer_is_queued(tmr) &&
628 			    tsk->signal->it_real_incr.tv64 != 0) {
629 				hrtimer_forward(tmr, tmr->base->get_time(),
630 						tsk->signal->it_real_incr);
631 				hrtimer_restart(tmr);
632 			}
633 		}
634 	}
635 
636 	recalc_sigpending();
637 	if (!signr)
638 		return 0;
639 
640 	if (unlikely(sig_kernel_stop(signr))) {
641 		/*
642 		 * Set a marker that we have dequeued a stop signal.  Our
643 		 * caller might release the siglock and then the pending
644 		 * stop signal it is about to process is no longer in the
645 		 * pending bitmasks, but must still be cleared by a SIGCONT
646 		 * (and overruled by a SIGKILL).  So those cases clear this
647 		 * shared flag after we've set it.  Note that this flag may
648 		 * remain set after the signal we return is ignored or
649 		 * handled.  That doesn't matter because its only purpose
650 		 * is to alert stop-signal processing code when another
651 		 * processor has come along and cleared the flag.
652 		 */
653 		current->jobctl |= JOBCTL_STOP_DEQUEUED;
654 	}
655 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
656 		/*
657 		 * Release the siglock to ensure proper locking order
658 		 * of timer locks outside of siglocks.  Note, we leave
659 		 * irqs disabled here, since the posix-timers code is
660 		 * about to disable them again anyway.
661 		 */
662 		spin_unlock(&tsk->sighand->siglock);
663 		do_schedule_next_timer(info);
664 		spin_lock(&tsk->sighand->siglock);
665 	}
666 	return signr;
667 }
668 
669 /*
670  * Tell a process that it has a new active signal..
671  *
672  * NOTE! we rely on the previous spin_lock to
673  * lock interrupts for us! We can only be called with
674  * "siglock" held, and the local interrupt must
675  * have been disabled when that got acquired!
676  *
677  * No need to set need_resched since signal event passing
678  * goes through ->blocked
679  */
signal_wake_up(struct task_struct * t,int resume)680 void signal_wake_up(struct task_struct *t, int resume)
681 {
682 	unsigned int mask;
683 
684 	set_tsk_thread_flag(t, TIF_SIGPENDING);
685 
686 	/*
687 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
688 	 * case. We don't check t->state here because there is a race with it
689 	 * executing another processor and just now entering stopped state.
690 	 * By using wake_up_state, we ensure the process will wake up and
691 	 * handle its death signal.
692 	 */
693 	mask = TASK_INTERRUPTIBLE;
694 	if (resume)
695 		mask |= TASK_WAKEKILL;
696 	if (!wake_up_state(t, mask))
697 		kick_process(t);
698 }
699 
700 /*
701  * Remove signals in mask from the pending set and queue.
702  * Returns 1 if any signals were found.
703  *
704  * All callers must be holding the siglock.
705  *
706  * This version takes a sigset mask and looks at all signals,
707  * not just those in the first mask word.
708  */
rm_from_queue_full(sigset_t * mask,struct sigpending * s)709 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
710 {
711 	struct sigqueue *q, *n;
712 	sigset_t m;
713 
714 	sigandsets(&m, mask, &s->signal);
715 	if (sigisemptyset(&m))
716 		return 0;
717 
718 	sigandnsets(&s->signal, &s->signal, mask);
719 	list_for_each_entry_safe(q, n, &s->list, list) {
720 		if (sigismember(mask, q->info.si_signo)) {
721 			list_del_init(&q->list);
722 			__sigqueue_free(q);
723 		}
724 	}
725 	return 1;
726 }
727 /*
728  * Remove signals in mask from the pending set and queue.
729  * Returns 1 if any signals were found.
730  *
731  * All callers must be holding the siglock.
732  */
rm_from_queue(unsigned long mask,struct sigpending * s)733 static int rm_from_queue(unsigned long mask, struct sigpending *s)
734 {
735 	struct sigqueue *q, *n;
736 
737 	if (!sigtestsetmask(&s->signal, mask))
738 		return 0;
739 
740 	sigdelsetmask(&s->signal, mask);
741 	list_for_each_entry_safe(q, n, &s->list, list) {
742 		if (q->info.si_signo < SIGRTMIN &&
743 		    (mask & sigmask(q->info.si_signo))) {
744 			list_del_init(&q->list);
745 			__sigqueue_free(q);
746 		}
747 	}
748 	return 1;
749 }
750 
is_si_special(const struct siginfo * info)751 static inline int is_si_special(const struct siginfo *info)
752 {
753 	return info <= SEND_SIG_FORCED;
754 }
755 
si_fromuser(const struct siginfo * info)756 static inline bool si_fromuser(const struct siginfo *info)
757 {
758 	return info == SEND_SIG_NOINFO ||
759 		(!is_si_special(info) && SI_FROMUSER(info));
760 }
761 
762 /*
763  * called with RCU read lock from check_kill_permission()
764  */
kill_ok_by_cred(struct task_struct * t)765 static int kill_ok_by_cred(struct task_struct *t)
766 {
767 	const struct cred *cred = current_cred();
768 	const struct cred *tcred = __task_cred(t);
769 
770 	if (cred->user->user_ns == tcred->user->user_ns &&
771 	    (cred->euid == tcred->suid ||
772 	     cred->euid == tcred->uid ||
773 	     cred->uid  == tcred->suid ||
774 	     cred->uid  == tcred->uid))
775 		return 1;
776 
777 	if (ns_capable(tcred->user->user_ns, CAP_KILL))
778 		return 1;
779 
780 	return 0;
781 }
782 
783 /*
784  * Bad permissions for sending the signal
785  * - the caller must hold the RCU read lock
786  */
check_kill_permission(int sig,struct siginfo * info,struct task_struct * t)787 static int check_kill_permission(int sig, struct siginfo *info,
788 				 struct task_struct *t)
789 {
790 	struct pid *sid;
791 	int error;
792 
793 	if (!valid_signal(sig))
794 		return -EINVAL;
795 
796 	if (!si_fromuser(info))
797 		return 0;
798 
799 	error = audit_signal_info(sig, t); /* Let audit system see the signal */
800 	if (error)
801 		return error;
802 
803 	if (!same_thread_group(current, t) &&
804 	    !kill_ok_by_cred(t)) {
805 		switch (sig) {
806 		case SIGCONT:
807 			sid = task_session(t);
808 			/*
809 			 * We don't return the error if sid == NULL. The
810 			 * task was unhashed, the caller must notice this.
811 			 */
812 			if (!sid || sid == task_session(current))
813 				break;
814 		default:
815 			return -EPERM;
816 		}
817 	}
818 
819 	return security_task_kill(t, info, sig, 0);
820 }
821 
822 /**
823  * ptrace_trap_notify - schedule trap to notify ptracer
824  * @t: tracee wanting to notify tracer
825  *
826  * This function schedules sticky ptrace trap which is cleared on the next
827  * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
828  * ptracer.
829  *
830  * If @t is running, STOP trap will be taken.  If trapped for STOP and
831  * ptracer is listening for events, tracee is woken up so that it can
832  * re-trap for the new event.  If trapped otherwise, STOP trap will be
833  * eventually taken without returning to userland after the existing traps
834  * are finished by PTRACE_CONT.
835  *
836  * CONTEXT:
837  * Must be called with @task->sighand->siglock held.
838  */
ptrace_trap_notify(struct task_struct * t)839 static void ptrace_trap_notify(struct task_struct *t)
840 {
841 	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
842 	assert_spin_locked(&t->sighand->siglock);
843 
844 	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
845 	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
846 }
847 
848 /*
849  * Handle magic process-wide effects of stop/continue signals. Unlike
850  * the signal actions, these happen immediately at signal-generation
851  * time regardless of blocking, ignoring, or handling.  This does the
852  * actual continuing for SIGCONT, but not the actual stopping for stop
853  * signals. The process stop is done as a signal action for SIG_DFL.
854  *
855  * Returns true if the signal should be actually delivered, otherwise
856  * it should be dropped.
857  */
prepare_signal(int sig,struct task_struct * p,int from_ancestor_ns)858 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
859 {
860 	struct signal_struct *signal = p->signal;
861 	struct task_struct *t;
862 
863 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
864 		/*
865 		 * The process is in the middle of dying, nothing to do.
866 		 */
867 	} else if (sig_kernel_stop(sig)) {
868 		/*
869 		 * This is a stop signal.  Remove SIGCONT from all queues.
870 		 */
871 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
872 		t = p;
873 		do {
874 			rm_from_queue(sigmask(SIGCONT), &t->pending);
875 		} while_each_thread(p, t);
876 	} else if (sig == SIGCONT) {
877 		unsigned int why;
878 		/*
879 		 * Remove all stop signals from all queues, wake all threads.
880 		 */
881 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
882 		t = p;
883 		do {
884 			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
885 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
886 			if (likely(!(t->ptrace & PT_SEIZED)))
887 				wake_up_state(t, __TASK_STOPPED);
888 			else
889 				ptrace_trap_notify(t);
890 		} while_each_thread(p, t);
891 
892 		/*
893 		 * Notify the parent with CLD_CONTINUED if we were stopped.
894 		 *
895 		 * If we were in the middle of a group stop, we pretend it
896 		 * was already finished, and then continued. Since SIGCHLD
897 		 * doesn't queue we report only CLD_STOPPED, as if the next
898 		 * CLD_CONTINUED was dropped.
899 		 */
900 		why = 0;
901 		if (signal->flags & SIGNAL_STOP_STOPPED)
902 			why |= SIGNAL_CLD_CONTINUED;
903 		else if (signal->group_stop_count)
904 			why |= SIGNAL_CLD_STOPPED;
905 
906 		if (why) {
907 			/*
908 			 * The first thread which returns from do_signal_stop()
909 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
910 			 * notify its parent. See get_signal_to_deliver().
911 			 */
912 			signal->flags = why | SIGNAL_STOP_CONTINUED;
913 			signal->group_stop_count = 0;
914 			signal->group_exit_code = 0;
915 		}
916 	}
917 
918 	return !sig_ignored(p, sig, from_ancestor_ns);
919 }
920 
921 /*
922  * Test if P wants to take SIG.  After we've checked all threads with this,
923  * it's equivalent to finding no threads not blocking SIG.  Any threads not
924  * blocking SIG were ruled out because they are not running and already
925  * have pending signals.  Such threads will dequeue from the shared queue
926  * as soon as they're available, so putting the signal on the shared queue
927  * will be equivalent to sending it to one such thread.
928  */
wants_signal(int sig,struct task_struct * p)929 static inline int wants_signal(int sig, struct task_struct *p)
930 {
931 	if (sigismember(&p->blocked, sig))
932 		return 0;
933 	if (p->flags & PF_EXITING)
934 		return 0;
935 	if (sig == SIGKILL)
936 		return 1;
937 	if (task_is_stopped_or_traced(p))
938 		return 0;
939 	return task_curr(p) || !signal_pending(p);
940 }
941 
complete_signal(int sig,struct task_struct * p,int group)942 static void complete_signal(int sig, struct task_struct *p, int group)
943 {
944 	struct signal_struct *signal = p->signal;
945 	struct task_struct *t;
946 
947 	/*
948 	 * Now find a thread we can wake up to take the signal off the queue.
949 	 *
950 	 * If the main thread wants the signal, it gets first crack.
951 	 * Probably the least surprising to the average bear.
952 	 */
953 	if (wants_signal(sig, p))
954 		t = p;
955 	else if (!group || thread_group_empty(p))
956 		/*
957 		 * There is just one thread and it does not need to be woken.
958 		 * It will dequeue unblocked signals before it runs again.
959 		 */
960 		return;
961 	else {
962 		/*
963 		 * Otherwise try to find a suitable thread.
964 		 */
965 		t = signal->curr_target;
966 		while (!wants_signal(sig, t)) {
967 			t = next_thread(t);
968 			if (t == signal->curr_target)
969 				/*
970 				 * No thread needs to be woken.
971 				 * Any eligible threads will see
972 				 * the signal in the queue soon.
973 				 */
974 				return;
975 		}
976 		signal->curr_target = t;
977 	}
978 
979 	/*
980 	 * Found a killable thread.  If the signal will be fatal,
981 	 * then start taking the whole group down immediately.
982 	 */
983 	if (sig_fatal(p, sig) &&
984 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
985 	    !sigismember(&t->real_blocked, sig) &&
986 	    (sig == SIGKILL || !t->ptrace)) {
987 		/*
988 		 * This signal will be fatal to the whole group.
989 		 */
990 		if (!sig_kernel_coredump(sig)) {
991 			/*
992 			 * Start a group exit and wake everybody up.
993 			 * This way we don't have other threads
994 			 * running and doing things after a slower
995 			 * thread has the fatal signal pending.
996 			 */
997 			signal->flags = SIGNAL_GROUP_EXIT;
998 			signal->group_exit_code = sig;
999 			signal->group_stop_count = 0;
1000 			t = p;
1001 			do {
1002 				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1003 				sigaddset(&t->pending.signal, SIGKILL);
1004 				signal_wake_up(t, 1);
1005 			} while_each_thread(p, t);
1006 			return;
1007 		}
1008 	}
1009 
1010 	/*
1011 	 * The signal is already in the shared-pending queue.
1012 	 * Tell the chosen thread to wake up and dequeue it.
1013 	 */
1014 	signal_wake_up(t, sig == SIGKILL);
1015 	return;
1016 }
1017 
legacy_queue(struct sigpending * signals,int sig)1018 static inline int legacy_queue(struct sigpending *signals, int sig)
1019 {
1020 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1021 }
1022 
1023 /*
1024  * map the uid in struct cred into user namespace *ns
1025  */
map_cred_ns(const struct cred * cred,struct user_namespace * ns)1026 static inline uid_t map_cred_ns(const struct cred *cred,
1027 				struct user_namespace *ns)
1028 {
1029 	return user_ns_map_uid(ns, cred, cred->uid);
1030 }
1031 
1032 #ifdef CONFIG_USER_NS
userns_fixup_signal_uid(struct siginfo * info,struct task_struct * t)1033 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1034 {
1035 	if (current_user_ns() == task_cred_xxx(t, user_ns))
1036 		return;
1037 
1038 	if (SI_FROMKERNEL(info))
1039 		return;
1040 
1041 	info->si_uid = user_ns_map_uid(task_cred_xxx(t, user_ns),
1042 					current_cred(), info->si_uid);
1043 }
1044 #else
userns_fixup_signal_uid(struct siginfo * info,struct task_struct * t)1045 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1046 {
1047 	return;
1048 }
1049 #endif
1050 
__send_signal(int sig,struct siginfo * info,struct task_struct * t,int group,int from_ancestor_ns)1051 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1052 			int group, int from_ancestor_ns)
1053 {
1054 	struct sigpending *pending;
1055 	struct sigqueue *q;
1056 	int override_rlimit;
1057 
1058 	trace_signal_generate(sig, info, t);
1059 
1060 	assert_spin_locked(&t->sighand->siglock);
1061 
1062 	if (!prepare_signal(sig, t, from_ancestor_ns))
1063 		return 0;
1064 
1065 	pending = group ? &t->signal->shared_pending : &t->pending;
1066 	/*
1067 	 * Short-circuit ignored signals and support queuing
1068 	 * exactly one non-rt signal, so that we can get more
1069 	 * detailed information about the cause of the signal.
1070 	 */
1071 	if (legacy_queue(pending, sig))
1072 		return 0;
1073 	/*
1074 	 * fast-pathed signals for kernel-internal things like SIGSTOP
1075 	 * or SIGKILL.
1076 	 */
1077 	if (info == SEND_SIG_FORCED)
1078 		goto out_set;
1079 
1080 	/*
1081 	 * Real-time signals must be queued if sent by sigqueue, or
1082 	 * some other real-time mechanism.  It is implementation
1083 	 * defined whether kill() does so.  We attempt to do so, on
1084 	 * the principle of least surprise, but since kill is not
1085 	 * allowed to fail with EAGAIN when low on memory we just
1086 	 * make sure at least one signal gets delivered and don't
1087 	 * pass on the info struct.
1088 	 */
1089 	if (sig < SIGRTMIN)
1090 		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1091 	else
1092 		override_rlimit = 0;
1093 
1094 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1095 		override_rlimit);
1096 	if (q) {
1097 		list_add_tail(&q->list, &pending->list);
1098 		switch ((unsigned long) info) {
1099 		case (unsigned long) SEND_SIG_NOINFO:
1100 			q->info.si_signo = sig;
1101 			q->info.si_errno = 0;
1102 			q->info.si_code = SI_USER;
1103 			q->info.si_pid = task_tgid_nr_ns(current,
1104 							task_active_pid_ns(t));
1105 			q->info.si_uid = current_uid();
1106 			break;
1107 		case (unsigned long) SEND_SIG_PRIV:
1108 			q->info.si_signo = sig;
1109 			q->info.si_errno = 0;
1110 			q->info.si_code = SI_KERNEL;
1111 			q->info.si_pid = 0;
1112 			q->info.si_uid = 0;
1113 			break;
1114 		default:
1115 			copy_siginfo(&q->info, info);
1116 			if (from_ancestor_ns)
1117 				q->info.si_pid = 0;
1118 			break;
1119 		}
1120 
1121 		userns_fixup_signal_uid(&q->info, t);
1122 
1123 	} else if (!is_si_special(info)) {
1124 		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1125 			/*
1126 			 * Queue overflow, abort.  We may abort if the
1127 			 * signal was rt and sent by user using something
1128 			 * other than kill().
1129 			 */
1130 			trace_signal_overflow_fail(sig, group, info);
1131 			return -EAGAIN;
1132 		} else {
1133 			/*
1134 			 * This is a silent loss of information.  We still
1135 			 * send the signal, but the *info bits are lost.
1136 			 */
1137 			trace_signal_lose_info(sig, group, info);
1138 		}
1139 	}
1140 
1141 out_set:
1142 	signalfd_notify(t, sig);
1143 	sigaddset(&pending->signal, sig);
1144 	complete_signal(sig, t, group);
1145 	return 0;
1146 }
1147 
send_signal(int sig,struct siginfo * info,struct task_struct * t,int group)1148 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1149 			int group)
1150 {
1151 	int from_ancestor_ns = 0;
1152 
1153 #ifdef CONFIG_PID_NS
1154 	from_ancestor_ns = si_fromuser(info) &&
1155 			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1156 #endif
1157 
1158 	return __send_signal(sig, info, t, group, from_ancestor_ns);
1159 }
1160 
print_fatal_signal(struct pt_regs * regs,int signr)1161 static void print_fatal_signal(struct pt_regs *regs, int signr)
1162 {
1163 	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1164 		current->comm, task_pid_nr(current), signr);
1165 
1166 #if defined(__i386__) && !defined(__arch_um__)
1167 	printk("code at %08lx: ", regs->ip);
1168 	{
1169 		int i;
1170 		for (i = 0; i < 16; i++) {
1171 			unsigned char insn;
1172 
1173 			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1174 				break;
1175 			printk("%02x ", insn);
1176 		}
1177 	}
1178 #endif
1179 	printk("\n");
1180 	preempt_disable();
1181 	show_regs(regs);
1182 	preempt_enable();
1183 }
1184 
setup_print_fatal_signals(char * str)1185 static int __init setup_print_fatal_signals(char *str)
1186 {
1187 	get_option (&str, &print_fatal_signals);
1188 
1189 	return 1;
1190 }
1191 
1192 __setup("print-fatal-signals=", setup_print_fatal_signals);
1193 
1194 int
__group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1195 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1196 {
1197 	return send_signal(sig, info, p, 1);
1198 }
1199 
1200 static int
specific_send_sig_info(int sig,struct siginfo * info,struct task_struct * t)1201 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1202 {
1203 	return send_signal(sig, info, t, 0);
1204 }
1205 
do_send_sig_info(int sig,struct siginfo * info,struct task_struct * p,bool group)1206 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1207 			bool group)
1208 {
1209 	unsigned long flags;
1210 	int ret = -ESRCH;
1211 
1212 	if (lock_task_sighand(p, &flags)) {
1213 		ret = send_signal(sig, info, p, group);
1214 		unlock_task_sighand(p, &flags);
1215 	}
1216 
1217 	return ret;
1218 }
1219 
1220 /*
1221  * Force a signal that the process can't ignore: if necessary
1222  * we unblock the signal and change any SIG_IGN to SIG_DFL.
1223  *
1224  * Note: If we unblock the signal, we always reset it to SIG_DFL,
1225  * since we do not want to have a signal handler that was blocked
1226  * be invoked when user space had explicitly blocked it.
1227  *
1228  * We don't want to have recursive SIGSEGV's etc, for example,
1229  * that is why we also clear SIGNAL_UNKILLABLE.
1230  */
1231 int
force_sig_info(int sig,struct siginfo * info,struct task_struct * t)1232 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1233 {
1234 	unsigned long int flags;
1235 	int ret, blocked, ignored;
1236 	struct k_sigaction *action;
1237 
1238 	spin_lock_irqsave(&t->sighand->siglock, flags);
1239 	action = &t->sighand->action[sig-1];
1240 	ignored = action->sa.sa_handler == SIG_IGN;
1241 	blocked = sigismember(&t->blocked, sig);
1242 	if (blocked || ignored) {
1243 		action->sa.sa_handler = SIG_DFL;
1244 		if (blocked) {
1245 			sigdelset(&t->blocked, sig);
1246 			recalc_sigpending_and_wake(t);
1247 		}
1248 	}
1249 	if (action->sa.sa_handler == SIG_DFL)
1250 		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1251 	ret = specific_send_sig_info(sig, info, t);
1252 	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1253 
1254 	return ret;
1255 }
1256 
1257 /*
1258  * Nuke all other threads in the group.
1259  */
zap_other_threads(struct task_struct * p)1260 int zap_other_threads(struct task_struct *p)
1261 {
1262 	struct task_struct *t = p;
1263 	int count = 0;
1264 
1265 	p->signal->group_stop_count = 0;
1266 
1267 	while_each_thread(p, t) {
1268 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1269 		count++;
1270 
1271 		/* Don't bother with already dead threads */
1272 		if (t->exit_state)
1273 			continue;
1274 		sigaddset(&t->pending.signal, SIGKILL);
1275 		signal_wake_up(t, 1);
1276 	}
1277 
1278 	return count;
1279 }
1280 
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1281 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1282 					   unsigned long *flags)
1283 {
1284 	struct sighand_struct *sighand;
1285 
1286 	for (;;) {
1287 		local_irq_save(*flags);
1288 		rcu_read_lock();
1289 		sighand = rcu_dereference(tsk->sighand);
1290 		if (unlikely(sighand == NULL)) {
1291 			rcu_read_unlock();
1292 			local_irq_restore(*flags);
1293 			break;
1294 		}
1295 
1296 		spin_lock(&sighand->siglock);
1297 		if (likely(sighand == tsk->sighand)) {
1298 			rcu_read_unlock();
1299 			break;
1300 		}
1301 		spin_unlock(&sighand->siglock);
1302 		rcu_read_unlock();
1303 		local_irq_restore(*flags);
1304 	}
1305 
1306 	return sighand;
1307 }
1308 
1309 /*
1310  * send signal info to all the members of a group
1311  */
group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1312 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1313 {
1314 	int ret;
1315 
1316 	rcu_read_lock();
1317 	ret = check_kill_permission(sig, info, p);
1318 	rcu_read_unlock();
1319 
1320 	if (!ret && sig)
1321 		ret = do_send_sig_info(sig, info, p, true);
1322 
1323 	return ret;
1324 }
1325 
1326 /*
1327  * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1328  * control characters do (^C, ^Z etc)
1329  * - the caller must hold at least a readlock on tasklist_lock
1330  */
__kill_pgrp_info(int sig,struct siginfo * info,struct pid * pgrp)1331 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1332 {
1333 	struct task_struct *p = NULL;
1334 	int retval, success;
1335 
1336 	success = 0;
1337 	retval = -ESRCH;
1338 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1339 		int err = group_send_sig_info(sig, info, p);
1340 		success |= !err;
1341 		retval = err;
1342 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1343 	return success ? 0 : retval;
1344 }
1345 
kill_pid_info(int sig,struct siginfo * info,struct pid * pid)1346 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1347 {
1348 	int error = -ESRCH;
1349 	struct task_struct *p;
1350 
1351 	rcu_read_lock();
1352 retry:
1353 	p = pid_task(pid, PIDTYPE_PID);
1354 	if (p) {
1355 		error = group_send_sig_info(sig, info, p);
1356 		if (unlikely(error == -ESRCH))
1357 			/*
1358 			 * The task was unhashed in between, try again.
1359 			 * If it is dead, pid_task() will return NULL,
1360 			 * if we race with de_thread() it will find the
1361 			 * new leader.
1362 			 */
1363 			goto retry;
1364 	}
1365 	rcu_read_unlock();
1366 
1367 	return error;
1368 }
1369 
kill_proc_info(int sig,struct siginfo * info,pid_t pid)1370 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1371 {
1372 	int error;
1373 	rcu_read_lock();
1374 	error = kill_pid_info(sig, info, find_vpid(pid));
1375 	rcu_read_unlock();
1376 	return error;
1377 }
1378 
kill_as_cred_perm(const struct cred * cred,struct task_struct * target)1379 static int kill_as_cred_perm(const struct cred *cred,
1380 			     struct task_struct *target)
1381 {
1382 	const struct cred *pcred = __task_cred(target);
1383 	if (cred->user_ns != pcred->user_ns)
1384 		return 0;
1385 	if (cred->euid != pcred->suid && cred->euid != pcred->uid &&
1386 	    cred->uid  != pcred->suid && cred->uid  != pcred->uid)
1387 		return 0;
1388 	return 1;
1389 }
1390 
1391 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
kill_pid_info_as_cred(int sig,struct siginfo * info,struct pid * pid,const struct cred * cred,u32 secid)1392 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1393 			 const struct cred *cred, u32 secid)
1394 {
1395 	int ret = -EINVAL;
1396 	struct task_struct *p;
1397 	unsigned long flags;
1398 
1399 	if (!valid_signal(sig))
1400 		return ret;
1401 
1402 	rcu_read_lock();
1403 	p = pid_task(pid, PIDTYPE_PID);
1404 	if (!p) {
1405 		ret = -ESRCH;
1406 		goto out_unlock;
1407 	}
1408 	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1409 		ret = -EPERM;
1410 		goto out_unlock;
1411 	}
1412 	ret = security_task_kill(p, info, sig, secid);
1413 	if (ret)
1414 		goto out_unlock;
1415 
1416 	if (sig) {
1417 		if (lock_task_sighand(p, &flags)) {
1418 			ret = __send_signal(sig, info, p, 1, 0);
1419 			unlock_task_sighand(p, &flags);
1420 		} else
1421 			ret = -ESRCH;
1422 	}
1423 out_unlock:
1424 	rcu_read_unlock();
1425 	return ret;
1426 }
1427 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1428 
1429 /*
1430  * kill_something_info() interprets pid in interesting ways just like kill(2).
1431  *
1432  * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1433  * is probably wrong.  Should make it like BSD or SYSV.
1434  */
1435 
kill_something_info(int sig,struct siginfo * info,pid_t pid)1436 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1437 {
1438 	int ret;
1439 
1440 	if (pid > 0) {
1441 		rcu_read_lock();
1442 		ret = kill_pid_info(sig, info, find_vpid(pid));
1443 		rcu_read_unlock();
1444 		return ret;
1445 	}
1446 
1447 	read_lock(&tasklist_lock);
1448 	if (pid != -1) {
1449 		ret = __kill_pgrp_info(sig, info,
1450 				pid ? find_vpid(-pid) : task_pgrp(current));
1451 	} else {
1452 		int retval = 0, count = 0;
1453 		struct task_struct * p;
1454 
1455 		for_each_process(p) {
1456 			if (task_pid_vnr(p) > 1 &&
1457 					!same_thread_group(p, current)) {
1458 				int err = group_send_sig_info(sig, info, p);
1459 				++count;
1460 				if (err != -EPERM)
1461 					retval = err;
1462 			}
1463 		}
1464 		ret = count ? retval : -ESRCH;
1465 	}
1466 	read_unlock(&tasklist_lock);
1467 
1468 	return ret;
1469 }
1470 
1471 /*
1472  * These are for backward compatibility with the rest of the kernel source.
1473  */
1474 
send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1475 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1476 {
1477 	/*
1478 	 * Make sure legacy kernel users don't send in bad values
1479 	 * (normal paths check this in check_kill_permission).
1480 	 */
1481 	if (!valid_signal(sig))
1482 		return -EINVAL;
1483 
1484 	return do_send_sig_info(sig, info, p, false);
1485 }
1486 
1487 #define __si_special(priv) \
1488 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1489 
1490 int
send_sig(int sig,struct task_struct * p,int priv)1491 send_sig(int sig, struct task_struct *p, int priv)
1492 {
1493 	return send_sig_info(sig, __si_special(priv), p);
1494 }
1495 
1496 void
force_sig(int sig,struct task_struct * p)1497 force_sig(int sig, struct task_struct *p)
1498 {
1499 	force_sig_info(sig, SEND_SIG_PRIV, p);
1500 }
1501 
1502 /*
1503  * When things go south during signal handling, we
1504  * will force a SIGSEGV. And if the signal that caused
1505  * the problem was already a SIGSEGV, we'll want to
1506  * make sure we don't even try to deliver the signal..
1507  */
1508 int
force_sigsegv(int sig,struct task_struct * p)1509 force_sigsegv(int sig, struct task_struct *p)
1510 {
1511 	if (sig == SIGSEGV) {
1512 		unsigned long flags;
1513 		spin_lock_irqsave(&p->sighand->siglock, flags);
1514 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1515 		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1516 	}
1517 	force_sig(SIGSEGV, p);
1518 	return 0;
1519 }
1520 
kill_pgrp(struct pid * pid,int sig,int priv)1521 int kill_pgrp(struct pid *pid, int sig, int priv)
1522 {
1523 	int ret;
1524 
1525 	read_lock(&tasklist_lock);
1526 	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1527 	read_unlock(&tasklist_lock);
1528 
1529 	return ret;
1530 }
1531 EXPORT_SYMBOL(kill_pgrp);
1532 
kill_pid(struct pid * pid,int sig,int priv)1533 int kill_pid(struct pid *pid, int sig, int priv)
1534 {
1535 	return kill_pid_info(sig, __si_special(priv), pid);
1536 }
1537 EXPORT_SYMBOL(kill_pid);
1538 
1539 /*
1540  * These functions support sending signals using preallocated sigqueue
1541  * structures.  This is needed "because realtime applications cannot
1542  * afford to lose notifications of asynchronous events, like timer
1543  * expirations or I/O completions".  In the case of POSIX Timers
1544  * we allocate the sigqueue structure from the timer_create.  If this
1545  * allocation fails we are able to report the failure to the application
1546  * with an EAGAIN error.
1547  */
sigqueue_alloc(void)1548 struct sigqueue *sigqueue_alloc(void)
1549 {
1550 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1551 
1552 	if (q)
1553 		q->flags |= SIGQUEUE_PREALLOC;
1554 
1555 	return q;
1556 }
1557 
sigqueue_free(struct sigqueue * q)1558 void sigqueue_free(struct sigqueue *q)
1559 {
1560 	unsigned long flags;
1561 	spinlock_t *lock = &current->sighand->siglock;
1562 
1563 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1564 	/*
1565 	 * We must hold ->siglock while testing q->list
1566 	 * to serialize with collect_signal() or with
1567 	 * __exit_signal()->flush_sigqueue().
1568 	 */
1569 	spin_lock_irqsave(lock, flags);
1570 	q->flags &= ~SIGQUEUE_PREALLOC;
1571 	/*
1572 	 * If it is queued it will be freed when dequeued,
1573 	 * like the "regular" sigqueue.
1574 	 */
1575 	if (!list_empty(&q->list))
1576 		q = NULL;
1577 	spin_unlock_irqrestore(lock, flags);
1578 
1579 	if (q)
1580 		__sigqueue_free(q);
1581 }
1582 
send_sigqueue(struct sigqueue * q,struct task_struct * t,int group)1583 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1584 {
1585 	int sig = q->info.si_signo;
1586 	struct sigpending *pending;
1587 	unsigned long flags;
1588 	int ret;
1589 
1590 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1591 
1592 	ret = -1;
1593 	if (!likely(lock_task_sighand(t, &flags)))
1594 		goto ret;
1595 
1596 	ret = 1; /* the signal is ignored */
1597 	if (!prepare_signal(sig, t, 0))
1598 		goto out;
1599 
1600 	ret = 0;
1601 	if (unlikely(!list_empty(&q->list))) {
1602 		/*
1603 		 * If an SI_TIMER entry is already queue just increment
1604 		 * the overrun count.
1605 		 */
1606 		BUG_ON(q->info.si_code != SI_TIMER);
1607 		q->info.si_overrun++;
1608 		goto out;
1609 	}
1610 	q->info.si_overrun = 0;
1611 
1612 	signalfd_notify(t, sig);
1613 	pending = group ? &t->signal->shared_pending : &t->pending;
1614 	list_add_tail(&q->list, &pending->list);
1615 	sigaddset(&pending->signal, sig);
1616 	complete_signal(sig, t, group);
1617 out:
1618 	unlock_task_sighand(t, &flags);
1619 ret:
1620 	return ret;
1621 }
1622 
1623 /*
1624  * Let a parent know about the death of a child.
1625  * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1626  *
1627  * Returns true if our parent ignored us and so we've switched to
1628  * self-reaping.
1629  */
do_notify_parent(struct task_struct * tsk,int sig)1630 bool do_notify_parent(struct task_struct *tsk, int sig)
1631 {
1632 	struct siginfo info;
1633 	unsigned long flags;
1634 	struct sighand_struct *psig;
1635 	bool autoreap = false;
1636 
1637 	BUG_ON(sig == -1);
1638 
1639  	/* do_notify_parent_cldstop should have been called instead.  */
1640  	BUG_ON(task_is_stopped_or_traced(tsk));
1641 
1642 	BUG_ON(!tsk->ptrace &&
1643 	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1644 
1645 	info.si_signo = sig;
1646 	info.si_errno = 0;
1647 	/*
1648 	 * we are under tasklist_lock here so our parent is tied to
1649 	 * us and cannot exit and release its namespace.
1650 	 *
1651 	 * the only it can is to switch its nsproxy with sys_unshare,
1652 	 * bu uncharing pid namespaces is not allowed, so we'll always
1653 	 * see relevant namespace
1654 	 *
1655 	 * write_lock() currently calls preempt_disable() which is the
1656 	 * same as rcu_read_lock(), but according to Oleg, this is not
1657 	 * correct to rely on this
1658 	 */
1659 	rcu_read_lock();
1660 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1661 	info.si_uid = map_cred_ns(__task_cred(tsk),
1662 			task_cred_xxx(tsk->parent, user_ns));
1663 	rcu_read_unlock();
1664 
1665 	info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1666 	info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1667 
1668 	info.si_status = tsk->exit_code & 0x7f;
1669 	if (tsk->exit_code & 0x80)
1670 		info.si_code = CLD_DUMPED;
1671 	else if (tsk->exit_code & 0x7f)
1672 		info.si_code = CLD_KILLED;
1673 	else {
1674 		info.si_code = CLD_EXITED;
1675 		info.si_status = tsk->exit_code >> 8;
1676 	}
1677 
1678 	psig = tsk->parent->sighand;
1679 	spin_lock_irqsave(&psig->siglock, flags);
1680 	if (!tsk->ptrace && sig == SIGCHLD &&
1681 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1682 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1683 		/*
1684 		 * We are exiting and our parent doesn't care.  POSIX.1
1685 		 * defines special semantics for setting SIGCHLD to SIG_IGN
1686 		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1687 		 * automatically and not left for our parent's wait4 call.
1688 		 * Rather than having the parent do it as a magic kind of
1689 		 * signal handler, we just set this to tell do_exit that we
1690 		 * can be cleaned up without becoming a zombie.  Note that
1691 		 * we still call __wake_up_parent in this case, because a
1692 		 * blocked sys_wait4 might now return -ECHILD.
1693 		 *
1694 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1695 		 * is implementation-defined: we do (if you don't want
1696 		 * it, just use SIG_IGN instead).
1697 		 */
1698 		autoreap = true;
1699 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1700 			sig = 0;
1701 	}
1702 	if (valid_signal(sig) && sig)
1703 		__group_send_sig_info(sig, &info, tsk->parent);
1704 	__wake_up_parent(tsk, tsk->parent);
1705 	spin_unlock_irqrestore(&psig->siglock, flags);
1706 
1707 	return autoreap;
1708 }
1709 
1710 /**
1711  * do_notify_parent_cldstop - notify parent of stopped/continued state change
1712  * @tsk: task reporting the state change
1713  * @for_ptracer: the notification is for ptracer
1714  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1715  *
1716  * Notify @tsk's parent that the stopped/continued state has changed.  If
1717  * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1718  * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1719  *
1720  * CONTEXT:
1721  * Must be called with tasklist_lock at least read locked.
1722  */
do_notify_parent_cldstop(struct task_struct * tsk,bool for_ptracer,int why)1723 static void do_notify_parent_cldstop(struct task_struct *tsk,
1724 				     bool for_ptracer, int why)
1725 {
1726 	struct siginfo info;
1727 	unsigned long flags;
1728 	struct task_struct *parent;
1729 	struct sighand_struct *sighand;
1730 
1731 	if (for_ptracer) {
1732 		parent = tsk->parent;
1733 	} else {
1734 		tsk = tsk->group_leader;
1735 		parent = tsk->real_parent;
1736 	}
1737 
1738 	info.si_signo = SIGCHLD;
1739 	info.si_errno = 0;
1740 	/*
1741 	 * see comment in do_notify_parent() about the following 4 lines
1742 	 */
1743 	rcu_read_lock();
1744 	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1745 	info.si_uid = map_cred_ns(__task_cred(tsk),
1746 			task_cred_xxx(parent, user_ns));
1747 	rcu_read_unlock();
1748 
1749 	info.si_utime = cputime_to_clock_t(tsk->utime);
1750 	info.si_stime = cputime_to_clock_t(tsk->stime);
1751 
1752  	info.si_code = why;
1753  	switch (why) {
1754  	case CLD_CONTINUED:
1755  		info.si_status = SIGCONT;
1756  		break;
1757  	case CLD_STOPPED:
1758  		info.si_status = tsk->signal->group_exit_code & 0x7f;
1759  		break;
1760  	case CLD_TRAPPED:
1761  		info.si_status = tsk->exit_code & 0x7f;
1762  		break;
1763  	default:
1764  		BUG();
1765  	}
1766 
1767 	sighand = parent->sighand;
1768 	spin_lock_irqsave(&sighand->siglock, flags);
1769 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1770 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1771 		__group_send_sig_info(SIGCHLD, &info, parent);
1772 	/*
1773 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1774 	 */
1775 	__wake_up_parent(tsk, parent);
1776 	spin_unlock_irqrestore(&sighand->siglock, flags);
1777 }
1778 
may_ptrace_stop(void)1779 static inline int may_ptrace_stop(void)
1780 {
1781 	if (!likely(current->ptrace))
1782 		return 0;
1783 	/*
1784 	 * Are we in the middle of do_coredump?
1785 	 * If so and our tracer is also part of the coredump stopping
1786 	 * is a deadlock situation, and pointless because our tracer
1787 	 * is dead so don't allow us to stop.
1788 	 * If SIGKILL was already sent before the caller unlocked
1789 	 * ->siglock we must see ->core_state != NULL. Otherwise it
1790 	 * is safe to enter schedule().
1791 	 */
1792 	if (unlikely(current->mm->core_state) &&
1793 	    unlikely(current->mm == current->parent->mm))
1794 		return 0;
1795 
1796 	return 1;
1797 }
1798 
1799 /*
1800  * Return non-zero if there is a SIGKILL that should be waking us up.
1801  * Called with the siglock held.
1802  */
sigkill_pending(struct task_struct * tsk)1803 static int sigkill_pending(struct task_struct *tsk)
1804 {
1805 	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1806 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1807 }
1808 
1809 /*
1810  * This must be called with current->sighand->siglock held.
1811  *
1812  * This should be the path for all ptrace stops.
1813  * We always set current->last_siginfo while stopped here.
1814  * That makes it a way to test a stopped process for
1815  * being ptrace-stopped vs being job-control-stopped.
1816  *
1817  * If we actually decide not to stop at all because the tracer
1818  * is gone, we keep current->exit_code unless clear_code.
1819  */
ptrace_stop(int exit_code,int why,int clear_code,siginfo_t * info)1820 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1821 	__releases(&current->sighand->siglock)
1822 	__acquires(&current->sighand->siglock)
1823 {
1824 	bool gstop_done = false;
1825 
1826 	if (arch_ptrace_stop_needed(exit_code, info)) {
1827 		/*
1828 		 * The arch code has something special to do before a
1829 		 * ptrace stop.  This is allowed to block, e.g. for faults
1830 		 * on user stack pages.  We can't keep the siglock while
1831 		 * calling arch_ptrace_stop, so we must release it now.
1832 		 * To preserve proper semantics, we must do this before
1833 		 * any signal bookkeeping like checking group_stop_count.
1834 		 * Meanwhile, a SIGKILL could come in before we retake the
1835 		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1836 		 * So after regaining the lock, we must check for SIGKILL.
1837 		 */
1838 		spin_unlock_irq(&current->sighand->siglock);
1839 		arch_ptrace_stop(exit_code, info);
1840 		spin_lock_irq(&current->sighand->siglock);
1841 		if (sigkill_pending(current))
1842 			return;
1843 	}
1844 
1845 	/*
1846 	 * We're committing to trapping.  TRACED should be visible before
1847 	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1848 	 * Also, transition to TRACED and updates to ->jobctl should be
1849 	 * atomic with respect to siglock and should be done after the arch
1850 	 * hook as siglock is released and regrabbed across it.
1851 	 */
1852 	set_current_state(TASK_TRACED);
1853 
1854 	current->last_siginfo = info;
1855 	current->exit_code = exit_code;
1856 
1857 	/*
1858 	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1859 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1860 	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1861 	 * could be clear now.  We act as if SIGCONT is received after
1862 	 * TASK_TRACED is entered - ignore it.
1863 	 */
1864 	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1865 		gstop_done = task_participate_group_stop(current);
1866 
1867 	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1868 	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1869 	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1870 		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1871 
1872 	/* entering a trap, clear TRAPPING */
1873 	task_clear_jobctl_trapping(current);
1874 
1875 	spin_unlock_irq(&current->sighand->siglock);
1876 	read_lock(&tasklist_lock);
1877 	if (may_ptrace_stop()) {
1878 		/*
1879 		 * Notify parents of the stop.
1880 		 *
1881 		 * While ptraced, there are two parents - the ptracer and
1882 		 * the real_parent of the group_leader.  The ptracer should
1883 		 * know about every stop while the real parent is only
1884 		 * interested in the completion of group stop.  The states
1885 		 * for the two don't interact with each other.  Notify
1886 		 * separately unless they're gonna be duplicates.
1887 		 */
1888 		do_notify_parent_cldstop(current, true, why);
1889 		if (gstop_done && ptrace_reparented(current))
1890 			do_notify_parent_cldstop(current, false, why);
1891 
1892 		/*
1893 		 * Don't want to allow preemption here, because
1894 		 * sys_ptrace() needs this task to be inactive.
1895 		 *
1896 		 * XXX: implement read_unlock_no_resched().
1897 		 */
1898 		preempt_disable();
1899 		read_unlock(&tasklist_lock);
1900 		preempt_enable_no_resched();
1901 		schedule();
1902 	} else {
1903 		/*
1904 		 * By the time we got the lock, our tracer went away.
1905 		 * Don't drop the lock yet, another tracer may come.
1906 		 *
1907 		 * If @gstop_done, the ptracer went away between group stop
1908 		 * completion and here.  During detach, it would have set
1909 		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1910 		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1911 		 * the real parent of the group stop completion is enough.
1912 		 */
1913 		if (gstop_done)
1914 			do_notify_parent_cldstop(current, false, why);
1915 
1916 		__set_current_state(TASK_RUNNING);
1917 		if (clear_code)
1918 			current->exit_code = 0;
1919 		read_unlock(&tasklist_lock);
1920 	}
1921 
1922 	/*
1923 	 * While in TASK_TRACED, we were considered "frozen enough".
1924 	 * Now that we woke up, it's crucial if we're supposed to be
1925 	 * frozen that we freeze now before running anything substantial.
1926 	 */
1927 	try_to_freeze();
1928 
1929 	/*
1930 	 * We are back.  Now reacquire the siglock before touching
1931 	 * last_siginfo, so that we are sure to have synchronized with
1932 	 * any signal-sending on another CPU that wants to examine it.
1933 	 */
1934 	spin_lock_irq(&current->sighand->siglock);
1935 	current->last_siginfo = NULL;
1936 
1937 	/* LISTENING can be set only during STOP traps, clear it */
1938 	current->jobctl &= ~JOBCTL_LISTENING;
1939 
1940 	/*
1941 	 * Queued signals ignored us while we were stopped for tracing.
1942 	 * So check for any that we should take before resuming user mode.
1943 	 * This sets TIF_SIGPENDING, but never clears it.
1944 	 */
1945 	recalc_sigpending_tsk(current);
1946 }
1947 
ptrace_do_notify(int signr,int exit_code,int why)1948 static void ptrace_do_notify(int signr, int exit_code, int why)
1949 {
1950 	siginfo_t info;
1951 
1952 	memset(&info, 0, sizeof info);
1953 	info.si_signo = signr;
1954 	info.si_code = exit_code;
1955 	info.si_pid = task_pid_vnr(current);
1956 	info.si_uid = current_uid();
1957 
1958 	/* Let the debugger run.  */
1959 	ptrace_stop(exit_code, why, 1, &info);
1960 }
1961 
ptrace_notify(int exit_code)1962 void ptrace_notify(int exit_code)
1963 {
1964 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1965 
1966 	spin_lock_irq(&current->sighand->siglock);
1967 	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1968 	spin_unlock_irq(&current->sighand->siglock);
1969 }
1970 
1971 /**
1972  * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1973  * @signr: signr causing group stop if initiating
1974  *
1975  * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1976  * and participate in it.  If already set, participate in the existing
1977  * group stop.  If participated in a group stop (and thus slept), %true is
1978  * returned with siglock released.
1979  *
1980  * If ptraced, this function doesn't handle stop itself.  Instead,
1981  * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1982  * untouched.  The caller must ensure that INTERRUPT trap handling takes
1983  * places afterwards.
1984  *
1985  * CONTEXT:
1986  * Must be called with @current->sighand->siglock held, which is released
1987  * on %true return.
1988  *
1989  * RETURNS:
1990  * %false if group stop is already cancelled or ptrace trap is scheduled.
1991  * %true if participated in group stop.
1992  */
do_signal_stop(int signr)1993 static bool do_signal_stop(int signr)
1994 	__releases(&current->sighand->siglock)
1995 {
1996 	struct signal_struct *sig = current->signal;
1997 
1998 	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1999 		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2000 		struct task_struct *t;
2001 
2002 		/* signr will be recorded in task->jobctl for retries */
2003 		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2004 
2005 		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2006 		    unlikely(signal_group_exit(sig)))
2007 			return false;
2008 		/*
2009 		 * There is no group stop already in progress.  We must
2010 		 * initiate one now.
2011 		 *
2012 		 * While ptraced, a task may be resumed while group stop is
2013 		 * still in effect and then receive a stop signal and
2014 		 * initiate another group stop.  This deviates from the
2015 		 * usual behavior as two consecutive stop signals can't
2016 		 * cause two group stops when !ptraced.  That is why we
2017 		 * also check !task_is_stopped(t) below.
2018 		 *
2019 		 * The condition can be distinguished by testing whether
2020 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2021 		 * group_exit_code in such case.
2022 		 *
2023 		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2024 		 * an intervening stop signal is required to cause two
2025 		 * continued events regardless of ptrace.
2026 		 */
2027 		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2028 			sig->group_exit_code = signr;
2029 
2030 		sig->group_stop_count = 0;
2031 
2032 		if (task_set_jobctl_pending(current, signr | gstop))
2033 			sig->group_stop_count++;
2034 
2035 		for (t = next_thread(current); t != current;
2036 		     t = next_thread(t)) {
2037 			/*
2038 			 * Setting state to TASK_STOPPED for a group
2039 			 * stop is always done with the siglock held,
2040 			 * so this check has no races.
2041 			 */
2042 			if (!task_is_stopped(t) &&
2043 			    task_set_jobctl_pending(t, signr | gstop)) {
2044 				sig->group_stop_count++;
2045 				if (likely(!(t->ptrace & PT_SEIZED)))
2046 					signal_wake_up(t, 0);
2047 				else
2048 					ptrace_trap_notify(t);
2049 			}
2050 		}
2051 	}
2052 
2053 	if (likely(!current->ptrace)) {
2054 		int notify = 0;
2055 
2056 		/*
2057 		 * If there are no other threads in the group, or if there
2058 		 * is a group stop in progress and we are the last to stop,
2059 		 * report to the parent.
2060 		 */
2061 		if (task_participate_group_stop(current))
2062 			notify = CLD_STOPPED;
2063 
2064 		__set_current_state(TASK_STOPPED);
2065 		spin_unlock_irq(&current->sighand->siglock);
2066 
2067 		/*
2068 		 * Notify the parent of the group stop completion.  Because
2069 		 * we're not holding either the siglock or tasklist_lock
2070 		 * here, ptracer may attach inbetween; however, this is for
2071 		 * group stop and should always be delivered to the real
2072 		 * parent of the group leader.  The new ptracer will get
2073 		 * its notification when this task transitions into
2074 		 * TASK_TRACED.
2075 		 */
2076 		if (notify) {
2077 			read_lock(&tasklist_lock);
2078 			do_notify_parent_cldstop(current, false, notify);
2079 			read_unlock(&tasklist_lock);
2080 		}
2081 
2082 		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2083 		schedule();
2084 		return true;
2085 	} else {
2086 		/*
2087 		 * While ptraced, group stop is handled by STOP trap.
2088 		 * Schedule it and let the caller deal with it.
2089 		 */
2090 		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2091 		return false;
2092 	}
2093 }
2094 
2095 /**
2096  * do_jobctl_trap - take care of ptrace jobctl traps
2097  *
2098  * When PT_SEIZED, it's used for both group stop and explicit
2099  * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2100  * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2101  * the stop signal; otherwise, %SIGTRAP.
2102  *
2103  * When !PT_SEIZED, it's used only for group stop trap with stop signal
2104  * number as exit_code and no siginfo.
2105  *
2106  * CONTEXT:
2107  * Must be called with @current->sighand->siglock held, which may be
2108  * released and re-acquired before returning with intervening sleep.
2109  */
do_jobctl_trap(void)2110 static void do_jobctl_trap(void)
2111 {
2112 	struct signal_struct *signal = current->signal;
2113 	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2114 
2115 	if (current->ptrace & PT_SEIZED) {
2116 		if (!signal->group_stop_count &&
2117 		    !(signal->flags & SIGNAL_STOP_STOPPED))
2118 			signr = SIGTRAP;
2119 		WARN_ON_ONCE(!signr);
2120 		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2121 				 CLD_STOPPED);
2122 	} else {
2123 		WARN_ON_ONCE(!signr);
2124 		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2125 		current->exit_code = 0;
2126 	}
2127 }
2128 
ptrace_signal(int signr,siginfo_t * info,struct pt_regs * regs,void * cookie)2129 static int ptrace_signal(int signr, siginfo_t *info,
2130 			 struct pt_regs *regs, void *cookie)
2131 {
2132 	ptrace_signal_deliver(regs, cookie);
2133 	/*
2134 	 * We do not check sig_kernel_stop(signr) but set this marker
2135 	 * unconditionally because we do not know whether debugger will
2136 	 * change signr. This flag has no meaning unless we are going
2137 	 * to stop after return from ptrace_stop(). In this case it will
2138 	 * be checked in do_signal_stop(), we should only stop if it was
2139 	 * not cleared by SIGCONT while we were sleeping. See also the
2140 	 * comment in dequeue_signal().
2141 	 */
2142 	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2143 	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2144 
2145 	/* We're back.  Did the debugger cancel the sig?  */
2146 	signr = current->exit_code;
2147 	if (signr == 0)
2148 		return signr;
2149 
2150 	current->exit_code = 0;
2151 
2152 	/*
2153 	 * Update the siginfo structure if the signal has
2154 	 * changed.  If the debugger wanted something
2155 	 * specific in the siginfo structure then it should
2156 	 * have updated *info via PTRACE_SETSIGINFO.
2157 	 */
2158 	if (signr != info->si_signo) {
2159 		info->si_signo = signr;
2160 		info->si_errno = 0;
2161 		info->si_code = SI_USER;
2162 		rcu_read_lock();
2163 		info->si_pid = task_pid_vnr(current->parent);
2164 		info->si_uid = map_cred_ns(__task_cred(current->parent),
2165 				current_user_ns());
2166 		rcu_read_unlock();
2167 	}
2168 
2169 	/* If the (new) signal is now blocked, requeue it.  */
2170 	if (sigismember(&current->blocked, signr)) {
2171 		specific_send_sig_info(signr, info, current);
2172 		signr = 0;
2173 	}
2174 
2175 	return signr;
2176 }
2177 
get_signal_to_deliver(siginfo_t * info,struct k_sigaction * return_ka,struct pt_regs * regs,void * cookie)2178 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2179 			  struct pt_regs *regs, void *cookie)
2180 {
2181 	struct sighand_struct *sighand = current->sighand;
2182 	struct signal_struct *signal = current->signal;
2183 	int signr;
2184 
2185 relock:
2186 	/*
2187 	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2188 	 * While in TASK_STOPPED, we were considered "frozen enough".
2189 	 * Now that we woke up, it's crucial if we're supposed to be
2190 	 * frozen that we freeze now before running anything substantial.
2191 	 */
2192 	try_to_freeze();
2193 
2194 	spin_lock_irq(&sighand->siglock);
2195 	/*
2196 	 * Every stopped thread goes here after wakeup. Check to see if
2197 	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2198 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2199 	 */
2200 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2201 		int why;
2202 
2203 		if (signal->flags & SIGNAL_CLD_CONTINUED)
2204 			why = CLD_CONTINUED;
2205 		else
2206 			why = CLD_STOPPED;
2207 
2208 		signal->flags &= ~SIGNAL_CLD_MASK;
2209 
2210 		spin_unlock_irq(&sighand->siglock);
2211 
2212 		/*
2213 		 * Notify the parent that we're continuing.  This event is
2214 		 * always per-process and doesn't make whole lot of sense
2215 		 * for ptracers, who shouldn't consume the state via
2216 		 * wait(2) either, but, for backward compatibility, notify
2217 		 * the ptracer of the group leader too unless it's gonna be
2218 		 * a duplicate.
2219 		 */
2220 		read_lock(&tasklist_lock);
2221 		do_notify_parent_cldstop(current, false, why);
2222 
2223 		if (ptrace_reparented(current->group_leader))
2224 			do_notify_parent_cldstop(current->group_leader,
2225 						true, why);
2226 		read_unlock(&tasklist_lock);
2227 
2228 		goto relock;
2229 	}
2230 
2231 	for (;;) {
2232 		struct k_sigaction *ka;
2233 
2234 		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2235 		    do_signal_stop(0))
2236 			goto relock;
2237 
2238 		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2239 			do_jobctl_trap();
2240 			spin_unlock_irq(&sighand->siglock);
2241 			goto relock;
2242 		}
2243 
2244 		signr = dequeue_signal(current, &current->blocked, info);
2245 
2246 		if (!signr)
2247 			break; /* will return 0 */
2248 
2249 		if (unlikely(current->ptrace) && signr != SIGKILL) {
2250 			signr = ptrace_signal(signr, info,
2251 					      regs, cookie);
2252 			if (!signr)
2253 				continue;
2254 		}
2255 
2256 		ka = &sighand->action[signr-1];
2257 
2258 		/* Trace actually delivered signals. */
2259 		trace_signal_deliver(signr, info, ka);
2260 
2261 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2262 			continue;
2263 		if (ka->sa.sa_handler != SIG_DFL) {
2264 			/* Run the handler.  */
2265 			*return_ka = *ka;
2266 
2267 			if (ka->sa.sa_flags & SA_ONESHOT)
2268 				ka->sa.sa_handler = SIG_DFL;
2269 
2270 			break; /* will return non-zero "signr" value */
2271 		}
2272 
2273 		/*
2274 		 * Now we are doing the default action for this signal.
2275 		 */
2276 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2277 			continue;
2278 
2279 		/*
2280 		 * Global init gets no signals it doesn't want.
2281 		 * Container-init gets no signals it doesn't want from same
2282 		 * container.
2283 		 *
2284 		 * Note that if global/container-init sees a sig_kernel_only()
2285 		 * signal here, the signal must have been generated internally
2286 		 * or must have come from an ancestor namespace. In either
2287 		 * case, the signal cannot be dropped.
2288 		 */
2289 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2290 				!sig_kernel_only(signr))
2291 			continue;
2292 
2293 		if (sig_kernel_stop(signr)) {
2294 			/*
2295 			 * The default action is to stop all threads in
2296 			 * the thread group.  The job control signals
2297 			 * do nothing in an orphaned pgrp, but SIGSTOP
2298 			 * always works.  Note that siglock needs to be
2299 			 * dropped during the call to is_orphaned_pgrp()
2300 			 * because of lock ordering with tasklist_lock.
2301 			 * This allows an intervening SIGCONT to be posted.
2302 			 * We need to check for that and bail out if necessary.
2303 			 */
2304 			if (signr != SIGSTOP) {
2305 				spin_unlock_irq(&sighand->siglock);
2306 
2307 				/* signals can be posted during this window */
2308 
2309 				if (is_current_pgrp_orphaned())
2310 					goto relock;
2311 
2312 				spin_lock_irq(&sighand->siglock);
2313 			}
2314 
2315 			if (likely(do_signal_stop(info->si_signo))) {
2316 				/* It released the siglock.  */
2317 				goto relock;
2318 			}
2319 
2320 			/*
2321 			 * We didn't actually stop, due to a race
2322 			 * with SIGCONT or something like that.
2323 			 */
2324 			continue;
2325 		}
2326 
2327 		spin_unlock_irq(&sighand->siglock);
2328 
2329 		/*
2330 		 * Anything else is fatal, maybe with a core dump.
2331 		 */
2332 		current->flags |= PF_SIGNALED;
2333 
2334 		if (sig_kernel_coredump(signr)) {
2335 			if (print_fatal_signals)
2336 				print_fatal_signal(regs, info->si_signo);
2337 			/*
2338 			 * If it was able to dump core, this kills all
2339 			 * other threads in the group and synchronizes with
2340 			 * their demise.  If we lost the race with another
2341 			 * thread getting here, it set group_exit_code
2342 			 * first and our do_group_exit call below will use
2343 			 * that value and ignore the one we pass it.
2344 			 */
2345 			do_coredump(info->si_signo, info->si_signo, regs);
2346 		}
2347 
2348 		/*
2349 		 * Death signals, no core dump.
2350 		 */
2351 		do_group_exit(info->si_signo);
2352 		/* NOTREACHED */
2353 	}
2354 	spin_unlock_irq(&sighand->siglock);
2355 	return signr;
2356 }
2357 
2358 /**
2359  * block_sigmask - add @ka's signal mask to current->blocked
2360  * @ka: action for @signr
2361  * @signr: signal that has been successfully delivered
2362  *
2363  * This function should be called when a signal has succesfully been
2364  * delivered. It adds the mask of signals for @ka to current->blocked
2365  * so that they are blocked during the execution of the signal
2366  * handler. In addition, @signr will be blocked unless %SA_NODEFER is
2367  * set in @ka->sa.sa_flags.
2368  */
block_sigmask(struct k_sigaction * ka,int signr)2369 void block_sigmask(struct k_sigaction *ka, int signr)
2370 {
2371 	sigset_t blocked;
2372 
2373 	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2374 	if (!(ka->sa.sa_flags & SA_NODEFER))
2375 		sigaddset(&blocked, signr);
2376 	set_current_blocked(&blocked);
2377 }
2378 
2379 /*
2380  * It could be that complete_signal() picked us to notify about the
2381  * group-wide signal. Other threads should be notified now to take
2382  * the shared signals in @which since we will not.
2383  */
retarget_shared_pending(struct task_struct * tsk,sigset_t * which)2384 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2385 {
2386 	sigset_t retarget;
2387 	struct task_struct *t;
2388 
2389 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2390 	if (sigisemptyset(&retarget))
2391 		return;
2392 
2393 	t = tsk;
2394 	while_each_thread(tsk, t) {
2395 		if (t->flags & PF_EXITING)
2396 			continue;
2397 
2398 		if (!has_pending_signals(&retarget, &t->blocked))
2399 			continue;
2400 		/* Remove the signals this thread can handle. */
2401 		sigandsets(&retarget, &retarget, &t->blocked);
2402 
2403 		if (!signal_pending(t))
2404 			signal_wake_up(t, 0);
2405 
2406 		if (sigisemptyset(&retarget))
2407 			break;
2408 	}
2409 }
2410 
exit_signals(struct task_struct * tsk)2411 void exit_signals(struct task_struct *tsk)
2412 {
2413 	int group_stop = 0;
2414 	sigset_t unblocked;
2415 
2416 	/*
2417 	 * @tsk is about to have PF_EXITING set - lock out users which
2418 	 * expect stable threadgroup.
2419 	 */
2420 	threadgroup_change_begin(tsk);
2421 
2422 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2423 		tsk->flags |= PF_EXITING;
2424 		threadgroup_change_end(tsk);
2425 		return;
2426 	}
2427 
2428 	spin_lock_irq(&tsk->sighand->siglock);
2429 	/*
2430 	 * From now this task is not visible for group-wide signals,
2431 	 * see wants_signal(), do_signal_stop().
2432 	 */
2433 	tsk->flags |= PF_EXITING;
2434 
2435 	threadgroup_change_end(tsk);
2436 
2437 	if (!signal_pending(tsk))
2438 		goto out;
2439 
2440 	unblocked = tsk->blocked;
2441 	signotset(&unblocked);
2442 	retarget_shared_pending(tsk, &unblocked);
2443 
2444 	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2445 	    task_participate_group_stop(tsk))
2446 		group_stop = CLD_STOPPED;
2447 out:
2448 	spin_unlock_irq(&tsk->sighand->siglock);
2449 
2450 	/*
2451 	 * If group stop has completed, deliver the notification.  This
2452 	 * should always go to the real parent of the group leader.
2453 	 */
2454 	if (unlikely(group_stop)) {
2455 		read_lock(&tasklist_lock);
2456 		do_notify_parent_cldstop(tsk, false, group_stop);
2457 		read_unlock(&tasklist_lock);
2458 	}
2459 }
2460 
2461 EXPORT_SYMBOL(recalc_sigpending);
2462 EXPORT_SYMBOL_GPL(dequeue_signal);
2463 EXPORT_SYMBOL(flush_signals);
2464 EXPORT_SYMBOL(force_sig);
2465 EXPORT_SYMBOL(send_sig);
2466 EXPORT_SYMBOL(send_sig_info);
2467 EXPORT_SYMBOL(sigprocmask);
2468 EXPORT_SYMBOL(block_all_signals);
2469 EXPORT_SYMBOL(unblock_all_signals);
2470 
2471 
2472 /*
2473  * System call entry points.
2474  */
2475 
2476 /**
2477  *  sys_restart_syscall - restart a system call
2478  */
SYSCALL_DEFINE0(restart_syscall)2479 SYSCALL_DEFINE0(restart_syscall)
2480 {
2481 	struct restart_block *restart = &current_thread_info()->restart_block;
2482 	return restart->fn(restart);
2483 }
2484 
do_no_restart_syscall(struct restart_block * param)2485 long do_no_restart_syscall(struct restart_block *param)
2486 {
2487 	return -EINTR;
2488 }
2489 
__set_task_blocked(struct task_struct * tsk,const sigset_t * newset)2490 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2491 {
2492 	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2493 		sigset_t newblocked;
2494 		/* A set of now blocked but previously unblocked signals. */
2495 		sigandnsets(&newblocked, newset, &current->blocked);
2496 		retarget_shared_pending(tsk, &newblocked);
2497 	}
2498 	tsk->blocked = *newset;
2499 	recalc_sigpending();
2500 }
2501 
2502 /**
2503  * set_current_blocked - change current->blocked mask
2504  * @newset: new mask
2505  *
2506  * It is wrong to change ->blocked directly, this helper should be used
2507  * to ensure the process can't miss a shared signal we are going to block.
2508  */
set_current_blocked(const sigset_t * newset)2509 void set_current_blocked(const sigset_t *newset)
2510 {
2511 	struct task_struct *tsk = current;
2512 
2513 	spin_lock_irq(&tsk->sighand->siglock);
2514 	__set_task_blocked(tsk, newset);
2515 	spin_unlock_irq(&tsk->sighand->siglock);
2516 }
2517 
2518 /*
2519  * This is also useful for kernel threads that want to temporarily
2520  * (or permanently) block certain signals.
2521  *
2522  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2523  * interface happily blocks "unblockable" signals like SIGKILL
2524  * and friends.
2525  */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)2526 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2527 {
2528 	struct task_struct *tsk = current;
2529 	sigset_t newset;
2530 
2531 	/* Lockless, only current can change ->blocked, never from irq */
2532 	if (oldset)
2533 		*oldset = tsk->blocked;
2534 
2535 	switch (how) {
2536 	case SIG_BLOCK:
2537 		sigorsets(&newset, &tsk->blocked, set);
2538 		break;
2539 	case SIG_UNBLOCK:
2540 		sigandnsets(&newset, &tsk->blocked, set);
2541 		break;
2542 	case SIG_SETMASK:
2543 		newset = *set;
2544 		break;
2545 	default:
2546 		return -EINVAL;
2547 	}
2548 
2549 	set_current_blocked(&newset);
2550 	return 0;
2551 }
2552 
2553 /**
2554  *  sys_rt_sigprocmask - change the list of currently blocked signals
2555  *  @how: whether to add, remove, or set signals
2556  *  @nset: stores pending signals
2557  *  @oset: previous value of signal mask if non-null
2558  *  @sigsetsize: size of sigset_t type
2559  */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,nset,sigset_t __user *,oset,size_t,sigsetsize)2560 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2561 		sigset_t __user *, oset, size_t, sigsetsize)
2562 {
2563 	sigset_t old_set, new_set;
2564 	int error;
2565 
2566 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2567 	if (sigsetsize != sizeof(sigset_t))
2568 		return -EINVAL;
2569 
2570 	old_set = current->blocked;
2571 
2572 	if (nset) {
2573 		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2574 			return -EFAULT;
2575 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2576 
2577 		error = sigprocmask(how, &new_set, NULL);
2578 		if (error)
2579 			return error;
2580 	}
2581 
2582 	if (oset) {
2583 		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2584 			return -EFAULT;
2585 	}
2586 
2587 	return 0;
2588 }
2589 
do_sigpending(void __user * set,unsigned long sigsetsize)2590 long do_sigpending(void __user *set, unsigned long sigsetsize)
2591 {
2592 	long error = -EINVAL;
2593 	sigset_t pending;
2594 
2595 	if (sigsetsize > sizeof(sigset_t))
2596 		goto out;
2597 
2598 	spin_lock_irq(&current->sighand->siglock);
2599 	sigorsets(&pending, &current->pending.signal,
2600 		  &current->signal->shared_pending.signal);
2601 	spin_unlock_irq(&current->sighand->siglock);
2602 
2603 	/* Outside the lock because only this thread touches it.  */
2604 	sigandsets(&pending, &current->blocked, &pending);
2605 
2606 	error = -EFAULT;
2607 	if (!copy_to_user(set, &pending, sigsetsize))
2608 		error = 0;
2609 
2610 out:
2611 	return error;
2612 }
2613 
2614 /**
2615  *  sys_rt_sigpending - examine a pending signal that has been raised
2616  *			while blocked
2617  *  @set: stores pending signals
2618  *  @sigsetsize: size of sigset_t type or larger
2619  */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,set,size_t,sigsetsize)2620 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2621 {
2622 	return do_sigpending(set, sigsetsize);
2623 }
2624 
2625 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2626 
copy_siginfo_to_user(siginfo_t __user * to,siginfo_t * from)2627 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2628 {
2629 	int err;
2630 
2631 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2632 		return -EFAULT;
2633 	if (from->si_code < 0)
2634 		return __copy_to_user(to, from, sizeof(siginfo_t))
2635 			? -EFAULT : 0;
2636 	/*
2637 	 * If you change siginfo_t structure, please be sure
2638 	 * this code is fixed accordingly.
2639 	 * Please remember to update the signalfd_copyinfo() function
2640 	 * inside fs/signalfd.c too, in case siginfo_t changes.
2641 	 * It should never copy any pad contained in the structure
2642 	 * to avoid security leaks, but must copy the generic
2643 	 * 3 ints plus the relevant union member.
2644 	 */
2645 	err = __put_user(from->si_signo, &to->si_signo);
2646 	err |= __put_user(from->si_errno, &to->si_errno);
2647 	err |= __put_user((short)from->si_code, &to->si_code);
2648 	switch (from->si_code & __SI_MASK) {
2649 	case __SI_KILL:
2650 		err |= __put_user(from->si_pid, &to->si_pid);
2651 		err |= __put_user(from->si_uid, &to->si_uid);
2652 		break;
2653 	case __SI_TIMER:
2654 		 err |= __put_user(from->si_tid, &to->si_tid);
2655 		 err |= __put_user(from->si_overrun, &to->si_overrun);
2656 		 err |= __put_user(from->si_ptr, &to->si_ptr);
2657 		break;
2658 	case __SI_POLL:
2659 		err |= __put_user(from->si_band, &to->si_band);
2660 		err |= __put_user(from->si_fd, &to->si_fd);
2661 		break;
2662 	case __SI_FAULT:
2663 		err |= __put_user(from->si_addr, &to->si_addr);
2664 #ifdef __ARCH_SI_TRAPNO
2665 		err |= __put_user(from->si_trapno, &to->si_trapno);
2666 #endif
2667 #ifdef BUS_MCEERR_AO
2668 		/*
2669 		 * Other callers might not initialize the si_lsb field,
2670 		 * so check explicitly for the right codes here.
2671 		 */
2672 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2673 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2674 #endif
2675 		break;
2676 	case __SI_CHLD:
2677 		err |= __put_user(from->si_pid, &to->si_pid);
2678 		err |= __put_user(from->si_uid, &to->si_uid);
2679 		err |= __put_user(from->si_status, &to->si_status);
2680 		err |= __put_user(from->si_utime, &to->si_utime);
2681 		err |= __put_user(from->si_stime, &to->si_stime);
2682 		break;
2683 	case __SI_RT: /* This is not generated by the kernel as of now. */
2684 	case __SI_MESGQ: /* But this is */
2685 		err |= __put_user(from->si_pid, &to->si_pid);
2686 		err |= __put_user(from->si_uid, &to->si_uid);
2687 		err |= __put_user(from->si_ptr, &to->si_ptr);
2688 		break;
2689 	default: /* this is just in case for now ... */
2690 		err |= __put_user(from->si_pid, &to->si_pid);
2691 		err |= __put_user(from->si_uid, &to->si_uid);
2692 		break;
2693 	}
2694 	return err;
2695 }
2696 
2697 #endif
2698 
2699 /**
2700  *  do_sigtimedwait - wait for queued signals specified in @which
2701  *  @which: queued signals to wait for
2702  *  @info: if non-null, the signal's siginfo is returned here
2703  *  @ts: upper bound on process time suspension
2704  */
do_sigtimedwait(const sigset_t * which,siginfo_t * info,const struct timespec * ts)2705 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2706 			const struct timespec *ts)
2707 {
2708 	struct task_struct *tsk = current;
2709 	long timeout = MAX_SCHEDULE_TIMEOUT;
2710 	sigset_t mask = *which;
2711 	int sig;
2712 
2713 	if (ts) {
2714 		if (!timespec_valid(ts))
2715 			return -EINVAL;
2716 		timeout = timespec_to_jiffies(ts);
2717 		/*
2718 		 * We can be close to the next tick, add another one
2719 		 * to ensure we will wait at least the time asked for.
2720 		 */
2721 		if (ts->tv_sec || ts->tv_nsec)
2722 			timeout++;
2723 	}
2724 
2725 	/*
2726 	 * Invert the set of allowed signals to get those we want to block.
2727 	 */
2728 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2729 	signotset(&mask);
2730 
2731 	spin_lock_irq(&tsk->sighand->siglock);
2732 	sig = dequeue_signal(tsk, &mask, info);
2733 	if (!sig && timeout) {
2734 		/*
2735 		 * None ready, temporarily unblock those we're interested
2736 		 * while we are sleeping in so that we'll be awakened when
2737 		 * they arrive. Unblocking is always fine, we can avoid
2738 		 * set_current_blocked().
2739 		 */
2740 		tsk->real_blocked = tsk->blocked;
2741 		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2742 		recalc_sigpending();
2743 		spin_unlock_irq(&tsk->sighand->siglock);
2744 
2745 		timeout = schedule_timeout_interruptible(timeout);
2746 
2747 		spin_lock_irq(&tsk->sighand->siglock);
2748 		__set_task_blocked(tsk, &tsk->real_blocked);
2749 		siginitset(&tsk->real_blocked, 0);
2750 		sig = dequeue_signal(tsk, &mask, info);
2751 	}
2752 	spin_unlock_irq(&tsk->sighand->siglock);
2753 
2754 	if (sig)
2755 		return sig;
2756 	return timeout ? -EINTR : -EAGAIN;
2757 }
2758 
2759 /**
2760  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2761  *			in @uthese
2762  *  @uthese: queued signals to wait for
2763  *  @uinfo: if non-null, the signal's siginfo is returned here
2764  *  @uts: upper bound on process time suspension
2765  *  @sigsetsize: size of sigset_t type
2766  */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct timespec __user *,uts,size_t,sigsetsize)2767 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2768 		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2769 		size_t, sigsetsize)
2770 {
2771 	sigset_t these;
2772 	struct timespec ts;
2773 	siginfo_t info;
2774 	int ret;
2775 
2776 	/* XXX: Don't preclude handling different sized sigset_t's.  */
2777 	if (sigsetsize != sizeof(sigset_t))
2778 		return -EINVAL;
2779 
2780 	if (copy_from_user(&these, uthese, sizeof(these)))
2781 		return -EFAULT;
2782 
2783 	if (uts) {
2784 		if (copy_from_user(&ts, uts, sizeof(ts)))
2785 			return -EFAULT;
2786 	}
2787 
2788 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2789 
2790 	if (ret > 0 && uinfo) {
2791 		if (copy_siginfo_to_user(uinfo, &info))
2792 			ret = -EFAULT;
2793 	}
2794 
2795 	return ret;
2796 }
2797 
2798 /**
2799  *  sys_kill - send a signal to a process
2800  *  @pid: the PID of the process
2801  *  @sig: signal to be sent
2802  */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)2803 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2804 {
2805 	struct siginfo info;
2806 
2807 	info.si_signo = sig;
2808 	info.si_errno = 0;
2809 	info.si_code = SI_USER;
2810 	info.si_pid = task_tgid_vnr(current);
2811 	info.si_uid = current_uid();
2812 
2813 	return kill_something_info(sig, &info, pid);
2814 }
2815 
2816 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct siginfo * info)2817 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2818 {
2819 	struct task_struct *p;
2820 	int error = -ESRCH;
2821 
2822 	rcu_read_lock();
2823 	p = find_task_by_vpid(pid);
2824 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2825 		error = check_kill_permission(sig, info, p);
2826 		/*
2827 		 * The null signal is a permissions and process existence
2828 		 * probe.  No signal is actually delivered.
2829 		 */
2830 		if (!error && sig) {
2831 			error = do_send_sig_info(sig, info, p, false);
2832 			/*
2833 			 * If lock_task_sighand() failed we pretend the task
2834 			 * dies after receiving the signal. The window is tiny,
2835 			 * and the signal is private anyway.
2836 			 */
2837 			if (unlikely(error == -ESRCH))
2838 				error = 0;
2839 		}
2840 	}
2841 	rcu_read_unlock();
2842 
2843 	return error;
2844 }
2845 
do_tkill(pid_t tgid,pid_t pid,int sig)2846 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2847 {
2848 	struct siginfo info;
2849 
2850 	info.si_signo = sig;
2851 	info.si_errno = 0;
2852 	info.si_code = SI_TKILL;
2853 	info.si_pid = task_tgid_vnr(current);
2854 	info.si_uid = current_uid();
2855 
2856 	return do_send_specific(tgid, pid, sig, &info);
2857 }
2858 
2859 /**
2860  *  sys_tgkill - send signal to one specific thread
2861  *  @tgid: the thread group ID of the thread
2862  *  @pid: the PID of the thread
2863  *  @sig: signal to be sent
2864  *
2865  *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2866  *  exists but it's not belonging to the target process anymore. This
2867  *  method solves the problem of threads exiting and PIDs getting reused.
2868  */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)2869 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2870 {
2871 	/* This is only valid for single tasks */
2872 	if (pid <= 0 || tgid <= 0)
2873 		return -EINVAL;
2874 
2875 	return do_tkill(tgid, pid, sig);
2876 }
2877 
2878 /**
2879  *  sys_tkill - send signal to one specific task
2880  *  @pid: the PID of the task
2881  *  @sig: signal to be sent
2882  *
2883  *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2884  */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)2885 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2886 {
2887 	/* This is only valid for single tasks */
2888 	if (pid <= 0)
2889 		return -EINVAL;
2890 
2891 	return do_tkill(0, pid, sig);
2892 }
2893 
2894 /**
2895  *  sys_rt_sigqueueinfo - send signal information to a signal
2896  *  @pid: the PID of the thread
2897  *  @sig: signal to be sent
2898  *  @uinfo: signal info to be sent
2899  */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)2900 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2901 		siginfo_t __user *, uinfo)
2902 {
2903 	siginfo_t info;
2904 
2905 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2906 		return -EFAULT;
2907 
2908 	/* Not even root can pretend to send signals from the kernel.
2909 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2910 	 */
2911 	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2912 		/* We used to allow any < 0 si_code */
2913 		WARN_ON_ONCE(info.si_code < 0);
2914 		return -EPERM;
2915 	}
2916 	info.si_signo = sig;
2917 
2918 	/* POSIX.1b doesn't mention process groups.  */
2919 	return kill_proc_info(sig, &info, pid);
2920 }
2921 
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,siginfo_t * info)2922 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2923 {
2924 	/* This is only valid for single tasks */
2925 	if (pid <= 0 || tgid <= 0)
2926 		return -EINVAL;
2927 
2928 	/* Not even root can pretend to send signals from the kernel.
2929 	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2930 	 */
2931 	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2932 		/* We used to allow any < 0 si_code */
2933 		WARN_ON_ONCE(info->si_code < 0);
2934 		return -EPERM;
2935 	}
2936 	info->si_signo = sig;
2937 
2938 	return do_send_specific(tgid, pid, sig, info);
2939 }
2940 
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)2941 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2942 		siginfo_t __user *, uinfo)
2943 {
2944 	siginfo_t info;
2945 
2946 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2947 		return -EFAULT;
2948 
2949 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2950 }
2951 
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)2952 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2953 {
2954 	struct task_struct *t = current;
2955 	struct k_sigaction *k;
2956 	sigset_t mask;
2957 
2958 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2959 		return -EINVAL;
2960 
2961 	k = &t->sighand->action[sig-1];
2962 
2963 	spin_lock_irq(&current->sighand->siglock);
2964 	if (oact)
2965 		*oact = *k;
2966 
2967 	if (act) {
2968 		sigdelsetmask(&act->sa.sa_mask,
2969 			      sigmask(SIGKILL) | sigmask(SIGSTOP));
2970 		*k = *act;
2971 		/*
2972 		 * POSIX 3.3.1.3:
2973 		 *  "Setting a signal action to SIG_IGN for a signal that is
2974 		 *   pending shall cause the pending signal to be discarded,
2975 		 *   whether or not it is blocked."
2976 		 *
2977 		 *  "Setting a signal action to SIG_DFL for a signal that is
2978 		 *   pending and whose default action is to ignore the signal
2979 		 *   (for example, SIGCHLD), shall cause the pending signal to
2980 		 *   be discarded, whether or not it is blocked"
2981 		 */
2982 		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2983 			sigemptyset(&mask);
2984 			sigaddset(&mask, sig);
2985 			rm_from_queue_full(&mask, &t->signal->shared_pending);
2986 			do {
2987 				rm_from_queue_full(&mask, &t->pending);
2988 				t = next_thread(t);
2989 			} while (t != current);
2990 		}
2991 	}
2992 
2993 	spin_unlock_irq(&current->sighand->siglock);
2994 	return 0;
2995 }
2996 
2997 int
do_sigaltstack(const stack_t __user * uss,stack_t __user * uoss,unsigned long sp)2998 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2999 {
3000 	stack_t oss;
3001 	int error;
3002 
3003 	oss.ss_sp = (void __user *) current->sas_ss_sp;
3004 	oss.ss_size = current->sas_ss_size;
3005 	oss.ss_flags = sas_ss_flags(sp);
3006 
3007 	if (uss) {
3008 		void __user *ss_sp;
3009 		size_t ss_size;
3010 		int ss_flags;
3011 
3012 		error = -EFAULT;
3013 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3014 			goto out;
3015 		error = __get_user(ss_sp, &uss->ss_sp) |
3016 			__get_user(ss_flags, &uss->ss_flags) |
3017 			__get_user(ss_size, &uss->ss_size);
3018 		if (error)
3019 			goto out;
3020 
3021 		error = -EPERM;
3022 		if (on_sig_stack(sp))
3023 			goto out;
3024 
3025 		error = -EINVAL;
3026 		/*
3027 		 * Note - this code used to test ss_flags incorrectly:
3028 		 *  	  old code may have been written using ss_flags==0
3029 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3030 		 *	  way that worked) - this fix preserves that older
3031 		 *	  mechanism.
3032 		 */
3033 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3034 			goto out;
3035 
3036 		if (ss_flags == SS_DISABLE) {
3037 			ss_size = 0;
3038 			ss_sp = NULL;
3039 		} else {
3040 			error = -ENOMEM;
3041 			if (ss_size < MINSIGSTKSZ)
3042 				goto out;
3043 		}
3044 
3045 		current->sas_ss_sp = (unsigned long) ss_sp;
3046 		current->sas_ss_size = ss_size;
3047 	}
3048 
3049 	error = 0;
3050 	if (uoss) {
3051 		error = -EFAULT;
3052 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3053 			goto out;
3054 		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3055 			__put_user(oss.ss_size, &uoss->ss_size) |
3056 			__put_user(oss.ss_flags, &uoss->ss_flags);
3057 	}
3058 
3059 out:
3060 	return error;
3061 }
3062 
3063 #ifdef __ARCH_WANT_SYS_SIGPENDING
3064 
3065 /**
3066  *  sys_sigpending - examine pending signals
3067  *  @set: where mask of pending signal is returned
3068  */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,set)3069 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3070 {
3071 	return do_sigpending(set, sizeof(*set));
3072 }
3073 
3074 #endif
3075 
3076 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3077 /**
3078  *  sys_sigprocmask - examine and change blocked signals
3079  *  @how: whether to add, remove, or set signals
3080  *  @nset: signals to add or remove (if non-null)
3081  *  @oset: previous value of signal mask if non-null
3082  *
3083  * Some platforms have their own version with special arguments;
3084  * others support only sys_rt_sigprocmask.
3085  */
3086 
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,nset,old_sigset_t __user *,oset)3087 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3088 		old_sigset_t __user *, oset)
3089 {
3090 	old_sigset_t old_set, new_set;
3091 	sigset_t new_blocked;
3092 
3093 	old_set = current->blocked.sig[0];
3094 
3095 	if (nset) {
3096 		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3097 			return -EFAULT;
3098 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3099 
3100 		new_blocked = current->blocked;
3101 
3102 		switch (how) {
3103 		case SIG_BLOCK:
3104 			sigaddsetmask(&new_blocked, new_set);
3105 			break;
3106 		case SIG_UNBLOCK:
3107 			sigdelsetmask(&new_blocked, new_set);
3108 			break;
3109 		case SIG_SETMASK:
3110 			new_blocked.sig[0] = new_set;
3111 			break;
3112 		default:
3113 			return -EINVAL;
3114 		}
3115 
3116 		set_current_blocked(&new_blocked);
3117 	}
3118 
3119 	if (oset) {
3120 		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3121 			return -EFAULT;
3122 	}
3123 
3124 	return 0;
3125 }
3126 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3127 
3128 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3129 /**
3130  *  sys_rt_sigaction - alter an action taken by a process
3131  *  @sig: signal to be sent
3132  *  @act: new sigaction
3133  *  @oact: used to save the previous sigaction
3134  *  @sigsetsize: size of sigset_t type
3135  */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)3136 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3137 		const struct sigaction __user *, act,
3138 		struct sigaction __user *, oact,
3139 		size_t, sigsetsize)
3140 {
3141 	struct k_sigaction new_sa, old_sa;
3142 	int ret = -EINVAL;
3143 
3144 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3145 	if (sigsetsize != sizeof(sigset_t))
3146 		goto out;
3147 
3148 	if (act) {
3149 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3150 			return -EFAULT;
3151 	}
3152 
3153 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3154 
3155 	if (!ret && oact) {
3156 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3157 			return -EFAULT;
3158 	}
3159 out:
3160 	return ret;
3161 }
3162 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3163 
3164 #ifdef __ARCH_WANT_SYS_SGETMASK
3165 
3166 /*
3167  * For backwards compatibility.  Functionality superseded by sigprocmask.
3168  */
SYSCALL_DEFINE0(sgetmask)3169 SYSCALL_DEFINE0(sgetmask)
3170 {
3171 	/* SMP safe */
3172 	return current->blocked.sig[0];
3173 }
3174 
SYSCALL_DEFINE1(ssetmask,int,newmask)3175 SYSCALL_DEFINE1(ssetmask, int, newmask)
3176 {
3177 	int old = current->blocked.sig[0];
3178 	sigset_t newset;
3179 
3180 	siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
3181 	set_current_blocked(&newset);
3182 
3183 	return old;
3184 }
3185 #endif /* __ARCH_WANT_SGETMASK */
3186 
3187 #ifdef __ARCH_WANT_SYS_SIGNAL
3188 /*
3189  * For backwards compatibility.  Functionality superseded by sigaction.
3190  */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)3191 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3192 {
3193 	struct k_sigaction new_sa, old_sa;
3194 	int ret;
3195 
3196 	new_sa.sa.sa_handler = handler;
3197 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3198 	sigemptyset(&new_sa.sa.sa_mask);
3199 
3200 	ret = do_sigaction(sig, &new_sa, &old_sa);
3201 
3202 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3203 }
3204 #endif /* __ARCH_WANT_SYS_SIGNAL */
3205 
3206 #ifdef __ARCH_WANT_SYS_PAUSE
3207 
SYSCALL_DEFINE0(pause)3208 SYSCALL_DEFINE0(pause)
3209 {
3210 	while (!signal_pending(current)) {
3211 		current->state = TASK_INTERRUPTIBLE;
3212 		schedule();
3213 	}
3214 	return -ERESTARTNOHAND;
3215 }
3216 
3217 #endif
3218 
3219 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3220 /**
3221  *  sys_rt_sigsuspend - replace the signal mask for a value with the
3222  *	@unewset value until a signal is received
3223  *  @unewset: new signal mask value
3224  *  @sigsetsize: size of sigset_t type
3225  */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)3226 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3227 {
3228 	sigset_t newset;
3229 
3230 	/* XXX: Don't preclude handling different sized sigset_t's.  */
3231 	if (sigsetsize != sizeof(sigset_t))
3232 		return -EINVAL;
3233 
3234 	if (copy_from_user(&newset, unewset, sizeof(newset)))
3235 		return -EFAULT;
3236 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3237 
3238 	current->saved_sigmask = current->blocked;
3239 	set_current_blocked(&newset);
3240 
3241 	current->state = TASK_INTERRUPTIBLE;
3242 	schedule();
3243 	set_restore_sigmask();
3244 	return -ERESTARTNOHAND;
3245 }
3246 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3247 
arch_vma_name(struct vm_area_struct * vma)3248 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3249 {
3250 	return NULL;
3251 }
3252 
signals_init(void)3253 void __init signals_init(void)
3254 {
3255 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3256 }
3257 
3258 #ifdef CONFIG_KGDB_KDB
3259 #include <linux/kdb.h>
3260 /*
3261  * kdb_send_sig_info - Allows kdb to send signals without exposing
3262  * signal internals.  This function checks if the required locks are
3263  * available before calling the main signal code, to avoid kdb
3264  * deadlocks.
3265  */
3266 void
kdb_send_sig_info(struct task_struct * t,struct siginfo * info)3267 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3268 {
3269 	static struct task_struct *kdb_prev_t;
3270 	int sig, new_t;
3271 	if (!spin_trylock(&t->sighand->siglock)) {
3272 		kdb_printf("Can't do kill command now.\n"
3273 			   "The sigmask lock is held somewhere else in "
3274 			   "kernel, try again later\n");
3275 		return;
3276 	}
3277 	spin_unlock(&t->sighand->siglock);
3278 	new_t = kdb_prev_t != t;
3279 	kdb_prev_t = t;
3280 	if (t->state != TASK_RUNNING && new_t) {
3281 		kdb_printf("Process is not RUNNING, sending a signal from "
3282 			   "kdb risks deadlock\n"
3283 			   "on the run queue locks. "
3284 			   "The signal has _not_ been sent.\n"
3285 			   "Reissue the kill command if you want to risk "
3286 			   "the deadlock.\n");
3287 		return;
3288 	}
3289 	sig = info->si_signo;
3290 	if (send_sig_info(sig, info, t))
3291 		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3292 			   sig, t->pid);
3293 	else
3294 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3295 }
3296 #endif	/* CONFIG_KGDB_KDB */
3297