1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48 
49 #include <asm/uaccess.h>
50 
51 #include <trace/events/timer.h>
52 
53 /*
54  * The timer bases:
55  *
56  * There are more clockids then hrtimer bases. Thus, we index
57  * into the timer bases by the hrtimer_base_type enum. When trying
58  * to reach a base using a clockid, hrtimer_clockid_to_base()
59  * is used to convert from clockid to the proper hrtimer_base_type.
60  */
61 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
62 {
63 
64 	.clock_base =
65 	{
66 		{
67 			.index = HRTIMER_BASE_MONOTONIC,
68 			.clockid = CLOCK_MONOTONIC,
69 			.get_time = &ktime_get,
70 			.resolution = KTIME_LOW_RES,
71 		},
72 		{
73 			.index = HRTIMER_BASE_REALTIME,
74 			.clockid = CLOCK_REALTIME,
75 			.get_time = &ktime_get_real,
76 			.resolution = KTIME_LOW_RES,
77 		},
78 		{
79 			.index = HRTIMER_BASE_BOOTTIME,
80 			.clockid = CLOCK_BOOTTIME,
81 			.get_time = &ktime_get_boottime,
82 			.resolution = KTIME_LOW_RES,
83 		},
84 	}
85 };
86 
87 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
88 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
89 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
90 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
91 };
92 
hrtimer_clockid_to_base(clockid_t clock_id)93 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
94 {
95 	return hrtimer_clock_to_base_table[clock_id];
96 }
97 
98 
99 /*
100  * Get the coarse grained time at the softirq based on xtime and
101  * wall_to_monotonic.
102  */
hrtimer_get_softirq_time(struct hrtimer_cpu_base * base)103 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
104 {
105 	ktime_t xtim, mono, boot;
106 	struct timespec xts, tom, slp;
107 
108 	get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
109 
110 	xtim = timespec_to_ktime(xts);
111 	mono = ktime_add(xtim, timespec_to_ktime(tom));
112 	boot = ktime_add(mono, timespec_to_ktime(slp));
113 	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
114 	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
115 	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
116 }
117 
118 /*
119  * Functions and macros which are different for UP/SMP systems are kept in a
120  * single place
121  */
122 #ifdef CONFIG_SMP
123 
124 /*
125  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
126  * means that all timers which are tied to this base via timer->base are
127  * locked, and the base itself is locked too.
128  *
129  * So __run_timers/migrate_timers can safely modify all timers which could
130  * be found on the lists/queues.
131  *
132  * When the timer's base is locked, and the timer removed from list, it is
133  * possible to set timer->base = NULL and drop the lock: the timer remains
134  * locked.
135  */
136 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)137 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
138 					     unsigned long *flags)
139 {
140 	struct hrtimer_clock_base *base;
141 
142 	for (;;) {
143 		base = timer->base;
144 		if (likely(base != NULL)) {
145 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
146 			if (likely(base == timer->base))
147 				return base;
148 			/* The timer has migrated to another CPU: */
149 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
150 		}
151 		cpu_relax();
152 	}
153 }
154 
155 
156 /*
157  * Get the preferred target CPU for NOHZ
158  */
hrtimer_get_target(int this_cpu,int pinned)159 static int hrtimer_get_target(int this_cpu, int pinned)
160 {
161 #ifdef CONFIG_NO_HZ
162 	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
163 		return get_nohz_timer_target();
164 #endif
165 	return this_cpu;
166 }
167 
168 /*
169  * With HIGHRES=y we do not migrate the timer when it is expiring
170  * before the next event on the target cpu because we cannot reprogram
171  * the target cpu hardware and we would cause it to fire late.
172  *
173  * Called with cpu_base->lock of target cpu held.
174  */
175 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)176 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
177 {
178 #ifdef CONFIG_HIGH_RES_TIMERS
179 	ktime_t expires;
180 
181 	if (!new_base->cpu_base->hres_active)
182 		return 0;
183 
184 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
185 	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
186 #else
187 	return 0;
188 #endif
189 }
190 
191 /*
192  * Switch the timer base to the current CPU when possible.
193  */
194 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)195 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
196 		    int pinned)
197 {
198 	struct hrtimer_clock_base *new_base;
199 	struct hrtimer_cpu_base *new_cpu_base;
200 	int this_cpu = smp_processor_id();
201 	int cpu = hrtimer_get_target(this_cpu, pinned);
202 	int basenum = base->index;
203 
204 again:
205 	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
206 	new_base = &new_cpu_base->clock_base[basenum];
207 
208 	if (base != new_base) {
209 		/*
210 		 * We are trying to move timer to new_base.
211 		 * However we can't change timer's base while it is running,
212 		 * so we keep it on the same CPU. No hassle vs. reprogramming
213 		 * the event source in the high resolution case. The softirq
214 		 * code will take care of this when the timer function has
215 		 * completed. There is no conflict as we hold the lock until
216 		 * the timer is enqueued.
217 		 */
218 		if (unlikely(hrtimer_callback_running(timer)))
219 			return base;
220 
221 		/* See the comment in lock_timer_base() */
222 		timer->base = NULL;
223 		raw_spin_unlock(&base->cpu_base->lock);
224 		raw_spin_lock(&new_base->cpu_base->lock);
225 
226 		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
227 			cpu = this_cpu;
228 			raw_spin_unlock(&new_base->cpu_base->lock);
229 			raw_spin_lock(&base->cpu_base->lock);
230 			timer->base = base;
231 			goto again;
232 		}
233 		timer->base = new_base;
234 	}
235 	return new_base;
236 }
237 
238 #else /* CONFIG_SMP */
239 
240 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)241 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
242 {
243 	struct hrtimer_clock_base *base = timer->base;
244 
245 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
246 
247 	return base;
248 }
249 
250 # define switch_hrtimer_base(t, b, p)	(b)
251 
252 #endif	/* !CONFIG_SMP */
253 
254 /*
255  * Functions for the union type storage format of ktime_t which are
256  * too large for inlining:
257  */
258 #if BITS_PER_LONG < 64
259 # ifndef CONFIG_KTIME_SCALAR
260 /**
261  * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
262  * @kt:		addend
263  * @nsec:	the scalar nsec value to add
264  *
265  * Returns the sum of kt and nsec in ktime_t format
266  */
ktime_add_ns(const ktime_t kt,u64 nsec)267 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
268 {
269 	ktime_t tmp;
270 
271 	if (likely(nsec < NSEC_PER_SEC)) {
272 		tmp.tv64 = nsec;
273 	} else {
274 		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
275 
276 		tmp = ktime_set((long)nsec, rem);
277 	}
278 
279 	return ktime_add(kt, tmp);
280 }
281 
282 EXPORT_SYMBOL_GPL(ktime_add_ns);
283 
284 /**
285  * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
286  * @kt:		minuend
287  * @nsec:	the scalar nsec value to subtract
288  *
289  * Returns the subtraction of @nsec from @kt in ktime_t format
290  */
ktime_sub_ns(const ktime_t kt,u64 nsec)291 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
292 {
293 	ktime_t tmp;
294 
295 	if (likely(nsec < NSEC_PER_SEC)) {
296 		tmp.tv64 = nsec;
297 	} else {
298 		unsigned long rem = do_div(nsec, NSEC_PER_SEC);
299 
300 		tmp = ktime_set((long)nsec, rem);
301 	}
302 
303 	return ktime_sub(kt, tmp);
304 }
305 
306 EXPORT_SYMBOL_GPL(ktime_sub_ns);
307 # endif /* !CONFIG_KTIME_SCALAR */
308 
309 /*
310  * Divide a ktime value by a nanosecond value
311  */
ktime_divns(const ktime_t kt,s64 div)312 u64 ktime_divns(const ktime_t kt, s64 div)
313 {
314 	u64 dclc;
315 	int sft = 0;
316 
317 	dclc = ktime_to_ns(kt);
318 	/* Make sure the divisor is less than 2^32: */
319 	while (div >> 32) {
320 		sft++;
321 		div >>= 1;
322 	}
323 	dclc >>= sft;
324 	do_div(dclc, (unsigned long) div);
325 
326 	return dclc;
327 }
328 #endif /* BITS_PER_LONG >= 64 */
329 
330 /*
331  * Add two ktime values and do a safety check for overflow:
332  */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)333 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
334 {
335 	ktime_t res = ktime_add(lhs, rhs);
336 
337 	/*
338 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
339 	 * return to user space in a timespec:
340 	 */
341 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
342 		res = ktime_set(KTIME_SEC_MAX, 0);
343 
344 	return res;
345 }
346 
347 EXPORT_SYMBOL_GPL(ktime_add_safe);
348 
349 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
350 
351 static struct debug_obj_descr hrtimer_debug_descr;
352 
hrtimer_debug_hint(void * addr)353 static void *hrtimer_debug_hint(void *addr)
354 {
355 	return ((struct hrtimer *) addr)->function;
356 }
357 
358 /*
359  * fixup_init is called when:
360  * - an active object is initialized
361  */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)362 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
363 {
364 	struct hrtimer *timer = addr;
365 
366 	switch (state) {
367 	case ODEBUG_STATE_ACTIVE:
368 		hrtimer_cancel(timer);
369 		debug_object_init(timer, &hrtimer_debug_descr);
370 		return 1;
371 	default:
372 		return 0;
373 	}
374 }
375 
376 /*
377  * fixup_activate is called when:
378  * - an active object is activated
379  * - an unknown object is activated (might be a statically initialized object)
380  */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)381 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
382 {
383 	switch (state) {
384 
385 	case ODEBUG_STATE_NOTAVAILABLE:
386 		WARN_ON_ONCE(1);
387 		return 0;
388 
389 	case ODEBUG_STATE_ACTIVE:
390 		WARN_ON(1);
391 
392 	default:
393 		return 0;
394 	}
395 }
396 
397 /*
398  * fixup_free is called when:
399  * - an active object is freed
400  */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)401 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
402 {
403 	struct hrtimer *timer = addr;
404 
405 	switch (state) {
406 	case ODEBUG_STATE_ACTIVE:
407 		hrtimer_cancel(timer);
408 		debug_object_free(timer, &hrtimer_debug_descr);
409 		return 1;
410 	default:
411 		return 0;
412 	}
413 }
414 
415 static struct debug_obj_descr hrtimer_debug_descr = {
416 	.name		= "hrtimer",
417 	.debug_hint	= hrtimer_debug_hint,
418 	.fixup_init	= hrtimer_fixup_init,
419 	.fixup_activate	= hrtimer_fixup_activate,
420 	.fixup_free	= hrtimer_fixup_free,
421 };
422 
debug_hrtimer_init(struct hrtimer * timer)423 static inline void debug_hrtimer_init(struct hrtimer *timer)
424 {
425 	debug_object_init(timer, &hrtimer_debug_descr);
426 }
427 
debug_hrtimer_activate(struct hrtimer * timer)428 static inline void debug_hrtimer_activate(struct hrtimer *timer)
429 {
430 	debug_object_activate(timer, &hrtimer_debug_descr);
431 }
432 
debug_hrtimer_deactivate(struct hrtimer * timer)433 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
434 {
435 	debug_object_deactivate(timer, &hrtimer_debug_descr);
436 }
437 
debug_hrtimer_free(struct hrtimer * timer)438 static inline void debug_hrtimer_free(struct hrtimer *timer)
439 {
440 	debug_object_free(timer, &hrtimer_debug_descr);
441 }
442 
443 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
444 			   enum hrtimer_mode mode);
445 
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)446 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
447 			   enum hrtimer_mode mode)
448 {
449 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
450 	__hrtimer_init(timer, clock_id, mode);
451 }
452 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
453 
destroy_hrtimer_on_stack(struct hrtimer * timer)454 void destroy_hrtimer_on_stack(struct hrtimer *timer)
455 {
456 	debug_object_free(timer, &hrtimer_debug_descr);
457 }
458 
459 #else
debug_hrtimer_init(struct hrtimer * timer)460 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer)461 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
debug_hrtimer_deactivate(struct hrtimer * timer)462 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
463 #endif
464 
465 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)466 debug_init(struct hrtimer *timer, clockid_t clockid,
467 	   enum hrtimer_mode mode)
468 {
469 	debug_hrtimer_init(timer);
470 	trace_hrtimer_init(timer, clockid, mode);
471 }
472 
debug_activate(struct hrtimer * timer)473 static inline void debug_activate(struct hrtimer *timer)
474 {
475 	debug_hrtimer_activate(timer);
476 	trace_hrtimer_start(timer);
477 }
478 
debug_deactivate(struct hrtimer * timer)479 static inline void debug_deactivate(struct hrtimer *timer)
480 {
481 	debug_hrtimer_deactivate(timer);
482 	trace_hrtimer_cancel(timer);
483 }
484 
485 /* High resolution timer related functions */
486 #ifdef CONFIG_HIGH_RES_TIMERS
487 
488 /*
489  * High resolution timer enabled ?
490  */
491 static int hrtimer_hres_enabled __read_mostly  = 1;
492 
493 /*
494  * Enable / Disable high resolution mode
495  */
setup_hrtimer_hres(char * str)496 static int __init setup_hrtimer_hres(char *str)
497 {
498 	if (!strcmp(str, "off"))
499 		hrtimer_hres_enabled = 0;
500 	else if (!strcmp(str, "on"))
501 		hrtimer_hres_enabled = 1;
502 	else
503 		return 0;
504 	return 1;
505 }
506 
507 __setup("highres=", setup_hrtimer_hres);
508 
509 /*
510  * hrtimer_high_res_enabled - query, if the highres mode is enabled
511  */
hrtimer_is_hres_enabled(void)512 static inline int hrtimer_is_hres_enabled(void)
513 {
514 	return hrtimer_hres_enabled;
515 }
516 
517 /*
518  * Is the high resolution mode active ?
519  */
hrtimer_hres_active(void)520 static inline int hrtimer_hres_active(void)
521 {
522 	return __this_cpu_read(hrtimer_bases.hres_active);
523 }
524 
525 /*
526  * Reprogram the event source with checking both queues for the
527  * next event
528  * Called with interrupts disabled and base->lock held
529  */
530 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)531 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
532 {
533 	int i;
534 	struct hrtimer_clock_base *base = cpu_base->clock_base;
535 	ktime_t expires, expires_next;
536 
537 	expires_next.tv64 = KTIME_MAX;
538 
539 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
540 		struct hrtimer *timer;
541 		struct timerqueue_node *next;
542 
543 		next = timerqueue_getnext(&base->active);
544 		if (!next)
545 			continue;
546 		timer = container_of(next, struct hrtimer, node);
547 
548 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
549 		/*
550 		 * clock_was_set() has changed base->offset so the
551 		 * result might be negative. Fix it up to prevent a
552 		 * false positive in clockevents_program_event()
553 		 */
554 		if (expires.tv64 < 0)
555 			expires.tv64 = 0;
556 		if (expires.tv64 < expires_next.tv64)
557 			expires_next = expires;
558 	}
559 
560 	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
561 		return;
562 
563 	cpu_base->expires_next.tv64 = expires_next.tv64;
564 
565 	if (cpu_base->expires_next.tv64 != KTIME_MAX)
566 		tick_program_event(cpu_base->expires_next, 1);
567 }
568 
569 /*
570  * Shared reprogramming for clock_realtime and clock_monotonic
571  *
572  * When a timer is enqueued and expires earlier than the already enqueued
573  * timers, we have to check, whether it expires earlier than the timer for
574  * which the clock event device was armed.
575  *
576  * Called with interrupts disabled and base->cpu_base.lock held
577  */
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)578 static int hrtimer_reprogram(struct hrtimer *timer,
579 			     struct hrtimer_clock_base *base)
580 {
581 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
582 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
583 	int res;
584 
585 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
586 
587 	/*
588 	 * When the callback is running, we do not reprogram the clock event
589 	 * device. The timer callback is either running on a different CPU or
590 	 * the callback is executed in the hrtimer_interrupt context. The
591 	 * reprogramming is handled either by the softirq, which called the
592 	 * callback or at the end of the hrtimer_interrupt.
593 	 */
594 	if (hrtimer_callback_running(timer))
595 		return 0;
596 
597 	/*
598 	 * CLOCK_REALTIME timer might be requested with an absolute
599 	 * expiry time which is less than base->offset. Nothing wrong
600 	 * about that, just avoid to call into the tick code, which
601 	 * has now objections against negative expiry values.
602 	 */
603 	if (expires.tv64 < 0)
604 		return -ETIME;
605 
606 	if (expires.tv64 >= cpu_base->expires_next.tv64)
607 		return 0;
608 
609 	/*
610 	 * If a hang was detected in the last timer interrupt then we
611 	 * do not schedule a timer which is earlier than the expiry
612 	 * which we enforced in the hang detection. We want the system
613 	 * to make progress.
614 	 */
615 	if (cpu_base->hang_detected)
616 		return 0;
617 
618 	/*
619 	 * Clockevents returns -ETIME, when the event was in the past.
620 	 */
621 	res = tick_program_event(expires, 0);
622 	if (!IS_ERR_VALUE(res))
623 		cpu_base->expires_next = expires;
624 	return res;
625 }
626 
627 /*
628  * Initialize the high resolution related parts of cpu_base
629  */
hrtimer_init_hres(struct hrtimer_cpu_base * base)630 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
631 {
632 	base->expires_next.tv64 = KTIME_MAX;
633 	base->hres_active = 0;
634 }
635 
636 /*
637  * When High resolution timers are active, try to reprogram. Note, that in case
638  * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
639  * check happens. The timer gets enqueued into the rbtree. The reprogramming
640  * and expiry check is done in the hrtimer_interrupt or in the softirq.
641  */
hrtimer_enqueue_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base,int wakeup)642 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
643 					    struct hrtimer_clock_base *base,
644 					    int wakeup)
645 {
646 	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
647 		if (wakeup) {
648 			raw_spin_unlock(&base->cpu_base->lock);
649 			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
650 			raw_spin_lock(&base->cpu_base->lock);
651 		} else
652 			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
653 
654 		return 1;
655 	}
656 
657 	return 0;
658 }
659 
660 /*
661  * Retrigger next event is called after clock was set
662  *
663  * Called with interrupts disabled via on_each_cpu()
664  */
retrigger_next_event(void * arg)665 static void retrigger_next_event(void *arg)
666 {
667 	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
668 	struct timespec realtime_offset, xtim, wtm, sleep;
669 
670 	if (!hrtimer_hres_active())
671 		return;
672 
673 	/* Optimized out for !HIGH_RES */
674 	get_xtime_and_monotonic_and_sleep_offset(&xtim, &wtm, &sleep);
675 	set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
676 
677 	/* Adjust CLOCK_REALTIME offset */
678 	raw_spin_lock(&base->lock);
679 	base->clock_base[HRTIMER_BASE_REALTIME].offset =
680 		timespec_to_ktime(realtime_offset);
681 	base->clock_base[HRTIMER_BASE_BOOTTIME].offset =
682 		timespec_to_ktime(sleep);
683 
684 	hrtimer_force_reprogram(base, 0);
685 	raw_spin_unlock(&base->lock);
686 }
687 
688 /*
689  * Switch to high resolution mode
690  */
hrtimer_switch_to_hres(void)691 static int hrtimer_switch_to_hres(void)
692 {
693 	int i, cpu = smp_processor_id();
694 	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
695 	unsigned long flags;
696 
697 	if (base->hres_active)
698 		return 1;
699 
700 	local_irq_save(flags);
701 
702 	if (tick_init_highres()) {
703 		local_irq_restore(flags);
704 		printk(KERN_WARNING "Could not switch to high resolution "
705 				    "mode on CPU %d\n", cpu);
706 		return 0;
707 	}
708 	base->hres_active = 1;
709 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
710 		base->clock_base[i].resolution = KTIME_HIGH_RES;
711 
712 	tick_setup_sched_timer();
713 
714 	/* "Retrigger" the interrupt to get things going */
715 	retrigger_next_event(NULL);
716 	local_irq_restore(flags);
717 	return 1;
718 }
719 
720 #else
721 
hrtimer_hres_active(void)722 static inline int hrtimer_hres_active(void) { return 0; }
hrtimer_is_hres_enabled(void)723 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)724 static inline int hrtimer_switch_to_hres(void) { return 0; }
725 static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base * base,int skip_equal)726 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
hrtimer_enqueue_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base,int wakeup)727 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
728 					    struct hrtimer_clock_base *base,
729 					    int wakeup)
730 {
731 	return 0;
732 }
hrtimer_init_hres(struct hrtimer_cpu_base * base)733 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
retrigger_next_event(void * arg)734 static inline void retrigger_next_event(void *arg) { }
735 
736 #endif /* CONFIG_HIGH_RES_TIMERS */
737 
738 /*
739  * Clock realtime was set
740  *
741  * Change the offset of the realtime clock vs. the monotonic
742  * clock.
743  *
744  * We might have to reprogram the high resolution timer interrupt. On
745  * SMP we call the architecture specific code to retrigger _all_ high
746  * resolution timer interrupts. On UP we just disable interrupts and
747  * call the high resolution interrupt code.
748  */
clock_was_set(void)749 void clock_was_set(void)
750 {
751 #ifdef CONFIG_HIGH_RES_TIMERS
752 	/* Retrigger the CPU local events everywhere */
753 	on_each_cpu(retrigger_next_event, NULL, 1);
754 #endif
755 	timerfd_clock_was_set();
756 }
757 
758 /*
759  * During resume we might have to reprogram the high resolution timer
760  * interrupt (on the local CPU):
761  */
hrtimers_resume(void)762 void hrtimers_resume(void)
763 {
764 	WARN_ONCE(!irqs_disabled(),
765 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
766 
767 	retrigger_next_event(NULL);
768 	timerfd_clock_was_set();
769 }
770 
timer_stats_hrtimer_set_start_info(struct hrtimer * timer)771 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
772 {
773 #ifdef CONFIG_TIMER_STATS
774 	if (timer->start_site)
775 		return;
776 	timer->start_site = __builtin_return_address(0);
777 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
778 	timer->start_pid = current->pid;
779 #endif
780 }
781 
timer_stats_hrtimer_clear_start_info(struct hrtimer * timer)782 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
783 {
784 #ifdef CONFIG_TIMER_STATS
785 	timer->start_site = NULL;
786 #endif
787 }
788 
timer_stats_account_hrtimer(struct hrtimer * timer)789 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
790 {
791 #ifdef CONFIG_TIMER_STATS
792 	if (likely(!timer_stats_active))
793 		return;
794 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
795 				 timer->function, timer->start_comm, 0);
796 #endif
797 }
798 
799 /*
800  * Counterpart to lock_hrtimer_base above:
801  */
802 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)803 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
804 {
805 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
806 }
807 
808 /**
809  * hrtimer_forward - forward the timer expiry
810  * @timer:	hrtimer to forward
811  * @now:	forward past this time
812  * @interval:	the interval to forward
813  *
814  * Forward the timer expiry so it will expire in the future.
815  * Returns the number of overruns.
816  */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)817 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
818 {
819 	u64 orun = 1;
820 	ktime_t delta;
821 
822 	delta = ktime_sub(now, hrtimer_get_expires(timer));
823 
824 	if (delta.tv64 < 0)
825 		return 0;
826 
827 	if (interval.tv64 < timer->base->resolution.tv64)
828 		interval.tv64 = timer->base->resolution.tv64;
829 
830 	if (unlikely(delta.tv64 >= interval.tv64)) {
831 		s64 incr = ktime_to_ns(interval);
832 
833 		orun = ktime_divns(delta, incr);
834 		hrtimer_add_expires_ns(timer, incr * orun);
835 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
836 			return orun;
837 		/*
838 		 * This (and the ktime_add() below) is the
839 		 * correction for exact:
840 		 */
841 		orun++;
842 	}
843 	hrtimer_add_expires(timer, interval);
844 
845 	return orun;
846 }
847 EXPORT_SYMBOL_GPL(hrtimer_forward);
848 
849 /*
850  * enqueue_hrtimer - internal function to (re)start a timer
851  *
852  * The timer is inserted in expiry order. Insertion into the
853  * red black tree is O(log(n)). Must hold the base lock.
854  *
855  * Returns 1 when the new timer is the leftmost timer in the tree.
856  */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)857 static int enqueue_hrtimer(struct hrtimer *timer,
858 			   struct hrtimer_clock_base *base)
859 {
860 	debug_activate(timer);
861 
862 	timerqueue_add(&base->active, &timer->node);
863 	base->cpu_base->active_bases |= 1 << base->index;
864 
865 	/*
866 	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
867 	 * state of a possibly running callback.
868 	 */
869 	timer->state |= HRTIMER_STATE_ENQUEUED;
870 
871 	return (&timer->node == base->active.next);
872 }
873 
874 /*
875  * __remove_hrtimer - internal function to remove a timer
876  *
877  * Caller must hold the base lock.
878  *
879  * High resolution timer mode reprograms the clock event device when the
880  * timer is the one which expires next. The caller can disable this by setting
881  * reprogram to zero. This is useful, when the context does a reprogramming
882  * anyway (e.g. timer interrupt)
883  */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,unsigned long newstate,int reprogram)884 static void __remove_hrtimer(struct hrtimer *timer,
885 			     struct hrtimer_clock_base *base,
886 			     unsigned long newstate, int reprogram)
887 {
888 	struct timerqueue_node *next_timer;
889 	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
890 		goto out;
891 
892 	next_timer = timerqueue_getnext(&base->active);
893 	timerqueue_del(&base->active, &timer->node);
894 	if (&timer->node == next_timer) {
895 #ifdef CONFIG_HIGH_RES_TIMERS
896 		/* Reprogram the clock event device. if enabled */
897 		if (reprogram && hrtimer_hres_active()) {
898 			ktime_t expires;
899 
900 			expires = ktime_sub(hrtimer_get_expires(timer),
901 					    base->offset);
902 			if (base->cpu_base->expires_next.tv64 == expires.tv64)
903 				hrtimer_force_reprogram(base->cpu_base, 1);
904 		}
905 #endif
906 	}
907 	if (!timerqueue_getnext(&base->active))
908 		base->cpu_base->active_bases &= ~(1 << base->index);
909 out:
910 	timer->state = newstate;
911 }
912 
913 /*
914  * remove hrtimer, called with base lock held
915  */
916 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)917 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
918 {
919 	if (hrtimer_is_queued(timer)) {
920 		unsigned long state;
921 		int reprogram;
922 
923 		/*
924 		 * Remove the timer and force reprogramming when high
925 		 * resolution mode is active and the timer is on the current
926 		 * CPU. If we remove a timer on another CPU, reprogramming is
927 		 * skipped. The interrupt event on this CPU is fired and
928 		 * reprogramming happens in the interrupt handler. This is a
929 		 * rare case and less expensive than a smp call.
930 		 */
931 		debug_deactivate(timer);
932 		timer_stats_hrtimer_clear_start_info(timer);
933 		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
934 		/*
935 		 * We must preserve the CALLBACK state flag here,
936 		 * otherwise we could move the timer base in
937 		 * switch_hrtimer_base.
938 		 */
939 		state = timer->state & HRTIMER_STATE_CALLBACK;
940 		__remove_hrtimer(timer, base, state, reprogram);
941 		return 1;
942 	}
943 	return 0;
944 }
945 
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,unsigned long delta_ns,const enum hrtimer_mode mode,int wakeup)946 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
947 		unsigned long delta_ns, const enum hrtimer_mode mode,
948 		int wakeup)
949 {
950 	struct hrtimer_clock_base *base, *new_base;
951 	unsigned long flags;
952 	int ret, leftmost;
953 
954 	base = lock_hrtimer_base(timer, &flags);
955 
956 	/* Remove an active timer from the queue: */
957 	ret = remove_hrtimer(timer, base);
958 
959 	/* Switch the timer base, if necessary: */
960 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
961 
962 	if (mode & HRTIMER_MODE_REL) {
963 		tim = ktime_add_safe(tim, new_base->get_time());
964 		/*
965 		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
966 		 * to signal that they simply return xtime in
967 		 * do_gettimeoffset(). In this case we want to round up by
968 		 * resolution when starting a relative timer, to avoid short
969 		 * timeouts. This will go away with the GTOD framework.
970 		 */
971 #ifdef CONFIG_TIME_LOW_RES
972 		tim = ktime_add_safe(tim, base->resolution);
973 #endif
974 	}
975 
976 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
977 
978 	timer_stats_hrtimer_set_start_info(timer);
979 
980 	leftmost = enqueue_hrtimer(timer, new_base);
981 
982 	/*
983 	 * Only allow reprogramming if the new base is on this CPU.
984 	 * (it might still be on another CPU if the timer was pending)
985 	 *
986 	 * XXX send_remote_softirq() ?
987 	 */
988 	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
989 		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
990 
991 	unlock_hrtimer_base(timer, &flags);
992 
993 	return ret;
994 }
995 
996 /**
997  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
998  * @timer:	the timer to be added
999  * @tim:	expiry time
1000  * @delta_ns:	"slack" range for the timer
1001  * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1002  *
1003  * Returns:
1004  *  0 on success
1005  *  1 when the timer was active
1006  */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,unsigned long delta_ns,const enum hrtimer_mode mode)1007 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1008 		unsigned long delta_ns, const enum hrtimer_mode mode)
1009 {
1010 	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1011 }
1012 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1013 
1014 /**
1015  * hrtimer_start - (re)start an hrtimer on the current CPU
1016  * @timer:	the timer to be added
1017  * @tim:	expiry time
1018  * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1019  *
1020  * Returns:
1021  *  0 on success
1022  *  1 when the timer was active
1023  */
1024 int
hrtimer_start(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1025 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1026 {
1027 	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1028 }
1029 EXPORT_SYMBOL_GPL(hrtimer_start);
1030 
1031 
1032 /**
1033  * hrtimer_try_to_cancel - try to deactivate a timer
1034  * @timer:	hrtimer to stop
1035  *
1036  * Returns:
1037  *  0 when the timer was not active
1038  *  1 when the timer was active
1039  * -1 when the timer is currently excuting the callback function and
1040  *    cannot be stopped
1041  */
hrtimer_try_to_cancel(struct hrtimer * timer)1042 int hrtimer_try_to_cancel(struct hrtimer *timer)
1043 {
1044 	struct hrtimer_clock_base *base;
1045 	unsigned long flags;
1046 	int ret = -1;
1047 
1048 	base = lock_hrtimer_base(timer, &flags);
1049 
1050 	if (!hrtimer_callback_running(timer))
1051 		ret = remove_hrtimer(timer, base);
1052 
1053 	unlock_hrtimer_base(timer, &flags);
1054 
1055 	return ret;
1056 
1057 }
1058 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1059 
1060 /**
1061  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1062  * @timer:	the timer to be cancelled
1063  *
1064  * Returns:
1065  *  0 when the timer was not active
1066  *  1 when the timer was active
1067  */
hrtimer_cancel(struct hrtimer * timer)1068 int hrtimer_cancel(struct hrtimer *timer)
1069 {
1070 	for (;;) {
1071 		int ret = hrtimer_try_to_cancel(timer);
1072 
1073 		if (ret >= 0)
1074 			return ret;
1075 		cpu_relax();
1076 	}
1077 }
1078 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1079 
1080 /**
1081  * hrtimer_get_remaining - get remaining time for the timer
1082  * @timer:	the timer to read
1083  */
hrtimer_get_remaining(const struct hrtimer * timer)1084 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1085 {
1086 	unsigned long flags;
1087 	ktime_t rem;
1088 
1089 	lock_hrtimer_base(timer, &flags);
1090 	rem = hrtimer_expires_remaining(timer);
1091 	unlock_hrtimer_base(timer, &flags);
1092 
1093 	return rem;
1094 }
1095 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1096 
1097 #ifdef CONFIG_NO_HZ
1098 /**
1099  * hrtimer_get_next_event - get the time until next expiry event
1100  *
1101  * Returns the delta to the next expiry event or KTIME_MAX if no timer
1102  * is pending.
1103  */
hrtimer_get_next_event(void)1104 ktime_t hrtimer_get_next_event(void)
1105 {
1106 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1107 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1108 	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1109 	unsigned long flags;
1110 	int i;
1111 
1112 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1113 
1114 	if (!hrtimer_hres_active()) {
1115 		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1116 			struct hrtimer *timer;
1117 			struct timerqueue_node *next;
1118 
1119 			next = timerqueue_getnext(&base->active);
1120 			if (!next)
1121 				continue;
1122 
1123 			timer = container_of(next, struct hrtimer, node);
1124 			delta.tv64 = hrtimer_get_expires_tv64(timer);
1125 			delta = ktime_sub(delta, base->get_time());
1126 			if (delta.tv64 < mindelta.tv64)
1127 				mindelta.tv64 = delta.tv64;
1128 		}
1129 	}
1130 
1131 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1132 
1133 	if (mindelta.tv64 < 0)
1134 		mindelta.tv64 = 0;
1135 	return mindelta;
1136 }
1137 #endif
1138 
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1139 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1140 			   enum hrtimer_mode mode)
1141 {
1142 	struct hrtimer_cpu_base *cpu_base;
1143 	int base;
1144 
1145 	memset(timer, 0, sizeof(struct hrtimer));
1146 
1147 	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1148 
1149 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1150 		clock_id = CLOCK_MONOTONIC;
1151 
1152 	base = hrtimer_clockid_to_base(clock_id);
1153 	timer->base = &cpu_base->clock_base[base];
1154 	timerqueue_init(&timer->node);
1155 
1156 #ifdef CONFIG_TIMER_STATS
1157 	timer->start_site = NULL;
1158 	timer->start_pid = -1;
1159 	memset(timer->start_comm, 0, TASK_COMM_LEN);
1160 #endif
1161 }
1162 
1163 /**
1164  * hrtimer_init - initialize a timer to the given clock
1165  * @timer:	the timer to be initialized
1166  * @clock_id:	the clock to be used
1167  * @mode:	timer mode abs/rel
1168  */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1169 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1170 		  enum hrtimer_mode mode)
1171 {
1172 	debug_init(timer, clock_id, mode);
1173 	__hrtimer_init(timer, clock_id, mode);
1174 }
1175 EXPORT_SYMBOL_GPL(hrtimer_init);
1176 
1177 /**
1178  * hrtimer_get_res - get the timer resolution for a clock
1179  * @which_clock: which clock to query
1180  * @tp:		 pointer to timespec variable to store the resolution
1181  *
1182  * Store the resolution of the clock selected by @which_clock in the
1183  * variable pointed to by @tp.
1184  */
hrtimer_get_res(const clockid_t which_clock,struct timespec * tp)1185 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1186 {
1187 	struct hrtimer_cpu_base *cpu_base;
1188 	int base = hrtimer_clockid_to_base(which_clock);
1189 
1190 	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1191 	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1192 
1193 	return 0;
1194 }
1195 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1196 
__run_hrtimer(struct hrtimer * timer,ktime_t * now)1197 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1198 {
1199 	struct hrtimer_clock_base *base = timer->base;
1200 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1201 	enum hrtimer_restart (*fn)(struct hrtimer *);
1202 	int restart;
1203 
1204 	WARN_ON(!irqs_disabled());
1205 
1206 	debug_deactivate(timer);
1207 	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1208 	timer_stats_account_hrtimer(timer);
1209 	fn = timer->function;
1210 
1211 	/*
1212 	 * Because we run timers from hardirq context, there is no chance
1213 	 * they get migrated to another cpu, therefore its safe to unlock
1214 	 * the timer base.
1215 	 */
1216 	raw_spin_unlock(&cpu_base->lock);
1217 	trace_hrtimer_expire_entry(timer, now);
1218 	restart = fn(timer);
1219 	trace_hrtimer_expire_exit(timer);
1220 	raw_spin_lock(&cpu_base->lock);
1221 
1222 	/*
1223 	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1224 	 * we do not reprogramm the event hardware. Happens either in
1225 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1226 	 */
1227 	if (restart != HRTIMER_NORESTART) {
1228 		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1229 		enqueue_hrtimer(timer, base);
1230 	}
1231 
1232 	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1233 
1234 	timer->state &= ~HRTIMER_STATE_CALLBACK;
1235 }
1236 
1237 #ifdef CONFIG_HIGH_RES_TIMERS
1238 
1239 /*
1240  * High resolution timer interrupt
1241  * Called with interrupts disabled
1242  */
hrtimer_interrupt(struct clock_event_device * dev)1243 void hrtimer_interrupt(struct clock_event_device *dev)
1244 {
1245 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1246 	ktime_t expires_next, now, entry_time, delta;
1247 	int i, retries = 0;
1248 
1249 	BUG_ON(!cpu_base->hres_active);
1250 	cpu_base->nr_events++;
1251 	dev->next_event.tv64 = KTIME_MAX;
1252 
1253 	entry_time = now = ktime_get();
1254 retry:
1255 	expires_next.tv64 = KTIME_MAX;
1256 
1257 	raw_spin_lock(&cpu_base->lock);
1258 	/*
1259 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1260 	 * held to prevent that a timer is enqueued in our queue via
1261 	 * the migration code. This does not affect enqueueing of
1262 	 * timers which run their callback and need to be requeued on
1263 	 * this CPU.
1264 	 */
1265 	cpu_base->expires_next.tv64 = KTIME_MAX;
1266 
1267 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1268 		struct hrtimer_clock_base *base;
1269 		struct timerqueue_node *node;
1270 		ktime_t basenow;
1271 
1272 		if (!(cpu_base->active_bases & (1 << i)))
1273 			continue;
1274 
1275 		base = cpu_base->clock_base + i;
1276 		basenow = ktime_add(now, base->offset);
1277 
1278 		while ((node = timerqueue_getnext(&base->active))) {
1279 			struct hrtimer *timer;
1280 
1281 			timer = container_of(node, struct hrtimer, node);
1282 
1283 			/*
1284 			 * The immediate goal for using the softexpires is
1285 			 * minimizing wakeups, not running timers at the
1286 			 * earliest interrupt after their soft expiration.
1287 			 * This allows us to avoid using a Priority Search
1288 			 * Tree, which can answer a stabbing querry for
1289 			 * overlapping intervals and instead use the simple
1290 			 * BST we already have.
1291 			 * We don't add extra wakeups by delaying timers that
1292 			 * are right-of a not yet expired timer, because that
1293 			 * timer will have to trigger a wakeup anyway.
1294 			 */
1295 
1296 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1297 				ktime_t expires;
1298 
1299 				expires = ktime_sub(hrtimer_get_expires(timer),
1300 						    base->offset);
1301 				if (expires.tv64 < expires_next.tv64)
1302 					expires_next = expires;
1303 				break;
1304 			}
1305 
1306 			__run_hrtimer(timer, &basenow);
1307 		}
1308 	}
1309 
1310 	/*
1311 	 * Store the new expiry value so the migration code can verify
1312 	 * against it.
1313 	 */
1314 	cpu_base->expires_next = expires_next;
1315 	raw_spin_unlock(&cpu_base->lock);
1316 
1317 	/* Reprogramming necessary ? */
1318 	if (expires_next.tv64 == KTIME_MAX ||
1319 	    !tick_program_event(expires_next, 0)) {
1320 		cpu_base->hang_detected = 0;
1321 		return;
1322 	}
1323 
1324 	/*
1325 	 * The next timer was already expired due to:
1326 	 * - tracing
1327 	 * - long lasting callbacks
1328 	 * - being scheduled away when running in a VM
1329 	 *
1330 	 * We need to prevent that we loop forever in the hrtimer
1331 	 * interrupt routine. We give it 3 attempts to avoid
1332 	 * overreacting on some spurious event.
1333 	 */
1334 	now = ktime_get();
1335 	cpu_base->nr_retries++;
1336 	if (++retries < 3)
1337 		goto retry;
1338 	/*
1339 	 * Give the system a chance to do something else than looping
1340 	 * here. We stored the entry time, so we know exactly how long
1341 	 * we spent here. We schedule the next event this amount of
1342 	 * time away.
1343 	 */
1344 	cpu_base->nr_hangs++;
1345 	cpu_base->hang_detected = 1;
1346 	delta = ktime_sub(now, entry_time);
1347 	if (delta.tv64 > cpu_base->max_hang_time.tv64)
1348 		cpu_base->max_hang_time = delta;
1349 	/*
1350 	 * Limit it to a sensible value as we enforce a longer
1351 	 * delay. Give the CPU at least 100ms to catch up.
1352 	 */
1353 	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1354 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1355 	else
1356 		expires_next = ktime_add(now, delta);
1357 	tick_program_event(expires_next, 1);
1358 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1359 		    ktime_to_ns(delta));
1360 }
1361 
1362 /*
1363  * local version of hrtimer_peek_ahead_timers() called with interrupts
1364  * disabled.
1365  */
__hrtimer_peek_ahead_timers(void)1366 static void __hrtimer_peek_ahead_timers(void)
1367 {
1368 	struct tick_device *td;
1369 
1370 	if (!hrtimer_hres_active())
1371 		return;
1372 
1373 	td = &__get_cpu_var(tick_cpu_device);
1374 	if (td && td->evtdev)
1375 		hrtimer_interrupt(td->evtdev);
1376 }
1377 
1378 /**
1379  * hrtimer_peek_ahead_timers -- run soft-expired timers now
1380  *
1381  * hrtimer_peek_ahead_timers will peek at the timer queue of
1382  * the current cpu and check if there are any timers for which
1383  * the soft expires time has passed. If any such timers exist,
1384  * they are run immediately and then removed from the timer queue.
1385  *
1386  */
hrtimer_peek_ahead_timers(void)1387 void hrtimer_peek_ahead_timers(void)
1388 {
1389 	unsigned long flags;
1390 
1391 	local_irq_save(flags);
1392 	__hrtimer_peek_ahead_timers();
1393 	local_irq_restore(flags);
1394 }
1395 
run_hrtimer_softirq(struct softirq_action * h)1396 static void run_hrtimer_softirq(struct softirq_action *h)
1397 {
1398 	hrtimer_peek_ahead_timers();
1399 }
1400 
1401 #else /* CONFIG_HIGH_RES_TIMERS */
1402 
__hrtimer_peek_ahead_timers(void)1403 static inline void __hrtimer_peek_ahead_timers(void) { }
1404 
1405 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1406 
1407 /*
1408  * Called from timer softirq every jiffy, expire hrtimers:
1409  *
1410  * For HRT its the fall back code to run the softirq in the timer
1411  * softirq context in case the hrtimer initialization failed or has
1412  * not been done yet.
1413  */
hrtimer_run_pending(void)1414 void hrtimer_run_pending(void)
1415 {
1416 	if (hrtimer_hres_active())
1417 		return;
1418 
1419 	/*
1420 	 * This _is_ ugly: We have to check in the softirq context,
1421 	 * whether we can switch to highres and / or nohz mode. The
1422 	 * clocksource switch happens in the timer interrupt with
1423 	 * xtime_lock held. Notification from there only sets the
1424 	 * check bit in the tick_oneshot code, otherwise we might
1425 	 * deadlock vs. xtime_lock.
1426 	 */
1427 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1428 		hrtimer_switch_to_hres();
1429 }
1430 
1431 /*
1432  * Called from hardirq context every jiffy
1433  */
hrtimer_run_queues(void)1434 void hrtimer_run_queues(void)
1435 {
1436 	struct timerqueue_node *node;
1437 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1438 	struct hrtimer_clock_base *base;
1439 	int index, gettime = 1;
1440 
1441 	if (hrtimer_hres_active())
1442 		return;
1443 
1444 	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1445 		base = &cpu_base->clock_base[index];
1446 		if (!timerqueue_getnext(&base->active))
1447 			continue;
1448 
1449 		if (gettime) {
1450 			hrtimer_get_softirq_time(cpu_base);
1451 			gettime = 0;
1452 		}
1453 
1454 		raw_spin_lock(&cpu_base->lock);
1455 
1456 		while ((node = timerqueue_getnext(&base->active))) {
1457 			struct hrtimer *timer;
1458 
1459 			timer = container_of(node, struct hrtimer, node);
1460 			if (base->softirq_time.tv64 <=
1461 					hrtimer_get_expires_tv64(timer))
1462 				break;
1463 
1464 			__run_hrtimer(timer, &base->softirq_time);
1465 		}
1466 		raw_spin_unlock(&cpu_base->lock);
1467 	}
1468 }
1469 
1470 /*
1471  * Sleep related functions:
1472  */
hrtimer_wakeup(struct hrtimer * timer)1473 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1474 {
1475 	struct hrtimer_sleeper *t =
1476 		container_of(timer, struct hrtimer_sleeper, timer);
1477 	struct task_struct *task = t->task;
1478 
1479 	t->task = NULL;
1480 	if (task)
1481 		wake_up_process(task);
1482 
1483 	return HRTIMER_NORESTART;
1484 }
1485 
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,struct task_struct * task)1486 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1487 {
1488 	sl->timer.function = hrtimer_wakeup;
1489 	sl->task = task;
1490 }
1491 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1492 
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)1493 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1494 {
1495 	hrtimer_init_sleeper(t, current);
1496 
1497 	do {
1498 		set_current_state(TASK_INTERRUPTIBLE);
1499 		hrtimer_start_expires(&t->timer, mode);
1500 		if (!hrtimer_active(&t->timer))
1501 			t->task = NULL;
1502 
1503 		if (likely(t->task))
1504 			schedule();
1505 
1506 		hrtimer_cancel(&t->timer);
1507 		mode = HRTIMER_MODE_ABS;
1508 
1509 	} while (t->task && !signal_pending(current));
1510 
1511 	__set_current_state(TASK_RUNNING);
1512 
1513 	return t->task == NULL;
1514 }
1515 
update_rmtp(struct hrtimer * timer,struct timespec __user * rmtp)1516 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1517 {
1518 	struct timespec rmt;
1519 	ktime_t rem;
1520 
1521 	rem = hrtimer_expires_remaining(timer);
1522 	if (rem.tv64 <= 0)
1523 		return 0;
1524 	rmt = ktime_to_timespec(rem);
1525 
1526 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1527 		return -EFAULT;
1528 
1529 	return 1;
1530 }
1531 
hrtimer_nanosleep_restart(struct restart_block * restart)1532 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1533 {
1534 	struct hrtimer_sleeper t;
1535 	struct timespec __user  *rmtp;
1536 	int ret = 0;
1537 
1538 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1539 				HRTIMER_MODE_ABS);
1540 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1541 
1542 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1543 		goto out;
1544 
1545 	rmtp = restart->nanosleep.rmtp;
1546 	if (rmtp) {
1547 		ret = update_rmtp(&t.timer, rmtp);
1548 		if (ret <= 0)
1549 			goto out;
1550 	}
1551 
1552 	/* The other values in restart are already filled in */
1553 	ret = -ERESTART_RESTARTBLOCK;
1554 out:
1555 	destroy_hrtimer_on_stack(&t.timer);
1556 	return ret;
1557 }
1558 
hrtimer_nanosleep(struct timespec * rqtp,struct timespec __user * rmtp,const enum hrtimer_mode mode,const clockid_t clockid)1559 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1560 		       const enum hrtimer_mode mode, const clockid_t clockid)
1561 {
1562 	struct restart_block *restart;
1563 	struct hrtimer_sleeper t;
1564 	int ret = 0;
1565 	unsigned long slack;
1566 
1567 	slack = current->timer_slack_ns;
1568 	if (rt_task(current))
1569 		slack = 0;
1570 
1571 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1572 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1573 	if (do_nanosleep(&t, mode))
1574 		goto out;
1575 
1576 	/* Absolute timers do not update the rmtp value and restart: */
1577 	if (mode == HRTIMER_MODE_ABS) {
1578 		ret = -ERESTARTNOHAND;
1579 		goto out;
1580 	}
1581 
1582 	if (rmtp) {
1583 		ret = update_rmtp(&t.timer, rmtp);
1584 		if (ret <= 0)
1585 			goto out;
1586 	}
1587 
1588 	restart = &current_thread_info()->restart_block;
1589 	restart->fn = hrtimer_nanosleep_restart;
1590 	restart->nanosleep.clockid = t.timer.base->clockid;
1591 	restart->nanosleep.rmtp = rmtp;
1592 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1593 
1594 	ret = -ERESTART_RESTARTBLOCK;
1595 out:
1596 	destroy_hrtimer_on_stack(&t.timer);
1597 	return ret;
1598 }
1599 
SYSCALL_DEFINE2(nanosleep,struct timespec __user *,rqtp,struct timespec __user *,rmtp)1600 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1601 		struct timespec __user *, rmtp)
1602 {
1603 	struct timespec tu;
1604 
1605 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1606 		return -EFAULT;
1607 
1608 	if (!timespec_valid(&tu))
1609 		return -EINVAL;
1610 
1611 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1612 }
1613 
1614 /*
1615  * Functions related to boot-time initialization:
1616  */
init_hrtimers_cpu(int cpu)1617 static void __cpuinit init_hrtimers_cpu(int cpu)
1618 {
1619 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1620 	int i;
1621 
1622 	raw_spin_lock_init(&cpu_base->lock);
1623 
1624 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1625 		cpu_base->clock_base[i].cpu_base = cpu_base;
1626 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1627 	}
1628 
1629 	hrtimer_init_hres(cpu_base);
1630 }
1631 
1632 #ifdef CONFIG_HOTPLUG_CPU
1633 
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)1634 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1635 				struct hrtimer_clock_base *new_base)
1636 {
1637 	struct hrtimer *timer;
1638 	struct timerqueue_node *node;
1639 
1640 	while ((node = timerqueue_getnext(&old_base->active))) {
1641 		timer = container_of(node, struct hrtimer, node);
1642 		BUG_ON(hrtimer_callback_running(timer));
1643 		debug_deactivate(timer);
1644 
1645 		/*
1646 		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1647 		 * timer could be seen as !active and just vanish away
1648 		 * under us on another CPU
1649 		 */
1650 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1651 		timer->base = new_base;
1652 		/*
1653 		 * Enqueue the timers on the new cpu. This does not
1654 		 * reprogram the event device in case the timer
1655 		 * expires before the earliest on this CPU, but we run
1656 		 * hrtimer_interrupt after we migrated everything to
1657 		 * sort out already expired timers and reprogram the
1658 		 * event device.
1659 		 */
1660 		enqueue_hrtimer(timer, new_base);
1661 
1662 		/* Clear the migration state bit */
1663 		timer->state &= ~HRTIMER_STATE_MIGRATE;
1664 	}
1665 }
1666 
migrate_hrtimers(int scpu)1667 static void migrate_hrtimers(int scpu)
1668 {
1669 	struct hrtimer_cpu_base *old_base, *new_base;
1670 	int i;
1671 
1672 	BUG_ON(cpu_online(scpu));
1673 	tick_cancel_sched_timer(scpu);
1674 
1675 	local_irq_disable();
1676 	old_base = &per_cpu(hrtimer_bases, scpu);
1677 	new_base = &__get_cpu_var(hrtimer_bases);
1678 	/*
1679 	 * The caller is globally serialized and nobody else
1680 	 * takes two locks at once, deadlock is not possible.
1681 	 */
1682 	raw_spin_lock(&new_base->lock);
1683 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1684 
1685 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1686 		migrate_hrtimer_list(&old_base->clock_base[i],
1687 				     &new_base->clock_base[i]);
1688 	}
1689 
1690 	raw_spin_unlock(&old_base->lock);
1691 	raw_spin_unlock(&new_base->lock);
1692 
1693 	/* Check, if we got expired work to do */
1694 	__hrtimer_peek_ahead_timers();
1695 	local_irq_enable();
1696 }
1697 
1698 #endif /* CONFIG_HOTPLUG_CPU */
1699 
hrtimer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1700 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1701 					unsigned long action, void *hcpu)
1702 {
1703 	int scpu = (long)hcpu;
1704 
1705 	switch (action) {
1706 
1707 	case CPU_UP_PREPARE:
1708 	case CPU_UP_PREPARE_FROZEN:
1709 		init_hrtimers_cpu(scpu);
1710 		break;
1711 
1712 #ifdef CONFIG_HOTPLUG_CPU
1713 	case CPU_DYING:
1714 	case CPU_DYING_FROZEN:
1715 		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1716 		break;
1717 	case CPU_DEAD:
1718 	case CPU_DEAD_FROZEN:
1719 	{
1720 		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1721 		migrate_hrtimers(scpu);
1722 		break;
1723 	}
1724 #endif
1725 
1726 	default:
1727 		break;
1728 	}
1729 
1730 	return NOTIFY_OK;
1731 }
1732 
1733 static struct notifier_block __cpuinitdata hrtimers_nb = {
1734 	.notifier_call = hrtimer_cpu_notify,
1735 };
1736 
hrtimers_init(void)1737 void __init hrtimers_init(void)
1738 {
1739 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1740 			  (void *)(long)smp_processor_id());
1741 	register_cpu_notifier(&hrtimers_nb);
1742 #ifdef CONFIG_HIGH_RES_TIMERS
1743 	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1744 #endif
1745 }
1746 
1747 /**
1748  * schedule_hrtimeout_range_clock - sleep until timeout
1749  * @expires:	timeout value (ktime_t)
1750  * @delta:	slack in expires timeout (ktime_t)
1751  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1752  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1753  */
1754 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,unsigned long delta,const enum hrtimer_mode mode,int clock)1755 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1756 			       const enum hrtimer_mode mode, int clock)
1757 {
1758 	struct hrtimer_sleeper t;
1759 
1760 	/*
1761 	 * Optimize when a zero timeout value is given. It does not
1762 	 * matter whether this is an absolute or a relative time.
1763 	 */
1764 	if (expires && !expires->tv64) {
1765 		__set_current_state(TASK_RUNNING);
1766 		return 0;
1767 	}
1768 
1769 	/*
1770 	 * A NULL parameter means "infinite"
1771 	 */
1772 	if (!expires) {
1773 		schedule();
1774 		__set_current_state(TASK_RUNNING);
1775 		return -EINTR;
1776 	}
1777 
1778 	hrtimer_init_on_stack(&t.timer, clock, mode);
1779 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1780 
1781 	hrtimer_init_sleeper(&t, current);
1782 
1783 	hrtimer_start_expires(&t.timer, mode);
1784 	if (!hrtimer_active(&t.timer))
1785 		t.task = NULL;
1786 
1787 	if (likely(t.task))
1788 		schedule();
1789 
1790 	hrtimer_cancel(&t.timer);
1791 	destroy_hrtimer_on_stack(&t.timer);
1792 
1793 	__set_current_state(TASK_RUNNING);
1794 
1795 	return !t.task ? 0 : -EINTR;
1796 }
1797 
1798 /**
1799  * schedule_hrtimeout_range - sleep until timeout
1800  * @expires:	timeout value (ktime_t)
1801  * @delta:	slack in expires timeout (ktime_t)
1802  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1803  *
1804  * Make the current task sleep until the given expiry time has
1805  * elapsed. The routine will return immediately unless
1806  * the current task state has been set (see set_current_state()).
1807  *
1808  * The @delta argument gives the kernel the freedom to schedule the
1809  * actual wakeup to a time that is both power and performance friendly.
1810  * The kernel give the normal best effort behavior for "@expires+@delta",
1811  * but may decide to fire the timer earlier, but no earlier than @expires.
1812  *
1813  * You can set the task state as follows -
1814  *
1815  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1816  * pass before the routine returns.
1817  *
1818  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1819  * delivered to the current task.
1820  *
1821  * The current task state is guaranteed to be TASK_RUNNING when this
1822  * routine returns.
1823  *
1824  * Returns 0 when the timer has expired otherwise -EINTR
1825  */
schedule_hrtimeout_range(ktime_t * expires,unsigned long delta,const enum hrtimer_mode mode)1826 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1827 				     const enum hrtimer_mode mode)
1828 {
1829 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1830 					      CLOCK_MONOTONIC);
1831 }
1832 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1833 
1834 /**
1835  * schedule_hrtimeout - sleep until timeout
1836  * @expires:	timeout value (ktime_t)
1837  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1838  *
1839  * Make the current task sleep until the given expiry time has
1840  * elapsed. The routine will return immediately unless
1841  * the current task state has been set (see set_current_state()).
1842  *
1843  * You can set the task state as follows -
1844  *
1845  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1846  * pass before the routine returns.
1847  *
1848  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1849  * delivered to the current task.
1850  *
1851  * The current task state is guaranteed to be TASK_RUNNING when this
1852  * routine returns.
1853  *
1854  * Returns 0 when the timer has expired otherwise -EINTR
1855  */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)1856 int __sched schedule_hrtimeout(ktime_t *expires,
1857 			       const enum hrtimer_mode mode)
1858 {
1859 	return schedule_hrtimeout_range(expires, 0, mode);
1860 }
1861 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1862