1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h>	/* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/uaccess.h>
56 #include <linux/memcontrol.h>
57 #include <linux/res_counter.h>
58 #include <linux/jump_label.h>
59 
60 #include <linux/filter.h>
61 #include <linux/rculist_nulls.h>
62 #include <linux/poll.h>
63 
64 #include <linux/atomic.h>
65 #include <net/dst.h>
66 #include <net/checksum.h>
67 
68 struct cgroup;
69 struct cgroup_subsys;
70 #ifdef CONFIG_NET
71 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss);
72 void mem_cgroup_sockets_destroy(struct cgroup *cgrp, struct cgroup_subsys *ss);
73 #else
74 static inline
mem_cgroup_sockets_init(struct cgroup * cgrp,struct cgroup_subsys * ss)75 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
76 {
77 	return 0;
78 }
79 static inline
mem_cgroup_sockets_destroy(struct cgroup * cgrp,struct cgroup_subsys * ss)80 void mem_cgroup_sockets_destroy(struct cgroup *cgrp, struct cgroup_subsys *ss)
81 {
82 }
83 #endif
84 /*
85  * This structure really needs to be cleaned up.
86  * Most of it is for TCP, and not used by any of
87  * the other protocols.
88  */
89 
90 /* Define this to get the SOCK_DBG debugging facility. */
91 #define SOCK_DEBUGGING
92 #ifdef SOCK_DEBUGGING
93 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
94 					printk(KERN_DEBUG msg); } while (0)
95 #else
96 /* Validate arguments and do nothing */
97 static inline __printf(2, 3)
SOCK_DEBUG(struct sock * sk,const char * msg,...)98 void SOCK_DEBUG(struct sock *sk, const char *msg, ...)
99 {
100 }
101 #endif
102 
103 /* This is the per-socket lock.  The spinlock provides a synchronization
104  * between user contexts and software interrupt processing, whereas the
105  * mini-semaphore synchronizes multiple users amongst themselves.
106  */
107 typedef struct {
108 	spinlock_t		slock;
109 	int			owned;
110 	wait_queue_head_t	wq;
111 	/*
112 	 * We express the mutex-alike socket_lock semantics
113 	 * to the lock validator by explicitly managing
114 	 * the slock as a lock variant (in addition to
115 	 * the slock itself):
116 	 */
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 	struct lockdep_map dep_map;
119 #endif
120 } socket_lock_t;
121 
122 struct sock;
123 struct proto;
124 struct net;
125 
126 /**
127  *	struct sock_common - minimal network layer representation of sockets
128  *	@skc_daddr: Foreign IPv4 addr
129  *	@skc_rcv_saddr: Bound local IPv4 addr
130  *	@skc_hash: hash value used with various protocol lookup tables
131  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
132  *	@skc_family: network address family
133  *	@skc_state: Connection state
134  *	@skc_reuse: %SO_REUSEADDR setting
135  *	@skc_bound_dev_if: bound device index if != 0
136  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
137  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
138  *	@skc_prot: protocol handlers inside a network family
139  *	@skc_net: reference to the network namespace of this socket
140  *	@skc_node: main hash linkage for various protocol lookup tables
141  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
142  *	@skc_tx_queue_mapping: tx queue number for this connection
143  *	@skc_refcnt: reference count
144  *
145  *	This is the minimal network layer representation of sockets, the header
146  *	for struct sock and struct inet_timewait_sock.
147  */
148 struct sock_common {
149 	/* skc_daddr and skc_rcv_saddr must be grouped :
150 	 * cf INET_MATCH() and INET_TW_MATCH()
151 	 */
152 	__be32			skc_daddr;
153 	__be32			skc_rcv_saddr;
154 
155 	union  {
156 		unsigned int	skc_hash;
157 		__u16		skc_u16hashes[2];
158 	};
159 	unsigned short		skc_family;
160 	volatile unsigned char	skc_state;
161 	unsigned char		skc_reuse;
162 	int			skc_bound_dev_if;
163 	union {
164 		struct hlist_node	skc_bind_node;
165 		struct hlist_nulls_node skc_portaddr_node;
166 	};
167 	struct proto		*skc_prot;
168 #ifdef CONFIG_NET_NS
169 	struct net	 	*skc_net;
170 #endif
171 	/*
172 	 * fields between dontcopy_begin/dontcopy_end
173 	 * are not copied in sock_copy()
174 	 */
175 	/* private: */
176 	int			skc_dontcopy_begin[0];
177 	/* public: */
178 	union {
179 		struct hlist_node	skc_node;
180 		struct hlist_nulls_node skc_nulls_node;
181 	};
182 	int			skc_tx_queue_mapping;
183 	atomic_t		skc_refcnt;
184 	/* private: */
185 	int                     skc_dontcopy_end[0];
186 	/* public: */
187 };
188 
189 struct cg_proto;
190 /**
191   *	struct sock - network layer representation of sockets
192   *	@__sk_common: shared layout with inet_timewait_sock
193   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
194   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
195   *	@sk_lock:	synchronizer
196   *	@sk_rcvbuf: size of receive buffer in bytes
197   *	@sk_wq: sock wait queue and async head
198   *	@sk_dst_cache: destination cache
199   *	@sk_dst_lock: destination cache lock
200   *	@sk_policy: flow policy
201   *	@sk_receive_queue: incoming packets
202   *	@sk_wmem_alloc: transmit queue bytes committed
203   *	@sk_write_queue: Packet sending queue
204   *	@sk_async_wait_queue: DMA copied packets
205   *	@sk_omem_alloc: "o" is "option" or "other"
206   *	@sk_wmem_queued: persistent queue size
207   *	@sk_forward_alloc: space allocated forward
208   *	@sk_allocation: allocation mode
209   *	@sk_sndbuf: size of send buffer in bytes
210   *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
211   *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
212   *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
213   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
214   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
215   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
216   *	@sk_gso_max_size: Maximum GSO segment size to build
217   *	@sk_lingertime: %SO_LINGER l_linger setting
218   *	@sk_backlog: always used with the per-socket spinlock held
219   *	@sk_callback_lock: used with the callbacks in the end of this struct
220   *	@sk_error_queue: rarely used
221   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
222   *			  IPV6_ADDRFORM for instance)
223   *	@sk_err: last error
224   *	@sk_err_soft: errors that don't cause failure but are the cause of a
225   *		      persistent failure not just 'timed out'
226   *	@sk_drops: raw/udp drops counter
227   *	@sk_ack_backlog: current listen backlog
228   *	@sk_max_ack_backlog: listen backlog set in listen()
229   *	@sk_priority: %SO_PRIORITY setting
230   *	@sk_cgrp_prioidx: socket group's priority map index
231   *	@sk_type: socket type (%SOCK_STREAM, etc)
232   *	@sk_protocol: which protocol this socket belongs in this network family
233   *	@sk_peer_pid: &struct pid for this socket's peer
234   *	@sk_peer_cred: %SO_PEERCRED setting
235   *	@sk_rcvlowat: %SO_RCVLOWAT setting
236   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
237   *	@sk_sndtimeo: %SO_SNDTIMEO setting
238   *	@sk_rxhash: flow hash received from netif layer
239   *	@sk_filter: socket filtering instructions
240   *	@sk_protinfo: private area, net family specific, when not using slab
241   *	@sk_timer: sock cleanup timer
242   *	@sk_stamp: time stamp of last packet received
243   *	@sk_socket: Identd and reporting IO signals
244   *	@sk_user_data: RPC layer private data
245   *	@sk_sndmsg_page: cached page for sendmsg
246   *	@sk_sndmsg_off: cached offset for sendmsg
247   *	@sk_send_head: front of stuff to transmit
248   *	@sk_security: used by security modules
249   *	@sk_mark: generic packet mark
250   *	@sk_classid: this socket's cgroup classid
251   *	@sk_cgrp: this socket's cgroup-specific proto data
252   *	@sk_write_pending: a write to stream socket waits to start
253   *	@sk_state_change: callback to indicate change in the state of the sock
254   *	@sk_data_ready: callback to indicate there is data to be processed
255   *	@sk_write_space: callback to indicate there is bf sending space available
256   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
257   *	@sk_backlog_rcv: callback to process the backlog
258   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
259  */
260 struct sock {
261 	/*
262 	 * Now struct inet_timewait_sock also uses sock_common, so please just
263 	 * don't add nothing before this first member (__sk_common) --acme
264 	 */
265 	struct sock_common	__sk_common;
266 #define sk_node			__sk_common.skc_node
267 #define sk_nulls_node		__sk_common.skc_nulls_node
268 #define sk_refcnt		__sk_common.skc_refcnt
269 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
270 
271 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
272 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
273 #define sk_hash			__sk_common.skc_hash
274 #define sk_family		__sk_common.skc_family
275 #define sk_state		__sk_common.skc_state
276 #define sk_reuse		__sk_common.skc_reuse
277 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
278 #define sk_bind_node		__sk_common.skc_bind_node
279 #define sk_prot			__sk_common.skc_prot
280 #define sk_net			__sk_common.skc_net
281 	socket_lock_t		sk_lock;
282 	struct sk_buff_head	sk_receive_queue;
283 	/*
284 	 * The backlog queue is special, it is always used with
285 	 * the per-socket spinlock held and requires low latency
286 	 * access. Therefore we special case it's implementation.
287 	 * Note : rmem_alloc is in this structure to fill a hole
288 	 * on 64bit arches, not because its logically part of
289 	 * backlog.
290 	 */
291 	struct {
292 		atomic_t	rmem_alloc;
293 		int		len;
294 		struct sk_buff	*head;
295 		struct sk_buff	*tail;
296 	} sk_backlog;
297 #define sk_rmem_alloc sk_backlog.rmem_alloc
298 	int			sk_forward_alloc;
299 #ifdef CONFIG_RPS
300 	__u32			sk_rxhash;
301 #endif
302 	atomic_t		sk_drops;
303 	int			sk_rcvbuf;
304 
305 	struct sk_filter __rcu	*sk_filter;
306 	struct socket_wq __rcu	*sk_wq;
307 
308 #ifdef CONFIG_NET_DMA
309 	struct sk_buff_head	sk_async_wait_queue;
310 #endif
311 
312 #ifdef CONFIG_XFRM
313 	struct xfrm_policy	*sk_policy[2];
314 #endif
315 	unsigned long 		sk_flags;
316 	struct dst_entry	*sk_dst_cache;
317 	spinlock_t		sk_dst_lock;
318 	atomic_t		sk_wmem_alloc;
319 	atomic_t		sk_omem_alloc;
320 	int			sk_sndbuf;
321 	struct sk_buff_head	sk_write_queue;
322 	kmemcheck_bitfield_begin(flags);
323 	unsigned int		sk_shutdown  : 2,
324 				sk_no_check  : 2,
325 				sk_userlocks : 4,
326 				sk_protocol  : 8,
327 				sk_type      : 16;
328 	kmemcheck_bitfield_end(flags);
329 	int			sk_wmem_queued;
330 	gfp_t			sk_allocation;
331 	netdev_features_t	sk_route_caps;
332 	netdev_features_t	sk_route_nocaps;
333 	int			sk_gso_type;
334 	unsigned int		sk_gso_max_size;
335 	int			sk_rcvlowat;
336 	unsigned long	        sk_lingertime;
337 	struct sk_buff_head	sk_error_queue;
338 	struct proto		*sk_prot_creator;
339 	rwlock_t		sk_callback_lock;
340 	int			sk_err,
341 				sk_err_soft;
342 	unsigned short		sk_ack_backlog;
343 	unsigned short		sk_max_ack_backlog;
344 	__u32			sk_priority;
345 #ifdef CONFIG_CGROUPS
346 	__u32			sk_cgrp_prioidx;
347 #endif
348 	struct pid		*sk_peer_pid;
349 	const struct cred	*sk_peer_cred;
350 	long			sk_rcvtimeo;
351 	long			sk_sndtimeo;
352 	void			*sk_protinfo;
353 	struct timer_list	sk_timer;
354 	ktime_t			sk_stamp;
355 	struct socket		*sk_socket;
356 	void			*sk_user_data;
357 	struct page		*sk_sndmsg_page;
358 	struct sk_buff		*sk_send_head;
359 	__u32			sk_sndmsg_off;
360 	int			sk_write_pending;
361 #ifdef CONFIG_SECURITY
362 	void			*sk_security;
363 #endif
364 	__u32			sk_mark;
365 	u32			sk_classid;
366 	struct cg_proto		*sk_cgrp;
367 	void			(*sk_state_change)(struct sock *sk);
368 	void			(*sk_data_ready)(struct sock *sk, int bytes);
369 	void			(*sk_write_space)(struct sock *sk);
370 	void			(*sk_error_report)(struct sock *sk);
371   	int			(*sk_backlog_rcv)(struct sock *sk,
372 						  struct sk_buff *skb);
373 	void                    (*sk_destruct)(struct sock *sk);
374 };
375 
376 /*
377  * Hashed lists helper routines
378  */
sk_entry(const struct hlist_node * node)379 static inline struct sock *sk_entry(const struct hlist_node *node)
380 {
381 	return hlist_entry(node, struct sock, sk_node);
382 }
383 
__sk_head(const struct hlist_head * head)384 static inline struct sock *__sk_head(const struct hlist_head *head)
385 {
386 	return hlist_entry(head->first, struct sock, sk_node);
387 }
388 
sk_head(const struct hlist_head * head)389 static inline struct sock *sk_head(const struct hlist_head *head)
390 {
391 	return hlist_empty(head) ? NULL : __sk_head(head);
392 }
393 
__sk_nulls_head(const struct hlist_nulls_head * head)394 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
395 {
396 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
397 }
398 
sk_nulls_head(const struct hlist_nulls_head * head)399 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
400 {
401 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
402 }
403 
sk_next(const struct sock * sk)404 static inline struct sock *sk_next(const struct sock *sk)
405 {
406 	return sk->sk_node.next ?
407 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
408 }
409 
sk_nulls_next(const struct sock * sk)410 static inline struct sock *sk_nulls_next(const struct sock *sk)
411 {
412 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
413 		hlist_nulls_entry(sk->sk_nulls_node.next,
414 				  struct sock, sk_nulls_node) :
415 		NULL;
416 }
417 
sk_unhashed(const struct sock * sk)418 static inline int sk_unhashed(const struct sock *sk)
419 {
420 	return hlist_unhashed(&sk->sk_node);
421 }
422 
sk_hashed(const struct sock * sk)423 static inline int sk_hashed(const struct sock *sk)
424 {
425 	return !sk_unhashed(sk);
426 }
427 
sk_node_init(struct hlist_node * node)428 static __inline__ void sk_node_init(struct hlist_node *node)
429 {
430 	node->pprev = NULL;
431 }
432 
sk_nulls_node_init(struct hlist_nulls_node * node)433 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
434 {
435 	node->pprev = NULL;
436 }
437 
__sk_del_node(struct sock * sk)438 static __inline__ void __sk_del_node(struct sock *sk)
439 {
440 	__hlist_del(&sk->sk_node);
441 }
442 
443 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)444 static __inline__ int __sk_del_node_init(struct sock *sk)
445 {
446 	if (sk_hashed(sk)) {
447 		__sk_del_node(sk);
448 		sk_node_init(&sk->sk_node);
449 		return 1;
450 	}
451 	return 0;
452 }
453 
454 /* Grab socket reference count. This operation is valid only
455    when sk is ALREADY grabbed f.e. it is found in hash table
456    or a list and the lookup is made under lock preventing hash table
457    modifications.
458  */
459 
sock_hold(struct sock * sk)460 static inline void sock_hold(struct sock *sk)
461 {
462 	atomic_inc(&sk->sk_refcnt);
463 }
464 
465 /* Ungrab socket in the context, which assumes that socket refcnt
466    cannot hit zero, f.e. it is true in context of any socketcall.
467  */
__sock_put(struct sock * sk)468 static inline void __sock_put(struct sock *sk)
469 {
470 	atomic_dec(&sk->sk_refcnt);
471 }
472 
sk_del_node_init(struct sock * sk)473 static __inline__ int sk_del_node_init(struct sock *sk)
474 {
475 	int rc = __sk_del_node_init(sk);
476 
477 	if (rc) {
478 		/* paranoid for a while -acme */
479 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
480 		__sock_put(sk);
481 	}
482 	return rc;
483 }
484 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
485 
__sk_nulls_del_node_init_rcu(struct sock * sk)486 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
487 {
488 	if (sk_hashed(sk)) {
489 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
490 		return 1;
491 	}
492 	return 0;
493 }
494 
sk_nulls_del_node_init_rcu(struct sock * sk)495 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
496 {
497 	int rc = __sk_nulls_del_node_init_rcu(sk);
498 
499 	if (rc) {
500 		/* paranoid for a while -acme */
501 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
502 		__sock_put(sk);
503 	}
504 	return rc;
505 }
506 
__sk_add_node(struct sock * sk,struct hlist_head * list)507 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
508 {
509 	hlist_add_head(&sk->sk_node, list);
510 }
511 
sk_add_node(struct sock * sk,struct hlist_head * list)512 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
513 {
514 	sock_hold(sk);
515 	__sk_add_node(sk, list);
516 }
517 
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)518 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
519 {
520 	sock_hold(sk);
521 	hlist_add_head_rcu(&sk->sk_node, list);
522 }
523 
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)524 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
525 {
526 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
527 }
528 
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)529 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
530 {
531 	sock_hold(sk);
532 	__sk_nulls_add_node_rcu(sk, list);
533 }
534 
__sk_del_bind_node(struct sock * sk)535 static __inline__ void __sk_del_bind_node(struct sock *sk)
536 {
537 	__hlist_del(&sk->sk_bind_node);
538 }
539 
sk_add_bind_node(struct sock * sk,struct hlist_head * list)540 static __inline__ void sk_add_bind_node(struct sock *sk,
541 					struct hlist_head *list)
542 {
543 	hlist_add_head(&sk->sk_bind_node, list);
544 }
545 
546 #define sk_for_each(__sk, node, list) \
547 	hlist_for_each_entry(__sk, node, list, sk_node)
548 #define sk_for_each_rcu(__sk, node, list) \
549 	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
550 #define sk_nulls_for_each(__sk, node, list) \
551 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
552 #define sk_nulls_for_each_rcu(__sk, node, list) \
553 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
554 #define sk_for_each_from(__sk, node) \
555 	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
556 		hlist_for_each_entry_from(__sk, node, sk_node)
557 #define sk_nulls_for_each_from(__sk, node) \
558 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
559 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
560 #define sk_for_each_safe(__sk, node, tmp, list) \
561 	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
562 #define sk_for_each_bound(__sk, node, list) \
563 	hlist_for_each_entry(__sk, node, list, sk_bind_node)
564 
565 /* Sock flags */
566 enum sock_flags {
567 	SOCK_DEAD,
568 	SOCK_DONE,
569 	SOCK_URGINLINE,
570 	SOCK_KEEPOPEN,
571 	SOCK_LINGER,
572 	SOCK_DESTROY,
573 	SOCK_BROADCAST,
574 	SOCK_TIMESTAMP,
575 	SOCK_ZAPPED,
576 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
577 	SOCK_DBG, /* %SO_DEBUG setting */
578 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
579 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
580 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
581 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
582 	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
583 	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
584 	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
585 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
586 	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
587 	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
588 	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
589 	SOCK_FASYNC, /* fasync() active */
590 	SOCK_RXQ_OVFL,
591 	SOCK_ZEROCOPY, /* buffers from userspace */
592 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
593 };
594 
sock_copy_flags(struct sock * nsk,struct sock * osk)595 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
596 {
597 	nsk->sk_flags = osk->sk_flags;
598 }
599 
sock_set_flag(struct sock * sk,enum sock_flags flag)600 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
601 {
602 	__set_bit(flag, &sk->sk_flags);
603 }
604 
sock_reset_flag(struct sock * sk,enum sock_flags flag)605 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
606 {
607 	__clear_bit(flag, &sk->sk_flags);
608 }
609 
sock_flag(struct sock * sk,enum sock_flags flag)610 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
611 {
612 	return test_bit(flag, &sk->sk_flags);
613 }
614 
sk_acceptq_removed(struct sock * sk)615 static inline void sk_acceptq_removed(struct sock *sk)
616 {
617 	sk->sk_ack_backlog--;
618 }
619 
sk_acceptq_added(struct sock * sk)620 static inline void sk_acceptq_added(struct sock *sk)
621 {
622 	sk->sk_ack_backlog++;
623 }
624 
sk_acceptq_is_full(struct sock * sk)625 static inline int sk_acceptq_is_full(struct sock *sk)
626 {
627 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
628 }
629 
630 /*
631  * Compute minimal free write space needed to queue new packets.
632  */
sk_stream_min_wspace(struct sock * sk)633 static inline int sk_stream_min_wspace(struct sock *sk)
634 {
635 	return sk->sk_wmem_queued >> 1;
636 }
637 
sk_stream_wspace(struct sock * sk)638 static inline int sk_stream_wspace(struct sock *sk)
639 {
640 	return sk->sk_sndbuf - sk->sk_wmem_queued;
641 }
642 
643 extern void sk_stream_write_space(struct sock *sk);
644 
sk_stream_memory_free(struct sock * sk)645 static inline int sk_stream_memory_free(struct sock *sk)
646 {
647 	return sk->sk_wmem_queued < sk->sk_sndbuf;
648 }
649 
650 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)651 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
652 {
653 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
654 	skb_dst_force(skb);
655 
656 	if (!sk->sk_backlog.tail)
657 		sk->sk_backlog.head = skb;
658 	else
659 		sk->sk_backlog.tail->next = skb;
660 
661 	sk->sk_backlog.tail = skb;
662 	skb->next = NULL;
663 }
664 
665 /*
666  * Take into account size of receive queue and backlog queue
667  * Do not take into account this skb truesize,
668  * to allow even a single big packet to come.
669  */
sk_rcvqueues_full(const struct sock * sk,const struct sk_buff * skb)670 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
671 {
672 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
673 
674 	return qsize > sk->sk_rcvbuf;
675 }
676 
677 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb)678 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
679 {
680 	if (sk_rcvqueues_full(sk, skb))
681 		return -ENOBUFS;
682 
683 	__sk_add_backlog(sk, skb);
684 	sk->sk_backlog.len += skb->truesize;
685 	return 0;
686 }
687 
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)688 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
689 {
690 	return sk->sk_backlog_rcv(sk, skb);
691 }
692 
sock_rps_record_flow(const struct sock * sk)693 static inline void sock_rps_record_flow(const struct sock *sk)
694 {
695 #ifdef CONFIG_RPS
696 	struct rps_sock_flow_table *sock_flow_table;
697 
698 	rcu_read_lock();
699 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
700 	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
701 	rcu_read_unlock();
702 #endif
703 }
704 
sock_rps_reset_flow(const struct sock * sk)705 static inline void sock_rps_reset_flow(const struct sock *sk)
706 {
707 #ifdef CONFIG_RPS
708 	struct rps_sock_flow_table *sock_flow_table;
709 
710 	rcu_read_lock();
711 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
712 	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
713 	rcu_read_unlock();
714 #endif
715 }
716 
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)717 static inline void sock_rps_save_rxhash(struct sock *sk,
718 					const struct sk_buff *skb)
719 {
720 #ifdef CONFIG_RPS
721 	if (unlikely(sk->sk_rxhash != skb->rxhash)) {
722 		sock_rps_reset_flow(sk);
723 		sk->sk_rxhash = skb->rxhash;
724 	}
725 #endif
726 }
727 
sock_rps_reset_rxhash(struct sock * sk)728 static inline void sock_rps_reset_rxhash(struct sock *sk)
729 {
730 #ifdef CONFIG_RPS
731 	sock_rps_reset_flow(sk);
732 	sk->sk_rxhash = 0;
733 #endif
734 }
735 
736 #define sk_wait_event(__sk, __timeo, __condition)			\
737 	({	int __rc;						\
738 		release_sock(__sk);					\
739 		__rc = __condition;					\
740 		if (!__rc) {						\
741 			*(__timeo) = schedule_timeout(*(__timeo));	\
742 		}							\
743 		lock_sock(__sk);					\
744 		__rc = __condition;					\
745 		__rc;							\
746 	})
747 
748 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
749 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
750 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
751 extern int sk_stream_error(struct sock *sk, int flags, int err);
752 extern void sk_stream_kill_queues(struct sock *sk);
753 
754 extern int sk_wait_data(struct sock *sk, long *timeo);
755 
756 struct request_sock_ops;
757 struct timewait_sock_ops;
758 struct inet_hashinfo;
759 struct raw_hashinfo;
760 struct module;
761 
762 /* Networking protocol blocks we attach to sockets.
763  * socket layer -> transport layer interface
764  * transport -> network interface is defined by struct inet_proto
765  */
766 struct proto {
767 	void			(*close)(struct sock *sk,
768 					long timeout);
769 	int			(*connect)(struct sock *sk,
770 				        struct sockaddr *uaddr,
771 					int addr_len);
772 	int			(*disconnect)(struct sock *sk, int flags);
773 
774 	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
775 
776 	int			(*ioctl)(struct sock *sk, int cmd,
777 					 unsigned long arg);
778 	int			(*init)(struct sock *sk);
779 	void			(*destroy)(struct sock *sk);
780 	void			(*shutdown)(struct sock *sk, int how);
781 	int			(*setsockopt)(struct sock *sk, int level,
782 					int optname, char __user *optval,
783 					unsigned int optlen);
784 	int			(*getsockopt)(struct sock *sk, int level,
785 					int optname, char __user *optval,
786 					int __user *option);
787 #ifdef CONFIG_COMPAT
788 	int			(*compat_setsockopt)(struct sock *sk,
789 					int level,
790 					int optname, char __user *optval,
791 					unsigned int optlen);
792 	int			(*compat_getsockopt)(struct sock *sk,
793 					int level,
794 					int optname, char __user *optval,
795 					int __user *option);
796 	int			(*compat_ioctl)(struct sock *sk,
797 					unsigned int cmd, unsigned long arg);
798 #endif
799 	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
800 					   struct msghdr *msg, size_t len);
801 	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
802 					   struct msghdr *msg,
803 					size_t len, int noblock, int flags,
804 					int *addr_len);
805 	int			(*sendpage)(struct sock *sk, struct page *page,
806 					int offset, size_t size, int flags);
807 	int			(*bind)(struct sock *sk,
808 					struct sockaddr *uaddr, int addr_len);
809 
810 	int			(*backlog_rcv) (struct sock *sk,
811 						struct sk_buff *skb);
812 
813 	/* Keeping track of sk's, looking them up, and port selection methods. */
814 	void			(*hash)(struct sock *sk);
815 	void			(*unhash)(struct sock *sk);
816 	void			(*rehash)(struct sock *sk);
817 	int			(*get_port)(struct sock *sk, unsigned short snum);
818 	void			(*clear_sk)(struct sock *sk, int size);
819 
820 	/* Keeping track of sockets in use */
821 #ifdef CONFIG_PROC_FS
822 	unsigned int		inuse_idx;
823 #endif
824 
825 	/* Memory pressure */
826 	void			(*enter_memory_pressure)(struct sock *sk);
827 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
828 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
829 	/*
830 	 * Pressure flag: try to collapse.
831 	 * Technical note: it is used by multiple contexts non atomically.
832 	 * All the __sk_mem_schedule() is of this nature: accounting
833 	 * is strict, actions are advisory and have some latency.
834 	 */
835 	int			*memory_pressure;
836 	long			*sysctl_mem;
837 	int			*sysctl_wmem;
838 	int			*sysctl_rmem;
839 	int			max_header;
840 	bool			no_autobind;
841 
842 	struct kmem_cache	*slab;
843 	unsigned int		obj_size;
844 	int			slab_flags;
845 
846 	struct percpu_counter	*orphan_count;
847 
848 	struct request_sock_ops	*rsk_prot;
849 	struct timewait_sock_ops *twsk_prot;
850 
851 	union {
852 		struct inet_hashinfo	*hashinfo;
853 		struct udp_table	*udp_table;
854 		struct raw_hashinfo	*raw_hash;
855 	} h;
856 
857 	struct module		*owner;
858 
859 	char			name[32];
860 
861 	struct list_head	node;
862 #ifdef SOCK_REFCNT_DEBUG
863 	atomic_t		socks;
864 #endif
865 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
866 	/*
867 	 * cgroup specific init/deinit functions. Called once for all
868 	 * protocols that implement it, from cgroups populate function.
869 	 * This function has to setup any files the protocol want to
870 	 * appear in the kmem cgroup filesystem.
871 	 */
872 	int			(*init_cgroup)(struct cgroup *cgrp,
873 					       struct cgroup_subsys *ss);
874 	void			(*destroy_cgroup)(struct cgroup *cgrp,
875 						  struct cgroup_subsys *ss);
876 	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
877 #endif
878 };
879 
880 struct cg_proto {
881 	void			(*enter_memory_pressure)(struct sock *sk);
882 	struct res_counter	*memory_allocated;	/* Current allocated memory. */
883 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
884 	int			*memory_pressure;
885 	long			*sysctl_mem;
886 	/*
887 	 * memcg field is used to find which memcg we belong directly
888 	 * Each memcg struct can hold more than one cg_proto, so container_of
889 	 * won't really cut.
890 	 *
891 	 * The elegant solution would be having an inverse function to
892 	 * proto_cgroup in struct proto, but that means polluting the structure
893 	 * for everybody, instead of just for memcg users.
894 	 */
895 	struct mem_cgroup	*memcg;
896 };
897 
898 extern int proto_register(struct proto *prot, int alloc_slab);
899 extern void proto_unregister(struct proto *prot);
900 
901 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)902 static inline void sk_refcnt_debug_inc(struct sock *sk)
903 {
904 	atomic_inc(&sk->sk_prot->socks);
905 }
906 
sk_refcnt_debug_dec(struct sock * sk)907 static inline void sk_refcnt_debug_dec(struct sock *sk)
908 {
909 	atomic_dec(&sk->sk_prot->socks);
910 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
911 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
912 }
913 
sk_refcnt_debug_release(const struct sock * sk)914 inline void sk_refcnt_debug_release(const struct sock *sk)
915 {
916 	if (atomic_read(&sk->sk_refcnt) != 1)
917 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
918 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
919 }
920 #else /* SOCK_REFCNT_DEBUG */
921 #define sk_refcnt_debug_inc(sk) do { } while (0)
922 #define sk_refcnt_debug_dec(sk) do { } while (0)
923 #define sk_refcnt_debug_release(sk) do { } while (0)
924 #endif /* SOCK_REFCNT_DEBUG */
925 
926 #if defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM) && defined(CONFIG_NET)
927 extern struct jump_label_key memcg_socket_limit_enabled;
parent_cg_proto(struct proto * proto,struct cg_proto * cg_proto)928 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
929 					       struct cg_proto *cg_proto)
930 {
931 	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
932 }
933 #define mem_cgroup_sockets_enabled static_branch(&memcg_socket_limit_enabled)
934 #else
935 #define mem_cgroup_sockets_enabled 0
parent_cg_proto(struct proto * proto,struct cg_proto * cg_proto)936 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
937 					       struct cg_proto *cg_proto)
938 {
939 	return NULL;
940 }
941 #endif
942 
943 
sk_has_memory_pressure(const struct sock * sk)944 static inline bool sk_has_memory_pressure(const struct sock *sk)
945 {
946 	return sk->sk_prot->memory_pressure != NULL;
947 }
948 
sk_under_memory_pressure(const struct sock * sk)949 static inline bool sk_under_memory_pressure(const struct sock *sk)
950 {
951 	if (!sk->sk_prot->memory_pressure)
952 		return false;
953 
954 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
955 		return !!*sk->sk_cgrp->memory_pressure;
956 
957 	return !!*sk->sk_prot->memory_pressure;
958 }
959 
sk_leave_memory_pressure(struct sock * sk)960 static inline void sk_leave_memory_pressure(struct sock *sk)
961 {
962 	int *memory_pressure = sk->sk_prot->memory_pressure;
963 
964 	if (!memory_pressure)
965 		return;
966 
967 	if (*memory_pressure)
968 		*memory_pressure = 0;
969 
970 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
971 		struct cg_proto *cg_proto = sk->sk_cgrp;
972 		struct proto *prot = sk->sk_prot;
973 
974 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
975 			if (*cg_proto->memory_pressure)
976 				*cg_proto->memory_pressure = 0;
977 	}
978 
979 }
980 
sk_enter_memory_pressure(struct sock * sk)981 static inline void sk_enter_memory_pressure(struct sock *sk)
982 {
983 	if (!sk->sk_prot->enter_memory_pressure)
984 		return;
985 
986 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
987 		struct cg_proto *cg_proto = sk->sk_cgrp;
988 		struct proto *prot = sk->sk_prot;
989 
990 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
991 			cg_proto->enter_memory_pressure(sk);
992 	}
993 
994 	sk->sk_prot->enter_memory_pressure(sk);
995 }
996 
sk_prot_mem_limits(const struct sock * sk,int index)997 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
998 {
999 	long *prot = sk->sk_prot->sysctl_mem;
1000 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1001 		prot = sk->sk_cgrp->sysctl_mem;
1002 	return prot[index];
1003 }
1004 
memcg_memory_allocated_add(struct cg_proto * prot,unsigned long amt,int * parent_status)1005 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1006 					      unsigned long amt,
1007 					      int *parent_status)
1008 {
1009 	struct res_counter *fail;
1010 	int ret;
1011 
1012 	ret = res_counter_charge_nofail(prot->memory_allocated,
1013 					amt << PAGE_SHIFT, &fail);
1014 	if (ret < 0)
1015 		*parent_status = OVER_LIMIT;
1016 }
1017 
memcg_memory_allocated_sub(struct cg_proto * prot,unsigned long amt)1018 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1019 					      unsigned long amt)
1020 {
1021 	res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1022 }
1023 
memcg_memory_allocated_read(struct cg_proto * prot)1024 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1025 {
1026 	u64 ret;
1027 	ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1028 	return ret >> PAGE_SHIFT;
1029 }
1030 
1031 static inline long
sk_memory_allocated(const struct sock * sk)1032 sk_memory_allocated(const struct sock *sk)
1033 {
1034 	struct proto *prot = sk->sk_prot;
1035 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1036 		return memcg_memory_allocated_read(sk->sk_cgrp);
1037 
1038 	return atomic_long_read(prot->memory_allocated);
1039 }
1040 
1041 static inline long
sk_memory_allocated_add(struct sock * sk,int amt,int * parent_status)1042 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1043 {
1044 	struct proto *prot = sk->sk_prot;
1045 
1046 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1047 		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1048 		/* update the root cgroup regardless */
1049 		atomic_long_add_return(amt, prot->memory_allocated);
1050 		return memcg_memory_allocated_read(sk->sk_cgrp);
1051 	}
1052 
1053 	return atomic_long_add_return(amt, prot->memory_allocated);
1054 }
1055 
1056 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1057 sk_memory_allocated_sub(struct sock *sk, int amt)
1058 {
1059 	struct proto *prot = sk->sk_prot;
1060 
1061 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1062 		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1063 
1064 	atomic_long_sub(amt, prot->memory_allocated);
1065 }
1066 
sk_sockets_allocated_dec(struct sock * sk)1067 static inline void sk_sockets_allocated_dec(struct sock *sk)
1068 {
1069 	struct proto *prot = sk->sk_prot;
1070 
1071 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1072 		struct cg_proto *cg_proto = sk->sk_cgrp;
1073 
1074 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1075 			percpu_counter_dec(cg_proto->sockets_allocated);
1076 	}
1077 
1078 	percpu_counter_dec(prot->sockets_allocated);
1079 }
1080 
sk_sockets_allocated_inc(struct sock * sk)1081 static inline void sk_sockets_allocated_inc(struct sock *sk)
1082 {
1083 	struct proto *prot = sk->sk_prot;
1084 
1085 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1086 		struct cg_proto *cg_proto = sk->sk_cgrp;
1087 
1088 		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1089 			percpu_counter_inc(cg_proto->sockets_allocated);
1090 	}
1091 
1092 	percpu_counter_inc(prot->sockets_allocated);
1093 }
1094 
1095 static inline int
sk_sockets_allocated_read_positive(struct sock * sk)1096 sk_sockets_allocated_read_positive(struct sock *sk)
1097 {
1098 	struct proto *prot = sk->sk_prot;
1099 
1100 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1101 		return percpu_counter_sum_positive(sk->sk_cgrp->sockets_allocated);
1102 
1103 	return percpu_counter_sum_positive(prot->sockets_allocated);
1104 }
1105 
1106 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1107 proto_sockets_allocated_sum_positive(struct proto *prot)
1108 {
1109 	return percpu_counter_sum_positive(prot->sockets_allocated);
1110 }
1111 
1112 static inline long
proto_memory_allocated(struct proto * prot)1113 proto_memory_allocated(struct proto *prot)
1114 {
1115 	return atomic_long_read(prot->memory_allocated);
1116 }
1117 
1118 static inline bool
proto_memory_pressure(struct proto * prot)1119 proto_memory_pressure(struct proto *prot)
1120 {
1121 	if (!prot->memory_pressure)
1122 		return false;
1123 	return !!*prot->memory_pressure;
1124 }
1125 
1126 
1127 #ifdef CONFIG_PROC_FS
1128 /* Called with local bh disabled */
1129 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1130 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1131 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1132 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
1133 		int inc)
1134 {
1135 }
1136 #endif
1137 
1138 
1139 /* With per-bucket locks this operation is not-atomic, so that
1140  * this version is not worse.
1141  */
__sk_prot_rehash(struct sock * sk)1142 static inline void __sk_prot_rehash(struct sock *sk)
1143 {
1144 	sk->sk_prot->unhash(sk);
1145 	sk->sk_prot->hash(sk);
1146 }
1147 
1148 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1149 
1150 /* About 10 seconds */
1151 #define SOCK_DESTROY_TIME (10*HZ)
1152 
1153 /* Sockets 0-1023 can't be bound to unless you are superuser */
1154 #define PROT_SOCK	1024
1155 
1156 #define SHUTDOWN_MASK	3
1157 #define RCV_SHUTDOWN	1
1158 #define SEND_SHUTDOWN	2
1159 
1160 #define SOCK_SNDBUF_LOCK	1
1161 #define SOCK_RCVBUF_LOCK	2
1162 #define SOCK_BINDADDR_LOCK	4
1163 #define SOCK_BINDPORT_LOCK	8
1164 
1165 /* sock_iocb: used to kick off async processing of socket ios */
1166 struct sock_iocb {
1167 	struct list_head	list;
1168 
1169 	int			flags;
1170 	int			size;
1171 	struct socket		*sock;
1172 	struct sock		*sk;
1173 	struct scm_cookie	*scm;
1174 	struct msghdr		*msg, async_msg;
1175 	struct kiocb		*kiocb;
1176 };
1177 
kiocb_to_siocb(struct kiocb * iocb)1178 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1179 {
1180 	return (struct sock_iocb *)iocb->private;
1181 }
1182 
siocb_to_kiocb(struct sock_iocb * si)1183 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1184 {
1185 	return si->kiocb;
1186 }
1187 
1188 struct socket_alloc {
1189 	struct socket socket;
1190 	struct inode vfs_inode;
1191 };
1192 
SOCKET_I(struct inode * inode)1193 static inline struct socket *SOCKET_I(struct inode *inode)
1194 {
1195 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1196 }
1197 
SOCK_INODE(struct socket * socket)1198 static inline struct inode *SOCK_INODE(struct socket *socket)
1199 {
1200 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1201 }
1202 
1203 /*
1204  * Functions for memory accounting
1205  */
1206 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1207 extern void __sk_mem_reclaim(struct sock *sk);
1208 
1209 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1210 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1211 #define SK_MEM_SEND	0
1212 #define SK_MEM_RECV	1
1213 
sk_mem_pages(int amt)1214 static inline int sk_mem_pages(int amt)
1215 {
1216 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1217 }
1218 
sk_has_account(struct sock * sk)1219 static inline int sk_has_account(struct sock *sk)
1220 {
1221 	/* return true if protocol supports memory accounting */
1222 	return !!sk->sk_prot->memory_allocated;
1223 }
1224 
sk_wmem_schedule(struct sock * sk,int size)1225 static inline int sk_wmem_schedule(struct sock *sk, int size)
1226 {
1227 	if (!sk_has_account(sk))
1228 		return 1;
1229 	return size <= sk->sk_forward_alloc ||
1230 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1231 }
1232 
sk_rmem_schedule(struct sock * sk,int size)1233 static inline int sk_rmem_schedule(struct sock *sk, int size)
1234 {
1235 	if (!sk_has_account(sk))
1236 		return 1;
1237 	return size <= sk->sk_forward_alloc ||
1238 		__sk_mem_schedule(sk, size, SK_MEM_RECV);
1239 }
1240 
sk_mem_reclaim(struct sock * sk)1241 static inline void sk_mem_reclaim(struct sock *sk)
1242 {
1243 	if (!sk_has_account(sk))
1244 		return;
1245 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1246 		__sk_mem_reclaim(sk);
1247 }
1248 
sk_mem_reclaim_partial(struct sock * sk)1249 static inline void sk_mem_reclaim_partial(struct sock *sk)
1250 {
1251 	if (!sk_has_account(sk))
1252 		return;
1253 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1254 		__sk_mem_reclaim(sk);
1255 }
1256 
sk_mem_charge(struct sock * sk,int size)1257 static inline void sk_mem_charge(struct sock *sk, int size)
1258 {
1259 	if (!sk_has_account(sk))
1260 		return;
1261 	sk->sk_forward_alloc -= size;
1262 }
1263 
sk_mem_uncharge(struct sock * sk,int size)1264 static inline void sk_mem_uncharge(struct sock *sk, int size)
1265 {
1266 	if (!sk_has_account(sk))
1267 		return;
1268 	sk->sk_forward_alloc += size;
1269 }
1270 
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1271 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1272 {
1273 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1274 	sk->sk_wmem_queued -= skb->truesize;
1275 	sk_mem_uncharge(sk, skb->truesize);
1276 	__kfree_skb(skb);
1277 }
1278 
1279 /* Used by processes to "lock" a socket state, so that
1280  * interrupts and bottom half handlers won't change it
1281  * from under us. It essentially blocks any incoming
1282  * packets, so that we won't get any new data or any
1283  * packets that change the state of the socket.
1284  *
1285  * While locked, BH processing will add new packets to
1286  * the backlog queue.  This queue is processed by the
1287  * owner of the socket lock right before it is released.
1288  *
1289  * Since ~2.3.5 it is also exclusive sleep lock serializing
1290  * accesses from user process context.
1291  */
1292 #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1293 
1294 /*
1295  * Macro so as to not evaluate some arguments when
1296  * lockdep is not enabled.
1297  *
1298  * Mark both the sk_lock and the sk_lock.slock as a
1299  * per-address-family lock class.
1300  */
1301 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
1302 do {									\
1303 	sk->sk_lock.owned = 0;						\
1304 	init_waitqueue_head(&sk->sk_lock.wq);				\
1305 	spin_lock_init(&(sk)->sk_lock.slock);				\
1306 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1307 			sizeof((sk)->sk_lock));				\
1308 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1309 		       	(skey), (sname));				\
1310 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1311 } while (0)
1312 
1313 extern void lock_sock_nested(struct sock *sk, int subclass);
1314 
lock_sock(struct sock * sk)1315 static inline void lock_sock(struct sock *sk)
1316 {
1317 	lock_sock_nested(sk, 0);
1318 }
1319 
1320 extern void release_sock(struct sock *sk);
1321 
1322 /* BH context may only use the following locking interface. */
1323 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1324 #define bh_lock_sock_nested(__sk) \
1325 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1326 				SINGLE_DEPTH_NESTING)
1327 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1328 
1329 extern bool lock_sock_fast(struct sock *sk);
1330 /**
1331  * unlock_sock_fast - complement of lock_sock_fast
1332  * @sk: socket
1333  * @slow: slow mode
1334  *
1335  * fast unlock socket for user context.
1336  * If slow mode is on, we call regular release_sock()
1337  */
unlock_sock_fast(struct sock * sk,bool slow)1338 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1339 {
1340 	if (slow)
1341 		release_sock(sk);
1342 	else
1343 		spin_unlock_bh(&sk->sk_lock.slock);
1344 }
1345 
1346 
1347 extern struct sock		*sk_alloc(struct net *net, int family,
1348 					  gfp_t priority,
1349 					  struct proto *prot);
1350 extern void			sk_free(struct sock *sk);
1351 extern void			sk_release_kernel(struct sock *sk);
1352 extern struct sock		*sk_clone_lock(const struct sock *sk,
1353 					       const gfp_t priority);
1354 
1355 extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1356 					      unsigned long size, int force,
1357 					      gfp_t priority);
1358 extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1359 					      unsigned long size, int force,
1360 					      gfp_t priority);
1361 extern void			sock_wfree(struct sk_buff *skb);
1362 extern void			sock_rfree(struct sk_buff *skb);
1363 
1364 extern int			sock_setsockopt(struct socket *sock, int level,
1365 						int op, char __user *optval,
1366 						unsigned int optlen);
1367 
1368 extern int			sock_getsockopt(struct socket *sock, int level,
1369 						int op, char __user *optval,
1370 						int __user *optlen);
1371 extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
1372 						     unsigned long size,
1373 						     int noblock,
1374 						     int *errcode);
1375 extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
1376 						      unsigned long header_len,
1377 						      unsigned long data_len,
1378 						      int noblock,
1379 						      int *errcode);
1380 extern void *sock_kmalloc(struct sock *sk, int size,
1381 			  gfp_t priority);
1382 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1383 extern void sk_send_sigurg(struct sock *sk);
1384 
1385 #ifdef CONFIG_CGROUPS
1386 extern void sock_update_classid(struct sock *sk);
1387 #else
sock_update_classid(struct sock * sk)1388 static inline void sock_update_classid(struct sock *sk)
1389 {
1390 }
1391 #endif
1392 
1393 /*
1394  * Functions to fill in entries in struct proto_ops when a protocol
1395  * does not implement a particular function.
1396  */
1397 extern int                      sock_no_bind(struct socket *,
1398 					     struct sockaddr *, int);
1399 extern int                      sock_no_connect(struct socket *,
1400 						struct sockaddr *, int, int);
1401 extern int                      sock_no_socketpair(struct socket *,
1402 						   struct socket *);
1403 extern int                      sock_no_accept(struct socket *,
1404 					       struct socket *, int);
1405 extern int                      sock_no_getname(struct socket *,
1406 						struct sockaddr *, int *, int);
1407 extern unsigned int             sock_no_poll(struct file *, struct socket *,
1408 					     struct poll_table_struct *);
1409 extern int                      sock_no_ioctl(struct socket *, unsigned int,
1410 					      unsigned long);
1411 extern int			sock_no_listen(struct socket *, int);
1412 extern int                      sock_no_shutdown(struct socket *, int);
1413 extern int			sock_no_getsockopt(struct socket *, int , int,
1414 						   char __user *, int __user *);
1415 extern int			sock_no_setsockopt(struct socket *, int, int,
1416 						   char __user *, unsigned int);
1417 extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1418 						struct msghdr *, size_t);
1419 extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1420 						struct msghdr *, size_t, int);
1421 extern int			sock_no_mmap(struct file *file,
1422 					     struct socket *sock,
1423 					     struct vm_area_struct *vma);
1424 extern ssize_t			sock_no_sendpage(struct socket *sock,
1425 						struct page *page,
1426 						int offset, size_t size,
1427 						int flags);
1428 
1429 /*
1430  * Functions to fill in entries in struct proto_ops when a protocol
1431  * uses the inet style.
1432  */
1433 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1434 				  char __user *optval, int __user *optlen);
1435 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1436 			       struct msghdr *msg, size_t size, int flags);
1437 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1438 				  char __user *optval, unsigned int optlen);
1439 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1440 		int optname, char __user *optval, int __user *optlen);
1441 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1442 		int optname, char __user *optval, unsigned int optlen);
1443 
1444 extern void sk_common_release(struct sock *sk);
1445 
1446 /*
1447  *	Default socket callbacks and setup code
1448  */
1449 
1450 /* Initialise core socket variables */
1451 extern void sock_init_data(struct socket *sock, struct sock *sk);
1452 
1453 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1454 
1455 /**
1456  *	sk_filter_release - release a socket filter
1457  *	@fp: filter to remove
1458  *
1459  *	Remove a filter from a socket and release its resources.
1460  */
1461 
sk_filter_release(struct sk_filter * fp)1462 static inline void sk_filter_release(struct sk_filter *fp)
1463 {
1464 	if (atomic_dec_and_test(&fp->refcnt))
1465 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1466 }
1467 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1468 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1469 {
1470 	unsigned int size = sk_filter_len(fp);
1471 
1472 	atomic_sub(size, &sk->sk_omem_alloc);
1473 	sk_filter_release(fp);
1474 }
1475 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1476 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1477 {
1478 	atomic_inc(&fp->refcnt);
1479 	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1480 }
1481 
1482 /*
1483  * Socket reference counting postulates.
1484  *
1485  * * Each user of socket SHOULD hold a reference count.
1486  * * Each access point to socket (an hash table bucket, reference from a list,
1487  *   running timer, skb in flight MUST hold a reference count.
1488  * * When reference count hits 0, it means it will never increase back.
1489  * * When reference count hits 0, it means that no references from
1490  *   outside exist to this socket and current process on current CPU
1491  *   is last user and may/should destroy this socket.
1492  * * sk_free is called from any context: process, BH, IRQ. When
1493  *   it is called, socket has no references from outside -> sk_free
1494  *   may release descendant resources allocated by the socket, but
1495  *   to the time when it is called, socket is NOT referenced by any
1496  *   hash tables, lists etc.
1497  * * Packets, delivered from outside (from network or from another process)
1498  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1499  *   when they sit in queue. Otherwise, packets will leak to hole, when
1500  *   socket is looked up by one cpu and unhasing is made by another CPU.
1501  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1502  *   (leak to backlog). Packet socket does all the processing inside
1503  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1504  *   use separate SMP lock, so that they are prone too.
1505  */
1506 
1507 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1508 static inline void sock_put(struct sock *sk)
1509 {
1510 	if (atomic_dec_and_test(&sk->sk_refcnt))
1511 		sk_free(sk);
1512 }
1513 
1514 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1515 			  const int nested);
1516 
sk_tx_queue_set(struct sock * sk,int tx_queue)1517 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1518 {
1519 	sk->sk_tx_queue_mapping = tx_queue;
1520 }
1521 
sk_tx_queue_clear(struct sock * sk)1522 static inline void sk_tx_queue_clear(struct sock *sk)
1523 {
1524 	sk->sk_tx_queue_mapping = -1;
1525 }
1526 
sk_tx_queue_get(const struct sock * sk)1527 static inline int sk_tx_queue_get(const struct sock *sk)
1528 {
1529 	return sk ? sk->sk_tx_queue_mapping : -1;
1530 }
1531 
sk_set_socket(struct sock * sk,struct socket * sock)1532 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1533 {
1534 	sk_tx_queue_clear(sk);
1535 	sk->sk_socket = sock;
1536 }
1537 
sk_sleep(struct sock * sk)1538 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1539 {
1540 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1541 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1542 }
1543 /* Detach socket from process context.
1544  * Announce socket dead, detach it from wait queue and inode.
1545  * Note that parent inode held reference count on this struct sock,
1546  * we do not release it in this function, because protocol
1547  * probably wants some additional cleanups or even continuing
1548  * to work with this socket (TCP).
1549  */
sock_orphan(struct sock * sk)1550 static inline void sock_orphan(struct sock *sk)
1551 {
1552 	write_lock_bh(&sk->sk_callback_lock);
1553 	sock_set_flag(sk, SOCK_DEAD);
1554 	sk_set_socket(sk, NULL);
1555 	sk->sk_wq  = NULL;
1556 	write_unlock_bh(&sk->sk_callback_lock);
1557 }
1558 
sock_graft(struct sock * sk,struct socket * parent)1559 static inline void sock_graft(struct sock *sk, struct socket *parent)
1560 {
1561 	write_lock_bh(&sk->sk_callback_lock);
1562 	sk->sk_wq = parent->wq;
1563 	parent->sk = sk;
1564 	sk_set_socket(sk, parent);
1565 	security_sock_graft(sk, parent);
1566 	write_unlock_bh(&sk->sk_callback_lock);
1567 }
1568 
1569 extern int sock_i_uid(struct sock *sk);
1570 extern unsigned long sock_i_ino(struct sock *sk);
1571 
1572 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1573 __sk_dst_get(struct sock *sk)
1574 {
1575 	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1576 						       lockdep_is_held(&sk->sk_lock.slock));
1577 }
1578 
1579 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1580 sk_dst_get(struct sock *sk)
1581 {
1582 	struct dst_entry *dst;
1583 
1584 	rcu_read_lock();
1585 	dst = rcu_dereference(sk->sk_dst_cache);
1586 	if (dst)
1587 		dst_hold(dst);
1588 	rcu_read_unlock();
1589 	return dst;
1590 }
1591 
1592 extern void sk_reset_txq(struct sock *sk);
1593 
dst_negative_advice(struct sock * sk)1594 static inline void dst_negative_advice(struct sock *sk)
1595 {
1596 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1597 
1598 	if (dst && dst->ops->negative_advice) {
1599 		ndst = dst->ops->negative_advice(dst);
1600 
1601 		if (ndst != dst) {
1602 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1603 			sk_reset_txq(sk);
1604 		}
1605 	}
1606 }
1607 
1608 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1609 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1610 {
1611 	struct dst_entry *old_dst;
1612 
1613 	sk_tx_queue_clear(sk);
1614 	/*
1615 	 * This can be called while sk is owned by the caller only,
1616 	 * with no state that can be checked in a rcu_dereference_check() cond
1617 	 */
1618 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1619 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1620 	dst_release(old_dst);
1621 }
1622 
1623 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1624 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1625 {
1626 	spin_lock(&sk->sk_dst_lock);
1627 	__sk_dst_set(sk, dst);
1628 	spin_unlock(&sk->sk_dst_lock);
1629 }
1630 
1631 static inline void
__sk_dst_reset(struct sock * sk)1632 __sk_dst_reset(struct sock *sk)
1633 {
1634 	__sk_dst_set(sk, NULL);
1635 }
1636 
1637 static inline void
sk_dst_reset(struct sock * sk)1638 sk_dst_reset(struct sock *sk)
1639 {
1640 	spin_lock(&sk->sk_dst_lock);
1641 	__sk_dst_reset(sk);
1642 	spin_unlock(&sk->sk_dst_lock);
1643 }
1644 
1645 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1646 
1647 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1648 
sk_can_gso(const struct sock * sk)1649 static inline int sk_can_gso(const struct sock *sk)
1650 {
1651 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1652 }
1653 
1654 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1655 
sk_nocaps_add(struct sock * sk,netdev_features_t flags)1656 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1657 {
1658 	sk->sk_route_nocaps |= flags;
1659 	sk->sk_route_caps &= ~flags;
1660 }
1661 
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,char __user * from,char * to,int copy,int offset)1662 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1663 					   char __user *from, char *to,
1664 					   int copy, int offset)
1665 {
1666 	if (skb->ip_summed == CHECKSUM_NONE) {
1667 		int err = 0;
1668 		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1669 		if (err)
1670 			return err;
1671 		skb->csum = csum_block_add(skb->csum, csum, offset);
1672 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1673 		if (!access_ok(VERIFY_READ, from, copy) ||
1674 		    __copy_from_user_nocache(to, from, copy))
1675 			return -EFAULT;
1676 	} else if (copy_from_user(to, from, copy))
1677 		return -EFAULT;
1678 
1679 	return 0;
1680 }
1681 
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,char __user * from,int copy)1682 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1683 				       char __user *from, int copy)
1684 {
1685 	int err, offset = skb->len;
1686 
1687 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1688 				       copy, offset);
1689 	if (err)
1690 		__skb_trim(skb, offset);
1691 
1692 	return err;
1693 }
1694 
skb_copy_to_page_nocache(struct sock * sk,char __user * from,struct sk_buff * skb,struct page * page,int off,int copy)1695 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1696 					   struct sk_buff *skb,
1697 					   struct page *page,
1698 					   int off, int copy)
1699 {
1700 	int err;
1701 
1702 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1703 				       copy, skb->len);
1704 	if (err)
1705 		return err;
1706 
1707 	skb->len	     += copy;
1708 	skb->data_len	     += copy;
1709 	skb->truesize	     += copy;
1710 	sk->sk_wmem_queued   += copy;
1711 	sk_mem_charge(sk, copy);
1712 	return 0;
1713 }
1714 
skb_copy_to_page(struct sock * sk,char __user * from,struct sk_buff * skb,struct page * page,int off,int copy)1715 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1716 				   struct sk_buff *skb, struct page *page,
1717 				   int off, int copy)
1718 {
1719 	if (skb->ip_summed == CHECKSUM_NONE) {
1720 		int err = 0;
1721 		__wsum csum = csum_and_copy_from_user(from,
1722 						     page_address(page) + off,
1723 							    copy, 0, &err);
1724 		if (err)
1725 			return err;
1726 		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1727 	} else if (copy_from_user(page_address(page) + off, from, copy))
1728 		return -EFAULT;
1729 
1730 	skb->len	     += copy;
1731 	skb->data_len	     += copy;
1732 	skb->truesize	     += copy;
1733 	sk->sk_wmem_queued   += copy;
1734 	sk_mem_charge(sk, copy);
1735 	return 0;
1736 }
1737 
1738 /**
1739  * sk_wmem_alloc_get - returns write allocations
1740  * @sk: socket
1741  *
1742  * Returns sk_wmem_alloc minus initial offset of one
1743  */
sk_wmem_alloc_get(const struct sock * sk)1744 static inline int sk_wmem_alloc_get(const struct sock *sk)
1745 {
1746 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1747 }
1748 
1749 /**
1750  * sk_rmem_alloc_get - returns read allocations
1751  * @sk: socket
1752  *
1753  * Returns sk_rmem_alloc
1754  */
sk_rmem_alloc_get(const struct sock * sk)1755 static inline int sk_rmem_alloc_get(const struct sock *sk)
1756 {
1757 	return atomic_read(&sk->sk_rmem_alloc);
1758 }
1759 
1760 /**
1761  * sk_has_allocations - check if allocations are outstanding
1762  * @sk: socket
1763  *
1764  * Returns true if socket has write or read allocations
1765  */
sk_has_allocations(const struct sock * sk)1766 static inline int sk_has_allocations(const struct sock *sk)
1767 {
1768 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1769 }
1770 
1771 /**
1772  * wq_has_sleeper - check if there are any waiting processes
1773  * @wq: struct socket_wq
1774  *
1775  * Returns true if socket_wq has waiting processes
1776  *
1777  * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1778  * barrier call. They were added due to the race found within the tcp code.
1779  *
1780  * Consider following tcp code paths:
1781  *
1782  * CPU1                  CPU2
1783  *
1784  * sys_select            receive packet
1785  *   ...                 ...
1786  *   __add_wait_queue    update tp->rcv_nxt
1787  *   ...                 ...
1788  *   tp->rcv_nxt check   sock_def_readable
1789  *   ...                 {
1790  *   schedule               rcu_read_lock();
1791  *                          wq = rcu_dereference(sk->sk_wq);
1792  *                          if (wq && waitqueue_active(&wq->wait))
1793  *                              wake_up_interruptible(&wq->wait)
1794  *                          ...
1795  *                       }
1796  *
1797  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1798  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1799  * could then endup calling schedule and sleep forever if there are no more
1800  * data on the socket.
1801  *
1802  */
wq_has_sleeper(struct socket_wq * wq)1803 static inline bool wq_has_sleeper(struct socket_wq *wq)
1804 {
1805 
1806 	/*
1807 	 * We need to be sure we are in sync with the
1808 	 * add_wait_queue modifications to the wait queue.
1809 	 *
1810 	 * This memory barrier is paired in the sock_poll_wait.
1811 	 */
1812 	smp_mb();
1813 	return wq && waitqueue_active(&wq->wait);
1814 }
1815 
1816 /**
1817  * sock_poll_wait - place memory barrier behind the poll_wait call.
1818  * @filp:           file
1819  * @wait_address:   socket wait queue
1820  * @p:              poll_table
1821  *
1822  * See the comments in the wq_has_sleeper function.
1823  */
sock_poll_wait(struct file * filp,wait_queue_head_t * wait_address,poll_table * p)1824 static inline void sock_poll_wait(struct file *filp,
1825 		wait_queue_head_t *wait_address, poll_table *p)
1826 {
1827 	if (p && wait_address) {
1828 		poll_wait(filp, wait_address, p);
1829 		/*
1830 		 * We need to be sure we are in sync with the
1831 		 * socket flags modification.
1832 		 *
1833 		 * This memory barrier is paired in the wq_has_sleeper.
1834 		*/
1835 		smp_mb();
1836 	}
1837 }
1838 
1839 /*
1840  * 	Queue a received datagram if it will fit. Stream and sequenced
1841  *	protocols can't normally use this as they need to fit buffers in
1842  *	and play with them.
1843  *
1844  * 	Inlined as it's very short and called for pretty much every
1845  *	packet ever received.
1846  */
1847 
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)1848 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1849 {
1850 	skb_orphan(skb);
1851 	skb->sk = sk;
1852 	skb->destructor = sock_wfree;
1853 	/*
1854 	 * We used to take a refcount on sk, but following operation
1855 	 * is enough to guarantee sk_free() wont free this sock until
1856 	 * all in-flight packets are completed
1857 	 */
1858 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1859 }
1860 
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)1861 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1862 {
1863 	skb_orphan(skb);
1864 	skb->sk = sk;
1865 	skb->destructor = sock_rfree;
1866 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1867 	sk_mem_charge(sk, skb->truesize);
1868 }
1869 
1870 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1871 			   unsigned long expires);
1872 
1873 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1874 
1875 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1876 
1877 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1878 
1879 /*
1880  *	Recover an error report and clear atomically
1881  */
1882 
sock_error(struct sock * sk)1883 static inline int sock_error(struct sock *sk)
1884 {
1885 	int err;
1886 	if (likely(!sk->sk_err))
1887 		return 0;
1888 	err = xchg(&sk->sk_err, 0);
1889 	return -err;
1890 }
1891 
sock_wspace(struct sock * sk)1892 static inline unsigned long sock_wspace(struct sock *sk)
1893 {
1894 	int amt = 0;
1895 
1896 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1897 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1898 		if (amt < 0)
1899 			amt = 0;
1900 	}
1901 	return amt;
1902 }
1903 
sk_wake_async(struct sock * sk,int how,int band)1904 static inline void sk_wake_async(struct sock *sk, int how, int band)
1905 {
1906 	if (sock_flag(sk, SOCK_FASYNC))
1907 		sock_wake_async(sk->sk_socket, how, band);
1908 }
1909 
1910 #define SOCK_MIN_SNDBUF 2048
1911 /*
1912  * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1913  * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1914  */
1915 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1916 
sk_stream_moderate_sndbuf(struct sock * sk)1917 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1918 {
1919 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1920 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1921 		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1922 	}
1923 }
1924 
1925 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1926 
sk_stream_alloc_page(struct sock * sk)1927 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1928 {
1929 	struct page *page = NULL;
1930 
1931 	page = alloc_pages(sk->sk_allocation, 0);
1932 	if (!page) {
1933 		sk_enter_memory_pressure(sk);
1934 		sk_stream_moderate_sndbuf(sk);
1935 	}
1936 	return page;
1937 }
1938 
1939 /*
1940  *	Default write policy as shown to user space via poll/select/SIGIO
1941  */
sock_writeable(const struct sock * sk)1942 static inline int sock_writeable(const struct sock *sk)
1943 {
1944 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1945 }
1946 
gfp_any(void)1947 static inline gfp_t gfp_any(void)
1948 {
1949 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1950 }
1951 
sock_rcvtimeo(const struct sock * sk,int noblock)1952 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1953 {
1954 	return noblock ? 0 : sk->sk_rcvtimeo;
1955 }
1956 
sock_sndtimeo(const struct sock * sk,int noblock)1957 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1958 {
1959 	return noblock ? 0 : sk->sk_sndtimeo;
1960 }
1961 
sock_rcvlowat(const struct sock * sk,int waitall,int len)1962 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1963 {
1964 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1965 }
1966 
1967 /* Alas, with timeout socket operations are not restartable.
1968  * Compare this to poll().
1969  */
sock_intr_errno(long timeo)1970 static inline int sock_intr_errno(long timeo)
1971 {
1972 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1973 }
1974 
1975 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1976 	struct sk_buff *skb);
1977 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
1978 	struct sk_buff *skb);
1979 
1980 static __inline__ void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1981 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1982 {
1983 	ktime_t kt = skb->tstamp;
1984 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1985 
1986 	/*
1987 	 * generate control messages if
1988 	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1989 	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1990 	 * - software time stamp available and wanted
1991 	 *   (SOCK_TIMESTAMPING_SOFTWARE)
1992 	 * - hardware time stamps available and wanted
1993 	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1994 	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1995 	 */
1996 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1997 	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1998 	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1999 	    (hwtstamps->hwtstamp.tv64 &&
2000 	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2001 	    (hwtstamps->syststamp.tv64 &&
2002 	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2003 		__sock_recv_timestamp(msg, sk, skb);
2004 	else
2005 		sk->sk_stamp = kt;
2006 
2007 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2008 		__sock_recv_wifi_status(msg, sk, skb);
2009 }
2010 
2011 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2012 				     struct sk_buff *skb);
2013 
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2014 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2015 					  struct sk_buff *skb)
2016 {
2017 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2018 			   (1UL << SOCK_RCVTSTAMP)			| \
2019 			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
2020 			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
2021 			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) 	| \
2022 			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2023 
2024 	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2025 		__sock_recv_ts_and_drops(msg, sk, skb);
2026 	else
2027 		sk->sk_stamp = skb->tstamp;
2028 }
2029 
2030 /**
2031  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2032  * @sk:		socket sending this packet
2033  * @tx_flags:	filled with instructions for time stamping
2034  *
2035  * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2036  * parameters are invalid.
2037  */
2038 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2039 
2040 /**
2041  * sk_eat_skb - Release a skb if it is no longer needed
2042  * @sk: socket to eat this skb from
2043  * @skb: socket buffer to eat
2044  * @copied_early: flag indicating whether DMA operations copied this data early
2045  *
2046  * This routine must be called with interrupts disabled or with the socket
2047  * locked so that the sk_buff queue operation is ok.
2048 */
2049 #ifdef CONFIG_NET_DMA
sk_eat_skb(struct sock * sk,struct sk_buff * skb,int copied_early)2050 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
2051 {
2052 	__skb_unlink(skb, &sk->sk_receive_queue);
2053 	if (!copied_early)
2054 		__kfree_skb(skb);
2055 	else
2056 		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
2057 }
2058 #else
sk_eat_skb(struct sock * sk,struct sk_buff * skb,int copied_early)2059 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
2060 {
2061 	__skb_unlink(skb, &sk->sk_receive_queue);
2062 	__kfree_skb(skb);
2063 }
2064 #endif
2065 
2066 static inline
sock_net(const struct sock * sk)2067 struct net *sock_net(const struct sock *sk)
2068 {
2069 	return read_pnet(&sk->sk_net);
2070 }
2071 
2072 static inline
sock_net_set(struct sock * sk,struct net * net)2073 void sock_net_set(struct sock *sk, struct net *net)
2074 {
2075 	write_pnet(&sk->sk_net, net);
2076 }
2077 
2078 /*
2079  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2080  * They should not hold a reference to a namespace in order to allow
2081  * to stop it.
2082  * Sockets after sk_change_net should be released using sk_release_kernel
2083  */
sk_change_net(struct sock * sk,struct net * net)2084 static inline void sk_change_net(struct sock *sk, struct net *net)
2085 {
2086 	put_net(sock_net(sk));
2087 	sock_net_set(sk, hold_net(net));
2088 }
2089 
skb_steal_sock(struct sk_buff * skb)2090 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2091 {
2092 	if (unlikely(skb->sk)) {
2093 		struct sock *sk = skb->sk;
2094 
2095 		skb->destructor = NULL;
2096 		skb->sk = NULL;
2097 		return sk;
2098 	}
2099 	return NULL;
2100 }
2101 
2102 extern void sock_enable_timestamp(struct sock *sk, int flag);
2103 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2104 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2105 
2106 /*
2107  *	Enable debug/info messages
2108  */
2109 extern int net_msg_warn;
2110 #define NETDEBUG(fmt, args...) \
2111 	do { if (net_msg_warn) printk(fmt,##args); } while (0)
2112 
2113 #define LIMIT_NETDEBUG(fmt, args...) \
2114 	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2115 
2116 extern __u32 sysctl_wmem_max;
2117 extern __u32 sysctl_rmem_max;
2118 
2119 extern void sk_init(void);
2120 
2121 extern int sysctl_optmem_max;
2122 
2123 extern __u32 sysctl_wmem_default;
2124 extern __u32 sysctl_rmem_default;
2125 
2126 #endif	/* _SOCK_H */
2127