1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 #include <linux/pm_runtime.h>	/* for runtime PM */
24 
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28 
29 /*-------------------------------------------------------------------------*/
30 
31 /*
32  * Host-side wrappers for standard USB descriptors ... these are parsed
33  * from the data provided by devices.  Parsing turns them from a flat
34  * sequence of descriptors into a hierarchy:
35  *
36  *  - devices have one (usually) or more configs;
37  *  - configs have one (often) or more interfaces;
38  *  - interfaces have one (usually) or more settings;
39  *  - each interface setting has zero or (usually) more endpoints.
40  *  - a SuperSpeed endpoint has a companion descriptor
41  *
42  * And there might be other descriptors mixed in with those.
43  *
44  * Devices may also have class-specific or vendor-specific descriptors.
45  */
46 
47 struct ep_device;
48 
49 /**
50  * struct usb_host_endpoint - host-side endpoint descriptor and queue
51  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53  * @urb_list: urbs queued to this endpoint; maintained by usbcore
54  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55  *	with one or more transfer descriptors (TDs) per urb
56  * @ep_dev: ep_device for sysfs info
57  * @extra: descriptors following this endpoint in the configuration
58  * @extralen: how many bytes of "extra" are valid
59  * @enabled: URBs may be submitted to this endpoint
60  *
61  * USB requests are always queued to a given endpoint, identified by a
62  * descriptor within an active interface in a given USB configuration.
63  */
64 struct usb_host_endpoint {
65 	struct usb_endpoint_descriptor		desc;
66 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
67 	struct list_head		urb_list;
68 	void				*hcpriv;
69 	struct ep_device		*ep_dev;	/* For sysfs info */
70 
71 	unsigned char *extra;   /* Extra descriptors */
72 	int extralen;
73 	int enabled;
74 };
75 
76 /* host-side wrapper for one interface setting's parsed descriptors */
77 struct usb_host_interface {
78 	struct usb_interface_descriptor	desc;
79 
80 	/* array of desc.bNumEndpoint endpoints associated with this
81 	 * interface setting.  these will be in no particular order.
82 	 */
83 	struct usb_host_endpoint *endpoint;
84 
85 	char *string;		/* iInterface string, if present */
86 	unsigned char *extra;   /* Extra descriptors */
87 	int extralen;
88 };
89 
90 enum usb_interface_condition {
91 	USB_INTERFACE_UNBOUND = 0,
92 	USB_INTERFACE_BINDING,
93 	USB_INTERFACE_BOUND,
94 	USB_INTERFACE_UNBINDING,
95 };
96 
97 /**
98  * struct usb_interface - what usb device drivers talk to
99  * @altsetting: array of interface structures, one for each alternate
100  *	setting that may be selected.  Each one includes a set of
101  *	endpoint configurations.  They will be in no particular order.
102  * @cur_altsetting: the current altsetting.
103  * @num_altsetting: number of altsettings defined.
104  * @intf_assoc: interface association descriptor
105  * @minor: the minor number assigned to this interface, if this
106  *	interface is bound to a driver that uses the USB major number.
107  *	If this interface does not use the USB major, this field should
108  *	be unused.  The driver should set this value in the probe()
109  *	function of the driver, after it has been assigned a minor
110  *	number from the USB core by calling usb_register_dev().
111  * @condition: binding state of the interface: not bound, binding
112  *	(in probe()), bound to a driver, or unbinding (in disconnect())
113  * @sysfs_files_created: sysfs attributes exist
114  * @ep_devs_created: endpoint child pseudo-devices exist
115  * @unregistering: flag set when the interface is being unregistered
116  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
117  *	capability during autosuspend.
118  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
119  *	has been deferred.
120  * @needs_binding: flag set when the driver should be re-probed or unbound
121  *	following a reset or suspend operation it doesn't support.
122  * @dev: driver model's view of this device
123  * @usb_dev: if an interface is bound to the USB major, this will point
124  *	to the sysfs representation for that device.
125  * @pm_usage_cnt: PM usage counter for this interface
126  * @reset_ws: Used for scheduling resets from atomic context.
127  * @reset_running: set to 1 if the interface is currently running a
128  *      queued reset so that usb_cancel_queued_reset() doesn't try to
129  *      remove from the workqueue when running inside the worker
130  *      thread. See __usb_queue_reset_device().
131  * @resetting_device: USB core reset the device, so use alt setting 0 as
132  *	current; needs bandwidth alloc after reset.
133  *
134  * USB device drivers attach to interfaces on a physical device.  Each
135  * interface encapsulates a single high level function, such as feeding
136  * an audio stream to a speaker or reporting a change in a volume control.
137  * Many USB devices only have one interface.  The protocol used to talk to
138  * an interface's endpoints can be defined in a usb "class" specification,
139  * or by a product's vendor.  The (default) control endpoint is part of
140  * every interface, but is never listed among the interface's descriptors.
141  *
142  * The driver that is bound to the interface can use standard driver model
143  * calls such as dev_get_drvdata() on the dev member of this structure.
144  *
145  * Each interface may have alternate settings.  The initial configuration
146  * of a device sets altsetting 0, but the device driver can change
147  * that setting using usb_set_interface().  Alternate settings are often
148  * used to control the use of periodic endpoints, such as by having
149  * different endpoints use different amounts of reserved USB bandwidth.
150  * All standards-conformant USB devices that use isochronous endpoints
151  * will use them in non-default settings.
152  *
153  * The USB specification says that alternate setting numbers must run from
154  * 0 to one less than the total number of alternate settings.  But some
155  * devices manage to mess this up, and the structures aren't necessarily
156  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
157  * look up an alternate setting in the altsetting array based on its number.
158  */
159 struct usb_interface {
160 	/* array of alternate settings for this interface,
161 	 * stored in no particular order */
162 	struct usb_host_interface *altsetting;
163 
164 	struct usb_host_interface *cur_altsetting;	/* the currently
165 					 * active alternate setting */
166 	unsigned num_altsetting;	/* number of alternate settings */
167 
168 	/* If there is an interface association descriptor then it will list
169 	 * the associated interfaces */
170 	struct usb_interface_assoc_descriptor *intf_assoc;
171 
172 	int minor;			/* minor number this interface is
173 					 * bound to */
174 	enum usb_interface_condition condition;		/* state of binding */
175 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
176 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
177 	unsigned unregistering:1;	/* unregistration is in progress */
178 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
179 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
180 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
181 	unsigned reset_running:1;
182 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
183 
184 	struct device dev;		/* interface specific device info */
185 	struct device *usb_dev;
186 	atomic_t pm_usage_cnt;		/* usage counter for autosuspend */
187 	struct work_struct reset_ws;	/* for resets in atomic context */
188 };
189 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
190 
usb_get_intfdata(struct usb_interface * intf)191 static inline void *usb_get_intfdata(struct usb_interface *intf)
192 {
193 	return dev_get_drvdata(&intf->dev);
194 }
195 
usb_set_intfdata(struct usb_interface * intf,void * data)196 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
197 {
198 	dev_set_drvdata(&intf->dev, data);
199 }
200 
201 struct usb_interface *usb_get_intf(struct usb_interface *intf);
202 void usb_put_intf(struct usb_interface *intf);
203 
204 /* this maximum is arbitrary */
205 #define USB_MAXINTERFACES	32
206 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
207 
208 /**
209  * struct usb_interface_cache - long-term representation of a device interface
210  * @num_altsetting: number of altsettings defined.
211  * @ref: reference counter.
212  * @altsetting: variable-length array of interface structures, one for
213  *	each alternate setting that may be selected.  Each one includes a
214  *	set of endpoint configurations.  They will be in no particular order.
215  *
216  * These structures persist for the lifetime of a usb_device, unlike
217  * struct usb_interface (which persists only as long as its configuration
218  * is installed).  The altsetting arrays can be accessed through these
219  * structures at any time, permitting comparison of configurations and
220  * providing support for the /proc/bus/usb/devices pseudo-file.
221  */
222 struct usb_interface_cache {
223 	unsigned num_altsetting;	/* number of alternate settings */
224 	struct kref ref;		/* reference counter */
225 
226 	/* variable-length array of alternate settings for this interface,
227 	 * stored in no particular order */
228 	struct usb_host_interface altsetting[0];
229 };
230 #define	ref_to_usb_interface_cache(r) \
231 		container_of(r, struct usb_interface_cache, ref)
232 #define	altsetting_to_usb_interface_cache(a) \
233 		container_of(a, struct usb_interface_cache, altsetting[0])
234 
235 /**
236  * struct usb_host_config - representation of a device's configuration
237  * @desc: the device's configuration descriptor.
238  * @string: pointer to the cached version of the iConfiguration string, if
239  *	present for this configuration.
240  * @intf_assoc: list of any interface association descriptors in this config
241  * @interface: array of pointers to usb_interface structures, one for each
242  *	interface in the configuration.  The number of interfaces is stored
243  *	in desc.bNumInterfaces.  These pointers are valid only while the
244  *	the configuration is active.
245  * @intf_cache: array of pointers to usb_interface_cache structures, one
246  *	for each interface in the configuration.  These structures exist
247  *	for the entire life of the device.
248  * @extra: pointer to buffer containing all extra descriptors associated
249  *	with this configuration (those preceding the first interface
250  *	descriptor).
251  * @extralen: length of the extra descriptors buffer.
252  *
253  * USB devices may have multiple configurations, but only one can be active
254  * at any time.  Each encapsulates a different operational environment;
255  * for example, a dual-speed device would have separate configurations for
256  * full-speed and high-speed operation.  The number of configurations
257  * available is stored in the device descriptor as bNumConfigurations.
258  *
259  * A configuration can contain multiple interfaces.  Each corresponds to
260  * a different function of the USB device, and all are available whenever
261  * the configuration is active.  The USB standard says that interfaces
262  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
263  * of devices get this wrong.  In addition, the interface array is not
264  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
265  * look up an interface entry based on its number.
266  *
267  * Device drivers should not attempt to activate configurations.  The choice
268  * of which configuration to install is a policy decision based on such
269  * considerations as available power, functionality provided, and the user's
270  * desires (expressed through userspace tools).  However, drivers can call
271  * usb_reset_configuration() to reinitialize the current configuration and
272  * all its interfaces.
273  */
274 struct usb_host_config {
275 	struct usb_config_descriptor	desc;
276 
277 	char *string;		/* iConfiguration string, if present */
278 
279 	/* List of any Interface Association Descriptors in this
280 	 * configuration. */
281 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
282 
283 	/* the interfaces associated with this configuration,
284 	 * stored in no particular order */
285 	struct usb_interface *interface[USB_MAXINTERFACES];
286 
287 	/* Interface information available even when this is not the
288 	 * active configuration */
289 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
290 
291 	unsigned char *extra;   /* Extra descriptors */
292 	int extralen;
293 };
294 
295 /* USB2.0 and USB3.0 device BOS descriptor set */
296 struct usb_host_bos {
297 	struct usb_bos_descriptor	*desc;
298 
299 	/* wireless cap descriptor is handled by wusb */
300 	struct usb_ext_cap_descriptor	*ext_cap;
301 	struct usb_ss_cap_descriptor	*ss_cap;
302 	struct usb_ss_container_id_descriptor	*ss_id;
303 };
304 
305 int __usb_get_extra_descriptor(char *buffer, unsigned size,
306 	unsigned char type, void **ptr);
307 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
308 				__usb_get_extra_descriptor((ifpoint)->extra, \
309 				(ifpoint)->extralen, \
310 				type, (void **)ptr)
311 
312 /* ----------------------------------------------------------------------- */
313 
314 /* USB device number allocation bitmap */
315 struct usb_devmap {
316 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
317 };
318 
319 /*
320  * Allocated per bus (tree of devices) we have:
321  */
322 struct usb_bus {
323 	struct device *controller;	/* host/master side hardware */
324 	int busnum;			/* Bus number (in order of reg) */
325 	const char *bus_name;		/* stable id (PCI slot_name etc) */
326 	u8 uses_dma;			/* Does the host controller use DMA? */
327 	u8 uses_pio_for_control;	/*
328 					 * Does the host controller use PIO
329 					 * for control transfers?
330 					 */
331 	u8 otg_port;			/* 0, or number of OTG/HNP port */
332 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
333 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
334 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
335 
336 	int devnum_next;		/* Next open device number in
337 					 * round-robin allocation */
338 
339 	struct usb_devmap devmap;	/* device address allocation map */
340 	struct usb_device *root_hub;	/* Root hub */
341 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
342 	struct list_head bus_list;	/* list of busses */
343 
344 	int bandwidth_allocated;	/* on this bus: how much of the time
345 					 * reserved for periodic (intr/iso)
346 					 * requests is used, on average?
347 					 * Units: microseconds/frame.
348 					 * Limits: Full/low speed reserve 90%,
349 					 * while high speed reserves 80%.
350 					 */
351 	int bandwidth_int_reqs;		/* number of Interrupt requests */
352 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
353 
354 #ifdef CONFIG_USB_DEVICEFS
355 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
356 #endif
357 
358 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
359 	struct mon_bus *mon_bus;	/* non-null when associated */
360 	int monitored;			/* non-zero when monitored */
361 #endif
362 };
363 
364 /* ----------------------------------------------------------------------- */
365 
366 /* This is arbitrary.
367  * From USB 2.0 spec Table 11-13, offset 7, a hub can
368  * have up to 255 ports. The most yet reported is 10.
369  *
370  * Current Wireless USB host hardware (Intel i1480 for example) allows
371  * up to 22 devices to connect. Upcoming hardware might raise that
372  * limit. Because the arrays need to add a bit for hub status data, we
373  * do 31, so plus one evens out to four bytes.
374  */
375 #define USB_MAXCHILDREN		(31)
376 
377 struct usb_tt;
378 
379 /**
380  * struct usb_device - kernel's representation of a USB device
381  * @devnum: device number; address on a USB bus
382  * @devpath: device ID string for use in messages (e.g., /port/...)
383  * @route: tree topology hex string for use with xHCI
384  * @state: device state: configured, not attached, etc.
385  * @speed: device speed: high/full/low (or error)
386  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
387  * @ttport: device port on that tt hub
388  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
389  * @parent: our hub, unless we're the root
390  * @bus: bus we're part of
391  * @ep0: endpoint 0 data (default control pipe)
392  * @dev: generic device interface
393  * @descriptor: USB device descriptor
394  * @bos: USB device BOS descriptor set
395  * @config: all of the device's configs
396  * @actconfig: the active configuration
397  * @ep_in: array of IN endpoints
398  * @ep_out: array of OUT endpoints
399  * @rawdescriptors: raw descriptors for each config
400  * @bus_mA: Current available from the bus
401  * @portnum: parent port number (origin 1)
402  * @level: number of USB hub ancestors
403  * @can_submit: URBs may be submitted
404  * @persist_enabled:  USB_PERSIST enabled for this device
405  * @have_langid: whether string_langid is valid
406  * @authorized: policy has said we can use it;
407  *	(user space) policy determines if we authorize this device to be
408  *	used or not. By default, wired USB devices are authorized.
409  *	WUSB devices are not, until we authorize them from user space.
410  *	FIXME -- complete doc
411  * @authenticated: Crypto authentication passed
412  * @wusb: device is Wireless USB
413  * @lpm_capable: device supports LPM
414  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
415  * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
416  * @string_langid: language ID for strings
417  * @product: iProduct string, if present (static)
418  * @manufacturer: iManufacturer string, if present (static)
419  * @serial: iSerialNumber string, if present (static)
420  * @filelist: usbfs files that are open to this device
421  * @usb_classdev: USB class device that was created for usbfs device
422  *	access from userspace
423  * @usbfs_dentry: usbfs dentry entry for the device
424  * @maxchild: number of ports if hub
425  * @children: child devices - USB devices that are attached to this hub
426  * @quirks: quirks of the whole device
427  * @urbnum: number of URBs submitted for the whole device
428  * @active_duration: total time device is not suspended
429  * @connect_time: time device was first connected
430  * @do_remote_wakeup:  remote wakeup should be enabled
431  * @reset_resume: needs reset instead of resume
432  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
433  *	specific data for the device.
434  * @slot_id: Slot ID assigned by xHCI
435  *
436  * Notes:
437  * Usbcore drivers should not set usbdev->state directly.  Instead use
438  * usb_set_device_state().
439  */
440 struct usb_device {
441 	int		devnum;
442 	char		devpath[16];
443 	u32		route;
444 	enum usb_device_state	state;
445 	enum usb_device_speed	speed;
446 
447 	struct usb_tt	*tt;
448 	int		ttport;
449 
450 	unsigned int toggle[2];
451 
452 	struct usb_device *parent;
453 	struct usb_bus *bus;
454 	struct usb_host_endpoint ep0;
455 
456 	struct device dev;
457 
458 	struct usb_device_descriptor descriptor;
459 	struct usb_host_bos *bos;
460 	struct usb_host_config *config;
461 
462 	struct usb_host_config *actconfig;
463 	struct usb_host_endpoint *ep_in[16];
464 	struct usb_host_endpoint *ep_out[16];
465 
466 	char **rawdescriptors;
467 
468 	unsigned short bus_mA;
469 	u8 portnum;
470 	u8 level;
471 
472 	unsigned can_submit:1;
473 	unsigned persist_enabled:1;
474 	unsigned have_langid:1;
475 	unsigned authorized:1;
476 	unsigned authenticated:1;
477 	unsigned wusb:1;
478 	unsigned lpm_capable:1;
479 	unsigned usb2_hw_lpm_capable:1;
480 	unsigned usb2_hw_lpm_enabled:1;
481 	int string_langid;
482 
483 	/* static strings from the device */
484 	char *product;
485 	char *manufacturer;
486 	char *serial;
487 
488 	struct list_head filelist;
489 #ifdef CONFIG_USB_DEVICE_CLASS
490 	struct device *usb_classdev;
491 #endif
492 #ifdef CONFIG_USB_DEVICEFS
493 	struct dentry *usbfs_dentry;
494 #endif
495 
496 	int maxchild;
497 	struct usb_device *children[USB_MAXCHILDREN];
498 
499 	u32 quirks;
500 	atomic_t urbnum;
501 
502 	unsigned long active_duration;
503 
504 #ifdef CONFIG_PM
505 	unsigned long connect_time;
506 
507 	unsigned do_remote_wakeup:1;
508 	unsigned reset_resume:1;
509 #endif
510 	struct wusb_dev *wusb_dev;
511 	int slot_id;
512 };
513 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
514 
interface_to_usbdev(struct usb_interface * intf)515 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
516 {
517 	return to_usb_device(intf->dev.parent);
518 }
519 
520 extern struct usb_device *usb_get_dev(struct usb_device *dev);
521 extern void usb_put_dev(struct usb_device *dev);
522 
523 /* USB device locking */
524 #define usb_lock_device(udev)		device_lock(&(udev)->dev)
525 #define usb_unlock_device(udev)		device_unlock(&(udev)->dev)
526 #define usb_trylock_device(udev)	device_trylock(&(udev)->dev)
527 extern int usb_lock_device_for_reset(struct usb_device *udev,
528 				     const struct usb_interface *iface);
529 
530 /* USB port reset for device reinitialization */
531 extern int usb_reset_device(struct usb_device *dev);
532 extern void usb_queue_reset_device(struct usb_interface *dev);
533 
534 
535 /* USB autosuspend and autoresume */
536 #ifdef CONFIG_USB_SUSPEND
537 extern void usb_enable_autosuspend(struct usb_device *udev);
538 extern void usb_disable_autosuspend(struct usb_device *udev);
539 
540 extern int usb_autopm_get_interface(struct usb_interface *intf);
541 extern void usb_autopm_put_interface(struct usb_interface *intf);
542 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
543 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
544 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
545 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
546 
usb_mark_last_busy(struct usb_device * udev)547 static inline void usb_mark_last_busy(struct usb_device *udev)
548 {
549 	pm_runtime_mark_last_busy(&udev->dev);
550 }
551 
552 #else
553 
usb_enable_autosuspend(struct usb_device * udev)554 static inline int usb_enable_autosuspend(struct usb_device *udev)
555 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)556 static inline int usb_disable_autosuspend(struct usb_device *udev)
557 { return 0; }
558 
usb_autopm_get_interface(struct usb_interface * intf)559 static inline int usb_autopm_get_interface(struct usb_interface *intf)
560 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)561 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
562 { return 0; }
563 
usb_autopm_put_interface(struct usb_interface * intf)564 static inline void usb_autopm_put_interface(struct usb_interface *intf)
565 { }
usb_autopm_put_interface_async(struct usb_interface * intf)566 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
567 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)568 static inline void usb_autopm_get_interface_no_resume(
569 		struct usb_interface *intf)
570 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)571 static inline void usb_autopm_put_interface_no_suspend(
572 		struct usb_interface *intf)
573 { }
usb_mark_last_busy(struct usb_device * udev)574 static inline void usb_mark_last_busy(struct usb_device *udev)
575 { }
576 #endif
577 
578 /*-------------------------------------------------------------------------*/
579 
580 /* for drivers using iso endpoints */
581 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
582 
583 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
584 extern int usb_alloc_streams(struct usb_interface *interface,
585 		struct usb_host_endpoint **eps, unsigned int num_eps,
586 		unsigned int num_streams, gfp_t mem_flags);
587 
588 /* Reverts a group of bulk endpoints back to not using stream IDs. */
589 extern void usb_free_streams(struct usb_interface *interface,
590 		struct usb_host_endpoint **eps, unsigned int num_eps,
591 		gfp_t mem_flags);
592 
593 /* used these for multi-interface device registration */
594 extern int usb_driver_claim_interface(struct usb_driver *driver,
595 			struct usb_interface *iface, void *priv);
596 
597 /**
598  * usb_interface_claimed - returns true iff an interface is claimed
599  * @iface: the interface being checked
600  *
601  * Returns true (nonzero) iff the interface is claimed, else false (zero).
602  * Callers must own the driver model's usb bus readlock.  So driver
603  * probe() entries don't need extra locking, but other call contexts
604  * may need to explicitly claim that lock.
605  *
606  */
usb_interface_claimed(struct usb_interface * iface)607 static inline int usb_interface_claimed(struct usb_interface *iface)
608 {
609 	return (iface->dev.driver != NULL);
610 }
611 
612 extern void usb_driver_release_interface(struct usb_driver *driver,
613 			struct usb_interface *iface);
614 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
615 					 const struct usb_device_id *id);
616 extern int usb_match_one_id(struct usb_interface *interface,
617 			    const struct usb_device_id *id);
618 
619 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
620 		int minor);
621 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
622 		unsigned ifnum);
623 extern struct usb_host_interface *usb_altnum_to_altsetting(
624 		const struct usb_interface *intf, unsigned int altnum);
625 extern struct usb_host_interface *usb_find_alt_setting(
626 		struct usb_host_config *config,
627 		unsigned int iface_num,
628 		unsigned int alt_num);
629 
630 
631 /**
632  * usb_make_path - returns stable device path in the usb tree
633  * @dev: the device whose path is being constructed
634  * @buf: where to put the string
635  * @size: how big is "buf"?
636  *
637  * Returns length of the string (> 0) or negative if size was too small.
638  *
639  * This identifier is intended to be "stable", reflecting physical paths in
640  * hardware such as physical bus addresses for host controllers or ports on
641  * USB hubs.  That makes it stay the same until systems are physically
642  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
643  * controllers.  Adding and removing devices, including virtual root hubs
644  * in host controller driver modules, does not change these path identifiers;
645  * neither does rebooting or re-enumerating.  These are more useful identifiers
646  * than changeable ("unstable") ones like bus numbers or device addresses.
647  *
648  * With a partial exception for devices connected to USB 2.0 root hubs, these
649  * identifiers are also predictable.  So long as the device tree isn't changed,
650  * plugging any USB device into a given hub port always gives it the same path.
651  * Because of the use of "companion" controllers, devices connected to ports on
652  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
653  * high speed, and a different one if they are full or low speed.
654  */
usb_make_path(struct usb_device * dev,char * buf,size_t size)655 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
656 {
657 	int actual;
658 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
659 			  dev->devpath);
660 	return (actual >= (int)size) ? -1 : actual;
661 }
662 
663 /*-------------------------------------------------------------------------*/
664 
665 #define USB_DEVICE_ID_MATCH_DEVICE \
666 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
667 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
668 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
669 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
670 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
671 #define USB_DEVICE_ID_MATCH_DEV_INFO \
672 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
673 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
674 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
675 #define USB_DEVICE_ID_MATCH_INT_INFO \
676 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
677 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
678 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
679 
680 /**
681  * USB_DEVICE - macro used to describe a specific usb device
682  * @vend: the 16 bit USB Vendor ID
683  * @prod: the 16 bit USB Product ID
684  *
685  * This macro is used to create a struct usb_device_id that matches a
686  * specific device.
687  */
688 #define USB_DEVICE(vend, prod) \
689 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
690 	.idVendor = (vend), \
691 	.idProduct = (prod)
692 /**
693  * USB_DEVICE_VER - describe a specific usb device with a version range
694  * @vend: the 16 bit USB Vendor ID
695  * @prod: the 16 bit USB Product ID
696  * @lo: the bcdDevice_lo value
697  * @hi: the bcdDevice_hi value
698  *
699  * This macro is used to create a struct usb_device_id that matches a
700  * specific device, with a version range.
701  */
702 #define USB_DEVICE_VER(vend, prod, lo, hi) \
703 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
704 	.idVendor = (vend), \
705 	.idProduct = (prod), \
706 	.bcdDevice_lo = (lo), \
707 	.bcdDevice_hi = (hi)
708 
709 /**
710  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
711  * @vend: the 16 bit USB Vendor ID
712  * @prod: the 16 bit USB Product ID
713  * @pr: bInterfaceProtocol value
714  *
715  * This macro is used to create a struct usb_device_id that matches a
716  * specific interface protocol of devices.
717  */
718 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
719 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
720 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
721 	.idVendor = (vend), \
722 	.idProduct = (prod), \
723 	.bInterfaceProtocol = (pr)
724 
725 /**
726  * USB_DEVICE_INFO - macro used to describe a class of usb devices
727  * @cl: bDeviceClass value
728  * @sc: bDeviceSubClass value
729  * @pr: bDeviceProtocol value
730  *
731  * This macro is used to create a struct usb_device_id that matches a
732  * specific class of devices.
733  */
734 #define USB_DEVICE_INFO(cl, sc, pr) \
735 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
736 	.bDeviceClass = (cl), \
737 	.bDeviceSubClass = (sc), \
738 	.bDeviceProtocol = (pr)
739 
740 /**
741  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
742  * @cl: bInterfaceClass value
743  * @sc: bInterfaceSubClass value
744  * @pr: bInterfaceProtocol value
745  *
746  * This macro is used to create a struct usb_device_id that matches a
747  * specific class of interfaces.
748  */
749 #define USB_INTERFACE_INFO(cl, sc, pr) \
750 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
751 	.bInterfaceClass = (cl), \
752 	.bInterfaceSubClass = (sc), \
753 	.bInterfaceProtocol = (pr)
754 
755 /**
756  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
757  * @vend: the 16 bit USB Vendor ID
758  * @prod: the 16 bit USB Product ID
759  * @cl: bInterfaceClass value
760  * @sc: bInterfaceSubClass value
761  * @pr: bInterfaceProtocol value
762  *
763  * This macro is used to create a struct usb_device_id that matches a
764  * specific device with a specific class of interfaces.
765  *
766  * This is especially useful when explicitly matching devices that have
767  * vendor specific bDeviceClass values, but standards-compliant interfaces.
768  */
769 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
770 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
771 		| USB_DEVICE_ID_MATCH_DEVICE, \
772 	.idVendor = (vend), \
773 	.idProduct = (prod), \
774 	.bInterfaceClass = (cl), \
775 	.bInterfaceSubClass = (sc), \
776 	.bInterfaceProtocol = (pr)
777 
778 /* ----------------------------------------------------------------------- */
779 
780 /* Stuff for dynamic usb ids */
781 struct usb_dynids {
782 	spinlock_t lock;
783 	struct list_head list;
784 };
785 
786 struct usb_dynid {
787 	struct list_head node;
788 	struct usb_device_id id;
789 };
790 
791 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
792 				struct device_driver *driver,
793 				const char *buf, size_t count);
794 
795 /**
796  * struct usbdrv_wrap - wrapper for driver-model structure
797  * @driver: The driver-model core driver structure.
798  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
799  */
800 struct usbdrv_wrap {
801 	struct device_driver driver;
802 	int for_devices;
803 };
804 
805 /**
806  * struct usb_driver - identifies USB interface driver to usbcore
807  * @name: The driver name should be unique among USB drivers,
808  *	and should normally be the same as the module name.
809  * @probe: Called to see if the driver is willing to manage a particular
810  *	interface on a device.  If it is, probe returns zero and uses
811  *	usb_set_intfdata() to associate driver-specific data with the
812  *	interface.  It may also use usb_set_interface() to specify the
813  *	appropriate altsetting.  If unwilling to manage the interface,
814  *	return -ENODEV, if genuine IO errors occurred, an appropriate
815  *	negative errno value.
816  * @disconnect: Called when the interface is no longer accessible, usually
817  *	because its device has been (or is being) disconnected or the
818  *	driver module is being unloaded.
819  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
820  *	the "usbfs" filesystem.  This lets devices provide ways to
821  *	expose information to user space regardless of where they
822  *	do (or don't) show up otherwise in the filesystem.
823  * @suspend: Called when the device is going to be suspended by the system.
824  * @resume: Called when the device is being resumed by the system.
825  * @reset_resume: Called when the suspended device has been reset instead
826  *	of being resumed.
827  * @pre_reset: Called by usb_reset_device() when the device is about to be
828  *	reset.  This routine must not return until the driver has no active
829  *	URBs for the device, and no more URBs may be submitted until the
830  *	post_reset method is called.
831  * @post_reset: Called by usb_reset_device() after the device
832  *	has been reset
833  * @id_table: USB drivers use ID table to support hotplugging.
834  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
835  *	or your driver's probe function will never get called.
836  * @dynids: used internally to hold the list of dynamically added device
837  *	ids for this driver.
838  * @drvwrap: Driver-model core structure wrapper.
839  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
840  *	added to this driver by preventing the sysfs file from being created.
841  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
842  *	for interfaces bound to this driver.
843  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
844  *	endpoints before calling the driver's disconnect method.
845  *
846  * USB interface drivers must provide a name, probe() and disconnect()
847  * methods, and an id_table.  Other driver fields are optional.
848  *
849  * The id_table is used in hotplugging.  It holds a set of descriptors,
850  * and specialized data may be associated with each entry.  That table
851  * is used by both user and kernel mode hotplugging support.
852  *
853  * The probe() and disconnect() methods are called in a context where
854  * they can sleep, but they should avoid abusing the privilege.  Most
855  * work to connect to a device should be done when the device is opened,
856  * and undone at the last close.  The disconnect code needs to address
857  * concurrency issues with respect to open() and close() methods, as
858  * well as forcing all pending I/O requests to complete (by unlinking
859  * them as necessary, and blocking until the unlinks complete).
860  */
861 struct usb_driver {
862 	const char *name;
863 
864 	int (*probe) (struct usb_interface *intf,
865 		      const struct usb_device_id *id);
866 
867 	void (*disconnect) (struct usb_interface *intf);
868 
869 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
870 			void *buf);
871 
872 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
873 	int (*resume) (struct usb_interface *intf);
874 	int (*reset_resume)(struct usb_interface *intf);
875 
876 	int (*pre_reset)(struct usb_interface *intf);
877 	int (*post_reset)(struct usb_interface *intf);
878 
879 	const struct usb_device_id *id_table;
880 
881 	struct usb_dynids dynids;
882 	struct usbdrv_wrap drvwrap;
883 	unsigned int no_dynamic_id:1;
884 	unsigned int supports_autosuspend:1;
885 	unsigned int soft_unbind:1;
886 };
887 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
888 
889 /**
890  * struct usb_device_driver - identifies USB device driver to usbcore
891  * @name: The driver name should be unique among USB drivers,
892  *	and should normally be the same as the module name.
893  * @probe: Called to see if the driver is willing to manage a particular
894  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
895  *	to associate driver-specific data with the device.  If unwilling
896  *	to manage the device, return a negative errno value.
897  * @disconnect: Called when the device is no longer accessible, usually
898  *	because it has been (or is being) disconnected or the driver's
899  *	module is being unloaded.
900  * @suspend: Called when the device is going to be suspended by the system.
901  * @resume: Called when the device is being resumed by the system.
902  * @drvwrap: Driver-model core structure wrapper.
903  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
904  *	for devices bound to this driver.
905  *
906  * USB drivers must provide all the fields listed above except drvwrap.
907  */
908 struct usb_device_driver {
909 	const char *name;
910 
911 	int (*probe) (struct usb_device *udev);
912 	void (*disconnect) (struct usb_device *udev);
913 
914 	int (*suspend) (struct usb_device *udev, pm_message_t message);
915 	int (*resume) (struct usb_device *udev, pm_message_t message);
916 	struct usbdrv_wrap drvwrap;
917 	unsigned int supports_autosuspend:1;
918 };
919 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
920 		drvwrap.driver)
921 
922 extern struct bus_type usb_bus_type;
923 
924 /**
925  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
926  * @name: the usb class device name for this driver.  Will show up in sysfs.
927  * @devnode: Callback to provide a naming hint for a possible
928  *	device node to create.
929  * @fops: pointer to the struct file_operations of this driver.
930  * @minor_base: the start of the minor range for this driver.
931  *
932  * This structure is used for the usb_register_dev() and
933  * usb_unregister_dev() functions, to consolidate a number of the
934  * parameters used for them.
935  */
936 struct usb_class_driver {
937 	char *name;
938 	char *(*devnode)(struct device *dev, umode_t *mode);
939 	const struct file_operations *fops;
940 	int minor_base;
941 };
942 
943 /*
944  * use these in module_init()/module_exit()
945  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
946  */
947 extern int usb_register_driver(struct usb_driver *, struct module *,
948 			       const char *);
949 
950 /* use a define to avoid include chaining to get THIS_MODULE & friends */
951 #define usb_register(driver) \
952 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
953 
954 extern void usb_deregister(struct usb_driver *);
955 
956 /**
957  * module_usb_driver() - Helper macro for registering a USB driver
958  * @__usb_driver: usb_driver struct
959  *
960  * Helper macro for USB drivers which do not do anything special in module
961  * init/exit. This eliminates a lot of boilerplate. Each module may only
962  * use this macro once, and calling it replaces module_init() and module_exit()
963  */
964 #define module_usb_driver(__usb_driver) \
965 	module_driver(__usb_driver, usb_register, \
966 		       usb_deregister)
967 
968 extern int usb_register_device_driver(struct usb_device_driver *,
969 			struct module *);
970 extern void usb_deregister_device_driver(struct usb_device_driver *);
971 
972 extern int usb_register_dev(struct usb_interface *intf,
973 			    struct usb_class_driver *class_driver);
974 extern void usb_deregister_dev(struct usb_interface *intf,
975 			       struct usb_class_driver *class_driver);
976 
977 extern int usb_disabled(void);
978 
979 /* ----------------------------------------------------------------------- */
980 
981 /*
982  * URB support, for asynchronous request completions
983  */
984 
985 /*
986  * urb->transfer_flags:
987  *
988  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
989  */
990 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
991 #define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
992 					 * ignored */
993 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
994 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
995 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
996 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
997 					 * needed */
998 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
999 
1000 /* The following flags are used internally by usbcore and HCDs */
1001 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1002 #define URB_DIR_OUT		0
1003 #define URB_DIR_MASK		URB_DIR_IN
1004 
1005 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1006 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1007 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1008 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1009 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1010 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1011 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1012 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1013 
1014 struct usb_iso_packet_descriptor {
1015 	unsigned int offset;
1016 	unsigned int length;		/* expected length */
1017 	unsigned int actual_length;
1018 	int status;
1019 };
1020 
1021 struct urb;
1022 
1023 struct usb_anchor {
1024 	struct list_head urb_list;
1025 	wait_queue_head_t wait;
1026 	spinlock_t lock;
1027 	unsigned int poisoned:1;
1028 };
1029 
init_usb_anchor(struct usb_anchor * anchor)1030 static inline void init_usb_anchor(struct usb_anchor *anchor)
1031 {
1032 	INIT_LIST_HEAD(&anchor->urb_list);
1033 	init_waitqueue_head(&anchor->wait);
1034 	spin_lock_init(&anchor->lock);
1035 }
1036 
1037 typedef void (*usb_complete_t)(struct urb *);
1038 
1039 /**
1040  * struct urb - USB Request Block
1041  * @urb_list: For use by current owner of the URB.
1042  * @anchor_list: membership in the list of an anchor
1043  * @anchor: to anchor URBs to a common mooring
1044  * @ep: Points to the endpoint's data structure.  Will eventually
1045  *	replace @pipe.
1046  * @pipe: Holds endpoint number, direction, type, and more.
1047  *	Create these values with the eight macros available;
1048  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1049  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1050  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1051  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1052  *	is a different endpoint (and pipe) from "out" endpoint two.
1053  *	The current configuration controls the existence, type, and
1054  *	maximum packet size of any given endpoint.
1055  * @stream_id: the endpoint's stream ID for bulk streams
1056  * @dev: Identifies the USB device to perform the request.
1057  * @status: This is read in non-iso completion functions to get the
1058  *	status of the particular request.  ISO requests only use it
1059  *	to tell whether the URB was unlinked; detailed status for
1060  *	each frame is in the fields of the iso_frame-desc.
1061  * @transfer_flags: A variety of flags may be used to affect how URB
1062  *	submission, unlinking, or operation are handled.  Different
1063  *	kinds of URB can use different flags.
1064  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1065  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1066  *	(however, do not leave garbage in transfer_buffer even then).
1067  *	This buffer must be suitable for DMA; allocate it with
1068  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1069  *	of this buffer will be modified.  This buffer is used for the data
1070  *	stage of control transfers.
1071  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1072  *	the device driver is saying that it provided this DMA address,
1073  *	which the host controller driver should use in preference to the
1074  *	transfer_buffer.
1075  * @sg: scatter gather buffer list
1076  * @num_mapped_sgs: (internal) number of mapped sg entries
1077  * @num_sgs: number of entries in the sg list
1078  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1079  *	be broken up into chunks according to the current maximum packet
1080  *	size for the endpoint, which is a function of the configuration
1081  *	and is encoded in the pipe.  When the length is zero, neither
1082  *	transfer_buffer nor transfer_dma is used.
1083  * @actual_length: This is read in non-iso completion functions, and
1084  *	it tells how many bytes (out of transfer_buffer_length) were
1085  *	transferred.  It will normally be the same as requested, unless
1086  *	either an error was reported or a short read was performed.
1087  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1088  *	short reads be reported as errors.
1089  * @setup_packet: Only used for control transfers, this points to eight bytes
1090  *	of setup data.  Control transfers always start by sending this data
1091  *	to the device.  Then transfer_buffer is read or written, if needed.
1092  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1093  *	this field; setup_packet must point to a valid buffer.
1094  * @start_frame: Returns the initial frame for isochronous transfers.
1095  * @number_of_packets: Lists the number of ISO transfer buffers.
1096  * @interval: Specifies the polling interval for interrupt or isochronous
1097  *	transfers.  The units are frames (milliseconds) for full and low
1098  *	speed devices, and microframes (1/8 millisecond) for highspeed
1099  *	and SuperSpeed devices.
1100  * @error_count: Returns the number of ISO transfers that reported errors.
1101  * @context: For use in completion functions.  This normally points to
1102  *	request-specific driver context.
1103  * @complete: Completion handler. This URB is passed as the parameter to the
1104  *	completion function.  The completion function may then do what
1105  *	it likes with the URB, including resubmitting or freeing it.
1106  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1107  *	collect the transfer status for each buffer.
1108  *
1109  * This structure identifies USB transfer requests.  URBs must be allocated by
1110  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1111  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1112  * are submitted using usb_submit_urb(), and pending requests may be canceled
1113  * using usb_unlink_urb() or usb_kill_urb().
1114  *
1115  * Data Transfer Buffers:
1116  *
1117  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1118  * taken from the general page pool.  That is provided by transfer_buffer
1119  * (control requests also use setup_packet), and host controller drivers
1120  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1121  * mapping operations can be expensive on some platforms (perhaps using a dma
1122  * bounce buffer or talking to an IOMMU),
1123  * although they're cheap on commodity x86 and ppc hardware.
1124  *
1125  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1126  * which tells the host controller driver that no such mapping is needed for
1127  * the transfer_buffer since
1128  * the device driver is DMA-aware.  For example, a device driver might
1129  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1130  * When this transfer flag is provided, host controller drivers will
1131  * attempt to use the dma address found in the transfer_dma
1132  * field rather than determining a dma address themselves.
1133  *
1134  * Note that transfer_buffer must still be set if the controller
1135  * does not support DMA (as indicated by bus.uses_dma) and when talking
1136  * to root hub. If you have to trasfer between highmem zone and the device
1137  * on such controller, create a bounce buffer or bail out with an error.
1138  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1139  * capable, assign NULL to it, so that usbmon knows not to use the value.
1140  * The setup_packet must always be set, so it cannot be located in highmem.
1141  *
1142  * Initialization:
1143  *
1144  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1145  * zero), and complete fields.  All URBs must also initialize
1146  * transfer_buffer and transfer_buffer_length.  They may provide the
1147  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1148  * to be treated as errors; that flag is invalid for write requests.
1149  *
1150  * Bulk URBs may
1151  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1152  * should always terminate with a short packet, even if it means adding an
1153  * extra zero length packet.
1154  *
1155  * Control URBs must provide a valid pointer in the setup_packet field.
1156  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1157  * beforehand.
1158  *
1159  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1160  * or, for highspeed devices, 125 microsecond units)
1161  * to poll for transfers.  After the URB has been submitted, the interval
1162  * field reflects how the transfer was actually scheduled.
1163  * The polling interval may be more frequent than requested.
1164  * For example, some controllers have a maximum interval of 32 milliseconds,
1165  * while others support intervals of up to 1024 milliseconds.
1166  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1167  * endpoints, as well as high speed interrupt endpoints, the encoding of
1168  * the transfer interval in the endpoint descriptor is logarithmic.
1169  * Device drivers must convert that value to linear units themselves.)
1170  *
1171  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1172  * the host controller to schedule the transfer as soon as bandwidth
1173  * utilization allows, and then set start_frame to reflect the actual frame
1174  * selected during submission.  Otherwise drivers must specify the start_frame
1175  * and handle the case where the transfer can't begin then.  However, drivers
1176  * won't know how bandwidth is currently allocated, and while they can
1177  * find the current frame using usb_get_current_frame_number () they can't
1178  * know the range for that frame number.  (Ranges for frame counter values
1179  * are HC-specific, and can go from 256 to 65536 frames from "now".)
1180  *
1181  * Isochronous URBs have a different data transfer model, in part because
1182  * the quality of service is only "best effort".  Callers provide specially
1183  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1184  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1185  * URBs are normally queued, submitted by drivers to arrange that
1186  * transfers are at least double buffered, and then explicitly resubmitted
1187  * in completion handlers, so
1188  * that data (such as audio or video) streams at as constant a rate as the
1189  * host controller scheduler can support.
1190  *
1191  * Completion Callbacks:
1192  *
1193  * The completion callback is made in_interrupt(), and one of the first
1194  * things that a completion handler should do is check the status field.
1195  * The status field is provided for all URBs.  It is used to report
1196  * unlinked URBs, and status for all non-ISO transfers.  It should not
1197  * be examined before the URB is returned to the completion handler.
1198  *
1199  * The context field is normally used to link URBs back to the relevant
1200  * driver or request state.
1201  *
1202  * When the completion callback is invoked for non-isochronous URBs, the
1203  * actual_length field tells how many bytes were transferred.  This field
1204  * is updated even when the URB terminated with an error or was unlinked.
1205  *
1206  * ISO transfer status is reported in the status and actual_length fields
1207  * of the iso_frame_desc array, and the number of errors is reported in
1208  * error_count.  Completion callbacks for ISO transfers will normally
1209  * (re)submit URBs to ensure a constant transfer rate.
1210  *
1211  * Note that even fields marked "public" should not be touched by the driver
1212  * when the urb is owned by the hcd, that is, since the call to
1213  * usb_submit_urb() till the entry into the completion routine.
1214  */
1215 struct urb {
1216 	/* private: usb core and host controller only fields in the urb */
1217 	struct kref kref;		/* reference count of the URB */
1218 	void *hcpriv;			/* private data for host controller */
1219 	atomic_t use_count;		/* concurrent submissions counter */
1220 	atomic_t reject;		/* submissions will fail */
1221 	int unlinked;			/* unlink error code */
1222 
1223 	/* public: documented fields in the urb that can be used by drivers */
1224 	struct list_head urb_list;	/* list head for use by the urb's
1225 					 * current owner */
1226 	struct list_head anchor_list;	/* the URB may be anchored */
1227 	struct usb_anchor *anchor;
1228 	struct usb_device *dev;		/* (in) pointer to associated device */
1229 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1230 	unsigned int pipe;		/* (in) pipe information */
1231 	unsigned int stream_id;		/* (in) stream ID */
1232 	int status;			/* (return) non-ISO status */
1233 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1234 	void *transfer_buffer;		/* (in) associated data buffer */
1235 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1236 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1237 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1238 	int num_sgs;			/* (in) number of entries in the sg list */
1239 	u32 transfer_buffer_length;	/* (in) data buffer length */
1240 	u32 actual_length;		/* (return) actual transfer length */
1241 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1242 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1243 	int start_frame;		/* (modify) start frame (ISO) */
1244 	int number_of_packets;		/* (in) number of ISO packets */
1245 	int interval;			/* (modify) transfer interval
1246 					 * (INT/ISO) */
1247 	int error_count;		/* (return) number of ISO errors */
1248 	void *context;			/* (in) context for completion */
1249 	usb_complete_t complete;	/* (in) completion routine */
1250 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1251 					/* (in) ISO ONLY */
1252 };
1253 
1254 /* ----------------------------------------------------------------------- */
1255 
1256 /**
1257  * usb_fill_control_urb - initializes a control urb
1258  * @urb: pointer to the urb to initialize.
1259  * @dev: pointer to the struct usb_device for this urb.
1260  * @pipe: the endpoint pipe
1261  * @setup_packet: pointer to the setup_packet buffer
1262  * @transfer_buffer: pointer to the transfer buffer
1263  * @buffer_length: length of the transfer buffer
1264  * @complete_fn: pointer to the usb_complete_t function
1265  * @context: what to set the urb context to.
1266  *
1267  * Initializes a control urb with the proper information needed to submit
1268  * it to a device.
1269  */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1270 static inline void usb_fill_control_urb(struct urb *urb,
1271 					struct usb_device *dev,
1272 					unsigned int pipe,
1273 					unsigned char *setup_packet,
1274 					void *transfer_buffer,
1275 					int buffer_length,
1276 					usb_complete_t complete_fn,
1277 					void *context)
1278 {
1279 	urb->dev = dev;
1280 	urb->pipe = pipe;
1281 	urb->setup_packet = setup_packet;
1282 	urb->transfer_buffer = transfer_buffer;
1283 	urb->transfer_buffer_length = buffer_length;
1284 	urb->complete = complete_fn;
1285 	urb->context = context;
1286 }
1287 
1288 /**
1289  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1290  * @urb: pointer to the urb to initialize.
1291  * @dev: pointer to the struct usb_device for this urb.
1292  * @pipe: the endpoint pipe
1293  * @transfer_buffer: pointer to the transfer buffer
1294  * @buffer_length: length of the transfer buffer
1295  * @complete_fn: pointer to the usb_complete_t function
1296  * @context: what to set the urb context to.
1297  *
1298  * Initializes a bulk urb with the proper information needed to submit it
1299  * to a device.
1300  */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1301 static inline void usb_fill_bulk_urb(struct urb *urb,
1302 				     struct usb_device *dev,
1303 				     unsigned int pipe,
1304 				     void *transfer_buffer,
1305 				     int buffer_length,
1306 				     usb_complete_t complete_fn,
1307 				     void *context)
1308 {
1309 	urb->dev = dev;
1310 	urb->pipe = pipe;
1311 	urb->transfer_buffer = transfer_buffer;
1312 	urb->transfer_buffer_length = buffer_length;
1313 	urb->complete = complete_fn;
1314 	urb->context = context;
1315 }
1316 
1317 /**
1318  * usb_fill_int_urb - macro to help initialize a interrupt urb
1319  * @urb: pointer to the urb to initialize.
1320  * @dev: pointer to the struct usb_device for this urb.
1321  * @pipe: the endpoint pipe
1322  * @transfer_buffer: pointer to the transfer buffer
1323  * @buffer_length: length of the transfer buffer
1324  * @complete_fn: pointer to the usb_complete_t function
1325  * @context: what to set the urb context to.
1326  * @interval: what to set the urb interval to, encoded like
1327  *	the endpoint descriptor's bInterval value.
1328  *
1329  * Initializes a interrupt urb with the proper information needed to submit
1330  * it to a device.
1331  *
1332  * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1333  * encoding of the endpoint interval, and express polling intervals in
1334  * microframes (eight per millisecond) rather than in frames (one per
1335  * millisecond).
1336  *
1337  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1338  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1339  * through to the host controller, rather than being translated into microframe
1340  * units.
1341  */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1342 static inline void usb_fill_int_urb(struct urb *urb,
1343 				    struct usb_device *dev,
1344 				    unsigned int pipe,
1345 				    void *transfer_buffer,
1346 				    int buffer_length,
1347 				    usb_complete_t complete_fn,
1348 				    void *context,
1349 				    int interval)
1350 {
1351 	urb->dev = dev;
1352 	urb->pipe = pipe;
1353 	urb->transfer_buffer = transfer_buffer;
1354 	urb->transfer_buffer_length = buffer_length;
1355 	urb->complete = complete_fn;
1356 	urb->context = context;
1357 	if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1358 		urb->interval = 1 << (interval - 1);
1359 	else
1360 		urb->interval = interval;
1361 	urb->start_frame = -1;
1362 }
1363 
1364 extern void usb_init_urb(struct urb *urb);
1365 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1366 extern void usb_free_urb(struct urb *urb);
1367 #define usb_put_urb usb_free_urb
1368 extern struct urb *usb_get_urb(struct urb *urb);
1369 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1370 extern int usb_unlink_urb(struct urb *urb);
1371 extern void usb_kill_urb(struct urb *urb);
1372 extern void usb_poison_urb(struct urb *urb);
1373 extern void usb_unpoison_urb(struct urb *urb);
1374 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1375 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1376 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1377 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1378 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1379 extern void usb_unanchor_urb(struct urb *urb);
1380 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1381 					 unsigned int timeout);
1382 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1383 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1384 extern int usb_anchor_empty(struct usb_anchor *anchor);
1385 
1386 /**
1387  * usb_urb_dir_in - check if an URB describes an IN transfer
1388  * @urb: URB to be checked
1389  *
1390  * Returns 1 if @urb describes an IN transfer (device-to-host),
1391  * otherwise 0.
1392  */
usb_urb_dir_in(struct urb * urb)1393 static inline int usb_urb_dir_in(struct urb *urb)
1394 {
1395 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1396 }
1397 
1398 /**
1399  * usb_urb_dir_out - check if an URB describes an OUT transfer
1400  * @urb: URB to be checked
1401  *
1402  * Returns 1 if @urb describes an OUT transfer (host-to-device),
1403  * otherwise 0.
1404  */
usb_urb_dir_out(struct urb * urb)1405 static inline int usb_urb_dir_out(struct urb *urb)
1406 {
1407 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1408 }
1409 
1410 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1411 	gfp_t mem_flags, dma_addr_t *dma);
1412 void usb_free_coherent(struct usb_device *dev, size_t size,
1413 	void *addr, dma_addr_t dma);
1414 
1415 #if 0
1416 struct urb *usb_buffer_map(struct urb *urb);
1417 void usb_buffer_dmasync(struct urb *urb);
1418 void usb_buffer_unmap(struct urb *urb);
1419 #endif
1420 
1421 struct scatterlist;
1422 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1423 		      struct scatterlist *sg, int nents);
1424 #if 0
1425 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1426 			   struct scatterlist *sg, int n_hw_ents);
1427 #endif
1428 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1429 			 struct scatterlist *sg, int n_hw_ents);
1430 
1431 /*-------------------------------------------------------------------*
1432  *                         SYNCHRONOUS CALL SUPPORT                  *
1433  *-------------------------------------------------------------------*/
1434 
1435 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1436 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1437 	void *data, __u16 size, int timeout);
1438 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1439 	void *data, int len, int *actual_length, int timeout);
1440 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1441 	void *data, int len, int *actual_length,
1442 	int timeout);
1443 
1444 /* wrappers around usb_control_msg() for the most common standard requests */
1445 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1446 	unsigned char descindex, void *buf, int size);
1447 extern int usb_get_status(struct usb_device *dev,
1448 	int type, int target, void *data);
1449 extern int usb_string(struct usb_device *dev, int index,
1450 	char *buf, size_t size);
1451 
1452 /* wrappers that also update important state inside usbcore */
1453 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1454 extern int usb_reset_configuration(struct usb_device *dev);
1455 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1456 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1457 
1458 /* this request isn't really synchronous, but it belongs with the others */
1459 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1460 
1461 /*
1462  * timeouts, in milliseconds, used for sending/receiving control messages
1463  * they typically complete within a few frames (msec) after they're issued
1464  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1465  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1466  */
1467 #define USB_CTRL_GET_TIMEOUT	5000
1468 #define USB_CTRL_SET_TIMEOUT	5000
1469 
1470 
1471 /**
1472  * struct usb_sg_request - support for scatter/gather I/O
1473  * @status: zero indicates success, else negative errno
1474  * @bytes: counts bytes transferred.
1475  *
1476  * These requests are initialized using usb_sg_init(), and then are used
1477  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1478  * members of the request object aren't for driver access.
1479  *
1480  * The status and bytecount values are valid only after usb_sg_wait()
1481  * returns.  If the status is zero, then the bytecount matches the total
1482  * from the request.
1483  *
1484  * After an error completion, drivers may need to clear a halt condition
1485  * on the endpoint.
1486  */
1487 struct usb_sg_request {
1488 	int			status;
1489 	size_t			bytes;
1490 
1491 	/* private:
1492 	 * members below are private to usbcore,
1493 	 * and are not provided for driver access!
1494 	 */
1495 	spinlock_t		lock;
1496 
1497 	struct usb_device	*dev;
1498 	int			pipe;
1499 
1500 	int			entries;
1501 	struct urb		**urbs;
1502 
1503 	int			count;
1504 	struct completion	complete;
1505 };
1506 
1507 int usb_sg_init(
1508 	struct usb_sg_request	*io,
1509 	struct usb_device	*dev,
1510 	unsigned		pipe,
1511 	unsigned		period,
1512 	struct scatterlist	*sg,
1513 	int			nents,
1514 	size_t			length,
1515 	gfp_t			mem_flags
1516 );
1517 void usb_sg_cancel(struct usb_sg_request *io);
1518 void usb_sg_wait(struct usb_sg_request *io);
1519 
1520 
1521 /* ----------------------------------------------------------------------- */
1522 
1523 /*
1524  * For various legacy reasons, Linux has a small cookie that's paired with
1525  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1526  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1527  * an unsigned int encoded as:
1528  *
1529  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1530  *					 1 = Device-to-Host [In] ...
1531  *					like endpoint bEndpointAddress)
1532  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1533  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1534  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1535  *					 10 = control, 11 = bulk)
1536  *
1537  * Given the device address and endpoint descriptor, pipes are redundant.
1538  */
1539 
1540 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1541 /* (yet ... they're the values used by usbfs) */
1542 #define PIPE_ISOCHRONOUS		0
1543 #define PIPE_INTERRUPT			1
1544 #define PIPE_CONTROL			2
1545 #define PIPE_BULK			3
1546 
1547 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1548 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1549 
1550 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1551 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1552 
1553 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1554 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1555 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1556 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1557 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1558 
__create_pipe(struct usb_device * dev,unsigned int endpoint)1559 static inline unsigned int __create_pipe(struct usb_device *dev,
1560 		unsigned int endpoint)
1561 {
1562 	return (dev->devnum << 8) | (endpoint << 15);
1563 }
1564 
1565 /* Create various pipes... */
1566 #define usb_sndctrlpipe(dev, endpoint)	\
1567 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1568 #define usb_rcvctrlpipe(dev, endpoint)	\
1569 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1570 #define usb_sndisocpipe(dev, endpoint)	\
1571 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1572 #define usb_rcvisocpipe(dev, endpoint)	\
1573 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1574 #define usb_sndbulkpipe(dev, endpoint)	\
1575 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1576 #define usb_rcvbulkpipe(dev, endpoint)	\
1577 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1578 #define usb_sndintpipe(dev, endpoint)	\
1579 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1580 #define usb_rcvintpipe(dev, endpoint)	\
1581 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1582 
1583 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)1584 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1585 {
1586 	struct usb_host_endpoint **eps;
1587 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1588 	return eps[usb_pipeendpoint(pipe)];
1589 }
1590 
1591 /*-------------------------------------------------------------------------*/
1592 
1593 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)1594 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1595 {
1596 	struct usb_host_endpoint	*ep;
1597 	unsigned			epnum = usb_pipeendpoint(pipe);
1598 
1599 	if (is_out) {
1600 		WARN_ON(usb_pipein(pipe));
1601 		ep = udev->ep_out[epnum];
1602 	} else {
1603 		WARN_ON(usb_pipeout(pipe));
1604 		ep = udev->ep_in[epnum];
1605 	}
1606 	if (!ep)
1607 		return 0;
1608 
1609 	/* NOTE:  only 0x07ff bits are for packet size... */
1610 	return usb_endpoint_maxp(&ep->desc);
1611 }
1612 
1613 /* ----------------------------------------------------------------------- */
1614 
1615 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)1616 static inline int usb_translate_errors(int error_code)
1617 {
1618 	switch (error_code) {
1619 	case 0:
1620 	case -ENOMEM:
1621 	case -ENODEV:
1622 		return error_code;
1623 	default:
1624 		return -EIO;
1625 	}
1626 }
1627 
1628 /* Events from the usb core */
1629 #define USB_DEVICE_ADD		0x0001
1630 #define USB_DEVICE_REMOVE	0x0002
1631 #define USB_BUS_ADD		0x0003
1632 #define USB_BUS_REMOVE		0x0004
1633 extern void usb_register_notify(struct notifier_block *nb);
1634 extern void usb_unregister_notify(struct notifier_block *nb);
1635 
1636 #ifdef DEBUG
1637 #define dbg(format, arg...)						\
1638 	printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg)
1639 #else
1640 #define dbg(format, arg...)						\
1641 do {									\
1642 	if (0)								\
1643 		printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \
1644 } while (0)
1645 #endif
1646 
1647 #define err(format, arg...)					\
1648 	printk(KERN_ERR KBUILD_MODNAME ": " format "\n", ##arg)
1649 
1650 /* debugfs stuff */
1651 extern struct dentry *usb_debug_root;
1652 
1653 #endif  /* __KERNEL__ */
1654 
1655 #endif
1656