1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dinode.h"
32 #include "xfs_error.h"
33 #include "xfs_filestream.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_quota.h"
37 #include "xfs_trace.h"
38 #include "xfs_fsops.h"
39 
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 
43 struct workqueue_struct	*xfs_syncd_wq;	/* sync workqueue */
44 
45 /*
46  * The inode lookup is done in batches to keep the amount of lock traffic and
47  * radix tree lookups to a minimum. The batch size is a trade off between
48  * lookup reduction and stack usage. This is in the reclaim path, so we can't
49  * be too greedy.
50  */
51 #define XFS_LOOKUP_BATCH	32
52 
53 STATIC int
xfs_inode_ag_walk_grab(struct xfs_inode * ip)54 xfs_inode_ag_walk_grab(
55 	struct xfs_inode	*ip)
56 {
57 	struct inode		*inode = VFS_I(ip);
58 
59 	ASSERT(rcu_read_lock_held());
60 
61 	/*
62 	 * check for stale RCU freed inode
63 	 *
64 	 * If the inode has been reallocated, it doesn't matter if it's not in
65 	 * the AG we are walking - we are walking for writeback, so if it
66 	 * passes all the "valid inode" checks and is dirty, then we'll write
67 	 * it back anyway.  If it has been reallocated and still being
68 	 * initialised, the XFS_INEW check below will catch it.
69 	 */
70 	spin_lock(&ip->i_flags_lock);
71 	if (!ip->i_ino)
72 		goto out_unlock_noent;
73 
74 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
75 	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
76 		goto out_unlock_noent;
77 	spin_unlock(&ip->i_flags_lock);
78 
79 	/* nothing to sync during shutdown */
80 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
81 		return EFSCORRUPTED;
82 
83 	/* If we can't grab the inode, it must on it's way to reclaim. */
84 	if (!igrab(inode))
85 		return ENOENT;
86 
87 	if (is_bad_inode(inode)) {
88 		IRELE(ip);
89 		return ENOENT;
90 	}
91 
92 	/* inode is valid */
93 	return 0;
94 
95 out_unlock_noent:
96 	spin_unlock(&ip->i_flags_lock);
97 	return ENOENT;
98 }
99 
100 STATIC int
xfs_inode_ag_walk(struct xfs_mount * mp,struct xfs_perag * pag,int (* execute)(struct xfs_inode * ip,struct xfs_perag * pag,int flags),int flags)101 xfs_inode_ag_walk(
102 	struct xfs_mount	*mp,
103 	struct xfs_perag	*pag,
104 	int			(*execute)(struct xfs_inode *ip,
105 					   struct xfs_perag *pag, int flags),
106 	int			flags)
107 {
108 	uint32_t		first_index;
109 	int			last_error = 0;
110 	int			skipped;
111 	int			done;
112 	int			nr_found;
113 
114 restart:
115 	done = 0;
116 	skipped = 0;
117 	first_index = 0;
118 	nr_found = 0;
119 	do {
120 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
121 		int		error = 0;
122 		int		i;
123 
124 		rcu_read_lock();
125 		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
126 					(void **)batch, first_index,
127 					XFS_LOOKUP_BATCH);
128 		if (!nr_found) {
129 			rcu_read_unlock();
130 			break;
131 		}
132 
133 		/*
134 		 * Grab the inodes before we drop the lock. if we found
135 		 * nothing, nr == 0 and the loop will be skipped.
136 		 */
137 		for (i = 0; i < nr_found; i++) {
138 			struct xfs_inode *ip = batch[i];
139 
140 			if (done || xfs_inode_ag_walk_grab(ip))
141 				batch[i] = NULL;
142 
143 			/*
144 			 * Update the index for the next lookup. Catch
145 			 * overflows into the next AG range which can occur if
146 			 * we have inodes in the last block of the AG and we
147 			 * are currently pointing to the last inode.
148 			 *
149 			 * Because we may see inodes that are from the wrong AG
150 			 * due to RCU freeing and reallocation, only update the
151 			 * index if it lies in this AG. It was a race that lead
152 			 * us to see this inode, so another lookup from the
153 			 * same index will not find it again.
154 			 */
155 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
156 				continue;
157 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
158 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
159 				done = 1;
160 		}
161 
162 		/* unlock now we've grabbed the inodes. */
163 		rcu_read_unlock();
164 
165 		for (i = 0; i < nr_found; i++) {
166 			if (!batch[i])
167 				continue;
168 			error = execute(batch[i], pag, flags);
169 			IRELE(batch[i]);
170 			if (error == EAGAIN) {
171 				skipped++;
172 				continue;
173 			}
174 			if (error && last_error != EFSCORRUPTED)
175 				last_error = error;
176 		}
177 
178 		/* bail out if the filesystem is corrupted.  */
179 		if (error == EFSCORRUPTED)
180 			break;
181 
182 		cond_resched();
183 
184 	} while (nr_found && !done);
185 
186 	if (skipped) {
187 		delay(1);
188 		goto restart;
189 	}
190 	return last_error;
191 }
192 
193 int
xfs_inode_ag_iterator(struct xfs_mount * mp,int (* execute)(struct xfs_inode * ip,struct xfs_perag * pag,int flags),int flags)194 xfs_inode_ag_iterator(
195 	struct xfs_mount	*mp,
196 	int			(*execute)(struct xfs_inode *ip,
197 					   struct xfs_perag *pag, int flags),
198 	int			flags)
199 {
200 	struct xfs_perag	*pag;
201 	int			error = 0;
202 	int			last_error = 0;
203 	xfs_agnumber_t		ag;
204 
205 	ag = 0;
206 	while ((pag = xfs_perag_get(mp, ag))) {
207 		ag = pag->pag_agno + 1;
208 		error = xfs_inode_ag_walk(mp, pag, execute, flags);
209 		xfs_perag_put(pag);
210 		if (error) {
211 			last_error = error;
212 			if (error == EFSCORRUPTED)
213 				break;
214 		}
215 	}
216 	return XFS_ERROR(last_error);
217 }
218 
219 STATIC int
xfs_sync_inode_data(struct xfs_inode * ip,struct xfs_perag * pag,int flags)220 xfs_sync_inode_data(
221 	struct xfs_inode	*ip,
222 	struct xfs_perag	*pag,
223 	int			flags)
224 {
225 	struct inode		*inode = VFS_I(ip);
226 	struct address_space *mapping = inode->i_mapping;
227 	int			error = 0;
228 
229 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
230 		return 0;
231 
232 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
233 		if (flags & SYNC_TRYLOCK)
234 			return 0;
235 		xfs_ilock(ip, XFS_IOLOCK_SHARED);
236 	}
237 
238 	error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
239 				0 : XBF_ASYNC, FI_NONE);
240 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
241 	return error;
242 }
243 
244 STATIC int
xfs_sync_inode_attr(struct xfs_inode * ip,struct xfs_perag * pag,int flags)245 xfs_sync_inode_attr(
246 	struct xfs_inode	*ip,
247 	struct xfs_perag	*pag,
248 	int			flags)
249 {
250 	int			error = 0;
251 
252 	xfs_ilock(ip, XFS_ILOCK_SHARED);
253 	if (xfs_inode_clean(ip))
254 		goto out_unlock;
255 	if (!xfs_iflock_nowait(ip)) {
256 		if (!(flags & SYNC_WAIT))
257 			goto out_unlock;
258 		xfs_iflock(ip);
259 	}
260 
261 	if (xfs_inode_clean(ip)) {
262 		xfs_ifunlock(ip);
263 		goto out_unlock;
264 	}
265 
266 	error = xfs_iflush(ip, flags);
267 
268 	/*
269 	 * We don't want to try again on non-blocking flushes that can't run
270 	 * again immediately. If an inode really must be written, then that's
271 	 * what the SYNC_WAIT flag is for.
272 	 */
273 	if (error == EAGAIN) {
274 		ASSERT(!(flags & SYNC_WAIT));
275 		error = 0;
276 	}
277 
278  out_unlock:
279 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
280 	return error;
281 }
282 
283 /*
284  * Write out pagecache data for the whole filesystem.
285  */
286 STATIC int
xfs_sync_data(struct xfs_mount * mp,int flags)287 xfs_sync_data(
288 	struct xfs_mount	*mp,
289 	int			flags)
290 {
291 	int			error;
292 
293 	ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
294 
295 	error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
296 	if (error)
297 		return XFS_ERROR(error);
298 
299 	xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
300 	return 0;
301 }
302 
303 /*
304  * Write out inode metadata (attributes) for the whole filesystem.
305  */
306 STATIC int
xfs_sync_attr(struct xfs_mount * mp,int flags)307 xfs_sync_attr(
308 	struct xfs_mount	*mp,
309 	int			flags)
310 {
311 	ASSERT((flags & ~SYNC_WAIT) == 0);
312 
313 	return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags);
314 }
315 
316 STATIC int
xfs_sync_fsdata(struct xfs_mount * mp)317 xfs_sync_fsdata(
318 	struct xfs_mount	*mp)
319 {
320 	struct xfs_buf		*bp;
321 	int			error;
322 
323 	/*
324 	 * If the buffer is pinned then push on the log so we won't get stuck
325 	 * waiting in the write for someone, maybe ourselves, to flush the log.
326 	 *
327 	 * Even though we just pushed the log above, we did not have the
328 	 * superblock buffer locked at that point so it can become pinned in
329 	 * between there and here.
330 	 */
331 	bp = xfs_getsb(mp, 0);
332 	if (xfs_buf_ispinned(bp))
333 		xfs_log_force(mp, 0);
334 	error = xfs_bwrite(bp);
335 	xfs_buf_relse(bp);
336 	return error;
337 }
338 
339 int
xfs_log_dirty_inode(struct xfs_inode * ip,struct xfs_perag * pag,int flags)340 xfs_log_dirty_inode(
341 	struct xfs_inode	*ip,
342 	struct xfs_perag	*pag,
343 	int			flags)
344 {
345 	struct xfs_mount	*mp = ip->i_mount;
346 	struct xfs_trans	*tp;
347 	int			error;
348 
349 	if (!ip->i_update_core)
350 		return 0;
351 
352 	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
353 	error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
354 	if (error) {
355 		xfs_trans_cancel(tp, 0);
356 		return error;
357 	}
358 
359 	xfs_ilock(ip, XFS_ILOCK_EXCL);
360 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
361 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
362 	return xfs_trans_commit(tp, 0);
363 }
364 
365 /*
366  * When remounting a filesystem read-only or freezing the filesystem, we have
367  * two phases to execute. This first phase is syncing the data before we
368  * quiesce the filesystem, and the second is flushing all the inodes out after
369  * we've waited for all the transactions created by the first phase to
370  * complete. The second phase ensures that the inodes are written to their
371  * location on disk rather than just existing in transactions in the log. This
372  * means after a quiesce there is no log replay required to write the inodes to
373  * disk (this is the main difference between a sync and a quiesce).
374  */
375 /*
376  * First stage of freeze - no writers will make progress now we are here,
377  * so we flush delwri and delalloc buffers here, then wait for all I/O to
378  * complete.  Data is frozen at that point. Metadata is not frozen,
379  * transactions can still occur here so don't bother flushing the buftarg
380  * because it'll just get dirty again.
381  */
382 int
xfs_quiesce_data(struct xfs_mount * mp)383 xfs_quiesce_data(
384 	struct xfs_mount	*mp)
385 {
386 	int			error, error2 = 0;
387 
388 	/*
389 	 * Log all pending size and timestamp updates.  The vfs writeback
390 	 * code is supposed to do this, but due to its overagressive
391 	 * livelock detection it will skip inodes where appending writes
392 	 * were written out in the first non-blocking sync phase if their
393 	 * completion took long enough that it happened after taking the
394 	 * timestamp for the cut-off in the blocking phase.
395 	 */
396 	xfs_inode_ag_iterator(mp, xfs_log_dirty_inode, 0);
397 
398 	/* force out the log */
399 	xfs_log_force(mp, XFS_LOG_SYNC);
400 
401 	/* write superblock and hoover up shutdown errors */
402 	error = xfs_sync_fsdata(mp);
403 
404 	/* make sure all delwri buffers are written out */
405 	xfs_flush_buftarg(mp->m_ddev_targp, 1);
406 
407 	/* mark the log as covered if needed */
408 	if (xfs_log_need_covered(mp))
409 		error2 = xfs_fs_log_dummy(mp);
410 
411 	/* flush data-only devices */
412 	if (mp->m_rtdev_targp)
413 		xfs_flush_buftarg(mp->m_rtdev_targp, 1);
414 
415 	return error ? error : error2;
416 }
417 
418 STATIC void
xfs_quiesce_fs(struct xfs_mount * mp)419 xfs_quiesce_fs(
420 	struct xfs_mount	*mp)
421 {
422 	int	count = 0, pincount;
423 
424 	xfs_reclaim_inodes(mp, 0);
425 	xfs_flush_buftarg(mp->m_ddev_targp, 0);
426 
427 	/*
428 	 * This loop must run at least twice.  The first instance of the loop
429 	 * will flush most meta data but that will generate more meta data
430 	 * (typically directory updates).  Which then must be flushed and
431 	 * logged before we can write the unmount record. We also so sync
432 	 * reclaim of inodes to catch any that the above delwri flush skipped.
433 	 */
434 	do {
435 		xfs_reclaim_inodes(mp, SYNC_WAIT);
436 		xfs_sync_attr(mp, SYNC_WAIT);
437 		pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
438 		if (!pincount) {
439 			delay(50);
440 			count++;
441 		}
442 	} while (count < 2);
443 }
444 
445 /*
446  * Second stage of a quiesce. The data is already synced, now we have to take
447  * care of the metadata. New transactions are already blocked, so we need to
448  * wait for any remaining transactions to drain out before proceeding.
449  */
450 void
xfs_quiesce_attr(struct xfs_mount * mp)451 xfs_quiesce_attr(
452 	struct xfs_mount	*mp)
453 {
454 	int	error = 0;
455 
456 	/* wait for all modifications to complete */
457 	while (atomic_read(&mp->m_active_trans) > 0)
458 		delay(100);
459 
460 	/* flush inodes and push all remaining buffers out to disk */
461 	xfs_quiesce_fs(mp);
462 
463 	/*
464 	 * Just warn here till VFS can correctly support
465 	 * read-only remount without racing.
466 	 */
467 	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
468 
469 	/* Push the superblock and write an unmount record */
470 	error = xfs_log_sbcount(mp);
471 	if (error)
472 		xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
473 				"Frozen image may not be consistent.");
474 	xfs_log_unmount_write(mp);
475 	xfs_unmountfs_writesb(mp);
476 }
477 
478 static void
xfs_syncd_queue_sync(struct xfs_mount * mp)479 xfs_syncd_queue_sync(
480 	struct xfs_mount        *mp)
481 {
482 	queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
483 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
484 }
485 
486 /*
487  * Every sync period we need to unpin all items, reclaim inodes and sync
488  * disk quotas.  We might need to cover the log to indicate that the
489  * filesystem is idle and not frozen.
490  */
491 STATIC void
xfs_sync_worker(struct work_struct * work)492 xfs_sync_worker(
493 	struct work_struct *work)
494 {
495 	struct xfs_mount *mp = container_of(to_delayed_work(work),
496 					struct xfs_mount, m_sync_work);
497 	int		error;
498 
499 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
500 		/* dgc: errors ignored here */
501 		if (mp->m_super->s_frozen == SB_UNFROZEN &&
502 		    xfs_log_need_covered(mp))
503 			error = xfs_fs_log_dummy(mp);
504 		else
505 			xfs_log_force(mp, 0);
506 
507 		/* start pushing all the metadata that is currently dirty */
508 		xfs_ail_push_all(mp->m_ail);
509 	}
510 
511 	/* queue us up again */
512 	xfs_syncd_queue_sync(mp);
513 }
514 
515 /*
516  * Queue a new inode reclaim pass if there are reclaimable inodes and there
517  * isn't a reclaim pass already in progress. By default it runs every 5s based
518  * on the xfs syncd work default of 30s. Perhaps this should have it's own
519  * tunable, but that can be done if this method proves to be ineffective or too
520  * aggressive.
521  */
522 static void
xfs_syncd_queue_reclaim(struct xfs_mount * mp)523 xfs_syncd_queue_reclaim(
524 	struct xfs_mount        *mp)
525 {
526 
527 	/*
528 	 * We can have inodes enter reclaim after we've shut down the syncd
529 	 * workqueue during unmount, so don't allow reclaim work to be queued
530 	 * during unmount.
531 	 */
532 	if (!(mp->m_super->s_flags & MS_ACTIVE))
533 		return;
534 
535 	rcu_read_lock();
536 	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
537 		queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
538 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
539 	}
540 	rcu_read_unlock();
541 }
542 
543 /*
544  * This is a fast pass over the inode cache to try to get reclaim moving on as
545  * many inodes as possible in a short period of time. It kicks itself every few
546  * seconds, as well as being kicked by the inode cache shrinker when memory
547  * goes low. It scans as quickly as possible avoiding locked inodes or those
548  * already being flushed, and once done schedules a future pass.
549  */
550 STATIC void
xfs_reclaim_worker(struct work_struct * work)551 xfs_reclaim_worker(
552 	struct work_struct *work)
553 {
554 	struct xfs_mount *mp = container_of(to_delayed_work(work),
555 					struct xfs_mount, m_reclaim_work);
556 
557 	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
558 	xfs_syncd_queue_reclaim(mp);
559 }
560 
561 /*
562  * Flush delayed allocate data, attempting to free up reserved space
563  * from existing allocations.  At this point a new allocation attempt
564  * has failed with ENOSPC and we are in the process of scratching our
565  * heads, looking about for more room.
566  *
567  * Queue a new data flush if there isn't one already in progress and
568  * wait for completion of the flush. This means that we only ever have one
569  * inode flush in progress no matter how many ENOSPC events are occurring and
570  * so will prevent the system from bogging down due to every concurrent
571  * ENOSPC event scanning all the active inodes in the system for writeback.
572  */
573 void
xfs_flush_inodes(struct xfs_inode * ip)574 xfs_flush_inodes(
575 	struct xfs_inode	*ip)
576 {
577 	struct xfs_mount	*mp = ip->i_mount;
578 
579 	queue_work(xfs_syncd_wq, &mp->m_flush_work);
580 	flush_work_sync(&mp->m_flush_work);
581 }
582 
583 STATIC void
xfs_flush_worker(struct work_struct * work)584 xfs_flush_worker(
585 	struct work_struct *work)
586 {
587 	struct xfs_mount *mp = container_of(work,
588 					struct xfs_mount, m_flush_work);
589 
590 	xfs_sync_data(mp, SYNC_TRYLOCK);
591 	xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
592 }
593 
594 int
xfs_syncd_init(struct xfs_mount * mp)595 xfs_syncd_init(
596 	struct xfs_mount	*mp)
597 {
598 	INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
599 	INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
600 	INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
601 
602 	xfs_syncd_queue_sync(mp);
603 	xfs_syncd_queue_reclaim(mp);
604 
605 	return 0;
606 }
607 
608 void
xfs_syncd_stop(struct xfs_mount * mp)609 xfs_syncd_stop(
610 	struct xfs_mount	*mp)
611 {
612 	cancel_delayed_work_sync(&mp->m_sync_work);
613 	cancel_delayed_work_sync(&mp->m_reclaim_work);
614 	cancel_work_sync(&mp->m_flush_work);
615 }
616 
617 void
__xfs_inode_set_reclaim_tag(struct xfs_perag * pag,struct xfs_inode * ip)618 __xfs_inode_set_reclaim_tag(
619 	struct xfs_perag	*pag,
620 	struct xfs_inode	*ip)
621 {
622 	radix_tree_tag_set(&pag->pag_ici_root,
623 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
624 			   XFS_ICI_RECLAIM_TAG);
625 
626 	if (!pag->pag_ici_reclaimable) {
627 		/* propagate the reclaim tag up into the perag radix tree */
628 		spin_lock(&ip->i_mount->m_perag_lock);
629 		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
630 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
631 				XFS_ICI_RECLAIM_TAG);
632 		spin_unlock(&ip->i_mount->m_perag_lock);
633 
634 		/* schedule periodic background inode reclaim */
635 		xfs_syncd_queue_reclaim(ip->i_mount);
636 
637 		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
638 							-1, _RET_IP_);
639 	}
640 	pag->pag_ici_reclaimable++;
641 }
642 
643 /*
644  * We set the inode flag atomically with the radix tree tag.
645  * Once we get tag lookups on the radix tree, this inode flag
646  * can go away.
647  */
648 void
xfs_inode_set_reclaim_tag(xfs_inode_t * ip)649 xfs_inode_set_reclaim_tag(
650 	xfs_inode_t	*ip)
651 {
652 	struct xfs_mount *mp = ip->i_mount;
653 	struct xfs_perag *pag;
654 
655 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
656 	spin_lock(&pag->pag_ici_lock);
657 	spin_lock(&ip->i_flags_lock);
658 	__xfs_inode_set_reclaim_tag(pag, ip);
659 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
660 	spin_unlock(&ip->i_flags_lock);
661 	spin_unlock(&pag->pag_ici_lock);
662 	xfs_perag_put(pag);
663 }
664 
665 STATIC void
__xfs_inode_clear_reclaim(xfs_perag_t * pag,xfs_inode_t * ip)666 __xfs_inode_clear_reclaim(
667 	xfs_perag_t	*pag,
668 	xfs_inode_t	*ip)
669 {
670 	pag->pag_ici_reclaimable--;
671 	if (!pag->pag_ici_reclaimable) {
672 		/* clear the reclaim tag from the perag radix tree */
673 		spin_lock(&ip->i_mount->m_perag_lock);
674 		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
675 				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
676 				XFS_ICI_RECLAIM_TAG);
677 		spin_unlock(&ip->i_mount->m_perag_lock);
678 		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
679 							-1, _RET_IP_);
680 	}
681 }
682 
683 void
__xfs_inode_clear_reclaim_tag(xfs_mount_t * mp,xfs_perag_t * pag,xfs_inode_t * ip)684 __xfs_inode_clear_reclaim_tag(
685 	xfs_mount_t	*mp,
686 	xfs_perag_t	*pag,
687 	xfs_inode_t	*ip)
688 {
689 	radix_tree_tag_clear(&pag->pag_ici_root,
690 			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
691 	__xfs_inode_clear_reclaim(pag, ip);
692 }
693 
694 /*
695  * Grab the inode for reclaim exclusively.
696  * Return 0 if we grabbed it, non-zero otherwise.
697  */
698 STATIC int
xfs_reclaim_inode_grab(struct xfs_inode * ip,int flags)699 xfs_reclaim_inode_grab(
700 	struct xfs_inode	*ip,
701 	int			flags)
702 {
703 	ASSERT(rcu_read_lock_held());
704 
705 	/* quick check for stale RCU freed inode */
706 	if (!ip->i_ino)
707 		return 1;
708 
709 	/*
710 	 * If we are asked for non-blocking operation, do unlocked checks to
711 	 * see if the inode already is being flushed or in reclaim to avoid
712 	 * lock traffic.
713 	 */
714 	if ((flags & SYNC_TRYLOCK) &&
715 	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
716 		return 1;
717 
718 	/*
719 	 * The radix tree lock here protects a thread in xfs_iget from racing
720 	 * with us starting reclaim on the inode.  Once we have the
721 	 * XFS_IRECLAIM flag set it will not touch us.
722 	 *
723 	 * Due to RCU lookup, we may find inodes that have been freed and only
724 	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
725 	 * aren't candidates for reclaim at all, so we must check the
726 	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
727 	 */
728 	spin_lock(&ip->i_flags_lock);
729 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
730 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
731 		/* not a reclaim candidate. */
732 		spin_unlock(&ip->i_flags_lock);
733 		return 1;
734 	}
735 	__xfs_iflags_set(ip, XFS_IRECLAIM);
736 	spin_unlock(&ip->i_flags_lock);
737 	return 0;
738 }
739 
740 /*
741  * Inodes in different states need to be treated differently, and the return
742  * value of xfs_iflush is not sufficient to get this right. The following table
743  * lists the inode states and the reclaim actions necessary for non-blocking
744  * reclaim:
745  *
746  *
747  *	inode state	     iflush ret		required action
748  *      ---------------      ----------         ---------------
749  *	bad			-		reclaim
750  *	shutdown		EIO		unpin and reclaim
751  *	clean, unpinned		0		reclaim
752  *	stale, unpinned		0		reclaim
753  *	clean, pinned(*)	0		requeue
754  *	stale, pinned		EAGAIN		requeue
755  *	dirty, delwri ok	0		requeue
756  *	dirty, delwri blocked	EAGAIN		requeue
757  *	dirty, sync flush	0		reclaim
758  *
759  * (*) dgc: I don't think the clean, pinned state is possible but it gets
760  * handled anyway given the order of checks implemented.
761  *
762  * As can be seen from the table, the return value of xfs_iflush() is not
763  * sufficient to correctly decide the reclaim action here. The checks in
764  * xfs_iflush() might look like duplicates, but they are not.
765  *
766  * Also, because we get the flush lock first, we know that any inode that has
767  * been flushed delwri has had the flush completed by the time we check that
768  * the inode is clean. The clean inode check needs to be done before flushing
769  * the inode delwri otherwise we would loop forever requeuing clean inodes as
770  * we cannot tell apart a successful delwri flush and a clean inode from the
771  * return value of xfs_iflush().
772  *
773  * Note that because the inode is flushed delayed write by background
774  * writeback, the flush lock may already be held here and waiting on it can
775  * result in very long latencies. Hence for sync reclaims, where we wait on the
776  * flush lock, the caller should push out delayed write inodes first before
777  * trying to reclaim them to minimise the amount of time spent waiting. For
778  * background relaim, we just requeue the inode for the next pass.
779  *
780  * Hence the order of actions after gaining the locks should be:
781  *	bad		=> reclaim
782  *	shutdown	=> unpin and reclaim
783  *	pinned, delwri	=> requeue
784  *	pinned, sync	=> unpin
785  *	stale		=> reclaim
786  *	clean		=> reclaim
787  *	dirty, delwri	=> flush and requeue
788  *	dirty, sync	=> flush, wait and reclaim
789  */
790 STATIC int
xfs_reclaim_inode(struct xfs_inode * ip,struct xfs_perag * pag,int sync_mode)791 xfs_reclaim_inode(
792 	struct xfs_inode	*ip,
793 	struct xfs_perag	*pag,
794 	int			sync_mode)
795 {
796 	int	error;
797 
798 restart:
799 	error = 0;
800 	xfs_ilock(ip, XFS_ILOCK_EXCL);
801 	if (!xfs_iflock_nowait(ip)) {
802 		if (!(sync_mode & SYNC_WAIT))
803 			goto out;
804 
805 		/*
806 		 * If we only have a single dirty inode in a cluster there is
807 		 * a fair chance that the AIL push may have pushed it into
808 		 * the buffer, but xfsbufd won't touch it until 30 seconds
809 		 * from now, and thus we will lock up here.
810 		 *
811 		 * Promote the inode buffer to the front of the delwri list
812 		 * and wake up xfsbufd now.
813 		 */
814 		xfs_promote_inode(ip);
815 		xfs_iflock(ip);
816 	}
817 
818 	if (is_bad_inode(VFS_I(ip)))
819 		goto reclaim;
820 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
821 		xfs_iunpin_wait(ip);
822 		goto reclaim;
823 	}
824 	if (xfs_ipincount(ip)) {
825 		if (!(sync_mode & SYNC_WAIT)) {
826 			xfs_ifunlock(ip);
827 			goto out;
828 		}
829 		xfs_iunpin_wait(ip);
830 	}
831 	if (xfs_iflags_test(ip, XFS_ISTALE))
832 		goto reclaim;
833 	if (xfs_inode_clean(ip))
834 		goto reclaim;
835 
836 	/*
837 	 * Now we have an inode that needs flushing.
838 	 *
839 	 * We do a nonblocking flush here even if we are doing a SYNC_WAIT
840 	 * reclaim as we can deadlock with inode cluster removal.
841 	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
842 	 * ip->i_lock, and we are doing the exact opposite here. As a result,
843 	 * doing a blocking xfs_itobp() to get the cluster buffer will result
844 	 * in an ABBA deadlock with xfs_ifree_cluster().
845 	 *
846 	 * As xfs_ifree_cluser() must gather all inodes that are active in the
847 	 * cache to mark them stale, if we hit this case we don't actually want
848 	 * to do IO here - we want the inode marked stale so we can simply
849 	 * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush,
850 	 * just unlock the inode, back off and try again. Hopefully the next
851 	 * pass through will see the stale flag set on the inode.
852 	 */
853 	error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode);
854 	if (sync_mode & SYNC_WAIT) {
855 		if (error == EAGAIN) {
856 			xfs_iunlock(ip, XFS_ILOCK_EXCL);
857 			/* backoff longer than in xfs_ifree_cluster */
858 			delay(2);
859 			goto restart;
860 		}
861 		xfs_iflock(ip);
862 		goto reclaim;
863 	}
864 
865 	/*
866 	 * When we have to flush an inode but don't have SYNC_WAIT set, we
867 	 * flush the inode out using a delwri buffer and wait for the next
868 	 * call into reclaim to find it in a clean state instead of waiting for
869 	 * it now. We also don't return errors here - if the error is transient
870 	 * then the next reclaim pass will flush the inode, and if the error
871 	 * is permanent then the next sync reclaim will reclaim the inode and
872 	 * pass on the error.
873 	 */
874 	if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
875 		xfs_warn(ip->i_mount,
876 			"inode 0x%llx background reclaim flush failed with %d",
877 			(long long)ip->i_ino, error);
878 	}
879 out:
880 	xfs_iflags_clear(ip, XFS_IRECLAIM);
881 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
882 	/*
883 	 * We could return EAGAIN here to make reclaim rescan the inode tree in
884 	 * a short while. However, this just burns CPU time scanning the tree
885 	 * waiting for IO to complete and xfssyncd never goes back to the idle
886 	 * state. Instead, return 0 to let the next scheduled background reclaim
887 	 * attempt to reclaim the inode again.
888 	 */
889 	return 0;
890 
891 reclaim:
892 	xfs_ifunlock(ip);
893 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
894 
895 	XFS_STATS_INC(xs_ig_reclaims);
896 	/*
897 	 * Remove the inode from the per-AG radix tree.
898 	 *
899 	 * Because radix_tree_delete won't complain even if the item was never
900 	 * added to the tree assert that it's been there before to catch
901 	 * problems with the inode life time early on.
902 	 */
903 	spin_lock(&pag->pag_ici_lock);
904 	if (!radix_tree_delete(&pag->pag_ici_root,
905 				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
906 		ASSERT(0);
907 	__xfs_inode_clear_reclaim(pag, ip);
908 	spin_unlock(&pag->pag_ici_lock);
909 
910 	/*
911 	 * Here we do an (almost) spurious inode lock in order to coordinate
912 	 * with inode cache radix tree lookups.  This is because the lookup
913 	 * can reference the inodes in the cache without taking references.
914 	 *
915 	 * We make that OK here by ensuring that we wait until the inode is
916 	 * unlocked after the lookup before we go ahead and free it.  We get
917 	 * both the ilock and the iolock because the code may need to drop the
918 	 * ilock one but will still hold the iolock.
919 	 */
920 	xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
921 	xfs_qm_dqdetach(ip);
922 	xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
923 
924 	xfs_inode_free(ip);
925 	return error;
926 
927 }
928 
929 /*
930  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
931  * corrupted, we still want to try to reclaim all the inodes. If we don't,
932  * then a shut down during filesystem unmount reclaim walk leak all the
933  * unreclaimed inodes.
934  */
935 int
xfs_reclaim_inodes_ag(struct xfs_mount * mp,int flags,int * nr_to_scan)936 xfs_reclaim_inodes_ag(
937 	struct xfs_mount	*mp,
938 	int			flags,
939 	int			*nr_to_scan)
940 {
941 	struct xfs_perag	*pag;
942 	int			error = 0;
943 	int			last_error = 0;
944 	xfs_agnumber_t		ag;
945 	int			trylock = flags & SYNC_TRYLOCK;
946 	int			skipped;
947 
948 restart:
949 	ag = 0;
950 	skipped = 0;
951 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
952 		unsigned long	first_index = 0;
953 		int		done = 0;
954 		int		nr_found = 0;
955 
956 		ag = pag->pag_agno + 1;
957 
958 		if (trylock) {
959 			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
960 				skipped++;
961 				xfs_perag_put(pag);
962 				continue;
963 			}
964 			first_index = pag->pag_ici_reclaim_cursor;
965 		} else
966 			mutex_lock(&pag->pag_ici_reclaim_lock);
967 
968 		do {
969 			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
970 			int	i;
971 
972 			rcu_read_lock();
973 			nr_found = radix_tree_gang_lookup_tag(
974 					&pag->pag_ici_root,
975 					(void **)batch, first_index,
976 					XFS_LOOKUP_BATCH,
977 					XFS_ICI_RECLAIM_TAG);
978 			if (!nr_found) {
979 				done = 1;
980 				rcu_read_unlock();
981 				break;
982 			}
983 
984 			/*
985 			 * Grab the inodes before we drop the lock. if we found
986 			 * nothing, nr == 0 and the loop will be skipped.
987 			 */
988 			for (i = 0; i < nr_found; i++) {
989 				struct xfs_inode *ip = batch[i];
990 
991 				if (done || xfs_reclaim_inode_grab(ip, flags))
992 					batch[i] = NULL;
993 
994 				/*
995 				 * Update the index for the next lookup. Catch
996 				 * overflows into the next AG range which can
997 				 * occur if we have inodes in the last block of
998 				 * the AG and we are currently pointing to the
999 				 * last inode.
1000 				 *
1001 				 * Because we may see inodes that are from the
1002 				 * wrong AG due to RCU freeing and
1003 				 * reallocation, only update the index if it
1004 				 * lies in this AG. It was a race that lead us
1005 				 * to see this inode, so another lookup from
1006 				 * the same index will not find it again.
1007 				 */
1008 				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1009 								pag->pag_agno)
1010 					continue;
1011 				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1012 				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1013 					done = 1;
1014 			}
1015 
1016 			/* unlock now we've grabbed the inodes. */
1017 			rcu_read_unlock();
1018 
1019 			for (i = 0; i < nr_found; i++) {
1020 				if (!batch[i])
1021 					continue;
1022 				error = xfs_reclaim_inode(batch[i], pag, flags);
1023 				if (error && last_error != EFSCORRUPTED)
1024 					last_error = error;
1025 			}
1026 
1027 			*nr_to_scan -= XFS_LOOKUP_BATCH;
1028 
1029 			cond_resched();
1030 
1031 		} while (nr_found && !done && *nr_to_scan > 0);
1032 
1033 		if (trylock && !done)
1034 			pag->pag_ici_reclaim_cursor = first_index;
1035 		else
1036 			pag->pag_ici_reclaim_cursor = 0;
1037 		mutex_unlock(&pag->pag_ici_reclaim_lock);
1038 		xfs_perag_put(pag);
1039 	}
1040 
1041 	/*
1042 	 * if we skipped any AG, and we still have scan count remaining, do
1043 	 * another pass this time using blocking reclaim semantics (i.e
1044 	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1045 	 * ensure that when we get more reclaimers than AGs we block rather
1046 	 * than spin trying to execute reclaim.
1047 	 */
1048 	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1049 		trylock = 0;
1050 		goto restart;
1051 	}
1052 	return XFS_ERROR(last_error);
1053 }
1054 
1055 int
xfs_reclaim_inodes(xfs_mount_t * mp,int mode)1056 xfs_reclaim_inodes(
1057 	xfs_mount_t	*mp,
1058 	int		mode)
1059 {
1060 	int		nr_to_scan = INT_MAX;
1061 
1062 	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1063 }
1064 
1065 /*
1066  * Scan a certain number of inodes for reclaim.
1067  *
1068  * When called we make sure that there is a background (fast) inode reclaim in
1069  * progress, while we will throttle the speed of reclaim via doing synchronous
1070  * reclaim of inodes. That means if we come across dirty inodes, we wait for
1071  * them to be cleaned, which we hope will not be very long due to the
1072  * background walker having already kicked the IO off on those dirty inodes.
1073  */
1074 void
xfs_reclaim_inodes_nr(struct xfs_mount * mp,int nr_to_scan)1075 xfs_reclaim_inodes_nr(
1076 	struct xfs_mount	*mp,
1077 	int			nr_to_scan)
1078 {
1079 	/* kick background reclaimer and push the AIL */
1080 	xfs_syncd_queue_reclaim(mp);
1081 	xfs_ail_push_all(mp->m_ail);
1082 
1083 	xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1084 }
1085 
1086 /*
1087  * Return the number of reclaimable inodes in the filesystem for
1088  * the shrinker to determine how much to reclaim.
1089  */
1090 int
xfs_reclaim_inodes_count(struct xfs_mount * mp)1091 xfs_reclaim_inodes_count(
1092 	struct xfs_mount	*mp)
1093 {
1094 	struct xfs_perag	*pag;
1095 	xfs_agnumber_t		ag = 0;
1096 	int			reclaimable = 0;
1097 
1098 	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1099 		ag = pag->pag_agno + 1;
1100 		reclaimable += pag->pag_ici_reclaimable;
1101 		xfs_perag_put(pag);
1102 	}
1103 	return reclaimable;
1104 }
1105 
1106