1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	unsigned long *older_than_this;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int tagged_writepages:1;
46 	unsigned int for_kupdate:1;
47 	unsigned int range_cyclic:1;
48 	unsigned int for_background:1;
49 	enum wb_reason reason;		/* why was writeback initiated? */
50 
51 	struct list_head list;		/* pending work list */
52 	struct completion *done;	/* set if the caller waits */
53 };
54 
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59 
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
writeback_in_progress(struct backing_dev_info * bdi)67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 	return test_bit(BDI_writeback_running, &bdi->state);
70 }
71 
inode_to_bdi(struct inode * inode)72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74 	struct super_block *sb = inode->i_sb;
75 
76 	if (strcmp(sb->s_type->name, "bdev") == 0)
77 		return inode->i_mapping->backing_dev_info;
78 
79 	return sb->s_bdi;
80 }
81 
wb_inode(struct list_head * head)82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84 	return list_entry(head, struct inode, i_wb_list);
85 }
86 
87 /*
88  * Include the creation of the trace points after defining the
89  * wb_writeback_work structure and inline functions so that the definition
90  * remains local to this file.
91  */
92 #define CREATE_TRACE_POINTS
93 #include <trace/events/writeback.h>
94 
95 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
bdi_wakeup_flusher(struct backing_dev_info * bdi)96 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
97 {
98 	if (bdi->wb.task) {
99 		wake_up_process(bdi->wb.task);
100 	} else {
101 		/*
102 		 * The bdi thread isn't there, wake up the forker thread which
103 		 * will create and run it.
104 		 */
105 		wake_up_process(default_backing_dev_info.wb.task);
106 	}
107 }
108 
bdi_queue_work(struct backing_dev_info * bdi,struct wb_writeback_work * work)109 static void bdi_queue_work(struct backing_dev_info *bdi,
110 			   struct wb_writeback_work *work)
111 {
112 	trace_writeback_queue(bdi, work);
113 
114 	spin_lock_bh(&bdi->wb_lock);
115 	list_add_tail(&work->list, &bdi->work_list);
116 	if (!bdi->wb.task)
117 		trace_writeback_nothread(bdi, work);
118 	bdi_wakeup_flusher(bdi);
119 	spin_unlock_bh(&bdi->wb_lock);
120 }
121 
122 static void
__bdi_start_writeback(struct backing_dev_info * bdi,long nr_pages,bool range_cyclic,enum wb_reason reason)123 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
124 		      bool range_cyclic, enum wb_reason reason)
125 {
126 	struct wb_writeback_work *work;
127 
128 	/*
129 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
130 	 * wakeup the thread for old dirty data writeback
131 	 */
132 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
133 	if (!work) {
134 		if (bdi->wb.task) {
135 			trace_writeback_nowork(bdi);
136 			wake_up_process(bdi->wb.task);
137 		}
138 		return;
139 	}
140 
141 	work->sync_mode	= WB_SYNC_NONE;
142 	work->nr_pages	= nr_pages;
143 	work->range_cyclic = range_cyclic;
144 	work->reason	= reason;
145 
146 	bdi_queue_work(bdi, work);
147 }
148 
149 /**
150  * bdi_start_writeback - start writeback
151  * @bdi: the backing device to write from
152  * @nr_pages: the number of pages to write
153  * @reason: reason why some writeback work was initiated
154  *
155  * Description:
156  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
157  *   started when this function returns, we make no guarantees on
158  *   completion. Caller need not hold sb s_umount semaphore.
159  *
160  */
bdi_start_writeback(struct backing_dev_info * bdi,long nr_pages,enum wb_reason reason)161 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
162 			enum wb_reason reason)
163 {
164 	__bdi_start_writeback(bdi, nr_pages, true, reason);
165 }
166 
167 /**
168  * bdi_start_background_writeback - start background writeback
169  * @bdi: the backing device to write from
170  *
171  * Description:
172  *   This makes sure WB_SYNC_NONE background writeback happens. When
173  *   this function returns, it is only guaranteed that for given BDI
174  *   some IO is happening if we are over background dirty threshold.
175  *   Caller need not hold sb s_umount semaphore.
176  */
bdi_start_background_writeback(struct backing_dev_info * bdi)177 void bdi_start_background_writeback(struct backing_dev_info *bdi)
178 {
179 	/*
180 	 * We just wake up the flusher thread. It will perform background
181 	 * writeback as soon as there is no other work to do.
182 	 */
183 	trace_writeback_wake_background(bdi);
184 	spin_lock_bh(&bdi->wb_lock);
185 	bdi_wakeup_flusher(bdi);
186 	spin_unlock_bh(&bdi->wb_lock);
187 }
188 
189 /*
190  * Remove the inode from the writeback list it is on.
191  */
inode_wb_list_del(struct inode * inode)192 void inode_wb_list_del(struct inode *inode)
193 {
194 	struct backing_dev_info *bdi = inode_to_bdi(inode);
195 
196 	spin_lock(&bdi->wb.list_lock);
197 	list_del_init(&inode->i_wb_list);
198 	spin_unlock(&bdi->wb.list_lock);
199 }
200 
201 /*
202  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
203  * furthest end of its superblock's dirty-inode list.
204  *
205  * Before stamping the inode's ->dirtied_when, we check to see whether it is
206  * already the most-recently-dirtied inode on the b_dirty list.  If that is
207  * the case then the inode must have been redirtied while it was being written
208  * out and we don't reset its dirtied_when.
209  */
redirty_tail(struct inode * inode,struct bdi_writeback * wb)210 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
211 {
212 	assert_spin_locked(&wb->list_lock);
213 	if (!list_empty(&wb->b_dirty)) {
214 		struct inode *tail;
215 
216 		tail = wb_inode(wb->b_dirty.next);
217 		if (time_before(inode->dirtied_when, tail->dirtied_when))
218 			inode->dirtied_when = jiffies;
219 	}
220 	list_move(&inode->i_wb_list, &wb->b_dirty);
221 }
222 
223 /*
224  * requeue inode for re-scanning after bdi->b_io list is exhausted.
225  */
requeue_io(struct inode * inode,struct bdi_writeback * wb)226 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
227 {
228 	assert_spin_locked(&wb->list_lock);
229 	list_move(&inode->i_wb_list, &wb->b_more_io);
230 }
231 
inode_sync_complete(struct inode * inode)232 static void inode_sync_complete(struct inode *inode)
233 {
234 	/*
235 	 * Prevent speculative execution through
236 	 * spin_unlock(&wb->list_lock);
237 	 */
238 
239 	smp_mb();
240 	wake_up_bit(&inode->i_state, __I_SYNC);
241 }
242 
inode_dirtied_after(struct inode * inode,unsigned long t)243 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
244 {
245 	bool ret = time_after(inode->dirtied_when, t);
246 #ifndef CONFIG_64BIT
247 	/*
248 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
249 	 * It _appears_ to be in the future, but is actually in distant past.
250 	 * This test is necessary to prevent such wrapped-around relative times
251 	 * from permanently stopping the whole bdi writeback.
252 	 */
253 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
254 #endif
255 	return ret;
256 }
257 
258 /*
259  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
260  */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,struct wb_writeback_work * work)261 static int move_expired_inodes(struct list_head *delaying_queue,
262 			       struct list_head *dispatch_queue,
263 			       struct wb_writeback_work *work)
264 {
265 	LIST_HEAD(tmp);
266 	struct list_head *pos, *node;
267 	struct super_block *sb = NULL;
268 	struct inode *inode;
269 	int do_sb_sort = 0;
270 	int moved = 0;
271 
272 	while (!list_empty(delaying_queue)) {
273 		inode = wb_inode(delaying_queue->prev);
274 		if (work->older_than_this &&
275 		    inode_dirtied_after(inode, *work->older_than_this))
276 			break;
277 		if (sb && sb != inode->i_sb)
278 			do_sb_sort = 1;
279 		sb = inode->i_sb;
280 		list_move(&inode->i_wb_list, &tmp);
281 		moved++;
282 	}
283 
284 	/* just one sb in list, splice to dispatch_queue and we're done */
285 	if (!do_sb_sort) {
286 		list_splice(&tmp, dispatch_queue);
287 		goto out;
288 	}
289 
290 	/* Move inodes from one superblock together */
291 	while (!list_empty(&tmp)) {
292 		sb = wb_inode(tmp.prev)->i_sb;
293 		list_for_each_prev_safe(pos, node, &tmp) {
294 			inode = wb_inode(pos);
295 			if (inode->i_sb == sb)
296 				list_move(&inode->i_wb_list, dispatch_queue);
297 		}
298 	}
299 out:
300 	return moved;
301 }
302 
303 /*
304  * Queue all expired dirty inodes for io, eldest first.
305  * Before
306  *         newly dirtied     b_dirty    b_io    b_more_io
307  *         =============>    gf         edc     BA
308  * After
309  *         newly dirtied     b_dirty    b_io    b_more_io
310  *         =============>    g          fBAedc
311  *                                           |
312  *                                           +--> dequeue for IO
313  */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work)314 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
315 {
316 	int moved;
317 	assert_spin_locked(&wb->list_lock);
318 	list_splice_init(&wb->b_more_io, &wb->b_io);
319 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
320 	trace_writeback_queue_io(wb, work, moved);
321 }
322 
write_inode(struct inode * inode,struct writeback_control * wbc)323 static int write_inode(struct inode *inode, struct writeback_control *wbc)
324 {
325 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
326 		return inode->i_sb->s_op->write_inode(inode, wbc);
327 	return 0;
328 }
329 
330 /*
331  * Wait for writeback on an inode to complete.
332  */
inode_wait_for_writeback(struct inode * inode,struct bdi_writeback * wb)333 static void inode_wait_for_writeback(struct inode *inode,
334 				     struct bdi_writeback *wb)
335 {
336 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
337 	wait_queue_head_t *wqh;
338 
339 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
340 	while (inode->i_state & I_SYNC) {
341 		spin_unlock(&inode->i_lock);
342 		spin_unlock(&wb->list_lock);
343 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
344 		spin_lock(&wb->list_lock);
345 		spin_lock(&inode->i_lock);
346 	}
347 }
348 
349 /*
350  * Write out an inode's dirty pages.  Called under wb->list_lock and
351  * inode->i_lock.  Either the caller has an active reference on the inode or
352  * the inode has I_WILL_FREE set.
353  *
354  * If `wait' is set, wait on the writeout.
355  *
356  * The whole writeout design is quite complex and fragile.  We want to avoid
357  * starvation of particular inodes when others are being redirtied, prevent
358  * livelocks, etc.
359  */
360 static int
writeback_single_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)361 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
362 		       struct writeback_control *wbc)
363 {
364 	struct address_space *mapping = inode->i_mapping;
365 	long nr_to_write = wbc->nr_to_write;
366 	unsigned dirty;
367 	int ret;
368 
369 	assert_spin_locked(&wb->list_lock);
370 	assert_spin_locked(&inode->i_lock);
371 
372 	if (!atomic_read(&inode->i_count))
373 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
374 	else
375 		WARN_ON(inode->i_state & I_WILL_FREE);
376 
377 	if (inode->i_state & I_SYNC) {
378 		/*
379 		 * If this inode is locked for writeback and we are not doing
380 		 * writeback-for-data-integrity, move it to b_more_io so that
381 		 * writeback can proceed with the other inodes on s_io.
382 		 *
383 		 * We'll have another go at writing back this inode when we
384 		 * completed a full scan of b_io.
385 		 */
386 		if (wbc->sync_mode != WB_SYNC_ALL) {
387 			requeue_io(inode, wb);
388 			trace_writeback_single_inode_requeue(inode, wbc,
389 							     nr_to_write);
390 			return 0;
391 		}
392 
393 		/*
394 		 * It's a data-integrity sync.  We must wait.
395 		 */
396 		inode_wait_for_writeback(inode, wb);
397 	}
398 
399 	BUG_ON(inode->i_state & I_SYNC);
400 
401 	/* Set I_SYNC, reset I_DIRTY_PAGES */
402 	inode->i_state |= I_SYNC;
403 	inode->i_state &= ~I_DIRTY_PAGES;
404 	spin_unlock(&inode->i_lock);
405 	spin_unlock(&wb->list_lock);
406 
407 	ret = do_writepages(mapping, wbc);
408 
409 	/*
410 	 * Make sure to wait on the data before writing out the metadata.
411 	 * This is important for filesystems that modify metadata on data
412 	 * I/O completion.
413 	 */
414 	if (wbc->sync_mode == WB_SYNC_ALL) {
415 		int err = filemap_fdatawait(mapping);
416 		if (ret == 0)
417 			ret = err;
418 	}
419 
420 	/*
421 	 * Some filesystems may redirty the inode during the writeback
422 	 * due to delalloc, clear dirty metadata flags right before
423 	 * write_inode()
424 	 */
425 	spin_lock(&inode->i_lock);
426 	dirty = inode->i_state & I_DIRTY;
427 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
428 	spin_unlock(&inode->i_lock);
429 	/* Don't write the inode if only I_DIRTY_PAGES was set */
430 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
431 		int err = write_inode(inode, wbc);
432 		if (ret == 0)
433 			ret = err;
434 	}
435 
436 	spin_lock(&wb->list_lock);
437 	spin_lock(&inode->i_lock);
438 	inode->i_state &= ~I_SYNC;
439 	if (!(inode->i_state & I_FREEING)) {
440 		/*
441 		 * Sync livelock prevention. Each inode is tagged and synced in
442 		 * one shot. If still dirty, it will be redirty_tail()'ed below.
443 		 * Update the dirty time to prevent enqueue and sync it again.
444 		 */
445 		if ((inode->i_state & I_DIRTY) &&
446 		    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
447 			inode->dirtied_when = jiffies;
448 
449 		if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
450 			/*
451 			 * We didn't write back all the pages.  nfs_writepages()
452 			 * sometimes bales out without doing anything.
453 			 */
454 			inode->i_state |= I_DIRTY_PAGES;
455 			if (wbc->nr_to_write <= 0) {
456 				/*
457 				 * slice used up: queue for next turn
458 				 */
459 				requeue_io(inode, wb);
460 			} else {
461 				/*
462 				 * Writeback blocked by something other than
463 				 * congestion. Delay the inode for some time to
464 				 * avoid spinning on the CPU (100% iowait)
465 				 * retrying writeback of the dirty page/inode
466 				 * that cannot be performed immediately.
467 				 */
468 				redirty_tail(inode, wb);
469 			}
470 		} else if (inode->i_state & I_DIRTY) {
471 			/*
472 			 * Filesystems can dirty the inode during writeback
473 			 * operations, such as delayed allocation during
474 			 * submission or metadata updates after data IO
475 			 * completion.
476 			 */
477 			redirty_tail(inode, wb);
478 		} else {
479 			/*
480 			 * The inode is clean.  At this point we either have
481 			 * a reference to the inode or it's on it's way out.
482 			 * No need to add it back to the LRU.
483 			 */
484 			list_del_init(&inode->i_wb_list);
485 		}
486 	}
487 	inode_sync_complete(inode);
488 	trace_writeback_single_inode(inode, wbc, nr_to_write);
489 	return ret;
490 }
491 
writeback_chunk_size(struct backing_dev_info * bdi,struct wb_writeback_work * work)492 static long writeback_chunk_size(struct backing_dev_info *bdi,
493 				 struct wb_writeback_work *work)
494 {
495 	long pages;
496 
497 	/*
498 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
499 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
500 	 * here avoids calling into writeback_inodes_wb() more than once.
501 	 *
502 	 * The intended call sequence for WB_SYNC_ALL writeback is:
503 	 *
504 	 *      wb_writeback()
505 	 *          writeback_sb_inodes()       <== called only once
506 	 *              write_cache_pages()     <== called once for each inode
507 	 *                   (quickly) tag currently dirty pages
508 	 *                   (maybe slowly) sync all tagged pages
509 	 */
510 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
511 		pages = LONG_MAX;
512 	else {
513 		pages = min(bdi->avg_write_bandwidth / 2,
514 			    global_dirty_limit / DIRTY_SCOPE);
515 		pages = min(pages, work->nr_pages);
516 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
517 				   MIN_WRITEBACK_PAGES);
518 	}
519 
520 	return pages;
521 }
522 
523 /*
524  * Write a portion of b_io inodes which belong to @sb.
525  *
526  * If @only_this_sb is true, then find and write all such
527  * inodes. Otherwise write only ones which go sequentially
528  * in reverse order.
529  *
530  * Return the number of pages and/or inodes written.
531  */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)532 static long writeback_sb_inodes(struct super_block *sb,
533 				struct bdi_writeback *wb,
534 				struct wb_writeback_work *work)
535 {
536 	struct writeback_control wbc = {
537 		.sync_mode		= work->sync_mode,
538 		.tagged_writepages	= work->tagged_writepages,
539 		.for_kupdate		= work->for_kupdate,
540 		.for_background		= work->for_background,
541 		.range_cyclic		= work->range_cyclic,
542 		.range_start		= 0,
543 		.range_end		= LLONG_MAX,
544 	};
545 	unsigned long start_time = jiffies;
546 	long write_chunk;
547 	long wrote = 0;  /* count both pages and inodes */
548 
549 	while (!list_empty(&wb->b_io)) {
550 		struct inode *inode = wb_inode(wb->b_io.prev);
551 
552 		if (inode->i_sb != sb) {
553 			if (work->sb) {
554 				/*
555 				 * We only want to write back data for this
556 				 * superblock, move all inodes not belonging
557 				 * to it back onto the dirty list.
558 				 */
559 				redirty_tail(inode, wb);
560 				continue;
561 			}
562 
563 			/*
564 			 * The inode belongs to a different superblock.
565 			 * Bounce back to the caller to unpin this and
566 			 * pin the next superblock.
567 			 */
568 			break;
569 		}
570 
571 		/*
572 		 * Don't bother with new inodes or inodes beeing freed, first
573 		 * kind does not need peridic writeout yet, and for the latter
574 		 * kind writeout is handled by the freer.
575 		 */
576 		spin_lock(&inode->i_lock);
577 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
578 			spin_unlock(&inode->i_lock);
579 			redirty_tail(inode, wb);
580 			continue;
581 		}
582 		__iget(inode);
583 		write_chunk = writeback_chunk_size(wb->bdi, work);
584 		wbc.nr_to_write = write_chunk;
585 		wbc.pages_skipped = 0;
586 
587 		writeback_single_inode(inode, wb, &wbc);
588 
589 		work->nr_pages -= write_chunk - wbc.nr_to_write;
590 		wrote += write_chunk - wbc.nr_to_write;
591 		if (!(inode->i_state & I_DIRTY))
592 			wrote++;
593 		if (wbc.pages_skipped) {
594 			/*
595 			 * writeback is not making progress due to locked
596 			 * buffers.  Skip this inode for now.
597 			 */
598 			redirty_tail(inode, wb);
599 		}
600 		spin_unlock(&inode->i_lock);
601 		spin_unlock(&wb->list_lock);
602 		iput(inode);
603 		cond_resched();
604 		spin_lock(&wb->list_lock);
605 		/*
606 		 * bail out to wb_writeback() often enough to check
607 		 * background threshold and other termination conditions.
608 		 */
609 		if (wrote) {
610 			if (time_is_before_jiffies(start_time + HZ / 10UL))
611 				break;
612 			if (work->nr_pages <= 0)
613 				break;
614 		}
615 	}
616 	return wrote;
617 }
618 
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)619 static long __writeback_inodes_wb(struct bdi_writeback *wb,
620 				  struct wb_writeback_work *work)
621 {
622 	unsigned long start_time = jiffies;
623 	long wrote = 0;
624 
625 	while (!list_empty(&wb->b_io)) {
626 		struct inode *inode = wb_inode(wb->b_io.prev);
627 		struct super_block *sb = inode->i_sb;
628 
629 		if (!grab_super_passive(sb)) {
630 			/*
631 			 * grab_super_passive() may fail consistently due to
632 			 * s_umount being grabbed by someone else. Don't use
633 			 * requeue_io() to avoid busy retrying the inode/sb.
634 			 */
635 			redirty_tail(inode, wb);
636 			continue;
637 		}
638 		wrote += writeback_sb_inodes(sb, wb, work);
639 		drop_super(sb);
640 
641 		/* refer to the same tests at the end of writeback_sb_inodes */
642 		if (wrote) {
643 			if (time_is_before_jiffies(start_time + HZ / 10UL))
644 				break;
645 			if (work->nr_pages <= 0)
646 				break;
647 		}
648 	}
649 	/* Leave any unwritten inodes on b_io */
650 	return wrote;
651 }
652 
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)653 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
654 				enum wb_reason reason)
655 {
656 	struct wb_writeback_work work = {
657 		.nr_pages	= nr_pages,
658 		.sync_mode	= WB_SYNC_NONE,
659 		.range_cyclic	= 1,
660 		.reason		= reason,
661 	};
662 
663 	spin_lock(&wb->list_lock);
664 	if (list_empty(&wb->b_io))
665 		queue_io(wb, &work);
666 	__writeback_inodes_wb(wb, &work);
667 	spin_unlock(&wb->list_lock);
668 
669 	return nr_pages - work.nr_pages;
670 }
671 
over_bground_thresh(struct backing_dev_info * bdi)672 static bool over_bground_thresh(struct backing_dev_info *bdi)
673 {
674 	unsigned long background_thresh, dirty_thresh;
675 
676 	global_dirty_limits(&background_thresh, &dirty_thresh);
677 
678 	if (global_page_state(NR_FILE_DIRTY) +
679 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
680 		return true;
681 
682 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
683 				bdi_dirty_limit(bdi, background_thresh))
684 		return true;
685 
686 	return false;
687 }
688 
689 /*
690  * Called under wb->list_lock. If there are multiple wb per bdi,
691  * only the flusher working on the first wb should do it.
692  */
wb_update_bandwidth(struct bdi_writeback * wb,unsigned long start_time)693 static void wb_update_bandwidth(struct bdi_writeback *wb,
694 				unsigned long start_time)
695 {
696 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
697 }
698 
699 /*
700  * Explicit flushing or periodic writeback of "old" data.
701  *
702  * Define "old": the first time one of an inode's pages is dirtied, we mark the
703  * dirtying-time in the inode's address_space.  So this periodic writeback code
704  * just walks the superblock inode list, writing back any inodes which are
705  * older than a specific point in time.
706  *
707  * Try to run once per dirty_writeback_interval.  But if a writeback event
708  * takes longer than a dirty_writeback_interval interval, then leave a
709  * one-second gap.
710  *
711  * older_than_this takes precedence over nr_to_write.  So we'll only write back
712  * all dirty pages if they are all attached to "old" mappings.
713  */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)714 static long wb_writeback(struct bdi_writeback *wb,
715 			 struct wb_writeback_work *work)
716 {
717 	unsigned long wb_start = jiffies;
718 	long nr_pages = work->nr_pages;
719 	unsigned long oldest_jif;
720 	struct inode *inode;
721 	long progress;
722 
723 	oldest_jif = jiffies;
724 	work->older_than_this = &oldest_jif;
725 
726 	spin_lock(&wb->list_lock);
727 	for (;;) {
728 		/*
729 		 * Stop writeback when nr_pages has been consumed
730 		 */
731 		if (work->nr_pages <= 0)
732 			break;
733 
734 		/*
735 		 * Background writeout and kupdate-style writeback may
736 		 * run forever. Stop them if there is other work to do
737 		 * so that e.g. sync can proceed. They'll be restarted
738 		 * after the other works are all done.
739 		 */
740 		if ((work->for_background || work->for_kupdate) &&
741 		    !list_empty(&wb->bdi->work_list))
742 			break;
743 
744 		/*
745 		 * For background writeout, stop when we are below the
746 		 * background dirty threshold
747 		 */
748 		if (work->for_background && !over_bground_thresh(wb->bdi))
749 			break;
750 
751 		/*
752 		 * Kupdate and background works are special and we want to
753 		 * include all inodes that need writing. Livelock avoidance is
754 		 * handled by these works yielding to any other work so we are
755 		 * safe.
756 		 */
757 		if (work->for_kupdate) {
758 			oldest_jif = jiffies -
759 				msecs_to_jiffies(dirty_expire_interval * 10);
760 		} else if (work->for_background)
761 			oldest_jif = jiffies;
762 
763 		trace_writeback_start(wb->bdi, work);
764 		if (list_empty(&wb->b_io))
765 			queue_io(wb, work);
766 		if (work->sb)
767 			progress = writeback_sb_inodes(work->sb, wb, work);
768 		else
769 			progress = __writeback_inodes_wb(wb, work);
770 		trace_writeback_written(wb->bdi, work);
771 
772 		wb_update_bandwidth(wb, wb_start);
773 
774 		/*
775 		 * Did we write something? Try for more
776 		 *
777 		 * Dirty inodes are moved to b_io for writeback in batches.
778 		 * The completion of the current batch does not necessarily
779 		 * mean the overall work is done. So we keep looping as long
780 		 * as made some progress on cleaning pages or inodes.
781 		 */
782 		if (progress)
783 			continue;
784 		/*
785 		 * No more inodes for IO, bail
786 		 */
787 		if (list_empty(&wb->b_more_io))
788 			break;
789 		/*
790 		 * Nothing written. Wait for some inode to
791 		 * become available for writeback. Otherwise
792 		 * we'll just busyloop.
793 		 */
794 		if (!list_empty(&wb->b_more_io))  {
795 			trace_writeback_wait(wb->bdi, work);
796 			inode = wb_inode(wb->b_more_io.prev);
797 			spin_lock(&inode->i_lock);
798 			inode_wait_for_writeback(inode, wb);
799 			spin_unlock(&inode->i_lock);
800 		}
801 	}
802 	spin_unlock(&wb->list_lock);
803 
804 	return nr_pages - work->nr_pages;
805 }
806 
807 /*
808  * Return the next wb_writeback_work struct that hasn't been processed yet.
809  */
810 static struct wb_writeback_work *
get_next_work_item(struct backing_dev_info * bdi)811 get_next_work_item(struct backing_dev_info *bdi)
812 {
813 	struct wb_writeback_work *work = NULL;
814 
815 	spin_lock_bh(&bdi->wb_lock);
816 	if (!list_empty(&bdi->work_list)) {
817 		work = list_entry(bdi->work_list.next,
818 				  struct wb_writeback_work, list);
819 		list_del_init(&work->list);
820 	}
821 	spin_unlock_bh(&bdi->wb_lock);
822 	return work;
823 }
824 
825 /*
826  * Add in the number of potentially dirty inodes, because each inode
827  * write can dirty pagecache in the underlying blockdev.
828  */
get_nr_dirty_pages(void)829 static unsigned long get_nr_dirty_pages(void)
830 {
831 	return global_page_state(NR_FILE_DIRTY) +
832 		global_page_state(NR_UNSTABLE_NFS) +
833 		get_nr_dirty_inodes();
834 }
835 
wb_check_background_flush(struct bdi_writeback * wb)836 static long wb_check_background_flush(struct bdi_writeback *wb)
837 {
838 	if (over_bground_thresh(wb->bdi)) {
839 
840 		struct wb_writeback_work work = {
841 			.nr_pages	= LONG_MAX,
842 			.sync_mode	= WB_SYNC_NONE,
843 			.for_background	= 1,
844 			.range_cyclic	= 1,
845 			.reason		= WB_REASON_BACKGROUND,
846 		};
847 
848 		return wb_writeback(wb, &work);
849 	}
850 
851 	return 0;
852 }
853 
wb_check_old_data_flush(struct bdi_writeback * wb)854 static long wb_check_old_data_flush(struct bdi_writeback *wb)
855 {
856 	unsigned long expired;
857 	long nr_pages;
858 
859 	/*
860 	 * When set to zero, disable periodic writeback
861 	 */
862 	if (!dirty_writeback_interval)
863 		return 0;
864 
865 	expired = wb->last_old_flush +
866 			msecs_to_jiffies(dirty_writeback_interval * 10);
867 	if (time_before(jiffies, expired))
868 		return 0;
869 
870 	wb->last_old_flush = jiffies;
871 	nr_pages = get_nr_dirty_pages();
872 
873 	if (nr_pages) {
874 		struct wb_writeback_work work = {
875 			.nr_pages	= nr_pages,
876 			.sync_mode	= WB_SYNC_NONE,
877 			.for_kupdate	= 1,
878 			.range_cyclic	= 1,
879 			.reason		= WB_REASON_PERIODIC,
880 		};
881 
882 		return wb_writeback(wb, &work);
883 	}
884 
885 	return 0;
886 }
887 
888 /*
889  * Retrieve work items and do the writeback they describe
890  */
wb_do_writeback(struct bdi_writeback * wb,int force_wait)891 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
892 {
893 	struct backing_dev_info *bdi = wb->bdi;
894 	struct wb_writeback_work *work;
895 	long wrote = 0;
896 
897 	set_bit(BDI_writeback_running, &wb->bdi->state);
898 	while ((work = get_next_work_item(bdi)) != NULL) {
899 		/*
900 		 * Override sync mode, in case we must wait for completion
901 		 * because this thread is exiting now.
902 		 */
903 		if (force_wait)
904 			work->sync_mode = WB_SYNC_ALL;
905 
906 		trace_writeback_exec(bdi, work);
907 
908 		wrote += wb_writeback(wb, work);
909 
910 		/*
911 		 * Notify the caller of completion if this is a synchronous
912 		 * work item, otherwise just free it.
913 		 */
914 		if (work->done)
915 			complete(work->done);
916 		else
917 			kfree(work);
918 	}
919 
920 	/*
921 	 * Check for periodic writeback, kupdated() style
922 	 */
923 	wrote += wb_check_old_data_flush(wb);
924 	wrote += wb_check_background_flush(wb);
925 	clear_bit(BDI_writeback_running, &wb->bdi->state);
926 
927 	return wrote;
928 }
929 
930 /*
931  * Handle writeback of dirty data for the device backed by this bdi. Also
932  * wakes up periodically and does kupdated style flushing.
933  */
bdi_writeback_thread(void * data)934 int bdi_writeback_thread(void *data)
935 {
936 	struct bdi_writeback *wb = data;
937 	struct backing_dev_info *bdi = wb->bdi;
938 	long pages_written;
939 
940 	current->flags |= PF_SWAPWRITE;
941 	set_freezable();
942 	wb->last_active = jiffies;
943 
944 	/*
945 	 * Our parent may run at a different priority, just set us to normal
946 	 */
947 	set_user_nice(current, 0);
948 
949 	trace_writeback_thread_start(bdi);
950 
951 	while (!kthread_freezable_should_stop(NULL)) {
952 		/*
953 		 * Remove own delayed wake-up timer, since we are already awake
954 		 * and we'll take care of the preriodic write-back.
955 		 */
956 		del_timer(&wb->wakeup_timer);
957 
958 		pages_written = wb_do_writeback(wb, 0);
959 
960 		trace_writeback_pages_written(pages_written);
961 
962 		if (pages_written)
963 			wb->last_active = jiffies;
964 
965 		set_current_state(TASK_INTERRUPTIBLE);
966 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
967 			__set_current_state(TASK_RUNNING);
968 			continue;
969 		}
970 
971 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
972 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
973 		else {
974 			/*
975 			 * We have nothing to do, so can go sleep without any
976 			 * timeout and save power. When a work is queued or
977 			 * something is made dirty - we will be woken up.
978 			 */
979 			schedule();
980 		}
981 	}
982 
983 	/* Flush any work that raced with us exiting */
984 	if (!list_empty(&bdi->work_list))
985 		wb_do_writeback(wb, 1);
986 
987 	trace_writeback_thread_stop(bdi);
988 	return 0;
989 }
990 
991 
992 /*
993  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
994  * the whole world.
995  */
wakeup_flusher_threads(long nr_pages,enum wb_reason reason)996 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
997 {
998 	struct backing_dev_info *bdi;
999 
1000 	if (!nr_pages) {
1001 		nr_pages = global_page_state(NR_FILE_DIRTY) +
1002 				global_page_state(NR_UNSTABLE_NFS);
1003 	}
1004 
1005 	rcu_read_lock();
1006 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1007 		if (!bdi_has_dirty_io(bdi))
1008 			continue;
1009 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1010 	}
1011 	rcu_read_unlock();
1012 }
1013 
block_dump___mark_inode_dirty(struct inode * inode)1014 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1015 {
1016 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1017 		struct dentry *dentry;
1018 		const char *name = "?";
1019 
1020 		dentry = d_find_alias(inode);
1021 		if (dentry) {
1022 			spin_lock(&dentry->d_lock);
1023 			name = (const char *) dentry->d_name.name;
1024 		}
1025 		printk(KERN_DEBUG
1026 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1027 		       current->comm, task_pid_nr(current), inode->i_ino,
1028 		       name, inode->i_sb->s_id);
1029 		if (dentry) {
1030 			spin_unlock(&dentry->d_lock);
1031 			dput(dentry);
1032 		}
1033 	}
1034 }
1035 
1036 /**
1037  *	__mark_inode_dirty -	internal function
1038  *	@inode: inode to mark
1039  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1040  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1041  *  	mark_inode_dirty_sync.
1042  *
1043  * Put the inode on the super block's dirty list.
1044  *
1045  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1046  * dirty list only if it is hashed or if it refers to a blockdev.
1047  * If it was not hashed, it will never be added to the dirty list
1048  * even if it is later hashed, as it will have been marked dirty already.
1049  *
1050  * In short, make sure you hash any inodes _before_ you start marking
1051  * them dirty.
1052  *
1053  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1054  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1055  * the kernel-internal blockdev inode represents the dirtying time of the
1056  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1057  * page->mapping->host, so the page-dirtying time is recorded in the internal
1058  * blockdev inode.
1059  */
__mark_inode_dirty(struct inode * inode,int flags)1060 void __mark_inode_dirty(struct inode *inode, int flags)
1061 {
1062 	struct super_block *sb = inode->i_sb;
1063 	struct backing_dev_info *bdi = NULL;
1064 
1065 	/*
1066 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1067 	 * dirty the inode itself
1068 	 */
1069 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1070 		if (sb->s_op->dirty_inode)
1071 			sb->s_op->dirty_inode(inode, flags);
1072 	}
1073 
1074 	/*
1075 	 * make sure that changes are seen by all cpus before we test i_state
1076 	 * -- mikulas
1077 	 */
1078 	smp_mb();
1079 
1080 	/* avoid the locking if we can */
1081 	if ((inode->i_state & flags) == flags)
1082 		return;
1083 
1084 	if (unlikely(block_dump))
1085 		block_dump___mark_inode_dirty(inode);
1086 
1087 	spin_lock(&inode->i_lock);
1088 	if ((inode->i_state & flags) != flags) {
1089 		const int was_dirty = inode->i_state & I_DIRTY;
1090 
1091 		inode->i_state |= flags;
1092 
1093 		/*
1094 		 * If the inode is being synced, just update its dirty state.
1095 		 * The unlocker will place the inode on the appropriate
1096 		 * superblock list, based upon its state.
1097 		 */
1098 		if (inode->i_state & I_SYNC)
1099 			goto out_unlock_inode;
1100 
1101 		/*
1102 		 * Only add valid (hashed) inodes to the superblock's
1103 		 * dirty list.  Add blockdev inodes as well.
1104 		 */
1105 		if (!S_ISBLK(inode->i_mode)) {
1106 			if (inode_unhashed(inode))
1107 				goto out_unlock_inode;
1108 		}
1109 		if (inode->i_state & I_FREEING)
1110 			goto out_unlock_inode;
1111 
1112 		/*
1113 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1114 		 * reposition it (that would break b_dirty time-ordering).
1115 		 */
1116 		if (!was_dirty) {
1117 			bool wakeup_bdi = false;
1118 			bdi = inode_to_bdi(inode);
1119 
1120 			if (bdi_cap_writeback_dirty(bdi)) {
1121 				WARN(!test_bit(BDI_registered, &bdi->state),
1122 				     "bdi-%s not registered\n", bdi->name);
1123 
1124 				/*
1125 				 * If this is the first dirty inode for this
1126 				 * bdi, we have to wake-up the corresponding
1127 				 * bdi thread to make sure background
1128 				 * write-back happens later.
1129 				 */
1130 				if (!wb_has_dirty_io(&bdi->wb))
1131 					wakeup_bdi = true;
1132 			}
1133 
1134 			spin_unlock(&inode->i_lock);
1135 			spin_lock(&bdi->wb.list_lock);
1136 			inode->dirtied_when = jiffies;
1137 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1138 			spin_unlock(&bdi->wb.list_lock);
1139 
1140 			if (wakeup_bdi)
1141 				bdi_wakeup_thread_delayed(bdi);
1142 			return;
1143 		}
1144 	}
1145 out_unlock_inode:
1146 	spin_unlock(&inode->i_lock);
1147 
1148 }
1149 EXPORT_SYMBOL(__mark_inode_dirty);
1150 
1151 /*
1152  * Write out a superblock's list of dirty inodes.  A wait will be performed
1153  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1154  *
1155  * If older_than_this is non-NULL, then only write out inodes which
1156  * had their first dirtying at a time earlier than *older_than_this.
1157  *
1158  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1159  * This function assumes that the blockdev superblock's inodes are backed by
1160  * a variety of queues, so all inodes are searched.  For other superblocks,
1161  * assume that all inodes are backed by the same queue.
1162  *
1163  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1164  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1165  * on the writer throttling path, and we get decent balancing between many
1166  * throttled threads: we don't want them all piling up on inode_sync_wait.
1167  */
wait_sb_inodes(struct super_block * sb)1168 static void wait_sb_inodes(struct super_block *sb)
1169 {
1170 	struct inode *inode, *old_inode = NULL;
1171 
1172 	/*
1173 	 * We need to be protected against the filesystem going from
1174 	 * r/o to r/w or vice versa.
1175 	 */
1176 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1177 
1178 	spin_lock(&inode_sb_list_lock);
1179 
1180 	/*
1181 	 * Data integrity sync. Must wait for all pages under writeback,
1182 	 * because there may have been pages dirtied before our sync
1183 	 * call, but which had writeout started before we write it out.
1184 	 * In which case, the inode may not be on the dirty list, but
1185 	 * we still have to wait for that writeout.
1186 	 */
1187 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1188 		struct address_space *mapping = inode->i_mapping;
1189 
1190 		spin_lock(&inode->i_lock);
1191 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1192 		    (mapping->nrpages == 0)) {
1193 			spin_unlock(&inode->i_lock);
1194 			continue;
1195 		}
1196 		__iget(inode);
1197 		spin_unlock(&inode->i_lock);
1198 		spin_unlock(&inode_sb_list_lock);
1199 
1200 		/*
1201 		 * We hold a reference to 'inode' so it couldn't have been
1202 		 * removed from s_inodes list while we dropped the
1203 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1204 		 * be holding the last reference and we cannot iput it under
1205 		 * inode_sb_list_lock. So we keep the reference and iput it
1206 		 * later.
1207 		 */
1208 		iput(old_inode);
1209 		old_inode = inode;
1210 
1211 		filemap_fdatawait(mapping);
1212 
1213 		cond_resched();
1214 
1215 		spin_lock(&inode_sb_list_lock);
1216 	}
1217 	spin_unlock(&inode_sb_list_lock);
1218 	iput(old_inode);
1219 }
1220 
1221 /**
1222  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1223  * @sb: the superblock
1224  * @nr: the number of pages to write
1225  * @reason: reason why some writeback work initiated
1226  *
1227  * Start writeback on some inodes on this super_block. No guarantees are made
1228  * on how many (if any) will be written, and this function does not wait
1229  * for IO completion of submitted IO.
1230  */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)1231 void writeback_inodes_sb_nr(struct super_block *sb,
1232 			    unsigned long nr,
1233 			    enum wb_reason reason)
1234 {
1235 	DECLARE_COMPLETION_ONSTACK(done);
1236 	struct wb_writeback_work work = {
1237 		.sb			= sb,
1238 		.sync_mode		= WB_SYNC_NONE,
1239 		.tagged_writepages	= 1,
1240 		.done			= &done,
1241 		.nr_pages		= nr,
1242 		.reason			= reason,
1243 	};
1244 
1245 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1246 	bdi_queue_work(sb->s_bdi, &work);
1247 	wait_for_completion(&done);
1248 }
1249 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1250 
1251 /**
1252  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1253  * @sb: the superblock
1254  * @reason: reason why some writeback work was initiated
1255  *
1256  * Start writeback on some inodes on this super_block. No guarantees are made
1257  * on how many (if any) will be written, and this function does not wait
1258  * for IO completion of submitted IO.
1259  */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)1260 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1261 {
1262 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1263 }
1264 EXPORT_SYMBOL(writeback_inodes_sb);
1265 
1266 /**
1267  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1268  * @sb: the superblock
1269  * @reason: reason why some writeback work was initiated
1270  *
1271  * Invoke writeback_inodes_sb if no writeback is currently underway.
1272  * Returns 1 if writeback was started, 0 if not.
1273  */
writeback_inodes_sb_if_idle(struct super_block * sb,enum wb_reason reason)1274 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1275 {
1276 	if (!writeback_in_progress(sb->s_bdi)) {
1277 		down_read(&sb->s_umount);
1278 		writeback_inodes_sb(sb, reason);
1279 		up_read(&sb->s_umount);
1280 		return 1;
1281 	} else
1282 		return 0;
1283 }
1284 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1285 
1286 /**
1287  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1288  * @sb: the superblock
1289  * @nr: the number of pages to write
1290  * @reason: reason why some writeback work was initiated
1291  *
1292  * Invoke writeback_inodes_sb if no writeback is currently underway.
1293  * Returns 1 if writeback was started, 0 if not.
1294  */
writeback_inodes_sb_nr_if_idle(struct super_block * sb,unsigned long nr,enum wb_reason reason)1295 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1296 				   unsigned long nr,
1297 				   enum wb_reason reason)
1298 {
1299 	if (!writeback_in_progress(sb->s_bdi)) {
1300 		down_read(&sb->s_umount);
1301 		writeback_inodes_sb_nr(sb, nr, reason);
1302 		up_read(&sb->s_umount);
1303 		return 1;
1304 	} else
1305 		return 0;
1306 }
1307 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1308 
1309 /**
1310  * sync_inodes_sb	-	sync sb inode pages
1311  * @sb: the superblock
1312  *
1313  * This function writes and waits on any dirty inode belonging to this
1314  * super_block.
1315  */
sync_inodes_sb(struct super_block * sb)1316 void sync_inodes_sb(struct super_block *sb)
1317 {
1318 	DECLARE_COMPLETION_ONSTACK(done);
1319 	struct wb_writeback_work work = {
1320 		.sb		= sb,
1321 		.sync_mode	= WB_SYNC_ALL,
1322 		.nr_pages	= LONG_MAX,
1323 		.range_cyclic	= 0,
1324 		.done		= &done,
1325 		.reason		= WB_REASON_SYNC,
1326 	};
1327 
1328 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1329 
1330 	bdi_queue_work(sb->s_bdi, &work);
1331 	wait_for_completion(&done);
1332 
1333 	wait_sb_inodes(sb);
1334 }
1335 EXPORT_SYMBOL(sync_inodes_sb);
1336 
1337 /**
1338  * write_inode_now	-	write an inode to disk
1339  * @inode: inode to write to disk
1340  * @sync: whether the write should be synchronous or not
1341  *
1342  * This function commits an inode to disk immediately if it is dirty. This is
1343  * primarily needed by knfsd.
1344  *
1345  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1346  */
write_inode_now(struct inode * inode,int sync)1347 int write_inode_now(struct inode *inode, int sync)
1348 {
1349 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1350 	int ret;
1351 	struct writeback_control wbc = {
1352 		.nr_to_write = LONG_MAX,
1353 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1354 		.range_start = 0,
1355 		.range_end = LLONG_MAX,
1356 	};
1357 
1358 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1359 		wbc.nr_to_write = 0;
1360 
1361 	might_sleep();
1362 	spin_lock(&wb->list_lock);
1363 	spin_lock(&inode->i_lock);
1364 	ret = writeback_single_inode(inode, wb, &wbc);
1365 	spin_unlock(&inode->i_lock);
1366 	spin_unlock(&wb->list_lock);
1367 	if (sync)
1368 		inode_sync_wait(inode);
1369 	return ret;
1370 }
1371 EXPORT_SYMBOL(write_inode_now);
1372 
1373 /**
1374  * sync_inode - write an inode and its pages to disk.
1375  * @inode: the inode to sync
1376  * @wbc: controls the writeback mode
1377  *
1378  * sync_inode() will write an inode and its pages to disk.  It will also
1379  * correctly update the inode on its superblock's dirty inode lists and will
1380  * update inode->i_state.
1381  *
1382  * The caller must have a ref on the inode.
1383  */
sync_inode(struct inode * inode,struct writeback_control * wbc)1384 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1385 {
1386 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1387 	int ret;
1388 
1389 	spin_lock(&wb->list_lock);
1390 	spin_lock(&inode->i_lock);
1391 	ret = writeback_single_inode(inode, wb, wbc);
1392 	spin_unlock(&inode->i_lock);
1393 	spin_unlock(&wb->list_lock);
1394 	return ret;
1395 }
1396 EXPORT_SYMBOL(sync_inode);
1397 
1398 /**
1399  * sync_inode_metadata - write an inode to disk
1400  * @inode: the inode to sync
1401  * @wait: wait for I/O to complete.
1402  *
1403  * Write an inode to disk and adjust its dirty state after completion.
1404  *
1405  * Note: only writes the actual inode, no associated data or other metadata.
1406  */
sync_inode_metadata(struct inode * inode,int wait)1407 int sync_inode_metadata(struct inode *inode, int wait)
1408 {
1409 	struct writeback_control wbc = {
1410 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1411 		.nr_to_write = 0, /* metadata-only */
1412 	};
1413 
1414 	return sync_inode(inode, &wbc);
1415 }
1416 EXPORT_SYMBOL(sync_inode_metadata);
1417