1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "check-integrity.h"
29 
30 /*
31  * This is only the first step towards a full-features scrub. It reads all
32  * extent and super block and verifies the checksums. In case a bad checksum
33  * is found or the extent cannot be read, good data will be written back if
34  * any can be found.
35  *
36  * Future enhancements:
37  *  - In case an unrepairable extent is encountered, track which files are
38  *    affected and report them
39  *  - In case of a read error on files with nodatasum, map the file and read
40  *    the extent to trigger a writeback of the good copy
41  *  - track and record media errors, throw out bad devices
42  *  - add a mode to also read unallocated space
43  */
44 
45 struct scrub_bio;
46 struct scrub_page;
47 struct scrub_dev;
48 static void scrub_bio_end_io(struct bio *bio, int err);
49 static void scrub_checksum(struct btrfs_work *work);
50 static int scrub_checksum_data(struct scrub_dev *sdev,
51 			       struct scrub_page *spag, void *buffer);
52 static int scrub_checksum_tree_block(struct scrub_dev *sdev,
53 				     struct scrub_page *spag, u64 logical,
54 				     void *buffer);
55 static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer);
56 static int scrub_fixup_check(struct scrub_bio *sbio, int ix);
57 static void scrub_fixup_end_io(struct bio *bio, int err);
58 static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
59 			  struct page *page);
60 static void scrub_fixup(struct scrub_bio *sbio, int ix);
61 
62 #define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */
63 #define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */
64 
65 struct scrub_page {
66 	u64			flags;  /* extent flags */
67 	u64			generation;
68 	int			mirror_num;
69 	int			have_csum;
70 	u8			csum[BTRFS_CSUM_SIZE];
71 };
72 
73 struct scrub_bio {
74 	int			index;
75 	struct scrub_dev	*sdev;
76 	struct bio		*bio;
77 	int			err;
78 	u64			logical;
79 	u64			physical;
80 	struct scrub_page	spag[SCRUB_PAGES_PER_BIO];
81 	u64			count;
82 	int			next_free;
83 	struct btrfs_work	work;
84 };
85 
86 struct scrub_dev {
87 	struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV];
88 	struct btrfs_device	*dev;
89 	int			first_free;
90 	int			curr;
91 	atomic_t		in_flight;
92 	atomic_t		fixup_cnt;
93 	spinlock_t		list_lock;
94 	wait_queue_head_t	list_wait;
95 	u16			csum_size;
96 	struct list_head	csum_list;
97 	atomic_t		cancel_req;
98 	int			readonly;
99 	/*
100 	 * statistics
101 	 */
102 	struct btrfs_scrub_progress stat;
103 	spinlock_t		stat_lock;
104 };
105 
106 struct scrub_fixup_nodatasum {
107 	struct scrub_dev	*sdev;
108 	u64			logical;
109 	struct btrfs_root	*root;
110 	struct btrfs_work	work;
111 	int			mirror_num;
112 };
113 
114 struct scrub_warning {
115 	struct btrfs_path	*path;
116 	u64			extent_item_size;
117 	char			*scratch_buf;
118 	char			*msg_buf;
119 	const char		*errstr;
120 	sector_t		sector;
121 	u64			logical;
122 	struct btrfs_device	*dev;
123 	int			msg_bufsize;
124 	int			scratch_bufsize;
125 };
126 
scrub_free_csums(struct scrub_dev * sdev)127 static void scrub_free_csums(struct scrub_dev *sdev)
128 {
129 	while (!list_empty(&sdev->csum_list)) {
130 		struct btrfs_ordered_sum *sum;
131 		sum = list_first_entry(&sdev->csum_list,
132 				       struct btrfs_ordered_sum, list);
133 		list_del(&sum->list);
134 		kfree(sum);
135 	}
136 }
137 
scrub_free_bio(struct bio * bio)138 static void scrub_free_bio(struct bio *bio)
139 {
140 	int i;
141 	struct page *last_page = NULL;
142 
143 	if (!bio)
144 		return;
145 
146 	for (i = 0; i < bio->bi_vcnt; ++i) {
147 		if (bio->bi_io_vec[i].bv_page == last_page)
148 			continue;
149 		last_page = bio->bi_io_vec[i].bv_page;
150 		__free_page(last_page);
151 	}
152 	bio_put(bio);
153 }
154 
scrub_free_dev(struct scrub_dev * sdev)155 static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
156 {
157 	int i;
158 
159 	if (!sdev)
160 		return;
161 
162 	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
163 		struct scrub_bio *sbio = sdev->bios[i];
164 
165 		if (!sbio)
166 			break;
167 
168 		scrub_free_bio(sbio->bio);
169 		kfree(sbio);
170 	}
171 
172 	scrub_free_csums(sdev);
173 	kfree(sdev);
174 }
175 
176 static noinline_for_stack
scrub_setup_dev(struct btrfs_device * dev)177 struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
178 {
179 	struct scrub_dev *sdev;
180 	int		i;
181 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
182 
183 	sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
184 	if (!sdev)
185 		goto nomem;
186 	sdev->dev = dev;
187 	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
188 		struct scrub_bio *sbio;
189 
190 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
191 		if (!sbio)
192 			goto nomem;
193 		sdev->bios[i] = sbio;
194 
195 		sbio->index = i;
196 		sbio->sdev = sdev;
197 		sbio->count = 0;
198 		sbio->work.func = scrub_checksum;
199 
200 		if (i != SCRUB_BIOS_PER_DEV-1)
201 			sdev->bios[i]->next_free = i + 1;
202 		else
203 			sdev->bios[i]->next_free = -1;
204 	}
205 	sdev->first_free = 0;
206 	sdev->curr = -1;
207 	atomic_set(&sdev->in_flight, 0);
208 	atomic_set(&sdev->fixup_cnt, 0);
209 	atomic_set(&sdev->cancel_req, 0);
210 	sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
211 	INIT_LIST_HEAD(&sdev->csum_list);
212 
213 	spin_lock_init(&sdev->list_lock);
214 	spin_lock_init(&sdev->stat_lock);
215 	init_waitqueue_head(&sdev->list_wait);
216 	return sdev;
217 
218 nomem:
219 	scrub_free_dev(sdev);
220 	return ERR_PTR(-ENOMEM);
221 }
222 
scrub_print_warning_inode(u64 inum,u64 offset,u64 root,void * ctx)223 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
224 {
225 	u64 isize;
226 	u32 nlink;
227 	int ret;
228 	int i;
229 	struct extent_buffer *eb;
230 	struct btrfs_inode_item *inode_item;
231 	struct scrub_warning *swarn = ctx;
232 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
233 	struct inode_fs_paths *ipath = NULL;
234 	struct btrfs_root *local_root;
235 	struct btrfs_key root_key;
236 
237 	root_key.objectid = root;
238 	root_key.type = BTRFS_ROOT_ITEM_KEY;
239 	root_key.offset = (u64)-1;
240 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
241 	if (IS_ERR(local_root)) {
242 		ret = PTR_ERR(local_root);
243 		goto err;
244 	}
245 
246 	ret = inode_item_info(inum, 0, local_root, swarn->path);
247 	if (ret) {
248 		btrfs_release_path(swarn->path);
249 		goto err;
250 	}
251 
252 	eb = swarn->path->nodes[0];
253 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
254 					struct btrfs_inode_item);
255 	isize = btrfs_inode_size(eb, inode_item);
256 	nlink = btrfs_inode_nlink(eb, inode_item);
257 	btrfs_release_path(swarn->path);
258 
259 	ipath = init_ipath(4096, local_root, swarn->path);
260 	if (IS_ERR(ipath)) {
261 		ret = PTR_ERR(ipath);
262 		ipath = NULL;
263 		goto err;
264 	}
265 	ret = paths_from_inode(inum, ipath);
266 
267 	if (ret < 0)
268 		goto err;
269 
270 	/*
271 	 * we deliberately ignore the bit ipath might have been too small to
272 	 * hold all of the paths here
273 	 */
274 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
275 		printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
276 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
277 			"length %llu, links %u (path: %s)\n", swarn->errstr,
278 			swarn->logical, swarn->dev->name,
279 			(unsigned long long)swarn->sector, root, inum, offset,
280 			min(isize - offset, (u64)PAGE_SIZE), nlink,
281 			(char *)(unsigned long)ipath->fspath->val[i]);
282 
283 	free_ipath(ipath);
284 	return 0;
285 
286 err:
287 	printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
288 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
289 		"resolving failed with ret=%d\n", swarn->errstr,
290 		swarn->logical, swarn->dev->name,
291 		(unsigned long long)swarn->sector, root, inum, offset, ret);
292 
293 	free_ipath(ipath);
294 	return 0;
295 }
296 
scrub_print_warning(const char * errstr,struct scrub_bio * sbio,int ix)297 static void scrub_print_warning(const char *errstr, struct scrub_bio *sbio,
298 				int ix)
299 {
300 	struct btrfs_device *dev = sbio->sdev->dev;
301 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
302 	struct btrfs_path *path;
303 	struct btrfs_key found_key;
304 	struct extent_buffer *eb;
305 	struct btrfs_extent_item *ei;
306 	struct scrub_warning swarn;
307 	u32 item_size;
308 	int ret;
309 	u64 ref_root;
310 	u8 ref_level;
311 	unsigned long ptr = 0;
312 	const int bufsize = 4096;
313 	u64 extent_item_pos;
314 
315 	path = btrfs_alloc_path();
316 
317 	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
318 	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
319 	swarn.sector = (sbio->physical + ix * PAGE_SIZE) >> 9;
320 	swarn.logical = sbio->logical + ix * PAGE_SIZE;
321 	swarn.errstr = errstr;
322 	swarn.dev = dev;
323 	swarn.msg_bufsize = bufsize;
324 	swarn.scratch_bufsize = bufsize;
325 
326 	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
327 		goto out;
328 
329 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
330 	if (ret < 0)
331 		goto out;
332 
333 	extent_item_pos = swarn.logical - found_key.objectid;
334 	swarn.extent_item_size = found_key.offset;
335 
336 	eb = path->nodes[0];
337 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
338 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
339 	btrfs_release_path(path);
340 
341 	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
342 		do {
343 			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
344 							&ref_root, &ref_level);
345 			printk(KERN_WARNING "%s at logical %llu on dev %s, "
346 				"sector %llu: metadata %s (level %d) in tree "
347 				"%llu\n", errstr, swarn.logical, dev->name,
348 				(unsigned long long)swarn.sector,
349 				ref_level ? "node" : "leaf",
350 				ret < 0 ? -1 : ref_level,
351 				ret < 0 ? -1 : ref_root);
352 		} while (ret != 1);
353 	} else {
354 		swarn.path = path;
355 		iterate_extent_inodes(fs_info, path, found_key.objectid,
356 					extent_item_pos,
357 					scrub_print_warning_inode, &swarn);
358 	}
359 
360 out:
361 	btrfs_free_path(path);
362 	kfree(swarn.scratch_buf);
363 	kfree(swarn.msg_buf);
364 }
365 
scrub_fixup_readpage(u64 inum,u64 offset,u64 root,void * ctx)366 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
367 {
368 	struct page *page = NULL;
369 	unsigned long index;
370 	struct scrub_fixup_nodatasum *fixup = ctx;
371 	int ret;
372 	int corrected = 0;
373 	struct btrfs_key key;
374 	struct inode *inode = NULL;
375 	u64 end = offset + PAGE_SIZE - 1;
376 	struct btrfs_root *local_root;
377 
378 	key.objectid = root;
379 	key.type = BTRFS_ROOT_ITEM_KEY;
380 	key.offset = (u64)-1;
381 	local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
382 	if (IS_ERR(local_root))
383 		return PTR_ERR(local_root);
384 
385 	key.type = BTRFS_INODE_ITEM_KEY;
386 	key.objectid = inum;
387 	key.offset = 0;
388 	inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
389 	if (IS_ERR(inode))
390 		return PTR_ERR(inode);
391 
392 	index = offset >> PAGE_CACHE_SHIFT;
393 
394 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
395 	if (!page) {
396 		ret = -ENOMEM;
397 		goto out;
398 	}
399 
400 	if (PageUptodate(page)) {
401 		struct btrfs_mapping_tree *map_tree;
402 		if (PageDirty(page)) {
403 			/*
404 			 * we need to write the data to the defect sector. the
405 			 * data that was in that sector is not in memory,
406 			 * because the page was modified. we must not write the
407 			 * modified page to that sector.
408 			 *
409 			 * TODO: what could be done here: wait for the delalloc
410 			 *       runner to write out that page (might involve
411 			 *       COW) and see whether the sector is still
412 			 *       referenced afterwards.
413 			 *
414 			 * For the meantime, we'll treat this error
415 			 * incorrectable, although there is a chance that a
416 			 * later scrub will find the bad sector again and that
417 			 * there's no dirty page in memory, then.
418 			 */
419 			ret = -EIO;
420 			goto out;
421 		}
422 		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
423 		ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
424 					fixup->logical, page,
425 					fixup->mirror_num);
426 		unlock_page(page);
427 		corrected = !ret;
428 	} else {
429 		/*
430 		 * we need to get good data first. the general readpage path
431 		 * will call repair_io_failure for us, we just have to make
432 		 * sure we read the bad mirror.
433 		 */
434 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
435 					EXTENT_DAMAGED, GFP_NOFS);
436 		if (ret) {
437 			/* set_extent_bits should give proper error */
438 			WARN_ON(ret > 0);
439 			if (ret > 0)
440 				ret = -EFAULT;
441 			goto out;
442 		}
443 
444 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
445 						btrfs_get_extent,
446 						fixup->mirror_num);
447 		wait_on_page_locked(page);
448 
449 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
450 						end, EXTENT_DAMAGED, 0, NULL);
451 		if (!corrected)
452 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
453 						EXTENT_DAMAGED, GFP_NOFS);
454 	}
455 
456 out:
457 	if (page)
458 		put_page(page);
459 	if (inode)
460 		iput(inode);
461 
462 	if (ret < 0)
463 		return ret;
464 
465 	if (ret == 0 && corrected) {
466 		/*
467 		 * we only need to call readpage for one of the inodes belonging
468 		 * to this extent. so make iterate_extent_inodes stop
469 		 */
470 		return 1;
471 	}
472 
473 	return -EIO;
474 }
475 
scrub_fixup_nodatasum(struct btrfs_work * work)476 static void scrub_fixup_nodatasum(struct btrfs_work *work)
477 {
478 	int ret;
479 	struct scrub_fixup_nodatasum *fixup;
480 	struct scrub_dev *sdev;
481 	struct btrfs_trans_handle *trans = NULL;
482 	struct btrfs_fs_info *fs_info;
483 	struct btrfs_path *path;
484 	int uncorrectable = 0;
485 
486 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
487 	sdev = fixup->sdev;
488 	fs_info = fixup->root->fs_info;
489 
490 	path = btrfs_alloc_path();
491 	if (!path) {
492 		spin_lock(&sdev->stat_lock);
493 		++sdev->stat.malloc_errors;
494 		spin_unlock(&sdev->stat_lock);
495 		uncorrectable = 1;
496 		goto out;
497 	}
498 
499 	trans = btrfs_join_transaction(fixup->root);
500 	if (IS_ERR(trans)) {
501 		uncorrectable = 1;
502 		goto out;
503 	}
504 
505 	/*
506 	 * the idea is to trigger a regular read through the standard path. we
507 	 * read a page from the (failed) logical address by specifying the
508 	 * corresponding copynum of the failed sector. thus, that readpage is
509 	 * expected to fail.
510 	 * that is the point where on-the-fly error correction will kick in
511 	 * (once it's finished) and rewrite the failed sector if a good copy
512 	 * can be found.
513 	 */
514 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
515 						path, scrub_fixup_readpage,
516 						fixup);
517 	if (ret < 0) {
518 		uncorrectable = 1;
519 		goto out;
520 	}
521 	WARN_ON(ret != 1);
522 
523 	spin_lock(&sdev->stat_lock);
524 	++sdev->stat.corrected_errors;
525 	spin_unlock(&sdev->stat_lock);
526 
527 out:
528 	if (trans && !IS_ERR(trans))
529 		btrfs_end_transaction(trans, fixup->root);
530 	if (uncorrectable) {
531 		spin_lock(&sdev->stat_lock);
532 		++sdev->stat.uncorrectable_errors;
533 		spin_unlock(&sdev->stat_lock);
534 		printk_ratelimited(KERN_ERR "btrfs: unable to fixup "
535 					"(nodatasum) error at logical %llu\n",
536 					fixup->logical);
537 	}
538 
539 	btrfs_free_path(path);
540 	kfree(fixup);
541 
542 	/* see caller why we're pretending to be paused in the scrub counters */
543 	mutex_lock(&fs_info->scrub_lock);
544 	atomic_dec(&fs_info->scrubs_running);
545 	atomic_dec(&fs_info->scrubs_paused);
546 	mutex_unlock(&fs_info->scrub_lock);
547 	atomic_dec(&sdev->fixup_cnt);
548 	wake_up(&fs_info->scrub_pause_wait);
549 	wake_up(&sdev->list_wait);
550 }
551 
552 /*
553  * scrub_recheck_error gets called when either verification of the page
554  * failed or the bio failed to read, e.g. with EIO. In the latter case,
555  * recheck_error gets called for every page in the bio, even though only
556  * one may be bad
557  */
scrub_recheck_error(struct scrub_bio * sbio,int ix)558 static int scrub_recheck_error(struct scrub_bio *sbio, int ix)
559 {
560 	struct scrub_dev *sdev = sbio->sdev;
561 	u64 sector = (sbio->physical + ix * PAGE_SIZE) >> 9;
562 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
563 					DEFAULT_RATELIMIT_BURST);
564 
565 	if (sbio->err) {
566 		if (scrub_fixup_io(READ, sbio->sdev->dev->bdev, sector,
567 				   sbio->bio->bi_io_vec[ix].bv_page) == 0) {
568 			if (scrub_fixup_check(sbio, ix) == 0)
569 				return 0;
570 		}
571 		if (__ratelimit(&_rs))
572 			scrub_print_warning("i/o error", sbio, ix);
573 	} else {
574 		if (__ratelimit(&_rs))
575 			scrub_print_warning("checksum error", sbio, ix);
576 	}
577 
578 	spin_lock(&sdev->stat_lock);
579 	++sdev->stat.read_errors;
580 	spin_unlock(&sdev->stat_lock);
581 
582 	scrub_fixup(sbio, ix);
583 	return 1;
584 }
585 
scrub_fixup_check(struct scrub_bio * sbio,int ix)586 static int scrub_fixup_check(struct scrub_bio *sbio, int ix)
587 {
588 	int ret = 1;
589 	struct page *page;
590 	void *buffer;
591 	u64 flags = sbio->spag[ix].flags;
592 
593 	page = sbio->bio->bi_io_vec[ix].bv_page;
594 	buffer = kmap_atomic(page, KM_USER0);
595 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
596 		ret = scrub_checksum_data(sbio->sdev,
597 					  sbio->spag + ix, buffer);
598 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
599 		ret = scrub_checksum_tree_block(sbio->sdev,
600 						sbio->spag + ix,
601 						sbio->logical + ix * PAGE_SIZE,
602 						buffer);
603 	} else {
604 		WARN_ON(1);
605 	}
606 	kunmap_atomic(buffer, KM_USER0);
607 
608 	return ret;
609 }
610 
scrub_fixup_end_io(struct bio * bio,int err)611 static void scrub_fixup_end_io(struct bio *bio, int err)
612 {
613 	complete((struct completion *)bio->bi_private);
614 }
615 
scrub_fixup(struct scrub_bio * sbio,int ix)616 static void scrub_fixup(struct scrub_bio *sbio, int ix)
617 {
618 	struct scrub_dev *sdev = sbio->sdev;
619 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
620 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
621 	struct btrfs_bio *bbio = NULL;
622 	struct scrub_fixup_nodatasum *fixup;
623 	u64 logical = sbio->logical + ix * PAGE_SIZE;
624 	u64 length;
625 	int i;
626 	int ret;
627 	DECLARE_COMPLETION_ONSTACK(complete);
628 
629 	if ((sbio->spag[ix].flags & BTRFS_EXTENT_FLAG_DATA) &&
630 	    (sbio->spag[ix].have_csum == 0)) {
631 		fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
632 		if (!fixup)
633 			goto uncorrectable;
634 		fixup->sdev = sdev;
635 		fixup->logical = logical;
636 		fixup->root = fs_info->extent_root;
637 		fixup->mirror_num = sbio->spag[ix].mirror_num;
638 		/*
639 		 * increment scrubs_running to prevent cancel requests from
640 		 * completing as long as a fixup worker is running. we must also
641 		 * increment scrubs_paused to prevent deadlocking on pause
642 		 * requests used for transactions commits (as the worker uses a
643 		 * transaction context). it is safe to regard the fixup worker
644 		 * as paused for all matters practical. effectively, we only
645 		 * avoid cancellation requests from completing.
646 		 */
647 		mutex_lock(&fs_info->scrub_lock);
648 		atomic_inc(&fs_info->scrubs_running);
649 		atomic_inc(&fs_info->scrubs_paused);
650 		mutex_unlock(&fs_info->scrub_lock);
651 		atomic_inc(&sdev->fixup_cnt);
652 		fixup->work.func = scrub_fixup_nodatasum;
653 		btrfs_queue_worker(&fs_info->scrub_workers, &fixup->work);
654 		return;
655 	}
656 
657 	length = PAGE_SIZE;
658 	ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length,
659 			      &bbio, 0);
660 	if (ret || !bbio || length < PAGE_SIZE) {
661 		printk(KERN_ERR
662 		       "scrub_fixup: btrfs_map_block failed us for %llu\n",
663 		       (unsigned long long)logical);
664 		WARN_ON(1);
665 		kfree(bbio);
666 		return;
667 	}
668 
669 	if (bbio->num_stripes == 1)
670 		/* there aren't any replicas */
671 		goto uncorrectable;
672 
673 	/*
674 	 * first find a good copy
675 	 */
676 	for (i = 0; i < bbio->num_stripes; ++i) {
677 		if (i + 1 == sbio->spag[ix].mirror_num)
678 			continue;
679 
680 		if (scrub_fixup_io(READ, bbio->stripes[i].dev->bdev,
681 				   bbio->stripes[i].physical >> 9,
682 				   sbio->bio->bi_io_vec[ix].bv_page)) {
683 			/* I/O-error, this is not a good copy */
684 			continue;
685 		}
686 
687 		if (scrub_fixup_check(sbio, ix) == 0)
688 			break;
689 	}
690 	if (i == bbio->num_stripes)
691 		goto uncorrectable;
692 
693 	if (!sdev->readonly) {
694 		/*
695 		 * bi_io_vec[ix].bv_page now contains good data, write it back
696 		 */
697 		if (scrub_fixup_io(WRITE, sdev->dev->bdev,
698 				   (sbio->physical + ix * PAGE_SIZE) >> 9,
699 				   sbio->bio->bi_io_vec[ix].bv_page)) {
700 			/* I/O-error, writeback failed, give up */
701 			goto uncorrectable;
702 		}
703 	}
704 
705 	kfree(bbio);
706 	spin_lock(&sdev->stat_lock);
707 	++sdev->stat.corrected_errors;
708 	spin_unlock(&sdev->stat_lock);
709 
710 	printk_ratelimited(KERN_ERR "btrfs: fixed up error at logical %llu\n",
711 			       (unsigned long long)logical);
712 	return;
713 
714 uncorrectable:
715 	kfree(bbio);
716 	spin_lock(&sdev->stat_lock);
717 	++sdev->stat.uncorrectable_errors;
718 	spin_unlock(&sdev->stat_lock);
719 
720 	printk_ratelimited(KERN_ERR "btrfs: unable to fixup (regular) error at "
721 				"logical %llu\n", (unsigned long long)logical);
722 }
723 
scrub_fixup_io(int rw,struct block_device * bdev,sector_t sector,struct page * page)724 static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
725 			 struct page *page)
726 {
727 	struct bio *bio = NULL;
728 	int ret;
729 	DECLARE_COMPLETION_ONSTACK(complete);
730 
731 	bio = bio_alloc(GFP_NOFS, 1);
732 	bio->bi_bdev = bdev;
733 	bio->bi_sector = sector;
734 	bio_add_page(bio, page, PAGE_SIZE, 0);
735 	bio->bi_end_io = scrub_fixup_end_io;
736 	bio->bi_private = &complete;
737 	btrfsic_submit_bio(rw, bio);
738 
739 	/* this will also unplug the queue */
740 	wait_for_completion(&complete);
741 
742 	ret = !test_bit(BIO_UPTODATE, &bio->bi_flags);
743 	bio_put(bio);
744 	return ret;
745 }
746 
scrub_bio_end_io(struct bio * bio,int err)747 static void scrub_bio_end_io(struct bio *bio, int err)
748 {
749 	struct scrub_bio *sbio = bio->bi_private;
750 	struct scrub_dev *sdev = sbio->sdev;
751 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
752 
753 	sbio->err = err;
754 	sbio->bio = bio;
755 
756 	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
757 }
758 
scrub_checksum(struct btrfs_work * work)759 static void scrub_checksum(struct btrfs_work *work)
760 {
761 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
762 	struct scrub_dev *sdev = sbio->sdev;
763 	struct page *page;
764 	void *buffer;
765 	int i;
766 	u64 flags;
767 	u64 logical;
768 	int ret;
769 
770 	if (sbio->err) {
771 		ret = 0;
772 		for (i = 0; i < sbio->count; ++i)
773 			ret |= scrub_recheck_error(sbio, i);
774 		if (!ret) {
775 			spin_lock(&sdev->stat_lock);
776 			++sdev->stat.unverified_errors;
777 			spin_unlock(&sdev->stat_lock);
778 		}
779 
780 		sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
781 		sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
782 		sbio->bio->bi_phys_segments = 0;
783 		sbio->bio->bi_idx = 0;
784 
785 		for (i = 0; i < sbio->count; i++) {
786 			struct bio_vec *bi;
787 			bi = &sbio->bio->bi_io_vec[i];
788 			bi->bv_offset = 0;
789 			bi->bv_len = PAGE_SIZE;
790 		}
791 		goto out;
792 	}
793 	for (i = 0; i < sbio->count; ++i) {
794 		page = sbio->bio->bi_io_vec[i].bv_page;
795 		buffer = kmap_atomic(page, KM_USER0);
796 		flags = sbio->spag[i].flags;
797 		logical = sbio->logical + i * PAGE_SIZE;
798 		ret = 0;
799 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
800 			ret = scrub_checksum_data(sdev, sbio->spag + i, buffer);
801 		} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
802 			ret = scrub_checksum_tree_block(sdev, sbio->spag + i,
803 							logical, buffer);
804 		} else if (flags & BTRFS_EXTENT_FLAG_SUPER) {
805 			BUG_ON(i);
806 			(void)scrub_checksum_super(sbio, buffer);
807 		} else {
808 			WARN_ON(1);
809 		}
810 		kunmap_atomic(buffer, KM_USER0);
811 		if (ret) {
812 			ret = scrub_recheck_error(sbio, i);
813 			if (!ret) {
814 				spin_lock(&sdev->stat_lock);
815 				++sdev->stat.unverified_errors;
816 				spin_unlock(&sdev->stat_lock);
817 			}
818 		}
819 	}
820 
821 out:
822 	scrub_free_bio(sbio->bio);
823 	sbio->bio = NULL;
824 	spin_lock(&sdev->list_lock);
825 	sbio->next_free = sdev->first_free;
826 	sdev->first_free = sbio->index;
827 	spin_unlock(&sdev->list_lock);
828 	atomic_dec(&sdev->in_flight);
829 	wake_up(&sdev->list_wait);
830 }
831 
scrub_checksum_data(struct scrub_dev * sdev,struct scrub_page * spag,void * buffer)832 static int scrub_checksum_data(struct scrub_dev *sdev,
833 			       struct scrub_page *spag, void *buffer)
834 {
835 	u8 csum[BTRFS_CSUM_SIZE];
836 	u32 crc = ~(u32)0;
837 	int fail = 0;
838 	struct btrfs_root *root = sdev->dev->dev_root;
839 
840 	if (!spag->have_csum)
841 		return 0;
842 
843 	crc = btrfs_csum_data(root, buffer, crc, PAGE_SIZE);
844 	btrfs_csum_final(crc, csum);
845 	if (memcmp(csum, spag->csum, sdev->csum_size))
846 		fail = 1;
847 
848 	spin_lock(&sdev->stat_lock);
849 	++sdev->stat.data_extents_scrubbed;
850 	sdev->stat.data_bytes_scrubbed += PAGE_SIZE;
851 	if (fail)
852 		++sdev->stat.csum_errors;
853 	spin_unlock(&sdev->stat_lock);
854 
855 	return fail;
856 }
857 
scrub_checksum_tree_block(struct scrub_dev * sdev,struct scrub_page * spag,u64 logical,void * buffer)858 static int scrub_checksum_tree_block(struct scrub_dev *sdev,
859 				     struct scrub_page *spag, u64 logical,
860 				     void *buffer)
861 {
862 	struct btrfs_header *h;
863 	struct btrfs_root *root = sdev->dev->dev_root;
864 	struct btrfs_fs_info *fs_info = root->fs_info;
865 	u8 csum[BTRFS_CSUM_SIZE];
866 	u32 crc = ~(u32)0;
867 	int fail = 0;
868 	int crc_fail = 0;
869 
870 	/*
871 	 * we don't use the getter functions here, as we
872 	 * a) don't have an extent buffer and
873 	 * b) the page is already kmapped
874 	 */
875 	h = (struct btrfs_header *)buffer;
876 
877 	if (logical != le64_to_cpu(h->bytenr))
878 		++fail;
879 
880 	if (spag->generation != le64_to_cpu(h->generation))
881 		++fail;
882 
883 	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
884 		++fail;
885 
886 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
887 		   BTRFS_UUID_SIZE))
888 		++fail;
889 
890 	crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
891 			      PAGE_SIZE - BTRFS_CSUM_SIZE);
892 	btrfs_csum_final(crc, csum);
893 	if (memcmp(csum, h->csum, sdev->csum_size))
894 		++crc_fail;
895 
896 	spin_lock(&sdev->stat_lock);
897 	++sdev->stat.tree_extents_scrubbed;
898 	sdev->stat.tree_bytes_scrubbed += PAGE_SIZE;
899 	if (crc_fail)
900 		++sdev->stat.csum_errors;
901 	if (fail)
902 		++sdev->stat.verify_errors;
903 	spin_unlock(&sdev->stat_lock);
904 
905 	return fail || crc_fail;
906 }
907 
scrub_checksum_super(struct scrub_bio * sbio,void * buffer)908 static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer)
909 {
910 	struct btrfs_super_block *s;
911 	u64 logical;
912 	struct scrub_dev *sdev = sbio->sdev;
913 	struct btrfs_root *root = sdev->dev->dev_root;
914 	struct btrfs_fs_info *fs_info = root->fs_info;
915 	u8 csum[BTRFS_CSUM_SIZE];
916 	u32 crc = ~(u32)0;
917 	int fail = 0;
918 
919 	s = (struct btrfs_super_block *)buffer;
920 	logical = sbio->logical;
921 
922 	if (logical != le64_to_cpu(s->bytenr))
923 		++fail;
924 
925 	if (sbio->spag[0].generation != le64_to_cpu(s->generation))
926 		++fail;
927 
928 	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
929 		++fail;
930 
931 	crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
932 			      PAGE_SIZE - BTRFS_CSUM_SIZE);
933 	btrfs_csum_final(crc, csum);
934 	if (memcmp(csum, s->csum, sbio->sdev->csum_size))
935 		++fail;
936 
937 	if (fail) {
938 		/*
939 		 * if we find an error in a super block, we just report it.
940 		 * They will get written with the next transaction commit
941 		 * anyway
942 		 */
943 		spin_lock(&sdev->stat_lock);
944 		++sdev->stat.super_errors;
945 		spin_unlock(&sdev->stat_lock);
946 	}
947 
948 	return fail;
949 }
950 
scrub_submit(struct scrub_dev * sdev)951 static int scrub_submit(struct scrub_dev *sdev)
952 {
953 	struct scrub_bio *sbio;
954 
955 	if (sdev->curr == -1)
956 		return 0;
957 
958 	sbio = sdev->bios[sdev->curr];
959 	sbio->err = 0;
960 	sdev->curr = -1;
961 	atomic_inc(&sdev->in_flight);
962 
963 	btrfsic_submit_bio(READ, sbio->bio);
964 
965 	return 0;
966 }
967 
scrub_page(struct scrub_dev * sdev,u64 logical,u64 len,u64 physical,u64 flags,u64 gen,int mirror_num,u8 * csum,int force)968 static int scrub_page(struct scrub_dev *sdev, u64 logical, u64 len,
969 		      u64 physical, u64 flags, u64 gen, int mirror_num,
970 		      u8 *csum, int force)
971 {
972 	struct scrub_bio *sbio;
973 	struct page *page;
974 	int ret;
975 
976 again:
977 	/*
978 	 * grab a fresh bio or wait for one to become available
979 	 */
980 	while (sdev->curr == -1) {
981 		spin_lock(&sdev->list_lock);
982 		sdev->curr = sdev->first_free;
983 		if (sdev->curr != -1) {
984 			sdev->first_free = sdev->bios[sdev->curr]->next_free;
985 			sdev->bios[sdev->curr]->next_free = -1;
986 			sdev->bios[sdev->curr]->count = 0;
987 			spin_unlock(&sdev->list_lock);
988 		} else {
989 			spin_unlock(&sdev->list_lock);
990 			wait_event(sdev->list_wait, sdev->first_free != -1);
991 		}
992 	}
993 	sbio = sdev->bios[sdev->curr];
994 	if (sbio->count == 0) {
995 		struct bio *bio;
996 
997 		sbio->physical = physical;
998 		sbio->logical = logical;
999 		bio = bio_alloc(GFP_NOFS, SCRUB_PAGES_PER_BIO);
1000 		if (!bio)
1001 			return -ENOMEM;
1002 
1003 		bio->bi_private = sbio;
1004 		bio->bi_end_io = scrub_bio_end_io;
1005 		bio->bi_bdev = sdev->dev->bdev;
1006 		bio->bi_sector = sbio->physical >> 9;
1007 		sbio->err = 0;
1008 		sbio->bio = bio;
1009 	} else if (sbio->physical + sbio->count * PAGE_SIZE != physical ||
1010 		   sbio->logical + sbio->count * PAGE_SIZE != logical) {
1011 		ret = scrub_submit(sdev);
1012 		if (ret)
1013 			return ret;
1014 		goto again;
1015 	}
1016 	sbio->spag[sbio->count].flags = flags;
1017 	sbio->spag[sbio->count].generation = gen;
1018 	sbio->spag[sbio->count].have_csum = 0;
1019 	sbio->spag[sbio->count].mirror_num = mirror_num;
1020 
1021 	page = alloc_page(GFP_NOFS);
1022 	if (!page)
1023 		return -ENOMEM;
1024 
1025 	ret = bio_add_page(sbio->bio, page, PAGE_SIZE, 0);
1026 	if (!ret) {
1027 		__free_page(page);
1028 		ret = scrub_submit(sdev);
1029 		if (ret)
1030 			return ret;
1031 		goto again;
1032 	}
1033 
1034 	if (csum) {
1035 		sbio->spag[sbio->count].have_csum = 1;
1036 		memcpy(sbio->spag[sbio->count].csum, csum, sdev->csum_size);
1037 	}
1038 	++sbio->count;
1039 	if (sbio->count == SCRUB_PAGES_PER_BIO || force) {
1040 		int ret;
1041 
1042 		ret = scrub_submit(sdev);
1043 		if (ret)
1044 			return ret;
1045 	}
1046 
1047 	return 0;
1048 }
1049 
scrub_find_csum(struct scrub_dev * sdev,u64 logical,u64 len,u8 * csum)1050 static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1051 			   u8 *csum)
1052 {
1053 	struct btrfs_ordered_sum *sum = NULL;
1054 	int ret = 0;
1055 	unsigned long i;
1056 	unsigned long num_sectors;
1057 	u32 sectorsize = sdev->dev->dev_root->sectorsize;
1058 
1059 	while (!list_empty(&sdev->csum_list)) {
1060 		sum = list_first_entry(&sdev->csum_list,
1061 				       struct btrfs_ordered_sum, list);
1062 		if (sum->bytenr > logical)
1063 			return 0;
1064 		if (sum->bytenr + sum->len > logical)
1065 			break;
1066 
1067 		++sdev->stat.csum_discards;
1068 		list_del(&sum->list);
1069 		kfree(sum);
1070 		sum = NULL;
1071 	}
1072 	if (!sum)
1073 		return 0;
1074 
1075 	num_sectors = sum->len / sectorsize;
1076 	for (i = 0; i < num_sectors; ++i) {
1077 		if (sum->sums[i].bytenr == logical) {
1078 			memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1079 			ret = 1;
1080 			break;
1081 		}
1082 	}
1083 	if (ret && i == num_sectors - 1) {
1084 		list_del(&sum->list);
1085 		kfree(sum);
1086 	}
1087 	return ret;
1088 }
1089 
1090 /* scrub extent tries to collect up to 64 kB for each bio */
scrub_extent(struct scrub_dev * sdev,u64 logical,u64 len,u64 physical,u64 flags,u64 gen,int mirror_num)1091 static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1092 			u64 physical, u64 flags, u64 gen, int mirror_num)
1093 {
1094 	int ret;
1095 	u8 csum[BTRFS_CSUM_SIZE];
1096 
1097 	while (len) {
1098 		u64 l = min_t(u64, len, PAGE_SIZE);
1099 		int have_csum = 0;
1100 
1101 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
1102 			/* push csums to sbio */
1103 			have_csum = scrub_find_csum(sdev, logical, l, csum);
1104 			if (have_csum == 0)
1105 				++sdev->stat.no_csum;
1106 		}
1107 		ret = scrub_page(sdev, logical, l, physical, flags, gen,
1108 				 mirror_num, have_csum ? csum : NULL, 0);
1109 		if (ret)
1110 			return ret;
1111 		len -= l;
1112 		logical += l;
1113 		physical += l;
1114 	}
1115 	return 0;
1116 }
1117 
scrub_stripe(struct scrub_dev * sdev,struct map_lookup * map,int num,u64 base,u64 length)1118 static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1119 	struct map_lookup *map, int num, u64 base, u64 length)
1120 {
1121 	struct btrfs_path *path;
1122 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1123 	struct btrfs_root *root = fs_info->extent_root;
1124 	struct btrfs_root *csum_root = fs_info->csum_root;
1125 	struct btrfs_extent_item *extent;
1126 	struct blk_plug plug;
1127 	u64 flags;
1128 	int ret;
1129 	int slot;
1130 	int i;
1131 	u64 nstripes;
1132 	struct extent_buffer *l;
1133 	struct btrfs_key key;
1134 	u64 physical;
1135 	u64 logical;
1136 	u64 generation;
1137 	int mirror_num;
1138 	struct reada_control *reada1;
1139 	struct reada_control *reada2;
1140 	struct btrfs_key key_start;
1141 	struct btrfs_key key_end;
1142 
1143 	u64 increment = map->stripe_len;
1144 	u64 offset;
1145 
1146 	nstripes = length;
1147 	offset = 0;
1148 	do_div(nstripes, map->stripe_len);
1149 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1150 		offset = map->stripe_len * num;
1151 		increment = map->stripe_len * map->num_stripes;
1152 		mirror_num = 1;
1153 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1154 		int factor = map->num_stripes / map->sub_stripes;
1155 		offset = map->stripe_len * (num / map->sub_stripes);
1156 		increment = map->stripe_len * factor;
1157 		mirror_num = num % map->sub_stripes + 1;
1158 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1159 		increment = map->stripe_len;
1160 		mirror_num = num % map->num_stripes + 1;
1161 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1162 		increment = map->stripe_len;
1163 		mirror_num = num % map->num_stripes + 1;
1164 	} else {
1165 		increment = map->stripe_len;
1166 		mirror_num = 1;
1167 	}
1168 
1169 	path = btrfs_alloc_path();
1170 	if (!path)
1171 		return -ENOMEM;
1172 
1173 	path->search_commit_root = 1;
1174 	path->skip_locking = 1;
1175 
1176 	/*
1177 	 * trigger the readahead for extent tree csum tree and wait for
1178 	 * completion. During readahead, the scrub is officially paused
1179 	 * to not hold off transaction commits
1180 	 */
1181 	logical = base + offset;
1182 
1183 	wait_event(sdev->list_wait,
1184 		   atomic_read(&sdev->in_flight) == 0);
1185 	atomic_inc(&fs_info->scrubs_paused);
1186 	wake_up(&fs_info->scrub_pause_wait);
1187 
1188 	/* FIXME it might be better to start readahead at commit root */
1189 	key_start.objectid = logical;
1190 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
1191 	key_start.offset = (u64)0;
1192 	key_end.objectid = base + offset + nstripes * increment;
1193 	key_end.type = BTRFS_EXTENT_ITEM_KEY;
1194 	key_end.offset = (u64)0;
1195 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
1196 
1197 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1198 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
1199 	key_start.offset = logical;
1200 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1201 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
1202 	key_end.offset = base + offset + nstripes * increment;
1203 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1204 
1205 	if (!IS_ERR(reada1))
1206 		btrfs_reada_wait(reada1);
1207 	if (!IS_ERR(reada2))
1208 		btrfs_reada_wait(reada2);
1209 
1210 	mutex_lock(&fs_info->scrub_lock);
1211 	while (atomic_read(&fs_info->scrub_pause_req)) {
1212 		mutex_unlock(&fs_info->scrub_lock);
1213 		wait_event(fs_info->scrub_pause_wait,
1214 		   atomic_read(&fs_info->scrub_pause_req) == 0);
1215 		mutex_lock(&fs_info->scrub_lock);
1216 	}
1217 	atomic_dec(&fs_info->scrubs_paused);
1218 	mutex_unlock(&fs_info->scrub_lock);
1219 	wake_up(&fs_info->scrub_pause_wait);
1220 
1221 	/*
1222 	 * collect all data csums for the stripe to avoid seeking during
1223 	 * the scrub. This might currently (crc32) end up to be about 1MB
1224 	 */
1225 	blk_start_plug(&plug);
1226 
1227 	/*
1228 	 * now find all extents for each stripe and scrub them
1229 	 */
1230 	logical = base + offset;
1231 	physical = map->stripes[num].physical;
1232 	ret = 0;
1233 	for (i = 0; i < nstripes; ++i) {
1234 		/*
1235 		 * canceled?
1236 		 */
1237 		if (atomic_read(&fs_info->scrub_cancel_req) ||
1238 		    atomic_read(&sdev->cancel_req)) {
1239 			ret = -ECANCELED;
1240 			goto out;
1241 		}
1242 		/*
1243 		 * check to see if we have to pause
1244 		 */
1245 		if (atomic_read(&fs_info->scrub_pause_req)) {
1246 			/* push queued extents */
1247 			scrub_submit(sdev);
1248 			wait_event(sdev->list_wait,
1249 				   atomic_read(&sdev->in_flight) == 0);
1250 			atomic_inc(&fs_info->scrubs_paused);
1251 			wake_up(&fs_info->scrub_pause_wait);
1252 			mutex_lock(&fs_info->scrub_lock);
1253 			while (atomic_read(&fs_info->scrub_pause_req)) {
1254 				mutex_unlock(&fs_info->scrub_lock);
1255 				wait_event(fs_info->scrub_pause_wait,
1256 				   atomic_read(&fs_info->scrub_pause_req) == 0);
1257 				mutex_lock(&fs_info->scrub_lock);
1258 			}
1259 			atomic_dec(&fs_info->scrubs_paused);
1260 			mutex_unlock(&fs_info->scrub_lock);
1261 			wake_up(&fs_info->scrub_pause_wait);
1262 		}
1263 
1264 		ret = btrfs_lookup_csums_range(csum_root, logical,
1265 					       logical + map->stripe_len - 1,
1266 					       &sdev->csum_list, 1);
1267 		if (ret)
1268 			goto out;
1269 
1270 		key.objectid = logical;
1271 		key.type = BTRFS_EXTENT_ITEM_KEY;
1272 		key.offset = (u64)0;
1273 
1274 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1275 		if (ret < 0)
1276 			goto out;
1277 		if (ret > 0) {
1278 			ret = btrfs_previous_item(root, path, 0,
1279 						  BTRFS_EXTENT_ITEM_KEY);
1280 			if (ret < 0)
1281 				goto out;
1282 			if (ret > 0) {
1283 				/* there's no smaller item, so stick with the
1284 				 * larger one */
1285 				btrfs_release_path(path);
1286 				ret = btrfs_search_slot(NULL, root, &key,
1287 							path, 0, 0);
1288 				if (ret < 0)
1289 					goto out;
1290 			}
1291 		}
1292 
1293 		while (1) {
1294 			l = path->nodes[0];
1295 			slot = path->slots[0];
1296 			if (slot >= btrfs_header_nritems(l)) {
1297 				ret = btrfs_next_leaf(root, path);
1298 				if (ret == 0)
1299 					continue;
1300 				if (ret < 0)
1301 					goto out;
1302 
1303 				break;
1304 			}
1305 			btrfs_item_key_to_cpu(l, &key, slot);
1306 
1307 			if (key.objectid + key.offset <= logical)
1308 				goto next;
1309 
1310 			if (key.objectid >= logical + map->stripe_len)
1311 				break;
1312 
1313 			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1314 				goto next;
1315 
1316 			extent = btrfs_item_ptr(l, slot,
1317 						struct btrfs_extent_item);
1318 			flags = btrfs_extent_flags(l, extent);
1319 			generation = btrfs_extent_generation(l, extent);
1320 
1321 			if (key.objectid < logical &&
1322 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1323 				printk(KERN_ERR
1324 				       "btrfs scrub: tree block %llu spanning "
1325 				       "stripes, ignored. logical=%llu\n",
1326 				       (unsigned long long)key.objectid,
1327 				       (unsigned long long)logical);
1328 				goto next;
1329 			}
1330 
1331 			/*
1332 			 * trim extent to this stripe
1333 			 */
1334 			if (key.objectid < logical) {
1335 				key.offset -= logical - key.objectid;
1336 				key.objectid = logical;
1337 			}
1338 			if (key.objectid + key.offset >
1339 			    logical + map->stripe_len) {
1340 				key.offset = logical + map->stripe_len -
1341 					     key.objectid;
1342 			}
1343 
1344 			ret = scrub_extent(sdev, key.objectid, key.offset,
1345 					   key.objectid - logical + physical,
1346 					   flags, generation, mirror_num);
1347 			if (ret)
1348 				goto out;
1349 
1350 next:
1351 			path->slots[0]++;
1352 		}
1353 		btrfs_release_path(path);
1354 		logical += increment;
1355 		physical += map->stripe_len;
1356 		spin_lock(&sdev->stat_lock);
1357 		sdev->stat.last_physical = physical;
1358 		spin_unlock(&sdev->stat_lock);
1359 	}
1360 	/* push queued extents */
1361 	scrub_submit(sdev);
1362 
1363 out:
1364 	blk_finish_plug(&plug);
1365 	btrfs_free_path(path);
1366 	return ret < 0 ? ret : 0;
1367 }
1368 
scrub_chunk(struct scrub_dev * sdev,u64 chunk_tree,u64 chunk_objectid,u64 chunk_offset,u64 length,u64 dev_offset)1369 static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
1370 	u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
1371 	u64 dev_offset)
1372 {
1373 	struct btrfs_mapping_tree *map_tree =
1374 		&sdev->dev->dev_root->fs_info->mapping_tree;
1375 	struct map_lookup *map;
1376 	struct extent_map *em;
1377 	int i;
1378 	int ret = -EINVAL;
1379 
1380 	read_lock(&map_tree->map_tree.lock);
1381 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
1382 	read_unlock(&map_tree->map_tree.lock);
1383 
1384 	if (!em)
1385 		return -EINVAL;
1386 
1387 	map = (struct map_lookup *)em->bdev;
1388 	if (em->start != chunk_offset)
1389 		goto out;
1390 
1391 	if (em->len < length)
1392 		goto out;
1393 
1394 	for (i = 0; i < map->num_stripes; ++i) {
1395 		if (map->stripes[i].dev == sdev->dev &&
1396 		    map->stripes[i].physical == dev_offset) {
1397 			ret = scrub_stripe(sdev, map, i, chunk_offset, length);
1398 			if (ret)
1399 				goto out;
1400 		}
1401 	}
1402 out:
1403 	free_extent_map(em);
1404 
1405 	return ret;
1406 }
1407 
1408 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_dev * sdev,u64 start,u64 end)1409 int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
1410 {
1411 	struct btrfs_dev_extent *dev_extent = NULL;
1412 	struct btrfs_path *path;
1413 	struct btrfs_root *root = sdev->dev->dev_root;
1414 	struct btrfs_fs_info *fs_info = root->fs_info;
1415 	u64 length;
1416 	u64 chunk_tree;
1417 	u64 chunk_objectid;
1418 	u64 chunk_offset;
1419 	int ret;
1420 	int slot;
1421 	struct extent_buffer *l;
1422 	struct btrfs_key key;
1423 	struct btrfs_key found_key;
1424 	struct btrfs_block_group_cache *cache;
1425 
1426 	path = btrfs_alloc_path();
1427 	if (!path)
1428 		return -ENOMEM;
1429 
1430 	path->reada = 2;
1431 	path->search_commit_root = 1;
1432 	path->skip_locking = 1;
1433 
1434 	key.objectid = sdev->dev->devid;
1435 	key.offset = 0ull;
1436 	key.type = BTRFS_DEV_EXTENT_KEY;
1437 
1438 
1439 	while (1) {
1440 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1441 		if (ret < 0)
1442 			break;
1443 		if (ret > 0) {
1444 			if (path->slots[0] >=
1445 			    btrfs_header_nritems(path->nodes[0])) {
1446 				ret = btrfs_next_leaf(root, path);
1447 				if (ret)
1448 					break;
1449 			}
1450 		}
1451 
1452 		l = path->nodes[0];
1453 		slot = path->slots[0];
1454 
1455 		btrfs_item_key_to_cpu(l, &found_key, slot);
1456 
1457 		if (found_key.objectid != sdev->dev->devid)
1458 			break;
1459 
1460 		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
1461 			break;
1462 
1463 		if (found_key.offset >= end)
1464 			break;
1465 
1466 		if (found_key.offset < key.offset)
1467 			break;
1468 
1469 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1470 		length = btrfs_dev_extent_length(l, dev_extent);
1471 
1472 		if (found_key.offset + length <= start) {
1473 			key.offset = found_key.offset + length;
1474 			btrfs_release_path(path);
1475 			continue;
1476 		}
1477 
1478 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1479 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1480 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1481 
1482 		/*
1483 		 * get a reference on the corresponding block group to prevent
1484 		 * the chunk from going away while we scrub it
1485 		 */
1486 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
1487 		if (!cache) {
1488 			ret = -ENOENT;
1489 			break;
1490 		}
1491 		ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
1492 				  chunk_offset, length, found_key.offset);
1493 		btrfs_put_block_group(cache);
1494 		if (ret)
1495 			break;
1496 
1497 		key.offset = found_key.offset + length;
1498 		btrfs_release_path(path);
1499 	}
1500 
1501 	btrfs_free_path(path);
1502 
1503 	/*
1504 	 * ret can still be 1 from search_slot or next_leaf,
1505 	 * that's not an error
1506 	 */
1507 	return ret < 0 ? ret : 0;
1508 }
1509 
scrub_supers(struct scrub_dev * sdev)1510 static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
1511 {
1512 	int	i;
1513 	u64	bytenr;
1514 	u64	gen;
1515 	int	ret;
1516 	struct btrfs_device *device = sdev->dev;
1517 	struct btrfs_root *root = device->dev_root;
1518 
1519 	gen = root->fs_info->last_trans_committed;
1520 
1521 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1522 		bytenr = btrfs_sb_offset(i);
1523 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
1524 			break;
1525 
1526 		ret = scrub_page(sdev, bytenr, PAGE_SIZE, bytenr,
1527 				 BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
1528 		if (ret)
1529 			return ret;
1530 	}
1531 	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1532 
1533 	return 0;
1534 }
1535 
1536 /*
1537  * get a reference count on fs_info->scrub_workers. start worker if necessary
1538  */
scrub_workers_get(struct btrfs_root * root)1539 static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
1540 {
1541 	struct btrfs_fs_info *fs_info = root->fs_info;
1542 	int ret = 0;
1543 
1544 	mutex_lock(&fs_info->scrub_lock);
1545 	if (fs_info->scrub_workers_refcnt == 0) {
1546 		btrfs_init_workers(&fs_info->scrub_workers, "scrub",
1547 			   fs_info->thread_pool_size, &fs_info->generic_worker);
1548 		fs_info->scrub_workers.idle_thresh = 4;
1549 		ret = btrfs_start_workers(&fs_info->scrub_workers);
1550 		if (ret)
1551 			goto out;
1552 	}
1553 	++fs_info->scrub_workers_refcnt;
1554 out:
1555 	mutex_unlock(&fs_info->scrub_lock);
1556 
1557 	return ret;
1558 }
1559 
scrub_workers_put(struct btrfs_root * root)1560 static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
1561 {
1562 	struct btrfs_fs_info *fs_info = root->fs_info;
1563 
1564 	mutex_lock(&fs_info->scrub_lock);
1565 	if (--fs_info->scrub_workers_refcnt == 0)
1566 		btrfs_stop_workers(&fs_info->scrub_workers);
1567 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
1568 	mutex_unlock(&fs_info->scrub_lock);
1569 }
1570 
1571 
btrfs_scrub_dev(struct btrfs_root * root,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,int readonly)1572 int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
1573 		    struct btrfs_scrub_progress *progress, int readonly)
1574 {
1575 	struct scrub_dev *sdev;
1576 	struct btrfs_fs_info *fs_info = root->fs_info;
1577 	int ret;
1578 	struct btrfs_device *dev;
1579 
1580 	if (btrfs_fs_closing(root->fs_info))
1581 		return -EINVAL;
1582 
1583 	/*
1584 	 * check some assumptions
1585 	 */
1586 	if (root->sectorsize != PAGE_SIZE ||
1587 	    root->sectorsize != root->leafsize ||
1588 	    root->sectorsize != root->nodesize) {
1589 		printk(KERN_ERR "btrfs_scrub: size assumptions fail\n");
1590 		return -EINVAL;
1591 	}
1592 
1593 	ret = scrub_workers_get(root);
1594 	if (ret)
1595 		return ret;
1596 
1597 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1598 	dev = btrfs_find_device(root, devid, NULL, NULL);
1599 	if (!dev || dev->missing) {
1600 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1601 		scrub_workers_put(root);
1602 		return -ENODEV;
1603 	}
1604 	mutex_lock(&fs_info->scrub_lock);
1605 
1606 	if (!dev->in_fs_metadata) {
1607 		mutex_unlock(&fs_info->scrub_lock);
1608 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1609 		scrub_workers_put(root);
1610 		return -ENODEV;
1611 	}
1612 
1613 	if (dev->scrub_device) {
1614 		mutex_unlock(&fs_info->scrub_lock);
1615 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1616 		scrub_workers_put(root);
1617 		return -EINPROGRESS;
1618 	}
1619 	sdev = scrub_setup_dev(dev);
1620 	if (IS_ERR(sdev)) {
1621 		mutex_unlock(&fs_info->scrub_lock);
1622 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1623 		scrub_workers_put(root);
1624 		return PTR_ERR(sdev);
1625 	}
1626 	sdev->readonly = readonly;
1627 	dev->scrub_device = sdev;
1628 
1629 	atomic_inc(&fs_info->scrubs_running);
1630 	mutex_unlock(&fs_info->scrub_lock);
1631 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1632 
1633 	down_read(&fs_info->scrub_super_lock);
1634 	ret = scrub_supers(sdev);
1635 	up_read(&fs_info->scrub_super_lock);
1636 
1637 	if (!ret)
1638 		ret = scrub_enumerate_chunks(sdev, start, end);
1639 
1640 	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1641 	atomic_dec(&fs_info->scrubs_running);
1642 	wake_up(&fs_info->scrub_pause_wait);
1643 
1644 	wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
1645 
1646 	if (progress)
1647 		memcpy(progress, &sdev->stat, sizeof(*progress));
1648 
1649 	mutex_lock(&fs_info->scrub_lock);
1650 	dev->scrub_device = NULL;
1651 	mutex_unlock(&fs_info->scrub_lock);
1652 
1653 	scrub_free_dev(sdev);
1654 	scrub_workers_put(root);
1655 
1656 	return ret;
1657 }
1658 
btrfs_scrub_pause(struct btrfs_root * root)1659 int btrfs_scrub_pause(struct btrfs_root *root)
1660 {
1661 	struct btrfs_fs_info *fs_info = root->fs_info;
1662 
1663 	mutex_lock(&fs_info->scrub_lock);
1664 	atomic_inc(&fs_info->scrub_pause_req);
1665 	while (atomic_read(&fs_info->scrubs_paused) !=
1666 	       atomic_read(&fs_info->scrubs_running)) {
1667 		mutex_unlock(&fs_info->scrub_lock);
1668 		wait_event(fs_info->scrub_pause_wait,
1669 			   atomic_read(&fs_info->scrubs_paused) ==
1670 			   atomic_read(&fs_info->scrubs_running));
1671 		mutex_lock(&fs_info->scrub_lock);
1672 	}
1673 	mutex_unlock(&fs_info->scrub_lock);
1674 
1675 	return 0;
1676 }
1677 
btrfs_scrub_continue(struct btrfs_root * root)1678 int btrfs_scrub_continue(struct btrfs_root *root)
1679 {
1680 	struct btrfs_fs_info *fs_info = root->fs_info;
1681 
1682 	atomic_dec(&fs_info->scrub_pause_req);
1683 	wake_up(&fs_info->scrub_pause_wait);
1684 	return 0;
1685 }
1686 
btrfs_scrub_pause_super(struct btrfs_root * root)1687 int btrfs_scrub_pause_super(struct btrfs_root *root)
1688 {
1689 	down_write(&root->fs_info->scrub_super_lock);
1690 	return 0;
1691 }
1692 
btrfs_scrub_continue_super(struct btrfs_root * root)1693 int btrfs_scrub_continue_super(struct btrfs_root *root)
1694 {
1695 	up_write(&root->fs_info->scrub_super_lock);
1696 	return 0;
1697 }
1698 
btrfs_scrub_cancel(struct btrfs_root * root)1699 int btrfs_scrub_cancel(struct btrfs_root *root)
1700 {
1701 	struct btrfs_fs_info *fs_info = root->fs_info;
1702 
1703 	mutex_lock(&fs_info->scrub_lock);
1704 	if (!atomic_read(&fs_info->scrubs_running)) {
1705 		mutex_unlock(&fs_info->scrub_lock);
1706 		return -ENOTCONN;
1707 	}
1708 
1709 	atomic_inc(&fs_info->scrub_cancel_req);
1710 	while (atomic_read(&fs_info->scrubs_running)) {
1711 		mutex_unlock(&fs_info->scrub_lock);
1712 		wait_event(fs_info->scrub_pause_wait,
1713 			   atomic_read(&fs_info->scrubs_running) == 0);
1714 		mutex_lock(&fs_info->scrub_lock);
1715 	}
1716 	atomic_dec(&fs_info->scrub_cancel_req);
1717 	mutex_unlock(&fs_info->scrub_lock);
1718 
1719 	return 0;
1720 }
1721 
btrfs_scrub_cancel_dev(struct btrfs_root * root,struct btrfs_device * dev)1722 int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
1723 {
1724 	struct btrfs_fs_info *fs_info = root->fs_info;
1725 	struct scrub_dev *sdev;
1726 
1727 	mutex_lock(&fs_info->scrub_lock);
1728 	sdev = dev->scrub_device;
1729 	if (!sdev) {
1730 		mutex_unlock(&fs_info->scrub_lock);
1731 		return -ENOTCONN;
1732 	}
1733 	atomic_inc(&sdev->cancel_req);
1734 	while (dev->scrub_device) {
1735 		mutex_unlock(&fs_info->scrub_lock);
1736 		wait_event(fs_info->scrub_pause_wait,
1737 			   dev->scrub_device == NULL);
1738 		mutex_lock(&fs_info->scrub_lock);
1739 	}
1740 	mutex_unlock(&fs_info->scrub_lock);
1741 
1742 	return 0;
1743 }
btrfs_scrub_cancel_devid(struct btrfs_root * root,u64 devid)1744 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
1745 {
1746 	struct btrfs_fs_info *fs_info = root->fs_info;
1747 	struct btrfs_device *dev;
1748 	int ret;
1749 
1750 	/*
1751 	 * we have to hold the device_list_mutex here so the device
1752 	 * does not go away in cancel_dev. FIXME: find a better solution
1753 	 */
1754 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1755 	dev = btrfs_find_device(root, devid, NULL, NULL);
1756 	if (!dev) {
1757 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1758 		return -ENODEV;
1759 	}
1760 	ret = btrfs_scrub_cancel_dev(root, dev);
1761 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1762 
1763 	return ret;
1764 }
1765 
btrfs_scrub_progress(struct btrfs_root * root,u64 devid,struct btrfs_scrub_progress * progress)1766 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
1767 			 struct btrfs_scrub_progress *progress)
1768 {
1769 	struct btrfs_device *dev;
1770 	struct scrub_dev *sdev = NULL;
1771 
1772 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1773 	dev = btrfs_find_device(root, devid, NULL, NULL);
1774 	if (dev)
1775 		sdev = dev->scrub_device;
1776 	if (sdev)
1777 		memcpy(progress, &sdev->stat, sizeof(*progress));
1778 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1779 
1780 	return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
1781 }
1782