1 /*
2  *  linux/arch/arm/mm/fault.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2004 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/signal.h>
13 #include <linux/mm.h>
14 #include <linux/hardirq.h>
15 #include <linux/init.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/page-flags.h>
19 #include <linux/sched.h>
20 #include <linux/highmem.h>
21 #include <linux/perf_event.h>
22 
23 #include <asm/exception.h>
24 #include <asm/system.h>
25 #include <asm/pgtable.h>
26 #include <asm/tlbflush.h>
27 
28 #include "fault.h"
29 
30 #ifdef CONFIG_MMU
31 
32 #ifdef CONFIG_KPROBES
notify_page_fault(struct pt_regs * regs,unsigned int fsr)33 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
34 {
35 	int ret = 0;
36 
37 	if (!user_mode(regs)) {
38 		/* kprobe_running() needs smp_processor_id() */
39 		preempt_disable();
40 		if (kprobe_running() && kprobe_fault_handler(regs, fsr))
41 			ret = 1;
42 		preempt_enable();
43 	}
44 
45 	return ret;
46 }
47 #else
notify_page_fault(struct pt_regs * regs,unsigned int fsr)48 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
49 {
50 	return 0;
51 }
52 #endif
53 
54 /*
55  * This is useful to dump out the page tables associated with
56  * 'addr' in mm 'mm'.
57  */
show_pte(struct mm_struct * mm,unsigned long addr)58 void show_pte(struct mm_struct *mm, unsigned long addr)
59 {
60 	pgd_t *pgd;
61 
62 	if (!mm)
63 		mm = &init_mm;
64 
65 	printk(KERN_ALERT "pgd = %p\n", mm->pgd);
66 	pgd = pgd_offset(mm, addr);
67 	printk(KERN_ALERT "[%08lx] *pgd=%08llx",
68 			addr, (long long)pgd_val(*pgd));
69 
70 	do {
71 		pud_t *pud;
72 		pmd_t *pmd;
73 		pte_t *pte;
74 
75 		if (pgd_none(*pgd))
76 			break;
77 
78 		if (pgd_bad(*pgd)) {
79 			printk("(bad)");
80 			break;
81 		}
82 
83 		pud = pud_offset(pgd, addr);
84 		if (PTRS_PER_PUD != 1)
85 			printk(", *pud=%08llx", (long long)pud_val(*pud));
86 
87 		if (pud_none(*pud))
88 			break;
89 
90 		if (pud_bad(*pud)) {
91 			printk("(bad)");
92 			break;
93 		}
94 
95 		pmd = pmd_offset(pud, addr);
96 		if (PTRS_PER_PMD != 1)
97 			printk(", *pmd=%08llx", (long long)pmd_val(*pmd));
98 
99 		if (pmd_none(*pmd))
100 			break;
101 
102 		if (pmd_bad(*pmd)) {
103 			printk("(bad)");
104 			break;
105 		}
106 
107 		/* We must not map this if we have highmem enabled */
108 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
109 			break;
110 
111 		pte = pte_offset_map(pmd, addr);
112 		printk(", *pte=%08llx", (long long)pte_val(*pte));
113 #ifndef CONFIG_ARM_LPAE
114 		printk(", *ppte=%08llx",
115 		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
116 #endif
117 		pte_unmap(pte);
118 	} while(0);
119 
120 	printk("\n");
121 }
122 #else					/* CONFIG_MMU */
show_pte(struct mm_struct * mm,unsigned long addr)123 void show_pte(struct mm_struct *mm, unsigned long addr)
124 { }
125 #endif					/* CONFIG_MMU */
126 
127 /*
128  * Oops.  The kernel tried to access some page that wasn't present.
129  */
130 static void
__do_kernel_fault(struct mm_struct * mm,unsigned long addr,unsigned int fsr,struct pt_regs * regs)131 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
132 		  struct pt_regs *regs)
133 {
134 	/*
135 	 * Are we prepared to handle this kernel fault?
136 	 */
137 	if (fixup_exception(regs))
138 		return;
139 
140 	/*
141 	 * No handler, we'll have to terminate things with extreme prejudice.
142 	 */
143 	bust_spinlocks(1);
144 	printk(KERN_ALERT
145 		"Unable to handle kernel %s at virtual address %08lx\n",
146 		(addr < PAGE_SIZE) ? "NULL pointer dereference" :
147 		"paging request", addr);
148 
149 	show_pte(mm, addr);
150 	die("Oops", regs, fsr);
151 	bust_spinlocks(0);
152 	do_exit(SIGKILL);
153 }
154 
155 /*
156  * Something tried to access memory that isn't in our memory map..
157  * User mode accesses just cause a SIGSEGV
158  */
159 static void
__do_user_fault(struct task_struct * tsk,unsigned long addr,unsigned int fsr,unsigned int sig,int code,struct pt_regs * regs)160 __do_user_fault(struct task_struct *tsk, unsigned long addr,
161 		unsigned int fsr, unsigned int sig, int code,
162 		struct pt_regs *regs)
163 {
164 	struct siginfo si;
165 
166 #ifdef CONFIG_DEBUG_USER
167 	if (user_debug & UDBG_SEGV) {
168 		printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
169 		       tsk->comm, sig, addr, fsr);
170 		show_pte(tsk->mm, addr);
171 		show_regs(regs);
172 	}
173 #endif
174 
175 	tsk->thread.address = addr;
176 	tsk->thread.error_code = fsr;
177 	tsk->thread.trap_no = 14;
178 	si.si_signo = sig;
179 	si.si_errno = 0;
180 	si.si_code = code;
181 	si.si_addr = (void __user *)addr;
182 	force_sig_info(sig, &si, tsk);
183 }
184 
do_bad_area(unsigned long addr,unsigned int fsr,struct pt_regs * regs)185 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
186 {
187 	struct task_struct *tsk = current;
188 	struct mm_struct *mm = tsk->active_mm;
189 
190 	/*
191 	 * If we are in kernel mode at this point, we
192 	 * have no context to handle this fault with.
193 	 */
194 	if (user_mode(regs))
195 		__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
196 	else
197 		__do_kernel_fault(mm, addr, fsr, regs);
198 }
199 
200 #ifdef CONFIG_MMU
201 #define VM_FAULT_BADMAP		0x010000
202 #define VM_FAULT_BADACCESS	0x020000
203 
204 /*
205  * Check that the permissions on the VMA allow for the fault which occurred.
206  * If we encountered a write fault, we must have write permission, otherwise
207  * we allow any permission.
208  */
access_error(unsigned int fsr,struct vm_area_struct * vma)209 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
210 {
211 	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
212 
213 	if (fsr & FSR_WRITE)
214 		mask = VM_WRITE;
215 	if (fsr & FSR_LNX_PF)
216 		mask = VM_EXEC;
217 
218 	return vma->vm_flags & mask ? false : true;
219 }
220 
221 static int __kprobes
__do_page_fault(struct mm_struct * mm,unsigned long addr,unsigned int fsr,unsigned int flags,struct task_struct * tsk)222 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
223 		unsigned int flags, struct task_struct *tsk)
224 {
225 	struct vm_area_struct *vma;
226 	int fault;
227 
228 	vma = find_vma(mm, addr);
229 	fault = VM_FAULT_BADMAP;
230 	if (unlikely(!vma))
231 		goto out;
232 	if (unlikely(vma->vm_start > addr))
233 		goto check_stack;
234 
235 	/*
236 	 * Ok, we have a good vm_area for this
237 	 * memory access, so we can handle it.
238 	 */
239 good_area:
240 	if (access_error(fsr, vma)) {
241 		fault = VM_FAULT_BADACCESS;
242 		goto out;
243 	}
244 
245 	return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);
246 
247 check_stack:
248 	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
249 		goto good_area;
250 out:
251 	return fault;
252 }
253 
254 static int __kprobes
do_page_fault(unsigned long addr,unsigned int fsr,struct pt_regs * regs)255 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
256 {
257 	struct task_struct *tsk;
258 	struct mm_struct *mm;
259 	int fault, sig, code;
260 	int write = fsr & FSR_WRITE;
261 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
262 				(write ? FAULT_FLAG_WRITE : 0);
263 
264 	if (notify_page_fault(regs, fsr))
265 		return 0;
266 
267 	tsk = current;
268 	mm  = tsk->mm;
269 
270 	/* Enable interrupts if they were enabled in the parent context. */
271 	if (interrupts_enabled(regs))
272 		local_irq_enable();
273 
274 	/*
275 	 * If we're in an interrupt or have no user
276 	 * context, we must not take the fault..
277 	 */
278 	if (in_atomic() || !mm)
279 		goto no_context;
280 
281 	/*
282 	 * As per x86, we may deadlock here.  However, since the kernel only
283 	 * validly references user space from well defined areas of the code,
284 	 * we can bug out early if this is from code which shouldn't.
285 	 */
286 	if (!down_read_trylock(&mm->mmap_sem)) {
287 		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
288 			goto no_context;
289 retry:
290 		down_read(&mm->mmap_sem);
291 	} else {
292 		/*
293 		 * The above down_read_trylock() might have succeeded in
294 		 * which case, we'll have missed the might_sleep() from
295 		 * down_read()
296 		 */
297 		might_sleep();
298 #ifdef CONFIG_DEBUG_VM
299 		if (!user_mode(regs) &&
300 		    !search_exception_tables(regs->ARM_pc))
301 			goto no_context;
302 #endif
303 	}
304 
305 	fault = __do_page_fault(mm, addr, fsr, flags, tsk);
306 
307 	/* If we need to retry but a fatal signal is pending, handle the
308 	 * signal first. We do not need to release the mmap_sem because
309 	 * it would already be released in __lock_page_or_retry in
310 	 * mm/filemap.c. */
311 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
312 		return 0;
313 
314 	/*
315 	 * Major/minor page fault accounting is only done on the
316 	 * initial attempt. If we go through a retry, it is extremely
317 	 * likely that the page will be found in page cache at that point.
318 	 */
319 
320 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
321 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
322 		if (fault & VM_FAULT_MAJOR) {
323 			tsk->maj_flt++;
324 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
325 					regs, addr);
326 		} else {
327 			tsk->min_flt++;
328 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
329 					regs, addr);
330 		}
331 		if (fault & VM_FAULT_RETRY) {
332 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
333 			* of starvation. */
334 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
335 			goto retry;
336 		}
337 	}
338 
339 	up_read(&mm->mmap_sem);
340 
341 	/*
342 	 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
343 	 */
344 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
345 		return 0;
346 
347 	if (fault & VM_FAULT_OOM) {
348 		/*
349 		 * We ran out of memory, call the OOM killer, and return to
350 		 * userspace (which will retry the fault, or kill us if we
351 		 * got oom-killed)
352 		 */
353 		pagefault_out_of_memory();
354 		return 0;
355 	}
356 
357 	/*
358 	 * If we are in kernel mode at this point, we
359 	 * have no context to handle this fault with.
360 	 */
361 	if (!user_mode(regs))
362 		goto no_context;
363 
364 	if (fault & VM_FAULT_SIGBUS) {
365 		/*
366 		 * We had some memory, but were unable to
367 		 * successfully fix up this page fault.
368 		 */
369 		sig = SIGBUS;
370 		code = BUS_ADRERR;
371 	} else {
372 		/*
373 		 * Something tried to access memory that
374 		 * isn't in our memory map..
375 		 */
376 		sig = SIGSEGV;
377 		code = fault == VM_FAULT_BADACCESS ?
378 			SEGV_ACCERR : SEGV_MAPERR;
379 	}
380 
381 	__do_user_fault(tsk, addr, fsr, sig, code, regs);
382 	return 0;
383 
384 no_context:
385 	__do_kernel_fault(mm, addr, fsr, regs);
386 	return 0;
387 }
388 #else					/* CONFIG_MMU */
389 static int
do_page_fault(unsigned long addr,unsigned int fsr,struct pt_regs * regs)390 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
391 {
392 	return 0;
393 }
394 #endif					/* CONFIG_MMU */
395 
396 /*
397  * First Level Translation Fault Handler
398  *
399  * We enter here because the first level page table doesn't contain
400  * a valid entry for the address.
401  *
402  * If the address is in kernel space (>= TASK_SIZE), then we are
403  * probably faulting in the vmalloc() area.
404  *
405  * If the init_task's first level page tables contains the relevant
406  * entry, we copy the it to this task.  If not, we send the process
407  * a signal, fixup the exception, or oops the kernel.
408  *
409  * NOTE! We MUST NOT take any locks for this case. We may be in an
410  * interrupt or a critical region, and should only copy the information
411  * from the master page table, nothing more.
412  */
413 #ifdef CONFIG_MMU
414 static int __kprobes
do_translation_fault(unsigned long addr,unsigned int fsr,struct pt_regs * regs)415 do_translation_fault(unsigned long addr, unsigned int fsr,
416 		     struct pt_regs *regs)
417 {
418 	unsigned int index;
419 	pgd_t *pgd, *pgd_k;
420 	pud_t *pud, *pud_k;
421 	pmd_t *pmd, *pmd_k;
422 
423 	if (addr < TASK_SIZE)
424 		return do_page_fault(addr, fsr, regs);
425 
426 	if (user_mode(regs))
427 		goto bad_area;
428 
429 	index = pgd_index(addr);
430 
431 	/*
432 	 * FIXME: CP15 C1 is write only on ARMv3 architectures.
433 	 */
434 	pgd = cpu_get_pgd() + index;
435 	pgd_k = init_mm.pgd + index;
436 
437 	if (pgd_none(*pgd_k))
438 		goto bad_area;
439 	if (!pgd_present(*pgd))
440 		set_pgd(pgd, *pgd_k);
441 
442 	pud = pud_offset(pgd, addr);
443 	pud_k = pud_offset(pgd_k, addr);
444 
445 	if (pud_none(*pud_k))
446 		goto bad_area;
447 	if (!pud_present(*pud))
448 		set_pud(pud, *pud_k);
449 
450 	pmd = pmd_offset(pud, addr);
451 	pmd_k = pmd_offset(pud_k, addr);
452 
453 #ifdef CONFIG_ARM_LPAE
454 	/*
455 	 * Only one hardware entry per PMD with LPAE.
456 	 */
457 	index = 0;
458 #else
459 	/*
460 	 * On ARM one Linux PGD entry contains two hardware entries (see page
461 	 * tables layout in pgtable.h). We normally guarantee that we always
462 	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
463 	 * It can create inidividual L1 entries, so here we have to call
464 	 * pmd_none() check for the entry really corresponded to address, not
465 	 * for the first of pair.
466 	 */
467 	index = (addr >> SECTION_SHIFT) & 1;
468 #endif
469 	if (pmd_none(pmd_k[index]))
470 		goto bad_area;
471 
472 	copy_pmd(pmd, pmd_k);
473 	return 0;
474 
475 bad_area:
476 	do_bad_area(addr, fsr, regs);
477 	return 0;
478 }
479 #else					/* CONFIG_MMU */
480 static int
do_translation_fault(unsigned long addr,unsigned int fsr,struct pt_regs * regs)481 do_translation_fault(unsigned long addr, unsigned int fsr,
482 		     struct pt_regs *regs)
483 {
484 	return 0;
485 }
486 #endif					/* CONFIG_MMU */
487 
488 /*
489  * Some section permission faults need to be handled gracefully.
490  * They can happen due to a __{get,put}_user during an oops.
491  */
492 static int
do_sect_fault(unsigned long addr,unsigned int fsr,struct pt_regs * regs)493 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
494 {
495 	do_bad_area(addr, fsr, regs);
496 	return 0;
497 }
498 
499 /*
500  * This abort handler always returns "fault".
501  */
502 static int
do_bad(unsigned long addr,unsigned int fsr,struct pt_regs * regs)503 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
504 {
505 	return 1;
506 }
507 
508 struct fsr_info {
509 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
510 	int	sig;
511 	int	code;
512 	const char *name;
513 };
514 
515 /* FSR definition */
516 #ifdef CONFIG_ARM_LPAE
517 #include "fsr-3level.c"
518 #else
519 #include "fsr-2level.c"
520 #endif
521 
522 void __init
hook_fault_code(int nr,int (* fn)(unsigned long,unsigned int,struct pt_regs *),int sig,int code,const char * name)523 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
524 		int sig, int code, const char *name)
525 {
526 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
527 		BUG();
528 
529 	fsr_info[nr].fn   = fn;
530 	fsr_info[nr].sig  = sig;
531 	fsr_info[nr].code = code;
532 	fsr_info[nr].name = name;
533 }
534 
535 /*
536  * Dispatch a data abort to the relevant handler.
537  */
538 asmlinkage void __exception
do_DataAbort(unsigned long addr,unsigned int fsr,struct pt_regs * regs)539 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
540 {
541 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
542 	struct siginfo info;
543 
544 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
545 		return;
546 
547 	printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
548 		inf->name, fsr, addr);
549 
550 	info.si_signo = inf->sig;
551 	info.si_errno = 0;
552 	info.si_code  = inf->code;
553 	info.si_addr  = (void __user *)addr;
554 	arm_notify_die("", regs, &info, fsr, 0);
555 }
556 
557 void __init
hook_ifault_code(int nr,int (* fn)(unsigned long,unsigned int,struct pt_regs *),int sig,int code,const char * name)558 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
559 		 int sig, int code, const char *name)
560 {
561 	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
562 		BUG();
563 
564 	ifsr_info[nr].fn   = fn;
565 	ifsr_info[nr].sig  = sig;
566 	ifsr_info[nr].code = code;
567 	ifsr_info[nr].name = name;
568 }
569 
570 asmlinkage void __exception
do_PrefetchAbort(unsigned long addr,unsigned int ifsr,struct pt_regs * regs)571 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
572 {
573 	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
574 	struct siginfo info;
575 
576 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
577 		return;
578 
579 	printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
580 		inf->name, ifsr, addr);
581 
582 	info.si_signo = inf->sig;
583 	info.si_errno = 0;
584 	info.si_code  = inf->code;
585 	info.si_addr  = (void __user *)addr;
586 	arm_notify_die("", regs, &info, ifsr, 0);
587 }
588 
589 #ifndef CONFIG_ARM_LPAE
exceptions_init(void)590 static int __init exceptions_init(void)
591 {
592 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
593 		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
594 				"I-cache maintenance fault");
595 	}
596 
597 	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
598 		/*
599 		 * TODO: Access flag faults introduced in ARMv6K.
600 		 * Runtime check for 'K' extension is needed
601 		 */
602 		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
603 				"section access flag fault");
604 		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
605 				"section access flag fault");
606 	}
607 
608 	return 0;
609 }
610 
611 arch_initcall(exceptions_init);
612 #endif
613