xref: /kvm-unit-tests/x86/vmx_tests.c (revision e4007e627136a379e42b9aaf985d134d8366ec48)
1 /*
2  * All test cases of nested virtualization should be in this file
3  *
4  * Author : Arthur Chunqi Li <yzt356@gmail.com>
5  */
6 
7 #include <asm/debugreg.h>
8 
9 #include "vmx.h"
10 #include "msr.h"
11 #include "processor.h"
12 #include "pmu.h"
13 #include "vm.h"
14 #include "pci.h"
15 #include "fwcfg.h"
16 #include "isr.h"
17 #include "desc.h"
18 #include "apic.h"
19 #include "types.h"
20 #include "vmalloc.h"
21 #include "alloc_page.h"
22 #include "smp.h"
23 #include "delay.h"
24 #include "access.h"
25 #include "x86/usermode.h"
26 
27 /*
28  * vmcs.GUEST_PENDING_DEBUG has the same format as DR6, although some bits that
29  * are legal in DR6 are reserved in vmcs.GUEST_PENDING_DEBUG.  And if any data
30  * or I/O breakpoint matches *and* was enabled, bit 12 is also set.
31  */
32 #define PENDING_DBG_TRAP	BIT(12)
33 
34 #define VPID_CAP_INVVPID_TYPES_SHIFT 40
35 
36 u64 ia32_pat;
37 u64 ia32_efer;
38 void *io_bitmap_a, *io_bitmap_b;
39 u16 ioport;
40 
41 unsigned long *pml4;
42 u64 eptp;
43 void *data_page1, *data_page2;
44 
45 phys_addr_t pci_physaddr;
46 
47 void *pml_log;
48 #define PML_INDEX 512
49 
50 static inline unsigned ffs(unsigned x)
51 {
52 	int pos = -1;
53 
54 	__asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0"
55 			     : "+r"(pos) : "rm"(x) : "eax");
56 	return pos + 1;
57 }
58 
59 static inline void vmcall(void)
60 {
61 	asm volatile("vmcall");
62 }
63 
64 static void basic_guest_main(void)
65 {
66 	report_pass("Basic VMX test");
67 }
68 
69 static int basic_exit_handler(union exit_reason exit_reason)
70 {
71 	report_fail("Basic VMX test");
72 	print_vmexit_info(exit_reason);
73 	return VMX_TEST_EXIT;
74 }
75 
76 static void vmenter_main(void)
77 {
78 	u64 rax;
79 	u64 rsp, resume_rsp;
80 
81 	report_pass("test vmlaunch");
82 
83 	asm volatile(
84 		"mov %%rsp, %0\n\t"
85 		"mov %3, %%rax\n\t"
86 		"vmcall\n\t"
87 		"mov %%rax, %1\n\t"
88 		"mov %%rsp, %2\n\t"
89 		: "=r"(rsp), "=r"(rax), "=r"(resume_rsp)
90 		: "g"(0xABCD));
91 	report((rax == 0xFFFF) && (rsp == resume_rsp), "test vmresume");
92 }
93 
94 static int vmenter_exit_handler(union exit_reason exit_reason)
95 {
96 	u64 guest_rip = vmcs_read(GUEST_RIP);
97 
98 	switch (exit_reason.basic) {
99 	case VMX_VMCALL:
100 		if (regs.rax != 0xABCD) {
101 			report_fail("test vmresume");
102 			return VMX_TEST_VMEXIT;
103 		}
104 		regs.rax = 0xFFFF;
105 		vmcs_write(GUEST_RIP, guest_rip + 3);
106 		return VMX_TEST_RESUME;
107 	default:
108 		report_fail("test vmresume");
109 		print_vmexit_info(exit_reason);
110 	}
111 	return VMX_TEST_VMEXIT;
112 }
113 
114 u32 preempt_scale;
115 volatile unsigned long long tsc_val;
116 volatile u32 preempt_val;
117 u64 saved_rip;
118 
119 static int preemption_timer_init(struct vmcs *vmcs)
120 {
121 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
122 		printf("\tPreemption timer is not supported\n");
123 		return VMX_TEST_EXIT;
124 	}
125 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
126 	preempt_val = 10000000;
127 	vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
128 	preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
129 
130 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
131 		printf("\tSave preemption value is not supported\n");
132 
133 	return VMX_TEST_START;
134 }
135 
136 static void preemption_timer_main(void)
137 {
138 	tsc_val = rdtsc();
139 	if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) {
140 		vmx_set_test_stage(0);
141 		vmcall();
142 		if (vmx_get_test_stage() == 1)
143 			vmcall();
144 	}
145 	vmx_set_test_stage(1);
146 	while (vmx_get_test_stage() == 1) {
147 		if (((rdtsc() - tsc_val) >> preempt_scale)
148 				> 10 * preempt_val) {
149 			vmx_set_test_stage(2);
150 			vmcall();
151 		}
152 	}
153 	tsc_val = rdtsc();
154 	asm volatile ("hlt");
155 	vmcall();
156 	vmx_set_test_stage(5);
157 	vmcall();
158 }
159 
160 static int preemption_timer_exit_handler(union exit_reason exit_reason)
161 {
162 	bool guest_halted;
163 	u64 guest_rip;
164 	u32 insn_len;
165 	u32 ctrl_exit;
166 
167 	guest_rip = vmcs_read(GUEST_RIP);
168 	insn_len = vmcs_read(EXI_INST_LEN);
169 	switch (exit_reason.basic) {
170 	case VMX_PREEMPT:
171 		switch (vmx_get_test_stage()) {
172 		case 1:
173 		case 2:
174 			report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val,
175 			       "busy-wait for preemption timer");
176 			vmx_set_test_stage(3);
177 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
178 			return VMX_TEST_RESUME;
179 		case 3:
180 			guest_halted =
181 				(vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT);
182 			report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val
183 			        && guest_halted,
184 			       "preemption timer during hlt");
185 			vmx_set_test_stage(4);
186 			vmcs_write(PIN_CONTROLS,
187 				   vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
188 			vmcs_write(EXI_CONTROLS,
189 				   vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_PREEMPT);
190 			vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
191 			return VMX_TEST_RESUME;
192 		case 4:
193 			report(saved_rip == guest_rip,
194 			       "preemption timer with 0 value");
195 			break;
196 		default:
197 			report_fail("Invalid stage.");
198 			print_vmexit_info(exit_reason);
199 			break;
200 		}
201 		break;
202 	case VMX_VMCALL:
203 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
204 		switch (vmx_get_test_stage()) {
205 		case 0:
206 			report(vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val,
207 			       "Keep preemption value");
208 			vmx_set_test_stage(1);
209 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
210 			ctrl_exit = (vmcs_read(EXI_CONTROLS) |
211 				EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr;
212 			vmcs_write(EXI_CONTROLS, ctrl_exit);
213 			return VMX_TEST_RESUME;
214 		case 1:
215 			report(vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val,
216 			       "Save preemption value");
217 			return VMX_TEST_RESUME;
218 		case 2:
219 			report_fail("busy-wait for preemption timer");
220 			vmx_set_test_stage(3);
221 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
222 			return VMX_TEST_RESUME;
223 		case 3:
224 			report_fail("preemption timer during hlt");
225 			vmx_set_test_stage(4);
226 			/* fall through */
227 		case 4:
228 			vmcs_write(PIN_CONTROLS,
229 				   vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
230 			vmcs_write(PREEMPT_TIMER_VALUE, 0);
231 			saved_rip = guest_rip + insn_len;
232 			return VMX_TEST_RESUME;
233 		case 5:
234 			report_fail("preemption timer with 0 value (vmcall stage 5)");
235 			break;
236 		default:
237 			// Should not reach here
238 			report_fail("unexpected stage, %d",
239 				    vmx_get_test_stage());
240 			print_vmexit_info(exit_reason);
241 			return VMX_TEST_VMEXIT;
242 		}
243 		break;
244 	default:
245 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
246 		print_vmexit_info(exit_reason);
247 	}
248 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
249 	return VMX_TEST_VMEXIT;
250 }
251 
252 static void msr_bmp_init(void)
253 {
254 	void *msr_bitmap;
255 	u32 ctrl_cpu0;
256 
257 	msr_bitmap = alloc_page();
258 	ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
259 	ctrl_cpu0 |= CPU_MSR_BITMAP;
260 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
261 	vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
262 }
263 
264 static void *get_msr_bitmap(void)
265 {
266 	void *msr_bitmap;
267 
268 	if (vmcs_read(CPU_EXEC_CTRL0) & CPU_MSR_BITMAP) {
269 		msr_bitmap = (void *)vmcs_read(MSR_BITMAP);
270 	} else {
271 		msr_bitmap = alloc_page();
272 		memset(msr_bitmap, 0xff, PAGE_SIZE);
273 		vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
274 		vmcs_set_bits(CPU_EXEC_CTRL0, CPU_MSR_BITMAP);
275 	}
276 
277 	return msr_bitmap;
278 }
279 
280 static void disable_intercept_for_x2apic_msrs(void)
281 {
282 	unsigned long *msr_bitmap = (unsigned long *)get_msr_bitmap();
283 	u32 msr;
284 
285 	for (msr = APIC_BASE_MSR;
286 		 msr < (APIC_BASE_MSR+0xff);
287 		 msr += BITS_PER_LONG) {
288 		unsigned int word = msr / BITS_PER_LONG;
289 
290 		msr_bitmap[word] = 0;
291 		msr_bitmap[word + (0x800 / sizeof(long))] = 0;
292 	}
293 }
294 
295 static int test_ctrl_pat_init(struct vmcs *vmcs)
296 {
297 	u64 ctrl_ent;
298 	u64 ctrl_exi;
299 
300 	msr_bmp_init();
301 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) &&
302 	    !(ctrl_exit_rev.clr & EXI_LOAD_PAT) &&
303 	    !(ctrl_enter_rev.clr & ENT_LOAD_PAT)) {
304 		printf("\tSave/load PAT is not supported\n");
305 		return 1;
306 	}
307 
308 	ctrl_ent = vmcs_read(ENT_CONTROLS);
309 	ctrl_exi = vmcs_read(EXI_CONTROLS);
310 	ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT;
311 	ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT);
312 	vmcs_write(ENT_CONTROLS, ctrl_ent);
313 	vmcs_write(EXI_CONTROLS, ctrl_exi);
314 	ia32_pat = rdmsr(MSR_IA32_CR_PAT);
315 	vmcs_write(GUEST_PAT, 0x0);
316 	vmcs_write(HOST_PAT, ia32_pat);
317 	return VMX_TEST_START;
318 }
319 
320 static void test_ctrl_pat_main(void)
321 {
322 	u64 guest_ia32_pat;
323 
324 	guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
325 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT))
326 		printf("\tENT_LOAD_PAT is not supported.\n");
327 	else {
328 		if (guest_ia32_pat != 0) {
329 			report_fail("Entry load PAT");
330 			return;
331 		}
332 	}
333 	wrmsr(MSR_IA32_CR_PAT, 0x6);
334 	vmcall();
335 	guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
336 	if (ctrl_enter_rev.clr & ENT_LOAD_PAT)
337 		report(guest_ia32_pat == ia32_pat, "Entry load PAT");
338 }
339 
340 static int test_ctrl_pat_exit_handler(union exit_reason exit_reason)
341 {
342 	u64 guest_rip;
343 	u64 guest_pat;
344 
345 	guest_rip = vmcs_read(GUEST_RIP);
346 	switch (exit_reason.basic) {
347 	case VMX_VMCALL:
348 		guest_pat = vmcs_read(GUEST_PAT);
349 		if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) {
350 			printf("\tEXI_SAVE_PAT is not supported\n");
351 			vmcs_write(GUEST_PAT, 0x6);
352 		} else {
353 			report(guest_pat == 0x6, "Exit save PAT");
354 		}
355 		if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT))
356 			printf("\tEXI_LOAD_PAT is not supported\n");
357 		else
358 			report(rdmsr(MSR_IA32_CR_PAT) == ia32_pat,
359 			       "Exit load PAT");
360 		vmcs_write(GUEST_PAT, ia32_pat);
361 		vmcs_write(GUEST_RIP, guest_rip + 3);
362 		return VMX_TEST_RESUME;
363 	default:
364 		printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full);
365 		break;
366 	}
367 	return VMX_TEST_VMEXIT;
368 }
369 
370 static int test_ctrl_efer_init(struct vmcs *vmcs)
371 {
372 	u64 ctrl_ent;
373 	u64 ctrl_exi;
374 
375 	msr_bmp_init();
376 	ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER;
377 	ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER;
378 	vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr);
379 	vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr);
380 	ia32_efer = rdmsr(MSR_EFER);
381 	vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX);
382 	vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX);
383 	return VMX_TEST_START;
384 }
385 
386 static void test_ctrl_efer_main(void)
387 {
388 	u64 guest_ia32_efer;
389 
390 	guest_ia32_efer = rdmsr(MSR_EFER);
391 	if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER))
392 		printf("\tENT_LOAD_EFER is not supported.\n");
393 	else {
394 		if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) {
395 			report_fail("Entry load EFER");
396 			return;
397 		}
398 	}
399 	wrmsr(MSR_EFER, ia32_efer);
400 	vmcall();
401 	guest_ia32_efer = rdmsr(MSR_EFER);
402 	if (ctrl_enter_rev.clr & ENT_LOAD_EFER)
403 		report(guest_ia32_efer == ia32_efer, "Entry load EFER");
404 }
405 
406 static int test_ctrl_efer_exit_handler(union exit_reason exit_reason)
407 {
408 	u64 guest_rip;
409 	u64 guest_efer;
410 
411 	guest_rip = vmcs_read(GUEST_RIP);
412 	switch (exit_reason.basic) {
413 	case VMX_VMCALL:
414 		guest_efer = vmcs_read(GUEST_EFER);
415 		if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) {
416 			printf("\tEXI_SAVE_EFER is not supported\n");
417 			vmcs_write(GUEST_EFER, ia32_efer);
418 		} else {
419 			report(guest_efer == ia32_efer, "Exit save EFER");
420 		}
421 		if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) {
422 			printf("\tEXI_LOAD_EFER is not supported\n");
423 			wrmsr(MSR_EFER, ia32_efer ^ EFER_NX);
424 		} else {
425 			report(rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX),
426 			       "Exit load EFER");
427 		}
428 		vmcs_write(GUEST_PAT, ia32_efer);
429 		vmcs_write(GUEST_RIP, guest_rip + 3);
430 		return VMX_TEST_RESUME;
431 	default:
432 		printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full);
433 		break;
434 	}
435 	return VMX_TEST_VMEXIT;
436 }
437 
438 u32 guest_cr0, guest_cr4;
439 
440 static void cr_shadowing_main(void)
441 {
442 	u32 cr0, cr4, tmp;
443 
444 	// Test read through
445 	vmx_set_test_stage(0);
446 	guest_cr0 = read_cr0();
447 	if (vmx_get_test_stage() == 1)
448 		report_fail("Read through CR0");
449 	else
450 		vmcall();
451 	vmx_set_test_stage(1);
452 	guest_cr4 = read_cr4();
453 	if (vmx_get_test_stage() == 2)
454 		report_fail("Read through CR4");
455 	else
456 		vmcall();
457 	// Test write through
458 	guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP);
459 	guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE);
460 	vmx_set_test_stage(2);
461 	write_cr0(guest_cr0);
462 	if (vmx_get_test_stage() == 3)
463 		report_fail("Write through CR0");
464 	else
465 		vmcall();
466 	vmx_set_test_stage(3);
467 	write_cr4(guest_cr4);
468 	if (vmx_get_test_stage() == 4)
469 		report_fail("Write through CR4");
470 	else
471 		vmcall();
472 	// Test read shadow
473 	vmx_set_test_stage(4);
474 	vmcall();
475 	cr0 = read_cr0();
476 	if (vmx_get_test_stage() != 5)
477 		report(cr0 == guest_cr0, "Read shadowing CR0");
478 	vmx_set_test_stage(5);
479 	cr4 = read_cr4();
480 	if (vmx_get_test_stage() != 6)
481 		report(cr4 == guest_cr4, "Read shadowing CR4");
482 	// Test write shadow (same value with shadow)
483 	vmx_set_test_stage(6);
484 	write_cr0(guest_cr0);
485 	if (vmx_get_test_stage() == 7)
486 		report_fail("Write shadowing CR0 (same value with shadow)");
487 	else
488 		vmcall();
489 	vmx_set_test_stage(7);
490 	write_cr4(guest_cr4);
491 	if (vmx_get_test_stage() == 8)
492 		report_fail("Write shadowing CR4 (same value with shadow)");
493 	else
494 		vmcall();
495 	// Test write shadow (different value)
496 	vmx_set_test_stage(8);
497 	tmp = guest_cr0 ^ X86_CR0_TS;
498 	asm volatile("mov %0, %%rsi\n\t"
499 		"mov %%rsi, %%cr0\n\t"
500 		::"m"(tmp)
501 		:"rsi", "memory", "cc");
502 	report(vmx_get_test_stage() == 9,
503 	       "Write shadowing different X86_CR0_TS");
504 	vmx_set_test_stage(9);
505 	tmp = guest_cr0 ^ X86_CR0_MP;
506 	asm volatile("mov %0, %%rsi\n\t"
507 		"mov %%rsi, %%cr0\n\t"
508 		::"m"(tmp)
509 		:"rsi", "memory", "cc");
510 	report(vmx_get_test_stage() == 10,
511 	       "Write shadowing different X86_CR0_MP");
512 	vmx_set_test_stage(10);
513 	tmp = guest_cr4 ^ X86_CR4_TSD;
514 	asm volatile("mov %0, %%rsi\n\t"
515 		"mov %%rsi, %%cr4\n\t"
516 		::"m"(tmp)
517 		:"rsi", "memory", "cc");
518 	report(vmx_get_test_stage() == 11,
519 	       "Write shadowing different X86_CR4_TSD");
520 	vmx_set_test_stage(11);
521 	tmp = guest_cr4 ^ X86_CR4_DE;
522 	asm volatile("mov %0, %%rsi\n\t"
523 		"mov %%rsi, %%cr4\n\t"
524 		::"m"(tmp)
525 		:"rsi", "memory", "cc");
526 	report(vmx_get_test_stage() == 12,
527 	       "Write shadowing different X86_CR4_DE");
528 }
529 
530 static int cr_shadowing_exit_handler(union exit_reason exit_reason)
531 {
532 	u64 guest_rip;
533 	u32 insn_len;
534 	u32 exit_qual;
535 
536 	guest_rip = vmcs_read(GUEST_RIP);
537 	insn_len = vmcs_read(EXI_INST_LEN);
538 	exit_qual = vmcs_read(EXI_QUALIFICATION);
539 	switch (exit_reason.basic) {
540 	case VMX_VMCALL:
541 		switch (vmx_get_test_stage()) {
542 		case 0:
543 			report(guest_cr0 == vmcs_read(GUEST_CR0),
544 			       "Read through CR0");
545 			break;
546 		case 1:
547 			report(guest_cr4 == vmcs_read(GUEST_CR4),
548 			       "Read through CR4");
549 			break;
550 		case 2:
551 			report(guest_cr0 == vmcs_read(GUEST_CR0),
552 			       "Write through CR0");
553 			break;
554 		case 3:
555 			report(guest_cr4 == vmcs_read(GUEST_CR4),
556 			       "Write through CR4");
557 			break;
558 		case 4:
559 			guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP);
560 			guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE);
561 			vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP);
562 			vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP));
563 			vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE);
564 			vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE));
565 			break;
566 		case 6:
567 			report(guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP)),
568 			       "Write shadowing CR0 (same value)");
569 			break;
570 		case 7:
571 			report(guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE)),
572 			       "Write shadowing CR4 (same value)");
573 			break;
574 		default:
575 			// Should not reach here
576 			report_fail("unexpected stage, %d",
577 				    vmx_get_test_stage());
578 			print_vmexit_info(exit_reason);
579 			return VMX_TEST_VMEXIT;
580 		}
581 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
582 		return VMX_TEST_RESUME;
583 	case VMX_CR:
584 		switch (vmx_get_test_stage()) {
585 		case 4:
586 			report_fail("Read shadowing CR0");
587 			vmx_inc_test_stage();
588 			break;
589 		case 5:
590 			report_fail("Read shadowing CR4");
591 			vmx_inc_test_stage();
592 			break;
593 		case 6:
594 			report_fail("Write shadowing CR0 (same value)");
595 			vmx_inc_test_stage();
596 			break;
597 		case 7:
598 			report_fail("Write shadowing CR4 (same value)");
599 			vmx_inc_test_stage();
600 			break;
601 		case 8:
602 		case 9:
603 			// 0x600 encodes "mov %esi, %cr0"
604 			if (exit_qual == 0x600)
605 				vmx_inc_test_stage();
606 			break;
607 		case 10:
608 		case 11:
609 			// 0x604 encodes "mov %esi, %cr4"
610 			if (exit_qual == 0x604)
611 				vmx_inc_test_stage();
612 			break;
613 		default:
614 			// Should not reach here
615 			report_fail("unexpected stage, %d",
616 				    vmx_get_test_stage());
617 			print_vmexit_info(exit_reason);
618 			return VMX_TEST_VMEXIT;
619 		}
620 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
621 		return VMX_TEST_RESUME;
622 	default:
623 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
624 		print_vmexit_info(exit_reason);
625 	}
626 	return VMX_TEST_VMEXIT;
627 }
628 
629 static int iobmp_init(struct vmcs *vmcs)
630 {
631 	u32 ctrl_cpu0;
632 
633 	io_bitmap_a = alloc_page();
634 	io_bitmap_b = alloc_page();
635 	ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
636 	ctrl_cpu0 |= CPU_IO_BITMAP;
637 	ctrl_cpu0 &= (~CPU_IO);
638 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
639 	vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a);
640 	vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b);
641 	return VMX_TEST_START;
642 }
643 
644 static void iobmp_main(void)
645 {
646 	// stage 0, test IO pass
647 	vmx_set_test_stage(0);
648 	inb(0x5000);
649 	outb(0x0, 0x5000);
650 	report(vmx_get_test_stage() == 0, "I/O bitmap - I/O pass");
651 	// test IO width, in/out
652 	((u8 *)io_bitmap_a)[0] = 0xFF;
653 	vmx_set_test_stage(2);
654 	inb(0x0);
655 	report(vmx_get_test_stage() == 3, "I/O bitmap - trap in");
656 	vmx_set_test_stage(3);
657 	outw(0x0, 0x0);
658 	report(vmx_get_test_stage() == 4, "I/O bitmap - trap out");
659 	vmx_set_test_stage(4);
660 	inl(0x0);
661 	report(vmx_get_test_stage() == 5, "I/O bitmap - I/O width, long");
662 	// test low/high IO port
663 	vmx_set_test_stage(5);
664 	((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8));
665 	inb(0x5000);
666 	report(vmx_get_test_stage() == 6, "I/O bitmap - I/O port, low part");
667 	vmx_set_test_stage(6);
668 	((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8));
669 	inb(0x9000);
670 	report(vmx_get_test_stage() == 7, "I/O bitmap - I/O port, high part");
671 	// test partial pass
672 	vmx_set_test_stage(7);
673 	inl(0x4FFF);
674 	report(vmx_get_test_stage() == 8, "I/O bitmap - partial pass");
675 	// test overrun
676 	vmx_set_test_stage(8);
677 	memset(io_bitmap_a, 0x0, PAGE_SIZE);
678 	memset(io_bitmap_b, 0x0, PAGE_SIZE);
679 	inl(0xFFFF);
680 	report(vmx_get_test_stage() == 9, "I/O bitmap - overrun");
681 	vmx_set_test_stage(9);
682 	vmcall();
683 	outb(0x0, 0x0);
684 	report(vmx_get_test_stage() == 9,
685 	       "I/O bitmap - ignore unconditional exiting");
686 	vmx_set_test_stage(10);
687 	vmcall();
688 	outb(0x0, 0x0);
689 	report(vmx_get_test_stage() == 11,
690 	       "I/O bitmap - unconditional exiting");
691 }
692 
693 static int iobmp_exit_handler(union exit_reason exit_reason)
694 {
695 	u64 guest_rip;
696 	ulong exit_qual;
697 	u32 insn_len, ctrl_cpu0;
698 
699 	guest_rip = vmcs_read(GUEST_RIP);
700 	exit_qual = vmcs_read(EXI_QUALIFICATION);
701 	insn_len = vmcs_read(EXI_INST_LEN);
702 	switch (exit_reason.basic) {
703 	case VMX_IO:
704 		switch (vmx_get_test_stage()) {
705 		case 0:
706 		case 1:
707 			vmx_inc_test_stage();
708 			break;
709 		case 2:
710 			report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE,
711 			       "I/O bitmap - I/O width, byte");
712 			report(exit_qual & VMX_IO_IN,
713 			       "I/O bitmap - I/O direction, in");
714 			vmx_inc_test_stage();
715 			break;
716 		case 3:
717 			report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD,
718 			       "I/O bitmap - I/O width, word");
719 			report(!(exit_qual & VMX_IO_IN),
720 			       "I/O bitmap - I/O direction, out");
721 			vmx_inc_test_stage();
722 			break;
723 		case 4:
724 			report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG,
725 			       "I/O bitmap - I/O width, long");
726 			vmx_inc_test_stage();
727 			break;
728 		case 5:
729 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000)
730 				vmx_inc_test_stage();
731 			break;
732 		case 6:
733 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000)
734 				vmx_inc_test_stage();
735 			break;
736 		case 7:
737 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF)
738 				vmx_inc_test_stage();
739 			break;
740 		case 8:
741 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF)
742 				vmx_inc_test_stage();
743 			break;
744 		case 9:
745 		case 10:
746 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
747 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO);
748 			vmx_inc_test_stage();
749 			break;
750 		default:
751 			// Should not reach here
752 			report_fail("unexpected stage, %d",
753 				    vmx_get_test_stage());
754 			print_vmexit_info(exit_reason);
755 			return VMX_TEST_VMEXIT;
756 		}
757 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
758 		return VMX_TEST_RESUME;
759 	case VMX_VMCALL:
760 		switch (vmx_get_test_stage()) {
761 		case 9:
762 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
763 			ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP;
764 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
765 			break;
766 		case 10:
767 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
768 			ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO;
769 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
770 			break;
771 		default:
772 			// Should not reach here
773 			report_fail("unexpected stage, %d",
774 				    vmx_get_test_stage());
775 			print_vmexit_info(exit_reason);
776 			return VMX_TEST_VMEXIT;
777 		}
778 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
779 		return VMX_TEST_RESUME;
780 	default:
781 		printf("guest_rip = %#lx\n", guest_rip);
782 		printf("\tERROR : Unknown exit reason, 0x%x\n", exit_reason.full);
783 		break;
784 	}
785 	return VMX_TEST_VMEXIT;
786 }
787 
788 #define INSN_CPU0		0
789 #define INSN_CPU1		1
790 #define INSN_ALWAYS_TRAP	2
791 
792 #define FIELD_EXIT_QUAL		(1 << 0)
793 #define FIELD_INSN_INFO		(1 << 1)
794 
795 asm(
796 	"insn_hlt: hlt;ret\n\t"
797 	"insn_invlpg: invlpg 0x12345678;ret\n\t"
798 	"insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t"
799 	"insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t"
800 	"insn_rdtsc: rdtsc;ret\n\t"
801 	"insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t"
802 	"insn_cr3_store: mov %cr3,%rax;ret\n\t"
803 	"insn_cr8_load: xor %eax, %eax; mov %rax,%cr8;ret\n\t"
804 	"insn_cr8_store: mov %cr8,%rax;ret\n\t"
805 	"insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t"
806 	"insn_pause: pause;ret\n\t"
807 	"insn_wbinvd: wbinvd;ret\n\t"
808 	"insn_cpuid: mov $10, %eax; cpuid;ret\n\t"
809 	"insn_invd: invd;ret\n\t"
810 	"insn_sgdt: sgdt gdt_descr;ret\n\t"
811 	"insn_lgdt: lgdt gdt_descr;ret\n\t"
812 	"insn_sidt: sidt idt_descr;ret\n\t"
813 	"insn_lidt: lidt idt_descr;ret\n\t"
814 	"insn_sldt: sldt %ax;ret\n\t"
815 	"insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t"
816 	"insn_str: str %ax;ret\n\t"
817 	"insn_rdrand: rdrand %rax;ret\n\t"
818 	"insn_rdseed: rdseed %rax;ret\n\t"
819 );
820 extern void insn_hlt(void);
821 extern void insn_invlpg(void);
822 extern void insn_mwait(void);
823 extern void insn_rdpmc(void);
824 extern void insn_rdtsc(void);
825 extern void insn_cr3_load(void);
826 extern void insn_cr3_store(void);
827 extern void insn_cr8_load(void);
828 extern void insn_cr8_store(void);
829 extern void insn_monitor(void);
830 extern void insn_pause(void);
831 extern void insn_wbinvd(void);
832 extern void insn_sgdt(void);
833 extern void insn_lgdt(void);
834 extern void insn_sidt(void);
835 extern void insn_lidt(void);
836 extern void insn_sldt(void);
837 extern void insn_lldt(void);
838 extern void insn_str(void);
839 extern void insn_cpuid(void);
840 extern void insn_invd(void);
841 extern void insn_rdrand(void);
842 extern void insn_rdseed(void);
843 
844 u32 cur_insn;
845 u64 cr3;
846 
847 typedef bool (*supported_fn)(void);
848 
849 static bool this_cpu_has_mwait(void)
850 {
851 	return this_cpu_has(X86_FEATURE_MWAIT);
852 }
853 
854 struct insn_table {
855 	const char *name;
856 	u32 flag;
857 	void (*insn_func)(void);
858 	u32 type;
859 	u32 reason;
860 	ulong exit_qual;
861 	u32 insn_info;
862 	// Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define
863 	// which field need to be tested, reason is always tested
864 	u32 test_field;
865 	const supported_fn supported_fn;
866 	u8 disabled;
867 };
868 
869 /*
870  * Add more test cases of instruction intercept here. Elements in this
871  * table is:
872  *	name/control flag/insn function/type/exit reason/exit qulification/
873  *	instruction info/field to test
874  * The last field defines which fields (exit_qual and insn_info) need to be
875  * tested in exit handler. If set to 0, only "reason" is checked.
876  */
877 static struct insn_table insn_table[] = {
878 	// Flags for Primary Processor-Based VM-Execution Controls
879 	{"HLT",  CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0},
880 	{"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14,
881 		0x12345678, 0, FIELD_EXIT_QUAL},
882 	{"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0, this_cpu_has_mwait},
883 	{"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0, this_cpu_has_pmu},
884 	{"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0},
885 	{"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0,
886 		FIELD_EXIT_QUAL},
887 	{"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0,
888 		FIELD_EXIT_QUAL},
889 	{"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0,
890 		FIELD_EXIT_QUAL},
891 	{"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0,
892 		FIELD_EXIT_QUAL},
893 	{"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0, this_cpu_has_mwait},
894 	{"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0},
895 	// Flags for Secondary Processor-Based VM-Execution Controls
896 	{"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0},
897 	{"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0},
898 	{"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0},
899 	{"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0},
900 	{"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0},
901 	{"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0},
902 	{"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0},
903 	{"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0},
904 	/* LTR causes a #GP if done with a busy selector, so it is not tested.  */
905 	{"RDRAND", CPU_RDRAND, insn_rdrand, INSN_CPU1, VMX_RDRAND, 0, 0, 0},
906 	{"RDSEED", CPU_RDSEED, insn_rdseed, INSN_CPU1, VMX_RDSEED, 0, 0, 0},
907 	// Instructions always trap
908 	{"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0},
909 	{"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0},
910 	// Instructions never trap
911 	{NULL},
912 };
913 
914 static int insn_intercept_init(struct vmcs *vmcs)
915 {
916 	u32 ctrl_cpu, cur_insn;
917 
918 	ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY;
919 	ctrl_cpu &= ctrl_cpu_rev[0].clr;
920 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu);
921 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set);
922 	cr3 = read_cr3();
923 
924 	for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
925 		if (insn_table[cur_insn].supported_fn == NULL)
926 			continue;
927 		insn_table[cur_insn].disabled = !insn_table[cur_insn].supported_fn();
928 	}
929 	return VMX_TEST_START;
930 }
931 
932 static void insn_intercept_main(void)
933 {
934 	for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
935 		vmx_set_test_stage(cur_insn * 2);
936 		if ((insn_table[cur_insn].type == INSN_CPU0 &&
937 		     !(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) ||
938 		    (insn_table[cur_insn].type == INSN_CPU1 &&
939 		     !(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) {
940 			printf("\tCPU_CTRL%d.CPU_%s is not supported.\n",
941 			       insn_table[cur_insn].type - INSN_CPU0,
942 			       insn_table[cur_insn].name);
943 			continue;
944 		}
945 
946 		if (insn_table[cur_insn].disabled) {
947 			printf("\tFeature required for %s is not supported.\n",
948 			       insn_table[cur_insn].name);
949 			continue;
950 		}
951 
952 		if ((insn_table[cur_insn].type == INSN_CPU0 &&
953 		     !(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) ||
954 		    (insn_table[cur_insn].type == INSN_CPU1 &&
955 		     !(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) {
956 			/* skip hlt, it stalls the guest and is tested below */
957 			if (insn_table[cur_insn].insn_func != insn_hlt)
958 				insn_table[cur_insn].insn_func();
959 			report(vmx_get_test_stage() == cur_insn * 2,
960 					"execute %s",
961 					insn_table[cur_insn].name);
962 		} else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP)
963 			printf("\tCPU_CTRL%d.CPU_%s always traps.\n",
964 			       insn_table[cur_insn].type - INSN_CPU0,
965 			       insn_table[cur_insn].name);
966 
967 		vmcall();
968 
969 		insn_table[cur_insn].insn_func();
970 		report(vmx_get_test_stage() == cur_insn * 2 + 1,
971 				"intercept %s",
972 				insn_table[cur_insn].name);
973 
974 		vmx_set_test_stage(cur_insn * 2 + 1);
975 		vmcall();
976 	}
977 }
978 
979 static int insn_intercept_exit_handler(union exit_reason exit_reason)
980 {
981 	u64 guest_rip;
982 	ulong exit_qual;
983 	u32 insn_len;
984 	u32 insn_info;
985 	bool pass;
986 
987 	guest_rip = vmcs_read(GUEST_RIP);
988 	exit_qual = vmcs_read(EXI_QUALIFICATION);
989 	insn_len = vmcs_read(EXI_INST_LEN);
990 	insn_info = vmcs_read(EXI_INST_INFO);
991 
992 	if (exit_reason.basic == VMX_VMCALL) {
993 		u32 val = 0;
994 
995 		if (insn_table[cur_insn].type == INSN_CPU0)
996 			val = vmcs_read(CPU_EXEC_CTRL0);
997 		else if (insn_table[cur_insn].type == INSN_CPU1)
998 			val = vmcs_read(CPU_EXEC_CTRL1);
999 
1000 		if (vmx_get_test_stage() & 1)
1001 			val &= ~insn_table[cur_insn].flag;
1002 		else
1003 			val |= insn_table[cur_insn].flag;
1004 
1005 		if (insn_table[cur_insn].type == INSN_CPU0)
1006 			vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set);
1007 		else if (insn_table[cur_insn].type == INSN_CPU1)
1008 			vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set);
1009 	} else {
1010 		pass = (cur_insn * 2 == vmx_get_test_stage()) &&
1011 			insn_table[cur_insn].reason == exit_reason.full;
1012 		if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL &&
1013 		    insn_table[cur_insn].exit_qual != exit_qual)
1014 			pass = false;
1015 		if (insn_table[cur_insn].test_field & FIELD_INSN_INFO &&
1016 		    insn_table[cur_insn].insn_info != insn_info)
1017 			pass = false;
1018 		if (pass)
1019 			vmx_inc_test_stage();
1020 	}
1021 	vmcs_write(GUEST_RIP, guest_rip + insn_len);
1022 	return VMX_TEST_RESUME;
1023 }
1024 
1025 /**
1026  * __setup_ept - Setup the VMCS fields to enable Extended Page Tables (EPT)
1027  * @hpa:	Host physical address of the top-level, a.k.a. root, EPT table
1028  * @enable_ad:	Whether or not to enable Access/Dirty bits for EPT entries
1029  *
1030  * Returns 0 on success, 1 on failure.
1031  *
1032  * Note that @hpa doesn't need to point at actual memory if VM-Launch is
1033  * expected to fail, e.g. setup_dummy_ept() arbitrarily passes '0' to satisfy
1034  * the various EPTP consistency checks, but doesn't ensure backing for HPA '0'.
1035  */
1036 static int __setup_ept(u64 hpa, bool enable_ad)
1037 {
1038 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1039 	    !(ctrl_cpu_rev[1].clr & CPU_EPT)) {
1040 		printf("\tEPT is not supported\n");
1041 		return 1;
1042 	}
1043 	if (!(ept_vpid.val & EPT_CAP_WB)) {
1044 		printf("\tWB memtype for EPT walks not supported\n");
1045 		return 1;
1046 	}
1047 	if (!(ept_vpid.val & EPT_CAP_PWL4)) {
1048 		printf("\tPWL4 is not supported\n");
1049 		return 1;
1050 	}
1051 
1052 	eptp = EPT_MEM_TYPE_WB;
1053 	eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT);
1054 	eptp |= hpa;
1055 	if (enable_ad)
1056 		eptp |= EPTP_AD_FLAG;
1057 
1058 	vmcs_write(EPTP, eptp);
1059 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0)| CPU_SECONDARY);
1060 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1)| CPU_EPT);
1061 
1062 	return 0;
1063 }
1064 
1065 /**
1066  * setup_ept - Enable Extended Page Tables (EPT) and setup an identity map
1067  * @enable_ad:	Whether or not to enable Access/Dirty bits for EPT entries
1068  *
1069  * Returns 0 on success, 1 on failure.
1070  *
1071  * This is the "real" function for setting up EPT tables, i.e. use this for
1072  * tests that need to run code in the guest with EPT enabled.
1073  */
1074 static int setup_ept(bool enable_ad)
1075 {
1076 	unsigned long end_of_memory;
1077 
1078 	pml4 = alloc_page();
1079 
1080 	if (__setup_ept(virt_to_phys(pml4), enable_ad))
1081 		return 1;
1082 
1083 	end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE);
1084 	if (end_of_memory < (1ul << 32))
1085 		end_of_memory = (1ul << 32);
1086 	/* Cannot use large EPT pages if we need to track EPT
1087 	 * accessed/dirty bits at 4K granularity.
1088 	 */
1089 	setup_ept_range(pml4, 0, end_of_memory, 0,
1090 			!enable_ad && ept_2m_supported(),
1091 			EPT_WA | EPT_RA | EPT_EA);
1092 	return 0;
1093 }
1094 
1095 /**
1096  * setup_dummy_ept - Enable Extended Page Tables (EPT) with a dummy root HPA
1097  *
1098  * Setup EPT using a semi-arbitrary dummy root HPA.  This function is intended
1099  * for use by tests that need EPT enabled to verify dependent VMCS controls
1100  * but never expect to fully enter the guest, i.e. don't need setup the actual
1101  * EPT tables.
1102  */
1103 static void setup_dummy_ept(void)
1104 {
1105 	if (__setup_ept(0, false))
1106 		report_abort("EPT setup unexpectedly failed");
1107 }
1108 
1109 static int enable_unrestricted_guest(bool need_valid_ept)
1110 {
1111 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1112 	    !(ctrl_cpu_rev[1].clr & CPU_URG) ||
1113 	    !(ctrl_cpu_rev[1].clr & CPU_EPT))
1114 		return 1;
1115 
1116 	if (need_valid_ept)
1117 		setup_ept(false);
1118 	else
1119 		setup_dummy_ept();
1120 
1121 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
1122 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG);
1123 
1124 	return 0;
1125 }
1126 
1127 static void ept_enable_ad_bits(void)
1128 {
1129 	eptp |= EPTP_AD_FLAG;
1130 	vmcs_write(EPTP, eptp);
1131 }
1132 
1133 static void ept_disable_ad_bits(void)
1134 {
1135 	eptp &= ~EPTP_AD_FLAG;
1136 	vmcs_write(EPTP, eptp);
1137 }
1138 
1139 static int ept_ad_enabled(void)
1140 {
1141 	return eptp & EPTP_AD_FLAG;
1142 }
1143 
1144 static void ept_enable_ad_bits_or_skip_test(void)
1145 {
1146 	if (!ept_ad_bits_supported())
1147 		test_skip("EPT AD bits not supported.");
1148 	ept_enable_ad_bits();
1149 }
1150 
1151 static int apic_version;
1152 
1153 static int ept_init_common(bool have_ad)
1154 {
1155 	int ret;
1156 	struct pci_dev pcidev;
1157 
1158 	/* INVEPT is required by the EPT violation handler. */
1159 	if (!is_invept_type_supported(INVEPT_SINGLE))
1160 		return VMX_TEST_EXIT;
1161 
1162 	if (setup_ept(have_ad))
1163 		return VMX_TEST_EXIT;
1164 
1165 	data_page1 = alloc_page();
1166 	data_page2 = alloc_page();
1167 	*((u32 *)data_page1) = MAGIC_VAL_1;
1168 	*((u32 *)data_page2) = MAGIC_VAL_2;
1169 	install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2,
1170 			EPT_RA | EPT_WA | EPT_EA);
1171 
1172 	apic_version = apic_read(APIC_LVR);
1173 
1174 	ret = pci_find_dev(PCI_VENDOR_ID_REDHAT, PCI_DEVICE_ID_REDHAT_TEST);
1175 	if (ret != PCIDEVADDR_INVALID) {
1176 		pci_dev_init(&pcidev, ret);
1177 		pci_physaddr = pcidev.resource[PCI_TESTDEV_BAR_MEM];
1178 	}
1179 
1180 	return VMX_TEST_START;
1181 }
1182 
1183 static int ept_init(struct vmcs *vmcs)
1184 {
1185 	return ept_init_common(false);
1186 }
1187 
1188 static void ept_common(void)
1189 {
1190 	vmx_set_test_stage(0);
1191 	if (*((u32 *)data_page2) != MAGIC_VAL_1 ||
1192 			*((u32 *)data_page1) != MAGIC_VAL_1)
1193 		report_fail("EPT basic framework - read");
1194 	else {
1195 		*((u32 *)data_page2) = MAGIC_VAL_3;
1196 		vmcall();
1197 		if (vmx_get_test_stage() == 1) {
1198 			if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
1199 					*((u32 *)data_page2) == MAGIC_VAL_2)
1200 				report_pass("EPT basic framework");
1201 			else
1202 				report_pass("EPT basic framework - remap");
1203 		}
1204 	}
1205 	// Test EPT Misconfigurations
1206 	vmx_set_test_stage(1);
1207 	vmcall();
1208 	*((u32 *)data_page1) = MAGIC_VAL_1;
1209 	if (vmx_get_test_stage() != 2) {
1210 		report_fail("EPT misconfigurations");
1211 		goto t1;
1212 	}
1213 	vmx_set_test_stage(2);
1214 	vmcall();
1215 	*((u32 *)data_page1) = MAGIC_VAL_1;
1216 	report(vmx_get_test_stage() == 3, "EPT misconfigurations");
1217 t1:
1218 	// Test EPT violation
1219 	vmx_set_test_stage(3);
1220 	vmcall();
1221 	*((u32 *)data_page1) = MAGIC_VAL_1;
1222 	report(vmx_get_test_stage() == 4, "EPT violation - page permission");
1223 	// Violation caused by EPT paging structure
1224 	vmx_set_test_stage(4);
1225 	vmcall();
1226 	*((u32 *)data_page1) = MAGIC_VAL_2;
1227 	report(vmx_get_test_stage() == 5, "EPT violation - paging structure");
1228 
1229 	// MMIO Read/Write
1230 	vmx_set_test_stage(5);
1231 	vmcall();
1232 
1233 	*(u32 volatile *)pci_physaddr;
1234 	report(vmx_get_test_stage() == 6, "MMIO EPT violation - read");
1235 
1236 	*(u32 volatile *)pci_physaddr = MAGIC_VAL_1;
1237 	report(vmx_get_test_stage() == 7, "MMIO EPT violation - write");
1238 }
1239 
1240 static void ept_main(void)
1241 {
1242 	ept_common();
1243 
1244 	// Test EPT access to L1 MMIO
1245 	vmx_set_test_stage(7);
1246 	report(*((u32 *)0xfee00030UL) == apic_version, "EPT - MMIO access");
1247 
1248 	// Test invalid operand for INVEPT
1249 	vmcall();
1250 	report(vmx_get_test_stage() == 8, "EPT - unsupported INVEPT");
1251 }
1252 
1253 static bool invept_test(int type, u64 eptp)
1254 {
1255 	bool ret, supported;
1256 
1257 	supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type);
1258 	ret = __invept(type, eptp);
1259 
1260 	if (ret == !supported)
1261 		return false;
1262 
1263 	if (!supported)
1264 		printf("WARNING: unsupported invept passed!\n");
1265 	else
1266 		printf("WARNING: invept failed!\n");
1267 
1268 	return true;
1269 }
1270 
1271 static int pml_exit_handler(union exit_reason exit_reason)
1272 {
1273 	u16 index, count;
1274 	u64 *pmlbuf = pml_log;
1275 	u64 guest_rip = vmcs_read(GUEST_RIP);;
1276 	u64 guest_cr3 = vmcs_read(GUEST_CR3);
1277 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1278 
1279 	switch (exit_reason.basic) {
1280 	case VMX_VMCALL:
1281 		switch (vmx_get_test_stage()) {
1282 		case 0:
1283 			index = vmcs_read(GUEST_PML_INDEX);
1284 			for (count = index + 1; count < PML_INDEX; count++) {
1285 				if (pmlbuf[count] == (u64)data_page2) {
1286 					vmx_inc_test_stage();
1287 					clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1288 					break;
1289 				}
1290 			}
1291 			break;
1292 		case 1:
1293 			index = vmcs_read(GUEST_PML_INDEX);
1294 			/* Keep clearing the dirty bit till a overflow */
1295 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1296 			break;
1297 		default:
1298 			report_fail("unexpected stage, %d.",
1299 			       vmx_get_test_stage());
1300 			print_vmexit_info(exit_reason);
1301 			return VMX_TEST_VMEXIT;
1302 		}
1303 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1304 		return VMX_TEST_RESUME;
1305 	case VMX_PML_FULL:
1306 		vmx_inc_test_stage();
1307 		vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
1308 		return VMX_TEST_RESUME;
1309 	default:
1310 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
1311 		print_vmexit_info(exit_reason);
1312 	}
1313 	return VMX_TEST_VMEXIT;
1314 }
1315 
1316 static int ept_exit_handler_common(union exit_reason exit_reason, bool have_ad)
1317 {
1318 	u64 guest_rip;
1319 	u64 guest_cr3;
1320 	u32 insn_len;
1321 	u32 exit_qual;
1322 	static unsigned long data_page1_pte, data_page1_pte_pte, memaddr_pte,
1323 			     guest_pte_addr;
1324 
1325 	guest_rip = vmcs_read(GUEST_RIP);
1326 	guest_cr3 = vmcs_read(GUEST_CR3);
1327 	insn_len = vmcs_read(EXI_INST_LEN);
1328 	exit_qual = vmcs_read(EXI_QUALIFICATION);
1329 	pteval_t *ptep;
1330 	switch (exit_reason.basic) {
1331 	case VMX_VMCALL:
1332 		switch (vmx_get_test_stage()) {
1333 		case 0:
1334 			check_ept_ad(pml4, guest_cr3,
1335 				     (unsigned long)data_page1,
1336 				     have_ad ? EPT_ACCESS_FLAG : 0,
1337 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1338 			check_ept_ad(pml4, guest_cr3,
1339 				     (unsigned long)data_page2,
1340 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0,
1341 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1342 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1343 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1344 			if (have_ad)
1345 				invept(INVEPT_SINGLE, eptp);
1346 			if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
1347 					*((u32 *)data_page2) == MAGIC_VAL_2) {
1348 				vmx_inc_test_stage();
1349 				install_ept(pml4, (unsigned long)data_page2,
1350 						(unsigned long)data_page2,
1351 						EPT_RA | EPT_WA | EPT_EA);
1352 			} else
1353 				report_fail("EPT basic framework - write");
1354 			break;
1355 		case 1:
1356 			install_ept(pml4, (unsigned long)data_page1,
1357  				(unsigned long)data_page1, EPT_WA);
1358 			invept(INVEPT_SINGLE, eptp);
1359 			break;
1360 		case 2:
1361 			install_ept(pml4, (unsigned long)data_page1,
1362  				(unsigned long)data_page1,
1363  				EPT_RA | EPT_WA | EPT_EA |
1364  				(2 << EPT_MEM_TYPE_SHIFT));
1365 			invept(INVEPT_SINGLE, eptp);
1366 			break;
1367 		case 3:
1368 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1369 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1,
1370 						1, &data_page1_pte));
1371 			set_ept_pte(pml4, (unsigned long)data_page1,
1372 				1, data_page1_pte & ~EPT_PRESENT);
1373 			invept(INVEPT_SINGLE, eptp);
1374 			break;
1375 		case 4:
1376 			ptep = get_pte_level((pgd_t *)guest_cr3, data_page1, /*level=*/2);
1377 			guest_pte_addr = virt_to_phys(ptep) & PAGE_MASK;
1378 
1379 			TEST_ASSERT(get_ept_pte(pml4, guest_pte_addr, 2, &data_page1_pte_pte));
1380 			set_ept_pte(pml4, guest_pte_addr, 2,
1381 				data_page1_pte_pte & ~EPT_PRESENT);
1382 			invept(INVEPT_SINGLE, eptp);
1383 			break;
1384 		case 5:
1385 			install_ept(pml4, (unsigned long)pci_physaddr,
1386 				(unsigned long)pci_physaddr, 0);
1387 			invept(INVEPT_SINGLE, eptp);
1388 			break;
1389 		case 7:
1390 			if (!invept_test(0, eptp))
1391 				vmx_inc_test_stage();
1392 			break;
1393 		// Should not reach here
1394 		default:
1395 			report_fail("ERROR - unexpected stage, %d.",
1396 			       vmx_get_test_stage());
1397 			print_vmexit_info(exit_reason);
1398 			return VMX_TEST_VMEXIT;
1399 		}
1400 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1401 		return VMX_TEST_RESUME;
1402 	case VMX_EPT_MISCONFIG:
1403 		switch (vmx_get_test_stage()) {
1404 		case 1:
1405 		case 2:
1406 			vmx_inc_test_stage();
1407 			install_ept(pml4, (unsigned long)data_page1,
1408  				(unsigned long)data_page1,
1409  				EPT_RA | EPT_WA | EPT_EA);
1410 			invept(INVEPT_SINGLE, eptp);
1411 			break;
1412 		// Should not reach here
1413 		default:
1414 			report_fail("ERROR - unexpected stage, %d.",
1415 			       vmx_get_test_stage());
1416 			print_vmexit_info(exit_reason);
1417 			return VMX_TEST_VMEXIT;
1418 		}
1419 		return VMX_TEST_RESUME;
1420 	case VMX_EPT_VIOLATION:
1421 		/*
1422 		 * Exit-qualifications are masked not to account for advanced
1423 		 * VM-exit information. Once KVM supports this feature, this
1424 		 * masking should be removed.
1425 		 */
1426 		exit_qual &= ~EPT_VLT_GUEST_MASK;
1427 
1428 		switch(vmx_get_test_stage()) {
1429 		case 3:
1430 			check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
1431 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1432 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1433 			if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD |
1434 					EPT_VLT_PADDR))
1435 				vmx_inc_test_stage();
1436 			set_ept_pte(pml4, (unsigned long)data_page1,
1437 				1, data_page1_pte | (EPT_PRESENT));
1438 			invept(INVEPT_SINGLE, eptp);
1439 			break;
1440 		case 4:
1441 			check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
1442 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1443 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1444 			if (exit_qual == (EPT_VLT_RD |
1445 					  (have_ad ? EPT_VLT_WR : 0) |
1446 					  EPT_VLT_LADDR_VLD))
1447 				vmx_inc_test_stage();
1448 			set_ept_pte(pml4, guest_pte_addr, 2,
1449 				data_page1_pte_pte | (EPT_PRESENT));
1450 			invept(INVEPT_SINGLE, eptp);
1451 			break;
1452 		case 5:
1453 			if (exit_qual & EPT_VLT_RD)
1454 				vmx_inc_test_stage();
1455 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr,
1456 						1, &memaddr_pte));
1457 			set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA);
1458 			invept(INVEPT_SINGLE, eptp);
1459 			break;
1460 		case 6:
1461 			if (exit_qual & EPT_VLT_WR)
1462 				vmx_inc_test_stage();
1463 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr,
1464 						1, &memaddr_pte));
1465 			set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA | EPT_WA);
1466 			invept(INVEPT_SINGLE, eptp);
1467 			break;
1468 		default:
1469 			// Should not reach here
1470 			report_fail("ERROR : unexpected stage, %d",
1471 			       vmx_get_test_stage());
1472 			print_vmexit_info(exit_reason);
1473 			return VMX_TEST_VMEXIT;
1474 		}
1475 		return VMX_TEST_RESUME;
1476 	default:
1477 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
1478 		print_vmexit_info(exit_reason);
1479 	}
1480 	return VMX_TEST_VMEXIT;
1481 }
1482 
1483 static int ept_exit_handler(union exit_reason exit_reason)
1484 {
1485 	return ept_exit_handler_common(exit_reason, false);
1486 }
1487 
1488 static int eptad_init(struct vmcs *vmcs)
1489 {
1490 	int r = ept_init_common(true);
1491 
1492 	if (r == VMX_TEST_EXIT)
1493 		return r;
1494 
1495 	if (!ept_ad_bits_supported()) {
1496 		printf("\tEPT A/D bits are not supported");
1497 		return VMX_TEST_EXIT;
1498 	}
1499 
1500 	return r;
1501 }
1502 
1503 static int pml_init(struct vmcs *vmcs)
1504 {
1505 	u32 ctrl_cpu;
1506 	int r = eptad_init(vmcs);
1507 
1508 	if (r == VMX_TEST_EXIT)
1509 		return r;
1510 
1511 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1512 		!(ctrl_cpu_rev[1].clr & CPU_PML)) {
1513 		printf("\tPML is not supported");
1514 		return VMX_TEST_EXIT;
1515 	}
1516 
1517 	pml_log = alloc_page();
1518 	vmcs_write(PMLADDR, (u64)pml_log);
1519 	vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
1520 
1521 	ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML;
1522 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu);
1523 
1524 	return VMX_TEST_START;
1525 }
1526 
1527 static void pml_main(void)
1528 {
1529 	int count = 0;
1530 
1531 	vmx_set_test_stage(0);
1532 	*((u32 *)data_page2) = 0x1;
1533 	vmcall();
1534 	report(vmx_get_test_stage() == 1, "PML - Dirty GPA Logging");
1535 
1536 	while (vmx_get_test_stage() == 1) {
1537 		vmcall();
1538 		*((u32 *)data_page2) = 0x1;
1539 		if (count++ > PML_INDEX)
1540 			break;
1541 	}
1542 	report(vmx_get_test_stage() == 2, "PML Full Event");
1543 }
1544 
1545 static void eptad_main(void)
1546 {
1547 	ept_common();
1548 }
1549 
1550 static int eptad_exit_handler(union exit_reason exit_reason)
1551 {
1552 	return ept_exit_handler_common(exit_reason, true);
1553 }
1554 
1555 #define TIMER_VECTOR	222
1556 
1557 static volatile bool timer_fired;
1558 
1559 static void timer_isr(isr_regs_t *regs)
1560 {
1561 	timer_fired = true;
1562 	apic_write(APIC_EOI, 0);
1563 }
1564 
1565 static int interrupt_init(struct vmcs *vmcs)
1566 {
1567 	msr_bmp_init();
1568 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
1569 	handle_irq(TIMER_VECTOR, timer_isr);
1570 	return VMX_TEST_START;
1571 }
1572 
1573 static void interrupt_main(void)
1574 {
1575 	long long start, loops;
1576 
1577 	vmx_set_test_stage(0);
1578 
1579 	apic_write(APIC_LVTT, TIMER_VECTOR);
1580 	sti();
1581 
1582 	apic_write(APIC_TMICT, 1);
1583 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1584 		asm volatile ("nop");
1585 	report(timer_fired, "direct interrupt while running guest");
1586 
1587 	apic_write(APIC_TMICT, 0);
1588 	cli();
1589 	vmcall();
1590 	timer_fired = false;
1591 	apic_write(APIC_TMICT, 1);
1592 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1593 		asm volatile ("nop");
1594 	report(timer_fired, "intercepted interrupt while running guest");
1595 
1596 	sti();
1597 	apic_write(APIC_TMICT, 0);
1598 	cli();
1599 	vmcall();
1600 	timer_fired = false;
1601 	start = rdtsc();
1602 	apic_write(APIC_TMICT, 1000000);
1603 
1604 	safe_halt();
1605 
1606 	report(rdtsc() - start > 1000000 && timer_fired,
1607 	       "direct interrupt + hlt");
1608 
1609 	apic_write(APIC_TMICT, 0);
1610 	cli();
1611 	vmcall();
1612 	timer_fired = false;
1613 	start = rdtsc();
1614 	apic_write(APIC_TMICT, 1000000);
1615 
1616 	safe_halt();
1617 
1618 	report(rdtsc() - start > 10000 && timer_fired,
1619 	       "intercepted interrupt + hlt");
1620 
1621 	apic_write(APIC_TMICT, 0);
1622 	cli();
1623 	vmcall();
1624 	timer_fired = false;
1625 	start = rdtsc();
1626 	apic_write(APIC_TMICT, 1000000);
1627 
1628 	sti_nop();
1629 	vmcall();
1630 
1631 	report(rdtsc() - start > 10000 && timer_fired,
1632 	       "direct interrupt + activity state hlt");
1633 
1634 	apic_write(APIC_TMICT, 0);
1635 	cli();
1636 	vmcall();
1637 	timer_fired = false;
1638 	start = rdtsc();
1639 	apic_write(APIC_TMICT, 1000000);
1640 
1641 	sti_nop();
1642 	vmcall();
1643 
1644 	report(rdtsc() - start > 10000 && timer_fired,
1645 	       "intercepted interrupt + activity state hlt");
1646 
1647 	apic_write(APIC_TMICT, 0);
1648 	cli();
1649 	vmx_set_test_stage(7);
1650 	vmcall();
1651 	timer_fired = false;
1652 	apic_write(APIC_TMICT, 1);
1653 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1654 		asm volatile ("nop");
1655 	report(timer_fired,
1656 	       "running a guest with interrupt acknowledgement set");
1657 
1658 	apic_write(APIC_TMICT, 0);
1659 	sti();
1660 	timer_fired = false;
1661 	vmcall();
1662 	report(timer_fired, "Inject an event to a halted guest");
1663 }
1664 
1665 static int interrupt_exit_handler(union exit_reason exit_reason)
1666 {
1667 	u64 guest_rip = vmcs_read(GUEST_RIP);
1668 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1669 
1670 	switch (exit_reason.basic) {
1671 	case VMX_VMCALL:
1672 		switch (vmx_get_test_stage()) {
1673 		case 0:
1674 		case 2:
1675 		case 5:
1676 			vmcs_write(PIN_CONTROLS,
1677 				   vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
1678 			break;
1679 		case 7:
1680 			vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA);
1681 			vmcs_write(PIN_CONTROLS,
1682 				   vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
1683 			break;
1684 		case 1:
1685 		case 3:
1686 			vmcs_write(PIN_CONTROLS,
1687 				   vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
1688 			break;
1689 		case 4:
1690 		case 6:
1691 			vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
1692 			break;
1693 
1694 		case 8:
1695 			vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
1696 			vmcs_write(ENT_INTR_INFO,
1697 				   TIMER_VECTOR |
1698 				   (VMX_INTR_TYPE_EXT_INTR << INTR_INFO_INTR_TYPE_SHIFT) |
1699 				   INTR_INFO_VALID_MASK);
1700 			break;
1701 		}
1702 		vmx_inc_test_stage();
1703 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1704 		return VMX_TEST_RESUME;
1705 	case VMX_EXTINT:
1706 		if (vmcs_read(EXI_CONTROLS) & EXI_INTA) {
1707 			int vector = vmcs_read(EXI_INTR_INFO) & 0xff;
1708 			handle_external_interrupt(vector);
1709 		} else {
1710 			sti_nop_cli();
1711 		}
1712 		if (vmx_get_test_stage() >= 2)
1713 			vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
1714 		return VMX_TEST_RESUME;
1715 	default:
1716 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
1717 		print_vmexit_info(exit_reason);
1718 	}
1719 
1720 	return VMX_TEST_VMEXIT;
1721 }
1722 
1723 
1724 static volatile int nmi_fired;
1725 
1726 #define NMI_DELAY 100000000ULL
1727 
1728 static void nmi_isr(isr_regs_t *regs)
1729 {
1730 	nmi_fired = true;
1731 }
1732 
1733 static int nmi_hlt_init(struct vmcs *vmcs)
1734 {
1735 	msr_bmp_init();
1736 	handle_irq(NMI_VECTOR, nmi_isr);
1737 	vmcs_write(PIN_CONTROLS,
1738 		   vmcs_read(PIN_CONTROLS) & ~PIN_NMI);
1739 	vmcs_write(PIN_CONTROLS,
1740 		   vmcs_read(PIN_CONTROLS) & ~PIN_VIRT_NMI);
1741 	return VMX_TEST_START;
1742 }
1743 
1744 static void nmi_message_thread(void *data)
1745 {
1746     while (vmx_get_test_stage() != 1)
1747         pause();
1748 
1749     delay(NMI_DELAY);
1750     apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]);
1751 
1752     while (vmx_get_test_stage() != 2)
1753         pause();
1754 
1755     delay(NMI_DELAY);
1756     apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]);
1757 }
1758 
1759 static void nmi_hlt_main(void)
1760 {
1761     long long start;
1762 
1763     if (cpu_count() < 2) {
1764         report_skip("%s : CPU count < 2", __func__);
1765         vmx_set_test_stage(-1);
1766         return;
1767     }
1768 
1769     vmx_set_test_stage(0);
1770     on_cpu_async(1, nmi_message_thread, NULL);
1771     start = rdtsc();
1772     vmx_set_test_stage(1);
1773     asm volatile ("hlt");
1774     report((rdtsc() - start > NMI_DELAY) && nmi_fired,
1775             "direct NMI + hlt");
1776     if (!nmi_fired)
1777         vmx_set_test_stage(-1);
1778     nmi_fired = false;
1779 
1780     vmcall();
1781 
1782     start = rdtsc();
1783     vmx_set_test_stage(2);
1784     asm volatile ("hlt");
1785     report((rdtsc() - start > NMI_DELAY) && !nmi_fired,
1786             "intercepted NMI + hlt");
1787     if (nmi_fired) {
1788         report(!nmi_fired, "intercepted NMI was dispatched");
1789         vmx_set_test_stage(-1);
1790         return;
1791     }
1792     vmx_set_test_stage(3);
1793 }
1794 
1795 static int nmi_hlt_exit_handler(union exit_reason exit_reason)
1796 {
1797     u64 guest_rip = vmcs_read(GUEST_RIP);
1798     u32 insn_len = vmcs_read(EXI_INST_LEN);
1799 
1800     switch (vmx_get_test_stage()) {
1801     case 1:
1802         if (exit_reason.basic != VMX_VMCALL) {
1803             report_fail("VMEXIT not due to vmcall. Exit reason 0x%x",
1804                         exit_reason.full);
1805             print_vmexit_info(exit_reason);
1806             return VMX_TEST_VMEXIT;
1807         }
1808 
1809         vmcs_write(PIN_CONTROLS,
1810                vmcs_read(PIN_CONTROLS) | PIN_NMI);
1811         vmcs_write(PIN_CONTROLS,
1812                vmcs_read(PIN_CONTROLS) | PIN_VIRT_NMI);
1813         vmcs_write(GUEST_RIP, guest_rip + insn_len);
1814         break;
1815 
1816     case 2:
1817         if (exit_reason.basic != VMX_EXC_NMI) {
1818             report_fail("VMEXIT not due to NMI intercept. Exit reason 0x%x",
1819                         exit_reason.full);
1820             print_vmexit_info(exit_reason);
1821             return VMX_TEST_VMEXIT;
1822         }
1823         report_pass("NMI intercept while running guest");
1824         vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
1825         break;
1826 
1827     case 3:
1828         break;
1829 
1830     default:
1831         return VMX_TEST_VMEXIT;
1832     }
1833 
1834     if (vmx_get_test_stage() == 3)
1835         return VMX_TEST_VMEXIT;
1836 
1837     return VMX_TEST_RESUME;
1838 }
1839 
1840 
1841 static int dbgctls_init(struct vmcs *vmcs)
1842 {
1843 	u64 dr7 = 0x402;
1844 	u64 zero = 0;
1845 
1846 	msr_bmp_init();
1847 	asm volatile(
1848 		"mov %0,%%dr0\n\t"
1849 		"mov %0,%%dr1\n\t"
1850 		"mov %0,%%dr2\n\t"
1851 		"mov %1,%%dr7\n\t"
1852 		: : "r" (zero), "r" (dr7));
1853 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
1854 	vmcs_write(GUEST_DR7, 0x404);
1855 	vmcs_write(GUEST_DEBUGCTL, 0x2);
1856 
1857 	vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
1858 	vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS);
1859 
1860 	return VMX_TEST_START;
1861 }
1862 
1863 static void dbgctls_main(void)
1864 {
1865 	u64 dr7, debugctl;
1866 
1867 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1868 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1869 	/* Commented out: KVM does not support DEBUGCTL so far */
1870 	(void)debugctl;
1871 	report(dr7 == 0x404, "Load debug controls" /* && debugctl == 0x2 */);
1872 
1873 	dr7 = 0x408;
1874 	asm volatile("mov %0,%%dr7" : : "r" (dr7));
1875 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
1876 
1877 	vmx_set_test_stage(0);
1878 	vmcall();
1879 	report(vmx_get_test_stage() == 1, "Save debug controls");
1880 
1881 	if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS ||
1882 	    ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) {
1883 		printf("\tDebug controls are always loaded/saved\n");
1884 		return;
1885 	}
1886 	vmx_set_test_stage(2);
1887 	vmcall();
1888 
1889 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1890 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1891 	/* Commented out: KVM does not support DEBUGCTL so far */
1892 	(void)debugctl;
1893 	report(dr7 == 0x402,
1894 	       "Guest=host debug controls" /* && debugctl == 0x1 */);
1895 
1896 	dr7 = 0x408;
1897 	asm volatile("mov %0,%%dr7" : : "r" (dr7));
1898 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
1899 
1900 	vmx_set_test_stage(3);
1901 	vmcall();
1902 	report(vmx_get_test_stage() == 4, "Don't save debug controls");
1903 }
1904 
1905 static int dbgctls_exit_handler(union exit_reason exit_reason)
1906 {
1907 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1908 	u64 guest_rip = vmcs_read(GUEST_RIP);
1909 	u64 dr7, debugctl;
1910 
1911 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1912 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1913 
1914 	switch (exit_reason.basic) {
1915 	case VMX_VMCALL:
1916 		switch (vmx_get_test_stage()) {
1917 		case 0:
1918 			if (dr7 == 0x400 && debugctl == 0 &&
1919 			    vmcs_read(GUEST_DR7) == 0x408 /* &&
1920 			    Commented out: KVM does not support DEBUGCTL so far
1921 			    vmcs_read(GUEST_DEBUGCTL) == 0x3 */)
1922 				vmx_inc_test_stage();
1923 			break;
1924 		case 2:
1925 			dr7 = 0x402;
1926 			asm volatile("mov %0,%%dr7" : : "r" (dr7));
1927 			wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
1928 			vmcs_write(GUEST_DR7, 0x404);
1929 			vmcs_write(GUEST_DEBUGCTL, 0x2);
1930 
1931 			vmcs_write(ENT_CONTROLS,
1932 				vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS);
1933 			vmcs_write(EXI_CONTROLS,
1934 				vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS);
1935 			break;
1936 		case 3:
1937 			if (dr7 == 0x400 && debugctl == 0 &&
1938 			    vmcs_read(GUEST_DR7) == 0x404 /* &&
1939 			    Commented out: KVM does not support DEBUGCTL so far
1940 			    vmcs_read(GUEST_DEBUGCTL) == 0x2 */)
1941 				vmx_inc_test_stage();
1942 			break;
1943 		}
1944 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1945 		return VMX_TEST_RESUME;
1946 	default:
1947 		report_fail("Unknown exit reason, %d", exit_reason.full);
1948 		print_vmexit_info(exit_reason);
1949 	}
1950 	return VMX_TEST_VMEXIT;
1951 }
1952 
1953 struct vmx_msr_entry {
1954 	u32 index;
1955 	u32 reserved;
1956 	u64 value;
1957 } __attribute__((packed));
1958 
1959 #define MSR_MAGIC 0x31415926
1960 struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load;
1961 
1962 static int msr_switch_init(struct vmcs *vmcs)
1963 {
1964 	msr_bmp_init();
1965 	exit_msr_store = alloc_page();
1966 	exit_msr_load = alloc_page();
1967 	entry_msr_load = alloc_page();
1968 	entry_msr_load[0].index = MSR_KERNEL_GS_BASE;
1969 	entry_msr_load[0].value = MSR_MAGIC;
1970 
1971 	vmx_set_test_stage(1);
1972 	vmcs_write(ENT_MSR_LD_CNT, 1);
1973 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load);
1974 	vmcs_write(EXI_MSR_ST_CNT, 1);
1975 	vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store);
1976 	vmcs_write(EXI_MSR_LD_CNT, 1);
1977 	vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load);
1978 	return VMX_TEST_START;
1979 }
1980 
1981 static void msr_switch_main(void)
1982 {
1983 	if (vmx_get_test_stage() == 1) {
1984 		report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC,
1985 		       "VM entry MSR load");
1986 		vmx_set_test_stage(2);
1987 		wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1);
1988 		exit_msr_store[0].index = MSR_KERNEL_GS_BASE;
1989 		exit_msr_load[0].index = MSR_KERNEL_GS_BASE;
1990 		exit_msr_load[0].value = MSR_MAGIC + 2;
1991 	}
1992 	vmcall();
1993 }
1994 
1995 static int msr_switch_exit_handler(union exit_reason exit_reason)
1996 {
1997 	if (exit_reason.basic == VMX_VMCALL && vmx_get_test_stage() == 2) {
1998 		report(exit_msr_store[0].value == MSR_MAGIC + 1,
1999 		       "VM exit MSR store");
2000 		report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2,
2001 		       "VM exit MSR load");
2002 		vmx_set_test_stage(3);
2003 		entry_msr_load[0].index = MSR_FS_BASE;
2004 		return VMX_TEST_RESUME;
2005 	}
2006 	printf("ERROR %s: unexpected stage=%u or reason=0x%x\n",
2007 		__func__, vmx_get_test_stage(), exit_reason.full);
2008 	return VMX_TEST_EXIT;
2009 }
2010 
2011 static int msr_switch_entry_failure(struct vmentry_result *result)
2012 {
2013 	if (result->vm_fail) {
2014 		printf("ERROR %s: VM-Fail on %s\n", __func__, result->instr);
2015 		return VMX_TEST_EXIT;
2016 	}
2017 
2018 	if (result->exit_reason.failed_vmentry &&
2019 	    result->exit_reason.basic == VMX_FAIL_MSR &&
2020 	    vmx_get_test_stage() == 3) {
2021 		report(vmcs_read(EXI_QUALIFICATION) == 1,
2022 		       "VM entry MSR load: try to load FS_BASE");
2023 		return VMX_TEST_VMEXIT;
2024 	}
2025 	printf("ERROR %s: unexpected stage=%u or reason=%x\n",
2026 		__func__, vmx_get_test_stage(), result->exit_reason.full);
2027 	return VMX_TEST_EXIT;
2028 }
2029 
2030 static int vmmcall_init(struct vmcs *vmcs)
2031 {
2032 	vmcs_write(EXC_BITMAP, 1 << UD_VECTOR);
2033 	return VMX_TEST_START;
2034 }
2035 
2036 static void vmmcall_main(void)
2037 {
2038 	asm volatile(
2039 		"mov $0xABCD, %%rax\n\t"
2040 		"vmmcall\n\t"
2041 		::: "rax");
2042 
2043 	report_fail("VMMCALL");
2044 }
2045 
2046 static int vmmcall_exit_handler(union exit_reason exit_reason)
2047 {
2048 	switch (exit_reason.basic) {
2049 	case VMX_VMCALL:
2050 		printf("here\n");
2051 		report_fail("VMMCALL triggers #UD");
2052 		break;
2053 	case VMX_EXC_NMI:
2054 		report((vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR,
2055 		       "VMMCALL triggers #UD");
2056 		break;
2057 	default:
2058 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
2059 		print_vmexit_info(exit_reason);
2060 	}
2061 
2062 	return VMX_TEST_VMEXIT;
2063 }
2064 
2065 static int disable_rdtscp_init(struct vmcs *vmcs)
2066 {
2067 	u32 ctrl_cpu1;
2068 
2069 	if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) {
2070 		ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
2071 		ctrl_cpu1 &= ~CPU_RDTSCP;
2072 		vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
2073 	}
2074 
2075 	return VMX_TEST_START;
2076 }
2077 
2078 static void disable_rdtscp_ud_handler(struct ex_regs *regs)
2079 {
2080 	switch (vmx_get_test_stage()) {
2081 	case 0:
2082 		report_pass("RDTSCP triggers #UD");
2083 		vmx_inc_test_stage();
2084 		regs->rip += 3;
2085 		break;
2086 	case 2:
2087 		report_pass("RDPID triggers #UD");
2088 		vmx_inc_test_stage();
2089 		regs->rip += 4;
2090 		break;
2091 	}
2092 	return;
2093 
2094 }
2095 
2096 static void disable_rdtscp_main(void)
2097 {
2098 	/* Test that #UD is properly injected in L2.  */
2099 	handle_exception(UD_VECTOR, disable_rdtscp_ud_handler);
2100 
2101 	vmx_set_test_stage(0);
2102 	asm volatile("rdtscp" : : : "eax", "ecx", "edx");
2103 	vmcall();
2104 	asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax");
2105 
2106 	handle_exception(UD_VECTOR, 0);
2107 	vmcall();
2108 }
2109 
2110 static int disable_rdtscp_exit_handler(union exit_reason exit_reason)
2111 {
2112 	switch (exit_reason.basic) {
2113 	case VMX_VMCALL:
2114 		switch (vmx_get_test_stage()) {
2115 		case 0:
2116 			report_fail("RDTSCP triggers #UD");
2117 			vmx_inc_test_stage();
2118 			/* fallthrough */
2119 		case 1:
2120 			vmx_inc_test_stage();
2121 			vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3);
2122 			return VMX_TEST_RESUME;
2123 		case 2:
2124 			report_fail("RDPID triggers #UD");
2125 			break;
2126 		}
2127 		break;
2128 
2129 	default:
2130 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
2131 		print_vmexit_info(exit_reason);
2132 	}
2133 	return VMX_TEST_VMEXIT;
2134 }
2135 
2136 static void exit_monitor_from_l2_main(void)
2137 {
2138 	printf("Calling exit(0) from l2...\n");
2139 	exit(0);
2140 }
2141 
2142 static int exit_monitor_from_l2_handler(union exit_reason exit_reason)
2143 {
2144 	report_fail("The guest should have killed the VMM");
2145 	return VMX_TEST_EXIT;
2146 }
2147 
2148 static void assert_exit_reason(u64 expected)
2149 {
2150 	u64 actual = vmcs_read(EXI_REASON);
2151 
2152 	TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.",
2153 			   exit_reason_description(expected),
2154 			   exit_reason_description(actual));
2155 }
2156 
2157 static void skip_exit_insn(void)
2158 {
2159 	u64 guest_rip = vmcs_read(GUEST_RIP);
2160 	u32 insn_len = vmcs_read(EXI_INST_LEN);
2161 	vmcs_write(GUEST_RIP, guest_rip + insn_len);
2162 }
2163 
2164 static void skip_exit_vmcall(void)
2165 {
2166 	assert_exit_reason(VMX_VMCALL);
2167 	skip_exit_insn();
2168 }
2169 
2170 static void v2_null_test_guest(void)
2171 {
2172 }
2173 
2174 static void v2_null_test(void)
2175 {
2176 	test_set_guest(v2_null_test_guest);
2177 	enter_guest();
2178 	report_pass(__func__);
2179 }
2180 
2181 static void v2_multiple_entries_test_guest(void)
2182 {
2183 	vmx_set_test_stage(1);
2184 	vmcall();
2185 	vmx_set_test_stage(2);
2186 }
2187 
2188 static void v2_multiple_entries_test(void)
2189 {
2190 	test_set_guest(v2_multiple_entries_test_guest);
2191 	enter_guest();
2192 	TEST_ASSERT_EQ(vmx_get_test_stage(), 1);
2193 	skip_exit_vmcall();
2194 	enter_guest();
2195 	TEST_ASSERT_EQ(vmx_get_test_stage(), 2);
2196 	report_pass(__func__);
2197 }
2198 
2199 static int fixture_test_data = 1;
2200 
2201 static void fixture_test_teardown(void *data)
2202 {
2203 	*((int *) data) = 1;
2204 }
2205 
2206 static void fixture_test_guest(void)
2207 {
2208 	fixture_test_data++;
2209 }
2210 
2211 
2212 static void fixture_test_setup(void)
2213 {
2214 	TEST_ASSERT_EQ_MSG(1, fixture_test_data,
2215 			   "fixture_test_teardown didn't run?!");
2216 	fixture_test_data = 2;
2217 	test_add_teardown(fixture_test_teardown, &fixture_test_data);
2218 	test_set_guest(fixture_test_guest);
2219 }
2220 
2221 static void fixture_test_case1(void)
2222 {
2223 	fixture_test_setup();
2224 	TEST_ASSERT_EQ(2, fixture_test_data);
2225 	enter_guest();
2226 	TEST_ASSERT_EQ(3, fixture_test_data);
2227 	report_pass(__func__);
2228 }
2229 
2230 static void fixture_test_case2(void)
2231 {
2232 	fixture_test_setup();
2233 	TEST_ASSERT_EQ(2, fixture_test_data);
2234 	enter_guest();
2235 	TEST_ASSERT_EQ(3, fixture_test_data);
2236 	report_pass(__func__);
2237 }
2238 
2239 enum ept_access_op {
2240 	OP_READ,
2241 	OP_WRITE,
2242 	OP_EXEC,
2243 	OP_FLUSH_TLB,
2244 	OP_EXIT,
2245 };
2246 
2247 static struct ept_access_test_data {
2248 	unsigned long gpa;
2249 	unsigned long *gva;
2250 	unsigned long hpa;
2251 	unsigned long *hva;
2252 	enum ept_access_op op;
2253 } ept_access_test_data;
2254 
2255 extern unsigned char ret42_start;
2256 extern unsigned char ret42_end;
2257 
2258 /* Returns 42. */
2259 asm(
2260 	".align 64\n"
2261 	"ret42_start:\n"
2262 	"mov $42, %eax\n"
2263 	"ret\n"
2264 	"ret42_end:\n"
2265 );
2266 
2267 static void
2268 diagnose_ept_violation_qual(u64 expected, u64 actual)
2269 {
2270 
2271 #define DIAGNOSE(flag)							\
2272 do {									\
2273 	if ((expected & flag) != (actual & flag))			\
2274 		printf(#flag " %sexpected\n",				\
2275 		       (expected & flag) ? "" : "un");			\
2276 } while (0)
2277 
2278 	DIAGNOSE(EPT_VLT_RD);
2279 	DIAGNOSE(EPT_VLT_WR);
2280 	DIAGNOSE(EPT_VLT_FETCH);
2281 	DIAGNOSE(EPT_VLT_PERM_RD);
2282 	DIAGNOSE(EPT_VLT_PERM_WR);
2283 	DIAGNOSE(EPT_VLT_PERM_EX);
2284 	DIAGNOSE(EPT_VLT_LADDR_VLD);
2285 	DIAGNOSE(EPT_VLT_PADDR);
2286 
2287 #undef DIAGNOSE
2288 }
2289 
2290 static void do_ept_access_op(enum ept_access_op op)
2291 {
2292 	ept_access_test_data.op = op;
2293 	enter_guest();
2294 }
2295 
2296 /*
2297  * Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only
2298  * needed by tests that modify guest PTEs.
2299  */
2300 static void ept_access_test_guest_flush_tlb(void)
2301 {
2302 	do_ept_access_op(OP_FLUSH_TLB);
2303 	skip_exit_vmcall();
2304 }
2305 
2306 /*
2307  * Modifies the EPT entry at @level in the mapping of @gpa. First clears the
2308  * bits in @clear then sets the bits in @set. @mkhuge transforms the entry into
2309  * a huge page.
2310  */
2311 static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level,
2312 				 unsigned long clear, unsigned long set)
2313 {
2314 	struct ept_access_test_data *data = &ept_access_test_data;
2315 	unsigned long orig_pte;
2316 	unsigned long pte;
2317 
2318 	/* Screw with the mapping at the requested level. */
2319 	TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte));
2320 	pte = orig_pte;
2321 	if (mkhuge)
2322 		pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE;
2323 	else
2324 		pte = orig_pte;
2325 	pte = (pte & ~clear) | set;
2326 	set_ept_pte(pml4, gpa, level, pte);
2327 	invept(INVEPT_SINGLE, eptp);
2328 
2329 	return orig_pte;
2330 }
2331 
2332 static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte)
2333 {
2334 	set_ept_pte(pml4, gpa, level, orig_pte);
2335 	invept(INVEPT_SINGLE, eptp);
2336 }
2337 
2338 static void do_ept_violation(bool leaf, enum ept_access_op op,
2339 			     u64 expected_qual, u64 expected_paddr)
2340 {
2341 	u64 qual;
2342 
2343 	/* Try the access and observe the violation. */
2344 	do_ept_access_op(op);
2345 
2346 	assert_exit_reason(VMX_EPT_VIOLATION);
2347 
2348 	qual = vmcs_read(EXI_QUALIFICATION);
2349 
2350 	/* Mask undefined bits (which may later be defined in certain cases). */
2351 	qual &= ~(EPT_VLT_GUEST_USER | EPT_VLT_GUEST_RW | EPT_VLT_GUEST_EX |
2352 		 EPT_VLT_PERM_USER_EX);
2353 
2354 	diagnose_ept_violation_qual(expected_qual, qual);
2355 	TEST_EXPECT_EQ(expected_qual, qual);
2356 
2357 	#if 0
2358 	/* Disable for now otherwise every test will fail */
2359 	TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
2360 		       (unsigned long) (
2361 			       op == OP_EXEC ? data->gva + 1 : data->gva));
2362 	#endif
2363 	/*
2364 	 * TODO: tests that probe expected_paddr in pages other than the one at
2365 	 * the beginning of the 1g region.
2366 	 */
2367 	TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr);
2368 }
2369 
2370 static void
2371 ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear,
2372 			      unsigned long set, enum ept_access_op op,
2373 			      u64 expected_qual)
2374 {
2375 	struct ept_access_test_data *data = &ept_access_test_data;
2376 	unsigned long orig_pte;
2377 
2378 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2379 
2380 	do_ept_violation(level == 1 || mkhuge, op, expected_qual,
2381 			 op == OP_EXEC ? data->gpa + sizeof(unsigned long) :
2382 					 data->gpa);
2383 
2384 	/* Fix the violation and resume the op loop. */
2385 	ept_untwiddle(data->gpa, level, orig_pte);
2386 	enter_guest();
2387 	skip_exit_vmcall();
2388 }
2389 
2390 static void
2391 ept_violation_at_level(int level, unsigned long clear, unsigned long set,
2392 		       enum ept_access_op op, u64 expected_qual)
2393 {
2394 	ept_violation_at_level_mkhuge(false, level, clear, set, op,
2395 				      expected_qual);
2396 	if (ept_huge_pages_supported(level))
2397 		ept_violation_at_level_mkhuge(true, level, clear, set, op,
2398 					      expected_qual);
2399 }
2400 
2401 static void ept_violation(unsigned long clear, unsigned long set,
2402 			  enum ept_access_op op, u64 expected_qual)
2403 {
2404 	ept_violation_at_level(1, clear, set, op, expected_qual);
2405 	ept_violation_at_level(2, clear, set, op, expected_qual);
2406 	ept_violation_at_level(3, clear, set, op, expected_qual);
2407 	ept_violation_at_level(4, clear, set, op, expected_qual);
2408 }
2409 
2410 static void ept_access_violation(unsigned long access, enum ept_access_op op,
2411 				       u64 expected_qual)
2412 {
2413 	ept_violation(EPT_PRESENT, access, op,
2414 		      expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2415 }
2416 
2417 /*
2418  * For translations that don't involve a GVA, that is physical address (paddr)
2419  * accesses, EPT violations don't set the flag EPT_VLT_PADDR.  For a typical
2420  * guest memory access, the hardware does GVA -> GPA -> HPA.  However, certain
2421  * translations don't involve GVAs, such as when the hardware does the guest
2422  * page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU
2423  * might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides
2424  * on isn't present in the EPT, then the EPT violation will be for GPA_2 and
2425  * the EPT_VLT_PADDR bit will be clear in the exit qualification.
2426  *
2427  * Note that paddr violations can also be triggered by loading PAE page tables
2428  * with wonky addresses. We don't test that yet.
2429  *
2430  * This function modifies the EPT entry that maps the GPA that the guest page
2431  * table entry mapping ept_access_test_data.gva resides on.
2432  *
2433  *	@ept_access	EPT permissions to set. Other permissions are cleared.
2434  *
2435  *	@pte_ad		Set the A/D bits on the guest PTE accordingly.
2436  *
2437  *	@op		Guest operation to perform with
2438  *			ept_access_test_data.gva.
2439  *
2440  *	@expect_violation
2441  *			Is a violation expected during the paddr access?
2442  *
2443  *	@expected_qual	Expected qualification for the EPT violation.
2444  *			EPT_VLT_PADDR should be clear.
2445  */
2446 static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad,
2447 			     enum ept_access_op op, bool expect_violation,
2448 			     u64 expected_qual)
2449 {
2450 	struct ept_access_test_data *data = &ept_access_test_data;
2451 	unsigned long *ptep;
2452 	unsigned long gpa;
2453 	unsigned long orig_epte;
2454 	unsigned long epte;
2455 	int i;
2456 
2457 	/* Modify the guest PTE mapping data->gva according to @pte_ad.  */
2458 	ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1);
2459 	TEST_ASSERT(ptep);
2460 	TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa);
2461 	*ptep = (*ptep & ~PT_AD_MASK) | pte_ad;
2462 	ept_access_test_guest_flush_tlb();
2463 
2464 	/*
2465 	 * Now modify the access bits on the EPT entry for the GPA that the
2466 	 * guest PTE resides on. Note that by modifying a single EPT entry,
2467 	 * we're potentially affecting 512 guest PTEs. However, we've carefully
2468 	 * constructed our test such that those other 511 PTEs aren't used by
2469 	 * the guest: data->gva is at the beginning of a 1G huge page, thus the
2470 	 * PTE we're modifying is at the beginning of a 4K page and the
2471 	 * following 511 entries are also under our control (and not touched by
2472 	 * the guest).
2473 	 */
2474 	gpa = virt_to_phys(ptep);
2475 	TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0);
2476 	/*
2477 	 * Make sure the guest page table page is mapped with a 4K EPT entry,
2478 	 * otherwise our level=1 twiddling below will fail. We use the
2479 	 * identity map (gpa = gpa) since page tables are shared with the host.
2480 	 */
2481 	install_ept(pml4, gpa, gpa, EPT_PRESENT);
2482 	orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1,
2483 				/*clear=*/EPT_PRESENT, /*set=*/ept_access);
2484 
2485 	if (expect_violation) {
2486 		do_ept_violation(/*leaf=*/true, op,
2487 				 expected_qual | EPT_VLT_LADDR_VLD, gpa);
2488 		ept_untwiddle(gpa, /*level=*/1, orig_epte);
2489 		do_ept_access_op(op);
2490 	} else {
2491 		do_ept_access_op(op);
2492 		if (ept_ad_enabled()) {
2493 			for (i = EPT_PAGE_LEVEL; i > 0; i--) {
2494 				TEST_ASSERT(get_ept_pte(pml4, gpa, i, &epte));
2495 				TEST_ASSERT(epte & EPT_ACCESS_FLAG);
2496 				if (i == 1)
2497 					TEST_ASSERT(epte & EPT_DIRTY_FLAG);
2498 				else
2499 					TEST_ASSERT_EQ(epte & EPT_DIRTY_FLAG, 0);
2500 			}
2501 		}
2502 
2503 		ept_untwiddle(gpa, /*level=*/1, orig_epte);
2504 	}
2505 
2506 	TEST_ASSERT(*ptep & PT_ACCESSED_MASK);
2507 	if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE)
2508 		TEST_ASSERT(*ptep & PT_DIRTY_MASK);
2509 
2510 	skip_exit_vmcall();
2511 }
2512 
2513 static void ept_access_allowed_paddr(unsigned long ept_access,
2514 				     unsigned long pte_ad,
2515 				     enum ept_access_op op)
2516 {
2517 	ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false,
2518 			 /*expected_qual=*/-1);
2519 }
2520 
2521 static void ept_access_violation_paddr(unsigned long ept_access,
2522 				       unsigned long pte_ad,
2523 				       enum ept_access_op op,
2524 				       u64 expected_qual)
2525 {
2526 	ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true,
2527 			 expected_qual);
2528 }
2529 
2530 
2531 static void ept_allowed_at_level_mkhuge(bool mkhuge, int level,
2532 					unsigned long clear,
2533 					unsigned long set,
2534 					enum ept_access_op op)
2535 {
2536 	struct ept_access_test_data *data = &ept_access_test_data;
2537 	unsigned long orig_pte;
2538 
2539 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2540 
2541 	/* No violation. Should proceed to vmcall. */
2542 	do_ept_access_op(op);
2543 	skip_exit_vmcall();
2544 
2545 	ept_untwiddle(data->gpa, level, orig_pte);
2546 }
2547 
2548 static void ept_allowed_at_level(int level, unsigned long clear,
2549 				 unsigned long set, enum ept_access_op op)
2550 {
2551 	ept_allowed_at_level_mkhuge(false, level, clear, set, op);
2552 	if (ept_huge_pages_supported(level))
2553 		ept_allowed_at_level_mkhuge(true, level, clear, set, op);
2554 }
2555 
2556 static void ept_allowed(unsigned long clear, unsigned long set,
2557 			enum ept_access_op op)
2558 {
2559 	ept_allowed_at_level(1, clear, set, op);
2560 	ept_allowed_at_level(2, clear, set, op);
2561 	ept_allowed_at_level(3, clear, set, op);
2562 	ept_allowed_at_level(4, clear, set, op);
2563 }
2564 
2565 static void ept_ignored_bit(int bit)
2566 {
2567 	/* Set the bit. */
2568 	ept_allowed(0, 1ul << bit, OP_READ);
2569 	ept_allowed(0, 1ul << bit, OP_WRITE);
2570 	ept_allowed(0, 1ul << bit, OP_EXEC);
2571 
2572 	/* Clear the bit. */
2573 	ept_allowed(1ul << bit, 0, OP_READ);
2574 	ept_allowed(1ul << bit, 0, OP_WRITE);
2575 	ept_allowed(1ul << bit, 0, OP_EXEC);
2576 }
2577 
2578 static void ept_access_allowed(unsigned long access, enum ept_access_op op)
2579 {
2580 	ept_allowed(EPT_PRESENT, access, op);
2581 }
2582 
2583 
2584 static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level,
2585 					     unsigned long clear,
2586 					     unsigned long set,
2587 					     enum ept_access_op op)
2588 {
2589 	struct ept_access_test_data *data = &ept_access_test_data;
2590 	unsigned long orig_pte;
2591 
2592 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2593 
2594 	do_ept_access_op(op);
2595 	assert_exit_reason(VMX_EPT_MISCONFIG);
2596 
2597 	/* Intel 27.2.1, "For all other VM exits, this field is cleared." */
2598 	#if 0
2599 	/* broken: */
2600 	TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0);
2601 	#endif
2602 	#if 0
2603 	/*
2604 	 * broken:
2605 	 * According to description of exit qual for EPT violation,
2606 	 * EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid.
2607 	 * However, I can't find anything that says GUEST_LINEAR_ADDRESS ought
2608 	 * to be set for msiconfig.
2609 	 */
2610 	TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
2611 		       (unsigned long) (
2612 			       op == OP_EXEC ? data->gva + 1 : data->gva));
2613 	#endif
2614 
2615 	/* Fix the violation and resume the op loop. */
2616 	ept_untwiddle(data->gpa, level, orig_pte);
2617 	enter_guest();
2618 	skip_exit_vmcall();
2619 }
2620 
2621 static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level,
2622 					  unsigned long clear,
2623 					  unsigned long set)
2624 {
2625 	/* The op shouldn't matter (read, write, exec), so try them all! */
2626 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ);
2627 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE);
2628 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC);
2629 }
2630 
2631 static void ept_misconfig_at_level(int level, unsigned long clear,
2632 				   unsigned long set)
2633 {
2634 	ept_misconfig_at_level_mkhuge(false, level, clear, set);
2635 	if (ept_huge_pages_supported(level))
2636 		ept_misconfig_at_level_mkhuge(true, level, clear, set);
2637 }
2638 
2639 static void ept_misconfig(unsigned long clear, unsigned long set)
2640 {
2641 	ept_misconfig_at_level(1, clear, set);
2642 	ept_misconfig_at_level(2, clear, set);
2643 	ept_misconfig_at_level(3, clear, set);
2644 	ept_misconfig_at_level(4, clear, set);
2645 }
2646 
2647 static void ept_access_misconfig(unsigned long access)
2648 {
2649 	ept_misconfig(EPT_PRESENT, access);
2650 }
2651 
2652 static void ept_reserved_bit_at_level_nohuge(int level, int bit)
2653 {
2654 	/* Setting the bit causes a misconfig. */
2655 	ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit);
2656 
2657 	/* Making the entry non-present turns reserved bits into ignored. */
2658 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2659 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2660 }
2661 
2662 static void ept_reserved_bit_at_level_huge(int level, int bit)
2663 {
2664 	/* Setting the bit causes a misconfig. */
2665 	ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit);
2666 
2667 	/* Making the entry non-present turns reserved bits into ignored. */
2668 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2669 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2670 }
2671 
2672 static void ept_reserved_bit_at_level(int level, int bit)
2673 {
2674 	/* Setting the bit causes a misconfig. */
2675 	ept_misconfig_at_level(level, 0, 1ul << bit);
2676 
2677 	/* Making the entry non-present turns reserved bits into ignored. */
2678 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2679 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2680 }
2681 
2682 static void ept_reserved_bit(int bit)
2683 {
2684 	ept_reserved_bit_at_level(1, bit);
2685 	ept_reserved_bit_at_level(2, bit);
2686 	ept_reserved_bit_at_level(3, bit);
2687 	ept_reserved_bit_at_level(4, bit);
2688 }
2689 
2690 #define PAGE_2M_ORDER 9
2691 #define PAGE_1G_ORDER 18
2692 
2693 static void *get_1g_page(void)
2694 {
2695 	static void *alloc;
2696 
2697 	if (!alloc)
2698 		alloc = alloc_pages(PAGE_1G_ORDER);
2699 	return alloc;
2700 }
2701 
2702 static void ept_access_test_teardown(void *unused)
2703 {
2704 	/* Exit the guest cleanly. */
2705 	do_ept_access_op(OP_EXIT);
2706 }
2707 
2708 static void ept_access_test_guest(void)
2709 {
2710 	struct ept_access_test_data *data = &ept_access_test_data;
2711 	int (*code)(void) = (int (*)(void)) &data->gva[1];
2712 
2713 	while (true) {
2714 		switch (data->op) {
2715 		case OP_READ:
2716 			TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1);
2717 			break;
2718 		case OP_WRITE:
2719 			*data->gva = MAGIC_VAL_2;
2720 			TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2);
2721 			*data->gva = MAGIC_VAL_1;
2722 			break;
2723 		case OP_EXEC:
2724 			TEST_ASSERT_EQ(42, code());
2725 			break;
2726 		case OP_FLUSH_TLB:
2727 			write_cr3(read_cr3());
2728 			break;
2729 		case OP_EXIT:
2730 			return;
2731 		default:
2732 			TEST_ASSERT_MSG(false, "Unknown op %d", data->op);
2733 		}
2734 		vmcall();
2735 	}
2736 }
2737 
2738 static void ept_access_test_setup(void)
2739 {
2740 	struct ept_access_test_data *data = &ept_access_test_data;
2741 	unsigned long npages = 1ul << PAGE_1G_ORDER;
2742 	unsigned long size = npages * PAGE_SIZE;
2743 	unsigned long *page_table = current_page_table();
2744 	unsigned long pte;
2745 
2746 	if (setup_ept(false))
2747 		test_skip("EPT not supported");
2748 
2749 	/* We use data->gpa = 1 << 39 so that test data has a separate pml4 entry */
2750 	if (cpuid_maxphyaddr() < 40)
2751 		test_skip("Test needs MAXPHYADDR >= 40");
2752 
2753 	test_set_guest(ept_access_test_guest);
2754 	test_add_teardown(ept_access_test_teardown, NULL);
2755 
2756 	data->hva = get_1g_page();
2757 	TEST_ASSERT(data->hva);
2758 	data->hpa = virt_to_phys(data->hva);
2759 
2760 	data->gpa = 1ul << 39;
2761 	data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2),
2762 				   size);
2763 	TEST_ASSERT(!any_present_pages(page_table, data->gva, size));
2764 	install_pages(page_table, data->gpa, size, data->gva);
2765 
2766 	/*
2767 	 * Make sure nothing's mapped here so the tests that screw with the
2768 	 * pml4 entry don't inadvertently break something.
2769 	 */
2770 	TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0);
2771 	TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0);
2772 	install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT);
2773 
2774 	data->hva[0] = MAGIC_VAL_1;
2775 	memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start);
2776 }
2777 
2778 static void ept_access_test_not_present(void)
2779 {
2780 	ept_access_test_setup();
2781 	/* --- */
2782 	ept_access_violation(0, OP_READ, EPT_VLT_RD);
2783 	ept_access_violation(0, OP_WRITE, EPT_VLT_WR);
2784 	ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH);
2785 }
2786 
2787 static void ept_access_test_read_only(void)
2788 {
2789 	ept_access_test_setup();
2790 
2791 	/* r-- */
2792 	ept_access_allowed(EPT_RA, OP_READ);
2793 	ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD);
2794 	ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD);
2795 }
2796 
2797 static void ept_access_test_write_only(void)
2798 {
2799 	ept_access_test_setup();
2800 	/* -w- */
2801 	ept_access_misconfig(EPT_WA);
2802 }
2803 
2804 static void ept_access_test_read_write(void)
2805 {
2806 	ept_access_test_setup();
2807 	/* rw- */
2808 	ept_access_allowed(EPT_RA | EPT_WA, OP_READ);
2809 	ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE);
2810 	ept_access_violation(EPT_RA | EPT_WA, OP_EXEC,
2811 			   EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR);
2812 }
2813 
2814 
2815 static void ept_access_test_execute_only(void)
2816 {
2817 	ept_access_test_setup();
2818 	/* --x */
2819 	if (ept_execute_only_supported()) {
2820 		ept_access_violation(EPT_EA, OP_READ,
2821 				     EPT_VLT_RD | EPT_VLT_PERM_EX);
2822 		ept_access_violation(EPT_EA, OP_WRITE,
2823 				     EPT_VLT_WR | EPT_VLT_PERM_EX);
2824 		ept_access_allowed(EPT_EA, OP_EXEC);
2825 	} else {
2826 		ept_access_misconfig(EPT_EA);
2827 	}
2828 }
2829 
2830 static void ept_access_test_read_execute(void)
2831 {
2832 	ept_access_test_setup();
2833 	/* r-x */
2834 	ept_access_allowed(EPT_RA | EPT_EA, OP_READ);
2835 	ept_access_violation(EPT_RA | EPT_EA, OP_WRITE,
2836 			   EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX);
2837 	ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC);
2838 }
2839 
2840 static void ept_access_test_write_execute(void)
2841 {
2842 	ept_access_test_setup();
2843 	/* -wx */
2844 	ept_access_misconfig(EPT_WA | EPT_EA);
2845 }
2846 
2847 static void ept_access_test_read_write_execute(void)
2848 {
2849 	ept_access_test_setup();
2850 	/* rwx */
2851 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ);
2852 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE);
2853 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC);
2854 }
2855 
2856 static void ept_access_test_reserved_bits(void)
2857 {
2858 	int i;
2859 	int maxphyaddr;
2860 
2861 	ept_access_test_setup();
2862 
2863 	/* Reserved bits above maxphyaddr. */
2864 	maxphyaddr = cpuid_maxphyaddr();
2865 	for (i = maxphyaddr; i <= 51; i++) {
2866 		report_prefix_pushf("reserved_bit=%d", i);
2867 		ept_reserved_bit(i);
2868 		report_prefix_pop();
2869 	}
2870 
2871 	/* Level-specific reserved bits. */
2872 	ept_reserved_bit_at_level_nohuge(2, 3);
2873 	ept_reserved_bit_at_level_nohuge(2, 4);
2874 	ept_reserved_bit_at_level_nohuge(2, 5);
2875 	ept_reserved_bit_at_level_nohuge(2, 6);
2876 	/* 2M alignment. */
2877 	for (i = 12; i < 20; i++) {
2878 		report_prefix_pushf("reserved_bit=%d", i);
2879 		ept_reserved_bit_at_level_huge(2, i);
2880 		report_prefix_pop();
2881 	}
2882 	ept_reserved_bit_at_level_nohuge(3, 3);
2883 	ept_reserved_bit_at_level_nohuge(3, 4);
2884 	ept_reserved_bit_at_level_nohuge(3, 5);
2885 	ept_reserved_bit_at_level_nohuge(3, 6);
2886 	/* 1G alignment. */
2887 	for (i = 12; i < 29; i++) {
2888 		report_prefix_pushf("reserved_bit=%d", i);
2889 		ept_reserved_bit_at_level_huge(3, i);
2890 		report_prefix_pop();
2891 	}
2892 	ept_reserved_bit_at_level(4, 3);
2893 	ept_reserved_bit_at_level(4, 4);
2894 	ept_reserved_bit_at_level(4, 5);
2895 	ept_reserved_bit_at_level(4, 6);
2896 	ept_reserved_bit_at_level(4, 7);
2897 }
2898 
2899 static void ept_access_test_ignored_bits(void)
2900 {
2901 	ept_access_test_setup();
2902 	/*
2903 	 * Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as
2904 	 * far as translation is concerned even if AD bits are enabled in the
2905 	 * EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution
2906 	 * control is 0.
2907 	 */
2908 	ept_ignored_bit(8);
2909 	ept_ignored_bit(9);
2910 	ept_ignored_bit(10);
2911 	ept_ignored_bit(11);
2912 	ept_ignored_bit(52);
2913 	ept_ignored_bit(53);
2914 	ept_ignored_bit(54);
2915 	ept_ignored_bit(55);
2916 	ept_ignored_bit(56);
2917 	ept_ignored_bit(57);
2918 	ept_ignored_bit(58);
2919 	ept_ignored_bit(59);
2920 	ept_ignored_bit(60);
2921 	ept_ignored_bit(61);
2922 	ept_ignored_bit(62);
2923 	ept_ignored_bit(63);
2924 }
2925 
2926 static void ept_access_test_paddr_not_present_ad_disabled(void)
2927 {
2928 	ept_access_test_setup();
2929 	ept_disable_ad_bits();
2930 
2931 	ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD);
2932 	ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD);
2933 	ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD);
2934 }
2935 
2936 static void ept_access_test_paddr_not_present_ad_enabled(void)
2937 {
2938 	u64 qual = EPT_VLT_RD | EPT_VLT_WR;
2939 
2940 	ept_access_test_setup();
2941 	ept_enable_ad_bits_or_skip_test();
2942 
2943 	ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual);
2944 	ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual);
2945 	ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual);
2946 }
2947 
2948 static void ept_access_test_paddr_read_only_ad_disabled(void)
2949 {
2950 	/*
2951 	 * When EPT AD bits are disabled, all accesses to guest paging
2952 	 * structures are reported separately as a read and (after
2953 	 * translation of the GPA to host physical address) a read+write
2954 	 * if the A/D bits have to be set.
2955 	 */
2956 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
2957 
2958 	ept_access_test_setup();
2959 	ept_disable_ad_bits();
2960 
2961 	/* Can't update A bit, so all accesses fail. */
2962 	ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
2963 	ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
2964 	ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
2965 	/* AD bits disabled, so only writes try to update the D bit. */
2966 	ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ);
2967 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
2968 	ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC);
2969 	/* Both A and D already set, so read-only is OK. */
2970 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ);
2971 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE);
2972 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC);
2973 }
2974 
2975 static void ept_access_test_paddr_read_only_ad_enabled(void)
2976 {
2977 	/*
2978 	 * When EPT AD bits are enabled, all accesses to guest paging
2979 	 * structures are considered writes as far as EPT translation
2980 	 * is concerned.
2981 	 */
2982 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
2983 
2984 	ept_access_test_setup();
2985 	ept_enable_ad_bits_or_skip_test();
2986 
2987 	ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
2988 	ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
2989 	ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
2990 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual);
2991 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
2992 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual);
2993 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual);
2994 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual);
2995 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual);
2996 }
2997 
2998 static void ept_access_test_paddr_read_write(void)
2999 {
3000 	ept_access_test_setup();
3001 	/* Read-write access to paging structure. */
3002 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ);
3003 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE);
3004 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC);
3005 }
3006 
3007 static void ept_access_test_paddr_read_write_execute(void)
3008 {
3009 	ept_access_test_setup();
3010 	/* RWX access to paging structure. */
3011 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ);
3012 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE);
3013 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC);
3014 }
3015 
3016 static void ept_access_test_paddr_read_execute_ad_disabled(void)
3017 {
3018   	/*
3019 	 * When EPT AD bits are disabled, all accesses to guest paging
3020 	 * structures are reported separately as a read and (after
3021 	 * translation of the GPA to host physical address) a read+write
3022 	 * if the A/D bits have to be set.
3023 	 */
3024 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
3025 
3026 	ept_access_test_setup();
3027 	ept_disable_ad_bits();
3028 
3029 	/* Can't update A bit, so all accesses fail. */
3030 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
3031 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
3032 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
3033 	/* AD bits disabled, so only writes try to update the D bit. */
3034 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ);
3035 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
3036 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC);
3037 	/* Both A and D already set, so read-only is OK. */
3038 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ);
3039 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE);
3040 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC);
3041 }
3042 
3043 static void ept_access_test_paddr_read_execute_ad_enabled(void)
3044 {
3045 	/*
3046 	 * When EPT AD bits are enabled, all accesses to guest paging
3047 	 * structures are considered writes as far as EPT translation
3048 	 * is concerned.
3049 	 */
3050 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
3051 
3052 	ept_access_test_setup();
3053 	ept_enable_ad_bits_or_skip_test();
3054 
3055 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
3056 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
3057 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
3058 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual);
3059 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
3060 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual);
3061 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual);
3062 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual);
3063 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual);
3064 }
3065 
3066 static void ept_access_test_paddr_not_present_page_fault(void)
3067 {
3068 	ept_access_test_setup();
3069 	/*
3070 	 * TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is
3071 	 * page is read-only in EPT but GVA is also mapped read only in PT.
3072 	 * Thus guest page fault before host takes EPT violation for trying to
3073 	 * update A bit.
3074 	 */
3075 }
3076 
3077 static void ept_access_test_force_2m_page(void)
3078 {
3079 	ept_access_test_setup();
3080 
3081 	TEST_ASSERT_EQ(ept_2m_supported(), true);
3082 	ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ);
3083 	ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE,
3084 				      EPT_VLT_WR | EPT_VLT_PERM_RD |
3085 				      EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
3086 	ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA);
3087 }
3088 
3089 static bool invvpid_valid(u64 type, u64 vpid, u64 gla)
3090 {
3091 	if (!is_invvpid_type_supported(type))
3092 		return false;
3093 
3094 	if (vpid >> 16)
3095 		return false;
3096 
3097 	if (type != INVVPID_ALL && !vpid)
3098 		return false;
3099 
3100 	if (type == INVVPID_ADDR && !is_canonical(gla))
3101 		return false;
3102 
3103 	return true;
3104 }
3105 
3106 static void try_invvpid(u64 type, u64 vpid, u64 gla)
3107 {
3108 	int rc;
3109 	bool valid = invvpid_valid(type, vpid, gla);
3110 	u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT
3111 		: VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID;
3112 	/*
3113 	 * Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so
3114 	 * that we can tell if it is updated by INVVPID.
3115 	 */
3116 	vmcs_read(~0);
3117 	rc = __invvpid(type, vpid, gla);
3118 	report(!rc == valid, "INVVPID type %ld VPID %lx GLA %lx %s", type,
3119 	       vpid, gla,
3120 	       valid ? "passes" : "fails");
3121 	report(vmcs_read(VMX_INST_ERROR) == expected,
3122 	       "After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)",
3123 	       rc ? "failed" : "successful",
3124 	       expected, vmcs_read(VMX_INST_ERROR));
3125 }
3126 
3127 static inline unsigned long get_first_supported_invvpid_type(void)
3128 {
3129 	u64 type = ffs(ept_vpid.val >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
3130 
3131 	__TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
3132 	return type;
3133 }
3134 
3135 static void ds_invvpid(void *data)
3136 {
3137 	asm volatile("invvpid %0, %1"
3138 		     :
3139 		     : "m"(*(struct invvpid_operand *)data),
3140 		       "r"(get_first_supported_invvpid_type()));
3141 }
3142 
3143 /*
3144  * The SS override is ignored in 64-bit mode, so we use an addressing
3145  * mode with %rsp as the base register to generate an implicit SS
3146  * reference.
3147  */
3148 static void ss_invvpid(void *data)
3149 {
3150 	asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1"
3151 		     : "+r"(data)
3152 		     : "r"(get_first_supported_invvpid_type()));
3153 }
3154 
3155 static void invvpid_test_gp(void)
3156 {
3157 	bool fault;
3158 
3159 	fault = test_for_exception(GP_VECTOR, &ds_invvpid,
3160 				   (void *)NONCANONICAL);
3161 	report(fault, "INVVPID with non-canonical DS operand raises #GP");
3162 }
3163 
3164 static void invvpid_test_ss(void)
3165 {
3166 	bool fault;
3167 
3168 	fault = test_for_exception(SS_VECTOR, &ss_invvpid,
3169 				   (void *)NONCANONICAL);
3170 	report(fault, "INVVPID with non-canonical SS operand raises #SS");
3171 }
3172 
3173 static void invvpid_test_pf(void)
3174 {
3175 	void *vpage = alloc_vpage();
3176 	bool fault;
3177 
3178 	fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage);
3179 	report(fault, "INVVPID with unmapped operand raises #PF");
3180 }
3181 
3182 static void try_compat_invvpid(void *unused)
3183 {
3184 	struct far_pointer32 fp = {
3185 		.offset = (uintptr_t)&&invvpid,
3186 		.selector = KERNEL_CS32,
3187 	};
3188 	uintptr_t rsp;
3189 
3190 	asm volatile ("mov %%rsp, %0" : "=r"(rsp));
3191 
3192 	TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid,
3193 			"Code address too high.");
3194 	TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high.");
3195 
3196 	asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid);
3197 	return;
3198 invvpid:
3199 	asm volatile (".code32;"
3200 		      "invvpid (%eax), %eax;"
3201 		      "lret;"
3202 		      ".code64");
3203 	__builtin_unreachable();
3204 }
3205 
3206 static void invvpid_test_compatibility_mode(void)
3207 {
3208 	bool fault;
3209 
3210 	fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL);
3211 	report(fault, "Compatibility mode INVVPID raises #UD");
3212 }
3213 
3214 static void invvpid_test_not_in_vmx_operation(void)
3215 {
3216 	bool fault;
3217 
3218 	TEST_ASSERT(!vmx_off());
3219 	fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL);
3220 	report(fault, "INVVPID outside of VMX operation raises #UD");
3221 	TEST_ASSERT(!vmx_on());
3222 }
3223 
3224 /*
3225  * This does not test real-address mode, virtual-8086 mode, protected mode,
3226  * or CPL > 0.
3227  */
3228 static void invvpid_test(void)
3229 {
3230 	int i;
3231 	unsigned types = 0;
3232 	unsigned type;
3233 
3234 	if (!is_vpid_supported())
3235 		test_skip("VPID not supported");
3236 
3237 	if (!is_invvpid_supported())
3238 		test_skip("INVVPID not supported.\n");
3239 
3240 	if (is_invvpid_type_supported(INVVPID_ADDR))
3241 		types |= 1u << INVVPID_ADDR;
3242 	if (is_invvpid_type_supported(INVVPID_CONTEXT_GLOBAL))
3243 		types |= 1u << INVVPID_CONTEXT_GLOBAL;
3244 	if (is_invvpid_type_supported(INVVPID_ALL))
3245 		types |= 1u << INVVPID_ALL;
3246 	if (is_invvpid_type_supported(INVVPID_CONTEXT_LOCAL))
3247 		types |= 1u << INVVPID_CONTEXT_LOCAL;
3248 
3249 	if (!types)
3250 		test_skip("No INVVPID types supported.\n");
3251 
3252 	for (i = -127; i < 128; i++)
3253 		try_invvpid(i, 0xffff, 0);
3254 
3255 	/*
3256 	 * VPID must not be more than 16 bits.
3257 	 */
3258 	for (i = 0; i < 64; i++)
3259 		for (type = 0; type < 4; type++)
3260 			if (types & (1u << type))
3261 				try_invvpid(type, 1ul << i, 0);
3262 
3263 	/*
3264 	 * VPID must not be zero, except for "all contexts."
3265 	 */
3266 	for (type = 0; type < 4; type++)
3267 		if (types & (1u << type))
3268 			try_invvpid(type, 0, 0);
3269 
3270 	/*
3271 	 * The gla operand is only validated for single-address INVVPID.
3272 	 */
3273 	if (types & (1u << INVVPID_ADDR))
3274 		try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL);
3275 
3276 	invvpid_test_gp();
3277 	invvpid_test_ss();
3278 	invvpid_test_pf();
3279 	invvpid_test_compatibility_mode();
3280 	invvpid_test_not_in_vmx_operation();
3281 }
3282 
3283 /*
3284  * Test for early VMLAUNCH failure. Returns true if VMLAUNCH makes it
3285  * at least as far as the guest-state checks. Returns false if the
3286  * VMLAUNCH fails early and execution falls through to the next
3287  * instruction.
3288  */
3289 static bool vmlaunch_succeeds(void)
3290 {
3291 	u32 exit_reason;
3292 
3293 	/*
3294 	 * Indirectly set VMX_INST_ERR to 12 ("VMREAD/VMWRITE from/to
3295 	 * unsupported VMCS component"). The caller can then check
3296 	 * to see if a failed VM-entry sets VMX_INST_ERR as expected.
3297 	 */
3298 	vmcs_write(~0u, 0);
3299 
3300 	vmcs_write(HOST_RIP, (uintptr_t)&&success);
3301 	__asm__ __volatile__ goto ("vmwrite %%rsp, %0; vmlaunch"
3302 				   :
3303 				   : "r" ((u64)HOST_RSP)
3304 				   : "cc", "memory"
3305 				   : success);
3306 	return false;
3307 success:
3308 	exit_reason = vmcs_read(EXI_REASON);
3309 	TEST_ASSERT(exit_reason == (VMX_FAIL_STATE | VMX_ENTRY_FAILURE) ||
3310 		    exit_reason == (VMX_FAIL_MSR | VMX_ENTRY_FAILURE));
3311 	return true;
3312 }
3313 
3314 /*
3315  * Try to launch the current VMCS.
3316  */
3317 static void test_vmx_vmlaunch(u32 xerror)
3318 {
3319 	bool success = vmlaunch_succeeds();
3320 	u32 vmx_inst_err;
3321 
3322 	report(success == !xerror, "vmlaunch %s",
3323 	       !xerror ? "succeeds" : "fails");
3324 	if (!success && xerror) {
3325 		vmx_inst_err = vmcs_read(VMX_INST_ERROR);
3326 		report(vmx_inst_err == xerror,
3327 		       "VMX inst error is %d (actual %d)", xerror,
3328 		       vmx_inst_err);
3329 	}
3330 }
3331 
3332 /*
3333  * Try to launch the current VMCS, and expect one of two possible
3334  * errors (or success) codes.
3335  */
3336 static void test_vmx_vmlaunch2(u32 xerror1, u32 xerror2)
3337 {
3338 	bool success = vmlaunch_succeeds();
3339 	u32 vmx_inst_err;
3340 
3341 	if (!xerror1 == !xerror2)
3342 		report(success == !xerror1, "vmlaunch %s",
3343 		       !xerror1 ? "succeeds" : "fails");
3344 
3345 	if (!success && (xerror1 || xerror2)) {
3346 		vmx_inst_err = vmcs_read(VMX_INST_ERROR);
3347 		report(vmx_inst_err == xerror1 || vmx_inst_err == xerror2,
3348 		       "VMX inst error is %d or %d (actual %d)", xerror1,
3349 		       xerror2, vmx_inst_err);
3350 	}
3351 }
3352 
3353 static void test_vmx_invalid_controls(void)
3354 {
3355 	test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3356 }
3357 
3358 static void test_vmx_valid_controls(void)
3359 {
3360 	test_vmx_vmlaunch(0);
3361 }
3362 
3363 /*
3364  * Test a particular value of a VM-execution control bit, if the value
3365  * is required or if the value is zero.
3366  */
3367 static void test_rsvd_ctl_bit_value(const char *name, union vmx_ctrl_msr msr,
3368 				    enum Encoding encoding, unsigned bit,
3369 				    unsigned val)
3370 {
3371 	u32 mask = 1u << bit;
3372 	bool expected;
3373 	u32 controls;
3374 
3375 	if (msr.set & mask)
3376 		TEST_ASSERT(msr.clr & mask);
3377 
3378 	/*
3379 	 * We can't arbitrarily turn on a control bit, because it may
3380 	 * introduce dependencies on other VMCS fields. So, we only
3381 	 * test turning on bits that have a required setting.
3382 	 */
3383 	if (val && (msr.clr & mask) && !(msr.set & mask))
3384 		return;
3385 
3386 	report_prefix_pushf("%s %s bit %d",
3387 			    val ? "Set" : "Clear", name, bit);
3388 
3389 	controls = vmcs_read(encoding);
3390 	if (val) {
3391 		vmcs_write(encoding, msr.set | mask);
3392 		expected = (msr.clr & mask);
3393 	} else {
3394 		vmcs_write(encoding, msr.set & ~mask);
3395 		expected = !(msr.set & mask);
3396 	}
3397 	if (expected)
3398 		test_vmx_valid_controls();
3399 	else
3400 		test_vmx_invalid_controls();
3401 	vmcs_write(encoding, controls);
3402 	report_prefix_pop();
3403 }
3404 
3405 /*
3406  * Test reserved values of a VM-execution control bit, based on the
3407  * allowed bit settings from the corresponding VMX capability MSR.
3408  */
3409 static void test_rsvd_ctl_bit(const char *name, union vmx_ctrl_msr msr,
3410 			      enum Encoding encoding, unsigned bit)
3411 {
3412 	test_rsvd_ctl_bit_value(name, msr, encoding, bit, 0);
3413 	test_rsvd_ctl_bit_value(name, msr, encoding, bit, 1);
3414 }
3415 
3416 /*
3417  * Reserved bits in the pin-based VM-execution controls must be set
3418  * properly. Software may consult the VMX capability MSRs to determine
3419  * the proper settings.
3420  * [Intel SDM]
3421  */
3422 static void test_pin_based_ctls(void)
3423 {
3424 	unsigned bit;
3425 
3426 	printf("%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PIN" :
3427 	       "MSR_IA32_VMX_PINBASED_CTLS", ctrl_pin_rev.val);
3428 	for (bit = 0; bit < 32; bit++)
3429 		test_rsvd_ctl_bit("pin-based controls",
3430 				  ctrl_pin_rev, PIN_CONTROLS, bit);
3431 }
3432 
3433 /*
3434  * Reserved bits in the primary processor-based VM-execution controls
3435  * must be set properly. Software may consult the VMX capability MSRs
3436  * to determine the proper settings.
3437  * [Intel SDM]
3438  */
3439 static void test_primary_processor_based_ctls(void)
3440 {
3441 	unsigned bit;
3442 
3443 	printf("\n%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PROC" :
3444 	       "MSR_IA32_VMX_PROCBASED_CTLS", ctrl_cpu_rev[0].val);
3445 	for (bit = 0; bit < 32; bit++)
3446 		test_rsvd_ctl_bit("primary processor-based controls",
3447 				  ctrl_cpu_rev[0], CPU_EXEC_CTRL0, bit);
3448 }
3449 
3450 /*
3451  * If the "activate secondary controls" primary processor-based
3452  * VM-execution control is 1, reserved bits in the secondary
3453  * processor-based VM-execution controls must be cleared. Software may
3454  * consult the VMX capability MSRs to determine which bits are
3455  * reserved.
3456  * If the "activate secondary controls" primary processor-based
3457  * VM-execution control is 0 (or if the processor does not support the
3458  * 1-setting of that control), no checks are performed on the
3459  * secondary processor-based VM-execution controls.
3460  * [Intel SDM]
3461  */
3462 static void test_secondary_processor_based_ctls(void)
3463 {
3464 	u32 primary;
3465 	u32 secondary;
3466 	unsigned bit;
3467 
3468 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY))
3469 		return;
3470 
3471 	primary = vmcs_read(CPU_EXEC_CTRL0);
3472 	secondary = vmcs_read(CPU_EXEC_CTRL1);
3473 
3474 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3475 	printf("\nMSR_IA32_VMX_PROCBASED_CTLS2: %lx\n", ctrl_cpu_rev[1].val);
3476 	for (bit = 0; bit < 32; bit++)
3477 		test_rsvd_ctl_bit("secondary processor-based controls",
3478 				  ctrl_cpu_rev[1], CPU_EXEC_CTRL1, bit);
3479 
3480 	/*
3481 	 * When the "activate secondary controls" VM-execution control
3482 	 * is clear, there are no checks on the secondary controls.
3483 	 */
3484 	vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
3485 	vmcs_write(CPU_EXEC_CTRL1, ~0);
3486 	report(vmlaunch_succeeds(),
3487 	       "Secondary processor-based controls ignored");
3488 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3489 	vmcs_write(CPU_EXEC_CTRL0, primary);
3490 }
3491 
3492 static void try_cr3_target_count(unsigned i, unsigned max)
3493 {
3494 	report_prefix_pushf("CR3 target count 0x%x", i);
3495 	vmcs_write(CR3_TARGET_COUNT, i);
3496 	if (i <= max)
3497 		test_vmx_valid_controls();
3498 	else
3499 		test_vmx_invalid_controls();
3500 	report_prefix_pop();
3501 }
3502 
3503 /*
3504  * The CR3-target count must not be greater than 4. Future processors
3505  * may support a different number of CR3-target values. Software
3506  * should read the VMX capability MSR IA32_VMX_MISC to determine the
3507  * number of values supported.
3508  * [Intel SDM]
3509  */
3510 static void test_cr3_targets(void)
3511 {
3512 	unsigned supported_targets = (rdmsr(MSR_IA32_VMX_MISC) >> 16) & 0x1ff;
3513 	u32 cr3_targets = vmcs_read(CR3_TARGET_COUNT);
3514 	unsigned i;
3515 
3516 	printf("\nSupported CR3 targets: %d\n", supported_targets);
3517 	TEST_ASSERT(supported_targets <= 256);
3518 
3519 	try_cr3_target_count(-1u, supported_targets);
3520 	try_cr3_target_count(0x80000000, supported_targets);
3521 	try_cr3_target_count(0x7fffffff, supported_targets);
3522 	for (i = 0; i <= supported_targets + 1; i++)
3523 		try_cr3_target_count(i, supported_targets);
3524 	vmcs_write(CR3_TARGET_COUNT, cr3_targets);
3525 
3526 	/* VMWRITE to nonexistent target fields should fail. */
3527 	for (i = supported_targets; i < 256; i++)
3528 		TEST_ASSERT(vmcs_write(CR3_TARGET_0 + i*2, 0));
3529 }
3530 
3531 /*
3532  * Test a particular address setting in the VMCS
3533  */
3534 static void test_vmcs_addr(const char *name,
3535 			   enum Encoding encoding,
3536 			   u64 align,
3537 			   bool ignored,
3538 			   bool skip_beyond_mapped_ram,
3539 			   u64 addr)
3540 {
3541 	report_prefix_pushf("%s = %lx", name, addr);
3542 	vmcs_write(encoding, addr);
3543 	if (skip_beyond_mapped_ram &&
3544 	    addr > fwcfg_get_u64(FW_CFG_RAM_SIZE) - align &&
3545 	    addr < (1ul << cpuid_maxphyaddr()))
3546 		printf("Skipping physical address beyond mapped RAM\n");
3547 	else if (ignored || (IS_ALIGNED(addr, align) &&
3548 	    addr < (1ul << cpuid_maxphyaddr())))
3549 		test_vmx_valid_controls();
3550 	else
3551 		test_vmx_invalid_controls();
3552 	report_prefix_pop();
3553 }
3554 
3555 /*
3556  * Test interesting values for a VMCS address
3557  */
3558 static void test_vmcs_addr_values(const char *name,
3559 				  enum Encoding encoding,
3560 				  u64 align,
3561 				  bool ignored,
3562 				  bool skip_beyond_mapped_ram,
3563 				  u32 bit_start, u32 bit_end)
3564 {
3565 	unsigned i;
3566 	u64 orig_val = vmcs_read(encoding);
3567 
3568 	for (i = bit_start; i <= bit_end; i++)
3569 		test_vmcs_addr(name, encoding, align, ignored,
3570 			       skip_beyond_mapped_ram, 1ul << i);
3571 
3572 	test_vmcs_addr(name, encoding, align, ignored,
3573 		       skip_beyond_mapped_ram, PAGE_SIZE - 1);
3574 	test_vmcs_addr(name, encoding, align, ignored,
3575 		       skip_beyond_mapped_ram, PAGE_SIZE);
3576 	test_vmcs_addr(name, encoding, align, ignored,
3577 		       skip_beyond_mapped_ram,
3578 		      (1ul << cpuid_maxphyaddr()) - PAGE_SIZE);
3579 	test_vmcs_addr(name, encoding, align, ignored,
3580 		       skip_beyond_mapped_ram, -1ul);
3581 
3582 	vmcs_write(encoding, orig_val);
3583 }
3584 
3585 /*
3586  * Test a physical address reference in the VMCS, when the corresponding
3587  * feature is enabled and when the corresponding feature is disabled.
3588  */
3589 static void test_vmcs_addr_reference(u32 control_bit, enum Encoding field,
3590 				     const char *field_name,
3591 				     const char *control_name, u64 align,
3592 				     bool skip_beyond_mapped_ram,
3593 				     bool control_primary)
3594 {
3595 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
3596 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
3597 	u64 page_addr;
3598 
3599 	if (control_primary) {
3600 		if (!(ctrl_cpu_rev[0].clr & control_bit))
3601 			return;
3602 	} else {
3603 		if (!(ctrl_cpu_rev[1].clr & control_bit))
3604 			return;
3605 	}
3606 
3607 	page_addr = vmcs_read(field);
3608 
3609 	report_prefix_pushf("%s enabled", control_name);
3610 	if (control_primary) {
3611 		vmcs_write(CPU_EXEC_CTRL0, primary | control_bit);
3612 	} else {
3613 		vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3614 		vmcs_write(CPU_EXEC_CTRL1, secondary | control_bit);
3615 	}
3616 
3617 	test_vmcs_addr_values(field_name, field, align, false,
3618 			      skip_beyond_mapped_ram, 0, 63);
3619 	report_prefix_pop();
3620 
3621 	report_prefix_pushf("%s disabled", control_name);
3622 	if (control_primary) {
3623 		vmcs_write(CPU_EXEC_CTRL0, primary & ~control_bit);
3624 	} else {
3625 		vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
3626 		vmcs_write(CPU_EXEC_CTRL1, secondary & ~control_bit);
3627 	}
3628 
3629 	test_vmcs_addr_values(field_name, field, align, true, false, 0, 63);
3630 	report_prefix_pop();
3631 
3632 	vmcs_write(field, page_addr);
3633 	vmcs_write(CPU_EXEC_CTRL0, primary);
3634 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3635 }
3636 
3637 /*
3638  * If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of
3639  * each I/O-bitmap address must be 0. Neither address should set any
3640  * bits beyond the processor's physical-address width.
3641  * [Intel SDM]
3642  */
3643 static void test_io_bitmaps(void)
3644 {
3645 	test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_A,
3646 				 "I/O bitmap A", "Use I/O bitmaps",
3647 				 PAGE_SIZE, false, true);
3648 	test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_B,
3649 				 "I/O bitmap B", "Use I/O bitmaps",
3650 				 PAGE_SIZE, false, true);
3651 }
3652 
3653 /*
3654  * If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of
3655  * the MSR-bitmap address must be 0. The address should not set any
3656  * bits beyond the processor's physical-address width.
3657  * [Intel SDM]
3658  */
3659 static void test_msr_bitmap(void)
3660 {
3661 	test_vmcs_addr_reference(CPU_MSR_BITMAP, MSR_BITMAP,
3662 				 "MSR bitmap", "Use MSR bitmaps",
3663 				 PAGE_SIZE, false, true);
3664 }
3665 
3666 /*
3667  * If the "use TPR shadow" VM-execution control is 1, the virtual-APIC
3668  * address must satisfy the following checks:
3669  * - Bits 11:0 of the address must be 0.
3670  * - The address should not set any bits beyond the processor's
3671  *   physical-address width.
3672  * [Intel SDM]
3673  */
3674 static void test_apic_virt_addr(void)
3675 {
3676 	/*
3677 	 * Ensure the processor will never use the virtual-APIC page, since
3678 	 * we will point it to invalid RAM.  Otherwise KVM is puzzled about
3679 	 * what we're trying to achieve and fails vmentry.
3680 	 */
3681 	u32 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0);
3682 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0 | CPU_CR8_LOAD | CPU_CR8_STORE);
3683 	test_vmcs_addr_reference(CPU_TPR_SHADOW, APIC_VIRT_ADDR,
3684 				 "virtual-APIC address", "Use TPR shadow",
3685 				 PAGE_SIZE, false, true);
3686 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0);
3687 }
3688 
3689 /*
3690  * If the "virtualize APIC-accesses" VM-execution control is 1, the
3691  * APIC-access address must satisfy the following checks:
3692  *  - Bits 11:0 of the address must be 0.
3693  *  - The address should not set any bits beyond the processor's
3694  *    physical-address width.
3695  * [Intel SDM]
3696  */
3697 static void test_apic_access_addr(void)
3698 {
3699 	void *apic_access_page = alloc_page();
3700 
3701 	vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_page));
3702 
3703 	test_vmcs_addr_reference(CPU_VIRT_APIC_ACCESSES, APIC_ACCS_ADDR,
3704 				 "APIC-access address",
3705 				 "virtualize APIC-accesses", PAGE_SIZE,
3706 				 true, false);
3707 }
3708 
3709 static bool set_bit_pattern(u8 mask, u32 *secondary)
3710 {
3711 	u8 i;
3712 	bool flag = false;
3713 	u32 test_bits[3] = {
3714 		CPU_VIRT_X2APIC,
3715 		CPU_APIC_REG_VIRT,
3716 		CPU_VINTD
3717 	};
3718 
3719         for (i = 0; i < ARRAY_SIZE(test_bits); i++) {
3720 		if ((mask & (1u << i)) &&
3721 		    (ctrl_cpu_rev[1].clr & test_bits[i])) {
3722 			*secondary |= test_bits[i];
3723 			flag = true;
3724 		}
3725 	}
3726 
3727 	return (flag);
3728 }
3729 
3730 /*
3731  * If the "use TPR shadow" VM-execution control is 0, the following
3732  * VM-execution controls must also be 0:
3733  * 	- virtualize x2APIC mode
3734  *	- APIC-register virtualization
3735  *	- virtual-interrupt delivery
3736  *    [Intel SDM]
3737  *
3738  * 2. If the "virtualize x2APIC mode" VM-execution control is 1, the
3739  *    "virtualize APIC accesses" VM-execution control must be 0.
3740  *    [Intel SDM]
3741  */
3742 static void test_apic_virtual_ctls(void)
3743 {
3744 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3745 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3746 	u32 primary = saved_primary;
3747 	u32 secondary = saved_secondary;
3748 	bool is_ctrl_valid = false;
3749 	char str[10] = "disabled";
3750 	u8 i = 0, j;
3751 
3752 	/*
3753 	 * First test
3754 	 */
3755 	if (!((ctrl_cpu_rev[0].clr & (CPU_SECONDARY | CPU_TPR_SHADOW)) ==
3756 	    (CPU_SECONDARY | CPU_TPR_SHADOW)))
3757 		return;
3758 
3759 	primary |= CPU_SECONDARY;
3760 	primary &= ~CPU_TPR_SHADOW;
3761 	vmcs_write(CPU_EXEC_CTRL0, primary);
3762 
3763 	while (1) {
3764 		for (j = 1; j < 8; j++) {
3765 			secondary &= ~(CPU_VIRT_X2APIC | CPU_APIC_REG_VIRT | CPU_VINTD);
3766 			if (primary & CPU_TPR_SHADOW) {
3767 				is_ctrl_valid = true;
3768 			} else {
3769 				if (! set_bit_pattern(j, &secondary))
3770 					is_ctrl_valid = true;
3771 				else
3772 					is_ctrl_valid = false;
3773 			}
3774 
3775 			vmcs_write(CPU_EXEC_CTRL1, secondary);
3776 			report_prefix_pushf("Use TPR shadow %s, virtualize x2APIC mode %s, APIC-register virtualization %s, virtual-interrupt delivery %s",
3777 				str, (secondary & CPU_VIRT_X2APIC) ? "enabled" : "disabled", (secondary & CPU_APIC_REG_VIRT) ? "enabled" : "disabled", (secondary & CPU_VINTD) ? "enabled" : "disabled");
3778 			if (is_ctrl_valid)
3779 				test_vmx_valid_controls();
3780 			else
3781 				test_vmx_invalid_controls();
3782 			report_prefix_pop();
3783 		}
3784 
3785 		if (i == 1)
3786 			break;
3787 		i++;
3788 
3789 		primary |= CPU_TPR_SHADOW;
3790 		vmcs_write(CPU_EXEC_CTRL0, primary);
3791 		strcpy(str, "enabled");
3792 	}
3793 
3794 	/*
3795 	 * Second test
3796 	 */
3797 	u32 apic_virt_ctls = (CPU_VIRT_X2APIC | CPU_VIRT_APIC_ACCESSES);
3798 
3799 	primary = saved_primary;
3800 	secondary = saved_secondary;
3801 	if (!((ctrl_cpu_rev[1].clr & apic_virt_ctls) == apic_virt_ctls))
3802 		return;
3803 
3804 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3805 	secondary &= ~CPU_VIRT_APIC_ACCESSES;
3806 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_X2APIC);
3807 	report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access disabled");
3808 	test_vmx_valid_controls();
3809 	report_prefix_pop();
3810 
3811 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_APIC_ACCESSES);
3812 	report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access enabled");
3813 	test_vmx_valid_controls();
3814 	report_prefix_pop();
3815 
3816 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_X2APIC);
3817 	report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access enabled");
3818 	test_vmx_invalid_controls();
3819 	report_prefix_pop();
3820 
3821 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_APIC_ACCESSES);
3822 	report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access disabled");
3823 	test_vmx_valid_controls();
3824 	report_prefix_pop();
3825 
3826 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
3827 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
3828 }
3829 
3830 /*
3831  * If the "virtual-interrupt delivery" VM-execution control is 1, the
3832  * "external-interrupt exiting" VM-execution control must be 1.
3833  * [Intel SDM]
3834  */
3835 static void test_virtual_intr_ctls(void)
3836 {
3837 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3838 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3839 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
3840 	u32 primary = saved_primary;
3841 	u32 secondary = saved_secondary;
3842 	u32 pin = saved_pin;
3843 
3844 	if (!((ctrl_cpu_rev[1].clr & CPU_VINTD) &&
3845 	    (ctrl_pin_rev.clr & PIN_EXTINT)))
3846 		return;
3847 
3848 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW);
3849 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VINTD);
3850 	vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT);
3851 	report_prefix_pushf("Virtualize interrupt-delivery disabled; external-interrupt exiting disabled");
3852 	test_vmx_valid_controls();
3853 	report_prefix_pop();
3854 
3855 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VINTD);
3856 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled");
3857 	test_vmx_invalid_controls();
3858 	report_prefix_pop();
3859 
3860 	vmcs_write(PIN_CONTROLS, pin | PIN_EXTINT);
3861 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting enabled");
3862 	test_vmx_valid_controls();
3863 	report_prefix_pop();
3864 
3865 	vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT);
3866 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled");
3867 	test_vmx_invalid_controls();
3868 	report_prefix_pop();
3869 
3870 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
3871 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
3872 	vmcs_write(PIN_CONTROLS, saved_pin);
3873 }
3874 
3875 static void test_pi_desc_addr(u64 addr, bool is_ctrl_valid)
3876 {
3877 	vmcs_write(POSTED_INTR_DESC_ADDR, addr);
3878 	report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-descriptor-address 0x%lx", addr);
3879 	if (is_ctrl_valid)
3880 		test_vmx_valid_controls();
3881 	else
3882 		test_vmx_invalid_controls();
3883 	report_prefix_pop();
3884 }
3885 
3886 /*
3887  * If the "process posted interrupts" VM-execution control is 1, the
3888  * following must be true:
3889  *
3890  *	- The "virtual-interrupt delivery" VM-execution control is 1.
3891  *	- The "acknowledge interrupt on exit" VM-exit control is 1.
3892  *	- The posted-interrupt notification vector has a value in the
3893  *	- range 0 - 255 (bits 15:8 are all 0).
3894  *	- Bits 5:0 of the posted-interrupt descriptor address are all 0.
3895  *	- The posted-interrupt descriptor address does not set any bits
3896  *	  beyond the processor's physical-address width.
3897  * [Intel SDM]
3898  */
3899 static void test_posted_intr(void)
3900 {
3901 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3902 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3903 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
3904 	u32 exit_ctl_saved = vmcs_read(EXI_CONTROLS);
3905 	u32 primary = saved_primary;
3906 	u32 secondary = saved_secondary;
3907 	u32 pin = saved_pin;
3908 	u32 exit_ctl = exit_ctl_saved;
3909 	u16 vec;
3910 	int i;
3911 
3912 	if (!((ctrl_pin_rev.clr & PIN_POST_INTR) &&
3913 	    (ctrl_cpu_rev[1].clr & CPU_VINTD) &&
3914 	    (ctrl_exit_rev.clr & EXI_INTA)))
3915 		return;
3916 
3917 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW);
3918 
3919 	/*
3920 	 * Test virtual-interrupt-delivery and acknowledge-interrupt-on-exit
3921 	 */
3922 	pin |= PIN_POST_INTR;
3923 	vmcs_write(PIN_CONTROLS, pin);
3924 	secondary &= ~CPU_VINTD;
3925 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3926 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled");
3927 	test_vmx_invalid_controls();
3928 	report_prefix_pop();
3929 
3930 	secondary |= CPU_VINTD;
3931 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3932 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled");
3933 	test_vmx_invalid_controls();
3934 	report_prefix_pop();
3935 
3936 	exit_ctl &= ~EXI_INTA;
3937 	vmcs_write(EXI_CONTROLS, exit_ctl);
3938 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit disabled");
3939 	test_vmx_invalid_controls();
3940 	report_prefix_pop();
3941 
3942 	exit_ctl |= EXI_INTA;
3943 	vmcs_write(EXI_CONTROLS, exit_ctl);
3944 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled");
3945 	test_vmx_valid_controls();
3946 	report_prefix_pop();
3947 
3948 	secondary &= ~CPU_VINTD;
3949 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3950 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled; acknowledge-interrupt-on-exit enabled");
3951 	test_vmx_invalid_controls();
3952 	report_prefix_pop();
3953 
3954 	secondary |= CPU_VINTD;
3955 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3956 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled");
3957 	test_vmx_valid_controls();
3958 	report_prefix_pop();
3959 
3960 	/*
3961 	 * Test posted-interrupt notification vector
3962 	 */
3963 	for (i = 0; i < 8; i++) {
3964 		vec = (1ul << i);
3965 		vmcs_write(PINV, vec);
3966 		report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
3967 		test_vmx_valid_controls();
3968 		report_prefix_pop();
3969 	}
3970 	for (i = 8; i < 16; i++) {
3971 		vec = (1ul << i);
3972 		vmcs_write(PINV, vec);
3973 		report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
3974 		test_vmx_invalid_controls();
3975 		report_prefix_pop();
3976 	}
3977 
3978 	vec &= ~(0xff << 8);
3979 	vmcs_write(PINV, vec);
3980 	report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
3981 	test_vmx_valid_controls();
3982 	report_prefix_pop();
3983 
3984 	/*
3985 	 * Test posted-interrupt descriptor address
3986 	 */
3987 	for (i = 0; i < 6; i++) {
3988 		test_pi_desc_addr(1ul << i, false);
3989 	}
3990 
3991 	test_pi_desc_addr(0xf0, false);
3992 	test_pi_desc_addr(0xff, false);
3993 	test_pi_desc_addr(0x0f, false);
3994 	test_pi_desc_addr(0x8000, true);
3995 	test_pi_desc_addr(0x00, true);
3996 	test_pi_desc_addr(0xc000, true);
3997 
3998 	test_vmcs_addr_values("process-posted interrupts",
3999 			       POSTED_INTR_DESC_ADDR, 64,
4000 			       false, false, 0, 63);
4001 
4002 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
4003 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
4004 	vmcs_write(PIN_CONTROLS, saved_pin);
4005 }
4006 
4007 static void test_apic_ctls(void)
4008 {
4009 	test_apic_virt_addr();
4010 	test_apic_access_addr();
4011 	test_apic_virtual_ctls();
4012 	test_virtual_intr_ctls();
4013 	test_posted_intr();
4014 }
4015 
4016 /*
4017  * If the "enable VPID" VM-execution control is 1, the value of the
4018  * of the VPID VM-execution control field must not be 0000H.
4019  * [Intel SDM]
4020  */
4021 static void test_vpid(void)
4022 {
4023 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
4024 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
4025 	u16 vpid = 0x0000;
4026 	int i;
4027 
4028 	if (!is_vpid_supported()) {
4029 		report_skip("%s : Secondary controls and/or VPID not supported", __func__);
4030 		return;
4031 	}
4032 
4033 	vmcs_write(CPU_EXEC_CTRL0, saved_primary | CPU_SECONDARY);
4034 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary & ~CPU_VPID);
4035 	vmcs_write(VPID, vpid);
4036 	report_prefix_pushf("VPID disabled; VPID value %x", vpid);
4037 	test_vmx_valid_controls();
4038 	report_prefix_pop();
4039 
4040 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary | CPU_VPID);
4041 	report_prefix_pushf("VPID enabled; VPID value %x", vpid);
4042 	test_vmx_invalid_controls();
4043 	report_prefix_pop();
4044 
4045 	for (i = 0; i < 16; i++) {
4046 		vpid = (short)1 << i;;
4047 		vmcs_write(VPID, vpid);
4048 		report_prefix_pushf("VPID enabled; VPID value %x", vpid);
4049 		test_vmx_valid_controls();
4050 		report_prefix_pop();
4051 	}
4052 
4053 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
4054 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
4055 }
4056 
4057 static void set_vtpr(unsigned vtpr)
4058 {
4059 	*(u32 *)phys_to_virt(vmcs_read(APIC_VIRT_ADDR) + APIC_TASKPRI) = vtpr;
4060 }
4061 
4062 static void try_tpr_threshold_and_vtpr(unsigned threshold, unsigned vtpr)
4063 {
4064 	bool valid = true;
4065 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4066 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4067 
4068 	if ((primary & CPU_TPR_SHADOW) &&
4069 	    (!(primary & CPU_SECONDARY) ||
4070 	     !(secondary & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES))))
4071 		valid = (threshold & 0xf) <= ((vtpr >> 4) & 0xf);
4072 
4073 	set_vtpr(vtpr);
4074 	report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0x%x",
4075 	    threshold, (vtpr >> 4) & 0xf);
4076 	if (valid)
4077 		test_vmx_valid_controls();
4078 	else
4079 		test_vmx_invalid_controls();
4080 	report_prefix_pop();
4081 }
4082 
4083 static void test_invalid_event_injection(void)
4084 {
4085 	u32 ent_intr_info_save = vmcs_read(ENT_INTR_INFO);
4086 	u32 ent_intr_error_save = vmcs_read(ENT_INTR_ERROR);
4087 	u32 ent_inst_len_save = vmcs_read(ENT_INST_LEN);
4088 	u32 primary_save = vmcs_read(CPU_EXEC_CTRL0);
4089 	u32 secondary_save = vmcs_read(CPU_EXEC_CTRL1);
4090 	u64 guest_cr0_save = vmcs_read(GUEST_CR0);
4091 	u32 ent_intr_info_base = INTR_INFO_VALID_MASK;
4092 	u32 ent_intr_info, ent_intr_err, ent_intr_len;
4093 	u32 cnt;
4094 
4095 	/* Setup */
4096 	report_prefix_push("invalid event injection");
4097 	vmcs_write(ENT_INTR_ERROR, 0x00000000);
4098 	vmcs_write(ENT_INST_LEN, 0x00000001);
4099 
4100 	/* The field's interruption type is not set to a reserved value. */
4101 	ent_intr_info = ent_intr_info_base | INTR_TYPE_RESERVED | DE_VECTOR;
4102 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4103 			    "RESERVED interruption type invalid [-]",
4104 			    ent_intr_info);
4105 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4106 	test_vmx_invalid_controls();
4107 	report_prefix_pop();
4108 
4109 	ent_intr_info = ent_intr_info_base | INTR_TYPE_EXT_INTR |
4110 			DE_VECTOR;
4111 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4112 			    "RESERVED interruption type invalid [+]",
4113 			    ent_intr_info);
4114 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4115 	test_vmx_valid_controls();
4116 	report_prefix_pop();
4117 
4118 	/* If the interruption type is other event, the vector is 0. */
4119 	ent_intr_info = ent_intr_info_base | INTR_TYPE_OTHER_EVENT | DB_VECTOR;
4120 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4121 			    "(OTHER EVENT && vector != 0) invalid [-]",
4122 			    ent_intr_info);
4123 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4124 	test_vmx_invalid_controls();
4125 	report_prefix_pop();
4126 
4127 	/* If the interruption type is NMI, the vector is 2 (negative case). */
4128 	ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | DE_VECTOR;
4129 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4130 			    "(NMI && vector != 2) invalid [-]", ent_intr_info);
4131 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4132 	test_vmx_invalid_controls();
4133 	report_prefix_pop();
4134 
4135 	/* If the interruption type is NMI, the vector is 2 (positive case). */
4136 	ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | NMI_VECTOR;
4137 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4138 			    "(NMI && vector == 2) valid [+]", ent_intr_info);
4139 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4140 	test_vmx_valid_controls();
4141 	report_prefix_pop();
4142 
4143 	/*
4144 	 * If the interruption type
4145 	 * is HW exception, the vector is at most 31.
4146 	 */
4147 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 0x20;
4148 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4149 			    "(HW exception && vector > 31) invalid [-]",
4150 			    ent_intr_info);
4151 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4152 	test_vmx_invalid_controls();
4153 	report_prefix_pop();
4154 
4155 	/*
4156 	 * deliver-error-code is 1 iff either
4157 	 * (a) the "unrestricted guest" VM-execution control is 0
4158 	 * (b) CR0.PE is set.
4159 	 */
4160 
4161 	/* Assert that unrestricted guest is disabled or unsupported */
4162 	assert(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
4163 	       !(secondary_save & CPU_URG));
4164 
4165 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION |
4166 			GP_VECTOR;
4167 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4168 			    "error code <-> (!URG || prot_mode) [-]",
4169 			    ent_intr_info);
4170 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4171 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4172 	test_vmx_invalid_controls();
4173 	report_prefix_pop();
4174 
4175 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4176 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4177 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4178 			    "error code <-> (!URG || prot_mode) [+]",
4179 			    ent_intr_info);
4180 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4181 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4182 	test_vmx_valid_controls();
4183 	report_prefix_pop();
4184 
4185 	if (enable_unrestricted_guest(false))
4186 		goto skip_unrestricted_guest;
4187 
4188 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4189 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4190 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4191 			    "error code <-> (!URG || prot_mode) [-]",
4192 			    ent_intr_info);
4193 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4194 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4195 	test_vmx_invalid_controls();
4196 	report_prefix_pop();
4197 
4198 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION |
4199 			GP_VECTOR;
4200 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4201 			    "error code <-> (!URG || prot_mode) [-]",
4202 			    ent_intr_info);
4203 	vmcs_write(GUEST_CR0, guest_cr0_save | X86_CR0_PE);
4204 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4205 	test_vmx_invalid_controls();
4206 	report_prefix_pop();
4207 
4208 	vmcs_write(CPU_EXEC_CTRL1, secondary_save);
4209 	vmcs_write(CPU_EXEC_CTRL0, primary_save);
4210 
4211 skip_unrestricted_guest:
4212 	vmcs_write(GUEST_CR0, guest_cr0_save);
4213 
4214 	/* deliver-error-code is 1 iff the interruption type is HW exception */
4215 	report_prefix_push("error code <-> HW exception");
4216 	for (cnt = 0; cnt < 8; cnt++) {
4217 		u32 exception_type_mask = cnt << 8;
4218 		u32 deliver_error_code_mask =
4219 			exception_type_mask != INTR_TYPE_HARD_EXCEPTION ?
4220 			INTR_INFO_DELIVER_CODE_MASK : 0;
4221 
4222 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4223 				exception_type_mask | GP_VECTOR;
4224 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4225 				    ent_intr_info);
4226 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4227 		test_vmx_invalid_controls();
4228 		report_prefix_pop();
4229 	}
4230 	report_prefix_pop();
4231 
4232 	/*
4233 	 * deliver-error-code is 1 iff the the vector
4234 	 * indicates an exception that would normally deliver an error code
4235 	 */
4236 	report_prefix_push("error code <-> vector delivers error code");
4237 	for (cnt = 0; cnt < 32; cnt++) {
4238 		bool has_error_code = false;
4239 		u32 deliver_error_code_mask;
4240 
4241 		switch (cnt) {
4242 		case DF_VECTOR:
4243 		case TS_VECTOR:
4244 		case NP_VECTOR:
4245 		case SS_VECTOR:
4246 		case GP_VECTOR:
4247 		case PF_VECTOR:
4248 		case AC_VECTOR:
4249 			has_error_code = true;
4250 		case CP_VECTOR:
4251 			/* Some CPUs have error code and some do not, skip */
4252 			continue;
4253 		}
4254 
4255 		/* Negative case */
4256 		deliver_error_code_mask = has_error_code ?
4257 						0 :
4258 						INTR_INFO_DELIVER_CODE_MASK;
4259 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4260 				INTR_TYPE_HARD_EXCEPTION | cnt;
4261 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4262 				    ent_intr_info);
4263 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4264 		test_vmx_invalid_controls();
4265 		report_prefix_pop();
4266 
4267 		/* Positive case */
4268 		deliver_error_code_mask = has_error_code ?
4269 						INTR_INFO_DELIVER_CODE_MASK :
4270 						0;
4271 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4272 				INTR_TYPE_HARD_EXCEPTION | cnt;
4273 		report_prefix_pushf("VM-entry intr info=0x%x [+]",
4274 				    ent_intr_info);
4275 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4276 		test_vmx_valid_controls();
4277 		report_prefix_pop();
4278 	}
4279 	report_prefix_pop();
4280 
4281 	/* Reserved bits in the field (30:12) are 0. */
4282 	report_prefix_push("reserved bits clear");
4283 	for (cnt = 12; cnt <= 30; cnt++) {
4284 		ent_intr_info = ent_intr_info_base |
4285 				INTR_INFO_DELIVER_CODE_MASK |
4286 				INTR_TYPE_HARD_EXCEPTION | GP_VECTOR |
4287 				(1U << cnt);
4288 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4289 				    ent_intr_info);
4290 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4291 		test_vmx_invalid_controls();
4292 		report_prefix_pop();
4293 	}
4294 	report_prefix_pop();
4295 
4296 	/*
4297 	 * If deliver-error-code is 1
4298 	 * bits 31:16 of the VM-entry exception error-code field are 0.
4299 	 */
4300 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4301 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4302 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4303 			    "VM-entry exception error code[31:16] clear",
4304 			    ent_intr_info);
4305 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4306 	for (cnt = 16; cnt <= 31; cnt++) {
4307 		ent_intr_err = 1U << cnt;
4308 		report_prefix_pushf("VM-entry intr error=0x%x [-]",
4309 				    ent_intr_err);
4310 		vmcs_write(ENT_INTR_ERROR, ent_intr_err);
4311 		test_vmx_invalid_controls();
4312 		report_prefix_pop();
4313 	}
4314 	vmcs_write(ENT_INTR_ERROR, 0x00000000);
4315 	report_prefix_pop();
4316 
4317 	/*
4318 	 * If the interruption type is software interrupt, software exception,
4319 	 * or privileged software exception, the VM-entry instruction-length
4320 	 * field is in the range 0 - 15.
4321 	 */
4322 
4323 	for (cnt = 0; cnt < 3; cnt++) {
4324 		switch (cnt) {
4325 		case 0:
4326 			ent_intr_info = ent_intr_info_base |
4327 					INTR_TYPE_SOFT_INTR;
4328 			break;
4329 		case 1:
4330 			ent_intr_info = ent_intr_info_base |
4331 					INTR_TYPE_SOFT_EXCEPTION;
4332 			break;
4333 		case 2:
4334 			ent_intr_info = ent_intr_info_base |
4335 					INTR_TYPE_PRIV_SW_EXCEPTION;
4336 			break;
4337 		}
4338 		report_prefix_pushf("%s, VM-entry intr info=0x%x",
4339 				    "VM-entry instruction-length check",
4340 				    ent_intr_info);
4341 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4342 
4343 		/* Instruction length set to -1 (0xFFFFFFFF) should fail */
4344 		ent_intr_len = -1;
4345 		report_prefix_pushf("VM-entry intr length = 0x%x [-]",
4346 				    ent_intr_len);
4347 		vmcs_write(ENT_INST_LEN, ent_intr_len);
4348 		test_vmx_invalid_controls();
4349 		report_prefix_pop();
4350 
4351 		/* Instruction length set to 16 should fail */
4352 		ent_intr_len = 0x00000010;
4353 		report_prefix_pushf("VM-entry intr length = 0x%x [-]",
4354 				    ent_intr_len);
4355 		vmcs_write(ENT_INST_LEN, 0x00000010);
4356 		test_vmx_invalid_controls();
4357 		report_prefix_pop();
4358 
4359 		report_prefix_pop();
4360 	}
4361 
4362 	/* Cleanup */
4363 	vmcs_write(ENT_INTR_INFO, ent_intr_info_save);
4364 	vmcs_write(ENT_INTR_ERROR, ent_intr_error_save);
4365 	vmcs_write(ENT_INST_LEN, ent_inst_len_save);
4366 	vmcs_write(CPU_EXEC_CTRL0, primary_save);
4367 	vmcs_write(CPU_EXEC_CTRL1, secondary_save);
4368 	vmcs_write(GUEST_CR0, guest_cr0_save);
4369 	report_prefix_pop();
4370 }
4371 
4372 /*
4373  * Test interesting vTPR values for a given TPR threshold.
4374  */
4375 static void test_vtpr_values(unsigned threshold)
4376 {
4377 	try_tpr_threshold_and_vtpr(threshold, (threshold - 1) << 4);
4378 	try_tpr_threshold_and_vtpr(threshold, threshold << 4);
4379 	try_tpr_threshold_and_vtpr(threshold, (threshold + 1) << 4);
4380 }
4381 
4382 static void try_tpr_threshold(unsigned threshold)
4383 {
4384 	bool valid = true;
4385 
4386 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4387 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4388 
4389 	if ((primary & CPU_TPR_SHADOW) && !((primary & CPU_SECONDARY) &&
4390 	    (secondary & CPU_VINTD)))
4391 		valid = !(threshold >> 4);
4392 
4393 	set_vtpr(-1);
4394 	vmcs_write(TPR_THRESHOLD, threshold);
4395 	report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0xf", threshold);
4396 	if (valid)
4397 		test_vmx_valid_controls();
4398 	else
4399 		test_vmx_invalid_controls();
4400 	report_prefix_pop();
4401 
4402 	if (valid)
4403 		test_vtpr_values(threshold);
4404 }
4405 
4406 /*
4407  * Test interesting TPR threshold values.
4408  */
4409 static void test_tpr_threshold_values(void)
4410 {
4411 	unsigned i;
4412 
4413 	for (i = 0; i < 0x10; i++)
4414 		try_tpr_threshold(i);
4415 	for (i = 4; i < 32; i++)
4416 		try_tpr_threshold(1u << i);
4417 	try_tpr_threshold(-1u);
4418 	try_tpr_threshold(0x7fffffff);
4419 }
4420 
4421 /*
4422  * This test covers the following two VM entry checks:
4423  *
4424  *      i) If the "use TPR shadow" VM-execution control is 1 and the
4425  *         "virtual-interrupt delivery" VM-execution control is 0, bits
4426  *         31:4 of the TPR threshold VM-execution control field must
4427 	   be 0.
4428  *         [Intel SDM]
4429  *
4430  *      ii) If the "use TPR shadow" VM-execution control is 1, the
4431  *          "virtual-interrupt delivery" VM-execution control is 0
4432  *          and the "virtualize APIC accesses" VM-execution control
4433  *          is 0, the value of bits 3:0 of the TPR threshold VM-execution
4434  *          control field must not be greater than the value of bits
4435  *          7:4 of VTPR.
4436  *          [Intel SDM]
4437  */
4438 static void test_tpr_threshold(void)
4439 {
4440 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4441 	u64 apic_virt_addr = vmcs_read(APIC_VIRT_ADDR);
4442 	u64 threshold = vmcs_read(TPR_THRESHOLD);
4443 	void *virtual_apic_page;
4444 
4445 	if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW))
4446 		return;
4447 
4448 	virtual_apic_page = alloc_page();
4449 	memset(virtual_apic_page, 0xff, PAGE_SIZE);
4450 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
4451 
4452 	vmcs_write(CPU_EXEC_CTRL0, primary & ~(CPU_TPR_SHADOW | CPU_SECONDARY));
4453 	report_prefix_pushf("Use TPR shadow disabled, secondary controls disabled");
4454 	test_tpr_threshold_values();
4455 	report_prefix_pop();
4456 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_TPR_SHADOW);
4457 	report_prefix_pushf("Use TPR shadow enabled, secondary controls disabled");
4458 	test_tpr_threshold_values();
4459 	report_prefix_pop();
4460 
4461 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4462 	    (ctrl_cpu_rev[1].clr & (CPU_VINTD  | CPU_VIRT_APIC_ACCESSES))))
4463 		goto out;
4464 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4465 
4466 	if (ctrl_cpu_rev[1].clr & CPU_VINTD) {
4467 		vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD);
4468 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled");
4469 		test_tpr_threshold_values();
4470 		report_prefix_pop();
4471 
4472 		vmcs_write(CPU_EXEC_CTRL0,
4473 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4474 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled");
4475 		test_tpr_threshold_values();
4476 		report_prefix_pop();
4477 	}
4478 
4479 	if (ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES) {
4480 		vmcs_write(CPU_EXEC_CTRL0,
4481 			   vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY);
4482 		vmcs_write(CPU_EXEC_CTRL1, CPU_VIRT_APIC_ACCESSES);
4483 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4484 		test_tpr_threshold_values();
4485 		report_prefix_pop();
4486 
4487 		vmcs_write(CPU_EXEC_CTRL0,
4488 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4489 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4490 		test_tpr_threshold_values();
4491 		report_prefix_pop();
4492 	}
4493 
4494 	if ((ctrl_cpu_rev[1].clr &
4495 	     (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) ==
4496 	    (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) {
4497 		vmcs_write(CPU_EXEC_CTRL0,
4498 			   vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY);
4499 		vmcs_write(CPU_EXEC_CTRL1,
4500 			   CPU_VINTD | CPU_VIRT_APIC_ACCESSES);
4501 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4502 		test_tpr_threshold_values();
4503 		report_prefix_pop();
4504 
4505 		vmcs_write(CPU_EXEC_CTRL0,
4506 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4507 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4508 		test_tpr_threshold_values();
4509 		report_prefix_pop();
4510 	}
4511 
4512 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4513 out:
4514 	vmcs_write(TPR_THRESHOLD, threshold);
4515 	vmcs_write(APIC_VIRT_ADDR, apic_virt_addr);
4516 	vmcs_write(CPU_EXEC_CTRL0, primary);
4517 }
4518 
4519 /*
4520  * This test verifies the following two vmentry checks:
4521  *
4522  *  If the "NMI exiting" VM-execution control is 0, "Virtual NMIs"
4523  *  VM-execution control must be 0.
4524  *  [Intel SDM]
4525  *
4526  *  If the "virtual NMIs" VM-execution control is 0, the "NMI-window
4527  *  exiting" VM-execution control must be 0.
4528  *  [Intel SDM]
4529  */
4530 static void test_nmi_ctrls(void)
4531 {
4532 	u32 pin_ctrls, cpu_ctrls0, test_pin_ctrls, test_cpu_ctrls0;
4533 
4534 	if ((ctrl_pin_rev.clr & (PIN_NMI | PIN_VIRT_NMI)) !=
4535 	    (PIN_NMI | PIN_VIRT_NMI)) {
4536 		report_skip("%s : NMI exiting and/or Virtual NMIs not supported", __func__);
4537 		return;
4538 	}
4539 
4540 	/* Save the controls so that we can restore them after our tests */
4541 	pin_ctrls = vmcs_read(PIN_CONTROLS);
4542 	cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0);
4543 
4544 	test_pin_ctrls = pin_ctrls & ~(PIN_NMI | PIN_VIRT_NMI);
4545 	test_cpu_ctrls0 = cpu_ctrls0 & ~CPU_NMI_WINDOW;
4546 
4547 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4548 	report_prefix_pushf("NMI-exiting disabled, virtual-NMIs disabled");
4549 	test_vmx_valid_controls();
4550 	report_prefix_pop();
4551 
4552 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_VIRT_NMI);
4553 	report_prefix_pushf("NMI-exiting disabled, virtual-NMIs enabled");
4554 	test_vmx_invalid_controls();
4555 	report_prefix_pop();
4556 
4557 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4558 	report_prefix_pushf("NMI-exiting enabled, virtual-NMIs enabled");
4559 	test_vmx_valid_controls();
4560 	report_prefix_pop();
4561 
4562 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_NMI);
4563 	report_prefix_pushf("NMI-exiting enabled, virtual-NMIs disabled");
4564 	test_vmx_valid_controls();
4565 	report_prefix_pop();
4566 
4567 	if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) {
4568 		report_info("NMI-window exiting is not supported, skipping...");
4569 		goto done;
4570 	}
4571 
4572 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4573 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW);
4574 	report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting enabled");
4575 	test_vmx_invalid_controls();
4576 	report_prefix_pop();
4577 
4578 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4579 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0);
4580 	report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting disabled");
4581 	test_vmx_valid_controls();
4582 	report_prefix_pop();
4583 
4584 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4585 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW);
4586 	report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting enabled");
4587 	test_vmx_valid_controls();
4588 	report_prefix_pop();
4589 
4590 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4591 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0);
4592 	report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting disabled");
4593 	test_vmx_valid_controls();
4594 	report_prefix_pop();
4595 
4596 	/* Restore the controls to their original values */
4597 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0);
4598 done:
4599 	vmcs_write(PIN_CONTROLS, pin_ctrls);
4600 }
4601 
4602 static void test_eptp_ad_bit(u64 eptp, bool is_ctrl_valid)
4603 {
4604 	vmcs_write(EPTP, eptp);
4605 	report_prefix_pushf("Enable-EPT enabled; EPT accessed and dirty flag %s",
4606 	    (eptp & EPTP_AD_FLAG) ? "1": "0");
4607 	if (is_ctrl_valid)
4608 		test_vmx_valid_controls();
4609 	else
4610 		test_vmx_invalid_controls();
4611 	report_prefix_pop();
4612 
4613 }
4614 
4615 /*
4616  * 1. If the "enable EPT" VM-execution control is 1, the "EPTP VM-execution"
4617  *    control field must satisfy the following checks:
4618  *
4619  *     - The EPT memory type (bits 2:0) must be a value supported by the
4620  *	 processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR.
4621  *     - Bits 5:3 (1 less than the EPT page-walk length) must indicate a
4622  *	 supported EPT page-walk length.
4623  *     - Bit 6 (enable bit for accessed and dirty flags for EPT) must be
4624  *	 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP MSR is read as 0,
4625  *	 indicating that the processor does not support accessed and dirty
4626  *	 dirty flags for EPT.
4627  *     - Reserved bits 11:7 and 63:N (where N is the processor's
4628  *	 physical-address width) must all be 0.
4629  *
4630  * 2. If the "unrestricted guest" VM-execution control is 1, the
4631  *    "enable EPT" VM-execution control must also be 1.
4632  */
4633 static void test_ept_eptp(void)
4634 {
4635 	u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0);
4636 	u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1);
4637 	u64 eptp_saved = vmcs_read(EPTP);
4638 	u32 primary = primary_saved;
4639 	u32 secondary = secondary_saved;
4640 	u64 eptp = eptp_saved;
4641 	u32 i, maxphysaddr;
4642 	u64 j, resv_bits_mask = 0;
4643 
4644 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4645 	    (ctrl_cpu_rev[1].clr & CPU_EPT))) {
4646 		report_skip("%s : \"CPU secondary\" and/or \"enable EPT\" exec control not supported", __func__);
4647 		return;
4648 	}
4649 
4650 	/* Support for 4-level EPT is mandatory. */
4651 	report(is_4_level_ept_supported(), "4-level EPT support check");
4652 
4653 	primary |= CPU_SECONDARY;
4654 	vmcs_write(CPU_EXEC_CTRL0, primary);
4655 	secondary |= CPU_EPT;
4656 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4657 	eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4658 	    (3ul << EPTP_PG_WALK_LEN_SHIFT);
4659 	vmcs_write(EPTP, eptp);
4660 
4661 	for (i = 0; i < 8; i++) {
4662 		eptp = (eptp & ~EPT_MEM_TYPE_MASK) | i;
4663 		vmcs_write(EPTP, eptp);
4664 		report_prefix_pushf("Enable-EPT enabled; EPT memory type %lu",
4665 		    eptp & EPT_MEM_TYPE_MASK);
4666 		if (is_ept_memtype_supported(i))
4667 			test_vmx_valid_controls();
4668 		else
4669 			test_vmx_invalid_controls();
4670 		report_prefix_pop();
4671 	}
4672 
4673 	eptp = (eptp & ~EPT_MEM_TYPE_MASK) | 6ul;
4674 
4675 	/*
4676 	 * Page walk length (bits 5:3).  Note, the value in VMCS.EPTP "is 1
4677 	 * less than the EPT page-walk length".
4678 	 */
4679 	for (i = 0; i < 8; i++) {
4680 		eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4681 		    (i << EPTP_PG_WALK_LEN_SHIFT);
4682 
4683 		vmcs_write(EPTP, eptp);
4684 		report_prefix_pushf("Enable-EPT enabled; EPT page walk length %lu",
4685 		    eptp & EPTP_PG_WALK_LEN_MASK);
4686 		if (i == 3 || (i == 4 && is_5_level_ept_supported()))
4687 			test_vmx_valid_controls();
4688 		else
4689 			test_vmx_invalid_controls();
4690 		report_prefix_pop();
4691 	}
4692 
4693 	eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4694 	    3ul << EPTP_PG_WALK_LEN_SHIFT;
4695 
4696 	/*
4697 	 * Accessed and dirty flag (bit 6)
4698 	 */
4699 	if (ept_ad_bits_supported()) {
4700 		report_info("Processor supports accessed and dirty flag");
4701 		eptp &= ~EPTP_AD_FLAG;
4702 		test_eptp_ad_bit(eptp, true);
4703 
4704 		eptp |= EPTP_AD_FLAG;
4705 		test_eptp_ad_bit(eptp, true);
4706 	} else {
4707 		report_info("Processor does not supports accessed and dirty flag");
4708 		eptp &= ~EPTP_AD_FLAG;
4709 		test_eptp_ad_bit(eptp, true);
4710 
4711 		eptp |= EPTP_AD_FLAG;
4712 		test_eptp_ad_bit(eptp, false);
4713 	}
4714 
4715 	/*
4716 	 * Reserved bits [11:7] and [63:N]
4717 	 */
4718 	for (i = 0; i < 32; i++) {
4719 		eptp = (eptp &
4720 		    ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)) |
4721 		    (i << EPTP_RESERV_BITS_SHIFT);
4722 		vmcs_write(EPTP, eptp);
4723 		report_prefix_pushf("Enable-EPT enabled; reserved bits [11:7] %lu",
4724 		    (eptp >> EPTP_RESERV_BITS_SHIFT) &
4725 		    EPTP_RESERV_BITS_MASK);
4726 		if (i == 0)
4727 			test_vmx_valid_controls();
4728 		else
4729 			test_vmx_invalid_controls();
4730 		report_prefix_pop();
4731 	}
4732 
4733 	eptp = (eptp & ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT));
4734 
4735 	maxphysaddr = cpuid_maxphyaddr();
4736 	for (i = 0; i < (63 - maxphysaddr + 1); i++) {
4737 		resv_bits_mask |= 1ul << i;
4738 	}
4739 
4740 	for (j = maxphysaddr - 1; j <= 63; j++) {
4741 		eptp = (eptp & ~(resv_bits_mask << maxphysaddr)) |
4742 		    (j < maxphysaddr ? 0 : 1ul << j);
4743 		vmcs_write(EPTP, eptp);
4744 		report_prefix_pushf("Enable-EPT enabled; reserved bits [63:N] %lu",
4745 		    (eptp >> maxphysaddr) & resv_bits_mask);
4746 		if (j < maxphysaddr)
4747 			test_vmx_valid_controls();
4748 		else
4749 			test_vmx_invalid_controls();
4750 		report_prefix_pop();
4751 	}
4752 
4753 	secondary &= ~(CPU_EPT | CPU_URG);
4754 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4755 	report_prefix_pushf("Enable-EPT disabled, unrestricted-guest disabled");
4756 	test_vmx_valid_controls();
4757 	report_prefix_pop();
4758 
4759 	if (!(ctrl_cpu_rev[1].clr & CPU_URG))
4760 		goto skip_unrestricted_guest;
4761 
4762 	secondary |= CPU_URG;
4763 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4764 	report_prefix_pushf("Enable-EPT disabled, unrestricted-guest enabled");
4765 	test_vmx_invalid_controls();
4766 	report_prefix_pop();
4767 
4768 	secondary |= CPU_EPT;
4769 	setup_dummy_ept();
4770 	report_prefix_pushf("Enable-EPT enabled, unrestricted-guest enabled");
4771 	test_vmx_valid_controls();
4772 	report_prefix_pop();
4773 
4774 skip_unrestricted_guest:
4775 	secondary &= ~CPU_URG;
4776 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4777 	report_prefix_pushf("Enable-EPT enabled, unrestricted-guest disabled");
4778 	test_vmx_valid_controls();
4779 	report_prefix_pop();
4780 
4781 	vmcs_write(CPU_EXEC_CTRL0, primary_saved);
4782 	vmcs_write(CPU_EXEC_CTRL1, secondary_saved);
4783 	vmcs_write(EPTP, eptp_saved);
4784 }
4785 
4786 /*
4787  * If the 'enable PML' VM-execution control is 1, the 'enable EPT'
4788  * VM-execution control must also be 1. In addition, the PML address
4789  * must satisfy the following checks:
4790  *
4791  *    * Bits 11:0 of the address must be 0.
4792  *    * The address should not set any bits beyond the processor's
4793  *	physical-address width.
4794  *
4795  *  [Intel SDM]
4796  */
4797 static void test_pml(void)
4798 {
4799 	u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0);
4800 	u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1);
4801 	u32 primary = primary_saved;
4802 	u32 secondary = secondary_saved;
4803 
4804 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4805 	    (ctrl_cpu_rev[1].clr & CPU_EPT) && (ctrl_cpu_rev[1].clr & CPU_PML))) {
4806 		report_skip("%s : \"Secondary execution\" or \"enable EPT\" or \"enable PML\" control not supported", __func__);
4807 		return;
4808 	}
4809 
4810 	primary |= CPU_SECONDARY;
4811 	vmcs_write(CPU_EXEC_CTRL0, primary);
4812 	secondary &= ~(CPU_PML | CPU_EPT);
4813 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4814 	report_prefix_pushf("enable-PML disabled, enable-EPT disabled");
4815 	test_vmx_valid_controls();
4816 	report_prefix_pop();
4817 
4818 	secondary |= CPU_PML;
4819 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4820 	report_prefix_pushf("enable-PML enabled, enable-EPT disabled");
4821 	test_vmx_invalid_controls();
4822 	report_prefix_pop();
4823 
4824 	secondary |= CPU_EPT;
4825 	setup_dummy_ept();
4826 	report_prefix_pushf("enable-PML enabled, enable-EPT enabled");
4827 	test_vmx_valid_controls();
4828 	report_prefix_pop();
4829 
4830 	secondary &= ~CPU_PML;
4831 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4832 	report_prefix_pushf("enable-PML disabled, enable EPT enabled");
4833 	test_vmx_valid_controls();
4834 	report_prefix_pop();
4835 
4836 	test_vmcs_addr_reference(CPU_PML, PMLADDR, "PML address", "PML",
4837 				 PAGE_SIZE, false, false);
4838 
4839 	vmcs_write(CPU_EXEC_CTRL0, primary_saved);
4840 	vmcs_write(CPU_EXEC_CTRL1, secondary_saved);
4841 }
4842 
4843  /*
4844  * If the "activate VMX-preemption timer" VM-execution control is 0, the
4845  * the "save VMX-preemption timer value" VM-exit control must also be 0.
4846  *
4847  *  [Intel SDM]
4848  */
4849 static void test_vmx_preemption_timer(void)
4850 {
4851 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
4852 	u32 saved_exit = vmcs_read(EXI_CONTROLS);
4853 	u32 pin = saved_pin;
4854 	u32 exit = saved_exit;
4855 
4856 	if (!((ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) ||
4857 	    (ctrl_pin_rev.clr & PIN_PREEMPT))) {
4858 		report_skip("%s : \"Save-VMX-preemption-timer\" and/or \"Enable-VMX-preemption-timer\" control not supported", __func__);
4859 		return;
4860 	}
4861 
4862 	pin |= PIN_PREEMPT;
4863 	vmcs_write(PIN_CONTROLS, pin);
4864 	exit &= ~EXI_SAVE_PREEMPT;
4865 	vmcs_write(EXI_CONTROLS, exit);
4866 	report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer disabled");
4867 	test_vmx_valid_controls();
4868 	report_prefix_pop();
4869 
4870 	exit |= EXI_SAVE_PREEMPT;
4871 	vmcs_write(EXI_CONTROLS, exit);
4872 	report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer enabled");
4873 	test_vmx_valid_controls();
4874 	report_prefix_pop();
4875 
4876 	pin &= ~PIN_PREEMPT;
4877 	vmcs_write(PIN_CONTROLS, pin);
4878 	report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer enabled");
4879 	test_vmx_invalid_controls();
4880 	report_prefix_pop();
4881 
4882 	exit &= ~EXI_SAVE_PREEMPT;
4883 	vmcs_write(EXI_CONTROLS, exit);
4884 	report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer disabled");
4885 	test_vmx_valid_controls();
4886 	report_prefix_pop();
4887 
4888 	vmcs_write(PIN_CONTROLS, saved_pin);
4889 	vmcs_write(EXI_CONTROLS, saved_exit);
4890 }
4891 
4892 extern unsigned char test_mtf1;
4893 extern unsigned char test_mtf2;
4894 extern unsigned char test_mtf3;
4895 extern unsigned char test_mtf4;
4896 
4897 static void test_mtf_guest(void)
4898 {
4899 	asm ("vmcall;\n\t"
4900 	     "out %al, $0x80;\n\t"
4901 	     "test_mtf1:\n\t"
4902 	     "vmcall;\n\t"
4903 	     "out %al, $0x80;\n\t"
4904 	     "test_mtf2:\n\t"
4905 	     /*
4906 	      * Prepare for the 'MOV CR3' test. Attempt to induce a
4907 	      * general-protection fault by moving a non-canonical address into
4908 	      * CR3. The 'MOV CR3' instruction does not take an imm64 operand,
4909 	      * so we must MOV the desired value into a register first.
4910 	      *
4911 	      * MOV RAX is done before the VMCALL such that MTF is only enabled
4912 	      * for the instruction under test.
4913 	      */
4914 	     "mov $0xaaaaaaaaaaaaaaaa, %rax;\n\t"
4915 	     "vmcall;\n\t"
4916 	     "mov %rax, %cr3;\n\t"
4917 	     "test_mtf3:\n\t"
4918 	     "vmcall;\n\t"
4919 	     /*
4920 	      * ICEBP/INT1 instruction. Though the instruction is now
4921 	      * documented, don't rely on assemblers enumerating the
4922 	      * instruction. Resort to hand assembly.
4923 	      */
4924 	     ".byte 0xf1;\n\t"
4925 	     "vmcall;\n\t"
4926 	     "test_mtf4:\n\t"
4927 	     "mov $0, %eax;\n\t");
4928 }
4929 
4930 static void test_mtf_gp_handler(struct ex_regs *regs)
4931 {
4932 	regs->rip = (unsigned long) &test_mtf3;
4933 }
4934 
4935 static void test_mtf_db_handler(struct ex_regs *regs)
4936 {
4937 }
4938 
4939 static void enable_mtf(void)
4940 {
4941 	u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
4942 
4943 	vmcs_write(CPU_EXEC_CTRL0, ctrl0 | CPU_MTF);
4944 }
4945 
4946 static void disable_mtf(void)
4947 {
4948 	u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
4949 
4950 	vmcs_write(CPU_EXEC_CTRL0, ctrl0 & ~CPU_MTF);
4951 }
4952 
4953 static void enable_tf(void)
4954 {
4955 	unsigned long rflags = vmcs_read(GUEST_RFLAGS);
4956 
4957 	vmcs_write(GUEST_RFLAGS, rflags | X86_EFLAGS_TF);
4958 }
4959 
4960 static void disable_tf(void)
4961 {
4962 	unsigned long rflags = vmcs_read(GUEST_RFLAGS);
4963 
4964 	vmcs_write(GUEST_RFLAGS, rflags & ~X86_EFLAGS_TF);
4965 }
4966 
4967 static void report_mtf(const char *insn_name, unsigned long exp_rip)
4968 {
4969 	unsigned long rip = vmcs_read(GUEST_RIP);
4970 
4971 	assert_exit_reason(VMX_MTF);
4972 	report(rip == exp_rip, "MTF VM-exit after %s. RIP: 0x%lx (expected 0x%lx)",
4973 	       insn_name, rip, exp_rip);
4974 }
4975 
4976 static void vmx_mtf_test(void)
4977 {
4978 	unsigned long pending_dbg;
4979 	handler old_gp, old_db;
4980 
4981 	if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) {
4982 		report_skip("%s : \"Monitor trap flag\" exec control not supported", __func__);
4983 		return;
4984 	}
4985 
4986 	test_set_guest(test_mtf_guest);
4987 
4988 	/* Expect an MTF VM-exit after OUT instruction */
4989 	enter_guest();
4990 	skip_exit_vmcall();
4991 
4992 	enable_mtf();
4993 	enter_guest();
4994 	report_mtf("OUT", (unsigned long) &test_mtf1);
4995 	disable_mtf();
4996 
4997 	/*
4998 	 * Concurrent #DB trap and MTF on instruction boundary. Expect MTF
4999 	 * VM-exit with populated 'pending debug exceptions' VMCS field.
5000 	 */
5001 	enter_guest();
5002 	skip_exit_vmcall();
5003 
5004 	enable_mtf();
5005 	enable_tf();
5006 
5007 	enter_guest();
5008 	report_mtf("OUT", (unsigned long) &test_mtf2);
5009 	pending_dbg = vmcs_read(GUEST_PENDING_DEBUG);
5010 	report(pending_dbg & DR6_BS,
5011 	       "'pending debug exceptions' field after MTF VM-exit: 0x%lx (expected 0x%lx)",
5012 	       pending_dbg, (unsigned long) DR6_BS);
5013 
5014 	disable_mtf();
5015 	disable_tf();
5016 	vmcs_write(GUEST_PENDING_DEBUG, 0);
5017 
5018 	/*
5019 	 * #GP exception takes priority over MTF. Expect MTF VM-exit with RIP
5020 	 * advanced to first instruction of #GP handler.
5021 	 */
5022 	enter_guest();
5023 	skip_exit_vmcall();
5024 
5025 	old_gp = handle_exception(GP_VECTOR, test_mtf_gp_handler);
5026 
5027 	enable_mtf();
5028 	enter_guest();
5029 	report_mtf("MOV CR3", (unsigned long) get_idt_addr(&boot_idt[GP_VECTOR]));
5030 	disable_mtf();
5031 
5032 	/*
5033 	 * Concurrent MTF and privileged software exception (i.e. ICEBP/INT1).
5034 	 * MTF should follow the delivery of #DB trap, though the SDM doesn't
5035 	 * provide clear indication of the relative priority.
5036 	 */
5037 	enter_guest();
5038 	skip_exit_vmcall();
5039 
5040 	handle_exception(GP_VECTOR, old_gp);
5041 	old_db = handle_exception(DB_VECTOR, test_mtf_db_handler);
5042 
5043 	enable_mtf();
5044 	enter_guest();
5045 	report_mtf("INT1", (unsigned long) get_idt_addr(&boot_idt[DB_VECTOR]));
5046 	disable_mtf();
5047 
5048 	enter_guest();
5049 	skip_exit_vmcall();
5050 	handle_exception(DB_VECTOR, old_db);
5051 	vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | INTR_TYPE_OTHER_EVENT);
5052 	enter_guest();
5053 	report_mtf("injected MTF", (unsigned long) &test_mtf4);
5054 	enter_guest();
5055 }
5056 
5057 extern char vmx_mtf_pdpte_guest_begin;
5058 extern char vmx_mtf_pdpte_guest_end;
5059 
5060 asm("vmx_mtf_pdpte_guest_begin:\n\t"
5061     "mov %cr0, %rax\n\t"    /* save CR0 with PG=1                 */
5062     "vmcall\n\t"            /* on return from this CR0.PG=0       */
5063     "mov %rax, %cr0\n\t"    /* restore CR0.PG=1 to enter PAE mode */
5064     "vmcall\n\t"
5065     "retq\n\t"
5066     "vmx_mtf_pdpte_guest_end:");
5067 
5068 static void vmx_mtf_pdpte_test(void)
5069 {
5070 	void *test_mtf_pdpte_guest;
5071 	pteval_t *pdpt;
5072 	u32 guest_ar_cs;
5073 	u64 guest_efer;
5074 	pteval_t *pte;
5075 	u64 guest_cr0;
5076 	u64 guest_cr3;
5077 	u64 guest_cr4;
5078 	u64 ent_ctls;
5079 	int i;
5080 
5081 	if (setup_ept(false))
5082 		return;
5083 
5084 	if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) {
5085 		report_skip("%s : \"Monitor trap flag\" exec control not supported", __func__);
5086 		return;
5087 	}
5088 
5089 	if (!(ctrl_cpu_rev[1].clr & CPU_URG)) {
5090 		report_skip("%s : \"Unrestricted guest\" exec control not supported", __func__);
5091 		return;
5092 	}
5093 
5094 	vmcs_write(EXC_BITMAP, ~0);
5095 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG);
5096 
5097 	/*
5098 	 * Copy the guest code to an identity-mapped page.
5099 	 */
5100 	test_mtf_pdpte_guest = alloc_page();
5101 	memcpy(test_mtf_pdpte_guest, &vmx_mtf_pdpte_guest_begin,
5102 	       &vmx_mtf_pdpte_guest_end - &vmx_mtf_pdpte_guest_begin);
5103 
5104 	test_set_guest(test_mtf_pdpte_guest);
5105 
5106 	enter_guest();
5107 	skip_exit_vmcall();
5108 
5109 	/*
5110 	 * Put the guest in non-paged 32-bit protected mode, ready to enter
5111 	 * PAE mode when CR0.PG is set. CR4.PAE will already have been set
5112 	 * when the guest started out in long mode.
5113 	 */
5114 	ent_ctls = vmcs_read(ENT_CONTROLS);
5115 	vmcs_write(ENT_CONTROLS, ent_ctls & ~ENT_GUEST_64);
5116 
5117 	guest_efer = vmcs_read(GUEST_EFER);
5118 	vmcs_write(GUEST_EFER, guest_efer & ~(EFER_LMA | EFER_LME));
5119 
5120 	/*
5121 	 * Set CS access rights bits for 32-bit protected mode:
5122 	 * 3:0    B execute/read/accessed
5123 	 * 4      1 code or data
5124 	 * 6:5    0 descriptor privilege level
5125 	 * 7      1 present
5126 	 * 11:8   0 reserved
5127 	 * 12     0 available for use by system software
5128 	 * 13     0 64 bit mode not active
5129 	 * 14     1 default operation size 32-bit segment
5130 	 * 15     1 page granularity: segment limit in 4K units
5131 	 * 16     0 segment usable
5132 	 * 31:17  0 reserved
5133 	 */
5134 	guest_ar_cs = vmcs_read(GUEST_AR_CS);
5135 	vmcs_write(GUEST_AR_CS, 0xc09b);
5136 
5137 	guest_cr0 = vmcs_read(GUEST_CR0);
5138 	vmcs_write(GUEST_CR0, guest_cr0 & ~X86_CR0_PG);
5139 
5140 	guest_cr4 = vmcs_read(GUEST_CR4);
5141 	vmcs_write(GUEST_CR4, guest_cr4 & ~X86_CR4_PCIDE);
5142 
5143 	guest_cr3 = vmcs_read(GUEST_CR3);
5144 
5145 	/*
5146 	 * Turn the 4-level page table into a PAE page table by following the 0th
5147 	 * PML4 entry to a PDPT page, and grab the first four PDPTEs from that
5148 	 * page.
5149 	 *
5150 	 * Why does this work?
5151 	 *
5152 	 * PAE uses 32-bit addressing which implies:
5153 	 * Bits 11:0   page offset
5154 	 * Bits 20:12  entry into 512-entry page table
5155 	 * Bits 29:21  entry into a 512-entry directory table
5156 	 * Bits 31:30  entry into the page directory pointer table.
5157 	 * Bits 63:32  zero
5158 	 *
5159 	 * As only 2 bits are needed to select the PDPTEs for the entire
5160 	 * 32-bit address space, take the first 4 PDPTEs in the level 3 page
5161 	 * directory pointer table. It doesn't matter which of these PDPTEs
5162 	 * are present because they must cover the guest code given that it
5163 	 * has already run successfully.
5164 	 *
5165 	 * Get a pointer to PTE for GVA=0 in the page directory pointer table
5166 	 */
5167 	pte = get_pte_level(
5168             (pgd_t *)phys_to_virt(guest_cr3 & ~X86_CR3_PCID_MASK), 0,
5169             PDPT_LEVEL);
5170 
5171 	/*
5172 	 * Need some memory for the 4-entry PAE page directory pointer
5173 	 * table. Use the end of the identity-mapped page where the guest code
5174 	 * is stored. There is definitely space as the guest code is only a
5175 	 * few bytes.
5176 	 */
5177 	pdpt = test_mtf_pdpte_guest + PAGE_SIZE - 4 * sizeof(pteval_t);
5178 
5179 	/*
5180 	 * Copy the first four PDPTEs into the PAE page table with reserved
5181 	 * bits cleared. Note that permission bits from the PML4E and PDPTE
5182 	 * are not propagated.
5183 	 */
5184 	for (i = 0; i < 4; i++) {
5185 		TEST_ASSERT_EQ_MSG(0, (pte[i] & PDPTE64_RSVD_MASK),
5186 				   "PDPTE has invalid reserved bits");
5187 		TEST_ASSERT_EQ_MSG(0, (pte[i] & PDPTE64_PAGE_SIZE_MASK),
5188 				   "Cannot use 1GB super pages for PAE");
5189 		pdpt[i] = pte[i] & ~(PAE_PDPTE_RSVD_MASK);
5190 	}
5191 	vmcs_write(GUEST_CR3, virt_to_phys(pdpt));
5192 
5193 	enable_mtf();
5194 	enter_guest();
5195 	assert_exit_reason(VMX_MTF);
5196 	disable_mtf();
5197 
5198 	/*
5199 	 * The four PDPTEs should have been loaded into the VMCS when
5200 	 * the guest set CR0.PG to enter PAE mode.
5201 	 */
5202 	for (i = 0; i < 4; i++) {
5203 		u64 pdpte = vmcs_read(GUEST_PDPTE + 2 * i);
5204 
5205 		report(pdpte == pdpt[i], "PDPTE%d is 0x%lx (expected 0x%lx)",
5206 		       i, pdpte, pdpt[i]);
5207 	}
5208 
5209 	/*
5210 	 * Now, try to enter the guest in PAE mode. If the PDPTEs in the
5211 	 * vmcs are wrong, this will fail.
5212 	 */
5213 	enter_guest();
5214 	skip_exit_vmcall();
5215 
5216 	/*
5217 	 * Return guest to 64-bit mode and wrap up.
5218 	 */
5219 	vmcs_write(ENT_CONTROLS, ent_ctls);
5220 	vmcs_write(GUEST_EFER, guest_efer);
5221 	vmcs_write(GUEST_AR_CS, guest_ar_cs);
5222 	vmcs_write(GUEST_CR0, guest_cr0);
5223 	vmcs_write(GUEST_CR4, guest_cr4);
5224 	vmcs_write(GUEST_CR3, guest_cr3);
5225 
5226 	enter_guest();
5227 }
5228 
5229 /*
5230  * Tests for VM-execution control fields
5231  */
5232 static void test_vm_execution_ctls(void)
5233 {
5234 	test_pin_based_ctls();
5235 	test_primary_processor_based_ctls();
5236 	test_secondary_processor_based_ctls();
5237 	test_cr3_targets();
5238 	test_io_bitmaps();
5239 	test_msr_bitmap();
5240 	test_apic_ctls();
5241 	test_tpr_threshold();
5242 	test_nmi_ctrls();
5243 	test_pml();
5244 	test_vpid();
5245 	test_ept_eptp();
5246 	test_vmx_preemption_timer();
5247 }
5248 
5249  /*
5250   * The following checks are performed for the VM-entry MSR-load address if
5251   * the VM-entry MSR-load count field is non-zero:
5252   *
5253   *    - The lower 4 bits of the VM-entry MSR-load address must be 0.
5254   *      The address should not set any bits beyond the processor's
5255   *      physical-address width.
5256   *
5257   *    - The address of the last byte in the VM-entry MSR-load area
5258   *      should not set any bits beyond the processor's physical-address
5259   *      width. The address of this last byte is VM-entry MSR-load address
5260   *      + (MSR count * 16) - 1. (The arithmetic used for the computation
5261   *      uses more bits than the processor's physical-address width.)
5262   *
5263   *
5264   *  [Intel SDM]
5265   */
5266 static void test_entry_msr_load(void)
5267 {
5268 	entry_msr_load = alloc_page();
5269 	u64 tmp;
5270 	u32 entry_msr_ld_cnt = 1;
5271 	int i;
5272 	u32 addr_len = 64;
5273 
5274 	vmcs_write(ENT_MSR_LD_CNT, entry_msr_ld_cnt);
5275 
5276 	/* Check first 4 bits of VM-entry MSR-load address */
5277 	for (i = 0; i < 4; i++) {
5278 		tmp = (u64)entry_msr_load | 1ull << i;
5279 		vmcs_write(ENTER_MSR_LD_ADDR, tmp);
5280 		report_prefix_pushf("VM-entry MSR-load addr [4:0] %lx",
5281 				    tmp & 0xf);
5282 		test_vmx_invalid_controls();
5283 		report_prefix_pop();
5284 	}
5285 
5286 	if (basic.val & (1ul << 48))
5287 		addr_len = 32;
5288 
5289 	test_vmcs_addr_values("VM-entry-MSR-load address",
5290 				ENTER_MSR_LD_ADDR, 16, false, false,
5291 				4, addr_len - 1);
5292 
5293 	/*
5294 	 * Check last byte of VM-entry MSR-load address
5295 	 */
5296 	entry_msr_load = (struct vmx_msr_entry *)((u64)entry_msr_load & ~0xf);
5297 
5298 	for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len);
5299 							i < 64; i++) {
5300 		tmp = ((u64)entry_msr_load + entry_msr_ld_cnt * 16 - 1) |
5301 			1ul << i;
5302 		vmcs_write(ENTER_MSR_LD_ADDR,
5303 			   tmp - (entry_msr_ld_cnt * 16 - 1));
5304 		test_vmx_invalid_controls();
5305 	}
5306 
5307 	vmcs_write(ENT_MSR_LD_CNT, 2);
5308 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 16);
5309 	test_vmx_invalid_controls();
5310 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 32);
5311 	test_vmx_valid_controls();
5312 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 48);
5313 	test_vmx_valid_controls();
5314 }
5315 
5316 static struct vmx_state_area_test_data {
5317 	u32 msr;
5318 	u64 exp;
5319 	bool enabled;
5320 } vmx_state_area_test_data;
5321 
5322 static void guest_state_test_main(void)
5323 {
5324 	u64 obs;
5325 	struct vmx_state_area_test_data *data = &vmx_state_area_test_data;
5326 
5327 	while (1) {
5328 		if (vmx_get_test_stage() == 2)
5329 			break;
5330 
5331 		if (data->enabled) {
5332 			obs = rdmsr(data->msr);
5333 			report(data->exp == obs,
5334 			       "Guest state is 0x%lx (expected 0x%lx)",
5335 			       obs, data->exp);
5336 		}
5337 
5338 		vmcall();
5339 	}
5340 
5341 	asm volatile("fnop");
5342 }
5343 
5344 static void test_guest_state(const char *test, bool xfail, u64 field,
5345 			     const char * field_name)
5346 {
5347 	struct vmentry_result result;
5348 	u8 abort_flags;
5349 
5350 	abort_flags = ABORT_ON_EARLY_VMENTRY_FAIL;
5351 	if (!xfail)
5352 		abort_flags = ABORT_ON_INVALID_GUEST_STATE;
5353 
5354 	__enter_guest(abort_flags, &result);
5355 
5356 	report(result.exit_reason.failed_vmentry == xfail &&
5357 	       ((xfail && result.exit_reason.basic == VMX_FAIL_STATE) ||
5358 	        (!xfail && result.exit_reason.basic == VMX_VMCALL)) &&
5359 		(!xfail || vmcs_read(EXI_QUALIFICATION) == ENTRY_FAIL_DEFAULT),
5360 	        "%s, %s = %lx", test, field_name, field);
5361 
5362 	if (!result.exit_reason.failed_vmentry)
5363 		skip_exit_insn();
5364 }
5365 
5366 /*
5367  * Tests for VM-entry control fields
5368  */
5369 static void test_vm_entry_ctls(void)
5370 {
5371 	test_invalid_event_injection();
5372 	test_entry_msr_load();
5373 }
5374 
5375 /*
5376  * The following checks are performed for the VM-exit MSR-store address if
5377  * the VM-exit MSR-store count field is non-zero:
5378  *
5379  *    - The lower 4 bits of the VM-exit MSR-store address must be 0.
5380  *      The address should not set any bits beyond the processor's
5381  *      physical-address width.
5382  *
5383  *    - The address of the last byte in the VM-exit MSR-store area
5384  *      should not set any bits beyond the processor's physical-address
5385  *      width. The address of this last byte is VM-exit MSR-store address
5386  *      + (MSR count * 16) - 1. (The arithmetic used for the computation
5387  *      uses more bits than the processor's physical-address width.)
5388  *
5389  * If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits
5390  * in the range 63:32.
5391  *
5392  *  [Intel SDM]
5393  */
5394 static void test_exit_msr_store(void)
5395 {
5396 	exit_msr_store = alloc_page();
5397 	u64 tmp;
5398 	u32 exit_msr_st_cnt = 1;
5399 	int i;
5400 	u32 addr_len = 64;
5401 
5402 	vmcs_write(EXI_MSR_ST_CNT, exit_msr_st_cnt);
5403 
5404 	/* Check first 4 bits of VM-exit MSR-store address */
5405 	for (i = 0; i < 4; i++) {
5406 		tmp = (u64)exit_msr_store | 1ull << i;
5407 		vmcs_write(EXIT_MSR_ST_ADDR, tmp);
5408 		report_prefix_pushf("VM-exit MSR-store addr [4:0] %lx",
5409 				    tmp & 0xf);
5410 		test_vmx_invalid_controls();
5411 		report_prefix_pop();
5412 	}
5413 
5414 	if (basic.val & (1ul << 48))
5415 		addr_len = 32;
5416 
5417 	test_vmcs_addr_values("VM-exit-MSR-store address",
5418 				EXIT_MSR_ST_ADDR, 16, false, false,
5419 				4, addr_len - 1);
5420 
5421 	/*
5422 	 * Check last byte of VM-exit MSR-store address
5423 	 */
5424 	exit_msr_store = (struct vmx_msr_entry *)((u64)exit_msr_store & ~0xf);
5425 
5426 	for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len);
5427 							i < 64; i++) {
5428 		tmp = ((u64)exit_msr_store + exit_msr_st_cnt * 16 - 1) |
5429 			1ul << i;
5430 		vmcs_write(EXIT_MSR_ST_ADDR,
5431 			   tmp - (exit_msr_st_cnt * 16 - 1));
5432 		test_vmx_invalid_controls();
5433 	}
5434 
5435 	vmcs_write(EXI_MSR_ST_CNT, 2);
5436 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 16);
5437 	test_vmx_invalid_controls();
5438 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 32);
5439 	test_vmx_valid_controls();
5440 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 48);
5441 	test_vmx_valid_controls();
5442 }
5443 
5444 /*
5445  * Tests for VM-exit controls
5446  */
5447 static void test_vm_exit_ctls(void)
5448 {
5449 	test_exit_msr_store();
5450 }
5451 
5452 /*
5453  * Check that the virtual CPU checks all of the VMX controls as
5454  * documented in the Intel SDM.
5455  */
5456 static void vmx_controls_test(void)
5457 {
5458 	/*
5459 	 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will
5460 	 * fail due to invalid guest state, should we make it that
5461 	 * far.
5462 	 */
5463 	vmcs_write(GUEST_RFLAGS, 0);
5464 
5465 	test_vm_execution_ctls();
5466 	test_vm_exit_ctls();
5467 	test_vm_entry_ctls();
5468 }
5469 
5470 struct apic_reg_virt_config {
5471 	bool apic_register_virtualization;
5472 	bool use_tpr_shadow;
5473 	bool virtualize_apic_accesses;
5474 	bool virtualize_x2apic_mode;
5475 	bool activate_secondary_controls;
5476 };
5477 
5478 struct apic_reg_test {
5479 	const char *name;
5480 	struct apic_reg_virt_config apic_reg_virt_config;
5481 };
5482 
5483 struct apic_reg_virt_expectation {
5484 	enum Reason rd_exit_reason;
5485 	enum Reason wr_exit_reason;
5486 	u32 val;
5487 	u32 (*virt_fn)(u32);
5488 
5489 	/*
5490 	 * If false, accessing the APIC access address from L2 is treated as a
5491 	 * normal memory operation, rather than triggering virtualization.
5492 	 */
5493 	bool virtualize_apic_accesses;
5494 };
5495 
5496 static u32 apic_virt_identity(u32 val)
5497 {
5498 	return val;
5499 }
5500 
5501 static u32 apic_virt_nibble1(u32 val)
5502 {
5503 	return val & 0xf0;
5504 }
5505 
5506 static u32 apic_virt_byte3(u32 val)
5507 {
5508 	return val & (0xff << 24);
5509 }
5510 
5511 static bool apic_reg_virt_exit_expectation(
5512 	u32 reg, struct apic_reg_virt_config *config,
5513 	struct apic_reg_virt_expectation *expectation)
5514 {
5515 	/* Good configs, where some L2 APIC accesses are virtualized. */
5516 	bool virtualize_apic_accesses_only =
5517 		config->virtualize_apic_accesses &&
5518 		!config->use_tpr_shadow &&
5519 		!config->apic_register_virtualization &&
5520 		!config->virtualize_x2apic_mode &&
5521 		config->activate_secondary_controls;
5522 	bool virtualize_apic_accesses_and_use_tpr_shadow =
5523 		config->virtualize_apic_accesses &&
5524 		config->use_tpr_shadow &&
5525 		!config->apic_register_virtualization &&
5526 		!config->virtualize_x2apic_mode &&
5527 		config->activate_secondary_controls;
5528 	bool apic_register_virtualization =
5529 		config->virtualize_apic_accesses &&
5530 		config->use_tpr_shadow &&
5531 		config->apic_register_virtualization &&
5532 		!config->virtualize_x2apic_mode &&
5533 		config->activate_secondary_controls;
5534 
5535 	expectation->val = MAGIC_VAL_1;
5536 	expectation->virt_fn = apic_virt_identity;
5537 	expectation->virtualize_apic_accesses =
5538 		config->virtualize_apic_accesses &&
5539 		config->activate_secondary_controls;
5540 	if (virtualize_apic_accesses_only) {
5541 		expectation->rd_exit_reason = VMX_APIC_ACCESS;
5542 		expectation->wr_exit_reason = VMX_APIC_ACCESS;
5543 	} else if (virtualize_apic_accesses_and_use_tpr_shadow) {
5544 		switch (reg) {
5545 		case APIC_TASKPRI:
5546 			expectation->rd_exit_reason = VMX_VMCALL;
5547 			expectation->wr_exit_reason = VMX_VMCALL;
5548 			expectation->virt_fn = apic_virt_nibble1;
5549 			break;
5550 		default:
5551 			expectation->rd_exit_reason = VMX_APIC_ACCESS;
5552 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5553 		}
5554 	} else if (apic_register_virtualization) {
5555 		expectation->rd_exit_reason = VMX_VMCALL;
5556 
5557 		switch (reg) {
5558 		case APIC_ID:
5559 		case APIC_EOI:
5560 		case APIC_LDR:
5561 		case APIC_DFR:
5562 		case APIC_SPIV:
5563 		case APIC_ESR:
5564 		case APIC_ICR:
5565 		case APIC_LVTT:
5566 		case APIC_LVTTHMR:
5567 		case APIC_LVTPC:
5568 		case APIC_LVT0:
5569 		case APIC_LVT1:
5570 		case APIC_LVTERR:
5571 		case APIC_TMICT:
5572 		case APIC_TDCR:
5573 			expectation->wr_exit_reason = VMX_APIC_WRITE;
5574 			break;
5575 		case APIC_LVR:
5576 		case APIC_ISR ... APIC_ISR + 0x70:
5577 		case APIC_TMR ... APIC_TMR + 0x70:
5578 		case APIC_IRR ... APIC_IRR + 0x70:
5579 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5580 			break;
5581 		case APIC_TASKPRI:
5582 			expectation->wr_exit_reason = VMX_VMCALL;
5583 			expectation->virt_fn = apic_virt_nibble1;
5584 			break;
5585 		case APIC_ICR2:
5586 			expectation->wr_exit_reason = VMX_VMCALL;
5587 			expectation->virt_fn = apic_virt_byte3;
5588 			break;
5589 		default:
5590 			expectation->rd_exit_reason = VMX_APIC_ACCESS;
5591 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5592 		}
5593 	} else if (!expectation->virtualize_apic_accesses) {
5594 		/*
5595 		 * No APIC registers are directly virtualized. This includes
5596 		 * VTPR, which can be virtualized through MOV to/from CR8 via
5597 		 * the use TPR shadow control, but not through directly
5598 		 * accessing VTPR.
5599 		 */
5600 		expectation->rd_exit_reason = VMX_VMCALL;
5601 		expectation->wr_exit_reason = VMX_VMCALL;
5602 	} else {
5603 		printf("Cannot parse APIC register virtualization config:\n"
5604 		       "\tvirtualize_apic_accesses: %d\n"
5605 		       "\tuse_tpr_shadow: %d\n"
5606 		       "\tapic_register_virtualization: %d\n"
5607 		       "\tvirtualize_x2apic_mode: %d\n"
5608 		       "\tactivate_secondary_controls: %d\n",
5609 		       config->virtualize_apic_accesses,
5610 		       config->use_tpr_shadow,
5611 		       config->apic_register_virtualization,
5612 		       config->virtualize_x2apic_mode,
5613 		       config->activate_secondary_controls);
5614 
5615 		return false;
5616 	}
5617 
5618 	return true;
5619 }
5620 
5621 struct apic_reg_test apic_reg_tests[] = {
5622 	/* Good configs, where some L2 APIC accesses are virtualized. */
5623 	{
5624 		.name = "Virtualize APIC accesses",
5625 		.apic_reg_virt_config = {
5626 			.virtualize_apic_accesses = true,
5627 			.use_tpr_shadow = false,
5628 			.apic_register_virtualization = false,
5629 			.virtualize_x2apic_mode = false,
5630 			.activate_secondary_controls = true,
5631 		},
5632 	},
5633 	{
5634 		.name = "Virtualize APIC accesses + Use TPR shadow",
5635 		.apic_reg_virt_config = {
5636 			.virtualize_apic_accesses = true,
5637 			.use_tpr_shadow = true,
5638 			.apic_register_virtualization = false,
5639 			.virtualize_x2apic_mode = false,
5640 			.activate_secondary_controls = true,
5641 		},
5642 	},
5643 	{
5644 		.name = "APIC-register virtualization",
5645 		.apic_reg_virt_config = {
5646 			.virtualize_apic_accesses = true,
5647 			.use_tpr_shadow = true,
5648 			.apic_register_virtualization = true,
5649 			.virtualize_x2apic_mode = false,
5650 			.activate_secondary_controls = true,
5651 		},
5652 	},
5653 
5654 	/*
5655 	 * Test that the secondary processor-based VM-execution controls are
5656 	 * correctly ignored when "activate secondary controls" is disabled.
5657 	 */
5658 	{
5659 		.name = "Activate secondary controls off",
5660 		.apic_reg_virt_config = {
5661 			.virtualize_apic_accesses = true,
5662 			.use_tpr_shadow = false,
5663 			.apic_register_virtualization = true,
5664 			.virtualize_x2apic_mode = true,
5665 			.activate_secondary_controls = false,
5666 		},
5667 	},
5668 	{
5669 		.name = "Activate secondary controls off + Use TPR shadow",
5670 		.apic_reg_virt_config = {
5671 			.virtualize_apic_accesses = true,
5672 			.use_tpr_shadow = true,
5673 			.apic_register_virtualization = true,
5674 			.virtualize_x2apic_mode = true,
5675 			.activate_secondary_controls = false,
5676 		},
5677 	},
5678 
5679 	/*
5680 	 * Test that the APIC access address is treated like an arbitrary memory
5681 	 * address when "virtualize APIC accesses" is disabled.
5682 	 */
5683 	{
5684 		.name = "Virtualize APIC accesses off + Use TPR shadow",
5685 		.apic_reg_virt_config = {
5686 			.virtualize_apic_accesses = false,
5687 			.use_tpr_shadow = true,
5688 			.apic_register_virtualization = true,
5689 			.virtualize_x2apic_mode = true,
5690 			.activate_secondary_controls = true,
5691 		},
5692 	},
5693 
5694 	/*
5695 	 * Test that VM entry fails due to invalid controls when
5696 	 * "APIC-register virtualization" is enabled while "use TPR shadow" is
5697 	 * disabled.
5698 	 */
5699 	{
5700 		.name = "APIC-register virtualization + Use TPR shadow off",
5701 		.apic_reg_virt_config = {
5702 			.virtualize_apic_accesses = true,
5703 			.use_tpr_shadow = false,
5704 			.apic_register_virtualization = true,
5705 			.virtualize_x2apic_mode = false,
5706 			.activate_secondary_controls = true,
5707 		},
5708 	},
5709 
5710 	/*
5711 	 * Test that VM entry fails due to invalid controls when
5712 	 * "Virtualize x2APIC mode" is enabled while "use TPR shadow" is
5713 	 * disabled.
5714 	 */
5715 	{
5716 		.name = "Virtualize x2APIC mode + Use TPR shadow off",
5717 		.apic_reg_virt_config = {
5718 			.virtualize_apic_accesses = false,
5719 			.use_tpr_shadow = false,
5720 			.apic_register_virtualization = false,
5721 			.virtualize_x2apic_mode = true,
5722 			.activate_secondary_controls = true,
5723 		},
5724 	},
5725 	{
5726 		.name = "Virtualize x2APIC mode + Use TPR shadow off v2",
5727 		.apic_reg_virt_config = {
5728 			.virtualize_apic_accesses = false,
5729 			.use_tpr_shadow = false,
5730 			.apic_register_virtualization = true,
5731 			.virtualize_x2apic_mode = true,
5732 			.activate_secondary_controls = true,
5733 		},
5734 	},
5735 
5736 	/*
5737 	 * Test that VM entry fails due to invalid controls when
5738 	 * "virtualize x2APIC mode" is enabled while "virtualize APIC accesses"
5739 	 * is enabled.
5740 	 */
5741 	{
5742 		.name = "Virtualize x2APIC mode + Virtualize APIC accesses",
5743 		.apic_reg_virt_config = {
5744 			.virtualize_apic_accesses = true,
5745 			.use_tpr_shadow = true,
5746 			.apic_register_virtualization = false,
5747 			.virtualize_x2apic_mode = true,
5748 			.activate_secondary_controls = true,
5749 		},
5750 	},
5751 	{
5752 		.name = "Virtualize x2APIC mode + Virtualize APIC accesses v2",
5753 		.apic_reg_virt_config = {
5754 			.virtualize_apic_accesses = true,
5755 			.use_tpr_shadow = true,
5756 			.apic_register_virtualization = true,
5757 			.virtualize_x2apic_mode = true,
5758 			.activate_secondary_controls = true,
5759 		},
5760 	},
5761 };
5762 
5763 enum Apic_op {
5764 	APIC_OP_XAPIC_RD,
5765 	APIC_OP_XAPIC_WR,
5766 	TERMINATE,
5767 };
5768 
5769 static u32 vmx_xapic_read(u32 *apic_access_address, u32 reg)
5770 {
5771 	return *(volatile u32 *)((uintptr_t)apic_access_address + reg);
5772 }
5773 
5774 static void vmx_xapic_write(u32 *apic_access_address, u32 reg, u32 val)
5775 {
5776 	*(volatile u32 *)((uintptr_t)apic_access_address + reg) = val;
5777 }
5778 
5779 struct apic_reg_virt_guest_args {
5780 	enum Apic_op op;
5781 	u32 *apic_access_address;
5782 	u32 reg;
5783 	u32 val;
5784 	bool check_rd;
5785 	u32 (*virt_fn)(u32);
5786 } apic_reg_virt_guest_args;
5787 
5788 static void apic_reg_virt_guest(void)
5789 {
5790 	volatile struct apic_reg_virt_guest_args *args =
5791 		&apic_reg_virt_guest_args;
5792 
5793 	for (;;) {
5794 		enum Apic_op op = args->op;
5795 		u32 *apic_access_address = args->apic_access_address;
5796 		u32 reg = args->reg;
5797 		u32 val = args->val;
5798 		bool check_rd = args->check_rd;
5799 		u32 (*virt_fn)(u32) = args->virt_fn;
5800 
5801 		if (op == TERMINATE)
5802 			break;
5803 
5804 		if (op == APIC_OP_XAPIC_RD) {
5805 			u32 ret = vmx_xapic_read(apic_access_address, reg);
5806 
5807 			if (check_rd) {
5808 				u32 want = virt_fn(val);
5809 				u32 got = virt_fn(ret);
5810 
5811 				report(got == want,
5812 				       "read 0x%x, expected 0x%x.", got, want);
5813 			}
5814 		} else if (op == APIC_OP_XAPIC_WR) {
5815 			vmx_xapic_write(apic_access_address, reg, val);
5816 		}
5817 
5818 		/*
5819 		 * The L1 should always execute a vmcall after it's done testing
5820 		 * an individual APIC operation. This helps to validate that the
5821 		 * L1 and L2 are in sync with each other, as expected.
5822 		 */
5823 		vmcall();
5824 	}
5825 }
5826 
5827 static void test_xapic_rd(
5828 	u32 reg, struct apic_reg_virt_expectation *expectation,
5829 	u32 *apic_access_address, u32 *virtual_apic_page)
5830 {
5831 	u32 val = expectation->val;
5832 	u32 exit_reason_want = expectation->rd_exit_reason;
5833 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
5834 
5835 	report_prefix_pushf("xapic - reading 0x%03x", reg);
5836 
5837 	/* Configure guest to do an xapic read */
5838 	args->op = APIC_OP_XAPIC_RD;
5839 	args->apic_access_address = apic_access_address;
5840 	args->reg = reg;
5841 	args->val = val;
5842 	args->check_rd = exit_reason_want == VMX_VMCALL;
5843 	args->virt_fn = expectation->virt_fn;
5844 
5845 	/* Setup virtual APIC page */
5846 	if (!expectation->virtualize_apic_accesses) {
5847 		apic_access_address[apic_reg_index(reg)] = val;
5848 		virtual_apic_page[apic_reg_index(reg)] = 0;
5849 	} else if (exit_reason_want == VMX_VMCALL) {
5850 		apic_access_address[apic_reg_index(reg)] = 0;
5851 		virtual_apic_page[apic_reg_index(reg)] = val;
5852 	}
5853 
5854 	/* Enter guest */
5855 	enter_guest();
5856 
5857 	/*
5858 	 * Validate the behavior and
5859 	 * pass a magic value back to the guest.
5860 	 */
5861 	if (exit_reason_want == VMX_APIC_ACCESS) {
5862 		u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff;
5863 
5864 		assert_exit_reason(exit_reason_want);
5865 		report(apic_page_offset == reg,
5866 		       "got APIC access exit @ page offset 0x%03x, want 0x%03x",
5867 		       apic_page_offset, reg);
5868 		skip_exit_insn();
5869 
5870 		/* Reenter guest so it can consume/check rcx and exit again. */
5871 		enter_guest();
5872 	} else if (exit_reason_want != VMX_VMCALL) {
5873 		report_fail("Oops, bad exit expectation: %u.", exit_reason_want);
5874 	}
5875 
5876 	skip_exit_vmcall();
5877 	report_prefix_pop();
5878 }
5879 
5880 static void test_xapic_wr(
5881 	u32 reg, struct apic_reg_virt_expectation *expectation,
5882 	u32 *apic_access_address, u32 *virtual_apic_page)
5883 {
5884 	u32 val = expectation->val;
5885 	u32 exit_reason_want = expectation->wr_exit_reason;
5886 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
5887 	bool virtualized =
5888 		expectation->virtualize_apic_accesses &&
5889 		(exit_reason_want == VMX_APIC_WRITE ||
5890 		 exit_reason_want == VMX_VMCALL);
5891 	bool checked = false;
5892 
5893 	report_prefix_pushf("xapic - writing 0x%x to 0x%03x", val, reg);
5894 
5895 	/* Configure guest to do an xapic read */
5896 	args->op = APIC_OP_XAPIC_WR;
5897 	args->apic_access_address = apic_access_address;
5898 	args->reg = reg;
5899 	args->val = val;
5900 
5901 	/* Setup virtual APIC page */
5902 	if (virtualized || !expectation->virtualize_apic_accesses) {
5903 		apic_access_address[apic_reg_index(reg)] = 0;
5904 		virtual_apic_page[apic_reg_index(reg)] = 0;
5905 	}
5906 
5907 	/* Enter guest */
5908 	enter_guest();
5909 
5910 	/*
5911 	 * Validate the behavior and
5912 	 * pass a magic value back to the guest.
5913 	 */
5914 	if (exit_reason_want == VMX_APIC_ACCESS) {
5915 		u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff;
5916 
5917 		assert_exit_reason(exit_reason_want);
5918 		report(apic_page_offset == reg,
5919 		       "got APIC access exit @ page offset 0x%03x, want 0x%03x",
5920 		       apic_page_offset, reg);
5921 		skip_exit_insn();
5922 
5923 		/* Reenter guest so it can consume/check rcx and exit again. */
5924 		enter_guest();
5925 	} else if (exit_reason_want == VMX_APIC_WRITE) {
5926 		assert_exit_reason(exit_reason_want);
5927 		report(virtual_apic_page[apic_reg_index(reg)] == val,
5928 		       "got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%x",
5929 		       apic_reg_index(reg),
5930 		       virtual_apic_page[apic_reg_index(reg)], val);
5931 		checked = true;
5932 
5933 		/* Reenter guest so it can consume/check rcx and exit again. */
5934 		enter_guest();
5935 	} else if (exit_reason_want != VMX_VMCALL) {
5936 		report_fail("Oops, bad exit expectation: %u.", exit_reason_want);
5937 	}
5938 
5939 	assert_exit_reason(VMX_VMCALL);
5940 	if (virtualized && !checked) {
5941 		u32 want = expectation->virt_fn(val);
5942 		u32 got = virtual_apic_page[apic_reg_index(reg)];
5943 		got = expectation->virt_fn(got);
5944 
5945 		report(got == want, "exitless write; val is 0x%x, want 0x%x",
5946 		       got, want);
5947 	} else if (!expectation->virtualize_apic_accesses && !checked) {
5948 		u32 got = apic_access_address[apic_reg_index(reg)];
5949 
5950 		report(got == val,
5951 		       "non-virtualized write; val is 0x%x, want 0x%x", got,
5952 		       val);
5953 	} else if (!expectation->virtualize_apic_accesses && checked) {
5954 		report_fail("Non-virtualized write was prematurely checked!");
5955 	}
5956 
5957 	skip_exit_vmcall();
5958 	report_prefix_pop();
5959 }
5960 
5961 enum Config_type {
5962 	CONFIG_TYPE_GOOD,
5963 	CONFIG_TYPE_UNSUPPORTED,
5964 	CONFIG_TYPE_VMENTRY_FAILS_EARLY,
5965 };
5966 
5967 static enum Config_type configure_apic_reg_virt_test(
5968 	struct apic_reg_virt_config *apic_reg_virt_config)
5969 {
5970 	u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
5971 	u32 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
5972 	/* Configs where L2 entry fails early, due to invalid controls. */
5973 	bool use_tpr_shadow_incorrectly_off =
5974 		!apic_reg_virt_config->use_tpr_shadow &&
5975 		(apic_reg_virt_config->apic_register_virtualization ||
5976 		 apic_reg_virt_config->virtualize_x2apic_mode) &&
5977 		apic_reg_virt_config->activate_secondary_controls;
5978 	bool virtualize_apic_accesses_incorrectly_on =
5979 		apic_reg_virt_config->virtualize_apic_accesses &&
5980 		apic_reg_virt_config->virtualize_x2apic_mode &&
5981 		apic_reg_virt_config->activate_secondary_controls;
5982 	bool vmentry_fails_early =
5983 		use_tpr_shadow_incorrectly_off ||
5984 		virtualize_apic_accesses_incorrectly_on;
5985 
5986 	if (apic_reg_virt_config->activate_secondary_controls) {
5987 		if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) {
5988 			printf("VM-execution control \"activate secondary controls\" NOT supported.\n");
5989 			return CONFIG_TYPE_UNSUPPORTED;
5990 		}
5991 		cpu_exec_ctrl0 |= CPU_SECONDARY;
5992 	} else {
5993 		cpu_exec_ctrl0 &= ~CPU_SECONDARY;
5994 	}
5995 
5996 	if (apic_reg_virt_config->virtualize_apic_accesses) {
5997 		if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES)) {
5998 			printf("VM-execution control \"virtualize APIC accesses\" NOT supported.\n");
5999 			return CONFIG_TYPE_UNSUPPORTED;
6000 		}
6001 		cpu_exec_ctrl1 |= CPU_VIRT_APIC_ACCESSES;
6002 	} else {
6003 		cpu_exec_ctrl1 &= ~CPU_VIRT_APIC_ACCESSES;
6004 	}
6005 
6006 	if (apic_reg_virt_config->use_tpr_shadow) {
6007 		if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) {
6008 			printf("VM-execution control \"use TPR shadow\" NOT supported.\n");
6009 			return CONFIG_TYPE_UNSUPPORTED;
6010 		}
6011 		cpu_exec_ctrl0 |= CPU_TPR_SHADOW;
6012 	} else {
6013 		cpu_exec_ctrl0 &= ~CPU_TPR_SHADOW;
6014 	}
6015 
6016 	if (apic_reg_virt_config->apic_register_virtualization) {
6017 		if (!(ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT)) {
6018 			printf("VM-execution control \"APIC-register virtualization\" NOT supported.\n");
6019 			return CONFIG_TYPE_UNSUPPORTED;
6020 		}
6021 		cpu_exec_ctrl1 |= CPU_APIC_REG_VIRT;
6022 	} else {
6023 		cpu_exec_ctrl1 &= ~CPU_APIC_REG_VIRT;
6024 	}
6025 
6026 	if (apic_reg_virt_config->virtualize_x2apic_mode) {
6027 		if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_X2APIC)) {
6028 			printf("VM-execution control \"virtualize x2APIC mode\" NOT supported.\n");
6029 			return CONFIG_TYPE_UNSUPPORTED;
6030 		}
6031 		cpu_exec_ctrl1 |= CPU_VIRT_X2APIC;
6032 	} else {
6033 		cpu_exec_ctrl1 &= ~CPU_VIRT_X2APIC;
6034 	}
6035 
6036 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6037 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6038 
6039 	if (vmentry_fails_early)
6040 		return CONFIG_TYPE_VMENTRY_FAILS_EARLY;
6041 
6042 	return CONFIG_TYPE_GOOD;
6043 }
6044 
6045 static bool cpu_has_apicv(void)
6046 {
6047 	return ((ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT) &&
6048 		(ctrl_cpu_rev[1].clr & CPU_VINTD) &&
6049 		(ctrl_pin_rev.clr & PIN_POST_INTR));
6050 }
6051 
6052 /* Validates APIC register access across valid virtualization configurations. */
6053 static void apic_reg_virt_test(void)
6054 {
6055 	u32 *apic_access_address;
6056 	u32 *virtual_apic_page;
6057 	u64 control;
6058 	u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6059 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6060 	int i;
6061 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
6062 
6063 	if (!cpu_has_apicv()) {
6064 		report_skip("%s : Not all required APICv bits supported", __func__);
6065 		return;
6066 	}
6067 
6068 	control = cpu_exec_ctrl1;
6069 	control &= ~CPU_VINTD;
6070 	vmcs_write(CPU_EXEC_CTRL1, control);
6071 
6072 	test_set_guest(apic_reg_virt_guest);
6073 
6074 	/*
6075 	 * From the SDM: The 1-setting of the "virtualize APIC accesses"
6076 	 * VM-execution is guaranteed to apply only if translations to the
6077 	 * APIC-access address use a 4-KByte page.
6078 	 */
6079 	apic_access_address = alloc_page();
6080 	force_4k_page(apic_access_address);
6081 	vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_address));
6082 
6083 	virtual_apic_page = alloc_page();
6084 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
6085 
6086 	for (i = 0; i < ARRAY_SIZE(apic_reg_tests); i++) {
6087 		struct apic_reg_test *apic_reg_test = &apic_reg_tests[i];
6088 		struct apic_reg_virt_config *apic_reg_virt_config =
6089 				&apic_reg_test->apic_reg_virt_config;
6090 		enum Config_type config_type;
6091 		u32 reg;
6092 
6093 		printf("--- %s test ---\n", apic_reg_test->name);
6094 		config_type =
6095 			configure_apic_reg_virt_test(apic_reg_virt_config);
6096 		if (config_type == CONFIG_TYPE_UNSUPPORTED) {
6097 			printf("Skip because of missing features.\n");
6098 			continue;
6099 		}
6100 
6101 		if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) {
6102 			enter_guest_with_bad_controls();
6103 			continue;
6104 		}
6105 
6106 		for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) {
6107 			struct apic_reg_virt_expectation expectation = {};
6108 			bool ok;
6109 
6110 			ok = apic_reg_virt_exit_expectation(
6111 				reg, apic_reg_virt_config, &expectation);
6112 			if (!ok) {
6113 				report_fail("Malformed test.");
6114 				break;
6115 			}
6116 
6117 			test_xapic_rd(reg, &expectation, apic_access_address,
6118 				      virtual_apic_page);
6119 			test_xapic_wr(reg, &expectation, apic_access_address,
6120 				      virtual_apic_page);
6121 		}
6122 	}
6123 
6124 	/* Terminate the guest */
6125 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6126 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6127 	args->op = TERMINATE;
6128 	enter_guest();
6129 	assert_exit_reason(VMX_VMCALL);
6130 }
6131 
6132 struct virt_x2apic_mode_config {
6133 	struct apic_reg_virt_config apic_reg_virt_config;
6134 	bool virtual_interrupt_delivery;
6135 	bool use_msr_bitmaps;
6136 	bool disable_x2apic_msr_intercepts;
6137 	bool disable_x2apic;
6138 };
6139 
6140 struct virt_x2apic_mode_test_case {
6141 	const char *name;
6142 	struct virt_x2apic_mode_config virt_x2apic_mode_config;
6143 };
6144 
6145 enum Virt_x2apic_mode_behavior_type {
6146 	X2APIC_ACCESS_VIRTUALIZED,
6147 	X2APIC_ACCESS_PASSED_THROUGH,
6148 	X2APIC_ACCESS_TRIGGERS_GP,
6149 };
6150 
6151 struct virt_x2apic_mode_expectation {
6152 	enum Reason rd_exit_reason;
6153 	enum Reason wr_exit_reason;
6154 
6155 	/*
6156 	 * RDMSR and WRMSR handle 64-bit values. However, except for ICR, all of
6157 	 * the x2APIC registers are 32 bits. Notice:
6158 	 *   1. vmx_x2apic_read() clears the upper 32 bits for 32-bit registers.
6159 	 *   2. vmx_x2apic_write() expects the val arg to be well-formed.
6160 	 */
6161 	u64 rd_val;
6162 	u64 wr_val;
6163 
6164 	/*
6165 	 * Compares input to virtualized output;
6166 	 * 1st arg is pointer to return expected virtualization output.
6167 	 */
6168 	u64 (*virt_fn)(u64);
6169 
6170 	enum Virt_x2apic_mode_behavior_type rd_behavior;
6171 	enum Virt_x2apic_mode_behavior_type wr_behavior;
6172 	bool wr_only;
6173 };
6174 
6175 static u64 virt_x2apic_mode_identity(u64 val)
6176 {
6177 	return val;
6178 }
6179 
6180 static u64 virt_x2apic_mode_nibble1(u64 val)
6181 {
6182 	return val & 0xf0;
6183 }
6184 
6185 static void virt_x2apic_mode_rd_expectation(
6186 	u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic,
6187 	bool apic_register_virtualization, bool virtual_interrupt_delivery,
6188 	struct virt_x2apic_mode_expectation *expectation)
6189 {
6190 	enum x2apic_reg_semantics semantics = get_x2apic_reg_semantics(reg);
6191 
6192 	expectation->rd_exit_reason = VMX_VMCALL;
6193 	expectation->virt_fn = virt_x2apic_mode_identity;
6194 	if (virt_x2apic_mode_on && apic_register_virtualization) {
6195 		expectation->rd_val = MAGIC_VAL_1;
6196 		if (reg == APIC_PROCPRI && virtual_interrupt_delivery)
6197 			expectation->virt_fn = virt_x2apic_mode_nibble1;
6198 		else if (reg == APIC_TASKPRI)
6199 			expectation->virt_fn = virt_x2apic_mode_nibble1;
6200 		expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED;
6201 	} else if (virt_x2apic_mode_on && !apic_register_virtualization &&
6202 		   reg == APIC_TASKPRI) {
6203 		expectation->rd_val = MAGIC_VAL_1;
6204 		expectation->virt_fn = virt_x2apic_mode_nibble1;
6205 		expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED;
6206 	} else if (!disable_x2apic && (semantics & X2APIC_READABLE)) {
6207 		expectation->rd_val = apic_read(reg);
6208 		expectation->rd_behavior = X2APIC_ACCESS_PASSED_THROUGH;
6209 	} else {
6210 		expectation->rd_behavior = X2APIC_ACCESS_TRIGGERS_GP;
6211 	}
6212 }
6213 
6214 /*
6215  * get_x2apic_wr_val() creates an innocuous write value for an x2APIC register.
6216  *
6217  * For writable registers, get_x2apic_wr_val() deposits the write value into the
6218  * val pointer arg and returns true. For non-writable registers, val is not
6219  * modified and get_x2apic_wr_val() returns false.
6220  */
6221 static bool get_x2apic_wr_val(u32 reg, u64 *val)
6222 {
6223 	switch (reg) {
6224 	case APIC_TASKPRI:
6225 		/* Bits 31:8 are reserved. */
6226 		*val &= 0xff;
6227 		break;
6228 	case APIC_EOI:
6229 	case APIC_ESR:
6230 	case APIC_TMICT:
6231 		/*
6232 		 * EOI, ESR: WRMSR of a non-zero value causes #GP(0).
6233 		 * TMICT: A write of 0 to the initial-count register effectively
6234 		 *        stops the local APIC timer, in both one-shot and
6235 		 *        periodic mode.
6236 		 */
6237 		*val = 0;
6238 		break;
6239 	case APIC_SPIV:
6240 	case APIC_LVTT:
6241 	case APIC_LVTTHMR:
6242 	case APIC_LVTPC:
6243 	case APIC_LVT0:
6244 	case APIC_LVT1:
6245 	case APIC_LVTERR:
6246 	case APIC_TDCR:
6247 		/*
6248 		 * To avoid writing a 1 to a reserved bit or causing some other
6249 		 * unintended side effect, read the current value and use it as
6250 		 * the write value.
6251 		 */
6252 		*val = apic_read(reg);
6253 		break;
6254 	case APIC_CMCI:
6255 		if (!apic_lvt_entry_supported(6))
6256 			return false;
6257 		*val = apic_read(reg);
6258 		break;
6259 	case APIC_ICR:
6260 		*val = 0x40000 | 0xf1;
6261 		break;
6262 	case APIC_SELF_IPI:
6263 		/*
6264 		 * With special processing (i.e., virtualize x2APIC mode +
6265 		 * virtual interrupt delivery), writing zero causes an
6266 		 * APIC-write VM exit. We plan to add a test for enabling
6267 		 * "virtual-interrupt delivery" in VMCS12, and that's where we
6268 		 * will test a self IPI with special processing.
6269 		 */
6270 		*val = 0x0;
6271 		break;
6272 	default:
6273 		return false;
6274 	}
6275 
6276 	return true;
6277 }
6278 
6279 static bool special_processing_applies(u32 reg, u64 *val,
6280 				       bool virt_int_delivery)
6281 {
6282 	bool special_processing =
6283 		(reg == APIC_TASKPRI) ||
6284 		(virt_int_delivery &&
6285 		 (reg == APIC_EOI || reg == APIC_SELF_IPI));
6286 
6287 	if (special_processing) {
6288 		TEST_ASSERT(get_x2apic_wr_val(reg, val));
6289 		return true;
6290 	}
6291 
6292 	return false;
6293 }
6294 
6295 static void virt_x2apic_mode_wr_expectation(
6296 	u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic,
6297 	bool virt_int_delivery,
6298 	struct virt_x2apic_mode_expectation *expectation)
6299 {
6300 	expectation->wr_exit_reason = VMX_VMCALL;
6301 	expectation->wr_val = MAGIC_VAL_1;
6302 	expectation->wr_only = false;
6303 
6304 	if (virt_x2apic_mode_on &&
6305 	    special_processing_applies(reg, &expectation->wr_val,
6306 				       virt_int_delivery)) {
6307 		expectation->wr_behavior = X2APIC_ACCESS_VIRTUALIZED;
6308 		if (reg == APIC_SELF_IPI)
6309 			expectation->wr_exit_reason = VMX_APIC_WRITE;
6310 	} else if (!disable_x2apic &&
6311 		   get_x2apic_wr_val(reg, &expectation->wr_val)) {
6312 		expectation->wr_behavior = X2APIC_ACCESS_PASSED_THROUGH;
6313 		if (reg == APIC_EOI || reg == APIC_SELF_IPI)
6314 			expectation->wr_only = true;
6315 		if (reg == APIC_ICR)
6316 			expectation->wr_exit_reason = VMX_EXTINT;
6317 	} else {
6318 		expectation->wr_behavior = X2APIC_ACCESS_TRIGGERS_GP;
6319 		/*
6320 		 * Writing 1 to a reserved bit triggers a #GP.
6321 		 * Thus, set the write value to 0, which seems
6322 		 * the most likely to detect a missed #GP.
6323 		 */
6324 		expectation->wr_val = 0;
6325 	}
6326 }
6327 
6328 static void virt_x2apic_mode_exit_expectation(
6329 	u32 reg, struct virt_x2apic_mode_config *config,
6330 	struct virt_x2apic_mode_expectation *expectation)
6331 {
6332 	struct apic_reg_virt_config *base_config =
6333 		&config->apic_reg_virt_config;
6334 	bool virt_x2apic_mode_on =
6335 		base_config->virtualize_x2apic_mode &&
6336 		config->use_msr_bitmaps &&
6337 		config->disable_x2apic_msr_intercepts &&
6338 		base_config->activate_secondary_controls;
6339 
6340 	virt_x2apic_mode_wr_expectation(
6341 		reg, virt_x2apic_mode_on, config->disable_x2apic,
6342 		config->virtual_interrupt_delivery, expectation);
6343 	virt_x2apic_mode_rd_expectation(
6344 		reg, virt_x2apic_mode_on, config->disable_x2apic,
6345 		base_config->apic_register_virtualization,
6346 		config->virtual_interrupt_delivery, expectation);
6347 }
6348 
6349 struct virt_x2apic_mode_test_case virt_x2apic_mode_tests[] = {
6350 	/*
6351 	 * Baseline "virtualize x2APIC mode" configuration:
6352 	 *   - virtualize x2APIC mode
6353 	 *   - virtual-interrupt delivery
6354 	 *   - APIC-register virtualization
6355 	 *   - x2APIC MSR intercepts disabled
6356 	 *
6357 	 * Reads come from virtual APIC page, special processing applies to
6358 	 * VTPR, EOI, and SELF IPI, and all other writes pass through to L1
6359 	 * APIC.
6360 	 */
6361 	{
6362 		.name = "Baseline",
6363 		.virt_x2apic_mode_config = {
6364 			.virtual_interrupt_delivery = true,
6365 			.use_msr_bitmaps = true,
6366 			.disable_x2apic_msr_intercepts = true,
6367 			.disable_x2apic = false,
6368 			.apic_reg_virt_config = {
6369 				.apic_register_virtualization = true,
6370 				.use_tpr_shadow = true,
6371 				.virtualize_apic_accesses = false,
6372 				.virtualize_x2apic_mode = true,
6373 				.activate_secondary_controls = true,
6374 			},
6375 		},
6376 	},
6377 	{
6378 		.name = "Baseline w/ x2apic disabled",
6379 		.virt_x2apic_mode_config = {
6380 			.virtual_interrupt_delivery = true,
6381 			.use_msr_bitmaps = true,
6382 			.disable_x2apic_msr_intercepts = true,
6383 			.disable_x2apic = true,
6384 			.apic_reg_virt_config = {
6385 				.apic_register_virtualization = true,
6386 				.use_tpr_shadow = true,
6387 				.virtualize_apic_accesses = false,
6388 				.virtualize_x2apic_mode = true,
6389 				.activate_secondary_controls = true,
6390 			},
6391 		},
6392 	},
6393 
6394 	/*
6395 	 * Baseline, minus virtual-interrupt delivery. Reads come from virtual
6396 	 * APIC page, special processing applies to VTPR, and all other writes
6397 	 * pass through to L1 APIC.
6398 	 */
6399 	{
6400 		.name = "Baseline - virtual interrupt delivery",
6401 		.virt_x2apic_mode_config = {
6402 			.virtual_interrupt_delivery = false,
6403 			.use_msr_bitmaps = true,
6404 			.disable_x2apic_msr_intercepts = true,
6405 			.disable_x2apic = false,
6406 			.apic_reg_virt_config = {
6407 				.apic_register_virtualization = true,
6408 				.use_tpr_shadow = true,
6409 				.virtualize_apic_accesses = false,
6410 				.virtualize_x2apic_mode = true,
6411 				.activate_secondary_controls = true,
6412 			},
6413 		},
6414 	},
6415 
6416 	/*
6417 	 * Baseline, minus APIC-register virtualization. x2APIC reads pass
6418 	 * through to L1's APIC, unless reading VTPR
6419 	 */
6420 	{
6421 		.name = "Virtualize x2APIC mode, no APIC reg virt",
6422 		.virt_x2apic_mode_config = {
6423 			.virtual_interrupt_delivery = true,
6424 			.use_msr_bitmaps = true,
6425 			.disable_x2apic_msr_intercepts = true,
6426 			.disable_x2apic = false,
6427 			.apic_reg_virt_config = {
6428 				.apic_register_virtualization = false,
6429 				.use_tpr_shadow = true,
6430 				.virtualize_apic_accesses = false,
6431 				.virtualize_x2apic_mode = true,
6432 				.activate_secondary_controls = true,
6433 			},
6434 		},
6435 	},
6436 	{
6437 		.name = "Virtualize x2APIC mode, no APIC reg virt, x2APIC off",
6438 		.virt_x2apic_mode_config = {
6439 			.virtual_interrupt_delivery = true,
6440 			.use_msr_bitmaps = true,
6441 			.disable_x2apic_msr_intercepts = true,
6442 			.disable_x2apic = true,
6443 			.apic_reg_virt_config = {
6444 				.apic_register_virtualization = false,
6445 				.use_tpr_shadow = true,
6446 				.virtualize_apic_accesses = false,
6447 				.virtualize_x2apic_mode = true,
6448 				.activate_secondary_controls = true,
6449 			},
6450 		},
6451 	},
6452 
6453 	/*
6454 	 * Enable "virtualize x2APIC mode" and "APIC-register virtualization",
6455 	 * and disable intercepts for the x2APIC MSRs, but fail to enable
6456 	 * "activate secondary controls" (i.e. L2 gets access to L1's x2APIC
6457 	 * MSRs).
6458 	 */
6459 	{
6460 		.name = "Fail to enable activate secondary controls",
6461 		.virt_x2apic_mode_config = {
6462 			.virtual_interrupt_delivery = true,
6463 			.use_msr_bitmaps = true,
6464 			.disable_x2apic_msr_intercepts = true,
6465 			.disable_x2apic = false,
6466 			.apic_reg_virt_config = {
6467 				.apic_register_virtualization = true,
6468 				.use_tpr_shadow = true,
6469 				.virtualize_apic_accesses = false,
6470 				.virtualize_x2apic_mode = true,
6471 				.activate_secondary_controls = false,
6472 			},
6473 		},
6474 	},
6475 
6476 	/*
6477 	 * Enable "APIC-register virtualization" and enable "activate secondary
6478 	 * controls" and disable intercepts for the x2APIC MSRs, but do not
6479 	 * enable the "virtualize x2APIC mode" VM-execution control (i.e. L2
6480 	 * gets access to L1's x2APIC MSRs).
6481 	 */
6482 	{
6483 		.name = "Fail to enable virtualize x2APIC mode",
6484 		.virt_x2apic_mode_config = {
6485 			.virtual_interrupt_delivery = true,
6486 			.use_msr_bitmaps = true,
6487 			.disable_x2apic_msr_intercepts = true,
6488 			.disable_x2apic = false,
6489 			.apic_reg_virt_config = {
6490 				.apic_register_virtualization = true,
6491 				.use_tpr_shadow = true,
6492 				.virtualize_apic_accesses = false,
6493 				.virtualize_x2apic_mode = false,
6494 				.activate_secondary_controls = true,
6495 			},
6496 		},
6497 	},
6498 
6499 	/*
6500 	 * Disable "Virtualize x2APIC mode", disable x2APIC MSR intercepts, and
6501 	 * enable "APIC-register virtualization" --> L2 gets L1's x2APIC MSRs.
6502 	 */
6503 	{
6504 		.name = "Baseline",
6505 		.virt_x2apic_mode_config = {
6506 			.virtual_interrupt_delivery = true,
6507 			.use_msr_bitmaps = true,
6508 			.disable_x2apic_msr_intercepts = true,
6509 			.disable_x2apic = false,
6510 			.apic_reg_virt_config = {
6511 				.apic_register_virtualization = true,
6512 				.use_tpr_shadow = true,
6513 				.virtualize_apic_accesses = false,
6514 				.virtualize_x2apic_mode = false,
6515 				.activate_secondary_controls = true,
6516 			},
6517 		},
6518 	},
6519 };
6520 
6521 enum X2apic_op {
6522 	X2APIC_OP_RD,
6523 	X2APIC_OP_WR,
6524 	X2APIC_TERMINATE,
6525 };
6526 
6527 static u64 vmx_x2apic_read(u32 reg)
6528 {
6529 	u32 msr_addr = x2apic_msr(reg);
6530 	u64 val;
6531 
6532 	val = rdmsr(msr_addr);
6533 
6534 	return val;
6535 }
6536 
6537 static void vmx_x2apic_write(u32 reg, u64 val)
6538 {
6539 	u32 msr_addr = x2apic_msr(reg);
6540 
6541 	wrmsr(msr_addr, val);
6542 }
6543 
6544 struct virt_x2apic_mode_guest_args {
6545 	enum X2apic_op op;
6546 	u32 reg;
6547 	u64 val;
6548 	bool should_gp;
6549 	u64 (*virt_fn)(u64);
6550 } virt_x2apic_mode_guest_args;
6551 
6552 static volatile bool handle_x2apic_gp_ran;
6553 static volatile u32 handle_x2apic_gp_insn_len;
6554 static void handle_x2apic_gp(struct ex_regs *regs)
6555 {
6556 	handle_x2apic_gp_ran = true;
6557 	regs->rip += handle_x2apic_gp_insn_len;
6558 }
6559 
6560 static handler setup_x2apic_gp_handler(void)
6561 {
6562 	handler old_handler;
6563 
6564 	old_handler = handle_exception(GP_VECTOR, handle_x2apic_gp);
6565 	/* RDMSR and WRMSR are both 2 bytes, assuming no prefixes. */
6566 	handle_x2apic_gp_insn_len = 2;
6567 
6568 	return old_handler;
6569 }
6570 
6571 static void teardown_x2apic_gp_handler(handler old_handler)
6572 {
6573 	handle_exception(GP_VECTOR, old_handler);
6574 
6575 	/*
6576 	 * Defensively reset instruction length, so that if the handler is
6577 	 * incorrectly used, it will loop infinitely, rather than run off into
6578 	 * la la land.
6579 	 */
6580 	handle_x2apic_gp_insn_len = 0;
6581 	handle_x2apic_gp_ran = false;
6582 }
6583 
6584 static void virt_x2apic_mode_guest(void)
6585 {
6586 	volatile struct virt_x2apic_mode_guest_args *args =
6587 		&virt_x2apic_mode_guest_args;
6588 
6589 	for (;;) {
6590 		enum X2apic_op op = args->op;
6591 		u32 reg = args->reg;
6592 		u64 val = args->val;
6593 		bool should_gp = args->should_gp;
6594 		u64 (*virt_fn)(u64) = args->virt_fn;
6595 		handler old_handler;
6596 
6597 		if (op == X2APIC_TERMINATE)
6598 			break;
6599 
6600 		if (should_gp) {
6601 			TEST_ASSERT(!handle_x2apic_gp_ran);
6602 			old_handler = setup_x2apic_gp_handler();
6603 		}
6604 
6605 		if (op == X2APIC_OP_RD) {
6606 			u64 ret = vmx_x2apic_read(reg);
6607 
6608 			if (!should_gp) {
6609 				u64 want = virt_fn(val);
6610 				u64 got = virt_fn(ret);
6611 
6612 				report(got == want,
6613 				       "APIC read; got 0x%lx, want 0x%lx.",
6614 				       got, want);
6615 			}
6616 		} else if (op == X2APIC_OP_WR) {
6617 			vmx_x2apic_write(reg, val);
6618 		}
6619 
6620 		if (should_gp) {
6621 			report(handle_x2apic_gp_ran,
6622 			       "x2APIC op triggered GP.");
6623 			teardown_x2apic_gp_handler(old_handler);
6624 		}
6625 
6626 		/*
6627 		 * The L1 should always execute a vmcall after it's done testing
6628 		 * an individual APIC operation. This helps to validate that the
6629 		 * L1 and L2 are in sync with each other, as expected.
6630 		 */
6631 		vmcall();
6632 	}
6633 }
6634 
6635 static void test_x2apic_rd(
6636 	u32 reg, struct virt_x2apic_mode_expectation *expectation,
6637 	u32 *virtual_apic_page)
6638 {
6639 	u64 val = expectation->rd_val;
6640 	u32 exit_reason_want = expectation->rd_exit_reason;
6641 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6642 
6643 	report_prefix_pushf("x2apic - reading 0x%03x", reg);
6644 
6645 	/* Configure guest to do an x2apic read */
6646 	args->op = X2APIC_OP_RD;
6647 	args->reg = reg;
6648 	args->val = val;
6649 	args->should_gp = expectation->rd_behavior == X2APIC_ACCESS_TRIGGERS_GP;
6650 	args->virt_fn = expectation->virt_fn;
6651 
6652 	/* Setup virtual APIC page */
6653 	if (expectation->rd_behavior == X2APIC_ACCESS_VIRTUALIZED)
6654 		virtual_apic_page[apic_reg_index(reg)] = (u32)val;
6655 
6656 	/* Enter guest */
6657 	enter_guest();
6658 
6659 	if (exit_reason_want != VMX_VMCALL) {
6660 		report_fail("Oops, bad exit expectation: %u.", exit_reason_want);
6661 	}
6662 
6663 	skip_exit_vmcall();
6664 	report_prefix_pop();
6665 }
6666 
6667 static volatile bool handle_x2apic_ipi_ran;
6668 static void handle_x2apic_ipi(isr_regs_t *regs)
6669 {
6670 	handle_x2apic_ipi_ran = true;
6671 	eoi();
6672 }
6673 
6674 static void test_x2apic_wr(
6675 	u32 reg, struct virt_x2apic_mode_expectation *expectation,
6676 	u32 *virtual_apic_page)
6677 {
6678 	u64 val = expectation->wr_val;
6679 	u32 exit_reason_want = expectation->wr_exit_reason;
6680 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6681 	int ipi_vector = 0xf1;
6682 	u32 restore_val = 0;
6683 
6684 	report_prefix_pushf("x2apic - writing 0x%lx to 0x%03x", val, reg);
6685 
6686 	/* Configure guest to do an x2apic read */
6687 	args->op = X2APIC_OP_WR;
6688 	args->reg = reg;
6689 	args->val = val;
6690 	args->should_gp = expectation->wr_behavior == X2APIC_ACCESS_TRIGGERS_GP;
6691 
6692 	/* Setup virtual APIC page */
6693 	if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED)
6694 		virtual_apic_page[apic_reg_index(reg)] = 0;
6695 	if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH && !expectation->wr_only)
6696 		restore_val = apic_read(reg);
6697 
6698 	/* Setup IPI handler */
6699 	handle_x2apic_ipi_ran = false;
6700 	handle_irq(ipi_vector, handle_x2apic_ipi);
6701 
6702 	/* Enter guest */
6703 	enter_guest();
6704 
6705 	/*
6706 	 * Validate the behavior and
6707 	 * pass a magic value back to the guest.
6708 	 */
6709 	if (exit_reason_want == VMX_EXTINT) {
6710 		assert_exit_reason(exit_reason_want);
6711 
6712 		/* Clear the external interrupt. */
6713 		sti_nop_cli();
6714 		report(handle_x2apic_ipi_ran,
6715 		       "Got pending interrupt after IRQ enabled.");
6716 
6717 		enter_guest();
6718 	} else if (exit_reason_want == VMX_APIC_WRITE) {
6719 		assert_exit_reason(exit_reason_want);
6720 		report(virtual_apic_page[apic_reg_index(reg)] == val,
6721 		       "got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%lx",
6722 		       apic_reg_index(reg),
6723 		       virtual_apic_page[apic_reg_index(reg)], val);
6724 
6725 		/* Reenter guest so it can consume/check rcx and exit again. */
6726 		enter_guest();
6727 	} else if (exit_reason_want != VMX_VMCALL) {
6728 		report_fail("Oops, bad exit expectation: %u.", exit_reason_want);
6729 	}
6730 
6731 	assert_exit_reason(VMX_VMCALL);
6732 	if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) {
6733 		u64 want = val;
6734 		u32 got = virtual_apic_page[apic_reg_index(reg)];
6735 
6736 		report(got == want, "x2APIC write; got 0x%x, want 0x%lx", got,
6737 		       want);
6738 	} else if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH) {
6739 		if (!expectation->wr_only) {
6740 			u32 got = apic_read(reg);
6741 			bool ok;
6742 
6743 			/*
6744 			 * When L1's TPR is passed through to L2, the lower
6745 			 * nibble can be lost. For example, if L2 executes
6746 			 * WRMSR(0x808, 0x78), then, L1 might read 0x70.
6747 			 *
6748 			 * Here's how the lower nibble can get lost:
6749 			 *   1. L2 executes WRMSR(0x808, 0x78).
6750 			 *   2. L2 exits to L0 with a WRMSR exit.
6751 			 *   3. L0 emulates WRMSR, by writing L1's TPR.
6752 			 *   4. L0 re-enters L2.
6753 			 *   5. L2 exits to L0 (reason doesn't matter).
6754 			 *   6. L0 reflects L2's exit to L1.
6755 			 *   7. Before entering L1, L0 exits to user-space
6756 			 *      (e.g., to satisfy TPR access reporting).
6757 			 *   8. User-space executes KVM_SET_REGS ioctl, which
6758 			 *      clears the lower nibble of L1's TPR.
6759 			 */
6760 			if (reg == APIC_TASKPRI) {
6761 				got = apic_virt_nibble1(got);
6762 				val = apic_virt_nibble1(val);
6763 			}
6764 
6765 			ok = got == val;
6766 			report(ok,
6767 			       "non-virtualized write; val is 0x%x, want 0x%lx",
6768 			       got, val);
6769 			apic_write(reg, restore_val);
6770 		} else {
6771 			report_pass("non-virtualized and write-only OK");
6772 		}
6773 	}
6774 	skip_exit_insn();
6775 
6776 	report_prefix_pop();
6777 }
6778 
6779 static enum Config_type configure_virt_x2apic_mode_test(
6780 	struct virt_x2apic_mode_config *virt_x2apic_mode_config,
6781 	u8 *msr_bitmap_page)
6782 {
6783 	int msr;
6784 	u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6785 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6786 
6787 	/* x2apic-specific VMCS config */
6788 	if (virt_x2apic_mode_config->use_msr_bitmaps) {
6789 		/* virt_x2apic_mode_test() checks for MSR bitmaps support */
6790 		cpu_exec_ctrl0 |= CPU_MSR_BITMAP;
6791 	} else {
6792 		cpu_exec_ctrl0 &= ~CPU_MSR_BITMAP;
6793 	}
6794 
6795 	if (virt_x2apic_mode_config->virtual_interrupt_delivery) {
6796 		if (!(ctrl_cpu_rev[1].clr & CPU_VINTD)) {
6797 			report_skip("%s : \"virtual-interrupt delivery\" exec control not supported", __func__);
6798 			return CONFIG_TYPE_UNSUPPORTED;
6799 		}
6800 		cpu_exec_ctrl1 |= CPU_VINTD;
6801 	} else {
6802 		cpu_exec_ctrl1 &= ~CPU_VINTD;
6803 	}
6804 
6805 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6806 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6807 
6808 	/* x2APIC MSR intercepts are usually off for "Virtualize x2APIC mode" */
6809 	for (msr = 0x800; msr <= 0x8ff; msr++) {
6810 		if (virt_x2apic_mode_config->disable_x2apic_msr_intercepts) {
6811 			clear_bit(msr, msr_bitmap_page + 0x000);
6812 			clear_bit(msr, msr_bitmap_page + 0x800);
6813 		} else {
6814 			set_bit(msr, msr_bitmap_page + 0x000);
6815 			set_bit(msr, msr_bitmap_page + 0x800);
6816 		}
6817 	}
6818 
6819 	/* x2APIC mode can impact virtualization */
6820 	reset_apic();
6821 	if (!virt_x2apic_mode_config->disable_x2apic)
6822 		enable_x2apic();
6823 
6824 	return configure_apic_reg_virt_test(
6825 		&virt_x2apic_mode_config->apic_reg_virt_config);
6826 }
6827 
6828 static void virt_x2apic_mode_test(void)
6829 {
6830 	u32 *virtual_apic_page;
6831 	u8 *msr_bitmap_page;
6832 	u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6833 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6834 	int i;
6835 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6836 
6837 	if (!cpu_has_apicv()) {
6838 		report_skip("%s : Not all required APICv bits supported", __func__);
6839 		return;
6840 	}
6841 
6842 	/*
6843 	 * This is to exercise an issue in KVM's logic to merge L0's and L1's
6844 	 * MSR bitmaps. Previously, an L1 could get at L0's x2APIC MSRs by
6845 	 * writing the IA32_SPEC_CTRL MSR or the IA32_PRED_CMD MSRs. KVM would
6846 	 * then proceed to manipulate the MSR bitmaps, as if VMCS12 had the
6847 	 * "Virtualize x2APIC mod" control set, even when it didn't.
6848 	 */
6849 	if (this_cpu_has(X86_FEATURE_SPEC_CTRL))
6850 		wrmsr(MSR_IA32_SPEC_CTRL, 1);
6851 
6852 	/*
6853 	 * Check that VMCS12 supports:
6854 	 *   - "Virtual-APIC address", indicated by "use TPR shadow"
6855 	 *   - "MSR-bitmap address", indicated by "use MSR bitmaps"
6856 	 */
6857 	if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) {
6858 		report_skip("%s : \"Use TPR shadow\" exec control not supported", __func__);
6859 		return;
6860 	} else if (!(ctrl_cpu_rev[0].clr & CPU_MSR_BITMAP)) {
6861 		report_skip("%s : \"Use MSR bitmaps\" exec control not supported", __func__);
6862 		return;
6863 	}
6864 
6865 	test_set_guest(virt_x2apic_mode_guest);
6866 
6867 	virtual_apic_page = alloc_page();
6868 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
6869 
6870 	msr_bitmap_page = alloc_page();
6871 	memset(msr_bitmap_page, 0xff, PAGE_SIZE);
6872 	vmcs_write(MSR_BITMAP, virt_to_phys(msr_bitmap_page));
6873 
6874 	for (i = 0; i < ARRAY_SIZE(virt_x2apic_mode_tests); i++) {
6875 		struct virt_x2apic_mode_test_case *virt_x2apic_mode_test_case =
6876 			&virt_x2apic_mode_tests[i];
6877 		struct virt_x2apic_mode_config *virt_x2apic_mode_config =
6878 			&virt_x2apic_mode_test_case->virt_x2apic_mode_config;
6879 		enum Config_type config_type;
6880 		u32 reg;
6881 
6882 		printf("--- %s test ---\n", virt_x2apic_mode_test_case->name);
6883 		config_type =
6884 			configure_virt_x2apic_mode_test(virt_x2apic_mode_config,
6885 							msr_bitmap_page);
6886 		if (config_type == CONFIG_TYPE_UNSUPPORTED) {
6887 			report_skip("Skip because of missing features.");
6888 			continue;
6889 		} else if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) {
6890 			enter_guest_with_bad_controls();
6891 			continue;
6892 		}
6893 
6894 		for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) {
6895 			struct virt_x2apic_mode_expectation expectation;
6896 
6897 			virt_x2apic_mode_exit_expectation(
6898 				reg, virt_x2apic_mode_config, &expectation);
6899 
6900 			test_x2apic_rd(reg, &expectation, virtual_apic_page);
6901 			test_x2apic_wr(reg, &expectation, virtual_apic_page);
6902 		}
6903 	}
6904 
6905 
6906 	/* Terminate the guest */
6907 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6908 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6909 	args->op = X2APIC_TERMINATE;
6910 	enter_guest();
6911 	assert_exit_reason(VMX_VMCALL);
6912 }
6913 
6914 static void test_ctl_reg(const char *cr_name, u64 cr, u64 fixed0, u64 fixed1)
6915 {
6916 	u64 val;
6917 	u64 cr_saved = vmcs_read(cr);
6918 	int i;
6919 
6920 	val = fixed0 & fixed1;
6921 	if (cr == HOST_CR4)
6922 		vmcs_write(cr, val | X86_CR4_PAE);
6923 	else
6924 		vmcs_write(cr, val);
6925 	report_prefix_pushf("%s %lx", cr_name, val);
6926 	if (val == fixed0)
6927 		test_vmx_vmlaunch(0);
6928 	else
6929 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6930 	report_prefix_pop();
6931 
6932 	for (i = 0; i < 64; i++) {
6933 
6934 		/* Set a bit when the corresponding bit in fixed1 is 0 */
6935 		if ((fixed1 & (1ull << i)) == 0) {
6936 			if (cr == HOST_CR4 && ((1ull << i) & X86_CR4_SMEP ||
6937 					       (1ull << i) & X86_CR4_SMAP))
6938 				continue;
6939 
6940 			vmcs_write(cr, cr_saved | (1ull << i));
6941 			report_prefix_pushf("%s %llx", cr_name,
6942 						cr_saved | (1ull << i));
6943 			test_vmx_vmlaunch(
6944 				VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6945 			report_prefix_pop();
6946 		}
6947 
6948 		/* Unset a bit when the corresponding bit in fixed0 is 1 */
6949 		if (fixed0 & (1ull << i)) {
6950 			vmcs_write(cr, cr_saved & ~(1ull << i));
6951 			report_prefix_pushf("%s %llx", cr_name,
6952 						cr_saved & ~(1ull << i));
6953 			test_vmx_vmlaunch(
6954 				VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6955 			report_prefix_pop();
6956 		}
6957 	}
6958 
6959 	vmcs_write(cr, cr_saved);
6960 }
6961 
6962 /*
6963  * 1. The CR0 field must not set any bit to a value not supported in VMX
6964  *    operation.
6965  * 2. The CR4 field must not set any bit to a value not supported in VMX
6966  *    operation.
6967  * 3. On processors that support Intel 64 architecture, the CR3 field must
6968  *    be such that bits 63:52 and bits in the range 51:32 beyond the
6969  *    processor's physical-address width must be 0.
6970  *
6971  *  [Intel SDM]
6972  */
6973 static void test_host_ctl_regs(void)
6974 {
6975 	u64 fixed0, fixed1, cr3, cr3_saved;
6976 	int i;
6977 
6978 	/* Test CR0 */
6979 	fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0);
6980 	fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1);
6981 	test_ctl_reg("HOST_CR0", HOST_CR0, fixed0, fixed1);
6982 
6983 	/* Test CR4 */
6984 	fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
6985 	fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1) &
6986 		 ~(X86_CR4_SMEP | X86_CR4_SMAP);
6987 	test_ctl_reg("HOST_CR4", HOST_CR4, fixed0, fixed1);
6988 
6989 	/* Test CR3 */
6990 	cr3_saved = vmcs_read(HOST_CR3);
6991 	for (i = cpuid_maxphyaddr(); i < 64; i++) {
6992 		cr3 = cr3_saved | (1ul << i);
6993 		vmcs_write(HOST_CR3, cr3);
6994 		report_prefix_pushf("HOST_CR3 %lx", cr3);
6995 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6996 		report_prefix_pop();
6997 	}
6998 
6999 	vmcs_write(HOST_CR3, cr3_saved);
7000 }
7001 
7002 static void test_efer_vmlaunch(u32 fld, bool ok)
7003 {
7004 	if (fld == HOST_EFER) {
7005 		if (ok)
7006 			test_vmx_vmlaunch(0);
7007 		else
7008 			test_vmx_vmlaunch2(VMXERR_ENTRY_INVALID_CONTROL_FIELD,
7009 					VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7010 	} else {
7011 		test_guest_state("EFER test", !ok, GUEST_EFER, "GUEST_EFER");
7012 	}
7013 }
7014 
7015 static void test_efer_one(u32 fld, const char * fld_name, u64 efer,
7016 			  u32 ctrl_fld, u64 ctrl,
7017 			  int i, const char *efer_bit_name)
7018 {
7019 	bool ok;
7020 
7021 	ok = true;
7022 	if (ctrl_fld == EXI_CONTROLS && (ctrl & EXI_LOAD_EFER)) {
7023 		if (!!(efer & EFER_LMA) != !!(ctrl & EXI_HOST_64))
7024 			ok = false;
7025 		if (!!(efer & EFER_LME) != !!(ctrl & EXI_HOST_64))
7026 			ok = false;
7027 	}
7028 	if (ctrl_fld == ENT_CONTROLS && (ctrl & ENT_LOAD_EFER)) {
7029 		/* Check LMA too since CR0.PG is set.  */
7030 		if (!!(efer & EFER_LMA) != !!(ctrl & ENT_GUEST_64))
7031 			ok = false;
7032 		if (!!(efer & EFER_LME) != !!(ctrl & ENT_GUEST_64))
7033 			ok = false;
7034 	}
7035 
7036 	/*
7037 	 * Skip the test if it would enter the guest in 32-bit mode.
7038 	 * Perhaps write the test in assembly and make sure it
7039 	 * can be run in either mode?
7040 	 */
7041 	if (fld == GUEST_EFER && ok && !(ctrl & ENT_GUEST_64))
7042 		return;
7043 
7044 	vmcs_write(ctrl_fld, ctrl);
7045 	vmcs_write(fld, efer);
7046 	report_prefix_pushf("%s %s bit turned %s, controls %s",
7047 			    fld_name, efer_bit_name,
7048 			    (i & 1) ? "on" : "off",
7049 			    (i & 2) ? "on" : "off");
7050 
7051 	test_efer_vmlaunch(fld, ok);
7052 	report_prefix_pop();
7053 }
7054 
7055 static void test_efer_bit(u32 fld, const char * fld_name,
7056 			  u32 ctrl_fld, u64 ctrl_bit, u64 efer_bit,
7057 			  const char *efer_bit_name)
7058 {
7059 	u64 efer_saved = vmcs_read(fld);
7060 	u32 ctrl_saved = vmcs_read(ctrl_fld);
7061 	int i;
7062 
7063 	for (i = 0; i < 4; i++) {
7064 		u64 efer = efer_saved & ~efer_bit;
7065 		u64 ctrl = ctrl_saved & ~ctrl_bit;
7066 
7067 		if (i & 1)
7068 			efer |= efer_bit;
7069 		if (i & 2)
7070 			ctrl |= ctrl_bit;
7071 
7072 		test_efer_one(fld, fld_name, efer, ctrl_fld, ctrl,
7073 			      i, efer_bit_name);
7074 	}
7075 
7076 	vmcs_write(ctrl_fld, ctrl_saved);
7077 	vmcs_write(fld, efer_saved);
7078 }
7079 
7080 static void test_efer(u32 fld, const char * fld_name, u32 ctrl_fld,
7081 		      u64 ctrl_bit1, u64 ctrl_bit2)
7082 {
7083 	u64 efer_saved = vmcs_read(fld);
7084 	u32 ctrl_saved = vmcs_read(ctrl_fld);
7085 	u64 efer_reserved_bits =  ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
7086 	u64 i;
7087 	u64 efer;
7088 
7089 	if (this_cpu_has(X86_FEATURE_NX))
7090 		efer_reserved_bits &= ~EFER_NX;
7091 
7092 	if (!ctrl_bit1) {
7093 		report_skip("%s : \"Load-IA32-EFER\" exit control not supported", __func__);
7094 		goto test_entry_exit_mode;
7095 	}
7096 
7097 	report_prefix_pushf("%s %lx", fld_name, efer_saved);
7098 	test_efer_vmlaunch(fld, true);
7099 	report_prefix_pop();
7100 
7101 	/*
7102 	 * Check reserved bits
7103 	 */
7104 	vmcs_write(ctrl_fld, ctrl_saved & ~ctrl_bit1);
7105 	for (i = 0; i < 64; i++) {
7106 		if ((1ull << i) & efer_reserved_bits) {
7107 			efer = efer_saved | (1ull << i);
7108 			vmcs_write(fld, efer);
7109 			report_prefix_pushf("%s %lx", fld_name, efer);
7110 			test_efer_vmlaunch(fld, true);
7111 			report_prefix_pop();
7112 		}
7113 	}
7114 
7115 	vmcs_write(ctrl_fld, ctrl_saved | ctrl_bit1);
7116 	for (i = 0; i < 64; i++) {
7117 		if ((1ull << i) & efer_reserved_bits) {
7118 			efer = efer_saved | (1ull << i);
7119 			vmcs_write(fld, efer);
7120 			report_prefix_pushf("%s %lx", fld_name, efer);
7121 			test_efer_vmlaunch(fld, false);
7122 			report_prefix_pop();
7123 		}
7124 	}
7125 
7126 	vmcs_write(ctrl_fld, ctrl_saved);
7127 	vmcs_write(fld, efer_saved);
7128 
7129 	/*
7130 	 * Check LMA and LME bits
7131 	 */
7132 	test_efer_bit(fld, fld_name,
7133 		      ctrl_fld, ctrl_bit1,
7134 		      EFER_LMA,
7135 		      "EFER_LMA");
7136 	test_efer_bit(fld, fld_name,
7137 		      ctrl_fld, ctrl_bit1,
7138 		      EFER_LME,
7139 		      "EFER_LME");
7140 
7141 test_entry_exit_mode:
7142 	test_efer_bit(fld, fld_name,
7143 		      ctrl_fld, ctrl_bit2,
7144 		      EFER_LMA,
7145 		      "EFER_LMA");
7146 	test_efer_bit(fld, fld_name,
7147 		      ctrl_fld, ctrl_bit2,
7148 		      EFER_LME,
7149 		      "EFER_LME");
7150 }
7151 
7152 /*
7153  * If the 'load IA32_EFER' VM-exit control is 1, bits reserved in the
7154  * IA32_EFER MSR must be 0 in the field for that register. In addition,
7155  * the values of the LMA and LME bits in the field must each be that of
7156  * the 'host address-space size' VM-exit control.
7157  *
7158  *  [Intel SDM]
7159  */
7160 static void test_host_efer(void)
7161 {
7162 	test_efer(HOST_EFER, "HOST_EFER", EXI_CONTROLS,
7163 		  ctrl_exit_rev.clr & EXI_LOAD_EFER,
7164 		  EXI_HOST_64);
7165 }
7166 
7167 /*
7168  * If the 'load IA32_EFER' VM-enter control is 1, bits reserved in the
7169  * IA32_EFER MSR must be 0 in the field for that register. In addition,
7170  * the values of the LMA and LME bits in the field must each be that of
7171  * the 'IA32e-mode guest' VM-exit control.
7172  */
7173 static void test_guest_efer(void)
7174 {
7175 	if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) {
7176 		report_skip("%s : \"Load-IA32-EFER\" entry control not supported", __func__);
7177 		return;
7178 	}
7179 
7180 	vmcs_write(GUEST_EFER, rdmsr(MSR_EFER));
7181 	test_efer(GUEST_EFER, "GUEST_EFER", ENT_CONTROLS,
7182 		  ctrl_enter_rev.clr & ENT_LOAD_EFER,
7183 		  ENT_GUEST_64);
7184 }
7185 
7186 /*
7187  * PAT values higher than 8 are uninteresting since they're likely lumped
7188  * in with "8". We only test values above 8 one bit at a time,
7189  * in order to reduce the number of VM-Entries and keep the runtime reasonable.
7190  */
7191 #define	PAT_VAL_LIMIT	8
7192 
7193 static void test_pat(u32 field, const char * field_name, u32 ctrl_field,
7194 		     u64 ctrl_bit)
7195 {
7196 	u32 ctrl_saved = vmcs_read(ctrl_field);
7197 	u64 pat_saved = vmcs_read(field);
7198 	u64 i, val;
7199 	u32 j;
7200 	int error;
7201 
7202 	vmcs_clear_bits(ctrl_field, ctrl_bit);
7203 
7204 	for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) {
7205 		/* Test PAT0..PAT7 fields */
7206 		for (j = 0; j < (i ? 8 : 1); j++) {
7207 			val = i << j * 8;
7208 			vmcs_write(field, val);
7209 			if (field == HOST_PAT) {
7210 				report_prefix_pushf("%s %lx", field_name, val);
7211 				test_vmx_vmlaunch(0);
7212 				report_prefix_pop();
7213 
7214 			} else {	// GUEST_PAT
7215 				test_guest_state("ENT_LOAD_PAT enabled", false,
7216 						 val, "GUEST_PAT");
7217 			}
7218 		}
7219 	}
7220 
7221 	vmcs_set_bits(ctrl_field, ctrl_bit);
7222 	for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) {
7223 		/* Test PAT0..PAT7 fields */
7224 		for (j = 0; j < (i ? 8 : 1); j++) {
7225 			val = i << j * 8;
7226 			vmcs_write(field, val);
7227 
7228 			if (field == HOST_PAT) {
7229 				report_prefix_pushf("%s %lx", field_name, val);
7230 				if (i == 0x2 || i == 0x3 || i >= 0x8)
7231 					error =
7232 					VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
7233 				else
7234 					error = 0;
7235 
7236 				test_vmx_vmlaunch(error);
7237 				report_prefix_pop();
7238 
7239 			} else {	// GUEST_PAT
7240 				error = (i == 0x2 || i == 0x3 || i >= 0x8);
7241 				test_guest_state("ENT_LOAD_PAT enabled", !!error,
7242 						 val, "GUEST_PAT");
7243 			}
7244 
7245 		}
7246 	}
7247 
7248 	vmcs_write(ctrl_field, ctrl_saved);
7249 	vmcs_write(field, pat_saved);
7250 }
7251 
7252 /*
7253  *  If the "load IA32_PAT" VM-exit control is 1, the value of the field
7254  *  for the IA32_PAT MSR must be one that could be written by WRMSR
7255  *  without fault at CPL 0. Specifically, each of the 8 bytes in the
7256  *  field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
7257  *  6 (WB), or 7 (UC-).
7258  *
7259  *  [Intel SDM]
7260  */
7261 static void test_load_host_pat(void)
7262 {
7263 	/*
7264 	 * "load IA32_PAT" VM-exit control
7265 	 */
7266 	if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) {
7267 		report_skip("%s : \"Load-IA32-PAT\" exit control not supported", __func__);
7268 		return;
7269 	}
7270 
7271 	test_pat(HOST_PAT, "HOST_PAT", EXI_CONTROLS, EXI_LOAD_PAT);
7272 }
7273 
7274 union cpuidA_eax {
7275 	struct {
7276 		unsigned int version_id:8;
7277 		unsigned int num_counters_gp:8;
7278 		unsigned int bit_width:8;
7279 		unsigned int mask_length:8;
7280 	} split;
7281 	unsigned int full;
7282 };
7283 
7284 union cpuidA_edx {
7285 	struct {
7286 		unsigned int num_counters_fixed:5;
7287 		unsigned int bit_width_fixed:8;
7288 		unsigned int reserved:9;
7289 	} split;
7290 	unsigned int full;
7291 };
7292 
7293 static bool valid_pgc(u64 val)
7294 {
7295 	struct cpuid id;
7296 	union cpuidA_eax eax;
7297 	union cpuidA_edx edx;
7298 	u64 mask;
7299 
7300 	id = cpuid(0xA);
7301 	eax.full = id.a;
7302 	edx.full = id.d;
7303 	mask = ~(((1ull << eax.split.num_counters_gp) - 1) |
7304 		 (((1ull << edx.split.num_counters_fixed) - 1) << 32));
7305 
7306 	return !(val & mask);
7307 }
7308 
7309 static void test_pgc_vmlaunch(u32 xerror, u32 xreason, bool xfail, bool host)
7310 {
7311 	u32 inst_err;
7312 	u64 obs;
7313 	bool success;
7314 	struct vmx_state_area_test_data *data = &vmx_state_area_test_data;
7315 
7316 	if (host) {
7317 		success = vmlaunch_succeeds();
7318 		obs = rdmsr(data->msr);
7319 		if (!success) {
7320 			inst_err = vmcs_read(VMX_INST_ERROR);
7321 			report(xerror == inst_err, "vmlaunch failed, "
7322 			       "VMX Inst Error is %d (expected %d)",
7323 			       inst_err, xerror);
7324 		} else {
7325 			report(!data->enabled || data->exp == obs,
7326 			       "Host state is 0x%lx (expected 0x%lx)",
7327 			       obs, data->exp);
7328 			report(success != xfail, "vmlaunch succeeded");
7329 		}
7330 	} else {
7331 		test_guest_state("load GUEST_PERF_GLOBAL_CTRL", xfail,
7332 				 GUEST_PERF_GLOBAL_CTRL,
7333 				 "GUEST_PERF_GLOBAL_CTRL");
7334 	}
7335 }
7336 
7337 /*
7338  * test_load_perf_global_ctrl is a generic function for testing the
7339  * "load IA32_PERF_GLOBAL_CTRL" VM-{Entry,Exit} controls. This test function
7340  * tests the provided ctrl_val when disabled and enabled.
7341  *
7342  * @nr: VMCS field number corresponding to the host/guest state field
7343  * @name: Name of the above VMCS field for printing in test report
7344  * @ctrl_nr: VMCS field number corresponding to the VM-{Entry,Exit} control
7345  * @ctrl_val: Bit to set on the ctrl_field
7346  */
7347 static void test_perf_global_ctrl(u32 nr, const char *name, u32 ctrl_nr,
7348 				  const char *ctrl_name, u64 ctrl_val)
7349 {
7350 	u64 ctrl_saved = vmcs_read(ctrl_nr);
7351 	u64 pgc_saved = vmcs_read(nr);
7352 	u64 i, val;
7353 	bool host = nr == HOST_PERF_GLOBAL_CTRL;
7354 	struct vmx_state_area_test_data *data = &vmx_state_area_test_data;
7355 
7356 	data->msr = MSR_CORE_PERF_GLOBAL_CTRL;
7357 	msr_bmp_init();
7358 	vmcs_write(ctrl_nr, ctrl_saved & ~ctrl_val);
7359 	data->enabled = false;
7360 	report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=0 on %s",
7361 			    ctrl_name);
7362 
7363 	for (i = 0; i < 64; i++) {
7364 		val = 1ull << i;
7365 		vmcs_write(nr, val);
7366 		report_prefix_pushf("%s = 0x%lx", name, val);
7367 		test_pgc_vmlaunch(0, VMX_VMCALL, false, host);
7368 		report_prefix_pop();
7369 	}
7370 	report_prefix_pop();
7371 
7372 	vmcs_write(ctrl_nr, ctrl_saved | ctrl_val);
7373 	data->enabled = true;
7374 	report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=1 on %s",
7375 			    ctrl_name);
7376 	for (i = 0; i < 64; i++) {
7377 		val = 1ull << i;
7378 		data->exp = val;
7379 		vmcs_write(nr, val);
7380 		report_prefix_pushf("%s = 0x%lx", name, val);
7381 		if (valid_pgc(val)) {
7382 			test_pgc_vmlaunch(0, VMX_VMCALL, false, host);
7383 		} else {
7384 			if (host)
7385 				test_pgc_vmlaunch(
7386 					VMXERR_ENTRY_INVALID_HOST_STATE_FIELD,
7387 					0,
7388 					true,
7389 					host);
7390 			else
7391 				test_pgc_vmlaunch(
7392 					0,
7393 					VMX_ENTRY_FAILURE | VMX_FAIL_STATE,
7394 					true,
7395 					host);
7396 		}
7397 		report_prefix_pop();
7398 	}
7399 
7400 	data->enabled = false;
7401 	report_prefix_pop();
7402 	vmcs_write(ctrl_nr, ctrl_saved);
7403 	vmcs_write(nr, pgc_saved);
7404 }
7405 
7406 static void test_load_host_perf_global_ctrl(void)
7407 {
7408 	if (!this_cpu_has_perf_global_ctrl()) {
7409 		report_skip("%s : \"IA32_PERF_GLOBAL_CTRL\" MSR not supported", __func__);
7410 		return;
7411 	}
7412 
7413 	if (!(ctrl_exit_rev.clr & EXI_LOAD_PERF)) {
7414 		report_skip("%s : \"Load IA32_PERF_GLOBAL_CTRL\" exit control not supported", __func__);
7415 		return;
7416 	}
7417 
7418 	test_perf_global_ctrl(HOST_PERF_GLOBAL_CTRL, "HOST_PERF_GLOBAL_CTRL",
7419 				   EXI_CONTROLS, "EXI_CONTROLS", EXI_LOAD_PERF);
7420 }
7421 
7422 
7423 static void test_load_guest_perf_global_ctrl(void)
7424 {
7425 	if (!this_cpu_has_perf_global_ctrl()) {
7426 		report_skip("%s : \"IA32_PERF_GLOBAL_CTRL\" MSR not supported", __func__);
7427 		return;
7428 	}
7429 
7430 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PERF)) {
7431 		report_skip("%s : \"Load IA32_PERF_GLOBAL_CTRL\" entry control not supported", __func__);
7432 		return;
7433 	}
7434 
7435 	test_perf_global_ctrl(GUEST_PERF_GLOBAL_CTRL, "GUEST_PERF_GLOBAL_CTRL",
7436 				   ENT_CONTROLS, "ENT_CONTROLS", ENT_LOAD_PERF);
7437 }
7438 
7439 
7440 /*
7441  * test_vmcs_field - test a value for the given VMCS field
7442  * @field: VMCS field
7443  * @field_name: string name of VMCS field
7444  * @bit_start: starting bit
7445  * @bit_end: ending bit
7446  * @val: value that the bit range must or must not contain
7447  * @valid_val: whether value given in 'val' must be valid or not
7448  * @error: expected VMCS error when vmentry fails for an invalid value
7449  */
7450 static void test_vmcs_field(u64 field, const char *field_name, u32 bit_start,
7451 			    u32 bit_end, u64 val, bool valid_val, u32 error)
7452 {
7453 	u64 field_saved = vmcs_read(field);
7454 	u32 i;
7455 	u64 tmp;
7456 	u32 bit_on;
7457 	u64 mask = ~0ull;
7458 
7459 	mask = (mask >> bit_end) << bit_end;
7460 	mask = mask | ((1 << bit_start) - 1);
7461 	tmp = (field_saved & mask) | (val << bit_start);
7462 
7463 	vmcs_write(field, tmp);
7464 	report_prefix_pushf("%s %lx", field_name, tmp);
7465 	if (valid_val)
7466 		test_vmx_vmlaunch(0);
7467 	else
7468 		test_vmx_vmlaunch(error);
7469 	report_prefix_pop();
7470 
7471 	for (i = bit_start; i <= bit_end; i = i + 2) {
7472 		bit_on = ((1ull < i) & (val << bit_start)) ? 0 : 1;
7473 		if (bit_on)
7474 			tmp = field_saved | (1ull << i);
7475 		else
7476 			tmp = field_saved & ~(1ull << i);
7477 		vmcs_write(field, tmp);
7478 		report_prefix_pushf("%s %lx", field_name, tmp);
7479 		if (valid_val)
7480 			test_vmx_vmlaunch(error);
7481 		else
7482 			test_vmx_vmlaunch(0);
7483 		report_prefix_pop();
7484 	}
7485 
7486 	vmcs_write(field, field_saved);
7487 }
7488 
7489 static void test_canonical(u64 field, const char * field_name, bool host)
7490 {
7491 	u64 addr_saved = vmcs_read(field);
7492 
7493 	/*
7494 	 * Use the existing value if possible.  Writing a random canonical
7495 	 * value is not an option as doing so would corrupt the field being
7496 	 * tested and likely hose the test.
7497 	 */
7498 	if (is_canonical(addr_saved)) {
7499 		if (host) {
7500 			report_prefix_pushf("%s %lx", field_name, addr_saved);
7501 			test_vmx_vmlaunch(0);
7502 			report_prefix_pop();
7503 		} else {
7504 			test_guest_state("Test canonical address", false,
7505 					 addr_saved, field_name);
7506 		}
7507 	}
7508 
7509 	vmcs_write(field, NONCANONICAL);
7510 
7511 	if (host) {
7512 		report_prefix_pushf("%s %llx", field_name, NONCANONICAL);
7513 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7514 		report_prefix_pop();
7515 	} else {
7516 		test_guest_state("Test non-canonical address", true,
7517 				 NONCANONICAL, field_name);
7518 	}
7519 
7520 	vmcs_write(field, addr_saved);
7521 }
7522 
7523 #define TEST_RPL_TI_FLAGS(reg, name)				\
7524 	test_vmcs_field(reg, name, 0, 2, 0x0, true,		\
7525 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7526 
7527 #define TEST_CS_TR_FLAGS(reg, name)				\
7528 	test_vmcs_field(reg, name, 3, 15, 0x0000, false,	\
7529 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7530 
7531 /*
7532  * 1. In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the
7533  *    RPL (bits 1:0) and the TI flag (bit 2) must be 0.
7534  * 2. The selector fields for CS and TR cannot be 0000H.
7535  * 3. The selector field for SS cannot be 0000H if the "host address-space
7536  *    size" VM-exit control is 0.
7537  * 4. On processors that support Intel 64 architecture, the base-address
7538  *    fields for FS, GS and TR must contain canonical addresses.
7539  */
7540 static void test_host_segment_regs(void)
7541 {
7542 	u16 selector_saved;
7543 
7544 	/*
7545 	 * Test RPL and TI flags
7546 	 */
7547 	TEST_RPL_TI_FLAGS(HOST_SEL_CS, "HOST_SEL_CS");
7548 	TEST_RPL_TI_FLAGS(HOST_SEL_SS, "HOST_SEL_SS");
7549 	TEST_RPL_TI_FLAGS(HOST_SEL_DS, "HOST_SEL_DS");
7550 	TEST_RPL_TI_FLAGS(HOST_SEL_ES, "HOST_SEL_ES");
7551 	TEST_RPL_TI_FLAGS(HOST_SEL_FS, "HOST_SEL_FS");
7552 	TEST_RPL_TI_FLAGS(HOST_SEL_GS, "HOST_SEL_GS");
7553 	TEST_RPL_TI_FLAGS(HOST_SEL_TR, "HOST_SEL_TR");
7554 
7555 	/*
7556 	 * Test that CS and TR fields can not be 0x0000
7557 	 */
7558 	TEST_CS_TR_FLAGS(HOST_SEL_CS, "HOST_SEL_CS");
7559 	TEST_CS_TR_FLAGS(HOST_SEL_TR, "HOST_SEL_TR");
7560 
7561 	/*
7562 	 * SS field can not be 0x0000 if "host address-space size" VM-exit
7563 	 * control is 0
7564 	 */
7565 	selector_saved = vmcs_read(HOST_SEL_SS);
7566 	vmcs_write(HOST_SEL_SS, 0);
7567 	report_prefix_pushf("HOST_SEL_SS 0");
7568 	if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) {
7569 		test_vmx_vmlaunch(0);
7570 	} else {
7571 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7572 	}
7573 	report_prefix_pop();
7574 
7575 	vmcs_write(HOST_SEL_SS, selector_saved);
7576 
7577 	/*
7578 	 * Base address for FS, GS and TR must be canonical
7579 	 */
7580 	test_canonical(HOST_BASE_FS, "HOST_BASE_FS", true);
7581 	test_canonical(HOST_BASE_GS, "HOST_BASE_GS", true);
7582 	test_canonical(HOST_BASE_TR, "HOST_BASE_TR", true);
7583 }
7584 
7585 /*
7586  *  On processors that support Intel 64 architecture, the base-address
7587  *  fields for GDTR and IDTR must contain canonical addresses.
7588  */
7589 static void test_host_desc_tables(void)
7590 {
7591 	test_canonical(HOST_BASE_GDTR, "HOST_BASE_GDTR", true);
7592 	test_canonical(HOST_BASE_IDTR, "HOST_BASE_IDTR", true);
7593 }
7594 
7595 /*
7596  * If the "host address-space size" VM-exit control is 0, the following must
7597  * hold:
7598  *    - The "IA-32e mode guest" VM-entry control is 0.
7599  *    - Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.
7600  *    - Bits 63:32 in the RIP field are 0.
7601  *
7602  * If the "host address-space size" VM-exit control is 1, the following must
7603  * hold:
7604  *    - Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.
7605  *    - The RIP field contains a canonical address.
7606  *
7607  */
7608 static void test_host_addr_size(void)
7609 {
7610 	u64 cr4_saved = vmcs_read(HOST_CR4);
7611 	u64 rip_saved = vmcs_read(HOST_RIP);
7612 	u64 entry_ctrl_saved = vmcs_read(ENT_CONTROLS);
7613 	int i;
7614 	u64 tmp;
7615 
7616 	if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) {
7617 		vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64);
7618 		report_prefix_pushf("\"IA-32e mode guest\" enabled");
7619 		test_vmx_vmlaunch(0);
7620 		report_prefix_pop();
7621 
7622 		vmcs_write(HOST_CR4, cr4_saved | X86_CR4_PCIDE);
7623 		report_prefix_pushf("\"CR4.PCIDE\" set");
7624 		test_vmx_vmlaunch(0);
7625 		report_prefix_pop();
7626 
7627 		for (i = 32; i <= 63; i = i + 4) {
7628 			tmp = rip_saved | 1ull << i;
7629 			vmcs_write(HOST_RIP, tmp);
7630 			report_prefix_pushf("HOST_RIP %lx", tmp);
7631 			test_vmx_vmlaunch(0);
7632 			report_prefix_pop();
7633 		}
7634 
7635 		if (cr4_saved & X86_CR4_PAE) {
7636 			vmcs_write(HOST_CR4, cr4_saved  & ~X86_CR4_PAE);
7637 			report_prefix_pushf("\"CR4.PAE\" unset");
7638 			test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7639 		} else {
7640 			report_prefix_pushf("\"CR4.PAE\" set");
7641 			test_vmx_vmlaunch(0);
7642 		}
7643 		report_prefix_pop();
7644 
7645 		vmcs_write(HOST_RIP, NONCANONICAL);
7646 		report_prefix_pushf("HOST_RIP %llx", NONCANONICAL);
7647 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7648 		report_prefix_pop();
7649 
7650 		vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64);
7651 		vmcs_write(HOST_RIP, rip_saved);
7652 		vmcs_write(HOST_CR4, cr4_saved);
7653 
7654 		/* Restore host's active RIP and CR4 values. */
7655 		report_prefix_pushf("restore host state");
7656 		test_vmx_vmlaunch(0);
7657 		report_prefix_pop();
7658 	}
7659 }
7660 
7661 /*
7662  * Check that the virtual CPU checks the VMX Host State Area as
7663  * documented in the Intel SDM.
7664  */
7665 static void vmx_host_state_area_test(void)
7666 {
7667 	/*
7668 	 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will
7669 	 * fail due to invalid guest state, should we make it that
7670 	 * far.
7671 	 */
7672 	vmcs_write(GUEST_RFLAGS, 0);
7673 
7674 	test_host_ctl_regs();
7675 
7676 	test_canonical(HOST_SYSENTER_ESP, "HOST_SYSENTER_ESP", true);
7677 	test_canonical(HOST_SYSENTER_EIP, "HOST_SYSENTER_EIP", true);
7678 
7679 	test_host_efer();
7680 	test_load_host_pat();
7681 	test_host_segment_regs();
7682 	test_host_desc_tables();
7683 	test_host_addr_size();
7684 	test_load_host_perf_global_ctrl();
7685 }
7686 
7687 /*
7688  * If the "load debug controls" VM-entry control is 1, bits 63:32 in
7689  * the DR7 field must be 0.
7690  *
7691  * [Intel SDM]
7692  */
7693 static void test_guest_dr7(void)
7694 {
7695 	u32 ent_saved = vmcs_read(ENT_CONTROLS);
7696 	u64 dr7_saved = vmcs_read(GUEST_DR7);
7697 	u64 val;
7698 	int i;
7699 
7700 	if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS) {
7701 		vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS);
7702 		for (i = 0; i < 64; i++) {
7703 			val = 1ull << i;
7704 			vmcs_write(GUEST_DR7, val);
7705 			test_guest_state("ENT_LOAD_DBGCTLS disabled", false,
7706 					 val, "GUEST_DR7");
7707 		}
7708 	}
7709 	if (ctrl_enter_rev.clr & ENT_LOAD_DBGCTLS) {
7710 		vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS);
7711 		for (i = 0; i < 64; i++) {
7712 			val = 1ull << i;
7713 			vmcs_write(GUEST_DR7, val);
7714 			test_guest_state("ENT_LOAD_DBGCTLS enabled", i >= 32,
7715 					 val, "GUEST_DR7");
7716 		}
7717 	}
7718 	vmcs_write(GUEST_DR7, dr7_saved);
7719 	vmcs_write(ENT_CONTROLS, ent_saved);
7720 }
7721 
7722 /*
7723  *  If the "load IA32_PAT" VM-entry control is 1, the value of the field
7724  *  for the IA32_PAT MSR must be one that could be written by WRMSR
7725  *  without fault at CPL 0. Specifically, each of the 8 bytes in the
7726  *  field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
7727  *  6 (WB), or 7 (UC-).
7728  *
7729  *  [Intel SDM]
7730  */
7731 static void test_load_guest_pat(void)
7732 {
7733 	/*
7734 	 * "load IA32_PAT" VM-entry control
7735 	 */
7736 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) {
7737 		report_skip("%s : \"Load-IA32-PAT\" entry control not supported", __func__);
7738 		return;
7739 	}
7740 
7741 	test_pat(GUEST_PAT, "GUEST_PAT", ENT_CONTROLS, ENT_LOAD_PAT);
7742 }
7743 
7744 #define MSR_IA32_BNDCFGS_RSVD_MASK	0x00000ffc
7745 
7746 /*
7747  * If the "load IA32_BNDCFGS" VM-entry control is 1, the following
7748  * checks are performed on the field for the IA32_BNDCFGS MSR:
7749  *
7750  *   - Bits reserved in the IA32_BNDCFGS MSR must be 0.
7751  *   - The linear address in bits 63:12 must be canonical.
7752  *
7753  *  [Intel SDM]
7754  */
7755 static void test_load_guest_bndcfgs(void)
7756 {
7757 	u64 bndcfgs_saved = vmcs_read(GUEST_BNDCFGS);
7758 	u64 bndcfgs;
7759 
7760 	if (!(ctrl_enter_rev.clr & ENT_LOAD_BNDCFGS)) {
7761 		report_skip("%s : \"Load-IA32-BNDCFGS\" entry control not supported", __func__);
7762 		return;
7763 	}
7764 
7765 	vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS);
7766 
7767 	vmcs_write(GUEST_BNDCFGS, NONCANONICAL);
7768 	test_guest_state("ENT_LOAD_BNDCFGS disabled", false,
7769 			 GUEST_BNDCFGS, "GUEST_BNDCFGS");
7770 	bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK;
7771 	vmcs_write(GUEST_BNDCFGS, bndcfgs);
7772 	test_guest_state("ENT_LOAD_BNDCFGS disabled", false,
7773 			 GUEST_BNDCFGS, "GUEST_BNDCFGS");
7774 
7775 	vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS);
7776 
7777 	vmcs_write(GUEST_BNDCFGS, NONCANONICAL);
7778 	test_guest_state("ENT_LOAD_BNDCFGS enabled", true,
7779 			 GUEST_BNDCFGS, "GUEST_BNDCFGS");
7780 	bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK;
7781 	vmcs_write(GUEST_BNDCFGS, bndcfgs);
7782 	test_guest_state("ENT_LOAD_BNDCFGS enabled", true,
7783 			 GUEST_BNDCFGS, "GUEST_BNDCFGS");
7784 
7785 	vmcs_write(GUEST_BNDCFGS, bndcfgs_saved);
7786 }
7787 
7788 #define	GUEST_SEG_UNUSABLE_MASK	(1u << 16)
7789 #define	GUEST_SEG_SEL_TI_MASK	(1u << 2)
7790 
7791 
7792 #define	TEST_SEGMENT_SEL(test, xfail, sel, val)				\
7793 do {									\
7794 	vmcs_write(sel, val);						\
7795 	test_guest_state(test " segment", xfail, val, xstr(sel));	\
7796 } while (0)
7797 
7798 #define	TEST_INVALID_SEG_SEL(sel, val) \
7799 	TEST_SEGMENT_SEL("Invalid: " xstr(val), true, sel, val);
7800 
7801 #define	TEST_VALID_SEG_SEL(sel, val) \
7802 	TEST_SEGMENT_SEL("Valid: " xstr(val), false, sel, val);
7803 
7804 /*
7805  * The following checks are done on the Selector field of the Guest Segment
7806  * Registers:
7807  *    - TR. The TI flag (bit 2) must be 0.
7808  *    - LDTR. If LDTR is usable, the TI flag (bit 2) must be 0.
7809  *    - SS. If the guest will not be virtual-8086 and the "unrestricted
7810  *	guest" VM-execution control is 0, the RPL (bits 1:0) must equal
7811  *	the RPL of the selector field for CS.
7812  *
7813  *  [Intel SDM]
7814  */
7815 static void test_guest_segment_sel_fields(void)
7816 {
7817 	u16 sel_saved;
7818 	u32 ar_saved;
7819 	u32 cpu_ctrl0_saved;
7820 	u32 cpu_ctrl1_saved;
7821 	u16 cs_rpl_bits;
7822 
7823 	/*
7824 	 * Test for GUEST_SEL_TR
7825 	 */
7826 	sel_saved = vmcs_read(GUEST_SEL_TR);
7827 	TEST_INVALID_SEG_SEL(GUEST_SEL_TR, sel_saved | GUEST_SEG_SEL_TI_MASK);
7828 	vmcs_write(GUEST_SEL_TR, sel_saved);
7829 
7830 	/*
7831 	 * Test for GUEST_SEL_LDTR
7832 	 */
7833 	sel_saved = vmcs_read(GUEST_SEL_LDTR);
7834 	ar_saved = vmcs_read(GUEST_AR_LDTR);
7835 	/* LDTR is set unusable */
7836 	vmcs_write(GUEST_AR_LDTR, ar_saved | GUEST_SEG_UNUSABLE_MASK);
7837 	TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved | GUEST_SEG_SEL_TI_MASK);
7838 	TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved & ~GUEST_SEG_SEL_TI_MASK);
7839 	/* LDTR is set usable */
7840 	vmcs_write(GUEST_AR_LDTR, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
7841 	TEST_INVALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved | GUEST_SEG_SEL_TI_MASK);
7842 
7843 	TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved & ~GUEST_SEG_SEL_TI_MASK);
7844 
7845 	vmcs_write(GUEST_AR_LDTR, ar_saved);
7846 	vmcs_write(GUEST_SEL_LDTR, sel_saved);
7847 
7848 	/*
7849 	 * Test for GUEST_SEL_SS
7850 	 */
7851 	cpu_ctrl0_saved = vmcs_read(CPU_EXEC_CTRL0);
7852 	cpu_ctrl1_saved = vmcs_read(CPU_EXEC_CTRL1);
7853 	ar_saved = vmcs_read(GUEST_AR_SS);
7854 	/* Turn off "unrestricted guest" vm-execution control */
7855 	vmcs_write(CPU_EXEC_CTRL1, cpu_ctrl1_saved & ~CPU_URG);
7856 	cs_rpl_bits = vmcs_read(GUEST_SEL_CS) & 0x3;
7857 	sel_saved = vmcs_read(GUEST_SEL_SS);
7858 	TEST_INVALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3)));
7859 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3)));
7860 	/* Make SS usable if it's unusable or vice-versa */
7861 	if (ar_saved & GUEST_SEG_UNUSABLE_MASK)
7862 		vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
7863 	else
7864 		vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK);
7865 	TEST_INVALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3)));
7866 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3)));
7867 
7868 	/* Need a valid EPTP as the passing case fully enters the guest. */
7869 	if (enable_unrestricted_guest(true))
7870 		goto skip_ss_tests;
7871 
7872 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3)));
7873 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3)));
7874 
7875 	/* Make SS usable if it's unusable or vice-versa */
7876 	if (vmcs_read(GUEST_AR_SS) & GUEST_SEG_UNUSABLE_MASK)
7877 		vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
7878 	else
7879 		vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK);
7880 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3)));
7881 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3)));
7882 skip_ss_tests:
7883 
7884 	vmcs_write(GUEST_AR_SS, ar_saved);
7885 	vmcs_write(GUEST_SEL_SS, sel_saved);
7886 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrl0_saved);
7887 	vmcs_write(CPU_EXEC_CTRL1, cpu_ctrl1_saved);
7888 }
7889 
7890 #define	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(xfail, seg_base)			\
7891 do {										\
7892 	addr_saved = vmcs_read(seg_base);					\
7893 	for (i = 32; i < 63; i = i + 4) {					\
7894 		addr = addr_saved | 1ull << i;					\
7895 		vmcs_write(seg_base, addr);					\
7896 		test_guest_state("seg.BASE[63:32] != 0, usable = " xstr(xfail),	\
7897 				 xfail, addr, xstr(seg_base));			\
7898 	}									\
7899 	vmcs_write(seg_base, addr_saved);					\
7900 } while (0)
7901 
7902 #define	TEST_SEGMENT_BASE_ADDR_CANONICAL(xfail, seg_base)		  \
7903 do {									  \
7904 	addr_saved = vmcs_read(seg_base);				  \
7905 	vmcs_write(seg_base, NONCANONICAL);				  \
7906 	test_guest_state("seg.BASE non-canonical, usable = " xstr(xfail), \
7907 			 xfail, NONCANONICAL, xstr(seg_base));		  \
7908 	vmcs_write(seg_base, addr_saved);				  \
7909 } while (0)
7910 
7911 /*
7912  * The following checks are done on the Base Address field of the Guest
7913  * Segment Registers on processors that support Intel 64 architecture:
7914  *    - TR, FS, GS : The address must be canonical.
7915  *    - LDTR : If LDTR is usable, the address must be canonical.
7916  *    - CS : Bits 63:32 of the address must be zero.
7917  *    - SS, DS, ES : If the register is usable, bits 63:32 of the address
7918  *	must be zero.
7919  *
7920  *  [Intel SDM]
7921  */
7922 static void test_guest_segment_base_addr_fields(void)
7923 {
7924 	u64 addr_saved;
7925 	u64 addr;
7926 	u32 ar_saved;
7927 	int i;
7928 
7929 	/*
7930 	 * The address of TR, FS, GS and LDTR must be canonical.
7931 	 */
7932 	TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_TR);
7933 	TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_FS);
7934 	TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_GS);
7935 	ar_saved = vmcs_read(GUEST_AR_LDTR);
7936 	/* Make LDTR unusable */
7937 	vmcs_write(GUEST_AR_LDTR, ar_saved | GUEST_SEG_UNUSABLE_MASK);
7938 	TEST_SEGMENT_BASE_ADDR_CANONICAL(false, GUEST_BASE_LDTR);
7939 	/* Make LDTR usable */
7940 	vmcs_write(GUEST_AR_LDTR, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
7941 	TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_LDTR);
7942 
7943 	vmcs_write(GUEST_AR_LDTR, ar_saved);
7944 
7945 	/*
7946 	 * Bits 63:32 in CS, SS, DS and ES base address must be zero
7947 	 */
7948 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_CS);
7949 	ar_saved = vmcs_read(GUEST_AR_SS);
7950 	/* Make SS unusable */
7951 	vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK);
7952 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_SS);
7953 	/* Make SS usable */
7954 	vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
7955 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_SS);
7956 	vmcs_write(GUEST_AR_SS, ar_saved);
7957 
7958 	ar_saved = vmcs_read(GUEST_AR_DS);
7959 	/* Make DS unusable */
7960 	vmcs_write(GUEST_AR_DS, ar_saved | GUEST_SEG_UNUSABLE_MASK);
7961 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_DS);
7962 	/* Make DS usable */
7963 	vmcs_write(GUEST_AR_DS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
7964 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_DS);
7965 	vmcs_write(GUEST_AR_DS, ar_saved);
7966 
7967 	ar_saved = vmcs_read(GUEST_AR_ES);
7968 	/* Make ES unusable */
7969 	vmcs_write(GUEST_AR_ES, ar_saved | GUEST_SEG_UNUSABLE_MASK);
7970 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_ES);
7971 	/* Make ES usable */
7972 	vmcs_write(GUEST_AR_ES, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
7973 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_ES);
7974 	vmcs_write(GUEST_AR_ES, ar_saved);
7975 }
7976 
7977 /*
7978  * Check that the virtual CPU checks the VMX Guest State Area as
7979  * documented in the Intel SDM.
7980  */
7981 static void vmx_guest_state_area_test(void)
7982 {
7983 	vmx_set_test_stage(1);
7984 	test_set_guest(guest_state_test_main);
7985 
7986 	/*
7987 	 * The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field
7988 	 * must each contain a canonical address.
7989 	 */
7990 	test_canonical(GUEST_SYSENTER_ESP, "GUEST_SYSENTER_ESP", false);
7991 	test_canonical(GUEST_SYSENTER_EIP, "GUEST_SYSENTER_EIP", false);
7992 
7993 	test_guest_dr7();
7994 	test_load_guest_pat();
7995 	test_guest_efer();
7996 	test_load_guest_perf_global_ctrl();
7997 	test_load_guest_bndcfgs();
7998 
7999 	test_guest_segment_sel_fields();
8000 	test_guest_segment_base_addr_fields();
8001 
8002 	test_canonical(GUEST_BASE_GDTR, "GUEST_BASE_GDTR", false);
8003 	test_canonical(GUEST_BASE_IDTR, "GUEST_BASE_IDTR", false);
8004 
8005 	u32 guest_desc_limit_saved = vmcs_read(GUEST_LIMIT_GDTR);
8006 	int i;
8007 	for (i = 16; i <= 31; i++) {
8008 		u32 tmp = guest_desc_limit_saved | (1ull << i);
8009 		vmcs_write(GUEST_LIMIT_GDTR, tmp);
8010 		test_guest_state("GDT.limit > 0xffff", true, tmp, "GUEST_LIMIT_GDTR");
8011 	}
8012 	vmcs_write(GUEST_LIMIT_GDTR, guest_desc_limit_saved);
8013 
8014 	guest_desc_limit_saved = vmcs_read(GUEST_LIMIT_IDTR);
8015 	for (i = 16; i <= 31; i++) {
8016 		u32 tmp = guest_desc_limit_saved | (1ull << i);
8017 		vmcs_write(GUEST_LIMIT_IDTR, tmp);
8018 		test_guest_state("IDT.limit > 0xffff", true, tmp, "GUEST_LIMIT_IDTR");
8019 	}
8020 	vmcs_write(GUEST_LIMIT_IDTR, guest_desc_limit_saved);
8021 
8022 	/*
8023 	 * Let the guest finish execution
8024 	 */
8025 	vmx_set_test_stage(2);
8026 	enter_guest();
8027 }
8028 
8029 extern void unrestricted_guest_main(void);
8030 asm (".code32\n"
8031 	"unrestricted_guest_main:\n"
8032 	"vmcall\n"
8033 	"nop\n"
8034 	"mov $1, %edi\n"
8035 	"call hypercall\n"
8036 	".code64\n");
8037 
8038 static void setup_unrestricted_guest(void)
8039 {
8040 	vmcs_write(GUEST_CR0, vmcs_read(GUEST_CR0) & ~(X86_CR0_PG));
8041 	vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) & ~ENT_GUEST_64);
8042 	vmcs_write(GUEST_EFER, vmcs_read(GUEST_EFER) & ~EFER_LMA);
8043 	vmcs_write(GUEST_RIP, virt_to_phys(unrestricted_guest_main));
8044 }
8045 
8046 static void unsetup_unrestricted_guest(void)
8047 {
8048 	vmcs_write(GUEST_CR0, vmcs_read(GUEST_CR0) | X86_CR0_PG);
8049 	vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_GUEST_64);
8050 	vmcs_write(GUEST_EFER, vmcs_read(GUEST_EFER) | EFER_LMA);
8051 	vmcs_write(GUEST_RIP, (u64) phys_to_virt(vmcs_read(GUEST_RIP)));
8052 	vmcs_write(GUEST_RSP, (u64) phys_to_virt(vmcs_read(GUEST_RSP)));
8053 }
8054 
8055 /*
8056  * If "unrestricted guest" secondary VM-execution control is set, guests
8057  * can run in unpaged protected mode.
8058  */
8059 static void vmentry_unrestricted_guest_test(void)
8060 {
8061 	if (enable_unrestricted_guest(true)) {
8062 		report_skip("%s: \"Unrestricted guest\" exec control not supported", __func__);
8063 		return;
8064 	}
8065 
8066 	test_set_guest(unrestricted_guest_main);
8067 	setup_unrestricted_guest();
8068 	test_guest_state("Unrestricted guest test", false, CPU_URG, "CPU_URG");
8069 
8070 	/*
8071 	 * Let the guest finish execution as a regular guest
8072 	 */
8073 	unsetup_unrestricted_guest();
8074 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) & ~CPU_URG);
8075 	enter_guest();
8076 }
8077 
8078 static bool valid_vmcs_for_vmentry(void)
8079 {
8080 	struct vmcs *current_vmcs = NULL;
8081 
8082 	if (vmcs_save(&current_vmcs))
8083 		return false;
8084 
8085 	return current_vmcs && !current_vmcs->hdr.shadow_vmcs;
8086 }
8087 
8088 static void try_vmentry_in_movss_shadow(void)
8089 {
8090 	u32 vm_inst_err;
8091 	u32 flags;
8092 	bool early_failure = false;
8093 	u32 expected_flags = X86_EFLAGS_FIXED;
8094 	bool valid_vmcs = valid_vmcs_for_vmentry();
8095 
8096 	expected_flags |= valid_vmcs ? X86_EFLAGS_ZF : X86_EFLAGS_CF;
8097 
8098 	/*
8099 	 * Indirectly set VM_INST_ERR to 12 ("VMREAD/VMWRITE from/to
8100 	 * unsupported VMCS component").
8101 	 */
8102 	vmcs_write(~0u, 0);
8103 
8104 	__asm__ __volatile__ ("mov %[host_rsp], %%edx;"
8105 			      "vmwrite %%rsp, %%rdx;"
8106 			      "mov 0f, %%rax;"
8107 			      "mov %[host_rip], %%edx;"
8108 			      "vmwrite %%rax, %%rdx;"
8109 			      "mov $-1, %%ah;"
8110 			      "sahf;"
8111 			      "mov %%ss, %%ax;"
8112 			      "mov %%ax, %%ss;"
8113 			      "vmlaunch;"
8114 			      "mov $1, %[early_failure];"
8115 			      "0: lahf;"
8116 			      "movzbl %%ah, %[flags]"
8117 			      : [early_failure] "+r" (early_failure),
8118 				[flags] "=&a" (flags)
8119 			      : [host_rsp] "i" (HOST_RSP),
8120 				[host_rip] "i" (HOST_RIP)
8121 			      : "rdx", "cc", "memory");
8122 	vm_inst_err = vmcs_read(VMX_INST_ERROR);
8123 
8124 	report(early_failure, "Early VM-entry failure");
8125 	report(flags == expected_flags, "RFLAGS[8:0] is %x (actual %x)",
8126 	       expected_flags, flags);
8127 	if (valid_vmcs)
8128 		report(vm_inst_err == VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS,
8129 		       "VM-instruction error is %d (actual %d)",
8130 		       VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, vm_inst_err);
8131 }
8132 
8133 static void vmentry_movss_shadow_test(void)
8134 {
8135 	struct vmcs *orig_vmcs;
8136 
8137 	TEST_ASSERT(!vmcs_save(&orig_vmcs));
8138 
8139 	/*
8140 	 * Set the launched flag on the current VMCS to verify the correct
8141 	 * error priority, below.
8142 	 */
8143 	test_set_guest(v2_null_test_guest);
8144 	enter_guest();
8145 
8146 	/*
8147 	 * With bit 1 of the guest's RFLAGS clear, VM-entry should
8148 	 * fail due to invalid guest state (if we make it that far).
8149 	 */
8150 	vmcs_write(GUEST_RFLAGS, 0);
8151 
8152 	/*
8153 	 * "VM entry with events blocked by MOV SS" takes precedence over
8154 	 * "VMLAUNCH with non-clear VMCS."
8155 	 */
8156 	report_prefix_push("valid current-VMCS");
8157 	try_vmentry_in_movss_shadow();
8158 	report_prefix_pop();
8159 
8160 	/*
8161 	 * VMfailInvalid takes precedence over "VM entry with events
8162 	 * blocked by MOV SS."
8163 	 */
8164 	TEST_ASSERT(!vmcs_clear(orig_vmcs));
8165 	report_prefix_push("no current-VMCS");
8166 	try_vmentry_in_movss_shadow();
8167 	report_prefix_pop();
8168 
8169 	TEST_ASSERT(!make_vmcs_current(orig_vmcs));
8170 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
8171 }
8172 
8173 static void vmx_ldtr_test_guest(void)
8174 {
8175 	u16 ldtr = sldt();
8176 
8177 	report(ldtr == NP_SEL, "Expected %x for L2 LDTR selector (got %x)",
8178 	       NP_SEL, ldtr);
8179 }
8180 
8181 /*
8182  * Ensure that the L1 LDTR is set to 0 on VM-exit.
8183  */
8184 static void vmx_ldtr_test(void)
8185 {
8186 	const u8 ldt_ar = 0x82; /* Present LDT */
8187 	u16 sel = FIRST_SPARE_SEL;
8188 
8189 	/* Set up a non-zero L1 LDTR prior to VM-entry. */
8190 	set_gdt_entry(sel, 0, 0, ldt_ar, 0);
8191 	lldt(sel);
8192 
8193 	test_set_guest(vmx_ldtr_test_guest);
8194 	/*
8195 	 * Set up a different LDTR for L2. The actual GDT contents are
8196 	 * irrelevant, since we stuff the hidden descriptor state
8197 	 * straight into the VMCS rather than reading it from the GDT.
8198 	 */
8199 	vmcs_write(GUEST_SEL_LDTR, NP_SEL);
8200 	vmcs_write(GUEST_AR_LDTR, ldt_ar);
8201 	enter_guest();
8202 
8203 	/*
8204 	 * VM-exit should clear LDTR (and make it unusable, but we
8205 	 * won't verify that here).
8206 	 */
8207 	sel = sldt();
8208 	report(!sel, "Expected 0 for L1 LDTR selector (got %x)", sel);
8209 }
8210 
8211 static void vmx_single_vmcall_guest(void)
8212 {
8213 	vmcall();
8214 }
8215 
8216 static void vmx_cr_load_test(void)
8217 {
8218 	unsigned long cr3, cr4, orig_cr3, orig_cr4;
8219 	u32 ctrls[2] = {0};
8220 	pgd_t *pml5;
8221 
8222 	orig_cr4 = read_cr4();
8223 	orig_cr3 = read_cr3();
8224 
8225 	if (!this_cpu_has(X86_FEATURE_PCID)) {
8226 		report_skip("%s : PCID not detected", __func__);
8227 		return;
8228 	}
8229 	if (!this_cpu_has(X86_FEATURE_MCE)) {
8230 		report_skip("%s : MCE not detected", __func__);
8231 		return;
8232 	}
8233 
8234 	TEST_ASSERT(!(orig_cr3 & X86_CR3_PCID_MASK));
8235 
8236 	/* Enable PCID for L1. */
8237 	cr4 = orig_cr4 | X86_CR4_PCIDE;
8238 	cr3 = orig_cr3 | 0x1;
8239 	TEST_ASSERT(!write_cr4_safe(cr4));
8240 	write_cr3(cr3);
8241 
8242 	test_set_guest(vmx_single_vmcall_guest);
8243 	vmcs_write(HOST_CR4, cr4);
8244 	vmcs_write(HOST_CR3, cr3);
8245 	enter_guest();
8246 
8247 	/*
8248 	 * No exception is expected.
8249 	 *
8250 	 * NB. KVM loads the last guest write to CR4 into CR4 read
8251 	 *     shadow. In order to trigger an exit to KVM, we can toggle a
8252 	 *     bit that is owned by KVM. We use CR4.MCE, which shall
8253 	 *     have no side effect because normally no guest MCE (e.g., as the
8254 	 *     result of bad memory) would happen during this test.
8255 	 */
8256 	TEST_ASSERT(!write_cr4_safe(cr4 ^ X86_CR4_MCE));
8257 
8258 	/* Cleanup L1 state. */
8259 	write_cr3(orig_cr3);
8260 	TEST_ASSERT(!write_cr4_safe(orig_cr4));
8261 
8262 	if (!this_cpu_has(X86_FEATURE_LA57))
8263 		goto done;
8264 
8265 	/*
8266 	 * Allocate a full page for PML5 to guarantee alignment, though only
8267 	 * the first entry needs to be filled (the test's virtual addresses
8268 	 * most definitely do not have any of bits 56:48 set).
8269 	 */
8270 	pml5 = alloc_page();
8271 	*pml5 = orig_cr3 | PT_PRESENT_MASK | PT_WRITABLE_MASK;
8272 
8273 	/*
8274 	 * Transition to/from 5-level paging in the host via VM-Exit.  CR4.LA57
8275 	 * can't be toggled while long is active via MOV CR4, but there are no
8276 	 * such restrictions on VM-Exit.
8277 	 */
8278 lol_5level:
8279 	vmcs_write(HOST_CR4, orig_cr4 | X86_CR4_LA57);
8280 	vmcs_write(HOST_CR3, virt_to_phys(pml5));
8281 	enter_guest();
8282 
8283 	/*
8284 	 * VMREAD with a memory operand to verify KVM detects the LA57 change,
8285 	 * e.g. uses the correct guest root level in gva_to_gpa().
8286 	 */
8287 	TEST_ASSERT(vmcs_readm(HOST_CR3) == virt_to_phys(pml5));
8288 	TEST_ASSERT(vmcs_readm(HOST_CR4) == (orig_cr4 | X86_CR4_LA57));
8289 
8290 	vmcs_write(HOST_CR4, orig_cr4);
8291 	vmcs_write(HOST_CR3, orig_cr3);
8292 	enter_guest();
8293 
8294 	TEST_ASSERT(vmcs_readm(HOST_CR3) == orig_cr3);
8295 	TEST_ASSERT(vmcs_readm(HOST_CR4) == orig_cr4);
8296 
8297 	/*
8298 	 * And now do the same LA57 shenanigans with EPT enabled.  KVM uses
8299 	 * two separate MMUs when L1 uses TDP, whereas the above shadow paging
8300 	 * version shares an MMU between L1 and L2.
8301 	 *
8302 	 * If the saved execution controls are non-zero then the EPT version
8303 	 * has already run.  In that case, restore the old controls.  If EPT
8304 	 * setup fails, e.g. EPT isn't supported, fall through and finish up.
8305 	 */
8306 	if (ctrls[0]) {
8307 		vmcs_write(CPU_EXEC_CTRL0, ctrls[0]);
8308 		vmcs_write(CPU_EXEC_CTRL1, ctrls[1]);
8309 	} else if (!setup_ept(false)) {
8310 		ctrls[0] = vmcs_read(CPU_EXEC_CTRL0);
8311 		ctrls[1]  = vmcs_read(CPU_EXEC_CTRL1);
8312 		goto lol_5level;
8313 	}
8314 
8315 	free_page(pml5);
8316 
8317 done:
8318 	skip_exit_vmcall();
8319 	enter_guest();
8320 }
8321 
8322 static void vmx_cr4_osxsave_test_guest(void)
8323 {
8324 	write_cr4(read_cr4() & ~X86_CR4_OSXSAVE);
8325 }
8326 
8327 /*
8328  * Ensure that kvm recalculates the L1 guest's CPUID.01H:ECX.OSXSAVE
8329  * after VM-exit from an L2 guest that sets CR4.OSXSAVE to a different
8330  * value than in L1.
8331  */
8332 static void vmx_cr4_osxsave_test(void)
8333 {
8334 	if (!this_cpu_has(X86_FEATURE_XSAVE)) {
8335 		report_skip("%s : XSAVE not detected", __func__);
8336 		return;
8337 	}
8338 
8339 	if (!(read_cr4() & X86_CR4_OSXSAVE)) {
8340 		unsigned long cr4 = read_cr4() | X86_CR4_OSXSAVE;
8341 
8342 		write_cr4(cr4);
8343 		vmcs_write(GUEST_CR4, cr4);
8344 		vmcs_write(HOST_CR4, cr4);
8345 	}
8346 
8347 	TEST_ASSERT(this_cpu_has(X86_FEATURE_OSXSAVE));
8348 
8349 	test_set_guest(vmx_cr4_osxsave_test_guest);
8350 	enter_guest();
8351 
8352 	TEST_ASSERT(this_cpu_has(X86_FEATURE_OSXSAVE));
8353 }
8354 
8355 /*
8356  * FNOP with both CR0.TS and CR0.EM clear should not generate #NM, and the L2
8357  * guest should exit normally.
8358  */
8359 static void vmx_no_nm_test(void)
8360 {
8361 	test_set_guest(fnop);
8362 	vmcs_write(GUEST_CR0, read_cr0() & ~(X86_CR0_TS | X86_CR0_EM));
8363 	enter_guest();
8364 }
8365 
8366 bool vmx_pending_event_ipi_fired;
8367 static void vmx_pending_event_ipi_isr(isr_regs_t *regs)
8368 {
8369 	vmx_pending_event_ipi_fired = true;
8370 	eoi();
8371 }
8372 
8373 bool vmx_pending_event_guest_run;
8374 static void vmx_pending_event_guest(void)
8375 {
8376 	vmcall();
8377 	vmx_pending_event_guest_run = true;
8378 }
8379 
8380 static void vmx_pending_event_test_core(bool guest_hlt)
8381 {
8382 	int ipi_vector = 0xf1;
8383 
8384 	vmx_pending_event_ipi_fired = false;
8385 	handle_irq(ipi_vector, vmx_pending_event_ipi_isr);
8386 
8387 	vmx_pending_event_guest_run = false;
8388 	test_set_guest(vmx_pending_event_guest);
8389 
8390 	vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT);
8391 
8392 	enter_guest();
8393 	skip_exit_vmcall();
8394 
8395 	if (guest_hlt)
8396 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8397 
8398 	cli();
8399 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
8400 				   APIC_DM_FIXED | ipi_vector,
8401 				   0);
8402 
8403 	enter_guest();
8404 
8405 	assert_exit_reason(VMX_EXTINT);
8406 	report(!vmx_pending_event_guest_run,
8407 	       "Guest did not run before host received IPI");
8408 
8409 	sti_nop_cli();
8410 	report(vmx_pending_event_ipi_fired,
8411 	       "Got pending interrupt after IRQ enabled");
8412 
8413 	if (guest_hlt)
8414 		vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
8415 
8416 	enter_guest();
8417 	report(vmx_pending_event_guest_run,
8418 	       "Guest finished running when no interrupt");
8419 }
8420 
8421 static void vmx_pending_event_test(void)
8422 {
8423 	vmx_pending_event_test_core(false);
8424 }
8425 
8426 static void vmx_pending_event_hlt_test(void)
8427 {
8428 	vmx_pending_event_test_core(true);
8429 }
8430 
8431 static int vmx_window_test_db_count;
8432 
8433 static void vmx_window_test_db_handler(struct ex_regs *regs)
8434 {
8435 	vmx_window_test_db_count++;
8436 }
8437 
8438 static void vmx_nmi_window_test_guest(void)
8439 {
8440 	handle_exception(DB_VECTOR, vmx_window_test_db_handler);
8441 
8442 	asm volatile("vmcall\n\t"
8443 		     "nop\n\t");
8444 
8445 	handle_exception(DB_VECTOR, NULL);
8446 }
8447 
8448 static void verify_nmi_window_exit(u64 rip)
8449 {
8450 	u32 exit_reason = vmcs_read(EXI_REASON);
8451 
8452 	report(exit_reason == VMX_NMI_WINDOW,
8453 	       "Exit reason (%d) is 'NMI window'", exit_reason);
8454 	report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx",
8455 	       vmcs_read(GUEST_RIP), rip);
8456 	vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
8457 }
8458 
8459 static void vmx_nmi_window_test(void)
8460 {
8461 	u64 nop_addr;
8462 	void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]);
8463 
8464 	if (!(ctrl_pin_rev.clr & PIN_VIRT_NMI)) {
8465 		report_skip("%s : \"Virtual NMIs\" exec control not supported", __func__);
8466 		return;
8467 	}
8468 
8469 	if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) {
8470 		report_skip("%s : \"NMI-window exiting\" exec control not supported", __func__);
8471 		return;
8472 	}
8473 
8474 	vmx_window_test_db_count = 0;
8475 
8476 	report_prefix_push("NMI-window");
8477 	test_set_guest(vmx_nmi_window_test_guest);
8478 	vmcs_set_bits(PIN_CONTROLS, PIN_VIRT_NMI);
8479 	enter_guest();
8480 	skip_exit_vmcall();
8481 	nop_addr = vmcs_read(GUEST_RIP);
8482 
8483 	/*
8484 	 * Ask for "NMI-window exiting," and expect an immediate VM-exit.
8485 	 * RIP will not advance.
8486 	 */
8487 	report_prefix_push("active, no blocking");
8488 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW);
8489 	enter_guest();
8490 	verify_nmi_window_exit(nop_addr);
8491 	report_prefix_pop();
8492 
8493 	/*
8494 	 * Ask for "NMI-window exiting" in a MOV-SS shadow, and expect
8495 	 * a VM-exit on the next instruction after the nop. (The nop
8496 	 * is one byte.)
8497 	 */
8498 	report_prefix_push("active, blocking by MOV-SS");
8499 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
8500 	enter_guest();
8501 	verify_nmi_window_exit(nop_addr + 1);
8502 	report_prefix_pop();
8503 
8504 	/*
8505 	 * Ask for "NMI-window exiting" (with event injection), and
8506 	 * expect a VM-exit after the event is injected. (RIP should
8507 	 * be at the address specified in the IDT entry for #DB.)
8508 	 */
8509 	report_prefix_push("active, no blocking, injecting #DB");
8510 	vmcs_write(ENT_INTR_INFO,
8511 		   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
8512 	enter_guest();
8513 	verify_nmi_window_exit((u64)db_fault_addr);
8514 	report_prefix_pop();
8515 
8516 	/*
8517 	 * Ask for "NMI-window exiting" with NMI blocking, and expect
8518 	 * a VM-exit after the next IRET (i.e. after the #DB handler
8519 	 * returns). So, RIP should be back at one byte past the nop.
8520 	 */
8521 	report_prefix_push("active, blocking by NMI");
8522 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_NMI);
8523 	enter_guest();
8524 	verify_nmi_window_exit(nop_addr + 1);
8525 	report(vmx_window_test_db_count == 1,
8526 	       "#DB handler executed once (actual %d times)",
8527 	       vmx_window_test_db_count);
8528 	report_prefix_pop();
8529 
8530 	if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) {
8531 		report_skip("CPU does not support activity state HLT.");
8532 	} else {
8533 		/*
8534 		 * Ask for "NMI-window exiting" when entering activity
8535 		 * state HLT, and expect an immediate VM-exit. RIP is
8536 		 * still one byte past the nop.
8537 		 */
8538 		report_prefix_push("halted, no blocking");
8539 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8540 		enter_guest();
8541 		verify_nmi_window_exit(nop_addr + 1);
8542 		report_prefix_pop();
8543 
8544 		/*
8545 		 * Ask for "NMI-window exiting" when entering activity
8546 		 * state HLT (with event injection), and expect a
8547 		 * VM-exit after the event is injected. (RIP should be
8548 		 * at the address specified in the IDT entry for #DB.)
8549 		 */
8550 		report_prefix_push("halted, no blocking, injecting #DB");
8551 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8552 		vmcs_write(ENT_INTR_INFO,
8553 			   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
8554 			   DB_VECTOR);
8555 		enter_guest();
8556 		verify_nmi_window_exit((u64)db_fault_addr);
8557 		report_prefix_pop();
8558 	}
8559 
8560 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW);
8561 	enter_guest();
8562 	report_prefix_pop();
8563 }
8564 
8565 static void vmx_intr_window_test_guest(void)
8566 {
8567 	handle_exception(DB_VECTOR, vmx_window_test_db_handler);
8568 
8569 	/*
8570 	 * The two consecutive STIs are to ensure that only the first
8571 	 * one has a shadow. Note that NOP and STI are one byte
8572 	 * instructions.
8573 	 */
8574 	asm volatile("vmcall\n\t"
8575 		     "nop\n\t"
8576 		     "sti\n\t"
8577 		     "sti\n\t");
8578 
8579 	handle_exception(DB_VECTOR, NULL);
8580 }
8581 
8582 static void verify_intr_window_exit(u64 rip)
8583 {
8584 	u32 exit_reason = vmcs_read(EXI_REASON);
8585 
8586 	report(exit_reason == VMX_INTR_WINDOW,
8587 	       "Exit reason (%d) is 'interrupt window'", exit_reason);
8588 	report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx",
8589 	       vmcs_read(GUEST_RIP), rip);
8590 	vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
8591 }
8592 
8593 static void vmx_intr_window_test(void)
8594 {
8595 	u64 vmcall_addr;
8596 	u64 nop_addr;
8597 	unsigned int orig_db_gate_type;
8598 	void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]);
8599 
8600 	if (!(ctrl_cpu_rev[0].clr & CPU_INTR_WINDOW)) {
8601 		report_skip("%s : \"Interrupt-window exiting\" exec control not supported", __func__);
8602 		return;
8603 	}
8604 
8605 	/*
8606 	 * Change the IDT entry for #DB from interrupt gate to trap gate,
8607 	 * so that it won't clear RFLAGS.IF. We don't want interrupts to
8608 	 * be disabled after vectoring a #DB.
8609 	 */
8610 	orig_db_gate_type = boot_idt[DB_VECTOR].type;
8611 	boot_idt[DB_VECTOR].type = 15;
8612 
8613 	report_prefix_push("interrupt-window");
8614 	test_set_guest(vmx_intr_window_test_guest);
8615 	enter_guest();
8616 	assert_exit_reason(VMX_VMCALL);
8617 	vmcall_addr = vmcs_read(GUEST_RIP);
8618 
8619 	/*
8620 	 * Ask for "interrupt-window exiting" with RFLAGS.IF set and
8621 	 * no blocking; expect an immediate VM-exit. Note that we have
8622 	 * not advanced past the vmcall instruction yet, so RIP should
8623 	 * point to the vmcall instruction.
8624 	 */
8625 	report_prefix_push("active, no blocking, RFLAGS.IF=1");
8626 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
8627 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_IF);
8628 	enter_guest();
8629 	verify_intr_window_exit(vmcall_addr);
8630 	report_prefix_pop();
8631 
8632 	/*
8633 	 * Ask for "interrupt-window exiting" (with event injection)
8634 	 * with RFLAGS.IF set and no blocking; expect a VM-exit after
8635 	 * the event is injected. That is, RIP should should be at the
8636 	 * address specified in the IDT entry for #DB.
8637 	 */
8638 	report_prefix_push("active, no blocking, RFLAGS.IF=1, injecting #DB");
8639 	vmcs_write(ENT_INTR_INFO,
8640 		   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
8641 	vmcall_addr = vmcs_read(GUEST_RIP);
8642 	enter_guest();
8643 	verify_intr_window_exit((u64)db_fault_addr);
8644 	report_prefix_pop();
8645 
8646 	/*
8647 	 * Let the L2 guest run through the IRET, back to the VMCALL.
8648 	 * We have to clear the "interrupt-window exiting"
8649 	 * VM-execution control, or it would just keep causing
8650 	 * VM-exits. Then, advance past the VMCALL and set the
8651 	 * "interrupt-window exiting" VM-execution control again.
8652 	 */
8653 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
8654 	enter_guest();
8655 	skip_exit_vmcall();
8656 	nop_addr = vmcs_read(GUEST_RIP);
8657 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
8658 
8659 	/*
8660 	 * Ask for "interrupt-window exiting" in a MOV-SS shadow with
8661 	 * RFLAGS.IF set, and expect a VM-exit on the next
8662 	 * instruction. (NOP is one byte.)
8663 	 */
8664 	report_prefix_push("active, blocking by MOV-SS, RFLAGS.IF=1");
8665 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
8666 	enter_guest();
8667 	verify_intr_window_exit(nop_addr + 1);
8668 	report_prefix_pop();
8669 
8670 	/*
8671 	 * Back up to the NOP and ask for "interrupt-window exiting"
8672 	 * in an STI shadow with RFLAGS.IF set, and expect a VM-exit
8673 	 * on the next instruction. (NOP is one byte.)
8674 	 */
8675 	report_prefix_push("active, blocking by STI, RFLAGS.IF=1");
8676 	vmcs_write(GUEST_RIP, nop_addr);
8677 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_STI);
8678 	enter_guest();
8679 	verify_intr_window_exit(nop_addr + 1);
8680 	report_prefix_pop();
8681 
8682 	/*
8683 	 * Ask for "interrupt-window exiting" with RFLAGS.IF clear,
8684 	 * and expect a VM-exit on the instruction following the STI
8685 	 * shadow. Only the first STI (which is one byte past the NOP)
8686 	 * should have a shadow. The second STI (which is two bytes
8687 	 * past the NOP) has no shadow. Therefore, the interrupt
8688 	 * window opens at three bytes past the NOP.
8689 	 */
8690 	report_prefix_push("active, RFLAGS.IF = 0");
8691 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
8692 	enter_guest();
8693 	verify_intr_window_exit(nop_addr + 3);
8694 	report_prefix_pop();
8695 
8696 	if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) {
8697 		report_skip("CPU does not support activity state HLT.");
8698 	} else {
8699 		/*
8700 		 * Ask for "interrupt-window exiting" when entering
8701 		 * activity state HLT, and expect an immediate
8702 		 * VM-exit. RIP is still three bytes past the nop.
8703 		 */
8704 		report_prefix_push("halted, no blocking");
8705 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8706 		enter_guest();
8707 		verify_intr_window_exit(nop_addr + 3);
8708 		report_prefix_pop();
8709 
8710 		/*
8711 		 * Ask for "interrupt-window exiting" when entering
8712 		 * activity state HLT (with event injection), and
8713 		 * expect a VM-exit after the event is injected. That
8714 		 * is, RIP should should be at the address specified
8715 		 * in the IDT entry for #DB.
8716 		 */
8717 		report_prefix_push("halted, no blocking, injecting #DB");
8718 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8719 		vmcs_write(ENT_INTR_INFO,
8720 			   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
8721 			   DB_VECTOR);
8722 		enter_guest();
8723 		verify_intr_window_exit((u64)db_fault_addr);
8724 		report_prefix_pop();
8725 	}
8726 
8727 	boot_idt[DB_VECTOR].type = orig_db_gate_type;
8728 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
8729 	enter_guest();
8730 	report_prefix_pop();
8731 }
8732 
8733 #define GUEST_TSC_OFFSET (1u << 30)
8734 
8735 static u64 guest_tsc;
8736 
8737 static void vmx_store_tsc_test_guest(void)
8738 {
8739 	guest_tsc = rdtsc();
8740 }
8741 
8742 /*
8743  * This test ensures that when IA32_TSC is in the VM-exit MSR-store
8744  * list, the value saved is not subject to the TSC offset that is
8745  * applied to RDTSC/RDTSCP/RDMSR(IA32_TSC) in guest execution.
8746  */
8747 static void vmx_store_tsc_test(void)
8748 {
8749 	struct vmx_msr_entry msr_entry = { .index = MSR_IA32_TSC };
8750 	u64 low, high;
8751 
8752 	if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) {
8753 		report_skip("%s : \"Use TSC offsetting\" exec control not supported", __func__);
8754 		return;
8755 	}
8756 
8757 	test_set_guest(vmx_store_tsc_test_guest);
8758 
8759 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET);
8760 	vmcs_write(EXI_MSR_ST_CNT, 1);
8761 	vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(&msr_entry));
8762 	vmcs_write(TSC_OFFSET, GUEST_TSC_OFFSET);
8763 
8764 	low = rdtsc();
8765 	enter_guest();
8766 	high = rdtsc();
8767 
8768 	report(low + GUEST_TSC_OFFSET <= guest_tsc &&
8769 	       guest_tsc <= high + GUEST_TSC_OFFSET,
8770 	       "RDTSC value in the guest (%lu) is in range [%lu, %lu]",
8771 	       guest_tsc, low + GUEST_TSC_OFFSET, high + GUEST_TSC_OFFSET);
8772 	report(low <= msr_entry.value && msr_entry.value <= high,
8773 	       "IA32_TSC value saved in the VM-exit MSR-store list (%lu) is in range [%lu, %lu]",
8774 	       msr_entry.value, low, high);
8775 }
8776 
8777 static void vmx_preemption_timer_zero_test_db_handler(struct ex_regs *regs)
8778 {
8779 }
8780 
8781 static void vmx_preemption_timer_zero_test_guest(void)
8782 {
8783 	while (vmx_get_test_stage() < 3)
8784 		vmcall();
8785 }
8786 
8787 static void vmx_preemption_timer_zero_activate_preemption_timer(void)
8788 {
8789 	vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT);
8790 	vmcs_write(PREEMPT_TIMER_VALUE, 0);
8791 }
8792 
8793 static void vmx_preemption_timer_zero_advance_past_vmcall(void)
8794 {
8795 	vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
8796 	enter_guest();
8797 	skip_exit_vmcall();
8798 }
8799 
8800 static void vmx_preemption_timer_zero_inject_db(bool intercept_db)
8801 {
8802 	vmx_preemption_timer_zero_activate_preemption_timer();
8803 	vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK |
8804 		   INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
8805 	vmcs_write(EXC_BITMAP, intercept_db ? 1 << DB_VECTOR : 0);
8806 	enter_guest();
8807 }
8808 
8809 static void vmx_preemption_timer_zero_set_pending_dbg(u32 exception_bitmap)
8810 {
8811 	vmx_preemption_timer_zero_activate_preemption_timer();
8812 	vmcs_write(GUEST_PENDING_DEBUG, PENDING_DBG_TRAP | DR6_TRAP1);
8813 	vmcs_write(EXC_BITMAP, exception_bitmap);
8814 	enter_guest();
8815 }
8816 
8817 static void vmx_preemption_timer_zero_expect_preempt_at_rip(u64 expected_rip)
8818 {
8819 	u32 reason = (u32)vmcs_read(EXI_REASON);
8820 	u64 guest_rip = vmcs_read(GUEST_RIP);
8821 
8822 	report(reason == VMX_PREEMPT && guest_rip == expected_rip,
8823 	       "Exit reason is 0x%x (expected 0x%x) and guest RIP is %lx (0x%lx expected).",
8824 	       reason, VMX_PREEMPT, guest_rip, expected_rip);
8825 }
8826 
8827 /*
8828  * This test ensures that when the VMX preemption timer is zero at
8829  * VM-entry, a VM-exit occurs after any event injection and after any
8830  * pending debug exceptions are raised, but before execution of any
8831  * guest instructions.
8832  */
8833 static void vmx_preemption_timer_zero_test(void)
8834 {
8835 	u64 db_fault_address = (u64)get_idt_addr(&boot_idt[DB_VECTOR]);
8836 	handler old_db;
8837 	u32 reason;
8838 
8839 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
8840 		report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__);
8841 		return;
8842 	}
8843 
8844 	/*
8845 	 * Install a custom #DB handler that doesn't abort.
8846 	 */
8847 	old_db = handle_exception(DB_VECTOR,
8848 				  vmx_preemption_timer_zero_test_db_handler);
8849 
8850 	test_set_guest(vmx_preemption_timer_zero_test_guest);
8851 
8852 	/*
8853 	 * VMX-preemption timer should fire after event injection.
8854 	 */
8855 	vmx_set_test_stage(0);
8856 	vmx_preemption_timer_zero_inject_db(0);
8857 	vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address);
8858 	vmx_preemption_timer_zero_advance_past_vmcall();
8859 
8860 	/*
8861 	 * VMX-preemption timer should fire after event injection.
8862 	 * Exception bitmap is irrelevant, since you can't intercept
8863 	 * an event that you injected.
8864 	 */
8865 	vmx_set_test_stage(1);
8866 	vmx_preemption_timer_zero_inject_db(true);
8867 	vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address);
8868 	vmx_preemption_timer_zero_advance_past_vmcall();
8869 
8870 	/*
8871 	 * VMX-preemption timer should fire after pending debug exceptions
8872 	 * have delivered a #DB trap.
8873 	 */
8874 	vmx_set_test_stage(2);
8875 	vmx_preemption_timer_zero_set_pending_dbg(0);
8876 	vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address);
8877 	vmx_preemption_timer_zero_advance_past_vmcall();
8878 
8879 	/*
8880 	 * VMX-preemption timer would fire after pending debug exceptions
8881 	 * have delivered a #DB trap, but in this case, the #DB trap is
8882 	 * intercepted.
8883 	 */
8884 	vmx_set_test_stage(3);
8885 	vmx_preemption_timer_zero_set_pending_dbg(1 << DB_VECTOR);
8886 	reason = (u32)vmcs_read(EXI_REASON);
8887 	report(reason == VMX_EXC_NMI, "Exit reason is 0x%x (expected 0x%x)",
8888 	       reason, VMX_EXC_NMI);
8889 
8890 	vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
8891 	enter_guest();
8892 
8893 	handle_exception(DB_VECTOR, old_db);
8894 }
8895 
8896 static u64 vmx_preemption_timer_tf_test_prev_rip;
8897 
8898 static void vmx_preemption_timer_tf_test_db_handler(struct ex_regs *regs)
8899 {
8900 	extern char vmx_preemption_timer_tf_test_endloop;
8901 
8902 	if (vmx_get_test_stage() == 2) {
8903 		/*
8904 		 * Stage 2 means that we're done, one way or another.
8905 		 * Arrange for the iret to drop us out of the wbinvd
8906 		 * loop and stop single-stepping.
8907 		 */
8908 		regs->rip = (u64)&vmx_preemption_timer_tf_test_endloop;
8909 		regs->rflags &= ~X86_EFLAGS_TF;
8910 	} else if (regs->rip == vmx_preemption_timer_tf_test_prev_rip) {
8911 		/*
8912 		 * The RIP should alternate between the wbinvd and the
8913 		 * jmp instruction in the code below. If we ever see
8914 		 * the same instruction twice in a row, that means a
8915 		 * single-step trap has been dropped. Let the
8916 		 * hypervisor know about the failure by executing a
8917 		 * VMCALL.
8918 		 */
8919 		vmcall();
8920 	}
8921 	vmx_preemption_timer_tf_test_prev_rip = regs->rip;
8922 }
8923 
8924 static void vmx_preemption_timer_tf_test_guest(void)
8925 {
8926 	/*
8927 	 * The hypervisor doesn't intercept WBINVD, so the loop below
8928 	 * shouldn't be a problem--it's just two instructions
8929 	 * executing in VMX non-root mode. However, when the
8930 	 * hypervisor is running in a virtual environment, the parent
8931 	 * hypervisor might intercept WBINVD and emulate it. If the
8932 	 * parent hypervisor is broken, the single-step trap after the
8933 	 * WBINVD might be lost.
8934 	 */
8935 	asm volatile("vmcall\n\t"
8936 		     "0: wbinvd\n\t"
8937 		     "1: jmp 0b\n\t"
8938 		     "vmx_preemption_timer_tf_test_endloop:");
8939 }
8940 
8941 /*
8942  * Ensure that the delivery of a "VMX-preemption timer expired"
8943  * VM-exit doesn't disrupt single-stepping in the guest. Note that
8944  * passing this test doesn't ensure correctness, because the test will
8945  * only fail if the VMX-preemtion timer fires at the right time (or
8946  * the wrong time, as it were).
8947  */
8948 static void vmx_preemption_timer_tf_test(void)
8949 {
8950 	handler old_db;
8951 	u32 reason;
8952 	int i;
8953 
8954 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
8955 		report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__);
8956 		return;
8957 	}
8958 
8959 	old_db = handle_exception(DB_VECTOR,
8960 				  vmx_preemption_timer_tf_test_db_handler);
8961 
8962 	test_set_guest(vmx_preemption_timer_tf_test_guest);
8963 
8964 	enter_guest();
8965 	skip_exit_vmcall();
8966 
8967 	vmx_set_test_stage(1);
8968 	vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT);
8969 	vmcs_write(PREEMPT_TIMER_VALUE, 50000);
8970 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF);
8971 
8972 	/*
8973 	 * The only exit we should see is "VMX-preemption timer
8974 	 * expired."  If we get a VMCALL exit, that means the #DB
8975 	 * handler has detected a missing single-step trap. It doesn't
8976 	 * matter where the guest RIP is when the VMX-preemption timer
8977 	 * expires (whether it's in the WBINVD loop or in the #DB
8978 	 * handler)--a single-step trap should never be discarded.
8979 	 */
8980 	for (i = 0; i < 10000; i++) {
8981 		enter_guest();
8982 		reason = (u32)vmcs_read(EXI_REASON);
8983 		if (reason == VMX_PREEMPT)
8984 			continue;
8985 		TEST_ASSERT(reason == VMX_VMCALL);
8986 		skip_exit_insn();
8987 		break;
8988 	}
8989 
8990 	report(reason == VMX_PREEMPT, "No single-step traps skipped");
8991 
8992 	vmx_set_test_stage(2);
8993 	vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
8994 	enter_guest();
8995 
8996 	handle_exception(DB_VECTOR, old_db);
8997 }
8998 
8999 #define VMX_PREEMPTION_TIMER_EXPIRY_CYCLES 1000000
9000 
9001 static u64 vmx_preemption_timer_expiry_start;
9002 static u64 vmx_preemption_timer_expiry_finish;
9003 
9004 static void vmx_preemption_timer_expiry_test_guest(void)
9005 {
9006 	vmcall();
9007 	vmx_preemption_timer_expiry_start = fenced_rdtsc();
9008 
9009 	while (vmx_get_test_stage() == 0)
9010 		vmx_preemption_timer_expiry_finish = fenced_rdtsc();
9011 }
9012 
9013 /*
9014  * Test that the VMX-preemption timer is not excessively delayed.
9015  *
9016  * Per the SDM, volume 3, VM-entry starts the VMX-preemption timer
9017  * with the unsigned value in the VMX-preemption timer-value field,
9018  * and the VMX-preemption timer counts down by 1 every time bit X in
9019  * the TSC changes due to a TSC increment (where X is
9020  * IA32_VMX_MISC[4:0]). If the timer counts down to zero in any state
9021  * other than the wait-for-SIPI state, the logical processor
9022  * transitions to the C0 C-state and causes a VM-exit.
9023  *
9024  * The guest code above reads the starting TSC after VM-entry. At this
9025  * point, the VMX-preemption timer has already been activated. Next,
9026  * the guest code reads the current TSC in a loop, storing the value
9027  * read to memory.
9028  *
9029  * If the RDTSC in the loop reads a value past the VMX-preemption
9030  * timer deadline, then the VMX-preemption timer VM-exit must be
9031  * delivered before the next instruction retires. Even if a higher
9032  * priority SMI is delivered first, the VMX-preemption timer VM-exit
9033  * must be delivered before the next instruction retires. Hence, a TSC
9034  * value past the VMX-preemption timer deadline might be read, but it
9035  * cannot be stored. If a TSC value past the deadline *is* stored,
9036  * then the architectural specification has been violated.
9037  */
9038 static void vmx_preemption_timer_expiry_test(void)
9039 {
9040 	u32 preemption_timer_value;
9041 	union vmx_misc misc;
9042 	u64 tsc_deadline;
9043 	u32 reason;
9044 
9045 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
9046 		report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__);
9047 		return;
9048 	}
9049 
9050 	test_set_guest(vmx_preemption_timer_expiry_test_guest);
9051 
9052 	enter_guest();
9053 	skip_exit_vmcall();
9054 
9055 	misc.val = rdmsr(MSR_IA32_VMX_MISC);
9056 	preemption_timer_value =
9057 		VMX_PREEMPTION_TIMER_EXPIRY_CYCLES >> misc.pt_bit;
9058 
9059 	vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT);
9060 	vmcs_write(PREEMPT_TIMER_VALUE, preemption_timer_value);
9061 	vmx_set_test_stage(0);
9062 
9063 	enter_guest();
9064 	reason = (u32)vmcs_read(EXI_REASON);
9065 	TEST_ASSERT(reason == VMX_PREEMPT);
9066 
9067 	tsc_deadline = ((vmx_preemption_timer_expiry_start >> misc.pt_bit) <<
9068 			misc.pt_bit) + (preemption_timer_value << misc.pt_bit);
9069 
9070 	report(vmx_preemption_timer_expiry_finish < tsc_deadline,
9071 	       "Last stored guest TSC (%lu) < TSC deadline (%lu)",
9072 	       vmx_preemption_timer_expiry_finish, tsc_deadline);
9073 
9074 	vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
9075 	vmx_set_test_stage(1);
9076 	enter_guest();
9077 }
9078 
9079 static void vmx_db_test_guest(void)
9080 {
9081 	/*
9082 	 * For a hardware generated single-step #DB.
9083 	 */
9084 	asm volatile("vmcall;"
9085 		     "nop;"
9086 		     ".Lpost_nop:");
9087 	/*
9088 	 * ...in a MOVSS shadow, with pending debug exceptions.
9089 	 */
9090 	asm volatile("vmcall;"
9091 		     "nop;"
9092 		     ".Lpost_movss_nop:");
9093 	/*
9094 	 * For an L0 synthesized single-step #DB. (L0 intercepts WBINVD and
9095 	 * emulates it in software.)
9096 	 */
9097 	asm volatile("vmcall;"
9098 		     "wbinvd;"
9099 		     ".Lpost_wbinvd:");
9100 	/*
9101 	 * ...in a MOVSS shadow, with pending debug exceptions.
9102 	 */
9103 	asm volatile("vmcall;"
9104 		     "wbinvd;"
9105 		     ".Lpost_movss_wbinvd:");
9106 	/*
9107 	 * For a hardware generated single-step #DB in a transactional region.
9108 	 */
9109 	asm volatile("vmcall;"
9110 		     ".Lxbegin: xbegin .Lskip_rtm;"
9111 		     "xend;"
9112 		     ".Lskip_rtm:");
9113 }
9114 
9115 /*
9116  * Clear the pending debug exceptions and RFLAGS.TF and re-enter
9117  * L2. No #DB is delivered and L2 continues to the next point of
9118  * interest.
9119  */
9120 static void dismiss_db(void)
9121 {
9122 	vmcs_write(GUEST_PENDING_DEBUG, 0);
9123 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
9124 	enter_guest();
9125 }
9126 
9127 /*
9128  * Check a variety of VMCS fields relevant to an intercepted #DB exception.
9129  * Then throw away the #DB exception and resume L2.
9130  */
9131 static void check_db_exit(bool xfail_qual, bool xfail_dr6, bool xfail_pdbg,
9132 			  void *expected_rip, u64 expected_exit_qual,
9133 			  u64 expected_dr6)
9134 {
9135 	u32 reason = vmcs_read(EXI_REASON);
9136 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
9137 	u64 exit_qual = vmcs_read(EXI_QUALIFICATION);
9138 	u64 guest_rip = vmcs_read(GUEST_RIP);
9139 	u64 guest_pending_dbg = vmcs_read(GUEST_PENDING_DEBUG);
9140 	u64 dr6 = read_dr6();
9141 	const u32 expected_intr_info = INTR_INFO_VALID_MASK |
9142 		INTR_TYPE_HARD_EXCEPTION | DB_VECTOR;
9143 
9144 	report(reason == VMX_EXC_NMI && intr_info == expected_intr_info,
9145 	       "Expected #DB VM-exit");
9146 	report((u64)expected_rip == guest_rip, "Expected RIP %p (actual %lx)",
9147 	       expected_rip, guest_rip);
9148 	report_xfail(xfail_pdbg, 0 == guest_pending_dbg,
9149 		     "Expected pending debug exceptions 0 (actual %lx)",
9150 		     guest_pending_dbg);
9151 	report_xfail(xfail_qual, expected_exit_qual == exit_qual,
9152 		     "Expected exit qualification %lx (actual %lx)",
9153 		     expected_exit_qual, exit_qual);
9154 	report_xfail(xfail_dr6, expected_dr6 == dr6,
9155 		     "Expected DR6 %lx (actual %lx)", expected_dr6, dr6);
9156 	dismiss_db();
9157 }
9158 
9159 /*
9160  * Assuming the guest has just exited on a VMCALL instruction, skip
9161  * over the vmcall, and set the guest's RFLAGS.TF in the VMCS. If
9162  * pending debug exceptions are non-zero, set the VMCS up as if the
9163  * previous instruction was a MOVSS that generated the indicated
9164  * pending debug exceptions. Then enter L2.
9165  */
9166 static void single_step_guest(const char *test_name, u64 starting_dr6,
9167 			      u64 pending_debug_exceptions)
9168 {
9169 	printf("\n%s\n", test_name);
9170 	skip_exit_vmcall();
9171 	write_dr6(starting_dr6);
9172 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF);
9173 	if (pending_debug_exceptions) {
9174 		vmcs_write(GUEST_PENDING_DEBUG, pending_debug_exceptions);
9175 		vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
9176 	}
9177 	enter_guest();
9178 }
9179 
9180 /*
9181  * When L1 intercepts #DB, verify that a single-step trap clears
9182  * pending debug exceptions, populates the exit qualification field
9183  * properly, and that DR6 is not prematurely clobbered. In a
9184  * (simulated) MOVSS shadow, make sure that the pending debug
9185  * exception bits are properly accumulated into the exit qualification
9186  * field.
9187  */
9188 static void vmx_db_test(void)
9189 {
9190 	/*
9191 	 * We are going to set a few arbitrary bits in DR6 to verify that
9192 	 * (a) DR6 is not modified by an intercepted #DB, and
9193 	 * (b) stale bits in DR6 (DR6.BD, in particular) don't leak into
9194          *     the exit qualification field for a subsequent #DB exception.
9195 	 */
9196 	const u64 starting_dr6 = DR6_ACTIVE_LOW | DR6_BS | DR6_TRAP3 | DR6_TRAP1;
9197 	extern char post_nop asm(".Lpost_nop");
9198 	extern char post_movss_nop asm(".Lpost_movss_nop");
9199 	extern char post_wbinvd asm(".Lpost_wbinvd");
9200 	extern char post_movss_wbinvd asm(".Lpost_movss_wbinvd");
9201 	extern char xbegin asm(".Lxbegin");
9202 	extern char skip_rtm asm(".Lskip_rtm");
9203 
9204 	/*
9205 	 * L1 wants to intercept #DB exceptions encountered in L2.
9206 	 */
9207 	vmcs_write(EXC_BITMAP, BIT(DB_VECTOR));
9208 
9209 	/*
9210 	 * Start L2 and run it up to the first point of interest.
9211 	 */
9212 	test_set_guest(vmx_db_test_guest);
9213 	enter_guest();
9214 
9215 	/*
9216 	 * Hardware-delivered #DB trap for single-step sets the
9217 	 * standard that L0 has to follow for emulated instructions.
9218 	 */
9219 	single_step_guest("Hardware delivered single-step", starting_dr6, 0);
9220 	check_db_exit(false, false, false, &post_nop, DR6_BS, starting_dr6);
9221 
9222 	/*
9223 	 * Hardware-delivered #DB trap for single-step in MOVSS shadow
9224 	 * also sets the standard that L0 has to follow for emulated
9225 	 * instructions. Here, we establish the VMCS pending debug
9226 	 * exceptions to indicate that the simulated MOVSS triggered a
9227 	 * data breakpoint as well as the single-step trap.
9228 	 */
9229 	single_step_guest("Hardware delivered single-step in MOVSS shadow",
9230 			  starting_dr6, DR6_BS | PENDING_DBG_TRAP | DR6_TRAP0);
9231 	check_db_exit(false, false, false, &post_movss_nop, DR6_BS | DR6_TRAP0,
9232 		      starting_dr6);
9233 
9234 	/*
9235 	 * L0 synthesized #DB trap for single-step is buggy, because
9236 	 * kvm (a) clobbers DR6 too early, and (b) tries its best to
9237 	 * reconstitute the exit qualification from the prematurely
9238 	 * modified DR6, but fails miserably.
9239 	 */
9240 	single_step_guest("Software synthesized single-step", starting_dr6, 0);
9241 	check_db_exit(false, false, false, &post_wbinvd, DR6_BS, starting_dr6);
9242 
9243 	/*
9244 	 * L0 synthesized #DB trap for single-step in MOVSS shadow is
9245 	 * even worse, because L0 also leaves the pending debug
9246 	 * exceptions in the VMCS instead of accumulating them into
9247 	 * the exit qualification field for the #DB exception.
9248 	 */
9249 	single_step_guest("Software synthesized single-step in MOVSS shadow",
9250 			  starting_dr6, DR6_BS | PENDING_DBG_TRAP | DR6_TRAP0);
9251 	check_db_exit(true, false, true, &post_movss_wbinvd, DR6_BS | DR6_TRAP0,
9252 		      starting_dr6);
9253 
9254 	/*
9255 	 * Optional RTM test for hardware that supports RTM, to
9256 	 * demonstrate that the current volume 3 of the SDM
9257 	 * (325384-067US), table 27-1 is incorrect. Bit 16 of the exit
9258 	 * qualification for debug exceptions is not reserved. It is
9259 	 * set to 1 if a debug exception (#DB) or a breakpoint
9260 	 * exception (#BP) occurs inside an RTM region while advanced
9261 	 * debugging of RTM transactional regions is enabled.
9262 	 */
9263 	if (this_cpu_has(X86_FEATURE_RTM)) {
9264 		vmcs_write(ENT_CONTROLS,
9265 			   vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
9266 		/*
9267 		 * Set DR7.RTM[bit 11] and IA32_DEBUGCTL.RTM[bit 15]
9268 		 * in the guest to enable advanced debugging of RTM
9269 		 * transactional regions.
9270 		 */
9271 		vmcs_write(GUEST_DR7, BIT(11));
9272 		vmcs_write(GUEST_DEBUGCTL, BIT(15));
9273 		single_step_guest("Hardware delivered single-step in "
9274 				  "transactional region", starting_dr6, 0);
9275 		check_db_exit(false, false, false, &xbegin, BIT(16),
9276 			      starting_dr6);
9277 	} else {
9278 		vmcs_write(GUEST_RIP, (u64)&skip_rtm);
9279 		enter_guest();
9280 	}
9281 }
9282 
9283 static void enable_vid(void)
9284 {
9285 	void *virtual_apic_page;
9286 
9287 	assert(cpu_has_apicv());
9288 
9289 	disable_intercept_for_x2apic_msrs();
9290 
9291 	virtual_apic_page = alloc_page();
9292 	vmcs_write(APIC_VIRT_ADDR, (u64)virtual_apic_page);
9293 
9294 	vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT);
9295 
9296 	vmcs_write(EOI_EXIT_BITMAP0, 0x0);
9297 	vmcs_write(EOI_EXIT_BITMAP1, 0x0);
9298 	vmcs_write(EOI_EXIT_BITMAP2, 0x0);
9299 	vmcs_write(EOI_EXIT_BITMAP3, 0x0);
9300 
9301 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY | CPU_TPR_SHADOW);
9302 	vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VINTD | CPU_VIRT_X2APIC);
9303 }
9304 
9305 static void trigger_ioapic_scan_thread(void *data)
9306 {
9307 	/* Wait until other CPU entered L2 */
9308 	while (vmx_get_test_stage() != 1)
9309 		;
9310 
9311 	/* Trigger ioapic scan */
9312 	ioapic_set_redir(0xf, 0x79, TRIGGER_LEVEL);
9313 	vmx_set_test_stage(2);
9314 }
9315 
9316 static void irq_79_handler_guest(isr_regs_t *regs)
9317 {
9318 	eoi();
9319 
9320 	/* L1 expects vmexit on VMX_VMCALL and not VMX_EOI_INDUCED */
9321 	vmcall();
9322 }
9323 
9324 /*
9325  * Constant for num of busy-loop iterations after which
9326  * a timer interrupt should have happened in host
9327  */
9328 #define TIMER_INTERRUPT_DELAY 100000000
9329 
9330 static void vmx_eoi_bitmap_ioapic_scan_test_guest(void)
9331 {
9332 	handle_irq(0x79, irq_79_handler_guest);
9333 	sti();
9334 
9335 	/* Signal to L1 CPU to trigger ioapic scan */
9336 	vmx_set_test_stage(1);
9337 	/* Wait until L1 CPU to trigger ioapic scan */
9338 	while (vmx_get_test_stage() != 2)
9339 		;
9340 
9341 	/*
9342 	 * Wait for L0 timer interrupt to be raised while we run in L2
9343 	 * such that L0 will process the IOAPIC scan request before
9344 	 * resuming L2
9345 	 */
9346 	delay(TIMER_INTERRUPT_DELAY);
9347 
9348 	asm volatile ("int $0x79");
9349 }
9350 
9351 static void vmx_eoi_bitmap_ioapic_scan_test(void)
9352 {
9353 	if (!cpu_has_apicv() || (cpu_count() < 2)) {
9354 		report_skip("%s : Not all required APICv bits supported or CPU count < 2", __func__);
9355 		return;
9356 	}
9357 
9358 	enable_vid();
9359 
9360 	on_cpu_async(1, trigger_ioapic_scan_thread, NULL);
9361 	test_set_guest(vmx_eoi_bitmap_ioapic_scan_test_guest);
9362 
9363 	/*
9364 	 * Launch L2.
9365 	 * We expect the exit reason to be VMX_VMCALL (and not EOI INDUCED).
9366 	 * In case the reason isn't VMX_VMCALL, the asserion inside
9367 	 * skip_exit_vmcall() will fail.
9368 	 */
9369 	enter_guest();
9370 	skip_exit_vmcall();
9371 
9372 	/* Let L2 finish */
9373 	enter_guest();
9374 	report_pass(__func__);
9375 }
9376 
9377 #define HLT_WITH_RVI_VECTOR		(0xf1)
9378 
9379 bool vmx_hlt_with_rvi_guest_isr_fired;
9380 static void vmx_hlt_with_rvi_guest_isr(isr_regs_t *regs)
9381 {
9382 	vmx_hlt_with_rvi_guest_isr_fired = true;
9383 	eoi();
9384 }
9385 
9386 static void vmx_hlt_with_rvi_guest(void)
9387 {
9388 	handle_irq(HLT_WITH_RVI_VECTOR, vmx_hlt_with_rvi_guest_isr);
9389 
9390 	sti_nop();
9391 	asm volatile ("nop");
9392 
9393 	vmcall();
9394 }
9395 
9396 static void vmx_hlt_with_rvi_test(void)
9397 {
9398 	if (!cpu_has_apicv()) {
9399 		report_skip("%s : Not all required APICv bits supported", __func__);
9400 		return;
9401 	}
9402 
9403 	enable_vid();
9404 
9405 	vmx_hlt_with_rvi_guest_isr_fired = false;
9406 	test_set_guest(vmx_hlt_with_rvi_guest);
9407 
9408 	enter_guest();
9409 	skip_exit_vmcall();
9410 
9411 	vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
9412 	vmcs_write(GUEST_INT_STATUS, HLT_WITH_RVI_VECTOR);
9413 	enter_guest();
9414 
9415 	report(vmx_hlt_with_rvi_guest_isr_fired, "Interrupt raised in guest");
9416 }
9417 
9418 static void set_irq_line_thread(void *data)
9419 {
9420 	/* Wait until other CPU entered L2 */
9421 	while (vmx_get_test_stage() != 1)
9422 		;
9423 
9424 	/* Set irq-line 0xf to raise vector 0x78 for vCPU 0 */
9425 	ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL);
9426 	vmx_set_test_stage(2);
9427 }
9428 
9429 static bool irq_78_handler_vmcall_before_eoi;
9430 static void irq_78_handler_guest(isr_regs_t *regs)
9431 {
9432 	set_irq_line(0xf, 0);
9433 	if (irq_78_handler_vmcall_before_eoi)
9434 		vmcall();
9435 	eoi();
9436 	vmcall();
9437 }
9438 
9439 static void vmx_apic_passthrough_guest(void)
9440 {
9441 	handle_irq(0x78, irq_78_handler_guest);
9442 	sti();
9443 
9444 	/* If requested, wait for other CPU to trigger ioapic scan */
9445 	if (vmx_get_test_stage() < 1) {
9446 		vmx_set_test_stage(1);
9447 		while (vmx_get_test_stage() != 2)
9448 			;
9449 	}
9450 
9451 	set_irq_line(0xf, 1);
9452 }
9453 
9454 static void vmx_apic_passthrough(bool set_irq_line_from_thread)
9455 {
9456 	if (set_irq_line_from_thread && (cpu_count() < 2)) {
9457 		report_skip("%s : CPU count < 2", __func__);
9458 		return;
9459 	}
9460 
9461 	/* Test device is required for generating IRQs */
9462 	if (!test_device_enabled()) {
9463 		report_skip("%s : No test device enabled", __func__);
9464 		return;
9465 	}
9466 	u64 cpu_ctrl_0 = CPU_SECONDARY;
9467 	u64 cpu_ctrl_1 = 0;
9468 
9469 	disable_intercept_for_x2apic_msrs();
9470 
9471 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
9472 
9473 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0);
9474 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1);
9475 
9476 	if (set_irq_line_from_thread) {
9477 		irq_78_handler_vmcall_before_eoi = false;
9478 		on_cpu_async(1, set_irq_line_thread, NULL);
9479 	} else {
9480 		irq_78_handler_vmcall_before_eoi = true;
9481 		ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL);
9482 		vmx_set_test_stage(2);
9483 	}
9484 	test_set_guest(vmx_apic_passthrough_guest);
9485 
9486 	if (irq_78_handler_vmcall_before_eoi) {
9487 		/* Before EOI remote_irr should still be set */
9488 		enter_guest();
9489 		skip_exit_vmcall();
9490 		TEST_ASSERT_EQ_MSG(1, (int)ioapic_read_redir(0xf).remote_irr,
9491 			"IOAPIC pass-through: remote_irr=1 before EOI");
9492 	}
9493 
9494 	/* After EOI remote_irr should be cleared */
9495 	enter_guest();
9496 	skip_exit_vmcall();
9497 	TEST_ASSERT_EQ_MSG(0, (int)ioapic_read_redir(0xf).remote_irr,
9498 		"IOAPIC pass-through: remote_irr=0 after EOI");
9499 
9500 	/* Let L2 finish */
9501 	enter_guest();
9502 	report_pass(__func__);
9503 }
9504 
9505 static void vmx_apic_passthrough_test(void)
9506 {
9507 	vmx_apic_passthrough(false);
9508 }
9509 
9510 static void vmx_apic_passthrough_thread_test(void)
9511 {
9512 	vmx_apic_passthrough(true);
9513 }
9514 
9515 static void vmx_apic_passthrough_tpr_threshold_guest(void)
9516 {
9517 	cli();
9518 	apic_set_tpr(0);
9519 }
9520 
9521 static bool vmx_apic_passthrough_tpr_threshold_ipi_isr_fired;
9522 static void vmx_apic_passthrough_tpr_threshold_ipi_isr(isr_regs_t *regs)
9523 {
9524 	vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = true;
9525 	eoi();
9526 }
9527 
9528 static void vmx_apic_passthrough_tpr_threshold_test(void)
9529 {
9530 	int ipi_vector = 0xe1;
9531 
9532 	disable_intercept_for_x2apic_msrs();
9533 	vmcs_clear_bits(PIN_CONTROLS, PIN_EXTINT);
9534 
9535 	/* Raise L0 TPR-threshold by queueing vector in LAPIC IRR */
9536 	cli();
9537 	apic_set_tpr((ipi_vector >> 4) + 1);
9538 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
9539 			APIC_DM_FIXED | ipi_vector,
9540 			0);
9541 
9542 	test_set_guest(vmx_apic_passthrough_tpr_threshold_guest);
9543 	enter_guest();
9544 
9545 	report(apic_get_tpr() == 0, "TPR was zero by guest");
9546 
9547 	/* Clean pending self-IPI */
9548 	vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = false;
9549 	handle_irq(ipi_vector, vmx_apic_passthrough_tpr_threshold_ipi_isr);
9550 	sti_nop();
9551 	report(vmx_apic_passthrough_tpr_threshold_ipi_isr_fired, "self-IPI fired");
9552 
9553 	report_pass(__func__);
9554 }
9555 
9556 static u64 init_signal_test_exit_reason;
9557 static bool init_signal_test_thread_continued;
9558 
9559 static void init_signal_test_thread(void *data)
9560 {
9561 	struct vmcs *test_vmcs = data;
9562 
9563 	/* Enter VMX operation (i.e. exec VMXON) */
9564 	u64 *ap_vmxon_region = alloc_page();
9565 	enable_vmx();
9566 	init_vmx(ap_vmxon_region);
9567 	TEST_ASSERT(!__vmxon_safe(ap_vmxon_region));
9568 
9569 	/* Signal CPU have entered VMX operation */
9570 	vmx_set_test_stage(1);
9571 
9572 	/* Wait for BSP CPU to send INIT signal */
9573 	while (vmx_get_test_stage() != 2)
9574 		;
9575 
9576 	/*
9577 	 * Signal that we continue as usual as INIT signal
9578 	 * should be blocked while CPU is in VMX operation
9579 	 */
9580 	vmx_set_test_stage(3);
9581 
9582 	/* Wait for signal to enter VMX non-root mode */
9583 	while (vmx_get_test_stage() != 4)
9584 		;
9585 
9586 	/* Enter VMX non-root mode */
9587 	test_set_guest(v2_null_test_guest);
9588 	make_vmcs_current(test_vmcs);
9589 	enter_guest();
9590 	/* Save exit reason for BSP CPU to compare to expected result */
9591 	init_signal_test_exit_reason = vmcs_read(EXI_REASON);
9592 	/* VMCLEAR test-vmcs so it could be loaded by BSP CPU */
9593 	vmcs_clear(test_vmcs);
9594 	launched = false;
9595 	/* Signal that CPU exited to VMX root mode */
9596 	vmx_set_test_stage(5);
9597 
9598 	/* Wait for BSP CPU to signal to exit VMX operation */
9599 	while (vmx_get_test_stage() != 6)
9600 		;
9601 
9602 	/* Exit VMX operation (i.e. exec VMXOFF) */
9603 	vmx_off();
9604 
9605 	/*
9606 	 * Signal to BSP CPU that we continue as usual as INIT signal
9607 	 * should have been consumed by VMX_INIT exit from guest
9608 	 */
9609 	vmx_set_test_stage(7);
9610 
9611 	/* Wait for BSP CPU to signal to enter VMX operation */
9612 	while (vmx_get_test_stage() != 8)
9613 		;
9614 	/* Enter VMX operation (i.e. exec VMXON) */
9615 	TEST_ASSERT(!__vmxon_safe(ap_vmxon_region));
9616 	/* Signal to BSP we are in VMX operation */
9617 	vmx_set_test_stage(9);
9618 
9619 	/* Wait for BSP CPU to send INIT signal */
9620 	while (vmx_get_test_stage() != 10)
9621 		;
9622 
9623 	/* Exit VMX operation (i.e. exec VMXOFF) */
9624 	vmx_off();
9625 
9626 	/*
9627 	 * Exiting VMX operation should result in latched
9628 	 * INIT signal being processed. Therefore, we should
9629 	 * never reach the below code. Thus, signal to BSP
9630 	 * CPU if we have reached here so it is able to
9631 	 * report an issue if it happens.
9632 	 */
9633 	init_signal_test_thread_continued = true;
9634 }
9635 
9636 #define INIT_SIGNAL_TEST_DELAY	100000000ULL
9637 
9638 static void vmx_init_signal_test(void)
9639 {
9640 	struct vmcs *test_vmcs;
9641 
9642 	if (cpu_count() < 2) {
9643 		report_skip("%s : CPU count < 2", __func__);
9644 		return;
9645 	}
9646 
9647 	/* VMCLEAR test-vmcs so it could be loaded by other CPU */
9648 	vmcs_save(&test_vmcs);
9649 	vmcs_clear(test_vmcs);
9650 
9651 	vmx_set_test_stage(0);
9652 	on_cpu_async(1, init_signal_test_thread, test_vmcs);
9653 
9654 	/* Wait for other CPU to enter VMX operation */
9655 	while (vmx_get_test_stage() != 1)
9656 		;
9657 
9658 	/* Send INIT signal to other CPU */
9659 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT,
9660 				   id_map[1]);
9661 	/* Signal other CPU we have sent INIT signal */
9662 	vmx_set_test_stage(2);
9663 
9664 	/*
9665 	 * Wait reasonable amount of time for INIT signal to
9666 	 * be received on other CPU and verify that other CPU
9667 	 * have proceed as usual to next test stage as INIT
9668 	 * signal should be blocked while other CPU in
9669 	 * VMX operation
9670 	 */
9671 	delay(INIT_SIGNAL_TEST_DELAY);
9672 	report(vmx_get_test_stage() == 3,
9673 	       "INIT signal blocked when CPU in VMX operation");
9674 	/* No point to continue if we failed at this point */
9675 	if (vmx_get_test_stage() != 3)
9676 		return;
9677 
9678 	/* Signal other CPU to enter VMX non-root mode */
9679 	init_signal_test_exit_reason = -1ull;
9680 	vmx_set_test_stage(4);
9681 	/*
9682 	 * Wait reasonable amont of time for other CPU
9683 	 * to exit to VMX root mode
9684 	 */
9685 	delay(INIT_SIGNAL_TEST_DELAY);
9686 	if (vmx_get_test_stage() != 5) {
9687 		report_fail("Pending INIT signal didn't result in VMX exit");
9688 		return;
9689 	}
9690 	report(init_signal_test_exit_reason == VMX_INIT,
9691 			"INIT signal during VMX non-root mode result in exit-reason %s (%lu)",
9692 			exit_reason_description(init_signal_test_exit_reason),
9693 			init_signal_test_exit_reason);
9694 
9695 	/* Run guest to completion */
9696 	make_vmcs_current(test_vmcs);
9697 	enter_guest();
9698 
9699 	/* Signal other CPU to exit VMX operation */
9700 	init_signal_test_thread_continued = false;
9701 	vmx_set_test_stage(6);
9702 
9703 	/* Wait reasonable amount of time for other CPU to exit VMX operation */
9704 	delay(INIT_SIGNAL_TEST_DELAY);
9705 	report(vmx_get_test_stage() == 7,
9706 	       "INIT signal consumed on VMX_INIT exit");
9707 	/* No point to continue if we failed at this point */
9708 	if (vmx_get_test_stage() != 7)
9709 		return;
9710 
9711 	/* Signal other CPU to enter VMX operation */
9712 	vmx_set_test_stage(8);
9713 	/* Wait for other CPU to enter VMX operation */
9714 	while (vmx_get_test_stage() != 9)
9715 		;
9716 
9717 	/* Send INIT signal to other CPU */
9718 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT,
9719 				   id_map[1]);
9720 	/* Signal other CPU we have sent INIT signal */
9721 	vmx_set_test_stage(10);
9722 
9723 	/*
9724 	 * Wait reasonable amount of time for other CPU
9725 	 * to exit VMX operation and process INIT signal
9726 	 */
9727 	delay(INIT_SIGNAL_TEST_DELAY);
9728 	report(!init_signal_test_thread_continued,
9729 	       "INIT signal processed after exit VMX operation");
9730 
9731 	/*
9732 	 * TODO: Send SIPI to other CPU to sipi_entry (See x86/cstart64.S)
9733 	 * to re-init it to kvm-unit-tests standard environment.
9734 	 * Somehow (?) verify that SIPI was indeed received.
9735 	 */
9736 }
9737 
9738 #define SIPI_SIGNAL_TEST_DELAY	100000000ULL
9739 
9740 static void vmx_sipi_test_guest(void)
9741 {
9742 	if (apic_id() == 0) {
9743 		/* wait AP enter guest with activity=WAIT_SIPI */
9744 		while (vmx_get_test_stage() != 1)
9745 			;
9746 		delay(SIPI_SIGNAL_TEST_DELAY);
9747 
9748 		/* First SIPI signal */
9749 		apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP | APIC_INT_ASSERT, id_map[1]);
9750 		report_pass("BSP(L2): Send first SIPI to cpu[%d]", id_map[1]);
9751 
9752 		/* wait AP enter guest */
9753 		while (vmx_get_test_stage() != 2)
9754 			;
9755 		delay(SIPI_SIGNAL_TEST_DELAY);
9756 
9757 		/* Second SIPI signal should be ignored since AP is not in WAIT_SIPI state */
9758 		apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP | APIC_INT_ASSERT, id_map[1]);
9759 		report_pass("BSP(L2): Send second SIPI to cpu[%d]", id_map[1]);
9760 
9761 		/* Delay a while to check whether second SIPI would cause VMExit */
9762 		delay(SIPI_SIGNAL_TEST_DELAY);
9763 
9764 		/* Test is done, notify AP to exit test */
9765 		vmx_set_test_stage(3);
9766 
9767 		/* wait AP exit non-root mode */
9768 		while (vmx_get_test_stage() != 5)
9769 			;
9770 	} else {
9771 		/* wait BSP notify test is done */
9772 		while (vmx_get_test_stage() != 3)
9773 			;
9774 
9775 		/* AP exit guest */
9776 		vmx_set_test_stage(4);
9777 	}
9778 }
9779 
9780 static void sipi_test_ap_thread(void *data)
9781 {
9782 	struct vmcs *ap_vmcs;
9783 	u64 *ap_vmxon_region;
9784 	void *ap_stack, *ap_syscall_stack;
9785 	u64 cpu_ctrl_0 = CPU_SECONDARY;
9786 	u64 cpu_ctrl_1 = 0;
9787 
9788 	/* Enter VMX operation (i.e. exec VMXON) */
9789 	ap_vmxon_region = alloc_page();
9790 	enable_vmx();
9791 	init_vmx(ap_vmxon_region);
9792 	TEST_ASSERT(!__vmxon_safe(ap_vmxon_region));
9793 	init_vmcs(&ap_vmcs);
9794 	make_vmcs_current(ap_vmcs);
9795 
9796 	/* Set stack for AP */
9797 	ap_stack = alloc_page();
9798 	ap_syscall_stack = alloc_page();
9799 	vmcs_write(GUEST_RSP, (u64)(ap_stack + PAGE_SIZE - 1));
9800 	vmcs_write(GUEST_SYSENTER_ESP, (u64)(ap_syscall_stack + PAGE_SIZE - 1));
9801 
9802 	/* passthrough lapic to L2 */
9803 	disable_intercept_for_x2apic_msrs();
9804 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
9805 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0);
9806 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1);
9807 
9808 	/* Set guest activity state to wait-for-SIPI state */
9809 	vmcs_write(GUEST_ACTV_STATE, ACTV_WAIT_SIPI);
9810 
9811 	vmx_set_test_stage(1);
9812 
9813 	/* AP enter guest */
9814 	enter_guest();
9815 
9816 	if (vmcs_read(EXI_REASON) == VMX_SIPI) {
9817 		report_pass("AP: Handle SIPI VMExit");
9818 		vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
9819 		vmx_set_test_stage(2);
9820 	} else {
9821 		report_fail("AP: Unexpected VMExit, reason=%ld", vmcs_read(EXI_REASON));
9822 		vmx_off();
9823 		return;
9824 	}
9825 
9826 	/* AP enter guest */
9827 	enter_guest();
9828 
9829 	report(vmcs_read(EXI_REASON) != VMX_SIPI,
9830 		"AP: should no SIPI VMExit since activity is not in WAIT_SIPI state");
9831 
9832 	/* notify BSP that AP is already exit from non-root mode */
9833 	vmx_set_test_stage(5);
9834 
9835 	/* Leave VMX operation */
9836 	vmx_off();
9837 }
9838 
9839 static void vmx_sipi_signal_test(void)
9840 {
9841 	if (!(rdmsr(MSR_IA32_VMX_MISC) & MSR_IA32_VMX_MISC_ACTIVITY_WAIT_SIPI)) {
9842 		report_skip("%s : \"ACTIVITY_WAIT_SIPI state\" not supported", __func__);
9843 		return;
9844 	}
9845 
9846 	if (cpu_count() < 2) {
9847 		report_skip("%s : CPU count < 2", __func__);
9848 		return;
9849 	}
9850 
9851 	u64 cpu_ctrl_0 = CPU_SECONDARY;
9852 	u64 cpu_ctrl_1 = 0;
9853 
9854 	/* passthrough lapic to L2 */
9855 	disable_intercept_for_x2apic_msrs();
9856 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
9857 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0);
9858 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1);
9859 
9860 	test_set_guest(vmx_sipi_test_guest);
9861 
9862 	/* update CR3 on AP */
9863 	on_cpu(1, update_cr3, (void *)read_cr3());
9864 
9865 	/* start AP */
9866 	on_cpu_async(1, sipi_test_ap_thread, NULL);
9867 
9868 	vmx_set_test_stage(0);
9869 
9870 	/* BSP enter guest */
9871 	enter_guest();
9872 }
9873 
9874 
9875 enum vmcs_access {
9876 	ACCESS_VMREAD,
9877 	ACCESS_VMWRITE,
9878 	ACCESS_NONE,
9879 };
9880 
9881 struct vmcs_shadow_test_common {
9882 	enum vmcs_access op;
9883 	enum Reason reason;
9884 	u64 field;
9885 	u64 value;
9886 	u64 flags;
9887 	u64 time;
9888 } l1_l2_common;
9889 
9890 static inline u64 vmread_flags(u64 field, u64 *val)
9891 {
9892 	u64 flags;
9893 
9894 	asm volatile ("vmread %2, %1; pushf; pop %0"
9895 		      : "=r" (flags), "=rm" (*val) : "r" (field) : "cc");
9896 	return flags & X86_EFLAGS_ALU;
9897 }
9898 
9899 static inline u64 vmwrite_flags(u64 field, u64 val)
9900 {
9901 	u64 flags;
9902 
9903 	asm volatile ("vmwrite %1, %2; pushf; pop %0"
9904 		      : "=r"(flags) : "rm" (val), "r" (field) : "cc");
9905 	return flags & X86_EFLAGS_ALU;
9906 }
9907 
9908 static void vmx_vmcs_shadow_test_guest(void)
9909 {
9910 	struct vmcs_shadow_test_common *c = &l1_l2_common;
9911 	u64 start;
9912 
9913 	while (c->op != ACCESS_NONE) {
9914 		start = rdtsc();
9915 		switch (c->op) {
9916 		default:
9917 			c->flags = -1ull;
9918 			break;
9919 		case ACCESS_VMREAD:
9920 			c->flags = vmread_flags(c->field, &c->value);
9921 			break;
9922 		case ACCESS_VMWRITE:
9923 			c->flags = vmwrite_flags(c->field, 0);
9924 			break;
9925 		}
9926 		c->time = rdtsc() - start;
9927 		vmcall();
9928 	}
9929 }
9930 
9931 static u64 vmread_from_shadow(u64 field)
9932 {
9933 	struct vmcs *primary;
9934 	struct vmcs *shadow;
9935 	u64 value;
9936 
9937 	TEST_ASSERT(!vmcs_save(&primary));
9938 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
9939 	TEST_ASSERT(!make_vmcs_current(shadow));
9940 	value = vmcs_read(field);
9941 	TEST_ASSERT(!make_vmcs_current(primary));
9942 	return value;
9943 }
9944 
9945 static u64 vmwrite_to_shadow(u64 field, u64 value)
9946 {
9947 	struct vmcs *primary;
9948 	struct vmcs *shadow;
9949 
9950 	TEST_ASSERT(!vmcs_save(&primary));
9951 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
9952 	TEST_ASSERT(!make_vmcs_current(shadow));
9953 	vmcs_write(field, value);
9954 	value = vmcs_read(field);
9955 	TEST_ASSERT(!make_vmcs_current(primary));
9956 	return value;
9957 }
9958 
9959 static void vmcs_shadow_test_access(u8 *bitmap[2], enum vmcs_access access)
9960 {
9961 	struct vmcs_shadow_test_common *c = &l1_l2_common;
9962 
9963 	c->op = access;
9964 	vmcs_write(VMX_INST_ERROR, 0);
9965 	enter_guest();
9966 	c->reason = vmcs_read(EXI_REASON) & 0xffff;
9967 	if (c->reason != VMX_VMCALL) {
9968 		skip_exit_insn();
9969 		enter_guest();
9970 	}
9971 	skip_exit_vmcall();
9972 }
9973 
9974 static void vmcs_shadow_test_field(u8 *bitmap[2], u64 field)
9975 {
9976 	struct vmcs_shadow_test_common *c = &l1_l2_common;
9977 	struct vmcs *shadow;
9978 	u64 value;
9979 	uintptr_t flags[2];
9980 	bool good_shadow;
9981 	u32 vmx_inst_error;
9982 
9983 	report_prefix_pushf("field %lx", field);
9984 	c->field = field;
9985 
9986 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
9987 	if (shadow != (struct vmcs *)-1ull) {
9988 		flags[ACCESS_VMREAD] = vmread_flags(field, &value);
9989 		flags[ACCESS_VMWRITE] = vmwrite_flags(field, value);
9990 		good_shadow = !flags[ACCESS_VMREAD] && !flags[ACCESS_VMWRITE];
9991 	} else {
9992 		/*
9993 		 * When VMCS link pointer is -1ull, VMWRITE/VMREAD on
9994 		 * shadowed-fields should fail with setting RFLAGS.CF.
9995 		 */
9996 		flags[ACCESS_VMREAD] = X86_EFLAGS_CF;
9997 		flags[ACCESS_VMWRITE] = X86_EFLAGS_CF;
9998 		good_shadow = false;
9999 	}
10000 
10001 	/* Intercept both VMREAD and VMWRITE. */
10002 	report_prefix_push("no VMREAD/VMWRITE permission");
10003 	/* VMWRITE/VMREAD done on reserved-bit should always intercept */
10004 	if (!(field >> VMCS_FIELD_RESERVED_SHIFT)) {
10005 		set_bit(field, bitmap[ACCESS_VMREAD]);
10006 		set_bit(field, bitmap[ACCESS_VMWRITE]);
10007 	}
10008 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
10009 	report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE");
10010 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
10011 	report(c->reason == VMX_VMREAD, "not shadowed for VMREAD");
10012 	report_prefix_pop();
10013 
10014 	if (field >> VMCS_FIELD_RESERVED_SHIFT)
10015 		goto out;
10016 
10017 	/* Permit shadowed VMREAD. */
10018 	report_prefix_push("VMREAD permission only");
10019 	clear_bit(field, bitmap[ACCESS_VMREAD]);
10020 	set_bit(field, bitmap[ACCESS_VMWRITE]);
10021 	if (good_shadow)
10022 		value = vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
10023 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
10024 	report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE");
10025 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
10026 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
10027 	report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)",
10028 	       c->time);
10029 	report(c->flags == flags[ACCESS_VMREAD],
10030 	       "ALU flags after VMREAD (%lx) are as expected (%lx)",
10031 	       c->flags, flags[ACCESS_VMREAD]);
10032 	if (good_shadow)
10033 		report(c->value == value,
10034 		       "value read from shadow (%lx) is as expected (%lx)",
10035 		       c->value, value);
10036 	else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD])
10037 		report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
10038 		       "VMX_INST_ERROR (%d) is as expected (%d)",
10039 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
10040 	report_prefix_pop();
10041 
10042 	/* Permit shadowed VMWRITE. */
10043 	report_prefix_push("VMWRITE permission only");
10044 	set_bit(field, bitmap[ACCESS_VMREAD]);
10045 	clear_bit(field, bitmap[ACCESS_VMWRITE]);
10046 	if (good_shadow)
10047 		vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
10048 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
10049 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
10050 	report(c->reason == VMX_VMCALL,
10051 		"shadowed for VMWRITE (in %ld cycles)",
10052 		c->time);
10053 	report(c->flags == flags[ACCESS_VMREAD],
10054 	       "ALU flags after VMWRITE (%lx) are as expected (%lx)",
10055 	       c->flags, flags[ACCESS_VMREAD]);
10056 	if (good_shadow) {
10057 		value = vmread_from_shadow(field);
10058 		report(value == 0,
10059 		       "shadow VMCS value (%lx) is as expected (%lx)", value,
10060 		       0ul);
10061 	} else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) {
10062 		report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
10063 		       "VMX_INST_ERROR (%d) is as expected (%d)",
10064 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
10065 	}
10066 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
10067 	report(c->reason == VMX_VMREAD, "not shadowed for VMREAD");
10068 	report_prefix_pop();
10069 
10070 	/* Permit shadowed VMREAD and VMWRITE. */
10071 	report_prefix_push("VMREAD and VMWRITE permission");
10072 	clear_bit(field, bitmap[ACCESS_VMREAD]);
10073 	clear_bit(field, bitmap[ACCESS_VMWRITE]);
10074 	if (good_shadow)
10075 		vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
10076 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
10077 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
10078 	report(c->reason == VMX_VMCALL,
10079 		"shadowed for VMWRITE (in %ld cycles)",
10080 		c->time);
10081 	report(c->flags == flags[ACCESS_VMREAD],
10082 	       "ALU flags after VMWRITE (%lx) are as expected (%lx)",
10083 	       c->flags, flags[ACCESS_VMREAD]);
10084 	if (good_shadow) {
10085 		value = vmread_from_shadow(field);
10086 		report(value == 0,
10087 		       "shadow VMCS value (%lx) is as expected (%lx)", value,
10088 		       0ul);
10089 	} else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) {
10090 		report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
10091 		       "VMX_INST_ERROR (%d) is as expected (%d)",
10092 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
10093 	}
10094 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
10095 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
10096 	report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)",
10097 	       c->time);
10098 	report(c->flags == flags[ACCESS_VMREAD],
10099 	       "ALU flags after VMREAD (%lx) are as expected (%lx)",
10100 	       c->flags, flags[ACCESS_VMREAD]);
10101 	if (good_shadow)
10102 		report(c->value == 0,
10103 		       "value read from shadow (%lx) is as expected (%lx)",
10104 		       c->value, 0ul);
10105 	else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD])
10106 		report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
10107 		       "VMX_INST_ERROR (%d) is as expected (%d)",
10108 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
10109 	report_prefix_pop();
10110 
10111 out:
10112 	report_prefix_pop();
10113 }
10114 
10115 static void vmx_vmcs_shadow_test_body(u8 *bitmap[2])
10116 {
10117 	unsigned base;
10118 	unsigned index;
10119 	unsigned bit;
10120 	unsigned highest_index = rdmsr(MSR_IA32_VMX_VMCS_ENUM);
10121 
10122 	/* Run test on all possible valid VMCS fields */
10123 	for (base = 0;
10124 	     base < (1 << VMCS_FIELD_RESERVED_SHIFT);
10125 	     base += (1 << VMCS_FIELD_TYPE_SHIFT))
10126 		for (index = 0; index <= highest_index; index++)
10127 			vmcs_shadow_test_field(bitmap, base + index);
10128 
10129 	/*
10130 	 * Run tests on some invalid VMCS fields
10131 	 * (Have reserved bit set).
10132 	 */
10133 	for (bit = VMCS_FIELD_RESERVED_SHIFT; bit < VMCS_FIELD_BIT_SIZE; bit++)
10134 		vmcs_shadow_test_field(bitmap, (1ull << bit));
10135 }
10136 
10137 static void vmx_vmcs_shadow_test(void)
10138 {
10139 	u8 *bitmap[2];
10140 	struct vmcs *shadow;
10141 
10142 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) {
10143 		report_skip("%s : \"Activate secondary controls\" not supported", __func__);
10144 		return;
10145 	}
10146 
10147 	if (!(ctrl_cpu_rev[1].clr & CPU_SHADOW_VMCS)) {
10148 		report_skip("%s : \"VMCS shadowing\" not supported", __func__);
10149 		return;
10150 	}
10151 
10152 	if (!(rdmsr(MSR_IA32_VMX_MISC) &
10153 	      MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) {
10154 		report_skip("%s : VMWRITE can't modify VM-exit information fields.", __func__);
10155 		return;
10156 	}
10157 
10158 	test_set_guest(vmx_vmcs_shadow_test_guest);
10159 
10160 	bitmap[ACCESS_VMREAD] = alloc_page();
10161 	bitmap[ACCESS_VMWRITE] = alloc_page();
10162 
10163 	vmcs_write(VMREAD_BITMAP, virt_to_phys(bitmap[ACCESS_VMREAD]));
10164 	vmcs_write(VMWRITE_BITMAP, virt_to_phys(bitmap[ACCESS_VMWRITE]));
10165 
10166 	shadow = alloc_page();
10167 	shadow->hdr.revision_id = basic.revision;
10168 	shadow->hdr.shadow_vmcs = 1;
10169 	TEST_ASSERT(!vmcs_clear(shadow));
10170 
10171 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_RDTSC);
10172 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY);
10173 	vmcs_set_bits(CPU_EXEC_CTRL1, CPU_SHADOW_VMCS);
10174 
10175 	vmcs_write(VMCS_LINK_PTR, virt_to_phys(shadow));
10176 	report_prefix_push("valid link pointer");
10177 	vmx_vmcs_shadow_test_body(bitmap);
10178 	report_prefix_pop();
10179 
10180 	vmcs_write(VMCS_LINK_PTR, -1ull);
10181 	report_prefix_push("invalid link pointer");
10182 	vmx_vmcs_shadow_test_body(bitmap);
10183 	report_prefix_pop();
10184 
10185 	l1_l2_common.op = ACCESS_NONE;
10186 	enter_guest();
10187 }
10188 
10189 /*
10190  * This test monitors the difference between a guest RDTSC instruction
10191  * and the IA32_TIME_STAMP_COUNTER MSR value stored in the VMCS12
10192  * VM-exit MSR-store list when taking a VM-exit on the instruction
10193  * following RDTSC.
10194  */
10195 #define RDTSC_DIFF_ITERS 100000
10196 #define RDTSC_DIFF_FAILS 100
10197 #define HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD 750
10198 
10199 /*
10200  * Set 'use TSC offsetting' and set the guest offset to the
10201  * inverse of the host's current TSC value, so that the guest starts running
10202  * with an effective TSC value of 0.
10203  */
10204 static void reset_guest_tsc_to_zero(void)
10205 {
10206 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET);
10207 	vmcs_write(TSC_OFFSET, -rdtsc());
10208 }
10209 
10210 static void rdtsc_vmexit_diff_test_guest(void)
10211 {
10212 	int i;
10213 
10214 	for (i = 0; i < RDTSC_DIFF_ITERS; i++)
10215 		/* Ensure rdtsc is the last instruction before the vmcall. */
10216 		asm volatile("rdtsc; vmcall" : : : "eax", "edx");
10217 }
10218 
10219 /*
10220  * This function only considers the "use TSC offsetting" VM-execution
10221  * control.  It does not handle "use TSC scaling" (because the latter
10222  * isn't available to the host today.)
10223  */
10224 static unsigned long long host_time_to_guest_time(unsigned long long t)
10225 {
10226 	TEST_ASSERT(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
10227 		    !(vmcs_read(CPU_EXEC_CTRL1) & CPU_USE_TSC_SCALING));
10228 
10229 	if (vmcs_read(CPU_EXEC_CTRL0) & CPU_USE_TSC_OFFSET)
10230 		t += vmcs_read(TSC_OFFSET);
10231 
10232 	return t;
10233 }
10234 
10235 static unsigned long long rdtsc_vmexit_diff_test_iteration(void)
10236 {
10237 	unsigned long long guest_tsc, host_to_guest_tsc;
10238 
10239 	enter_guest();
10240 	skip_exit_vmcall();
10241 	guest_tsc = (u32) regs.rax + (regs.rdx << 32);
10242 	host_to_guest_tsc = host_time_to_guest_time(exit_msr_store[0].value);
10243 
10244 	return host_to_guest_tsc - guest_tsc;
10245 }
10246 
10247 static void rdtsc_vmexit_diff_test(void)
10248 {
10249 	unsigned long long delta;
10250 	int fail = 0;
10251 	int i;
10252 
10253 	if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET))
10254 		test_skip("CPU doesn't support the 'use TSC offsetting' processor-based VM-execution control.\n");
10255 
10256 	test_set_guest(rdtsc_vmexit_diff_test_guest);
10257 
10258 	reset_guest_tsc_to_zero();
10259 
10260 	/*
10261 	 * Set up the VMCS12 VM-exit MSR-store list to store just one
10262 	 * MSR: IA32_TIME_STAMP_COUNTER. Note that the value stored is
10263 	 * in the host time domain (i.e., it is not adjusted according
10264 	 * to the TSC multiplier and TSC offset fields in the VMCS12,
10265 	 * as a guest RDTSC would be.)
10266 	 */
10267 	exit_msr_store = alloc_page();
10268 	exit_msr_store[0].index = MSR_IA32_TSC;
10269 	vmcs_write(EXI_MSR_ST_CNT, 1);
10270 	vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(exit_msr_store));
10271 
10272 	for (i = 0; i < RDTSC_DIFF_ITERS && fail < RDTSC_DIFF_FAILS; i++) {
10273 		delta = rdtsc_vmexit_diff_test_iteration();
10274 		if (delta >= HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD)
10275 			fail++;
10276 	}
10277 
10278 	enter_guest();
10279 
10280 	report(fail < RDTSC_DIFF_FAILS,
10281 	       "RDTSC to VM-exit delta too high in %d of %d iterations, last = %llu",
10282 	       fail, i, delta);
10283 }
10284 
10285 static int invalid_msr_init(struct vmcs *vmcs)
10286 {
10287 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
10288 		printf("\tPreemption timer is not supported\n");
10289 		return VMX_TEST_EXIT;
10290 	}
10291 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
10292 	preempt_val = 10000000;
10293 	vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
10294 	preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
10295 
10296 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
10297 		printf("\tSave preemption value is not supported\n");
10298 
10299 	vmcs_write(ENT_MSR_LD_CNT, 1);
10300 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)0x13370000);
10301 
10302 	return VMX_TEST_START;
10303 }
10304 
10305 
10306 static void invalid_msr_main(void)
10307 {
10308 	report_fail("Invalid MSR load");
10309 }
10310 
10311 static int invalid_msr_exit_handler(union exit_reason exit_reason)
10312 {
10313 	report_fail("Invalid MSR load");
10314 	print_vmexit_info(exit_reason);
10315 	return VMX_TEST_EXIT;
10316 }
10317 
10318 static int invalid_msr_entry_failure(struct vmentry_result *result)
10319 {
10320 	report(result->exit_reason.failed_vmentry &&
10321 	       result->exit_reason.basic == VMX_FAIL_MSR, "Invalid MSR load");
10322 	return VMX_TEST_VMEXIT;
10323 }
10324 
10325 /*
10326  * The max number of MSRs in an atomic switch MSR list is:
10327  * (111B + 1) * 512 = 4096
10328  *
10329  * Each list entry consumes:
10330  * 4-byte MSR index + 4 bytes reserved + 8-byte data = 16 bytes
10331  *
10332  * Allocate 128 kB to cover max_msr_list_size (i.e., 64 kB) and then some.
10333  */
10334 static const u32 msr_list_page_order = 5;
10335 
10336 static void atomic_switch_msr_limit_test_guest(void)
10337 {
10338 	vmcall();
10339 }
10340 
10341 static void populate_msr_list(struct vmx_msr_entry *msr_list,
10342 			      size_t byte_capacity, int count)
10343 {
10344 	int i;
10345 
10346 	for (i = 0; i < count; i++) {
10347 		msr_list[i].index = MSR_IA32_TSC;
10348 		msr_list[i].reserved = 0;
10349 		msr_list[i].value = 0x1234567890abcdef;
10350 	}
10351 
10352 	memset(msr_list + count, 0xff,
10353 	       byte_capacity - count * sizeof(*msr_list));
10354 }
10355 
10356 static int max_msr_list_size(void)
10357 {
10358 	u32 vmx_misc = rdmsr(MSR_IA32_VMX_MISC);
10359 	u32 factor = ((vmx_misc & GENMASK(27, 25)) >> 25) + 1;
10360 
10361 	return factor * 512;
10362 }
10363 
10364 static void atomic_switch_msrs_test(int count)
10365 {
10366 	struct vmx_msr_entry *vm_enter_load;
10367         struct vmx_msr_entry *vm_exit_load;
10368         struct vmx_msr_entry *vm_exit_store;
10369 	int max_allowed = max_msr_list_size();
10370 	int byte_capacity = 1ul << (msr_list_page_order + PAGE_SHIFT);
10371 	/* Exceeding the max MSR list size at exit triggers KVM to abort. */
10372 	int exit_count = count > max_allowed ? max_allowed : count;
10373 	int cleanup_count = count > max_allowed ? 2 : 1;
10374 	int i;
10375 
10376 	/*
10377 	 * Check for the IA32_TSC MSR,
10378 	 * available with the "TSC flag" and used to populate the MSR lists.
10379 	 */
10380 	if (!(cpuid(1).d & (1 << 4))) {
10381 		report_skip("%s : \"Time Stamp Counter\" not supported", __func__);
10382 		return;
10383 	}
10384 
10385 	/* Set L2 guest. */
10386 	test_set_guest(atomic_switch_msr_limit_test_guest);
10387 
10388 	/* Setup atomic MSR switch lists. */
10389 	vm_enter_load = alloc_pages(msr_list_page_order);
10390 	vm_exit_load = alloc_pages(msr_list_page_order);
10391 	vm_exit_store = alloc_pages(msr_list_page_order);
10392 
10393 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)vm_enter_load);
10394 	vmcs_write(EXIT_MSR_LD_ADDR, (u64)vm_exit_load);
10395 	vmcs_write(EXIT_MSR_ST_ADDR, (u64)vm_exit_store);
10396 
10397 	/*
10398 	 * VM-Enter should succeed up to the max number of MSRs per list, and
10399 	 * should not consume junk beyond the last entry.
10400 	 */
10401 	populate_msr_list(vm_enter_load, byte_capacity, count);
10402 	populate_msr_list(vm_exit_load, byte_capacity, exit_count);
10403 	populate_msr_list(vm_exit_store, byte_capacity, exit_count);
10404 
10405 	vmcs_write(ENT_MSR_LD_CNT, count);
10406 	vmcs_write(EXI_MSR_LD_CNT, exit_count);
10407 	vmcs_write(EXI_MSR_ST_CNT, exit_count);
10408 
10409 	if (count <= max_allowed) {
10410 		enter_guest();
10411 		assert_exit_reason(VMX_VMCALL);
10412 		skip_exit_vmcall();
10413 	} else {
10414 		u32 exit_qual;
10415 
10416 		test_guest_state("Invalid MSR Load Count", true, count,
10417 				 "ENT_MSR_LD_CNT");
10418 
10419 		exit_qual = vmcs_read(EXI_QUALIFICATION);
10420 		report(exit_qual == max_allowed + 1, "exit_qual, %u, is %u.",
10421 		       exit_qual, max_allowed + 1);
10422 	}
10423 
10424 	/* Cleanup. */
10425 	vmcs_write(ENT_MSR_LD_CNT, 0);
10426 	vmcs_write(EXI_MSR_LD_CNT, 0);
10427 	vmcs_write(EXI_MSR_ST_CNT, 0);
10428 	for (i = 0; i < cleanup_count; i++) {
10429 		enter_guest();
10430 		skip_exit_vmcall();
10431 	}
10432 	free_pages_by_order(vm_enter_load, msr_list_page_order);
10433 	free_pages_by_order(vm_exit_load, msr_list_page_order);
10434 	free_pages_by_order(vm_exit_store, msr_list_page_order);
10435 }
10436 
10437 static void atomic_switch_max_msrs_test(void)
10438 {
10439 	atomic_switch_msrs_test(max_msr_list_size());
10440 }
10441 
10442 static void atomic_switch_overflow_msrs_test(void)
10443 {
10444 	if (test_device_enabled())
10445 		atomic_switch_msrs_test(max_msr_list_size() + 1);
10446 	else
10447 		test_skip("Test is only supported on KVM");
10448 }
10449 
10450 static void vmx_pf_exception_test_guest(void)
10451 {
10452 	ac_test_run(PT_LEVEL_PML4, false);
10453 }
10454 
10455 static void vmx_pf_exception_forced_emulation_test_guest(void)
10456 {
10457 	ac_test_run(PT_LEVEL_PML4, true);
10458 }
10459 
10460 typedef void (*invalidate_tlb_t)(void *data);
10461 typedef void (*pf_exception_test_guest_t)(void);
10462 
10463 
10464 static void __vmx_pf_exception_test(invalidate_tlb_t inv_fn, void *data,
10465 				    pf_exception_test_guest_t guest_fn)
10466 {
10467 	u64 efer;
10468 	struct cpuid cpuid;
10469 
10470 	test_set_guest(guest_fn);
10471 
10472 	/* Intercept INVLPG when to perform TLB invalidation from L1 (this). */
10473 	if (inv_fn)
10474 		vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INVLPG);
10475 	else
10476 		vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INVLPG);
10477 
10478 	enter_guest();
10479 
10480 	while (vmcs_read(EXI_REASON) != VMX_VMCALL) {
10481 		switch (vmcs_read(EXI_REASON)) {
10482 		case VMX_RDMSR:
10483 			assert(regs.rcx == MSR_EFER);
10484 			efer = vmcs_read(GUEST_EFER);
10485 			regs.rdx = efer >> 32;
10486 			regs.rax = efer & 0xffffffff;
10487 			break;
10488 		case VMX_WRMSR:
10489 			assert(regs.rcx == MSR_EFER);
10490 			efer = regs.rdx << 32 | (regs.rax & 0xffffffff);
10491 			vmcs_write(GUEST_EFER, efer);
10492 			break;
10493 		case VMX_CPUID:
10494 			cpuid = (struct cpuid) {0, 0, 0, 0};
10495 			cpuid = raw_cpuid(regs.rax, regs.rcx);
10496 			regs.rax = cpuid.a;
10497 			regs.rbx = cpuid.b;
10498 			regs.rcx = cpuid.c;
10499 			regs.rdx = cpuid.d;
10500 			break;
10501 		case VMX_INVLPG:
10502 			inv_fn(data);
10503 			break;
10504 		default:
10505 			assert_msg(false,
10506 				"Unexpected exit to L1, exit_reason: %s (0x%lx)",
10507 				exit_reason_description(vmcs_read(EXI_REASON)),
10508 				vmcs_read(EXI_REASON));
10509 		}
10510 		skip_exit_insn();
10511 		enter_guest();
10512 	}
10513 
10514 	assert_exit_reason(VMX_VMCALL);
10515 }
10516 
10517 static void vmx_pf_exception_test(void)
10518 {
10519 	__vmx_pf_exception_test(NULL, NULL, vmx_pf_exception_test_guest);
10520 }
10521 
10522 static void vmx_pf_exception_forced_emulation_test(void)
10523 {
10524 	__vmx_pf_exception_test(NULL, NULL, vmx_pf_exception_forced_emulation_test_guest);
10525 }
10526 
10527 static void invalidate_tlb_no_vpid(void *data)
10528 {
10529 	/* If VPID is disabled, the TLB is flushed on VM-Enter and VM-Exit. */
10530 }
10531 
10532 static void vmx_pf_no_vpid_test(void)
10533 {
10534 	if (is_vpid_supported())
10535 		vmcs_clear_bits(CPU_EXEC_CTRL1, CPU_VPID);
10536 
10537 	__vmx_pf_exception_test(invalidate_tlb_no_vpid, NULL,
10538 				vmx_pf_exception_test_guest);
10539 }
10540 
10541 static void invalidate_tlb_invvpid_addr(void *data)
10542 {
10543 	invvpid(INVVPID_ALL, *(u16 *)data, vmcs_read(EXI_QUALIFICATION));
10544 }
10545 
10546 static void invalidate_tlb_new_vpid(void *data)
10547 {
10548 	u16 *vpid = data;
10549 
10550 	/*
10551 	 * Bump VPID to effectively flush L2's TLB from L0's perspective.
10552 	 * Invalidate all VPIDs when the VPID wraps to zero as hardware/KVM is
10553 	 * architecturally allowed to keep TLB entries indefinitely.
10554 	 */
10555 	++(*vpid);
10556 	if (*vpid == 0) {
10557 		++(*vpid);
10558 		invvpid(INVVPID_ALL, 0, 0);
10559 	}
10560 	vmcs_write(VPID, *vpid);
10561 }
10562 
10563 static void __vmx_pf_vpid_test(invalidate_tlb_t inv_fn, u16 vpid)
10564 {
10565 	if (!is_vpid_supported())
10566 		test_skip("VPID unsupported");
10567 
10568 	if (!is_invvpid_supported())
10569 		test_skip("INVVPID unsupported");
10570 
10571 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY);
10572 	vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VPID);
10573 	vmcs_write(VPID, vpid);
10574 
10575 	__vmx_pf_exception_test(inv_fn, &vpid, vmx_pf_exception_test_guest);
10576 }
10577 
10578 static void vmx_pf_invvpid_test(void)
10579 {
10580 	if (!is_invvpid_type_supported(INVVPID_ADDR))
10581 		test_skip("INVVPID ADDR unsupported");
10582 
10583 	__vmx_pf_vpid_test(invalidate_tlb_invvpid_addr, 0xaaaa);
10584 }
10585 
10586 static void vmx_pf_vpid_test(void)
10587 {
10588 	/* Need INVVPID(ALL) to flush VPIDs upon wrap/reuse. */
10589 	if (!is_invvpid_type_supported(INVVPID_ALL))
10590 		test_skip("INVVPID ALL unsupported");
10591 
10592 	__vmx_pf_vpid_test(invalidate_tlb_new_vpid, 1);
10593 }
10594 
10595 static void vmx_l2_ac_test(void)
10596 {
10597 	bool hit_ac = false;
10598 
10599 	write_cr0(read_cr0() | X86_CR0_AM);
10600 	write_rflags(read_rflags() | X86_EFLAGS_AC);
10601 
10602 	run_in_user(generate_usermode_ac, AC_VECTOR, 0, 0, 0, 0, &hit_ac);
10603 	report(hit_ac, "Usermode #AC handled in L2");
10604 	vmcall();
10605 }
10606 
10607 struct vmx_exception_test {
10608 	u8 vector;
10609 	void (*guest_code)(void);
10610 };
10611 
10612 struct vmx_exception_test vmx_exception_tests[] = {
10613 	{ GP_VECTOR, generate_non_canonical_gp },
10614 	{ UD_VECTOR, generate_ud },
10615 	{ DE_VECTOR, generate_de },
10616 	{ DB_VECTOR, generate_single_step_db },
10617 	{ BP_VECTOR, generate_bp },
10618 	{ AC_VECTOR, vmx_l2_ac_test },
10619 	{ OF_VECTOR, generate_of },
10620 	{ NM_VECTOR, generate_cr0_ts_nm },
10621 	{ NM_VECTOR, generate_cr0_em_nm },
10622 };
10623 
10624 static u8 vmx_exception_test_vector;
10625 
10626 static void vmx_exception_handler(struct ex_regs *regs)
10627 {
10628 	report(regs->vector == vmx_exception_test_vector,
10629 	       "Handling %s in L2's exception handler",
10630 	       exception_mnemonic(vmx_exception_test_vector));
10631 	vmcall();
10632 }
10633 
10634 static void handle_exception_in_l2(u8 vector)
10635 {
10636 	handler old_handler = handle_exception(vector, vmx_exception_handler);
10637 
10638 	vmx_exception_test_vector = vector;
10639 
10640 	enter_guest();
10641 	report(vmcs_read(EXI_REASON) == VMX_VMCALL,
10642 	       "%s handled by L2", exception_mnemonic(vector));
10643 
10644 	handle_exception(vector, old_handler);
10645 }
10646 
10647 static void handle_exception_in_l1(u32 vector)
10648 {
10649 	u32 old_eb = vmcs_read(EXC_BITMAP);
10650 	u32 intr_type;
10651 	u32 intr_info;
10652 
10653 	vmcs_write(EXC_BITMAP, old_eb | (1u << vector));
10654 
10655 	enter_guest();
10656 
10657 	if (vector == BP_VECTOR || vector == OF_VECTOR)
10658 		intr_type = VMX_INTR_TYPE_SOFT_EXCEPTION;
10659 	else
10660 		intr_type = VMX_INTR_TYPE_HARD_EXCEPTION;
10661 
10662 	intr_info = vmcs_read(EXI_INTR_INFO);
10663 	report((vmcs_read(EXI_REASON) == VMX_EXC_NMI) &&
10664 	       (intr_info & INTR_INFO_VALID_MASK) &&
10665 	       (intr_info & INTR_INFO_VECTOR_MASK) == vector &&
10666 	       ((intr_info & INTR_INFO_INTR_TYPE_MASK) >> INTR_INFO_INTR_TYPE_SHIFT) == intr_type,
10667 	       "%s correctly routed to L1", exception_mnemonic(vector));
10668 
10669 	vmcs_write(EXC_BITMAP, old_eb);
10670 }
10671 
10672 static void vmx_exception_test(void)
10673 {
10674 	struct vmx_exception_test *t;
10675 	int i;
10676 
10677 	for (i = 0; i < ARRAY_SIZE(vmx_exception_tests); i++) {
10678 		t = &vmx_exception_tests[i];
10679 
10680 		/*
10681 		 * Override the guest code before each run even though it's the
10682 		 * same code, the VMCS guest state needs to be reinitialized.
10683 		 */
10684 		test_override_guest(t->guest_code);
10685 		handle_exception_in_l2(t->vector);
10686 
10687 		test_override_guest(t->guest_code);
10688 		handle_exception_in_l1(t->vector);
10689 	}
10690 
10691 	test_set_guest_finished();
10692 }
10693 
10694 #define TEST(name) { #name, .v2 = name }
10695 
10696 /* name/init/guest_main/exit_handler/syscall_handler/guest_regs */
10697 struct vmx_test vmx_tests[] = {
10698 	{ "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} },
10699 	{ "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} },
10700 	{ "preemption timer", preemption_timer_init, preemption_timer_main,
10701 		preemption_timer_exit_handler, NULL, {0} },
10702 	{ "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main,
10703 		test_ctrl_pat_exit_handler, NULL, {0} },
10704 	{ "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main,
10705 		test_ctrl_efer_exit_handler, NULL, {0} },
10706 	{ "CR shadowing", NULL, cr_shadowing_main,
10707 		cr_shadowing_exit_handler, NULL, {0} },
10708 	{ "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler,
10709 		NULL, {0} },
10710 	{ "instruction intercept", insn_intercept_init, insn_intercept_main,
10711 		insn_intercept_exit_handler, NULL, {0} },
10712 	{ "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} },
10713 	{ "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} },
10714 	{ "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} },
10715 	{ "interrupt", interrupt_init, interrupt_main,
10716 		interrupt_exit_handler, NULL, {0} },
10717 	{ "nmi_hlt", nmi_hlt_init, nmi_hlt_main,
10718 		nmi_hlt_exit_handler, NULL, {0} },
10719 	{ "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler,
10720 		NULL, {0} },
10721 	{ "MSR switch", msr_switch_init, msr_switch_main,
10722 		msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure },
10723 	{ "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} },
10724 	{ "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main,
10725 		disable_rdtscp_exit_handler, NULL, {0} },
10726 	{ "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main,
10727 		exit_monitor_from_l2_handler, NULL, {0} },
10728 	{ "invalid_msr", invalid_msr_init, invalid_msr_main,
10729 		invalid_msr_exit_handler, NULL, {0}, invalid_msr_entry_failure},
10730 	/* Basic V2 tests. */
10731 	TEST(v2_null_test),
10732 	TEST(v2_multiple_entries_test),
10733 	TEST(fixture_test_case1),
10734 	TEST(fixture_test_case2),
10735 	/* Opcode tests. */
10736 	TEST(invvpid_test),
10737 	/* VM-entry tests */
10738 	TEST(vmx_controls_test),
10739 	TEST(vmx_host_state_area_test),
10740 	TEST(vmx_guest_state_area_test),
10741 	TEST(vmentry_movss_shadow_test),
10742 	TEST(vmentry_unrestricted_guest_test),
10743 	/* APICv tests */
10744 	TEST(vmx_eoi_bitmap_ioapic_scan_test),
10745 	TEST(vmx_hlt_with_rvi_test),
10746 	TEST(apic_reg_virt_test),
10747 	TEST(virt_x2apic_mode_test),
10748 	/* APIC pass-through tests */
10749 	TEST(vmx_apic_passthrough_test),
10750 	TEST(vmx_apic_passthrough_thread_test),
10751 	TEST(vmx_apic_passthrough_tpr_threshold_test),
10752 	TEST(vmx_init_signal_test),
10753 	TEST(vmx_sipi_signal_test),
10754 	/* VMCS Shadowing tests */
10755 	TEST(vmx_vmcs_shadow_test),
10756 	/* Regression tests */
10757 	TEST(vmx_ldtr_test),
10758 	TEST(vmx_cr_load_test),
10759 	TEST(vmx_cr4_osxsave_test),
10760 	TEST(vmx_no_nm_test),
10761 	TEST(vmx_db_test),
10762 	TEST(vmx_nmi_window_test),
10763 	TEST(vmx_intr_window_test),
10764 	TEST(vmx_pending_event_test),
10765 	TEST(vmx_pending_event_hlt_test),
10766 	TEST(vmx_store_tsc_test),
10767 	TEST(vmx_preemption_timer_zero_test),
10768 	TEST(vmx_preemption_timer_tf_test),
10769 	TEST(vmx_preemption_timer_expiry_test),
10770 	/* EPT access tests. */
10771 	TEST(ept_access_test_not_present),
10772 	TEST(ept_access_test_read_only),
10773 	TEST(ept_access_test_write_only),
10774 	TEST(ept_access_test_read_write),
10775 	TEST(ept_access_test_execute_only),
10776 	TEST(ept_access_test_read_execute),
10777 	TEST(ept_access_test_write_execute),
10778 	TEST(ept_access_test_read_write_execute),
10779 	TEST(ept_access_test_reserved_bits),
10780 	TEST(ept_access_test_ignored_bits),
10781 	TEST(ept_access_test_paddr_not_present_ad_disabled),
10782 	TEST(ept_access_test_paddr_not_present_ad_enabled),
10783 	TEST(ept_access_test_paddr_read_only_ad_disabled),
10784 	TEST(ept_access_test_paddr_read_only_ad_enabled),
10785 	TEST(ept_access_test_paddr_read_write),
10786 	TEST(ept_access_test_paddr_read_write_execute),
10787 	TEST(ept_access_test_paddr_read_execute_ad_disabled),
10788 	TEST(ept_access_test_paddr_read_execute_ad_enabled),
10789 	TEST(ept_access_test_paddr_not_present_page_fault),
10790 	TEST(ept_access_test_force_2m_page),
10791 	/* Atomic MSR switch tests. */
10792 	TEST(atomic_switch_max_msrs_test),
10793 	TEST(atomic_switch_overflow_msrs_test),
10794 	TEST(rdtsc_vmexit_diff_test),
10795 	TEST(vmx_mtf_test),
10796 	TEST(vmx_mtf_pdpte_test),
10797 	TEST(vmx_pf_exception_test),
10798 	TEST(vmx_pf_exception_forced_emulation_test),
10799 	TEST(vmx_pf_no_vpid_test),
10800 	TEST(vmx_pf_invvpid_test),
10801 	TEST(vmx_pf_vpid_test),
10802 	TEST(vmx_exception_test),
10803 	{ NULL, NULL, NULL, NULL, NULL, {0} },
10804 };
10805