1 /* 2 * All test cases of nested virtualization should be in this file 3 * 4 * Author : Arthur Chunqi Li <yzt356@gmail.com> 5 */ 6 7 #include <asm/debugreg.h> 8 9 #include "vmx.h" 10 #include "msr.h" 11 #include "processor.h" 12 #include "pmu.h" 13 #include "vm.h" 14 #include "pci.h" 15 #include "fwcfg.h" 16 #include "isr.h" 17 #include "desc.h" 18 #include "apic.h" 19 #include "vmalloc.h" 20 #include "alloc_page.h" 21 #include "smp.h" 22 #include "delay.h" 23 #include "access.h" 24 #include "x86/usermode.h" 25 26 /* 27 * vmcs.GUEST_PENDING_DEBUG has the same format as DR6, although some bits that 28 * are legal in DR6 are reserved in vmcs.GUEST_PENDING_DEBUG. And if any data 29 * or I/O breakpoint matches *and* was enabled, bit 12 is also set. 30 */ 31 #define PENDING_DBG_TRAP BIT(12) 32 33 #define VPID_CAP_INVVPID_TYPES_SHIFT 40 34 35 u64 ia32_pat; 36 u64 ia32_efer; 37 void *io_bitmap_a, *io_bitmap_b; 38 u16 ioport; 39 40 unsigned long *pml4; 41 u64 eptp; 42 void *data_page1, *data_page2; 43 44 phys_addr_t pci_physaddr; 45 46 void *pml_log; 47 #define PML_INDEX 512 48 49 static inline unsigned ffs(unsigned x) 50 { 51 int pos = -1; 52 53 __asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0" 54 : "+r"(pos) : "rm"(x) : "eax"); 55 return pos + 1; 56 } 57 58 static inline void vmcall(void) 59 { 60 asm volatile("vmcall"); 61 } 62 63 static u32 *get_vapic_page(void) 64 { 65 return (u32 *)phys_to_virt(vmcs_read(APIC_VIRT_ADDR)); 66 } 67 68 static u64 *get_pi_desc(void) 69 { 70 return (u64 *)phys_to_virt(vmcs_read(POSTED_INTR_DESC_ADDR)); 71 } 72 73 static void basic_guest_main(void) 74 { 75 report_pass("Basic VMX test"); 76 } 77 78 static int basic_exit_handler(union exit_reason exit_reason) 79 { 80 report_fail("Basic VMX test"); 81 print_vmexit_info(exit_reason); 82 return VMX_TEST_EXIT; 83 } 84 85 static void vmenter_main(void) 86 { 87 u64 rax; 88 u64 rsp, resume_rsp; 89 90 report_pass("test vmlaunch"); 91 92 asm volatile( 93 "mov %%rsp, %0\n\t" 94 "mov %3, %%rax\n\t" 95 "vmcall\n\t" 96 "mov %%rax, %1\n\t" 97 "mov %%rsp, %2\n\t" 98 : "=r"(rsp), "=r"(rax), "=r"(resume_rsp) 99 : "g"(0xABCD)); 100 report((rax == 0xFFFF) && (rsp == resume_rsp), "test vmresume"); 101 } 102 103 static int vmenter_exit_handler(union exit_reason exit_reason) 104 { 105 u64 guest_rip = vmcs_read(GUEST_RIP); 106 107 switch (exit_reason.basic) { 108 case VMX_VMCALL: 109 if (regs.rax != 0xABCD) { 110 report_fail("test vmresume"); 111 return VMX_TEST_VMEXIT; 112 } 113 regs.rax = 0xFFFF; 114 vmcs_write(GUEST_RIP, guest_rip + 3); 115 return VMX_TEST_RESUME; 116 default: 117 report_fail("test vmresume"); 118 print_vmexit_info(exit_reason); 119 } 120 return VMX_TEST_VMEXIT; 121 } 122 123 u32 preempt_scale; 124 volatile unsigned long long tsc_val; 125 volatile u32 preempt_val; 126 u64 saved_rip; 127 128 static int preemption_timer_init(struct vmcs *vmcs) 129 { 130 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 131 printf("\tPreemption timer is not supported\n"); 132 return VMX_TEST_EXIT; 133 } 134 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); 135 preempt_val = 10000000; 136 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 137 preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F; 138 139 if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT)) 140 printf("\tSave preemption value is not supported\n"); 141 142 return VMX_TEST_START; 143 } 144 145 static void preemption_timer_main(void) 146 { 147 tsc_val = rdtsc(); 148 if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) { 149 vmx_set_test_stage(0); 150 vmcall(); 151 if (vmx_get_test_stage() == 1) 152 vmcall(); 153 } 154 vmx_set_test_stage(1); 155 while (vmx_get_test_stage() == 1) { 156 if (((rdtsc() - tsc_val) >> preempt_scale) 157 > 10 * preempt_val) { 158 vmx_set_test_stage(2); 159 vmcall(); 160 } 161 } 162 tsc_val = rdtsc(); 163 asm volatile ("hlt"); 164 vmcall(); 165 vmx_set_test_stage(5); 166 vmcall(); 167 } 168 169 static int preemption_timer_exit_handler(union exit_reason exit_reason) 170 { 171 bool guest_halted; 172 u64 guest_rip; 173 u32 insn_len; 174 u32 ctrl_exit; 175 176 guest_rip = vmcs_read(GUEST_RIP); 177 insn_len = vmcs_read(EXI_INST_LEN); 178 switch (exit_reason.basic) { 179 case VMX_PREEMPT: 180 switch (vmx_get_test_stage()) { 181 case 1: 182 case 2: 183 report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val, 184 "busy-wait for preemption timer"); 185 vmx_set_test_stage(3); 186 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 187 return VMX_TEST_RESUME; 188 case 3: 189 guest_halted = 190 (vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT); 191 report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val 192 && guest_halted, 193 "preemption timer during hlt"); 194 vmx_set_test_stage(4); 195 vmcs_write(PIN_CONTROLS, 196 vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT); 197 vmcs_write(EXI_CONTROLS, 198 vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_PREEMPT); 199 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 200 return VMX_TEST_RESUME; 201 case 4: 202 report(saved_rip == guest_rip, 203 "preemption timer with 0 value"); 204 break; 205 default: 206 report_fail("Invalid stage."); 207 print_vmexit_info(exit_reason); 208 break; 209 } 210 break; 211 case VMX_VMCALL: 212 vmcs_write(GUEST_RIP, guest_rip + insn_len); 213 switch (vmx_get_test_stage()) { 214 case 0: 215 report(vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val, 216 "Keep preemption value"); 217 vmx_set_test_stage(1); 218 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 219 ctrl_exit = (vmcs_read(EXI_CONTROLS) | 220 EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr; 221 vmcs_write(EXI_CONTROLS, ctrl_exit); 222 return VMX_TEST_RESUME; 223 case 1: 224 report(vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val, 225 "Save preemption value"); 226 return VMX_TEST_RESUME; 227 case 2: 228 report_fail("busy-wait for preemption timer"); 229 vmx_set_test_stage(3); 230 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 231 return VMX_TEST_RESUME; 232 case 3: 233 report_fail("preemption timer during hlt"); 234 vmx_set_test_stage(4); 235 /* fall through */ 236 case 4: 237 vmcs_write(PIN_CONTROLS, 238 vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); 239 vmcs_write(PREEMPT_TIMER_VALUE, 0); 240 saved_rip = guest_rip + insn_len; 241 return VMX_TEST_RESUME; 242 case 5: 243 report_fail("preemption timer with 0 value (vmcall stage 5)"); 244 break; 245 default: 246 // Should not reach here 247 report_fail("unexpected stage, %d", 248 vmx_get_test_stage()); 249 print_vmexit_info(exit_reason); 250 return VMX_TEST_VMEXIT; 251 } 252 break; 253 default: 254 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 255 print_vmexit_info(exit_reason); 256 } 257 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT); 258 return VMX_TEST_VMEXIT; 259 } 260 261 static void msr_bmp_init(void) 262 { 263 void *msr_bitmap; 264 u32 ctrl_cpu0; 265 266 msr_bitmap = alloc_page(); 267 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 268 ctrl_cpu0 |= CPU_MSR_BITMAP; 269 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); 270 vmcs_write(MSR_BITMAP, (u64)msr_bitmap); 271 } 272 273 static void *get_msr_bitmap(void) 274 { 275 void *msr_bitmap; 276 277 if (vmcs_read(CPU_EXEC_CTRL0) & CPU_MSR_BITMAP) { 278 msr_bitmap = (void *)vmcs_read(MSR_BITMAP); 279 } else { 280 msr_bitmap = alloc_page(); 281 memset(msr_bitmap, 0xff, PAGE_SIZE); 282 vmcs_write(MSR_BITMAP, (u64)msr_bitmap); 283 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_MSR_BITMAP); 284 } 285 286 return msr_bitmap; 287 } 288 289 static void disable_intercept_for_x2apic_msrs(void) 290 { 291 unsigned long *msr_bitmap = (unsigned long *)get_msr_bitmap(); 292 u32 msr; 293 294 for (msr = APIC_BASE_MSR; 295 msr < (APIC_BASE_MSR+0xff); 296 msr += BITS_PER_LONG) { 297 unsigned int word = msr / BITS_PER_LONG; 298 299 msr_bitmap[word] = 0; 300 msr_bitmap[word + (0x800 / sizeof(long))] = 0; 301 } 302 } 303 304 static int test_ctrl_pat_init(struct vmcs *vmcs) 305 { 306 u64 ctrl_ent; 307 u64 ctrl_exi; 308 309 msr_bmp_init(); 310 if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) && 311 !(ctrl_exit_rev.clr & EXI_LOAD_PAT) && 312 !(ctrl_enter_rev.clr & ENT_LOAD_PAT)) { 313 printf("\tSave/load PAT is not supported\n"); 314 return 1; 315 } 316 317 ctrl_ent = vmcs_read(ENT_CONTROLS); 318 ctrl_exi = vmcs_read(EXI_CONTROLS); 319 ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT; 320 ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT); 321 vmcs_write(ENT_CONTROLS, ctrl_ent); 322 vmcs_write(EXI_CONTROLS, ctrl_exi); 323 ia32_pat = rdmsr(MSR_IA32_CR_PAT); 324 vmcs_write(GUEST_PAT, 0x0); 325 vmcs_write(HOST_PAT, ia32_pat); 326 return VMX_TEST_START; 327 } 328 329 static void test_ctrl_pat_main(void) 330 { 331 u64 guest_ia32_pat; 332 333 guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT); 334 if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) 335 printf("\tENT_LOAD_PAT is not supported.\n"); 336 else { 337 if (guest_ia32_pat != 0) { 338 report_fail("Entry load PAT"); 339 return; 340 } 341 } 342 wrmsr(MSR_IA32_CR_PAT, 0x6); 343 vmcall(); 344 guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT); 345 if (ctrl_enter_rev.clr & ENT_LOAD_PAT) 346 report(guest_ia32_pat == ia32_pat, "Entry load PAT"); 347 } 348 349 static int test_ctrl_pat_exit_handler(union exit_reason exit_reason) 350 { 351 u64 guest_rip; 352 u64 guest_pat; 353 354 guest_rip = vmcs_read(GUEST_RIP); 355 switch (exit_reason.basic) { 356 case VMX_VMCALL: 357 guest_pat = vmcs_read(GUEST_PAT); 358 if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) { 359 printf("\tEXI_SAVE_PAT is not supported\n"); 360 vmcs_write(GUEST_PAT, 0x6); 361 } else { 362 report(guest_pat == 0x6, "Exit save PAT"); 363 } 364 if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) 365 printf("\tEXI_LOAD_PAT is not supported\n"); 366 else 367 report(rdmsr(MSR_IA32_CR_PAT) == ia32_pat, 368 "Exit load PAT"); 369 vmcs_write(GUEST_PAT, ia32_pat); 370 vmcs_write(GUEST_RIP, guest_rip + 3); 371 return VMX_TEST_RESUME; 372 default: 373 printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full); 374 break; 375 } 376 return VMX_TEST_VMEXIT; 377 } 378 379 static int test_ctrl_efer_init(struct vmcs *vmcs) 380 { 381 u64 ctrl_ent; 382 u64 ctrl_exi; 383 384 msr_bmp_init(); 385 ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER; 386 ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER; 387 vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr); 388 vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr); 389 ia32_efer = rdmsr(MSR_EFER); 390 vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX); 391 vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX); 392 return VMX_TEST_START; 393 } 394 395 static void test_ctrl_efer_main(void) 396 { 397 u64 guest_ia32_efer; 398 399 guest_ia32_efer = rdmsr(MSR_EFER); 400 if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) 401 printf("\tENT_LOAD_EFER is not supported.\n"); 402 else { 403 if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) { 404 report_fail("Entry load EFER"); 405 return; 406 } 407 } 408 wrmsr(MSR_EFER, ia32_efer); 409 vmcall(); 410 guest_ia32_efer = rdmsr(MSR_EFER); 411 if (ctrl_enter_rev.clr & ENT_LOAD_EFER) 412 report(guest_ia32_efer == ia32_efer, "Entry load EFER"); 413 } 414 415 static int test_ctrl_efer_exit_handler(union exit_reason exit_reason) 416 { 417 u64 guest_rip; 418 u64 guest_efer; 419 420 guest_rip = vmcs_read(GUEST_RIP); 421 switch (exit_reason.basic) { 422 case VMX_VMCALL: 423 guest_efer = vmcs_read(GUEST_EFER); 424 if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) { 425 printf("\tEXI_SAVE_EFER is not supported\n"); 426 vmcs_write(GUEST_EFER, ia32_efer); 427 } else { 428 report(guest_efer == ia32_efer, "Exit save EFER"); 429 } 430 if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) { 431 printf("\tEXI_LOAD_EFER is not supported\n"); 432 wrmsr(MSR_EFER, ia32_efer ^ EFER_NX); 433 } else { 434 report(rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX), 435 "Exit load EFER"); 436 } 437 vmcs_write(GUEST_PAT, ia32_efer); 438 vmcs_write(GUEST_RIP, guest_rip + 3); 439 return VMX_TEST_RESUME; 440 default: 441 printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full); 442 break; 443 } 444 return VMX_TEST_VMEXIT; 445 } 446 447 u32 guest_cr0, guest_cr4; 448 449 static void cr_shadowing_main(void) 450 { 451 u32 cr0, cr4, tmp; 452 453 // Test read through 454 vmx_set_test_stage(0); 455 guest_cr0 = read_cr0(); 456 if (vmx_get_test_stage() == 1) 457 report_fail("Read through CR0"); 458 else 459 vmcall(); 460 vmx_set_test_stage(1); 461 guest_cr4 = read_cr4(); 462 if (vmx_get_test_stage() == 2) 463 report_fail("Read through CR4"); 464 else 465 vmcall(); 466 // Test write through 467 guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP); 468 guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE); 469 vmx_set_test_stage(2); 470 write_cr0(guest_cr0); 471 if (vmx_get_test_stage() == 3) 472 report_fail("Write through CR0"); 473 else 474 vmcall(); 475 vmx_set_test_stage(3); 476 write_cr4(guest_cr4); 477 if (vmx_get_test_stage() == 4) 478 report_fail("Write through CR4"); 479 else 480 vmcall(); 481 // Test read shadow 482 vmx_set_test_stage(4); 483 vmcall(); 484 cr0 = read_cr0(); 485 if (vmx_get_test_stage() != 5) 486 report(cr0 == guest_cr0, "Read shadowing CR0"); 487 vmx_set_test_stage(5); 488 cr4 = read_cr4(); 489 if (vmx_get_test_stage() != 6) 490 report(cr4 == guest_cr4, "Read shadowing CR4"); 491 // Test write shadow (same value with shadow) 492 vmx_set_test_stage(6); 493 write_cr0(guest_cr0); 494 if (vmx_get_test_stage() == 7) 495 report_fail("Write shadowing CR0 (same value with shadow)"); 496 else 497 vmcall(); 498 vmx_set_test_stage(7); 499 write_cr4(guest_cr4); 500 if (vmx_get_test_stage() == 8) 501 report_fail("Write shadowing CR4 (same value with shadow)"); 502 else 503 vmcall(); 504 // Test write shadow (different value) 505 vmx_set_test_stage(8); 506 tmp = guest_cr0 ^ X86_CR0_TS; 507 asm volatile("mov %0, %%rsi\n\t" 508 "mov %%rsi, %%cr0\n\t" 509 ::"m"(tmp) 510 :"rsi", "memory", "cc"); 511 report(vmx_get_test_stage() == 9, 512 "Write shadowing different X86_CR0_TS"); 513 vmx_set_test_stage(9); 514 tmp = guest_cr0 ^ X86_CR0_MP; 515 asm volatile("mov %0, %%rsi\n\t" 516 "mov %%rsi, %%cr0\n\t" 517 ::"m"(tmp) 518 :"rsi", "memory", "cc"); 519 report(vmx_get_test_stage() == 10, 520 "Write shadowing different X86_CR0_MP"); 521 vmx_set_test_stage(10); 522 tmp = guest_cr4 ^ X86_CR4_TSD; 523 asm volatile("mov %0, %%rsi\n\t" 524 "mov %%rsi, %%cr4\n\t" 525 ::"m"(tmp) 526 :"rsi", "memory", "cc"); 527 report(vmx_get_test_stage() == 11, 528 "Write shadowing different X86_CR4_TSD"); 529 vmx_set_test_stage(11); 530 tmp = guest_cr4 ^ X86_CR4_DE; 531 asm volatile("mov %0, %%rsi\n\t" 532 "mov %%rsi, %%cr4\n\t" 533 ::"m"(tmp) 534 :"rsi", "memory", "cc"); 535 report(vmx_get_test_stage() == 12, 536 "Write shadowing different X86_CR4_DE"); 537 } 538 539 static int cr_shadowing_exit_handler(union exit_reason exit_reason) 540 { 541 u64 guest_rip; 542 u32 insn_len; 543 u32 exit_qual; 544 545 guest_rip = vmcs_read(GUEST_RIP); 546 insn_len = vmcs_read(EXI_INST_LEN); 547 exit_qual = vmcs_read(EXI_QUALIFICATION); 548 switch (exit_reason.basic) { 549 case VMX_VMCALL: 550 switch (vmx_get_test_stage()) { 551 case 0: 552 report(guest_cr0 == vmcs_read(GUEST_CR0), 553 "Read through CR0"); 554 break; 555 case 1: 556 report(guest_cr4 == vmcs_read(GUEST_CR4), 557 "Read through CR4"); 558 break; 559 case 2: 560 report(guest_cr0 == vmcs_read(GUEST_CR0), 561 "Write through CR0"); 562 break; 563 case 3: 564 report(guest_cr4 == vmcs_read(GUEST_CR4), 565 "Write through CR4"); 566 break; 567 case 4: 568 guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP); 569 guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE); 570 vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP); 571 vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP)); 572 vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE); 573 vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE)); 574 break; 575 case 6: 576 report(guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP)), 577 "Write shadowing CR0 (same value)"); 578 break; 579 case 7: 580 report(guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE)), 581 "Write shadowing CR4 (same value)"); 582 break; 583 default: 584 // Should not reach here 585 report_fail("unexpected stage, %d", 586 vmx_get_test_stage()); 587 print_vmexit_info(exit_reason); 588 return VMX_TEST_VMEXIT; 589 } 590 vmcs_write(GUEST_RIP, guest_rip + insn_len); 591 return VMX_TEST_RESUME; 592 case VMX_CR: 593 switch (vmx_get_test_stage()) { 594 case 4: 595 report_fail("Read shadowing CR0"); 596 vmx_inc_test_stage(); 597 break; 598 case 5: 599 report_fail("Read shadowing CR4"); 600 vmx_inc_test_stage(); 601 break; 602 case 6: 603 report_fail("Write shadowing CR0 (same value)"); 604 vmx_inc_test_stage(); 605 break; 606 case 7: 607 report_fail("Write shadowing CR4 (same value)"); 608 vmx_inc_test_stage(); 609 break; 610 case 8: 611 case 9: 612 // 0x600 encodes "mov %esi, %cr0" 613 if (exit_qual == 0x600) 614 vmx_inc_test_stage(); 615 break; 616 case 10: 617 case 11: 618 // 0x604 encodes "mov %esi, %cr4" 619 if (exit_qual == 0x604) 620 vmx_inc_test_stage(); 621 break; 622 default: 623 // Should not reach here 624 report_fail("unexpected stage, %d", 625 vmx_get_test_stage()); 626 print_vmexit_info(exit_reason); 627 return VMX_TEST_VMEXIT; 628 } 629 vmcs_write(GUEST_RIP, guest_rip + insn_len); 630 return VMX_TEST_RESUME; 631 default: 632 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 633 print_vmexit_info(exit_reason); 634 } 635 return VMX_TEST_VMEXIT; 636 } 637 638 static int iobmp_init(struct vmcs *vmcs) 639 { 640 u32 ctrl_cpu0; 641 642 io_bitmap_a = alloc_page(); 643 io_bitmap_b = alloc_page(); 644 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 645 ctrl_cpu0 |= CPU_IO_BITMAP; 646 ctrl_cpu0 &= (~CPU_IO); 647 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); 648 vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a); 649 vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b); 650 return VMX_TEST_START; 651 } 652 653 static void iobmp_main(void) 654 { 655 // stage 0, test IO pass 656 vmx_set_test_stage(0); 657 inb(0x5000); 658 outb(0x0, 0x5000); 659 report(vmx_get_test_stage() == 0, "I/O bitmap - I/O pass"); 660 // test IO width, in/out 661 ((u8 *)io_bitmap_a)[0] = 0xFF; 662 vmx_set_test_stage(2); 663 inb(0x0); 664 report(vmx_get_test_stage() == 3, "I/O bitmap - trap in"); 665 vmx_set_test_stage(3); 666 outw(0x0, 0x0); 667 report(vmx_get_test_stage() == 4, "I/O bitmap - trap out"); 668 vmx_set_test_stage(4); 669 inl(0x0); 670 report(vmx_get_test_stage() == 5, "I/O bitmap - I/O width, long"); 671 // test low/high IO port 672 vmx_set_test_stage(5); 673 ((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8)); 674 inb(0x5000); 675 report(vmx_get_test_stage() == 6, "I/O bitmap - I/O port, low part"); 676 vmx_set_test_stage(6); 677 ((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8)); 678 inb(0x9000); 679 report(vmx_get_test_stage() == 7, "I/O bitmap - I/O port, high part"); 680 // test partial pass 681 vmx_set_test_stage(7); 682 inl(0x4FFF); 683 report(vmx_get_test_stage() == 8, "I/O bitmap - partial pass"); 684 // test overrun 685 vmx_set_test_stage(8); 686 memset(io_bitmap_a, 0x0, PAGE_SIZE); 687 memset(io_bitmap_b, 0x0, PAGE_SIZE); 688 inl(0xFFFF); 689 report(vmx_get_test_stage() == 9, "I/O bitmap - overrun"); 690 vmx_set_test_stage(9); 691 vmcall(); 692 outb(0x0, 0x0); 693 report(vmx_get_test_stage() == 9, 694 "I/O bitmap - ignore unconditional exiting"); 695 vmx_set_test_stage(10); 696 vmcall(); 697 outb(0x0, 0x0); 698 report(vmx_get_test_stage() == 11, 699 "I/O bitmap - unconditional exiting"); 700 } 701 702 static int iobmp_exit_handler(union exit_reason exit_reason) 703 { 704 u64 guest_rip; 705 ulong exit_qual; 706 u32 insn_len, ctrl_cpu0; 707 708 guest_rip = vmcs_read(GUEST_RIP); 709 exit_qual = vmcs_read(EXI_QUALIFICATION); 710 insn_len = vmcs_read(EXI_INST_LEN); 711 switch (exit_reason.basic) { 712 case VMX_IO: 713 switch (vmx_get_test_stage()) { 714 case 0: 715 case 1: 716 vmx_inc_test_stage(); 717 break; 718 case 2: 719 report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE, 720 "I/O bitmap - I/O width, byte"); 721 report(exit_qual & VMX_IO_IN, 722 "I/O bitmap - I/O direction, in"); 723 vmx_inc_test_stage(); 724 break; 725 case 3: 726 report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD, 727 "I/O bitmap - I/O width, word"); 728 report(!(exit_qual & VMX_IO_IN), 729 "I/O bitmap - I/O direction, out"); 730 vmx_inc_test_stage(); 731 break; 732 case 4: 733 report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG, 734 "I/O bitmap - I/O width, long"); 735 vmx_inc_test_stage(); 736 break; 737 case 5: 738 if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000) 739 vmx_inc_test_stage(); 740 break; 741 case 6: 742 if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000) 743 vmx_inc_test_stage(); 744 break; 745 case 7: 746 if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF) 747 vmx_inc_test_stage(); 748 break; 749 case 8: 750 if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF) 751 vmx_inc_test_stage(); 752 break; 753 case 9: 754 case 10: 755 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 756 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO); 757 vmx_inc_test_stage(); 758 break; 759 default: 760 // Should not reach here 761 report_fail("unexpected stage, %d", 762 vmx_get_test_stage()); 763 print_vmexit_info(exit_reason); 764 return VMX_TEST_VMEXIT; 765 } 766 vmcs_write(GUEST_RIP, guest_rip + insn_len); 767 return VMX_TEST_RESUME; 768 case VMX_VMCALL: 769 switch (vmx_get_test_stage()) { 770 case 9: 771 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 772 ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP; 773 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); 774 break; 775 case 10: 776 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 777 ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO; 778 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); 779 break; 780 default: 781 // Should not reach here 782 report_fail("unexpected stage, %d", 783 vmx_get_test_stage()); 784 print_vmexit_info(exit_reason); 785 return VMX_TEST_VMEXIT; 786 } 787 vmcs_write(GUEST_RIP, guest_rip + insn_len); 788 return VMX_TEST_RESUME; 789 default: 790 printf("guest_rip = %#lx\n", guest_rip); 791 printf("\tERROR : Unknown exit reason, 0x%x\n", exit_reason.full); 792 break; 793 } 794 return VMX_TEST_VMEXIT; 795 } 796 797 #define INSN_CPU0 0 798 #define INSN_CPU1 1 799 #define INSN_ALWAYS_TRAP 2 800 801 #define FIELD_EXIT_QUAL (1 << 0) 802 #define FIELD_INSN_INFO (1 << 1) 803 804 asm( 805 "insn_hlt: hlt;ret\n\t" 806 "insn_invlpg: invlpg 0x12345678;ret\n\t" 807 "insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t" 808 "insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t" 809 "insn_rdtsc: rdtsc;ret\n\t" 810 "insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t" 811 "insn_cr3_store: mov %cr3,%rax;ret\n\t" 812 "insn_cr8_load: xor %eax, %eax; mov %rax,%cr8;ret\n\t" 813 "insn_cr8_store: mov %cr8,%rax;ret\n\t" 814 "insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t" 815 "insn_pause: pause;ret\n\t" 816 "insn_wbinvd: wbinvd;ret\n\t" 817 "insn_cpuid: mov $10, %eax; cpuid;ret\n\t" 818 "insn_invd: invd;ret\n\t" 819 "insn_sgdt: sgdt gdt_descr;ret\n\t" 820 "insn_lgdt: lgdt gdt_descr;ret\n\t" 821 "insn_sidt: sidt idt_descr;ret\n\t" 822 "insn_lidt: lidt idt_descr;ret\n\t" 823 "insn_sldt: sldt %ax;ret\n\t" 824 "insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t" 825 "insn_str: str %ax;ret\n\t" 826 "insn_rdrand: rdrand %rax;ret\n\t" 827 "insn_rdseed: rdseed %rax;ret\n\t" 828 ); 829 extern void insn_hlt(void); 830 extern void insn_invlpg(void); 831 extern void insn_mwait(void); 832 extern void insn_rdpmc(void); 833 extern void insn_rdtsc(void); 834 extern void insn_cr3_load(void); 835 extern void insn_cr3_store(void); 836 extern void insn_cr8_load(void); 837 extern void insn_cr8_store(void); 838 extern void insn_monitor(void); 839 extern void insn_pause(void); 840 extern void insn_wbinvd(void); 841 extern void insn_sgdt(void); 842 extern void insn_lgdt(void); 843 extern void insn_sidt(void); 844 extern void insn_lidt(void); 845 extern void insn_sldt(void); 846 extern void insn_lldt(void); 847 extern void insn_str(void); 848 extern void insn_cpuid(void); 849 extern void insn_invd(void); 850 extern void insn_rdrand(void); 851 extern void insn_rdseed(void); 852 853 u32 cur_insn; 854 u64 cr3; 855 856 typedef bool (*supported_fn)(void); 857 858 static bool this_cpu_has_mwait(void) 859 { 860 return this_cpu_has(X86_FEATURE_MWAIT); 861 } 862 863 struct insn_table { 864 const char *name; 865 u32 flag; 866 void (*insn_func)(void); 867 u32 type; 868 u32 reason; 869 ulong exit_qual; 870 u32 insn_info; 871 // Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define 872 // which field need to be tested, reason is always tested 873 u32 test_field; 874 const supported_fn supported_fn; 875 u8 disabled; 876 }; 877 878 /* 879 * Add more test cases of instruction intercept here. Elements in this 880 * table is: 881 * name/control flag/insn function/type/exit reason/exit qulification/ 882 * instruction info/field to test 883 * The last field defines which fields (exit_qual and insn_info) need to be 884 * tested in exit handler. If set to 0, only "reason" is checked. 885 */ 886 static struct insn_table insn_table[] = { 887 // Flags for Primary Processor-Based VM-Execution Controls 888 {"HLT", CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0}, 889 {"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14, 890 0x12345678, 0, FIELD_EXIT_QUAL}, 891 {"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0, this_cpu_has_mwait}, 892 {"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0, this_cpu_has_pmu}, 893 {"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0}, 894 {"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0, 895 FIELD_EXIT_QUAL}, 896 {"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0, 897 FIELD_EXIT_QUAL}, 898 {"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0, 899 FIELD_EXIT_QUAL}, 900 {"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0, 901 FIELD_EXIT_QUAL}, 902 {"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0, this_cpu_has_mwait}, 903 {"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0}, 904 // Flags for Secondary Processor-Based VM-Execution Controls 905 {"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0}, 906 {"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0}, 907 {"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0}, 908 {"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0}, 909 {"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0}, 910 {"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0}, 911 {"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0}, 912 {"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0}, 913 /* LTR causes a #GP if done with a busy selector, so it is not tested. */ 914 {"RDRAND", CPU_RDRAND, insn_rdrand, INSN_CPU1, VMX_RDRAND, 0, 0, 0}, 915 {"RDSEED", CPU_RDSEED, insn_rdseed, INSN_CPU1, VMX_RDSEED, 0, 0, 0}, 916 // Instructions always trap 917 {"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0}, 918 {"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0}, 919 // Instructions never trap 920 {NULL}, 921 }; 922 923 static int insn_intercept_init(struct vmcs *vmcs) 924 { 925 u32 ctrl_cpu, cur_insn; 926 927 ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY; 928 ctrl_cpu &= ctrl_cpu_rev[0].clr; 929 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu); 930 vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set); 931 cr3 = read_cr3(); 932 933 for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) { 934 if (insn_table[cur_insn].supported_fn == NULL) 935 continue; 936 insn_table[cur_insn].disabled = !insn_table[cur_insn].supported_fn(); 937 } 938 return VMX_TEST_START; 939 } 940 941 static void insn_intercept_main(void) 942 { 943 for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) { 944 vmx_set_test_stage(cur_insn * 2); 945 if ((insn_table[cur_insn].type == INSN_CPU0 && 946 !(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) || 947 (insn_table[cur_insn].type == INSN_CPU1 && 948 !(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) { 949 printf("\tCPU_CTRL%d.CPU_%s is not supported.\n", 950 insn_table[cur_insn].type - INSN_CPU0, 951 insn_table[cur_insn].name); 952 continue; 953 } 954 955 if (insn_table[cur_insn].disabled) { 956 printf("\tFeature required for %s is not supported.\n", 957 insn_table[cur_insn].name); 958 continue; 959 } 960 961 if ((insn_table[cur_insn].type == INSN_CPU0 && 962 !(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) || 963 (insn_table[cur_insn].type == INSN_CPU1 && 964 !(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) { 965 /* skip hlt, it stalls the guest and is tested below */ 966 if (insn_table[cur_insn].insn_func != insn_hlt) 967 insn_table[cur_insn].insn_func(); 968 report(vmx_get_test_stage() == cur_insn * 2, 969 "execute %s", 970 insn_table[cur_insn].name); 971 } else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP) 972 printf("\tCPU_CTRL%d.CPU_%s always traps.\n", 973 insn_table[cur_insn].type - INSN_CPU0, 974 insn_table[cur_insn].name); 975 976 vmcall(); 977 978 insn_table[cur_insn].insn_func(); 979 report(vmx_get_test_stage() == cur_insn * 2 + 1, 980 "intercept %s", 981 insn_table[cur_insn].name); 982 983 vmx_set_test_stage(cur_insn * 2 + 1); 984 vmcall(); 985 } 986 } 987 988 static int insn_intercept_exit_handler(union exit_reason exit_reason) 989 { 990 u64 guest_rip; 991 ulong exit_qual; 992 u32 insn_len; 993 u32 insn_info; 994 bool pass; 995 996 guest_rip = vmcs_read(GUEST_RIP); 997 exit_qual = vmcs_read(EXI_QUALIFICATION); 998 insn_len = vmcs_read(EXI_INST_LEN); 999 insn_info = vmcs_read(EXI_INST_INFO); 1000 1001 if (exit_reason.basic == VMX_VMCALL) { 1002 u32 val = 0; 1003 1004 if (insn_table[cur_insn].type == INSN_CPU0) 1005 val = vmcs_read(CPU_EXEC_CTRL0); 1006 else if (insn_table[cur_insn].type == INSN_CPU1) 1007 val = vmcs_read(CPU_EXEC_CTRL1); 1008 1009 if (vmx_get_test_stage() & 1) 1010 val &= ~insn_table[cur_insn].flag; 1011 else 1012 val |= insn_table[cur_insn].flag; 1013 1014 if (insn_table[cur_insn].type == INSN_CPU0) 1015 vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set); 1016 else if (insn_table[cur_insn].type == INSN_CPU1) 1017 vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set); 1018 } else { 1019 pass = (cur_insn * 2 == vmx_get_test_stage()) && 1020 insn_table[cur_insn].reason == exit_reason.full; 1021 if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL && 1022 insn_table[cur_insn].exit_qual != exit_qual) 1023 pass = false; 1024 if (insn_table[cur_insn].test_field & FIELD_INSN_INFO && 1025 insn_table[cur_insn].insn_info != insn_info) 1026 pass = false; 1027 if (pass) 1028 vmx_inc_test_stage(); 1029 } 1030 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1031 return VMX_TEST_RESUME; 1032 } 1033 1034 /** 1035 * __setup_ept - Setup the VMCS fields to enable Extended Page Tables (EPT) 1036 * @hpa: Host physical address of the top-level, a.k.a. root, EPT table 1037 * @enable_ad: Whether or not to enable Access/Dirty bits for EPT entries 1038 * 1039 * Returns 0 on success, 1 on failure. 1040 * 1041 * Note that @hpa doesn't need to point at actual memory if VM-Launch is 1042 * expected to fail, e.g. setup_dummy_ept() arbitrarily passes '0' to satisfy 1043 * the various EPTP consistency checks, but doesn't ensure backing for HPA '0'. 1044 */ 1045 static int __setup_ept(u64 hpa, bool enable_ad) 1046 { 1047 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 1048 !(ctrl_cpu_rev[1].clr & CPU_EPT)) { 1049 printf("\tEPT is not supported\n"); 1050 return 1; 1051 } 1052 if (!is_ept_memtype_supported(EPT_MEM_TYPE_WB)) { 1053 printf("\tWB memtype for EPT walks not supported\n"); 1054 return 1; 1055 } 1056 1057 if (!is_4_level_ept_supported()) { 1058 /* Support for 4-level EPT is mandatory. */ 1059 report(false, "4-level EPT support check"); 1060 printf("\tPWL4 is not supported\n"); 1061 return 1; 1062 } 1063 1064 eptp = EPT_MEM_TYPE_WB; 1065 eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT); 1066 eptp |= hpa; 1067 if (enable_ad) 1068 eptp |= EPTP_AD_FLAG; 1069 1070 vmcs_write(EPTP, eptp); 1071 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0)| CPU_SECONDARY); 1072 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1)| CPU_EPT); 1073 1074 return 0; 1075 } 1076 1077 /** 1078 * setup_ept - Enable Extended Page Tables (EPT) and setup an identity map 1079 * @enable_ad: Whether or not to enable Access/Dirty bits for EPT entries 1080 * 1081 * Returns 0 on success, 1 on failure. 1082 * 1083 * This is the "real" function for setting up EPT tables, i.e. use this for 1084 * tests that need to run code in the guest with EPT enabled. 1085 */ 1086 static int setup_ept(bool enable_ad) 1087 { 1088 unsigned long end_of_memory; 1089 1090 pml4 = alloc_page(); 1091 1092 if (__setup_ept(virt_to_phys(pml4), enable_ad)) 1093 return 1; 1094 1095 end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE); 1096 if (end_of_memory < (1ul << 32)) 1097 end_of_memory = (1ul << 32); 1098 /* Cannot use large EPT pages if we need to track EPT 1099 * accessed/dirty bits at 4K granularity. 1100 */ 1101 setup_ept_range(pml4, 0, end_of_memory, 0, 1102 !enable_ad && ept_2m_supported(), 1103 EPT_WA | EPT_RA | EPT_EA); 1104 return 0; 1105 } 1106 1107 /** 1108 * setup_dummy_ept - Enable Extended Page Tables (EPT) with a dummy root HPA 1109 * 1110 * Setup EPT using a semi-arbitrary dummy root HPA. This function is intended 1111 * for use by tests that need EPT enabled to verify dependent VMCS controls 1112 * but never expect to fully enter the guest, i.e. don't need setup the actual 1113 * EPT tables. 1114 */ 1115 static void setup_dummy_ept(void) 1116 { 1117 if (__setup_ept(0, false)) 1118 report_abort("EPT setup unexpectedly failed"); 1119 } 1120 1121 static int enable_unrestricted_guest(bool need_valid_ept) 1122 { 1123 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 1124 !(ctrl_cpu_rev[1].clr & CPU_URG) || 1125 !(ctrl_cpu_rev[1].clr & CPU_EPT)) 1126 return 1; 1127 1128 if (need_valid_ept) 1129 setup_ept(false); 1130 else 1131 setup_dummy_ept(); 1132 1133 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); 1134 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG); 1135 1136 return 0; 1137 } 1138 1139 static void ept_enable_ad_bits(void) 1140 { 1141 eptp |= EPTP_AD_FLAG; 1142 vmcs_write(EPTP, eptp); 1143 } 1144 1145 static void ept_disable_ad_bits(void) 1146 { 1147 eptp &= ~EPTP_AD_FLAG; 1148 vmcs_write(EPTP, eptp); 1149 } 1150 1151 static int ept_ad_enabled(void) 1152 { 1153 return eptp & EPTP_AD_FLAG; 1154 } 1155 1156 static void ept_enable_ad_bits_or_skip_test(void) 1157 { 1158 if (!ept_ad_bits_supported()) 1159 test_skip("EPT AD bits not supported."); 1160 ept_enable_ad_bits(); 1161 } 1162 1163 static int apic_version; 1164 1165 static int ept_init_common(bool have_ad) 1166 { 1167 int ret; 1168 struct pci_dev pcidev; 1169 1170 /* INVEPT is required by the EPT violation handler. */ 1171 if (!is_invept_type_supported(INVEPT_SINGLE)) 1172 return VMX_TEST_EXIT; 1173 1174 if (setup_ept(have_ad)) 1175 return VMX_TEST_EXIT; 1176 1177 data_page1 = alloc_page(); 1178 data_page2 = alloc_page(); 1179 *((u32 *)data_page1) = MAGIC_VAL_1; 1180 *((u32 *)data_page2) = MAGIC_VAL_2; 1181 install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2, 1182 EPT_RA | EPT_WA | EPT_EA); 1183 1184 apic_version = apic_read(APIC_LVR); 1185 1186 ret = pci_find_dev(PCI_VENDOR_ID_REDHAT, PCI_DEVICE_ID_REDHAT_TEST); 1187 if (ret != PCIDEVADDR_INVALID) { 1188 pci_dev_init(&pcidev, ret); 1189 pci_physaddr = pcidev.resource[PCI_TESTDEV_BAR_MEM]; 1190 } 1191 1192 return VMX_TEST_START; 1193 } 1194 1195 static int ept_init(struct vmcs *vmcs) 1196 { 1197 return ept_init_common(false); 1198 } 1199 1200 static void ept_common(void) 1201 { 1202 vmx_set_test_stage(0); 1203 if (*((u32 *)data_page2) != MAGIC_VAL_1 || 1204 *((u32 *)data_page1) != MAGIC_VAL_1) 1205 report_fail("EPT basic framework - read"); 1206 else { 1207 *((u32 *)data_page2) = MAGIC_VAL_3; 1208 vmcall(); 1209 if (vmx_get_test_stage() == 1) { 1210 if (*((u32 *)data_page1) == MAGIC_VAL_3 && 1211 *((u32 *)data_page2) == MAGIC_VAL_2) 1212 report_pass("EPT basic framework"); 1213 else 1214 report_pass("EPT basic framework - remap"); 1215 } 1216 } 1217 // Test EPT Misconfigurations 1218 vmx_set_test_stage(1); 1219 vmcall(); 1220 *((u32 *)data_page1) = MAGIC_VAL_1; 1221 if (vmx_get_test_stage() != 2) { 1222 report_fail("EPT misconfigurations"); 1223 goto t1; 1224 } 1225 vmx_set_test_stage(2); 1226 vmcall(); 1227 *((u32 *)data_page1) = MAGIC_VAL_1; 1228 report(vmx_get_test_stage() == 3, "EPT misconfigurations"); 1229 t1: 1230 // Test EPT violation 1231 vmx_set_test_stage(3); 1232 vmcall(); 1233 *((u32 *)data_page1) = MAGIC_VAL_1; 1234 report(vmx_get_test_stage() == 4, "EPT violation - page permission"); 1235 // Violation caused by EPT paging structure 1236 vmx_set_test_stage(4); 1237 vmcall(); 1238 *((u32 *)data_page1) = MAGIC_VAL_2; 1239 report(vmx_get_test_stage() == 5, "EPT violation - paging structure"); 1240 1241 // MMIO Read/Write 1242 vmx_set_test_stage(5); 1243 vmcall(); 1244 1245 *(u32 volatile *)pci_physaddr; 1246 report(vmx_get_test_stage() == 6, "MMIO EPT violation - read"); 1247 1248 *(u32 volatile *)pci_physaddr = MAGIC_VAL_1; 1249 report(vmx_get_test_stage() == 7, "MMIO EPT violation - write"); 1250 } 1251 1252 static void ept_main(void) 1253 { 1254 ept_common(); 1255 1256 // Test EPT access to L1 MMIO 1257 vmx_set_test_stage(7); 1258 report(*((u32 *)0xfee00030UL) == apic_version, "EPT - MMIO access"); 1259 1260 // Test invalid operand for INVEPT 1261 vmcall(); 1262 report(vmx_get_test_stage() == 8, "EPT - unsupported INVEPT"); 1263 } 1264 1265 static bool invept_test(int type, u64 eptp) 1266 { 1267 bool ret, supported; 1268 1269 supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type); 1270 ret = __invept(type, eptp); 1271 1272 if (ret == !supported) 1273 return false; 1274 1275 if (!supported) 1276 printf("WARNING: unsupported invept passed!\n"); 1277 else 1278 printf("WARNING: invept failed!\n"); 1279 1280 return true; 1281 } 1282 1283 static int pml_exit_handler(union exit_reason exit_reason) 1284 { 1285 u16 index, count; 1286 u64 *pmlbuf = pml_log; 1287 u64 guest_rip = vmcs_read(GUEST_RIP);; 1288 u64 guest_cr3 = vmcs_read(GUEST_CR3); 1289 u32 insn_len = vmcs_read(EXI_INST_LEN); 1290 1291 switch (exit_reason.basic) { 1292 case VMX_VMCALL: 1293 switch (vmx_get_test_stage()) { 1294 case 0: 1295 index = vmcs_read(GUEST_PML_INDEX); 1296 for (count = index + 1; count < PML_INDEX; count++) { 1297 if (pmlbuf[count] == (u64)data_page2) { 1298 vmx_inc_test_stage(); 1299 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); 1300 break; 1301 } 1302 } 1303 break; 1304 case 1: 1305 index = vmcs_read(GUEST_PML_INDEX); 1306 /* Keep clearing the dirty bit till a overflow */ 1307 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); 1308 break; 1309 default: 1310 report_fail("unexpected stage, %d.", 1311 vmx_get_test_stage()); 1312 print_vmexit_info(exit_reason); 1313 return VMX_TEST_VMEXIT; 1314 } 1315 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1316 return VMX_TEST_RESUME; 1317 case VMX_PML_FULL: 1318 vmx_inc_test_stage(); 1319 vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1); 1320 return VMX_TEST_RESUME; 1321 default: 1322 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 1323 print_vmexit_info(exit_reason); 1324 } 1325 return VMX_TEST_VMEXIT; 1326 } 1327 1328 static int ept_exit_handler_common(union exit_reason exit_reason, bool have_ad) 1329 { 1330 u64 guest_rip; 1331 u64 guest_cr3; 1332 u32 insn_len; 1333 u32 exit_qual; 1334 static unsigned long data_page1_pte, data_page1_pte_pte, memaddr_pte, 1335 guest_pte_addr; 1336 1337 guest_rip = vmcs_read(GUEST_RIP); 1338 guest_cr3 = vmcs_read(GUEST_CR3); 1339 insn_len = vmcs_read(EXI_INST_LEN); 1340 exit_qual = vmcs_read(EXI_QUALIFICATION); 1341 pteval_t *ptep; 1342 switch (exit_reason.basic) { 1343 case VMX_VMCALL: 1344 switch (vmx_get_test_stage()) { 1345 case 0: 1346 check_ept_ad(pml4, guest_cr3, 1347 (unsigned long)data_page1, 1348 have_ad ? EPT_ACCESS_FLAG : 0, 1349 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); 1350 check_ept_ad(pml4, guest_cr3, 1351 (unsigned long)data_page2, 1352 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0, 1353 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); 1354 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); 1355 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); 1356 if (have_ad) 1357 invept(INVEPT_SINGLE, eptp); 1358 if (*((u32 *)data_page1) == MAGIC_VAL_3 && 1359 *((u32 *)data_page2) == MAGIC_VAL_2) { 1360 vmx_inc_test_stage(); 1361 install_ept(pml4, (unsigned long)data_page2, 1362 (unsigned long)data_page2, 1363 EPT_RA | EPT_WA | EPT_EA); 1364 } else 1365 report_fail("EPT basic framework - write"); 1366 break; 1367 case 1: 1368 install_ept(pml4, (unsigned long)data_page1, 1369 (unsigned long)data_page1, EPT_WA); 1370 invept(INVEPT_SINGLE, eptp); 1371 break; 1372 case 2: 1373 install_ept(pml4, (unsigned long)data_page1, 1374 (unsigned long)data_page1, 1375 EPT_RA | EPT_WA | EPT_EA | 1376 (2 << EPT_MEM_TYPE_SHIFT)); 1377 invept(INVEPT_SINGLE, eptp); 1378 break; 1379 case 3: 1380 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); 1381 TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1, 1382 1, &data_page1_pte)); 1383 set_ept_pte(pml4, (unsigned long)data_page1, 1384 1, data_page1_pte & ~EPT_PRESENT); 1385 invept(INVEPT_SINGLE, eptp); 1386 break; 1387 case 4: 1388 ptep = get_pte_level((pgd_t *)guest_cr3, data_page1, /*level=*/2); 1389 guest_pte_addr = virt_to_phys(ptep) & PAGE_MASK; 1390 1391 TEST_ASSERT(get_ept_pte(pml4, guest_pte_addr, 2, &data_page1_pte_pte)); 1392 set_ept_pte(pml4, guest_pte_addr, 2, 1393 data_page1_pte_pte & ~EPT_PRESENT); 1394 invept(INVEPT_SINGLE, eptp); 1395 break; 1396 case 5: 1397 install_ept(pml4, (unsigned long)pci_physaddr, 1398 (unsigned long)pci_physaddr, 0); 1399 invept(INVEPT_SINGLE, eptp); 1400 break; 1401 case 7: 1402 if (!invept_test(0, eptp)) 1403 vmx_inc_test_stage(); 1404 break; 1405 // Should not reach here 1406 default: 1407 report_fail("ERROR - unexpected stage, %d.", 1408 vmx_get_test_stage()); 1409 print_vmexit_info(exit_reason); 1410 return VMX_TEST_VMEXIT; 1411 } 1412 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1413 return VMX_TEST_RESUME; 1414 case VMX_EPT_MISCONFIG: 1415 switch (vmx_get_test_stage()) { 1416 case 1: 1417 case 2: 1418 vmx_inc_test_stage(); 1419 install_ept(pml4, (unsigned long)data_page1, 1420 (unsigned long)data_page1, 1421 EPT_RA | EPT_WA | EPT_EA); 1422 invept(INVEPT_SINGLE, eptp); 1423 break; 1424 // Should not reach here 1425 default: 1426 report_fail("ERROR - unexpected stage, %d.", 1427 vmx_get_test_stage()); 1428 print_vmexit_info(exit_reason); 1429 return VMX_TEST_VMEXIT; 1430 } 1431 return VMX_TEST_RESUME; 1432 case VMX_EPT_VIOLATION: 1433 /* 1434 * Exit-qualifications are masked not to account for advanced 1435 * VM-exit information. Once KVM supports this feature, this 1436 * masking should be removed. 1437 */ 1438 exit_qual &= ~EPT_VLT_GUEST_MASK; 1439 1440 switch(vmx_get_test_stage()) { 1441 case 3: 1442 check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0, 1443 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); 1444 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); 1445 if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD | 1446 EPT_VLT_PADDR)) 1447 vmx_inc_test_stage(); 1448 set_ept_pte(pml4, (unsigned long)data_page1, 1449 1, data_page1_pte | (EPT_PRESENT)); 1450 invept(INVEPT_SINGLE, eptp); 1451 break; 1452 case 4: 1453 check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0, 1454 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); 1455 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); 1456 if (exit_qual == (EPT_VLT_RD | 1457 (have_ad ? EPT_VLT_WR : 0) | 1458 EPT_VLT_LADDR_VLD)) 1459 vmx_inc_test_stage(); 1460 set_ept_pte(pml4, guest_pte_addr, 2, 1461 data_page1_pte_pte | (EPT_PRESENT)); 1462 invept(INVEPT_SINGLE, eptp); 1463 break; 1464 case 5: 1465 if (exit_qual & EPT_VLT_RD) 1466 vmx_inc_test_stage(); 1467 TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr, 1468 1, &memaddr_pte)); 1469 set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA); 1470 invept(INVEPT_SINGLE, eptp); 1471 break; 1472 case 6: 1473 if (exit_qual & EPT_VLT_WR) 1474 vmx_inc_test_stage(); 1475 TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr, 1476 1, &memaddr_pte)); 1477 set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA | EPT_WA); 1478 invept(INVEPT_SINGLE, eptp); 1479 break; 1480 default: 1481 // Should not reach here 1482 report_fail("ERROR : unexpected stage, %d", 1483 vmx_get_test_stage()); 1484 print_vmexit_info(exit_reason); 1485 return VMX_TEST_VMEXIT; 1486 } 1487 return VMX_TEST_RESUME; 1488 default: 1489 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 1490 print_vmexit_info(exit_reason); 1491 } 1492 return VMX_TEST_VMEXIT; 1493 } 1494 1495 static int ept_exit_handler(union exit_reason exit_reason) 1496 { 1497 return ept_exit_handler_common(exit_reason, false); 1498 } 1499 1500 static int eptad_init(struct vmcs *vmcs) 1501 { 1502 int r = ept_init_common(true); 1503 1504 if (r == VMX_TEST_EXIT) 1505 return r; 1506 1507 if (!ept_ad_bits_supported()) { 1508 printf("\tEPT A/D bits are not supported"); 1509 return VMX_TEST_EXIT; 1510 } 1511 1512 return r; 1513 } 1514 1515 static int pml_init(struct vmcs *vmcs) 1516 { 1517 u32 ctrl_cpu; 1518 int r = eptad_init(vmcs); 1519 1520 if (r == VMX_TEST_EXIT) 1521 return r; 1522 1523 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 1524 !(ctrl_cpu_rev[1].clr & CPU_PML)) { 1525 printf("\tPML is not supported"); 1526 return VMX_TEST_EXIT; 1527 } 1528 1529 pml_log = alloc_page(); 1530 vmcs_write(PMLADDR, (u64)pml_log); 1531 vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1); 1532 1533 ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML; 1534 vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu); 1535 1536 return VMX_TEST_START; 1537 } 1538 1539 static void pml_main(void) 1540 { 1541 int count = 0; 1542 1543 vmx_set_test_stage(0); 1544 *((u32 *)data_page2) = 0x1; 1545 vmcall(); 1546 report(vmx_get_test_stage() == 1, "PML - Dirty GPA Logging"); 1547 1548 while (vmx_get_test_stage() == 1) { 1549 vmcall(); 1550 *((u32 *)data_page2) = 0x1; 1551 if (count++ > PML_INDEX) 1552 break; 1553 } 1554 report(vmx_get_test_stage() == 2, "PML Full Event"); 1555 } 1556 1557 static void eptad_main(void) 1558 { 1559 ept_common(); 1560 } 1561 1562 static int eptad_exit_handler(union exit_reason exit_reason) 1563 { 1564 return ept_exit_handler_common(exit_reason, true); 1565 } 1566 1567 #define TIMER_VECTOR 222 1568 1569 static volatile bool timer_fired; 1570 1571 static void timer_isr(isr_regs_t *regs) 1572 { 1573 timer_fired = true; 1574 apic_write(APIC_EOI, 0); 1575 } 1576 1577 static int interrupt_init(struct vmcs *vmcs) 1578 { 1579 msr_bmp_init(); 1580 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 1581 handle_irq(TIMER_VECTOR, timer_isr); 1582 return VMX_TEST_START; 1583 } 1584 1585 static void interrupt_main(void) 1586 { 1587 long long start, loops; 1588 1589 vmx_set_test_stage(0); 1590 1591 apic_write(APIC_LVTT, TIMER_VECTOR); 1592 sti(); 1593 1594 apic_write(APIC_TMICT, 1); 1595 for (loops = 0; loops < 10000000 && !timer_fired; loops++) 1596 asm volatile ("nop"); 1597 report(timer_fired, "direct interrupt while running guest"); 1598 1599 apic_write(APIC_TMICT, 0); 1600 cli(); 1601 vmcall(); 1602 timer_fired = false; 1603 apic_write(APIC_TMICT, 1); 1604 for (loops = 0; loops < 10000000 && !timer_fired; loops++) 1605 asm volatile ("nop"); 1606 report(timer_fired, "intercepted interrupt while running guest"); 1607 1608 sti(); 1609 apic_write(APIC_TMICT, 0); 1610 cli(); 1611 vmcall(); 1612 timer_fired = false; 1613 start = rdtsc(); 1614 apic_write(APIC_TMICT, 1000000); 1615 1616 safe_halt(); 1617 1618 report(rdtsc() - start > 1000000 && timer_fired, 1619 "direct interrupt + hlt"); 1620 1621 apic_write(APIC_TMICT, 0); 1622 cli(); 1623 vmcall(); 1624 timer_fired = false; 1625 start = rdtsc(); 1626 apic_write(APIC_TMICT, 1000000); 1627 1628 safe_halt(); 1629 1630 report(rdtsc() - start > 10000 && timer_fired, 1631 "intercepted interrupt + hlt"); 1632 1633 apic_write(APIC_TMICT, 0); 1634 cli(); 1635 vmcall(); 1636 timer_fired = false; 1637 start = rdtsc(); 1638 apic_write(APIC_TMICT, 1000000); 1639 1640 sti_nop(); 1641 vmcall(); 1642 1643 report(rdtsc() - start > 10000 && timer_fired, 1644 "direct interrupt + activity state hlt"); 1645 1646 apic_write(APIC_TMICT, 0); 1647 cli(); 1648 vmcall(); 1649 timer_fired = false; 1650 start = rdtsc(); 1651 apic_write(APIC_TMICT, 1000000); 1652 1653 sti_nop(); 1654 vmcall(); 1655 1656 report(rdtsc() - start > 10000 && timer_fired, 1657 "intercepted interrupt + activity state hlt"); 1658 1659 apic_write(APIC_TMICT, 0); 1660 cli(); 1661 vmx_set_test_stage(7); 1662 vmcall(); 1663 timer_fired = false; 1664 apic_write(APIC_TMICT, 1); 1665 for (loops = 0; loops < 10000000 && !timer_fired; loops++) 1666 asm volatile ("nop"); 1667 report(timer_fired, 1668 "running a guest with interrupt acknowledgement set"); 1669 1670 apic_write(APIC_TMICT, 0); 1671 sti(); 1672 timer_fired = false; 1673 vmcall(); 1674 report(timer_fired, "Inject an event to a halted guest"); 1675 } 1676 1677 static int interrupt_exit_handler(union exit_reason exit_reason) 1678 { 1679 u64 guest_rip = vmcs_read(GUEST_RIP); 1680 u32 insn_len = vmcs_read(EXI_INST_LEN); 1681 1682 switch (exit_reason.basic) { 1683 case VMX_VMCALL: 1684 switch (vmx_get_test_stage()) { 1685 case 0: 1686 case 2: 1687 case 5: 1688 vmcs_write(PIN_CONTROLS, 1689 vmcs_read(PIN_CONTROLS) | PIN_EXTINT); 1690 break; 1691 case 7: 1692 vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA); 1693 vmcs_write(PIN_CONTROLS, 1694 vmcs_read(PIN_CONTROLS) | PIN_EXTINT); 1695 break; 1696 case 1: 1697 case 3: 1698 vmcs_write(PIN_CONTROLS, 1699 vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 1700 break; 1701 case 4: 1702 case 6: 1703 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 1704 break; 1705 1706 case 8: 1707 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 1708 vmcs_write(ENT_INTR_INFO, 1709 TIMER_VECTOR | 1710 (VMX_INTR_TYPE_EXT_INTR << INTR_INFO_INTR_TYPE_SHIFT) | 1711 INTR_INFO_VALID_MASK); 1712 break; 1713 } 1714 vmx_inc_test_stage(); 1715 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1716 return VMX_TEST_RESUME; 1717 case VMX_EXTINT: 1718 if (vmcs_read(EXI_CONTROLS) & EXI_INTA) { 1719 int vector = vmcs_read(EXI_INTR_INFO) & 0xff; 1720 handle_external_interrupt(vector); 1721 } else { 1722 sti_nop_cli(); 1723 } 1724 if (vmx_get_test_stage() >= 2) 1725 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 1726 return VMX_TEST_RESUME; 1727 default: 1728 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 1729 print_vmexit_info(exit_reason); 1730 } 1731 1732 return VMX_TEST_VMEXIT; 1733 } 1734 1735 1736 static volatile int nmi_fired; 1737 1738 #define NMI_DELAY 100000000ULL 1739 1740 static void nmi_isr(isr_regs_t *regs) 1741 { 1742 nmi_fired = true; 1743 } 1744 1745 static int nmi_hlt_init(struct vmcs *vmcs) 1746 { 1747 msr_bmp_init(); 1748 handle_irq(NMI_VECTOR, nmi_isr); 1749 vmcs_write(PIN_CONTROLS, 1750 vmcs_read(PIN_CONTROLS) & ~PIN_NMI); 1751 vmcs_write(PIN_CONTROLS, 1752 vmcs_read(PIN_CONTROLS) & ~PIN_VIRT_NMI); 1753 return VMX_TEST_START; 1754 } 1755 1756 static void nmi_message_thread(void *data) 1757 { 1758 while (vmx_get_test_stage() != 1) 1759 pause(); 1760 1761 delay(NMI_DELAY); 1762 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]); 1763 1764 while (vmx_get_test_stage() != 2) 1765 pause(); 1766 1767 delay(NMI_DELAY); 1768 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]); 1769 } 1770 1771 static void nmi_hlt_main(void) 1772 { 1773 long long start; 1774 1775 if (cpu_count() < 2) { 1776 report_skip("%s : CPU count < 2", __func__); 1777 vmx_set_test_stage(-1); 1778 return; 1779 } 1780 1781 vmx_set_test_stage(0); 1782 on_cpu_async(1, nmi_message_thread, NULL); 1783 start = rdtsc(); 1784 vmx_set_test_stage(1); 1785 asm volatile ("hlt"); 1786 report((rdtsc() - start > NMI_DELAY) && nmi_fired, 1787 "direct NMI + hlt"); 1788 if (!nmi_fired) 1789 vmx_set_test_stage(-1); 1790 nmi_fired = false; 1791 1792 vmcall(); 1793 1794 start = rdtsc(); 1795 vmx_set_test_stage(2); 1796 asm volatile ("hlt"); 1797 report((rdtsc() - start > NMI_DELAY) && !nmi_fired, 1798 "intercepted NMI + hlt"); 1799 if (nmi_fired) { 1800 report(!nmi_fired, "intercepted NMI was dispatched"); 1801 vmx_set_test_stage(-1); 1802 return; 1803 } 1804 vmx_set_test_stage(3); 1805 } 1806 1807 static int nmi_hlt_exit_handler(union exit_reason exit_reason) 1808 { 1809 u64 guest_rip = vmcs_read(GUEST_RIP); 1810 u32 insn_len = vmcs_read(EXI_INST_LEN); 1811 1812 switch (vmx_get_test_stage()) { 1813 case 1: 1814 if (exit_reason.basic != VMX_VMCALL) { 1815 report_fail("VMEXIT not due to vmcall. Exit reason 0x%x", 1816 exit_reason.full); 1817 print_vmexit_info(exit_reason); 1818 return VMX_TEST_VMEXIT; 1819 } 1820 1821 vmcs_write(PIN_CONTROLS, 1822 vmcs_read(PIN_CONTROLS) | PIN_NMI); 1823 vmcs_write(PIN_CONTROLS, 1824 vmcs_read(PIN_CONTROLS) | PIN_VIRT_NMI); 1825 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1826 break; 1827 1828 case 2: 1829 if (exit_reason.basic != VMX_EXC_NMI) { 1830 report_fail("VMEXIT not due to NMI intercept. Exit reason 0x%x", 1831 exit_reason.full); 1832 print_vmexit_info(exit_reason); 1833 return VMX_TEST_VMEXIT; 1834 } 1835 report_pass("NMI intercept while running guest"); 1836 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 1837 break; 1838 1839 case 3: 1840 break; 1841 1842 default: 1843 return VMX_TEST_VMEXIT; 1844 } 1845 1846 if (vmx_get_test_stage() == 3) 1847 return VMX_TEST_VMEXIT; 1848 1849 return VMX_TEST_RESUME; 1850 } 1851 1852 1853 static int dbgctls_init(struct vmcs *vmcs) 1854 { 1855 u64 dr7 = 0x402; 1856 u64 zero = 0; 1857 1858 msr_bmp_init(); 1859 asm volatile( 1860 "mov %0,%%dr0\n\t" 1861 "mov %0,%%dr1\n\t" 1862 "mov %0,%%dr2\n\t" 1863 "mov %1,%%dr7\n\t" 1864 : : "r" (zero), "r" (dr7)); 1865 wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1); 1866 vmcs_write(GUEST_DR7, 0x404); 1867 vmcs_write(GUEST_DEBUGCTL, 0x2); 1868 1869 vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS); 1870 vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS); 1871 1872 return VMX_TEST_START; 1873 } 1874 1875 static void dbgctls_main(void) 1876 { 1877 u64 dr7, debugctl; 1878 1879 asm volatile("mov %%dr7,%0" : "=r" (dr7)); 1880 debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); 1881 /* Commented out: KVM does not support DEBUGCTL so far */ 1882 (void)debugctl; 1883 report(dr7 == 0x404, "Load debug controls" /* && debugctl == 0x2 */); 1884 1885 dr7 = 0x408; 1886 asm volatile("mov %0,%%dr7" : : "r" (dr7)); 1887 wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3); 1888 1889 vmx_set_test_stage(0); 1890 vmcall(); 1891 report(vmx_get_test_stage() == 1, "Save debug controls"); 1892 1893 if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS || 1894 ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) { 1895 printf("\tDebug controls are always loaded/saved\n"); 1896 return; 1897 } 1898 vmx_set_test_stage(2); 1899 vmcall(); 1900 1901 asm volatile("mov %%dr7,%0" : "=r" (dr7)); 1902 debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); 1903 /* Commented out: KVM does not support DEBUGCTL so far */ 1904 (void)debugctl; 1905 report(dr7 == 0x402, 1906 "Guest=host debug controls" /* && debugctl == 0x1 */); 1907 1908 dr7 = 0x408; 1909 asm volatile("mov %0,%%dr7" : : "r" (dr7)); 1910 wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3); 1911 1912 vmx_set_test_stage(3); 1913 vmcall(); 1914 report(vmx_get_test_stage() == 4, "Don't save debug controls"); 1915 } 1916 1917 static int dbgctls_exit_handler(union exit_reason exit_reason) 1918 { 1919 u32 insn_len = vmcs_read(EXI_INST_LEN); 1920 u64 guest_rip = vmcs_read(GUEST_RIP); 1921 u64 dr7, debugctl; 1922 1923 asm volatile("mov %%dr7,%0" : "=r" (dr7)); 1924 debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); 1925 1926 switch (exit_reason.basic) { 1927 case VMX_VMCALL: 1928 switch (vmx_get_test_stage()) { 1929 case 0: 1930 if (dr7 == 0x400 && debugctl == 0 && 1931 vmcs_read(GUEST_DR7) == 0x408 /* && 1932 Commented out: KVM does not support DEBUGCTL so far 1933 vmcs_read(GUEST_DEBUGCTL) == 0x3 */) 1934 vmx_inc_test_stage(); 1935 break; 1936 case 2: 1937 dr7 = 0x402; 1938 asm volatile("mov %0,%%dr7" : : "r" (dr7)); 1939 wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1); 1940 vmcs_write(GUEST_DR7, 0x404); 1941 vmcs_write(GUEST_DEBUGCTL, 0x2); 1942 1943 vmcs_write(ENT_CONTROLS, 1944 vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS); 1945 vmcs_write(EXI_CONTROLS, 1946 vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS); 1947 break; 1948 case 3: 1949 if (dr7 == 0x400 && debugctl == 0 && 1950 vmcs_read(GUEST_DR7) == 0x404 /* && 1951 Commented out: KVM does not support DEBUGCTL so far 1952 vmcs_read(GUEST_DEBUGCTL) == 0x2 */) 1953 vmx_inc_test_stage(); 1954 break; 1955 } 1956 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1957 return VMX_TEST_RESUME; 1958 default: 1959 report_fail("Unknown exit reason, %d", exit_reason.full); 1960 print_vmexit_info(exit_reason); 1961 } 1962 return VMX_TEST_VMEXIT; 1963 } 1964 1965 struct vmx_msr_entry { 1966 u32 index; 1967 u32 reserved; 1968 u64 value; 1969 } __attribute__((packed)); 1970 1971 #define MSR_MAGIC 0x31415926 1972 struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load; 1973 1974 static int msr_switch_init(struct vmcs *vmcs) 1975 { 1976 msr_bmp_init(); 1977 exit_msr_store = alloc_page(); 1978 exit_msr_load = alloc_page(); 1979 entry_msr_load = alloc_page(); 1980 entry_msr_load[0].index = MSR_KERNEL_GS_BASE; 1981 entry_msr_load[0].value = MSR_MAGIC; 1982 1983 vmx_set_test_stage(1); 1984 vmcs_write(ENT_MSR_LD_CNT, 1); 1985 vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load); 1986 vmcs_write(EXI_MSR_ST_CNT, 1); 1987 vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store); 1988 vmcs_write(EXI_MSR_LD_CNT, 1); 1989 vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load); 1990 return VMX_TEST_START; 1991 } 1992 1993 static void msr_switch_main(void) 1994 { 1995 if (vmx_get_test_stage() == 1) { 1996 report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC, 1997 "VM entry MSR load"); 1998 vmx_set_test_stage(2); 1999 wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1); 2000 exit_msr_store[0].index = MSR_KERNEL_GS_BASE; 2001 exit_msr_load[0].index = MSR_KERNEL_GS_BASE; 2002 exit_msr_load[0].value = MSR_MAGIC + 2; 2003 } 2004 vmcall(); 2005 } 2006 2007 static int msr_switch_exit_handler(union exit_reason exit_reason) 2008 { 2009 if (exit_reason.basic == VMX_VMCALL && vmx_get_test_stage() == 2) { 2010 report(exit_msr_store[0].value == MSR_MAGIC + 1, 2011 "VM exit MSR store"); 2012 report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2, 2013 "VM exit MSR load"); 2014 vmx_set_test_stage(3); 2015 entry_msr_load[0].index = MSR_FS_BASE; 2016 return VMX_TEST_RESUME; 2017 } 2018 printf("ERROR %s: unexpected stage=%u or reason=0x%x\n", 2019 __func__, vmx_get_test_stage(), exit_reason.full); 2020 return VMX_TEST_EXIT; 2021 } 2022 2023 static int msr_switch_entry_failure(struct vmentry_result *result) 2024 { 2025 if (result->vm_fail) { 2026 printf("ERROR %s: VM-Fail on %s\n", __func__, result->instr); 2027 return VMX_TEST_EXIT; 2028 } 2029 2030 if (result->exit_reason.failed_vmentry && 2031 result->exit_reason.basic == VMX_FAIL_MSR && 2032 vmx_get_test_stage() == 3) { 2033 report(vmcs_read(EXI_QUALIFICATION) == 1, 2034 "VM entry MSR load: try to load FS_BASE"); 2035 return VMX_TEST_VMEXIT; 2036 } 2037 printf("ERROR %s: unexpected stage=%u or reason=%x\n", 2038 __func__, vmx_get_test_stage(), result->exit_reason.full); 2039 return VMX_TEST_EXIT; 2040 } 2041 2042 static int vmmcall_init(struct vmcs *vmcs) 2043 { 2044 vmcs_write(EXC_BITMAP, 1 << UD_VECTOR); 2045 return VMX_TEST_START; 2046 } 2047 2048 static void vmmcall_main(void) 2049 { 2050 asm volatile( 2051 "mov $0xABCD, %%rax\n\t" 2052 "vmmcall\n\t" 2053 ::: "rax"); 2054 2055 report_fail("VMMCALL"); 2056 } 2057 2058 static int vmmcall_exit_handler(union exit_reason exit_reason) 2059 { 2060 switch (exit_reason.basic) { 2061 case VMX_VMCALL: 2062 printf("here\n"); 2063 report_fail("VMMCALL triggers #UD"); 2064 break; 2065 case VMX_EXC_NMI: 2066 report((vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR, 2067 "VMMCALL triggers #UD"); 2068 break; 2069 default: 2070 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 2071 print_vmexit_info(exit_reason); 2072 } 2073 2074 return VMX_TEST_VMEXIT; 2075 } 2076 2077 static int disable_rdtscp_init(struct vmcs *vmcs) 2078 { 2079 u32 ctrl_cpu1; 2080 2081 if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) { 2082 ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1); 2083 ctrl_cpu1 &= ~CPU_RDTSCP; 2084 vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1); 2085 } 2086 2087 return VMX_TEST_START; 2088 } 2089 2090 static void disable_rdtscp_ud_handler(struct ex_regs *regs) 2091 { 2092 switch (vmx_get_test_stage()) { 2093 case 0: 2094 report_pass("RDTSCP triggers #UD"); 2095 vmx_inc_test_stage(); 2096 regs->rip += 3; 2097 break; 2098 case 2: 2099 report_pass("RDPID triggers #UD"); 2100 vmx_inc_test_stage(); 2101 regs->rip += 4; 2102 break; 2103 } 2104 return; 2105 2106 } 2107 2108 static void disable_rdtscp_main(void) 2109 { 2110 /* Test that #UD is properly injected in L2. */ 2111 handle_exception(UD_VECTOR, disable_rdtscp_ud_handler); 2112 2113 vmx_set_test_stage(0); 2114 asm volatile("rdtscp" : : : "eax", "ecx", "edx"); 2115 vmcall(); 2116 asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax"); 2117 2118 handle_exception(UD_VECTOR, 0); 2119 vmcall(); 2120 } 2121 2122 static int disable_rdtscp_exit_handler(union exit_reason exit_reason) 2123 { 2124 switch (exit_reason.basic) { 2125 case VMX_VMCALL: 2126 switch (vmx_get_test_stage()) { 2127 case 0: 2128 report_fail("RDTSCP triggers #UD"); 2129 vmx_inc_test_stage(); 2130 /* fallthrough */ 2131 case 1: 2132 vmx_inc_test_stage(); 2133 vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3); 2134 return VMX_TEST_RESUME; 2135 case 2: 2136 report_fail("RDPID triggers #UD"); 2137 break; 2138 } 2139 break; 2140 2141 default: 2142 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 2143 print_vmexit_info(exit_reason); 2144 } 2145 return VMX_TEST_VMEXIT; 2146 } 2147 2148 static void exit_monitor_from_l2_main(void) 2149 { 2150 printf("Calling exit(0) from l2...\n"); 2151 exit(0); 2152 } 2153 2154 static int exit_monitor_from_l2_handler(union exit_reason exit_reason) 2155 { 2156 report_fail("The guest should have killed the VMM"); 2157 return VMX_TEST_EXIT; 2158 } 2159 2160 static void assert_exit_reason(u64 expected) 2161 { 2162 u64 actual = vmcs_read(EXI_REASON); 2163 2164 TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.", 2165 exit_reason_description(expected), 2166 exit_reason_description(actual)); 2167 } 2168 2169 static void skip_exit_insn(void) 2170 { 2171 u64 guest_rip = vmcs_read(GUEST_RIP); 2172 u32 insn_len = vmcs_read(EXI_INST_LEN); 2173 vmcs_write(GUEST_RIP, guest_rip + insn_len); 2174 } 2175 2176 static void skip_exit_vmcall(void) 2177 { 2178 assert_exit_reason(VMX_VMCALL); 2179 skip_exit_insn(); 2180 } 2181 2182 static void v2_null_test_guest(void) 2183 { 2184 } 2185 2186 static void v2_null_test(void) 2187 { 2188 test_set_guest(v2_null_test_guest); 2189 enter_guest(); 2190 report_pass(__func__); 2191 } 2192 2193 static void v2_multiple_entries_test_guest(void) 2194 { 2195 vmx_set_test_stage(1); 2196 vmcall(); 2197 vmx_set_test_stage(2); 2198 } 2199 2200 static void v2_multiple_entries_test(void) 2201 { 2202 test_set_guest(v2_multiple_entries_test_guest); 2203 enter_guest(); 2204 TEST_ASSERT_EQ(vmx_get_test_stage(), 1); 2205 skip_exit_vmcall(); 2206 enter_guest(); 2207 TEST_ASSERT_EQ(vmx_get_test_stage(), 2); 2208 report_pass(__func__); 2209 } 2210 2211 static int fixture_test_data = 1; 2212 2213 static void fixture_test_teardown(void *data) 2214 { 2215 *((int *) data) = 1; 2216 } 2217 2218 static void fixture_test_guest(void) 2219 { 2220 fixture_test_data++; 2221 } 2222 2223 2224 static void fixture_test_setup(void) 2225 { 2226 TEST_ASSERT_EQ_MSG(1, fixture_test_data, 2227 "fixture_test_teardown didn't run?!"); 2228 fixture_test_data = 2; 2229 test_add_teardown(fixture_test_teardown, &fixture_test_data); 2230 test_set_guest(fixture_test_guest); 2231 } 2232 2233 static void fixture_test_case1(void) 2234 { 2235 fixture_test_setup(); 2236 TEST_ASSERT_EQ(2, fixture_test_data); 2237 enter_guest(); 2238 TEST_ASSERT_EQ(3, fixture_test_data); 2239 report_pass(__func__); 2240 } 2241 2242 static void fixture_test_case2(void) 2243 { 2244 fixture_test_setup(); 2245 TEST_ASSERT_EQ(2, fixture_test_data); 2246 enter_guest(); 2247 TEST_ASSERT_EQ(3, fixture_test_data); 2248 report_pass(__func__); 2249 } 2250 2251 enum ept_access_op { 2252 OP_READ, 2253 OP_WRITE, 2254 OP_EXEC, 2255 OP_FLUSH_TLB, 2256 OP_EXIT, 2257 }; 2258 2259 static struct ept_access_test_data { 2260 unsigned long gpa; 2261 unsigned long *gva; 2262 unsigned long hpa; 2263 unsigned long *hva; 2264 enum ept_access_op op; 2265 } ept_access_test_data; 2266 2267 extern unsigned char ret42_start; 2268 extern unsigned char ret42_end; 2269 2270 /* Returns 42. */ 2271 asm( 2272 ".align 64\n" 2273 "ret42_start:\n" 2274 "mov $42, %eax\n" 2275 "ret\n" 2276 "ret42_end:\n" 2277 ); 2278 2279 static void 2280 diagnose_ept_violation_qual(u64 expected, u64 actual) 2281 { 2282 2283 #define DIAGNOSE(flag) \ 2284 do { \ 2285 if ((expected & flag) != (actual & flag)) \ 2286 printf(#flag " %sexpected\n", \ 2287 (expected & flag) ? "" : "un"); \ 2288 } while (0) 2289 2290 DIAGNOSE(EPT_VLT_RD); 2291 DIAGNOSE(EPT_VLT_WR); 2292 DIAGNOSE(EPT_VLT_FETCH); 2293 DIAGNOSE(EPT_VLT_PERM_RD); 2294 DIAGNOSE(EPT_VLT_PERM_WR); 2295 DIAGNOSE(EPT_VLT_PERM_EX); 2296 DIAGNOSE(EPT_VLT_LADDR_VLD); 2297 DIAGNOSE(EPT_VLT_PADDR); 2298 2299 #undef DIAGNOSE 2300 } 2301 2302 static void do_ept_access_op(enum ept_access_op op) 2303 { 2304 ept_access_test_data.op = op; 2305 enter_guest(); 2306 } 2307 2308 /* 2309 * Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only 2310 * needed by tests that modify guest PTEs. 2311 */ 2312 static void ept_access_test_guest_flush_tlb(void) 2313 { 2314 do_ept_access_op(OP_FLUSH_TLB); 2315 skip_exit_vmcall(); 2316 } 2317 2318 /* 2319 * Modifies the EPT entry at @level in the mapping of @gpa. First clears the 2320 * bits in @clear then sets the bits in @set. @mkhuge transforms the entry into 2321 * a huge page. 2322 */ 2323 static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level, 2324 unsigned long clear, unsigned long set) 2325 { 2326 struct ept_access_test_data *data = &ept_access_test_data; 2327 unsigned long orig_pte; 2328 unsigned long pte; 2329 2330 /* Screw with the mapping at the requested level. */ 2331 TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte)); 2332 pte = orig_pte; 2333 if (mkhuge) 2334 pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE; 2335 else 2336 pte = orig_pte; 2337 pte = (pte & ~clear) | set; 2338 set_ept_pte(pml4, gpa, level, pte); 2339 invept(INVEPT_SINGLE, eptp); 2340 2341 return orig_pte; 2342 } 2343 2344 static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte) 2345 { 2346 set_ept_pte(pml4, gpa, level, orig_pte); 2347 invept(INVEPT_SINGLE, eptp); 2348 } 2349 2350 static void do_ept_violation(bool leaf, enum ept_access_op op, 2351 u64 expected_qual, u64 expected_paddr) 2352 { 2353 u64 qual; 2354 2355 /* Try the access and observe the violation. */ 2356 do_ept_access_op(op); 2357 2358 assert_exit_reason(VMX_EPT_VIOLATION); 2359 2360 qual = vmcs_read(EXI_QUALIFICATION); 2361 2362 /* Mask undefined bits (which may later be defined in certain cases). */ 2363 qual &= ~(EPT_VLT_GUEST_USER | EPT_VLT_GUEST_RW | EPT_VLT_GUEST_EX | 2364 EPT_VLT_PERM_USER_EX); 2365 2366 diagnose_ept_violation_qual(expected_qual, qual); 2367 TEST_EXPECT_EQ(expected_qual, qual); 2368 2369 #if 0 2370 /* Disable for now otherwise every test will fail */ 2371 TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS), 2372 (unsigned long) ( 2373 op == OP_EXEC ? data->gva + 1 : data->gva)); 2374 #endif 2375 /* 2376 * TODO: tests that probe expected_paddr in pages other than the one at 2377 * the beginning of the 1g region. 2378 */ 2379 TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr); 2380 } 2381 2382 static void 2383 ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear, 2384 unsigned long set, enum ept_access_op op, 2385 u64 expected_qual) 2386 { 2387 struct ept_access_test_data *data = &ept_access_test_data; 2388 unsigned long orig_pte; 2389 2390 orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); 2391 2392 do_ept_violation(level == 1 || mkhuge, op, expected_qual, 2393 op == OP_EXEC ? data->gpa + sizeof(unsigned long) : 2394 data->gpa); 2395 2396 /* Fix the violation and resume the op loop. */ 2397 ept_untwiddle(data->gpa, level, orig_pte); 2398 enter_guest(); 2399 skip_exit_vmcall(); 2400 } 2401 2402 static void 2403 ept_violation_at_level(int level, unsigned long clear, unsigned long set, 2404 enum ept_access_op op, u64 expected_qual) 2405 { 2406 ept_violation_at_level_mkhuge(false, level, clear, set, op, 2407 expected_qual); 2408 if (ept_huge_pages_supported(level)) 2409 ept_violation_at_level_mkhuge(true, level, clear, set, op, 2410 expected_qual); 2411 } 2412 2413 static void ept_violation(unsigned long clear, unsigned long set, 2414 enum ept_access_op op, u64 expected_qual) 2415 { 2416 ept_violation_at_level(1, clear, set, op, expected_qual); 2417 ept_violation_at_level(2, clear, set, op, expected_qual); 2418 ept_violation_at_level(3, clear, set, op, expected_qual); 2419 ept_violation_at_level(4, clear, set, op, expected_qual); 2420 } 2421 2422 static void ept_access_violation(unsigned long access, enum ept_access_op op, 2423 u64 expected_qual) 2424 { 2425 ept_violation(EPT_PRESENT, access, op, 2426 expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 2427 } 2428 2429 /* 2430 * For translations that don't involve a GVA, that is physical address (paddr) 2431 * accesses, EPT violations don't set the flag EPT_VLT_PADDR. For a typical 2432 * guest memory access, the hardware does GVA -> GPA -> HPA. However, certain 2433 * translations don't involve GVAs, such as when the hardware does the guest 2434 * page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU 2435 * might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides 2436 * on isn't present in the EPT, then the EPT violation will be for GPA_2 and 2437 * the EPT_VLT_PADDR bit will be clear in the exit qualification. 2438 * 2439 * Note that paddr violations can also be triggered by loading PAE page tables 2440 * with wonky addresses. We don't test that yet. 2441 * 2442 * This function modifies the EPT entry that maps the GPA that the guest page 2443 * table entry mapping ept_access_test_data.gva resides on. 2444 * 2445 * @ept_access EPT permissions to set. Other permissions are cleared. 2446 * 2447 * @pte_ad Set the A/D bits on the guest PTE accordingly. 2448 * 2449 * @op Guest operation to perform with 2450 * ept_access_test_data.gva. 2451 * 2452 * @expect_violation 2453 * Is a violation expected during the paddr access? 2454 * 2455 * @expected_qual Expected qualification for the EPT violation. 2456 * EPT_VLT_PADDR should be clear. 2457 */ 2458 static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad, 2459 enum ept_access_op op, bool expect_violation, 2460 u64 expected_qual) 2461 { 2462 struct ept_access_test_data *data = &ept_access_test_data; 2463 unsigned long *ptep; 2464 unsigned long gpa; 2465 unsigned long orig_epte; 2466 unsigned long epte; 2467 int i; 2468 2469 /* Modify the guest PTE mapping data->gva according to @pte_ad. */ 2470 ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1); 2471 TEST_ASSERT(ptep); 2472 TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa); 2473 *ptep = (*ptep & ~PT_AD_MASK) | pte_ad; 2474 ept_access_test_guest_flush_tlb(); 2475 2476 /* 2477 * Now modify the access bits on the EPT entry for the GPA that the 2478 * guest PTE resides on. Note that by modifying a single EPT entry, 2479 * we're potentially affecting 512 guest PTEs. However, we've carefully 2480 * constructed our test such that those other 511 PTEs aren't used by 2481 * the guest: data->gva is at the beginning of a 1G huge page, thus the 2482 * PTE we're modifying is at the beginning of a 4K page and the 2483 * following 511 entries are also under our control (and not touched by 2484 * the guest). 2485 */ 2486 gpa = virt_to_phys(ptep); 2487 TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0); 2488 /* 2489 * Make sure the guest page table page is mapped with a 4K EPT entry, 2490 * otherwise our level=1 twiddling below will fail. We use the 2491 * identity map (gpa = gpa) since page tables are shared with the host. 2492 */ 2493 install_ept(pml4, gpa, gpa, EPT_PRESENT); 2494 orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1, 2495 /*clear=*/EPT_PRESENT, /*set=*/ept_access); 2496 2497 if (expect_violation) { 2498 do_ept_violation(/*leaf=*/true, op, 2499 expected_qual | EPT_VLT_LADDR_VLD, gpa); 2500 ept_untwiddle(gpa, /*level=*/1, orig_epte); 2501 do_ept_access_op(op); 2502 } else { 2503 do_ept_access_op(op); 2504 if (ept_ad_enabled()) { 2505 for (i = EPT_PAGE_LEVEL; i > 0; i--) { 2506 TEST_ASSERT(get_ept_pte(pml4, gpa, i, &epte)); 2507 TEST_ASSERT(epte & EPT_ACCESS_FLAG); 2508 if (i == 1) 2509 TEST_ASSERT(epte & EPT_DIRTY_FLAG); 2510 else 2511 TEST_ASSERT_EQ(epte & EPT_DIRTY_FLAG, 0); 2512 } 2513 } 2514 2515 ept_untwiddle(gpa, /*level=*/1, orig_epte); 2516 } 2517 2518 TEST_ASSERT(*ptep & PT_ACCESSED_MASK); 2519 if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE) 2520 TEST_ASSERT(*ptep & PT_DIRTY_MASK); 2521 2522 skip_exit_vmcall(); 2523 } 2524 2525 static void ept_access_allowed_paddr(unsigned long ept_access, 2526 unsigned long pte_ad, 2527 enum ept_access_op op) 2528 { 2529 ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false, 2530 /*expected_qual=*/-1); 2531 } 2532 2533 static void ept_access_violation_paddr(unsigned long ept_access, 2534 unsigned long pte_ad, 2535 enum ept_access_op op, 2536 u64 expected_qual) 2537 { 2538 ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true, 2539 expected_qual); 2540 } 2541 2542 2543 static void ept_allowed_at_level_mkhuge(bool mkhuge, int level, 2544 unsigned long clear, 2545 unsigned long set, 2546 enum ept_access_op op) 2547 { 2548 struct ept_access_test_data *data = &ept_access_test_data; 2549 unsigned long orig_pte; 2550 2551 orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); 2552 2553 /* No violation. Should proceed to vmcall. */ 2554 do_ept_access_op(op); 2555 skip_exit_vmcall(); 2556 2557 ept_untwiddle(data->gpa, level, orig_pte); 2558 } 2559 2560 static void ept_allowed_at_level(int level, unsigned long clear, 2561 unsigned long set, enum ept_access_op op) 2562 { 2563 ept_allowed_at_level_mkhuge(false, level, clear, set, op); 2564 if (ept_huge_pages_supported(level)) 2565 ept_allowed_at_level_mkhuge(true, level, clear, set, op); 2566 } 2567 2568 static void ept_allowed(unsigned long clear, unsigned long set, 2569 enum ept_access_op op) 2570 { 2571 ept_allowed_at_level(1, clear, set, op); 2572 ept_allowed_at_level(2, clear, set, op); 2573 ept_allowed_at_level(3, clear, set, op); 2574 ept_allowed_at_level(4, clear, set, op); 2575 } 2576 2577 static void ept_ignored_bit(int bit) 2578 { 2579 /* Set the bit. */ 2580 ept_allowed(0, 1ul << bit, OP_READ); 2581 ept_allowed(0, 1ul << bit, OP_WRITE); 2582 ept_allowed(0, 1ul << bit, OP_EXEC); 2583 2584 /* Clear the bit. */ 2585 ept_allowed(1ul << bit, 0, OP_READ); 2586 ept_allowed(1ul << bit, 0, OP_WRITE); 2587 ept_allowed(1ul << bit, 0, OP_EXEC); 2588 } 2589 2590 static void ept_access_allowed(unsigned long access, enum ept_access_op op) 2591 { 2592 ept_allowed(EPT_PRESENT, access, op); 2593 } 2594 2595 2596 static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level, 2597 unsigned long clear, 2598 unsigned long set, 2599 enum ept_access_op op) 2600 { 2601 struct ept_access_test_data *data = &ept_access_test_data; 2602 unsigned long orig_pte; 2603 2604 orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); 2605 2606 do_ept_access_op(op); 2607 assert_exit_reason(VMX_EPT_MISCONFIG); 2608 2609 /* Intel 27.2.1, "For all other VM exits, this field is cleared." */ 2610 #if 0 2611 /* broken: */ 2612 TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0); 2613 #endif 2614 #if 0 2615 /* 2616 * broken: 2617 * According to description of exit qual for EPT violation, 2618 * EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid. 2619 * However, I can't find anything that says GUEST_LINEAR_ADDRESS ought 2620 * to be set for msiconfig. 2621 */ 2622 TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS), 2623 (unsigned long) ( 2624 op == OP_EXEC ? data->gva + 1 : data->gva)); 2625 #endif 2626 2627 /* Fix the violation and resume the op loop. */ 2628 ept_untwiddle(data->gpa, level, orig_pte); 2629 enter_guest(); 2630 skip_exit_vmcall(); 2631 } 2632 2633 static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level, 2634 unsigned long clear, 2635 unsigned long set) 2636 { 2637 /* The op shouldn't matter (read, write, exec), so try them all! */ 2638 ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ); 2639 ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE); 2640 ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC); 2641 } 2642 2643 static void ept_misconfig_at_level(int level, unsigned long clear, 2644 unsigned long set) 2645 { 2646 ept_misconfig_at_level_mkhuge(false, level, clear, set); 2647 if (ept_huge_pages_supported(level)) 2648 ept_misconfig_at_level_mkhuge(true, level, clear, set); 2649 } 2650 2651 static void ept_misconfig(unsigned long clear, unsigned long set) 2652 { 2653 ept_misconfig_at_level(1, clear, set); 2654 ept_misconfig_at_level(2, clear, set); 2655 ept_misconfig_at_level(3, clear, set); 2656 ept_misconfig_at_level(4, clear, set); 2657 } 2658 2659 static void ept_access_misconfig(unsigned long access) 2660 { 2661 ept_misconfig(EPT_PRESENT, access); 2662 } 2663 2664 static void ept_reserved_bit_at_level_nohuge(int level, int bit) 2665 { 2666 /* Setting the bit causes a misconfig. */ 2667 ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit); 2668 2669 /* Making the entry non-present turns reserved bits into ignored. */ 2670 ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, 2671 EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 2672 } 2673 2674 static void ept_reserved_bit_at_level_huge(int level, int bit) 2675 { 2676 /* Setting the bit causes a misconfig. */ 2677 ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit); 2678 2679 /* Making the entry non-present turns reserved bits into ignored. */ 2680 ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, 2681 EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 2682 } 2683 2684 static void ept_reserved_bit_at_level(int level, int bit) 2685 { 2686 /* Setting the bit causes a misconfig. */ 2687 ept_misconfig_at_level(level, 0, 1ul << bit); 2688 2689 /* Making the entry non-present turns reserved bits into ignored. */ 2690 ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, 2691 EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 2692 } 2693 2694 static void ept_reserved_bit(int bit) 2695 { 2696 ept_reserved_bit_at_level(1, bit); 2697 ept_reserved_bit_at_level(2, bit); 2698 ept_reserved_bit_at_level(3, bit); 2699 ept_reserved_bit_at_level(4, bit); 2700 } 2701 2702 #define PAGE_2M_ORDER 9 2703 #define PAGE_1G_ORDER 18 2704 2705 static void *get_1g_page(void) 2706 { 2707 static void *alloc; 2708 2709 if (!alloc) 2710 alloc = alloc_pages(PAGE_1G_ORDER); 2711 return alloc; 2712 } 2713 2714 static void ept_access_test_teardown(void *unused) 2715 { 2716 /* Exit the guest cleanly. */ 2717 do_ept_access_op(OP_EXIT); 2718 } 2719 2720 static void ept_access_test_guest(void) 2721 { 2722 struct ept_access_test_data *data = &ept_access_test_data; 2723 int (*code)(void) = (int (*)(void)) &data->gva[1]; 2724 2725 while (true) { 2726 switch (data->op) { 2727 case OP_READ: 2728 TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1); 2729 break; 2730 case OP_WRITE: 2731 *data->gva = MAGIC_VAL_2; 2732 TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2); 2733 *data->gva = MAGIC_VAL_1; 2734 break; 2735 case OP_EXEC: 2736 TEST_ASSERT_EQ(42, code()); 2737 break; 2738 case OP_FLUSH_TLB: 2739 write_cr3(read_cr3()); 2740 break; 2741 case OP_EXIT: 2742 return; 2743 default: 2744 TEST_ASSERT_MSG(false, "Unknown op %d", data->op); 2745 } 2746 vmcall(); 2747 } 2748 } 2749 2750 static void ept_access_test_setup(void) 2751 { 2752 struct ept_access_test_data *data = &ept_access_test_data; 2753 unsigned long npages = 1ul << PAGE_1G_ORDER; 2754 unsigned long size = npages * PAGE_SIZE; 2755 unsigned long *page_table = current_page_table(); 2756 unsigned long pte; 2757 2758 if (setup_ept(false)) 2759 test_skip("EPT not supported"); 2760 2761 /* We use data->gpa = 1 << 39 so that test data has a separate pml4 entry */ 2762 if (cpuid_maxphyaddr() < 40) 2763 test_skip("Test needs MAXPHYADDR >= 40"); 2764 2765 test_set_guest(ept_access_test_guest); 2766 test_add_teardown(ept_access_test_teardown, NULL); 2767 2768 data->hva = get_1g_page(); 2769 TEST_ASSERT(data->hva); 2770 data->hpa = virt_to_phys(data->hva); 2771 2772 data->gpa = 1ul << 39; 2773 data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2), 2774 size); 2775 TEST_ASSERT(!any_present_pages(page_table, data->gva, size)); 2776 install_pages(page_table, data->gpa, size, data->gva); 2777 2778 /* 2779 * Make sure nothing's mapped here so the tests that screw with the 2780 * pml4 entry don't inadvertently break something. 2781 */ 2782 TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0); 2783 TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0); 2784 install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT); 2785 2786 data->hva[0] = MAGIC_VAL_1; 2787 memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start); 2788 } 2789 2790 static void ept_access_test_not_present(void) 2791 { 2792 ept_access_test_setup(); 2793 /* --- */ 2794 ept_access_violation(0, OP_READ, EPT_VLT_RD); 2795 ept_access_violation(0, OP_WRITE, EPT_VLT_WR); 2796 ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH); 2797 } 2798 2799 static void ept_access_test_read_only(void) 2800 { 2801 ept_access_test_setup(); 2802 2803 /* r-- */ 2804 ept_access_allowed(EPT_RA, OP_READ); 2805 ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD); 2806 ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD); 2807 } 2808 2809 static void ept_access_test_write_only(void) 2810 { 2811 ept_access_test_setup(); 2812 /* -w- */ 2813 ept_access_misconfig(EPT_WA); 2814 } 2815 2816 static void ept_access_test_read_write(void) 2817 { 2818 ept_access_test_setup(); 2819 /* rw- */ 2820 ept_access_allowed(EPT_RA | EPT_WA, OP_READ); 2821 ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE); 2822 ept_access_violation(EPT_RA | EPT_WA, OP_EXEC, 2823 EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR); 2824 } 2825 2826 2827 static void ept_access_test_execute_only(void) 2828 { 2829 ept_access_test_setup(); 2830 /* --x */ 2831 if (ept_execute_only_supported()) { 2832 ept_access_violation(EPT_EA, OP_READ, 2833 EPT_VLT_RD | EPT_VLT_PERM_EX); 2834 ept_access_violation(EPT_EA, OP_WRITE, 2835 EPT_VLT_WR | EPT_VLT_PERM_EX); 2836 ept_access_allowed(EPT_EA, OP_EXEC); 2837 } else { 2838 ept_access_misconfig(EPT_EA); 2839 } 2840 } 2841 2842 static void ept_access_test_read_execute(void) 2843 { 2844 ept_access_test_setup(); 2845 /* r-x */ 2846 ept_access_allowed(EPT_RA | EPT_EA, OP_READ); 2847 ept_access_violation(EPT_RA | EPT_EA, OP_WRITE, 2848 EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX); 2849 ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC); 2850 } 2851 2852 static void ept_access_test_write_execute(void) 2853 { 2854 ept_access_test_setup(); 2855 /* -wx */ 2856 ept_access_misconfig(EPT_WA | EPT_EA); 2857 } 2858 2859 static void ept_access_test_read_write_execute(void) 2860 { 2861 ept_access_test_setup(); 2862 /* rwx */ 2863 ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ); 2864 ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE); 2865 ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC); 2866 } 2867 2868 static void ept_access_test_reserved_bits(void) 2869 { 2870 int i; 2871 int maxphyaddr; 2872 2873 ept_access_test_setup(); 2874 2875 /* Reserved bits above maxphyaddr. */ 2876 maxphyaddr = cpuid_maxphyaddr(); 2877 for (i = maxphyaddr; i <= 51; i++) { 2878 report_prefix_pushf("reserved_bit=%d", i); 2879 ept_reserved_bit(i); 2880 report_prefix_pop(); 2881 } 2882 2883 /* Level-specific reserved bits. */ 2884 ept_reserved_bit_at_level_nohuge(2, 3); 2885 ept_reserved_bit_at_level_nohuge(2, 4); 2886 ept_reserved_bit_at_level_nohuge(2, 5); 2887 ept_reserved_bit_at_level_nohuge(2, 6); 2888 /* 2M alignment. */ 2889 for (i = 12; i < 20; i++) { 2890 report_prefix_pushf("reserved_bit=%d", i); 2891 ept_reserved_bit_at_level_huge(2, i); 2892 report_prefix_pop(); 2893 } 2894 ept_reserved_bit_at_level_nohuge(3, 3); 2895 ept_reserved_bit_at_level_nohuge(3, 4); 2896 ept_reserved_bit_at_level_nohuge(3, 5); 2897 ept_reserved_bit_at_level_nohuge(3, 6); 2898 /* 1G alignment. */ 2899 for (i = 12; i < 29; i++) { 2900 report_prefix_pushf("reserved_bit=%d", i); 2901 ept_reserved_bit_at_level_huge(3, i); 2902 report_prefix_pop(); 2903 } 2904 ept_reserved_bit_at_level(4, 3); 2905 ept_reserved_bit_at_level(4, 4); 2906 ept_reserved_bit_at_level(4, 5); 2907 ept_reserved_bit_at_level(4, 6); 2908 ept_reserved_bit_at_level(4, 7); 2909 } 2910 2911 static void ept_access_test_ignored_bits(void) 2912 { 2913 ept_access_test_setup(); 2914 /* 2915 * Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as 2916 * far as translation is concerned even if AD bits are enabled in the 2917 * EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution 2918 * control is 0. 2919 */ 2920 ept_ignored_bit(8); 2921 ept_ignored_bit(9); 2922 ept_ignored_bit(10); 2923 ept_ignored_bit(11); 2924 ept_ignored_bit(52); 2925 ept_ignored_bit(53); 2926 ept_ignored_bit(54); 2927 ept_ignored_bit(55); 2928 ept_ignored_bit(56); 2929 ept_ignored_bit(57); 2930 ept_ignored_bit(58); 2931 ept_ignored_bit(59); 2932 ept_ignored_bit(60); 2933 ept_ignored_bit(61); 2934 ept_ignored_bit(62); 2935 ept_ignored_bit(63); 2936 } 2937 2938 static void ept_access_test_paddr_not_present_ad_disabled(void) 2939 { 2940 ept_access_test_setup(); 2941 ept_disable_ad_bits(); 2942 2943 ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD); 2944 ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD); 2945 ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD); 2946 } 2947 2948 static void ept_access_test_paddr_not_present_ad_enabled(void) 2949 { 2950 u64 qual = EPT_VLT_RD | EPT_VLT_WR; 2951 2952 ept_access_test_setup(); 2953 ept_enable_ad_bits_or_skip_test(); 2954 2955 ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual); 2956 ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual); 2957 ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual); 2958 } 2959 2960 static void ept_access_test_paddr_read_only_ad_disabled(void) 2961 { 2962 /* 2963 * When EPT AD bits are disabled, all accesses to guest paging 2964 * structures are reported separately as a read and (after 2965 * translation of the GPA to host physical address) a read+write 2966 * if the A/D bits have to be set. 2967 */ 2968 u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD; 2969 2970 ept_access_test_setup(); 2971 ept_disable_ad_bits(); 2972 2973 /* Can't update A bit, so all accesses fail. */ 2974 ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual); 2975 ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual); 2976 ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual); 2977 /* AD bits disabled, so only writes try to update the D bit. */ 2978 ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ); 2979 ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual); 2980 ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC); 2981 /* Both A and D already set, so read-only is OK. */ 2982 ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ); 2983 ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE); 2984 ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC); 2985 } 2986 2987 static void ept_access_test_paddr_read_only_ad_enabled(void) 2988 { 2989 /* 2990 * When EPT AD bits are enabled, all accesses to guest paging 2991 * structures are considered writes as far as EPT translation 2992 * is concerned. 2993 */ 2994 u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD; 2995 2996 ept_access_test_setup(); 2997 ept_enable_ad_bits_or_skip_test(); 2998 2999 ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual); 3000 ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual); 3001 ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual); 3002 ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual); 3003 ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual); 3004 ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual); 3005 ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual); 3006 ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual); 3007 ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual); 3008 } 3009 3010 static void ept_access_test_paddr_read_write(void) 3011 { 3012 ept_access_test_setup(); 3013 /* Read-write access to paging structure. */ 3014 ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ); 3015 ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE); 3016 ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC); 3017 } 3018 3019 static void ept_access_test_paddr_read_write_execute(void) 3020 { 3021 ept_access_test_setup(); 3022 /* RWX access to paging structure. */ 3023 ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ); 3024 ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE); 3025 ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC); 3026 } 3027 3028 static void ept_access_test_paddr_read_execute_ad_disabled(void) 3029 { 3030 /* 3031 * When EPT AD bits are disabled, all accesses to guest paging 3032 * structures are reported separately as a read and (after 3033 * translation of the GPA to host physical address) a read+write 3034 * if the A/D bits have to be set. 3035 */ 3036 u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX; 3037 3038 ept_access_test_setup(); 3039 ept_disable_ad_bits(); 3040 3041 /* Can't update A bit, so all accesses fail. */ 3042 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual); 3043 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual); 3044 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual); 3045 /* AD bits disabled, so only writes try to update the D bit. */ 3046 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ); 3047 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual); 3048 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC); 3049 /* Both A and D already set, so read-only is OK. */ 3050 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ); 3051 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE); 3052 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC); 3053 } 3054 3055 static void ept_access_test_paddr_read_execute_ad_enabled(void) 3056 { 3057 /* 3058 * When EPT AD bits are enabled, all accesses to guest paging 3059 * structures are considered writes as far as EPT translation 3060 * is concerned. 3061 */ 3062 u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX; 3063 3064 ept_access_test_setup(); 3065 ept_enable_ad_bits_or_skip_test(); 3066 3067 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual); 3068 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual); 3069 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual); 3070 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual); 3071 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual); 3072 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual); 3073 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual); 3074 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual); 3075 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual); 3076 } 3077 3078 static void ept_access_test_paddr_not_present_page_fault(void) 3079 { 3080 ept_access_test_setup(); 3081 /* 3082 * TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is 3083 * page is read-only in EPT but GVA is also mapped read only in PT. 3084 * Thus guest page fault before host takes EPT violation for trying to 3085 * update A bit. 3086 */ 3087 } 3088 3089 static void ept_access_test_force_2m_page(void) 3090 { 3091 ept_access_test_setup(); 3092 3093 TEST_ASSERT_EQ(ept_2m_supported(), true); 3094 ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ); 3095 ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE, 3096 EPT_VLT_WR | EPT_VLT_PERM_RD | 3097 EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 3098 ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA); 3099 } 3100 3101 static bool invvpid_valid(u64 type, u64 vpid, u64 gla) 3102 { 3103 if (!is_invvpid_type_supported(type)) 3104 return false; 3105 3106 if (vpid >> 16) 3107 return false; 3108 3109 if (type != INVVPID_ALL && !vpid) 3110 return false; 3111 3112 if (type == INVVPID_ADDR && !is_canonical(gla)) 3113 return false; 3114 3115 return true; 3116 } 3117 3118 static void try_invvpid(u64 type, u64 vpid, u64 gla) 3119 { 3120 int rc; 3121 bool valid = invvpid_valid(type, vpid, gla); 3122 u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT 3123 : VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID; 3124 /* 3125 * Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so 3126 * that we can tell if it is updated by INVVPID. 3127 */ 3128 vmcs_read(~0); 3129 rc = __invvpid(type, vpid, gla); 3130 report(!rc == valid, "INVVPID type %ld VPID %lx GLA %lx %s", type, 3131 vpid, gla, 3132 valid ? "passes" : "fails"); 3133 report(vmcs_read(VMX_INST_ERROR) == expected, 3134 "After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)", 3135 rc ? "failed" : "successful", 3136 expected, vmcs_read(VMX_INST_ERROR)); 3137 } 3138 3139 static inline unsigned long get_first_supported_invvpid_type(void) 3140 { 3141 u64 type = ffs(ept_vpid.val >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1; 3142 3143 __TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL); 3144 return type; 3145 } 3146 3147 static void ds_invvpid(void *data) 3148 { 3149 asm volatile("invvpid %0, %1" 3150 : 3151 : "m"(*(struct invvpid_operand *)data), 3152 "r"(get_first_supported_invvpid_type())); 3153 } 3154 3155 /* 3156 * The SS override is ignored in 64-bit mode, so we use an addressing 3157 * mode with %rsp as the base register to generate an implicit SS 3158 * reference. 3159 */ 3160 static void ss_invvpid(void *data) 3161 { 3162 asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1" 3163 : "+r"(data) 3164 : "r"(get_first_supported_invvpid_type())); 3165 } 3166 3167 static void invvpid_test_gp(void) 3168 { 3169 bool fault; 3170 3171 fault = test_for_exception(GP_VECTOR, &ds_invvpid, 3172 (void *)NONCANONICAL); 3173 report(fault, "INVVPID with non-canonical DS operand raises #GP"); 3174 } 3175 3176 static void invvpid_test_ss(void) 3177 { 3178 bool fault; 3179 3180 fault = test_for_exception(SS_VECTOR, &ss_invvpid, 3181 (void *)NONCANONICAL); 3182 report(fault, "INVVPID with non-canonical SS operand raises #SS"); 3183 } 3184 3185 static void invvpid_test_pf(void) 3186 { 3187 void *vpage = alloc_vpage(); 3188 bool fault; 3189 3190 fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage); 3191 report(fault, "INVVPID with unmapped operand raises #PF"); 3192 } 3193 3194 static void try_compat_invvpid(void *unused) 3195 { 3196 struct far_pointer32 fp = { 3197 .offset = (uintptr_t)&&invvpid, 3198 .selector = KERNEL_CS32, 3199 }; 3200 uintptr_t rsp; 3201 3202 asm volatile ("mov %%rsp, %0" : "=r"(rsp)); 3203 3204 TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid, 3205 "Code address too high."); 3206 TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high."); 3207 3208 asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid); 3209 return; 3210 invvpid: 3211 asm volatile (".code32;" 3212 "invvpid (%eax), %eax;" 3213 "lret;" 3214 ".code64"); 3215 __builtin_unreachable(); 3216 } 3217 3218 static void invvpid_test_compatibility_mode(void) 3219 { 3220 bool fault; 3221 3222 fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL); 3223 report(fault, "Compatibility mode INVVPID raises #UD"); 3224 } 3225 3226 static void invvpid_test_not_in_vmx_operation(void) 3227 { 3228 bool fault; 3229 3230 TEST_ASSERT(!vmx_off()); 3231 fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL); 3232 report(fault, "INVVPID outside of VMX operation raises #UD"); 3233 TEST_ASSERT(!vmx_on()); 3234 } 3235 3236 /* 3237 * This does not test real-address mode, virtual-8086 mode, protected mode, 3238 * or CPL > 0. 3239 */ 3240 static void invvpid_test(void) 3241 { 3242 int i; 3243 unsigned types = 0; 3244 unsigned type; 3245 3246 if (!is_vpid_supported()) 3247 test_skip("VPID not supported"); 3248 3249 if (!is_invvpid_supported()) 3250 test_skip("INVVPID not supported.\n"); 3251 3252 if (is_invvpid_type_supported(INVVPID_ADDR)) 3253 types |= 1u << INVVPID_ADDR; 3254 if (is_invvpid_type_supported(INVVPID_CONTEXT_GLOBAL)) 3255 types |= 1u << INVVPID_CONTEXT_GLOBAL; 3256 if (is_invvpid_type_supported(INVVPID_ALL)) 3257 types |= 1u << INVVPID_ALL; 3258 if (is_invvpid_type_supported(INVVPID_CONTEXT_LOCAL)) 3259 types |= 1u << INVVPID_CONTEXT_LOCAL; 3260 3261 if (!types) 3262 test_skip("No INVVPID types supported.\n"); 3263 3264 for (i = -127; i < 128; i++) 3265 try_invvpid(i, 0xffff, 0); 3266 3267 /* 3268 * VPID must not be more than 16 bits. 3269 */ 3270 for (i = 0; i < 64; i++) 3271 for (type = 0; type < 4; type++) 3272 if (types & (1u << type)) 3273 try_invvpid(type, 1ul << i, 0); 3274 3275 /* 3276 * VPID must not be zero, except for "all contexts." 3277 */ 3278 for (type = 0; type < 4; type++) 3279 if (types & (1u << type)) 3280 try_invvpid(type, 0, 0); 3281 3282 /* 3283 * The gla operand is only validated for single-address INVVPID. 3284 */ 3285 if (types & (1u << INVVPID_ADDR)) 3286 try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL); 3287 3288 invvpid_test_gp(); 3289 invvpid_test_ss(); 3290 invvpid_test_pf(); 3291 invvpid_test_compatibility_mode(); 3292 invvpid_test_not_in_vmx_operation(); 3293 } 3294 3295 static void test_assert_vmlaunch_inst_error(u32 expected_error) 3296 { 3297 u32 vmx_inst_err = vmcs_read(VMX_INST_ERROR); 3298 3299 report(vmx_inst_err == expected_error, 3300 "VMX inst error is %d (actual %d)", expected_error, vmx_inst_err); 3301 } 3302 3303 /* 3304 * This version is wildly unsafe and should _only_ be used to test VM-Fail 3305 * scenarios involving HOST_RIP. 3306 */ 3307 static void test_vmx_vmlaunch_must_fail(u32 expected_error) 3308 { 3309 /* Read the function name. */ 3310 TEST_ASSERT(expected_error); 3311 3312 /* 3313 * Don't bother with any prep work, if VMLAUNCH passes the VM-Fail 3314 * consistency checks and generates a VM-Exit, then the test is doomed 3315 * no matter what as it will jump to a garbage RIP. 3316 */ 3317 __asm__ __volatile__ ("vmlaunch"); 3318 test_assert_vmlaunch_inst_error(expected_error); 3319 } 3320 3321 /* 3322 * Test for early VMLAUNCH failure. Returns true if VMLAUNCH makes it 3323 * at least as far as the guest-state checks. Returns false if the 3324 * VMLAUNCH fails early and execution falls through to the next 3325 * instruction. 3326 */ 3327 static bool vmlaunch(void) 3328 { 3329 u32 exit_reason; 3330 3331 /* 3332 * Indirectly set VMX_INST_ERR to 12 ("VMREAD/VMWRITE from/to 3333 * unsupported VMCS component"). The caller can then check 3334 * to see if a failed VM-entry sets VMX_INST_ERR as expected. 3335 */ 3336 vmcs_write(~0u, 0); 3337 3338 vmcs_write(HOST_RIP, (uintptr_t)&&success); 3339 __asm__ __volatile__ goto ("vmwrite %%rsp, %0; vmlaunch" 3340 : 3341 : "r" ((u64)HOST_RSP) 3342 : "cc", "memory" 3343 : success); 3344 return false; 3345 success: 3346 exit_reason = vmcs_read(EXI_REASON); 3347 TEST_ASSERT(exit_reason == (VMX_FAIL_STATE | VMX_ENTRY_FAILURE) || 3348 exit_reason == (VMX_FAIL_MSR | VMX_ENTRY_FAILURE)); 3349 return true; 3350 } 3351 3352 /* 3353 * Try to launch the current VMCS. 3354 */ 3355 static void test_vmx_vmlaunch(u32 xerror) 3356 { 3357 bool success = vmlaunch(); 3358 3359 report(success == !xerror, "vmlaunch %s", 3360 !xerror ? "succeeds" : "fails"); 3361 if (!success && xerror) 3362 test_assert_vmlaunch_inst_error(xerror); 3363 } 3364 3365 /* 3366 * Try to launch the current VMCS, and expect one of two possible 3367 * errors (or success) codes. 3368 */ 3369 static void test_vmx_vmlaunch2(u32 xerror1, u32 xerror2) 3370 { 3371 bool success = vmlaunch(); 3372 u32 vmx_inst_err; 3373 3374 if (!xerror1 == !xerror2) 3375 report(success == !xerror1, "vmlaunch %s", 3376 !xerror1 ? "succeeds" : "fails"); 3377 3378 if (!success && (xerror1 || xerror2)) { 3379 vmx_inst_err = vmcs_read(VMX_INST_ERROR); 3380 report(vmx_inst_err == xerror1 || vmx_inst_err == xerror2, 3381 "VMX inst error is %d or %d (actual %d)", xerror1, 3382 xerror2, vmx_inst_err); 3383 } 3384 } 3385 3386 static void test_vmx_invalid_controls(void) 3387 { 3388 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_CONTROL_FIELD); 3389 } 3390 3391 static void test_vmx_valid_controls(void) 3392 { 3393 test_vmx_vmlaunch(0); 3394 } 3395 3396 /* 3397 * Test a particular value of a VM-execution control bit, if the value 3398 * is required or if the value is zero. 3399 */ 3400 static void test_rsvd_ctl_bit_value(const char *name, union vmx_ctrl_msr msr, 3401 enum Encoding encoding, unsigned bit, 3402 unsigned val) 3403 { 3404 u32 mask = 1u << bit; 3405 bool expected; 3406 u32 controls; 3407 3408 if (msr.set & mask) 3409 TEST_ASSERT(msr.clr & mask); 3410 3411 /* 3412 * We can't arbitrarily turn on a control bit, because it may 3413 * introduce dependencies on other VMCS fields. So, we only 3414 * test turning on bits that have a required setting. 3415 */ 3416 if (val && (msr.clr & mask) && !(msr.set & mask)) 3417 return; 3418 3419 report_prefix_pushf("%s %s bit %d", 3420 val ? "Set" : "Clear", name, bit); 3421 3422 controls = vmcs_read(encoding); 3423 if (val) { 3424 vmcs_write(encoding, msr.set | mask); 3425 expected = (msr.clr & mask); 3426 } else { 3427 vmcs_write(encoding, msr.set & ~mask); 3428 expected = !(msr.set & mask); 3429 } 3430 if (expected) 3431 test_vmx_valid_controls(); 3432 else 3433 test_vmx_invalid_controls(); 3434 vmcs_write(encoding, controls); 3435 report_prefix_pop(); 3436 } 3437 3438 /* 3439 * Test reserved values of a VM-execution control bit, based on the 3440 * allowed bit settings from the corresponding VMX capability MSR. 3441 */ 3442 static void test_rsvd_ctl_bit(const char *name, union vmx_ctrl_msr msr, 3443 enum Encoding encoding, unsigned bit) 3444 { 3445 test_rsvd_ctl_bit_value(name, msr, encoding, bit, 0); 3446 test_rsvd_ctl_bit_value(name, msr, encoding, bit, 1); 3447 } 3448 3449 /* 3450 * Reserved bits in the pin-based VM-execution controls must be set 3451 * properly. Software may consult the VMX capability MSRs to determine 3452 * the proper settings. 3453 * [Intel SDM] 3454 */ 3455 static void test_pin_based_ctls(void) 3456 { 3457 unsigned bit; 3458 3459 printf("%s: %lx\n", basic_msr.ctrl ? "MSR_IA32_VMX_TRUE_PIN" : 3460 "MSR_IA32_VMX_PINBASED_CTLS", ctrl_pin_rev.val); 3461 for (bit = 0; bit < 32; bit++) 3462 test_rsvd_ctl_bit("pin-based controls", 3463 ctrl_pin_rev, PIN_CONTROLS, bit); 3464 } 3465 3466 /* 3467 * Reserved bits in the primary processor-based VM-execution controls 3468 * must be set properly. Software may consult the VMX capability MSRs 3469 * to determine the proper settings. 3470 * [Intel SDM] 3471 */ 3472 static void test_primary_processor_based_ctls(void) 3473 { 3474 unsigned bit; 3475 3476 printf("\n%s: %lx\n", basic_msr.ctrl ? "MSR_IA32_VMX_TRUE_PROC" : 3477 "MSR_IA32_VMX_PROCBASED_CTLS", ctrl_cpu_rev[0].val); 3478 for (bit = 0; bit < 32; bit++) 3479 test_rsvd_ctl_bit("primary processor-based controls", 3480 ctrl_cpu_rev[0], CPU_EXEC_CTRL0, bit); 3481 } 3482 3483 /* 3484 * If the "activate secondary controls" primary processor-based 3485 * VM-execution control is 1, reserved bits in the secondary 3486 * processor-based VM-execution controls must be cleared. Software may 3487 * consult the VMX capability MSRs to determine which bits are 3488 * reserved. 3489 * If the "activate secondary controls" primary processor-based 3490 * VM-execution control is 0 (or if the processor does not support the 3491 * 1-setting of that control), no checks are performed on the 3492 * secondary processor-based VM-execution controls. 3493 * [Intel SDM] 3494 */ 3495 static void test_secondary_processor_based_ctls(void) 3496 { 3497 u32 primary; 3498 u32 secondary; 3499 unsigned bit; 3500 3501 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) 3502 return; 3503 3504 primary = vmcs_read(CPU_EXEC_CTRL0); 3505 secondary = vmcs_read(CPU_EXEC_CTRL1); 3506 3507 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); 3508 printf("\nMSR_IA32_VMX_PROCBASED_CTLS2: %lx\n", ctrl_cpu_rev[1].val); 3509 for (bit = 0; bit < 32; bit++) 3510 test_rsvd_ctl_bit("secondary processor-based controls", 3511 ctrl_cpu_rev[1], CPU_EXEC_CTRL1, bit); 3512 3513 /* 3514 * When the "activate secondary controls" VM-execution control 3515 * is clear, there are no checks on the secondary controls. 3516 */ 3517 vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY); 3518 vmcs_write(CPU_EXEC_CTRL1, ~0); 3519 report(vmlaunch(), 3520 "Secondary processor-based controls ignored"); 3521 vmcs_write(CPU_EXEC_CTRL1, secondary); 3522 vmcs_write(CPU_EXEC_CTRL0, primary); 3523 } 3524 3525 static void try_cr3_target_count(unsigned i, unsigned max) 3526 { 3527 report_prefix_pushf("CR3 target count 0x%x", i); 3528 vmcs_write(CR3_TARGET_COUNT, i); 3529 if (i <= max) 3530 test_vmx_valid_controls(); 3531 else 3532 test_vmx_invalid_controls(); 3533 report_prefix_pop(); 3534 } 3535 3536 /* 3537 * The CR3-target count must not be greater than 4. Future processors 3538 * may support a different number of CR3-target values. Software 3539 * should read the VMX capability MSR IA32_VMX_MISC to determine the 3540 * number of values supported. 3541 * [Intel SDM] 3542 */ 3543 static void test_cr3_targets(void) 3544 { 3545 unsigned supported_targets = (rdmsr(MSR_IA32_VMX_MISC) >> 16) & 0x1ff; 3546 u32 cr3_targets = vmcs_read(CR3_TARGET_COUNT); 3547 unsigned i; 3548 3549 printf("\nSupported CR3 targets: %d\n", supported_targets); 3550 TEST_ASSERT(supported_targets <= 256); 3551 3552 try_cr3_target_count(-1u, supported_targets); 3553 try_cr3_target_count(0x80000000, supported_targets); 3554 try_cr3_target_count(0x7fffffff, supported_targets); 3555 for (i = 0; i <= supported_targets + 1; i++) 3556 try_cr3_target_count(i, supported_targets); 3557 vmcs_write(CR3_TARGET_COUNT, cr3_targets); 3558 3559 /* VMWRITE to nonexistent target fields should fail. */ 3560 for (i = supported_targets; i < 256; i++) 3561 TEST_ASSERT(vmcs_write(CR3_TARGET_0 + i*2, 0)); 3562 } 3563 3564 /* 3565 * Test a particular address setting in the VMCS 3566 */ 3567 static void test_vmcs_addr(const char *name, 3568 enum Encoding encoding, 3569 u64 align, 3570 bool ignored, 3571 bool skip_beyond_mapped_ram, 3572 u64 addr) 3573 { 3574 report_prefix_pushf("%s = %lx", name, addr); 3575 vmcs_write(encoding, addr); 3576 if (skip_beyond_mapped_ram && 3577 addr > fwcfg_get_u64(FW_CFG_RAM_SIZE) - align && 3578 addr < (1ul << cpuid_maxphyaddr())) 3579 printf("Skipping physical address beyond mapped RAM\n"); 3580 else if (ignored || (IS_ALIGNED(addr, align) && 3581 addr < (1ul << cpuid_maxphyaddr()))) 3582 test_vmx_valid_controls(); 3583 else 3584 test_vmx_invalid_controls(); 3585 report_prefix_pop(); 3586 } 3587 3588 /* 3589 * Test interesting values for a VMCS address 3590 */ 3591 static void test_vmcs_addr_values(const char *name, 3592 enum Encoding encoding, 3593 u64 align, 3594 bool ignored, 3595 bool skip_beyond_mapped_ram, 3596 u32 bit_start, u32 bit_end) 3597 { 3598 unsigned i; 3599 u64 orig_val = vmcs_read(encoding); 3600 3601 for (i = bit_start; i <= bit_end; i++) 3602 test_vmcs_addr(name, encoding, align, ignored, 3603 skip_beyond_mapped_ram, 1ul << i); 3604 3605 test_vmcs_addr(name, encoding, align, ignored, 3606 skip_beyond_mapped_ram, PAGE_SIZE - 1); 3607 test_vmcs_addr(name, encoding, align, ignored, 3608 skip_beyond_mapped_ram, PAGE_SIZE); 3609 test_vmcs_addr(name, encoding, align, ignored, 3610 skip_beyond_mapped_ram, 3611 (1ul << cpuid_maxphyaddr()) - PAGE_SIZE); 3612 test_vmcs_addr(name, encoding, align, ignored, 3613 skip_beyond_mapped_ram, -1ul); 3614 3615 vmcs_write(encoding, orig_val); 3616 } 3617 3618 /* 3619 * Test a physical address reference in the VMCS, when the corresponding 3620 * feature is enabled and when the corresponding feature is disabled. 3621 */ 3622 static void test_vmcs_addr_reference(u32 control_bit, enum Encoding field, 3623 const char *field_name, 3624 const char *control_name, u64 align, 3625 bool skip_beyond_mapped_ram, 3626 bool control_primary) 3627 { 3628 u32 primary = vmcs_read(CPU_EXEC_CTRL0); 3629 u32 secondary = vmcs_read(CPU_EXEC_CTRL1); 3630 u64 page_addr; 3631 3632 if (control_primary) { 3633 if (!(ctrl_cpu_rev[0].clr & control_bit)) 3634 return; 3635 } else { 3636 if (!(ctrl_cpu_rev[1].clr & control_bit)) 3637 return; 3638 } 3639 3640 page_addr = vmcs_read(field); 3641 3642 report_prefix_pushf("%s enabled", control_name); 3643 if (control_primary) { 3644 vmcs_write(CPU_EXEC_CTRL0, primary | control_bit); 3645 } else { 3646 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); 3647 vmcs_write(CPU_EXEC_CTRL1, secondary | control_bit); 3648 } 3649 3650 test_vmcs_addr_values(field_name, field, align, false, 3651 skip_beyond_mapped_ram, 0, 63); 3652 report_prefix_pop(); 3653 3654 report_prefix_pushf("%s disabled", control_name); 3655 if (control_primary) { 3656 vmcs_write(CPU_EXEC_CTRL0, primary & ~control_bit); 3657 } else { 3658 vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY); 3659 vmcs_write(CPU_EXEC_CTRL1, secondary & ~control_bit); 3660 } 3661 3662 test_vmcs_addr_values(field_name, field, align, true, false, 0, 63); 3663 report_prefix_pop(); 3664 3665 vmcs_write(field, page_addr); 3666 vmcs_write(CPU_EXEC_CTRL0, primary); 3667 vmcs_write(CPU_EXEC_CTRL1, secondary); 3668 } 3669 3670 /* 3671 * If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of 3672 * each I/O-bitmap address must be 0. Neither address should set any 3673 * bits beyond the processor's physical-address width. 3674 * [Intel SDM] 3675 */ 3676 static void test_io_bitmaps(void) 3677 { 3678 test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_A, 3679 "I/O bitmap A", "Use I/O bitmaps", 3680 PAGE_SIZE, false, true); 3681 test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_B, 3682 "I/O bitmap B", "Use I/O bitmaps", 3683 PAGE_SIZE, false, true); 3684 } 3685 3686 /* 3687 * If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of 3688 * the MSR-bitmap address must be 0. The address should not set any 3689 * bits beyond the processor's physical-address width. 3690 * [Intel SDM] 3691 */ 3692 static void test_msr_bitmap(void) 3693 { 3694 test_vmcs_addr_reference(CPU_MSR_BITMAP, MSR_BITMAP, 3695 "MSR bitmap", "Use MSR bitmaps", 3696 PAGE_SIZE, false, true); 3697 } 3698 3699 /* 3700 * If the "use TPR shadow" VM-execution control is 1, the virtual-APIC 3701 * address must satisfy the following checks: 3702 * - Bits 11:0 of the address must be 0. 3703 * - The address should not set any bits beyond the processor's 3704 * physical-address width. 3705 * [Intel SDM] 3706 */ 3707 static void test_apic_virt_addr(void) 3708 { 3709 /* 3710 * Ensure the processor will never use the virtual-APIC page, since 3711 * we will point it to invalid RAM. Otherwise KVM is puzzled about 3712 * what we're trying to achieve and fails vmentry. 3713 */ 3714 u32 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0); 3715 vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0 | CPU_CR8_LOAD | CPU_CR8_STORE); 3716 test_vmcs_addr_reference(CPU_TPR_SHADOW, APIC_VIRT_ADDR, 3717 "virtual-APIC address", "Use TPR shadow", 3718 PAGE_SIZE, false, true); 3719 vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0); 3720 } 3721 3722 /* 3723 * If the "virtualize APIC-accesses" VM-execution control is 1, the 3724 * APIC-access address must satisfy the following checks: 3725 * - Bits 11:0 of the address must be 0. 3726 * - The address should not set any bits beyond the processor's 3727 * physical-address width. 3728 * [Intel SDM] 3729 */ 3730 static void test_apic_access_addr(void) 3731 { 3732 void *apic_access_page = alloc_page(); 3733 3734 vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_page)); 3735 3736 test_vmcs_addr_reference(CPU_VIRT_APIC_ACCESSES, APIC_ACCS_ADDR, 3737 "APIC-access address", 3738 "virtualize APIC-accesses", PAGE_SIZE, 3739 true, false); 3740 } 3741 3742 static bool set_bit_pattern(u8 mask, u32 *secondary) 3743 { 3744 u8 i; 3745 bool flag = false; 3746 u32 test_bits[3] = { 3747 CPU_VIRT_X2APIC, 3748 CPU_APIC_REG_VIRT, 3749 CPU_VINTD 3750 }; 3751 3752 for (i = 0; i < ARRAY_SIZE(test_bits); i++) { 3753 if ((mask & (1u << i)) && 3754 (ctrl_cpu_rev[1].clr & test_bits[i])) { 3755 *secondary |= test_bits[i]; 3756 flag = true; 3757 } 3758 } 3759 3760 return (flag); 3761 } 3762 3763 /* 3764 * If the "use TPR shadow" VM-execution control is 0, the following 3765 * VM-execution controls must also be 0: 3766 * - virtualize x2APIC mode 3767 * - APIC-register virtualization 3768 * - virtual-interrupt delivery 3769 * [Intel SDM] 3770 * 3771 * 2. If the "virtualize x2APIC mode" VM-execution control is 1, the 3772 * "virtualize APIC accesses" VM-execution control must be 0. 3773 * [Intel SDM] 3774 */ 3775 static void test_apic_virtual_ctls(void) 3776 { 3777 u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); 3778 u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); 3779 u32 primary = saved_primary; 3780 u32 secondary = saved_secondary; 3781 bool is_ctrl_valid = false; 3782 char str[10] = "disabled"; 3783 u8 i = 0, j; 3784 3785 /* 3786 * First test 3787 */ 3788 if (!((ctrl_cpu_rev[0].clr & (CPU_SECONDARY | CPU_TPR_SHADOW)) == 3789 (CPU_SECONDARY | CPU_TPR_SHADOW))) 3790 return; 3791 3792 primary |= CPU_SECONDARY; 3793 primary &= ~CPU_TPR_SHADOW; 3794 vmcs_write(CPU_EXEC_CTRL0, primary); 3795 3796 while (1) { 3797 for (j = 1; j < 8; j++) { 3798 secondary &= ~(CPU_VIRT_X2APIC | CPU_APIC_REG_VIRT | CPU_VINTD); 3799 if (primary & CPU_TPR_SHADOW) { 3800 is_ctrl_valid = true; 3801 } else { 3802 if (! set_bit_pattern(j, &secondary)) 3803 is_ctrl_valid = true; 3804 else 3805 is_ctrl_valid = false; 3806 } 3807 3808 vmcs_write(CPU_EXEC_CTRL1, secondary); 3809 report_prefix_pushf("Use TPR shadow %s, virtualize x2APIC mode %s, APIC-register virtualization %s, virtual-interrupt delivery %s", 3810 str, (secondary & CPU_VIRT_X2APIC) ? "enabled" : "disabled", (secondary & CPU_APIC_REG_VIRT) ? "enabled" : "disabled", (secondary & CPU_VINTD) ? "enabled" : "disabled"); 3811 if (is_ctrl_valid) 3812 test_vmx_valid_controls(); 3813 else 3814 test_vmx_invalid_controls(); 3815 report_prefix_pop(); 3816 } 3817 3818 if (i == 1) 3819 break; 3820 i++; 3821 3822 primary |= CPU_TPR_SHADOW; 3823 vmcs_write(CPU_EXEC_CTRL0, primary); 3824 strcpy(str, "enabled"); 3825 } 3826 3827 /* 3828 * Second test 3829 */ 3830 u32 apic_virt_ctls = (CPU_VIRT_X2APIC | CPU_VIRT_APIC_ACCESSES); 3831 3832 primary = saved_primary; 3833 secondary = saved_secondary; 3834 if (!((ctrl_cpu_rev[1].clr & apic_virt_ctls) == apic_virt_ctls)) 3835 return; 3836 3837 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); 3838 secondary &= ~CPU_VIRT_APIC_ACCESSES; 3839 vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_X2APIC); 3840 report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access disabled"); 3841 test_vmx_valid_controls(); 3842 report_prefix_pop(); 3843 3844 vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_APIC_ACCESSES); 3845 report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access enabled"); 3846 test_vmx_valid_controls(); 3847 report_prefix_pop(); 3848 3849 vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_X2APIC); 3850 report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access enabled"); 3851 test_vmx_invalid_controls(); 3852 report_prefix_pop(); 3853 3854 vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_APIC_ACCESSES); 3855 report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access disabled"); 3856 test_vmx_valid_controls(); 3857 report_prefix_pop(); 3858 3859 vmcs_write(CPU_EXEC_CTRL0, saved_primary); 3860 vmcs_write(CPU_EXEC_CTRL1, saved_secondary); 3861 } 3862 3863 /* 3864 * If the "virtual-interrupt delivery" VM-execution control is 1, the 3865 * "external-interrupt exiting" VM-execution control must be 1. 3866 * [Intel SDM] 3867 */ 3868 static void test_virtual_intr_ctls(void) 3869 { 3870 u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); 3871 u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); 3872 u32 saved_pin = vmcs_read(PIN_CONTROLS); 3873 u32 primary = saved_primary; 3874 u32 secondary = saved_secondary; 3875 u32 pin = saved_pin; 3876 3877 if (!((ctrl_cpu_rev[1].clr & CPU_VINTD) && 3878 (ctrl_pin_rev.clr & PIN_EXTINT))) 3879 return; 3880 3881 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW); 3882 vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VINTD); 3883 vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT); 3884 report_prefix_pushf("Virtualize interrupt-delivery disabled; external-interrupt exiting disabled"); 3885 test_vmx_valid_controls(); 3886 report_prefix_pop(); 3887 3888 vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VINTD); 3889 report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled"); 3890 test_vmx_invalid_controls(); 3891 report_prefix_pop(); 3892 3893 vmcs_write(PIN_CONTROLS, pin | PIN_EXTINT); 3894 report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting enabled"); 3895 test_vmx_valid_controls(); 3896 report_prefix_pop(); 3897 3898 vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT); 3899 report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled"); 3900 test_vmx_invalid_controls(); 3901 report_prefix_pop(); 3902 3903 vmcs_write(CPU_EXEC_CTRL0, saved_primary); 3904 vmcs_write(CPU_EXEC_CTRL1, saved_secondary); 3905 vmcs_write(PIN_CONTROLS, saved_pin); 3906 } 3907 3908 static void test_pi_desc_addr(u64 addr, bool is_ctrl_valid) 3909 { 3910 vmcs_write(POSTED_INTR_DESC_ADDR, addr); 3911 report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-descriptor-address 0x%lx", addr); 3912 if (is_ctrl_valid) 3913 test_vmx_valid_controls(); 3914 else 3915 test_vmx_invalid_controls(); 3916 report_prefix_pop(); 3917 } 3918 3919 /* 3920 * If the "process posted interrupts" VM-execution control is 1, the 3921 * following must be true: 3922 * 3923 * - The "virtual-interrupt delivery" VM-execution control is 1. 3924 * - The "acknowledge interrupt on exit" VM-exit control is 1. 3925 * - The posted-interrupt notification vector has a value in the 3926 * - range 0 - 255 (bits 15:8 are all 0). 3927 * - Bits 5:0 of the posted-interrupt descriptor address are all 0. 3928 * - The posted-interrupt descriptor address does not set any bits 3929 * beyond the processor's physical-address width. 3930 * [Intel SDM] 3931 */ 3932 static void test_posted_intr(void) 3933 { 3934 u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); 3935 u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); 3936 u32 saved_pin = vmcs_read(PIN_CONTROLS); 3937 u32 exit_ctl_saved = vmcs_read(EXI_CONTROLS); 3938 u32 primary = saved_primary; 3939 u32 secondary = saved_secondary; 3940 u32 pin = saved_pin; 3941 u32 exit_ctl = exit_ctl_saved; 3942 u16 vec; 3943 int i; 3944 3945 if (!((ctrl_pin_rev.clr & PIN_POST_INTR) && 3946 (ctrl_cpu_rev[1].clr & CPU_VINTD) && 3947 (ctrl_exit_rev.clr & EXI_INTA))) 3948 return; 3949 3950 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW); 3951 3952 /* 3953 * Test virtual-interrupt-delivery and acknowledge-interrupt-on-exit 3954 */ 3955 pin |= PIN_POST_INTR; 3956 vmcs_write(PIN_CONTROLS, pin); 3957 secondary &= ~CPU_VINTD; 3958 vmcs_write(CPU_EXEC_CTRL1, secondary); 3959 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled"); 3960 test_vmx_invalid_controls(); 3961 report_prefix_pop(); 3962 3963 secondary |= CPU_VINTD; 3964 vmcs_write(CPU_EXEC_CTRL1, secondary); 3965 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled"); 3966 test_vmx_invalid_controls(); 3967 report_prefix_pop(); 3968 3969 exit_ctl &= ~EXI_INTA; 3970 vmcs_write(EXI_CONTROLS, exit_ctl); 3971 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit disabled"); 3972 test_vmx_invalid_controls(); 3973 report_prefix_pop(); 3974 3975 exit_ctl |= EXI_INTA; 3976 vmcs_write(EXI_CONTROLS, exit_ctl); 3977 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled"); 3978 test_vmx_valid_controls(); 3979 report_prefix_pop(); 3980 3981 secondary &= ~CPU_VINTD; 3982 vmcs_write(CPU_EXEC_CTRL1, secondary); 3983 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled; acknowledge-interrupt-on-exit enabled"); 3984 test_vmx_invalid_controls(); 3985 report_prefix_pop(); 3986 3987 secondary |= CPU_VINTD; 3988 vmcs_write(CPU_EXEC_CTRL1, secondary); 3989 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled"); 3990 test_vmx_valid_controls(); 3991 report_prefix_pop(); 3992 3993 /* 3994 * Test posted-interrupt notification vector 3995 */ 3996 for (i = 0; i < 8; i++) { 3997 vec = (1ul << i); 3998 vmcs_write(PINV, vec); 3999 report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); 4000 test_vmx_valid_controls(); 4001 report_prefix_pop(); 4002 } 4003 for (i = 8; i < 16; i++) { 4004 vec = (1ul << i); 4005 vmcs_write(PINV, vec); 4006 report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); 4007 test_vmx_invalid_controls(); 4008 report_prefix_pop(); 4009 } 4010 4011 vec &= ~(0xff << 8); 4012 vmcs_write(PINV, vec); 4013 report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); 4014 test_vmx_valid_controls(); 4015 report_prefix_pop(); 4016 4017 /* 4018 * Test posted-interrupt descriptor address 4019 */ 4020 for (i = 0; i < 6; i++) { 4021 test_pi_desc_addr(1ul << i, false); 4022 } 4023 4024 test_pi_desc_addr(0xf0, false); 4025 test_pi_desc_addr(0xff, false); 4026 test_pi_desc_addr(0x0f, false); 4027 test_pi_desc_addr(0x8000, true); 4028 test_pi_desc_addr(0x00, true); 4029 test_pi_desc_addr(0xc000, true); 4030 4031 test_vmcs_addr_values("process-posted interrupts", 4032 POSTED_INTR_DESC_ADDR, 64, 4033 false, false, 0, 63); 4034 4035 vmcs_write(CPU_EXEC_CTRL0, saved_primary); 4036 vmcs_write(CPU_EXEC_CTRL1, saved_secondary); 4037 vmcs_write(PIN_CONTROLS, saved_pin); 4038 } 4039 4040 static void test_apic_ctls(void) 4041 { 4042 test_apic_virt_addr(); 4043 test_apic_access_addr(); 4044 test_apic_virtual_ctls(); 4045 test_virtual_intr_ctls(); 4046 test_posted_intr(); 4047 } 4048 4049 /* 4050 * If the "enable VPID" VM-execution control is 1, the value of the 4051 * of the VPID VM-execution control field must not be 0000H. 4052 * [Intel SDM] 4053 */ 4054 static void test_vpid(void) 4055 { 4056 u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); 4057 u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); 4058 u16 vpid = 0x0000; 4059 int i; 4060 4061 if (!is_vpid_supported()) { 4062 report_skip("%s : Secondary controls and/or VPID not supported", __func__); 4063 return; 4064 } 4065 4066 vmcs_write(CPU_EXEC_CTRL0, saved_primary | CPU_SECONDARY); 4067 vmcs_write(CPU_EXEC_CTRL1, saved_secondary & ~CPU_VPID); 4068 vmcs_write(VPID, vpid); 4069 report_prefix_pushf("VPID disabled; VPID value %x", vpid); 4070 test_vmx_valid_controls(); 4071 report_prefix_pop(); 4072 4073 vmcs_write(CPU_EXEC_CTRL1, saved_secondary | CPU_VPID); 4074 report_prefix_pushf("VPID enabled; VPID value %x", vpid); 4075 test_vmx_invalid_controls(); 4076 report_prefix_pop(); 4077 4078 for (i = 0; i < 16; i++) { 4079 vpid = (short)1 << i;; 4080 vmcs_write(VPID, vpid); 4081 report_prefix_pushf("VPID enabled; VPID value %x", vpid); 4082 test_vmx_valid_controls(); 4083 report_prefix_pop(); 4084 } 4085 4086 vmcs_write(CPU_EXEC_CTRL0, saved_primary); 4087 vmcs_write(CPU_EXEC_CTRL1, saved_secondary); 4088 } 4089 4090 static void set_vtpr(unsigned vtpr) 4091 { 4092 *(u32 *)phys_to_virt(vmcs_read(APIC_VIRT_ADDR) + APIC_TASKPRI) = vtpr; 4093 } 4094 4095 static void try_tpr_threshold_and_vtpr(unsigned threshold, unsigned vtpr) 4096 { 4097 bool valid = true; 4098 u32 primary = vmcs_read(CPU_EXEC_CTRL0); 4099 u32 secondary = vmcs_read(CPU_EXEC_CTRL1); 4100 4101 if ((primary & CPU_TPR_SHADOW) && 4102 (!(primary & CPU_SECONDARY) || 4103 !(secondary & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)))) 4104 valid = (threshold & 0xf) <= ((vtpr >> 4) & 0xf); 4105 4106 set_vtpr(vtpr); 4107 report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0x%x", 4108 threshold, (vtpr >> 4) & 0xf); 4109 if (valid) 4110 test_vmx_valid_controls(); 4111 else 4112 test_vmx_invalid_controls(); 4113 report_prefix_pop(); 4114 } 4115 4116 static void test_invalid_event_injection(void) 4117 { 4118 u32 ent_intr_info_save = vmcs_read(ENT_INTR_INFO); 4119 u32 ent_intr_error_save = vmcs_read(ENT_INTR_ERROR); 4120 u32 ent_inst_len_save = vmcs_read(ENT_INST_LEN); 4121 u32 primary_save = vmcs_read(CPU_EXEC_CTRL0); 4122 u32 secondary_save = vmcs_read(CPU_EXEC_CTRL1); 4123 u64 guest_cr0_save = vmcs_read(GUEST_CR0); 4124 u32 ent_intr_info_base = INTR_INFO_VALID_MASK; 4125 u32 ent_intr_info, ent_intr_err, ent_intr_len; 4126 u32 cnt; 4127 4128 /* Setup */ 4129 report_prefix_push("invalid event injection"); 4130 vmcs_write(ENT_INTR_ERROR, 0x00000000); 4131 vmcs_write(ENT_INST_LEN, 0x00000001); 4132 4133 /* The field's interruption type is not set to a reserved value. */ 4134 ent_intr_info = ent_intr_info_base | INTR_TYPE_RESERVED | DE_VECTOR; 4135 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4136 "RESERVED interruption type invalid [-]", 4137 ent_intr_info); 4138 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4139 test_vmx_invalid_controls(); 4140 report_prefix_pop(); 4141 4142 ent_intr_info = ent_intr_info_base | INTR_TYPE_EXT_INTR | 4143 DE_VECTOR; 4144 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4145 "RESERVED interruption type invalid [+]", 4146 ent_intr_info); 4147 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4148 test_vmx_valid_controls(); 4149 report_prefix_pop(); 4150 4151 /* If the interruption type is other event, the vector is 0. */ 4152 ent_intr_info = ent_intr_info_base | INTR_TYPE_OTHER_EVENT | DB_VECTOR; 4153 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4154 "(OTHER EVENT && vector != 0) invalid [-]", 4155 ent_intr_info); 4156 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4157 test_vmx_invalid_controls(); 4158 report_prefix_pop(); 4159 4160 /* If the interruption type is NMI, the vector is 2 (negative case). */ 4161 ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | DE_VECTOR; 4162 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4163 "(NMI && vector != 2) invalid [-]", ent_intr_info); 4164 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4165 test_vmx_invalid_controls(); 4166 report_prefix_pop(); 4167 4168 /* If the interruption type is NMI, the vector is 2 (positive case). */ 4169 ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | NMI_VECTOR; 4170 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4171 "(NMI && vector == 2) valid [+]", ent_intr_info); 4172 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4173 test_vmx_valid_controls(); 4174 report_prefix_pop(); 4175 4176 /* 4177 * If the interruption type 4178 * is HW exception, the vector is at most 31. 4179 */ 4180 ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 0x20; 4181 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4182 "(HW exception && vector > 31) invalid [-]", 4183 ent_intr_info); 4184 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4185 test_vmx_invalid_controls(); 4186 report_prefix_pop(); 4187 4188 /* 4189 * deliver-error-code is 1 iff either 4190 * (a) the "unrestricted guest" VM-execution control is 0 4191 * (b) CR0.PE is set. 4192 */ 4193 4194 /* Assert that unrestricted guest is disabled or unsupported */ 4195 assert(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 4196 !(secondary_save & CPU_URG)); 4197 4198 ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 4199 GP_VECTOR; 4200 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4201 "error code <-> (!URG || prot_mode) [-]", 4202 ent_intr_info); 4203 vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); 4204 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4205 if (basic_msr.no_hw_errcode_cc) 4206 test_vmx_valid_controls(); 4207 else 4208 test_vmx_invalid_controls(); 4209 report_prefix_pop(); 4210 4211 ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | 4212 INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; 4213 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4214 "error code <-> (!URG || prot_mode) [+]", 4215 ent_intr_info); 4216 vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); 4217 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4218 test_vmx_valid_controls(); 4219 report_prefix_pop(); 4220 4221 if (enable_unrestricted_guest(false)) 4222 goto skip_unrestricted_guest; 4223 4224 ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | 4225 INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; 4226 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4227 "error code <-> (!URG || prot_mode) [-]", 4228 ent_intr_info); 4229 vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); 4230 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4231 test_vmx_invalid_controls(); 4232 report_prefix_pop(); 4233 4234 ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 4235 GP_VECTOR; 4236 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4237 "error code <-> (!URG || prot_mode) [-]", 4238 ent_intr_info); 4239 vmcs_write(GUEST_CR0, guest_cr0_save | X86_CR0_PE); 4240 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4241 if (basic_msr.no_hw_errcode_cc) 4242 test_vmx_valid_controls(); 4243 else 4244 test_vmx_invalid_controls(); 4245 report_prefix_pop(); 4246 4247 vmcs_write(CPU_EXEC_CTRL1, secondary_save); 4248 vmcs_write(CPU_EXEC_CTRL0, primary_save); 4249 4250 skip_unrestricted_guest: 4251 vmcs_write(GUEST_CR0, guest_cr0_save); 4252 4253 /* deliver-error-code is 1 iff the interruption type is HW exception */ 4254 report_prefix_push("error code <-> HW exception"); 4255 for (cnt = 0; cnt < 8; cnt++) { 4256 u32 exception_type_mask = cnt << 8; 4257 u32 deliver_error_code_mask = 4258 exception_type_mask != INTR_TYPE_HARD_EXCEPTION ? 4259 INTR_INFO_DELIVER_CODE_MASK : 0; 4260 4261 ent_intr_info = ent_intr_info_base | deliver_error_code_mask | 4262 exception_type_mask | GP_VECTOR; 4263 report_prefix_pushf("VM-entry intr info=0x%x [-]", 4264 ent_intr_info); 4265 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4266 if (exception_type_mask == INTR_TYPE_HARD_EXCEPTION && 4267 basic_msr.no_hw_errcode_cc) 4268 test_vmx_valid_controls(); 4269 else 4270 test_vmx_invalid_controls(); 4271 report_prefix_pop(); 4272 } 4273 report_prefix_pop(); 4274 4275 /* 4276 * deliver-error-code is 1 iff the the vector 4277 * indicates an exception that would normally deliver an error code 4278 */ 4279 report_prefix_push("error code <-> vector delivers error code"); 4280 for (cnt = 0; cnt < 32; cnt++) { 4281 bool has_error_code = false; 4282 u32 deliver_error_code_mask; 4283 4284 switch (cnt) { 4285 case DF_VECTOR: 4286 case TS_VECTOR: 4287 case NP_VECTOR: 4288 case SS_VECTOR: 4289 case GP_VECTOR: 4290 case PF_VECTOR: 4291 case AC_VECTOR: 4292 has_error_code = true; 4293 case CP_VECTOR: 4294 /* Some CPUs have error code and some do not, skip */ 4295 continue; 4296 } 4297 4298 /* Negative case */ 4299 deliver_error_code_mask = has_error_code ? 4300 0 : 4301 INTR_INFO_DELIVER_CODE_MASK; 4302 ent_intr_info = ent_intr_info_base | deliver_error_code_mask | 4303 INTR_TYPE_HARD_EXCEPTION | cnt; 4304 report_prefix_pushf("VM-entry intr info=0x%x [-]", 4305 ent_intr_info); 4306 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4307 if (basic_msr.no_hw_errcode_cc) 4308 test_vmx_valid_controls(); 4309 else 4310 test_vmx_invalid_controls(); 4311 report_prefix_pop(); 4312 4313 /* Positive case */ 4314 deliver_error_code_mask = has_error_code ? 4315 INTR_INFO_DELIVER_CODE_MASK : 4316 0; 4317 ent_intr_info = ent_intr_info_base | deliver_error_code_mask | 4318 INTR_TYPE_HARD_EXCEPTION | cnt; 4319 report_prefix_pushf("VM-entry intr info=0x%x [+]", 4320 ent_intr_info); 4321 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4322 test_vmx_valid_controls(); 4323 report_prefix_pop(); 4324 } 4325 report_prefix_pop(); 4326 4327 /* Reserved bits in the field (30:12) are 0. */ 4328 report_prefix_push("reserved bits clear"); 4329 for (cnt = 12; cnt <= 30; cnt++) { 4330 ent_intr_info = ent_intr_info_base | 4331 INTR_INFO_DELIVER_CODE_MASK | 4332 INTR_TYPE_HARD_EXCEPTION | GP_VECTOR | 4333 (1U << cnt); 4334 report_prefix_pushf("VM-entry intr info=0x%x [-]", 4335 ent_intr_info); 4336 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4337 test_vmx_invalid_controls(); 4338 report_prefix_pop(); 4339 } 4340 report_prefix_pop(); 4341 4342 /* 4343 * If deliver-error-code is 1 4344 * bits 31:16 of the VM-entry exception error-code field are 0. 4345 */ 4346 ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | 4347 INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; 4348 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4349 "VM-entry exception error code[31:16] clear", 4350 ent_intr_info); 4351 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4352 for (cnt = 16; cnt <= 31; cnt++) { 4353 ent_intr_err = 1U << cnt; 4354 report_prefix_pushf("VM-entry intr error=0x%x [-]", 4355 ent_intr_err); 4356 vmcs_write(ENT_INTR_ERROR, ent_intr_err); 4357 test_vmx_invalid_controls(); 4358 report_prefix_pop(); 4359 } 4360 vmcs_write(ENT_INTR_ERROR, 0x00000000); 4361 report_prefix_pop(); 4362 4363 /* 4364 * If the interruption type is software interrupt, software exception, 4365 * or privileged software exception, the VM-entry instruction-length 4366 * field is in the range 0 - 15. 4367 */ 4368 4369 for (cnt = 0; cnt < 3; cnt++) { 4370 switch (cnt) { 4371 case 0: 4372 ent_intr_info = ent_intr_info_base | 4373 INTR_TYPE_SOFT_INTR; 4374 break; 4375 case 1: 4376 ent_intr_info = ent_intr_info_base | 4377 INTR_TYPE_SOFT_EXCEPTION; 4378 break; 4379 case 2: 4380 ent_intr_info = ent_intr_info_base | 4381 INTR_TYPE_PRIV_SW_EXCEPTION; 4382 break; 4383 } 4384 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4385 "VM-entry instruction-length check", 4386 ent_intr_info); 4387 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4388 4389 /* Instruction length set to -1 (0xFFFFFFFF) should fail */ 4390 ent_intr_len = -1; 4391 report_prefix_pushf("VM-entry intr length = 0x%x [-]", 4392 ent_intr_len); 4393 vmcs_write(ENT_INST_LEN, ent_intr_len); 4394 test_vmx_invalid_controls(); 4395 report_prefix_pop(); 4396 4397 /* Instruction length set to 16 should fail */ 4398 ent_intr_len = 0x00000010; 4399 report_prefix_pushf("VM-entry intr length = 0x%x [-]", 4400 ent_intr_len); 4401 vmcs_write(ENT_INST_LEN, 0x00000010); 4402 test_vmx_invalid_controls(); 4403 report_prefix_pop(); 4404 4405 report_prefix_pop(); 4406 } 4407 4408 /* Cleanup */ 4409 vmcs_write(ENT_INTR_INFO, ent_intr_info_save); 4410 vmcs_write(ENT_INTR_ERROR, ent_intr_error_save); 4411 vmcs_write(ENT_INST_LEN, ent_inst_len_save); 4412 vmcs_write(CPU_EXEC_CTRL0, primary_save); 4413 vmcs_write(CPU_EXEC_CTRL1, secondary_save); 4414 vmcs_write(GUEST_CR0, guest_cr0_save); 4415 report_prefix_pop(); 4416 } 4417 4418 /* 4419 * Test interesting vTPR values for a given TPR threshold. 4420 */ 4421 static void test_vtpr_values(unsigned threshold) 4422 { 4423 try_tpr_threshold_and_vtpr(threshold, (threshold - 1) << 4); 4424 try_tpr_threshold_and_vtpr(threshold, threshold << 4); 4425 try_tpr_threshold_and_vtpr(threshold, (threshold + 1) << 4); 4426 } 4427 4428 static void try_tpr_threshold(unsigned threshold) 4429 { 4430 bool valid = true; 4431 4432 u32 primary = vmcs_read(CPU_EXEC_CTRL0); 4433 u32 secondary = vmcs_read(CPU_EXEC_CTRL1); 4434 4435 if ((primary & CPU_TPR_SHADOW) && !((primary & CPU_SECONDARY) && 4436 (secondary & CPU_VINTD))) 4437 valid = !(threshold >> 4); 4438 4439 set_vtpr(-1); 4440 vmcs_write(TPR_THRESHOLD, threshold); 4441 report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0xf", threshold); 4442 if (valid) 4443 test_vmx_valid_controls(); 4444 else 4445 test_vmx_invalid_controls(); 4446 report_prefix_pop(); 4447 4448 if (valid) 4449 test_vtpr_values(threshold); 4450 } 4451 4452 /* 4453 * Test interesting TPR threshold values. 4454 */ 4455 static void test_tpr_threshold_values(void) 4456 { 4457 unsigned i; 4458 4459 for (i = 0; i < 0x10; i++) 4460 try_tpr_threshold(i); 4461 for (i = 4; i < 32; i++) 4462 try_tpr_threshold(1u << i); 4463 try_tpr_threshold(-1u); 4464 try_tpr_threshold(0x7fffffff); 4465 } 4466 4467 /* 4468 * This test covers the following two VM entry checks: 4469 * 4470 * i) If the "use TPR shadow" VM-execution control is 1 and the 4471 * "virtual-interrupt delivery" VM-execution control is 0, bits 4472 * 31:4 of the TPR threshold VM-execution control field must 4473 be 0. 4474 * [Intel SDM] 4475 * 4476 * ii) If the "use TPR shadow" VM-execution control is 1, the 4477 * "virtual-interrupt delivery" VM-execution control is 0 4478 * and the "virtualize APIC accesses" VM-execution control 4479 * is 0, the value of bits 3:0 of the TPR threshold VM-execution 4480 * control field must not be greater than the value of bits 4481 * 7:4 of VTPR. 4482 * [Intel SDM] 4483 */ 4484 static void test_tpr_threshold(void) 4485 { 4486 u32 primary = vmcs_read(CPU_EXEC_CTRL0); 4487 u64 apic_virt_addr = vmcs_read(APIC_VIRT_ADDR); 4488 u64 threshold = vmcs_read(TPR_THRESHOLD); 4489 void *virtual_apic_page; 4490 4491 if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) 4492 return; 4493 4494 virtual_apic_page = alloc_page(); 4495 memset(virtual_apic_page, 0xff, PAGE_SIZE); 4496 vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); 4497 4498 vmcs_write(CPU_EXEC_CTRL0, primary & ~(CPU_TPR_SHADOW | CPU_SECONDARY)); 4499 report_prefix_pushf("Use TPR shadow disabled, secondary controls disabled"); 4500 test_tpr_threshold_values(); 4501 report_prefix_pop(); 4502 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_TPR_SHADOW); 4503 report_prefix_pushf("Use TPR shadow enabled, secondary controls disabled"); 4504 test_tpr_threshold_values(); 4505 report_prefix_pop(); 4506 4507 if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && 4508 (ctrl_cpu_rev[1].clr & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)))) 4509 goto out; 4510 u32 secondary = vmcs_read(CPU_EXEC_CTRL1); 4511 4512 if (ctrl_cpu_rev[1].clr & CPU_VINTD) { 4513 vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD); 4514 report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled"); 4515 test_tpr_threshold_values(); 4516 report_prefix_pop(); 4517 4518 vmcs_write(CPU_EXEC_CTRL0, 4519 vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); 4520 report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled"); 4521 test_tpr_threshold_values(); 4522 report_prefix_pop(); 4523 } 4524 4525 if (ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES) { 4526 vmcs_write(CPU_EXEC_CTRL0, 4527 vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY); 4528 vmcs_write(CPU_EXEC_CTRL1, CPU_VIRT_APIC_ACCESSES); 4529 report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); 4530 test_tpr_threshold_values(); 4531 report_prefix_pop(); 4532 4533 vmcs_write(CPU_EXEC_CTRL0, 4534 vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); 4535 report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); 4536 test_tpr_threshold_values(); 4537 report_prefix_pop(); 4538 } 4539 4540 if ((ctrl_cpu_rev[1].clr & 4541 (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) == 4542 (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) { 4543 vmcs_write(CPU_EXEC_CTRL0, 4544 vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY); 4545 vmcs_write(CPU_EXEC_CTRL1, 4546 CPU_VINTD | CPU_VIRT_APIC_ACCESSES); 4547 report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); 4548 test_tpr_threshold_values(); 4549 report_prefix_pop(); 4550 4551 vmcs_write(CPU_EXEC_CTRL0, 4552 vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); 4553 report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); 4554 test_tpr_threshold_values(); 4555 report_prefix_pop(); 4556 } 4557 4558 vmcs_write(CPU_EXEC_CTRL1, secondary); 4559 out: 4560 vmcs_write(TPR_THRESHOLD, threshold); 4561 vmcs_write(APIC_VIRT_ADDR, apic_virt_addr); 4562 vmcs_write(CPU_EXEC_CTRL0, primary); 4563 } 4564 4565 /* 4566 * This test verifies the following two vmentry checks: 4567 * 4568 * If the "NMI exiting" VM-execution control is 0, "Virtual NMIs" 4569 * VM-execution control must be 0. 4570 * [Intel SDM] 4571 * 4572 * If the "virtual NMIs" VM-execution control is 0, the "NMI-window 4573 * exiting" VM-execution control must be 0. 4574 * [Intel SDM] 4575 */ 4576 static void test_nmi_ctrls(void) 4577 { 4578 u32 pin_ctrls, cpu_ctrls0, test_pin_ctrls, test_cpu_ctrls0; 4579 4580 if ((ctrl_pin_rev.clr & (PIN_NMI | PIN_VIRT_NMI)) != 4581 (PIN_NMI | PIN_VIRT_NMI)) { 4582 report_skip("%s : NMI exiting and/or Virtual NMIs not supported", __func__); 4583 return; 4584 } 4585 4586 /* Save the controls so that we can restore them after our tests */ 4587 pin_ctrls = vmcs_read(PIN_CONTROLS); 4588 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0); 4589 4590 test_pin_ctrls = pin_ctrls & ~(PIN_NMI | PIN_VIRT_NMI); 4591 test_cpu_ctrls0 = cpu_ctrls0 & ~CPU_NMI_WINDOW; 4592 4593 vmcs_write(PIN_CONTROLS, test_pin_ctrls); 4594 report_prefix_pushf("NMI-exiting disabled, virtual-NMIs disabled"); 4595 test_vmx_valid_controls(); 4596 report_prefix_pop(); 4597 4598 vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_VIRT_NMI); 4599 report_prefix_pushf("NMI-exiting disabled, virtual-NMIs enabled"); 4600 test_vmx_invalid_controls(); 4601 report_prefix_pop(); 4602 4603 vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); 4604 report_prefix_pushf("NMI-exiting enabled, virtual-NMIs enabled"); 4605 test_vmx_valid_controls(); 4606 report_prefix_pop(); 4607 4608 vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_NMI); 4609 report_prefix_pushf("NMI-exiting enabled, virtual-NMIs disabled"); 4610 test_vmx_valid_controls(); 4611 report_prefix_pop(); 4612 4613 if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) { 4614 report_info("NMI-window exiting is not supported, skipping..."); 4615 goto done; 4616 } 4617 4618 vmcs_write(PIN_CONTROLS, test_pin_ctrls); 4619 vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW); 4620 report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting enabled"); 4621 test_vmx_invalid_controls(); 4622 report_prefix_pop(); 4623 4624 vmcs_write(PIN_CONTROLS, test_pin_ctrls); 4625 vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0); 4626 report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting disabled"); 4627 test_vmx_valid_controls(); 4628 report_prefix_pop(); 4629 4630 vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); 4631 vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW); 4632 report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting enabled"); 4633 test_vmx_valid_controls(); 4634 report_prefix_pop(); 4635 4636 vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); 4637 vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0); 4638 report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting disabled"); 4639 test_vmx_valid_controls(); 4640 report_prefix_pop(); 4641 4642 /* Restore the controls to their original values */ 4643 vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0); 4644 done: 4645 vmcs_write(PIN_CONTROLS, pin_ctrls); 4646 } 4647 4648 static void test_eptp_ad_bit(u64 eptp, bool is_ctrl_valid) 4649 { 4650 vmcs_write(EPTP, eptp); 4651 report_prefix_pushf("Enable-EPT enabled; EPT accessed and dirty flag %s", 4652 (eptp & EPTP_AD_FLAG) ? "1": "0"); 4653 if (is_ctrl_valid) 4654 test_vmx_valid_controls(); 4655 else 4656 test_vmx_invalid_controls(); 4657 report_prefix_pop(); 4658 4659 } 4660 4661 /* 4662 * 1. If the "enable EPT" VM-execution control is 1, the "EPTP VM-execution" 4663 * control field must satisfy the following checks: 4664 * 4665 * - The EPT memory type (bits 2:0) must be a value supported by the 4666 * processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR. 4667 * - Bits 5:3 (1 less than the EPT page-walk length) must indicate a 4668 * supported EPT page-walk length. 4669 * - Bit 6 (enable bit for accessed and dirty flags for EPT) must be 4670 * 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP MSR is read as 0, 4671 * indicating that the processor does not support accessed and dirty 4672 * dirty flags for EPT. 4673 * - Reserved bits 11:7 and 63:N (where N is the processor's 4674 * physical-address width) must all be 0. 4675 * 4676 * 2. If the "unrestricted guest" VM-execution control is 1, the 4677 * "enable EPT" VM-execution control must also be 1. 4678 */ 4679 static void test_ept_eptp(void) 4680 { 4681 u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0); 4682 u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1); 4683 u64 eptp_saved = vmcs_read(EPTP); 4684 u32 secondary; 4685 u64 eptp; 4686 u32 i, maxphysaddr; 4687 u64 j, resv_bits_mask = 0; 4688 4689 if (__setup_ept(0xfed40000, false)) { 4690 report_skip("%s : EPT not supported", __func__); 4691 return; 4692 } 4693 4694 test_vmx_valid_controls(); 4695 4696 setup_dummy_ept(); 4697 4698 secondary = vmcs_read(CPU_EXEC_CTRL1); 4699 eptp = vmcs_read(EPTP); 4700 4701 for (i = 0; i < 8; i++) { 4702 eptp = (eptp & ~EPT_MEM_TYPE_MASK) | i; 4703 vmcs_write(EPTP, eptp); 4704 report_prefix_pushf("Enable-EPT enabled; EPT memory type %lu", 4705 eptp & EPT_MEM_TYPE_MASK); 4706 if (is_ept_memtype_supported(i)) 4707 test_vmx_valid_controls(); 4708 else 4709 test_vmx_invalid_controls(); 4710 report_prefix_pop(); 4711 } 4712 4713 eptp = (eptp & ~EPT_MEM_TYPE_MASK) | 6ul; 4714 4715 /* 4716 * Page walk length (bits 5:3). Note, the value in VMCS.EPTP "is 1 4717 * less than the EPT page-walk length". 4718 */ 4719 for (i = 0; i < 8; i++) { 4720 eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) | 4721 (i << EPTP_PG_WALK_LEN_SHIFT); 4722 4723 vmcs_write(EPTP, eptp); 4724 report_prefix_pushf("Enable-EPT enabled; EPT page walk length %lu", 4725 eptp & EPTP_PG_WALK_LEN_MASK); 4726 if (i == 3 || (i == 4 && is_5_level_ept_supported())) 4727 test_vmx_valid_controls(); 4728 else 4729 test_vmx_invalid_controls(); 4730 report_prefix_pop(); 4731 } 4732 4733 eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) | 4734 3ul << EPTP_PG_WALK_LEN_SHIFT; 4735 4736 /* 4737 * Accessed and dirty flag (bit 6) 4738 */ 4739 if (ept_ad_bits_supported()) { 4740 report_info("Processor supports accessed and dirty flag"); 4741 eptp &= ~EPTP_AD_FLAG; 4742 test_eptp_ad_bit(eptp, true); 4743 4744 eptp |= EPTP_AD_FLAG; 4745 test_eptp_ad_bit(eptp, true); 4746 } else { 4747 report_info("Processor does not supports accessed and dirty flag"); 4748 eptp &= ~EPTP_AD_FLAG; 4749 test_eptp_ad_bit(eptp, true); 4750 4751 eptp |= EPTP_AD_FLAG; 4752 test_eptp_ad_bit(eptp, false); 4753 } 4754 4755 /* 4756 * Reserved bits [11:7] and [63:N] 4757 */ 4758 for (i = 0; i < 32; i++) { 4759 eptp = (eptp & 4760 ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)) | 4761 (i << EPTP_RESERV_BITS_SHIFT); 4762 vmcs_write(EPTP, eptp); 4763 report_prefix_pushf("Enable-EPT enabled; reserved bits [11:7] %lu", 4764 (eptp >> EPTP_RESERV_BITS_SHIFT) & 4765 EPTP_RESERV_BITS_MASK); 4766 if (i == 0) 4767 test_vmx_valid_controls(); 4768 else 4769 test_vmx_invalid_controls(); 4770 report_prefix_pop(); 4771 } 4772 4773 eptp = (eptp & ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)); 4774 4775 maxphysaddr = cpuid_maxphyaddr(); 4776 for (i = 0; i < (63 - maxphysaddr + 1); i++) { 4777 resv_bits_mask |= 1ul << i; 4778 } 4779 4780 for (j = maxphysaddr - 1; j <= 63; j++) { 4781 eptp = (eptp & ~(resv_bits_mask << maxphysaddr)) | 4782 (j < maxphysaddr ? 0 : 1ul << j); 4783 vmcs_write(EPTP, eptp); 4784 report_prefix_pushf("Enable-EPT enabled; reserved bits [63:N] %lu", 4785 (eptp >> maxphysaddr) & resv_bits_mask); 4786 if (j < maxphysaddr) 4787 test_vmx_valid_controls(); 4788 else 4789 test_vmx_invalid_controls(); 4790 report_prefix_pop(); 4791 } 4792 4793 secondary &= ~(CPU_EPT | CPU_URG); 4794 vmcs_write(CPU_EXEC_CTRL1, secondary); 4795 report_prefix_pushf("Enable-EPT disabled, unrestricted-guest disabled"); 4796 test_vmx_valid_controls(); 4797 report_prefix_pop(); 4798 4799 if (!(ctrl_cpu_rev[1].clr & CPU_URG)) 4800 goto skip_unrestricted_guest; 4801 4802 secondary |= CPU_URG; 4803 vmcs_write(CPU_EXEC_CTRL1, secondary); 4804 report_prefix_pushf("Enable-EPT disabled, unrestricted-guest enabled"); 4805 test_vmx_invalid_controls(); 4806 report_prefix_pop(); 4807 4808 secondary |= CPU_EPT; 4809 setup_dummy_ept(); 4810 report_prefix_pushf("Enable-EPT enabled, unrestricted-guest enabled"); 4811 test_vmx_valid_controls(); 4812 report_prefix_pop(); 4813 4814 skip_unrestricted_guest: 4815 secondary &= ~CPU_URG; 4816 vmcs_write(CPU_EXEC_CTRL1, secondary); 4817 report_prefix_pushf("Enable-EPT enabled, unrestricted-guest disabled"); 4818 test_vmx_valid_controls(); 4819 report_prefix_pop(); 4820 4821 vmcs_write(CPU_EXEC_CTRL0, primary_saved); 4822 vmcs_write(CPU_EXEC_CTRL1, secondary_saved); 4823 vmcs_write(EPTP, eptp_saved); 4824 } 4825 4826 /* 4827 * If the 'enable PML' VM-execution control is 1, the 'enable EPT' 4828 * VM-execution control must also be 1. In addition, the PML address 4829 * must satisfy the following checks: 4830 * 4831 * * Bits 11:0 of the address must be 0. 4832 * * The address should not set any bits beyond the processor's 4833 * physical-address width. 4834 * 4835 * [Intel SDM] 4836 */ 4837 static void test_pml(void) 4838 { 4839 u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0); 4840 u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1); 4841 u32 primary = primary_saved; 4842 u32 secondary = secondary_saved; 4843 4844 if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && 4845 (ctrl_cpu_rev[1].clr & CPU_EPT) && (ctrl_cpu_rev[1].clr & CPU_PML))) { 4846 report_skip("%s : \"Secondary execution\" or \"enable EPT\" or \"enable PML\" control not supported", __func__); 4847 return; 4848 } 4849 4850 primary |= CPU_SECONDARY; 4851 vmcs_write(CPU_EXEC_CTRL0, primary); 4852 secondary &= ~(CPU_PML | CPU_EPT); 4853 vmcs_write(CPU_EXEC_CTRL1, secondary); 4854 report_prefix_pushf("enable-PML disabled, enable-EPT disabled"); 4855 test_vmx_valid_controls(); 4856 report_prefix_pop(); 4857 4858 secondary |= CPU_PML; 4859 vmcs_write(CPU_EXEC_CTRL1, secondary); 4860 report_prefix_pushf("enable-PML enabled, enable-EPT disabled"); 4861 test_vmx_invalid_controls(); 4862 report_prefix_pop(); 4863 4864 secondary |= CPU_EPT; 4865 setup_dummy_ept(); 4866 report_prefix_pushf("enable-PML enabled, enable-EPT enabled"); 4867 test_vmx_valid_controls(); 4868 report_prefix_pop(); 4869 4870 secondary &= ~CPU_PML; 4871 vmcs_write(CPU_EXEC_CTRL1, secondary); 4872 report_prefix_pushf("enable-PML disabled, enable EPT enabled"); 4873 test_vmx_valid_controls(); 4874 report_prefix_pop(); 4875 4876 test_vmcs_addr_reference(CPU_PML, PMLADDR, "PML address", "PML", 4877 PAGE_SIZE, false, false); 4878 4879 vmcs_write(CPU_EXEC_CTRL0, primary_saved); 4880 vmcs_write(CPU_EXEC_CTRL1, secondary_saved); 4881 } 4882 4883 /* 4884 * If the "activate VMX-preemption timer" VM-execution control is 0, the 4885 * the "save VMX-preemption timer value" VM-exit control must also be 0. 4886 * 4887 * [Intel SDM] 4888 */ 4889 static void test_vmx_preemption_timer(void) 4890 { 4891 u32 saved_pin = vmcs_read(PIN_CONTROLS); 4892 u32 saved_exit = vmcs_read(EXI_CONTROLS); 4893 u32 pin = saved_pin; 4894 u32 exit = saved_exit; 4895 4896 if (!((ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) || 4897 (ctrl_pin_rev.clr & PIN_PREEMPT))) { 4898 report_skip("%s : \"Save-VMX-preemption-timer\" and/or \"Enable-VMX-preemption-timer\" control not supported", __func__); 4899 return; 4900 } 4901 4902 pin |= PIN_PREEMPT; 4903 vmcs_write(PIN_CONTROLS, pin); 4904 exit &= ~EXI_SAVE_PREEMPT; 4905 vmcs_write(EXI_CONTROLS, exit); 4906 report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer disabled"); 4907 test_vmx_valid_controls(); 4908 report_prefix_pop(); 4909 4910 exit |= EXI_SAVE_PREEMPT; 4911 vmcs_write(EXI_CONTROLS, exit); 4912 report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer enabled"); 4913 test_vmx_valid_controls(); 4914 report_prefix_pop(); 4915 4916 pin &= ~PIN_PREEMPT; 4917 vmcs_write(PIN_CONTROLS, pin); 4918 report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer enabled"); 4919 test_vmx_invalid_controls(); 4920 report_prefix_pop(); 4921 4922 exit &= ~EXI_SAVE_PREEMPT; 4923 vmcs_write(EXI_CONTROLS, exit); 4924 report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer disabled"); 4925 test_vmx_valid_controls(); 4926 report_prefix_pop(); 4927 4928 vmcs_write(PIN_CONTROLS, saved_pin); 4929 vmcs_write(EXI_CONTROLS, saved_exit); 4930 } 4931 4932 extern unsigned char test_mtf1; 4933 extern unsigned char test_mtf2; 4934 extern unsigned char test_mtf3; 4935 extern unsigned char test_mtf4; 4936 4937 static void test_mtf_guest(void) 4938 { 4939 asm ("vmcall;\n\t" 4940 "out %al, $0x80;\n\t" 4941 "test_mtf1:\n\t" 4942 "vmcall;\n\t" 4943 "out %al, $0x80;\n\t" 4944 "test_mtf2:\n\t" 4945 /* 4946 * Prepare for the 'MOV CR3' test. Attempt to induce a 4947 * general-protection fault by moving a non-canonical address into 4948 * CR3. The 'MOV CR3' instruction does not take an imm64 operand, 4949 * so we must MOV the desired value into a register first. 4950 * 4951 * MOV RAX is done before the VMCALL such that MTF is only enabled 4952 * for the instruction under test. 4953 */ 4954 "mov $0xaaaaaaaaaaaaaaaa, %rax;\n\t" 4955 "vmcall;\n\t" 4956 "mov %rax, %cr3;\n\t" 4957 "test_mtf3:\n\t" 4958 "vmcall;\n\t" 4959 /* 4960 * ICEBP/INT1 instruction. Though the instruction is now 4961 * documented, don't rely on assemblers enumerating the 4962 * instruction. Resort to hand assembly. 4963 */ 4964 ".byte 0xf1;\n\t" 4965 "vmcall;\n\t" 4966 "test_mtf4:\n\t" 4967 "mov $0, %eax;\n\t"); 4968 } 4969 4970 static void test_mtf_gp_handler(struct ex_regs *regs) 4971 { 4972 regs->rip = (unsigned long) &test_mtf3; 4973 } 4974 4975 static void test_mtf_db_handler(struct ex_regs *regs) 4976 { 4977 } 4978 4979 static void enable_mtf(void) 4980 { 4981 u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 4982 4983 vmcs_write(CPU_EXEC_CTRL0, ctrl0 | CPU_MTF); 4984 } 4985 4986 static void disable_mtf(void) 4987 { 4988 u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 4989 4990 vmcs_write(CPU_EXEC_CTRL0, ctrl0 & ~CPU_MTF); 4991 } 4992 4993 static void enable_tf(void) 4994 { 4995 unsigned long rflags = vmcs_read(GUEST_RFLAGS); 4996 4997 vmcs_write(GUEST_RFLAGS, rflags | X86_EFLAGS_TF); 4998 } 4999 5000 static void disable_tf(void) 5001 { 5002 unsigned long rflags = vmcs_read(GUEST_RFLAGS); 5003 5004 vmcs_write(GUEST_RFLAGS, rflags & ~X86_EFLAGS_TF); 5005 } 5006 5007 static void report_mtf(const char *insn_name, unsigned long exp_rip) 5008 { 5009 unsigned long rip = vmcs_read(GUEST_RIP); 5010 5011 assert_exit_reason(VMX_MTF); 5012 report(rip == exp_rip, "MTF VM-exit after %s. RIP: 0x%lx (expected 0x%lx)", 5013 insn_name, rip, exp_rip); 5014 } 5015 5016 static void vmx_mtf_test(void) 5017 { 5018 unsigned long pending_dbg; 5019 handler old_gp, old_db; 5020 5021 if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) { 5022 report_skip("%s : \"Monitor trap flag\" exec control not supported", __func__); 5023 return; 5024 } 5025 5026 test_set_guest(test_mtf_guest); 5027 5028 /* Expect an MTF VM-exit after OUT instruction */ 5029 enter_guest(); 5030 skip_exit_vmcall(); 5031 5032 enable_mtf(); 5033 enter_guest(); 5034 report_mtf("OUT", (unsigned long) &test_mtf1); 5035 disable_mtf(); 5036 5037 /* 5038 * Concurrent #DB trap and MTF on instruction boundary. Expect MTF 5039 * VM-exit with populated 'pending debug exceptions' VMCS field. 5040 */ 5041 enter_guest(); 5042 skip_exit_vmcall(); 5043 5044 enable_mtf(); 5045 enable_tf(); 5046 5047 enter_guest(); 5048 report_mtf("OUT", (unsigned long) &test_mtf2); 5049 pending_dbg = vmcs_read(GUEST_PENDING_DEBUG); 5050 report(pending_dbg & DR6_BS, 5051 "'pending debug exceptions' field after MTF VM-exit: 0x%lx (expected 0x%lx)", 5052 pending_dbg, (unsigned long) DR6_BS); 5053 5054 disable_mtf(); 5055 disable_tf(); 5056 vmcs_write(GUEST_PENDING_DEBUG, 0); 5057 5058 /* 5059 * #GP exception takes priority over MTF. Expect MTF VM-exit with RIP 5060 * advanced to first instruction of #GP handler. 5061 */ 5062 enter_guest(); 5063 skip_exit_vmcall(); 5064 5065 old_gp = handle_exception(GP_VECTOR, test_mtf_gp_handler); 5066 5067 enable_mtf(); 5068 enter_guest(); 5069 report_mtf("MOV CR3", (unsigned long) get_idt_addr(&boot_idt[GP_VECTOR])); 5070 disable_mtf(); 5071 5072 /* 5073 * Concurrent MTF and privileged software exception (i.e. ICEBP/INT1). 5074 * MTF should follow the delivery of #DB trap, though the SDM doesn't 5075 * provide clear indication of the relative priority. 5076 */ 5077 enter_guest(); 5078 skip_exit_vmcall(); 5079 5080 handle_exception(GP_VECTOR, old_gp); 5081 old_db = handle_exception(DB_VECTOR, test_mtf_db_handler); 5082 5083 enable_mtf(); 5084 enter_guest(); 5085 report_mtf("INT1", (unsigned long) get_idt_addr(&boot_idt[DB_VECTOR])); 5086 disable_mtf(); 5087 5088 enter_guest(); 5089 skip_exit_vmcall(); 5090 handle_exception(DB_VECTOR, old_db); 5091 vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | INTR_TYPE_OTHER_EVENT); 5092 enter_guest(); 5093 report_mtf("injected MTF", (unsigned long) &test_mtf4); 5094 enter_guest(); 5095 } 5096 5097 extern char vmx_mtf_pdpte_guest_begin; 5098 extern char vmx_mtf_pdpte_guest_end; 5099 5100 asm("vmx_mtf_pdpte_guest_begin:\n\t" 5101 "mov %cr0, %rax\n\t" /* save CR0 with PG=1 */ 5102 "vmcall\n\t" /* on return from this CR0.PG=0 */ 5103 "mov %rax, %cr0\n\t" /* restore CR0.PG=1 to enter PAE mode */ 5104 "vmcall\n\t" 5105 "retq\n\t" 5106 "vmx_mtf_pdpte_guest_end:"); 5107 5108 static void vmx_mtf_pdpte_test(void) 5109 { 5110 void *test_mtf_pdpte_guest; 5111 pteval_t *pdpt; 5112 u32 guest_ar_cs; 5113 u64 guest_efer; 5114 pteval_t *pte; 5115 u64 guest_cr0; 5116 u64 guest_cr3; 5117 u64 guest_cr4; 5118 u64 ent_ctls; 5119 int i; 5120 5121 if (setup_ept(false)) 5122 return; 5123 5124 if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) { 5125 report_skip("%s : \"Monitor trap flag\" exec control not supported", __func__); 5126 return; 5127 } 5128 5129 if (!(ctrl_cpu_rev[1].clr & CPU_URG)) { 5130 report_skip("%s : \"Unrestricted guest\" exec control not supported", __func__); 5131 return; 5132 } 5133 5134 vmcs_write(EXC_BITMAP, ~0); 5135 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG); 5136 5137 /* 5138 * Copy the guest code to an identity-mapped page. 5139 */ 5140 test_mtf_pdpte_guest = alloc_page(); 5141 memcpy(test_mtf_pdpte_guest, &vmx_mtf_pdpte_guest_begin, 5142 &vmx_mtf_pdpte_guest_end - &vmx_mtf_pdpte_guest_begin); 5143 5144 test_set_guest(test_mtf_pdpte_guest); 5145 5146 enter_guest(); 5147 skip_exit_vmcall(); 5148 5149 /* 5150 * Put the guest in non-paged 32-bit protected mode, ready to enter 5151 * PAE mode when CR0.PG is set. CR4.PAE will already have been set 5152 * when the guest started out in long mode. 5153 */ 5154 ent_ctls = vmcs_read(ENT_CONTROLS); 5155 vmcs_write(ENT_CONTROLS, ent_ctls & ~ENT_GUEST_64); 5156 5157 guest_efer = vmcs_read(GUEST_EFER); 5158 vmcs_write(GUEST_EFER, guest_efer & ~(EFER_LMA | EFER_LME)); 5159 5160 /* 5161 * Set CS access rights bits for 32-bit protected mode: 5162 * 3:0 B execute/read/accessed 5163 * 4 1 code or data 5164 * 6:5 0 descriptor privilege level 5165 * 7 1 present 5166 * 11:8 0 reserved 5167 * 12 0 available for use by system software 5168 * 13 0 64 bit mode not active 5169 * 14 1 default operation size 32-bit segment 5170 * 15 1 page granularity: segment limit in 4K units 5171 * 16 0 segment usable 5172 * 31:17 0 reserved 5173 */ 5174 guest_ar_cs = vmcs_read(GUEST_AR_CS); 5175 vmcs_write(GUEST_AR_CS, 0xc09b); 5176 5177 guest_cr0 = vmcs_read(GUEST_CR0); 5178 vmcs_write(GUEST_CR0, guest_cr0 & ~X86_CR0_PG); 5179 5180 guest_cr4 = vmcs_read(GUEST_CR4); 5181 vmcs_write(GUEST_CR4, guest_cr4 & ~X86_CR4_PCIDE); 5182 5183 guest_cr3 = vmcs_read(GUEST_CR3); 5184 5185 /* 5186 * Turn the 4-level page table into a PAE page table by following the 0th 5187 * PML4 entry to a PDPT page, and grab the first four PDPTEs from that 5188 * page. 5189 * 5190 * Why does this work? 5191 * 5192 * PAE uses 32-bit addressing which implies: 5193 * Bits 11:0 page offset 5194 * Bits 20:12 entry into 512-entry page table 5195 * Bits 29:21 entry into a 512-entry directory table 5196 * Bits 31:30 entry into the page directory pointer table. 5197 * Bits 63:32 zero 5198 * 5199 * As only 2 bits are needed to select the PDPTEs for the entire 5200 * 32-bit address space, take the first 4 PDPTEs in the level 3 page 5201 * directory pointer table. It doesn't matter which of these PDPTEs 5202 * are present because they must cover the guest code given that it 5203 * has already run successfully. 5204 * 5205 * Get a pointer to PTE for GVA=0 in the page directory pointer table 5206 */ 5207 pte = get_pte_level( 5208 (pgd_t *)phys_to_virt(guest_cr3 & ~X86_CR3_PCID_MASK), 0, 5209 PDPT_LEVEL); 5210 5211 /* 5212 * Need some memory for the 4-entry PAE page directory pointer 5213 * table. Use the end of the identity-mapped page where the guest code 5214 * is stored. There is definitely space as the guest code is only a 5215 * few bytes. 5216 */ 5217 pdpt = test_mtf_pdpte_guest + PAGE_SIZE - 4 * sizeof(pteval_t); 5218 5219 /* 5220 * Copy the first four PDPTEs into the PAE page table with reserved 5221 * bits cleared. Note that permission bits from the PML4E and PDPTE 5222 * are not propagated. 5223 */ 5224 for (i = 0; i < 4; i++) { 5225 TEST_ASSERT_EQ_MSG(0, (pte[i] & PDPTE64_RSVD_MASK), 5226 "PDPTE has invalid reserved bits"); 5227 TEST_ASSERT_EQ_MSG(0, (pte[i] & PDPTE64_PAGE_SIZE_MASK), 5228 "Cannot use 1GB super pages for PAE"); 5229 pdpt[i] = pte[i] & ~(PAE_PDPTE_RSVD_MASK); 5230 } 5231 vmcs_write(GUEST_CR3, virt_to_phys(pdpt)); 5232 5233 enable_mtf(); 5234 enter_guest(); 5235 assert_exit_reason(VMX_MTF); 5236 disable_mtf(); 5237 5238 /* 5239 * The four PDPTEs should have been loaded into the VMCS when 5240 * the guest set CR0.PG to enter PAE mode. 5241 */ 5242 for (i = 0; i < 4; i++) { 5243 u64 pdpte = vmcs_read(GUEST_PDPTE + 2 * i); 5244 5245 report(pdpte == pdpt[i], "PDPTE%d is 0x%lx (expected 0x%lx)", 5246 i, pdpte, pdpt[i]); 5247 } 5248 5249 /* 5250 * Now, try to enter the guest in PAE mode. If the PDPTEs in the 5251 * vmcs are wrong, this will fail. 5252 */ 5253 enter_guest(); 5254 skip_exit_vmcall(); 5255 5256 /* 5257 * Return guest to 64-bit mode and wrap up. 5258 */ 5259 vmcs_write(ENT_CONTROLS, ent_ctls); 5260 vmcs_write(GUEST_EFER, guest_efer); 5261 vmcs_write(GUEST_AR_CS, guest_ar_cs); 5262 vmcs_write(GUEST_CR0, guest_cr0); 5263 vmcs_write(GUEST_CR4, guest_cr4); 5264 vmcs_write(GUEST_CR3, guest_cr3); 5265 5266 enter_guest(); 5267 } 5268 5269 /* 5270 * Tests for VM-execution control fields 5271 */ 5272 static void test_vm_execution_ctls(void) 5273 { 5274 test_pin_based_ctls(); 5275 test_primary_processor_based_ctls(); 5276 test_secondary_processor_based_ctls(); 5277 test_cr3_targets(); 5278 test_io_bitmaps(); 5279 test_msr_bitmap(); 5280 test_apic_ctls(); 5281 test_tpr_threshold(); 5282 test_nmi_ctrls(); 5283 test_pml(); 5284 test_vpid(); 5285 test_ept_eptp(); 5286 test_vmx_preemption_timer(); 5287 } 5288 5289 /* 5290 * The following checks are performed for the VM-entry MSR-load address if 5291 * the VM-entry MSR-load count field is non-zero: 5292 * 5293 * - The lower 4 bits of the VM-entry MSR-load address must be 0. 5294 * The address should not set any bits beyond the processor's 5295 * physical-address width. 5296 * 5297 * - The address of the last byte in the VM-entry MSR-load area 5298 * should not set any bits beyond the processor's physical-address 5299 * width. The address of this last byte is VM-entry MSR-load address 5300 * + (MSR count * 16) - 1. (The arithmetic used for the computation 5301 * uses more bits than the processor's physical-address width.) 5302 * 5303 * 5304 * [Intel SDM] 5305 */ 5306 static void test_entry_msr_load(void) 5307 { 5308 entry_msr_load = alloc_page(); 5309 u64 tmp; 5310 u32 entry_msr_ld_cnt = 1; 5311 int i; 5312 u32 addr_len = 64; 5313 5314 vmcs_write(ENT_MSR_LD_CNT, entry_msr_ld_cnt); 5315 5316 /* Check first 4 bits of VM-entry MSR-load address */ 5317 for (i = 0; i < 4; i++) { 5318 tmp = (u64)entry_msr_load | 1ull << i; 5319 vmcs_write(ENTER_MSR_LD_ADDR, tmp); 5320 report_prefix_pushf("VM-entry MSR-load addr [4:0] %lx", 5321 tmp & 0xf); 5322 test_vmx_invalid_controls(); 5323 report_prefix_pop(); 5324 } 5325 5326 if (basic_msr.val & (1ul << 48)) 5327 addr_len = 32; 5328 5329 test_vmcs_addr_values("VM-entry-MSR-load address", 5330 ENTER_MSR_LD_ADDR, 16, false, false, 5331 4, addr_len - 1); 5332 5333 /* 5334 * Check last byte of VM-entry MSR-load address 5335 */ 5336 entry_msr_load = (struct vmx_msr_entry *)((u64)entry_msr_load & ~0xf); 5337 5338 for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len); 5339 i < 64; i++) { 5340 tmp = ((u64)entry_msr_load + entry_msr_ld_cnt * 16 - 1) | 5341 1ul << i; 5342 vmcs_write(ENTER_MSR_LD_ADDR, 5343 tmp - (entry_msr_ld_cnt * 16 - 1)); 5344 test_vmx_invalid_controls(); 5345 } 5346 5347 vmcs_write(ENT_MSR_LD_CNT, 2); 5348 vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 16); 5349 test_vmx_invalid_controls(); 5350 vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 32); 5351 test_vmx_valid_controls(); 5352 vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 48); 5353 test_vmx_valid_controls(); 5354 } 5355 5356 static struct vmx_state_area_test_data { 5357 u32 msr; 5358 u64 exp; 5359 bool enabled; 5360 } vmx_state_area_test_data; 5361 5362 static void guest_state_test_main(void) 5363 { 5364 u64 obs; 5365 struct vmx_state_area_test_data *data = &vmx_state_area_test_data; 5366 5367 while (1) { 5368 if (vmx_get_test_stage() == 2) 5369 break; 5370 5371 if (data->enabled) { 5372 obs = rdmsr(data->msr); 5373 report(data->exp == obs, 5374 "Guest state is 0x%lx (expected 0x%lx)", 5375 obs, data->exp); 5376 } 5377 5378 vmcall(); 5379 } 5380 5381 asm volatile("fnop"); 5382 } 5383 5384 static void test_guest_state(const char *test, bool xfail, u64 field, 5385 const char * field_name) 5386 { 5387 struct vmentry_result result; 5388 u8 abort_flags; 5389 5390 abort_flags = ABORT_ON_EARLY_VMENTRY_FAIL; 5391 if (!xfail) 5392 abort_flags = ABORT_ON_INVALID_GUEST_STATE; 5393 5394 __enter_guest(abort_flags, &result); 5395 5396 report(result.exit_reason.failed_vmentry == xfail && 5397 ((xfail && result.exit_reason.basic == VMX_FAIL_STATE) || 5398 (!xfail && result.exit_reason.basic == VMX_VMCALL)) && 5399 (!xfail || vmcs_read(EXI_QUALIFICATION) == ENTRY_FAIL_DEFAULT), 5400 "%s, %s = %lx", test, field_name, field); 5401 5402 if (!result.exit_reason.failed_vmentry) 5403 skip_exit_insn(); 5404 } 5405 5406 /* 5407 * Tests for VM-entry control fields 5408 */ 5409 static void test_vm_entry_ctls(void) 5410 { 5411 test_invalid_event_injection(); 5412 test_entry_msr_load(); 5413 } 5414 5415 /* 5416 * The following checks are performed for the VM-exit MSR-store address if 5417 * the VM-exit MSR-store count field is non-zero: 5418 * 5419 * - The lower 4 bits of the VM-exit MSR-store address must be 0. 5420 * The address should not set any bits beyond the processor's 5421 * physical-address width. 5422 * 5423 * - The address of the last byte in the VM-exit MSR-store area 5424 * should not set any bits beyond the processor's physical-address 5425 * width. The address of this last byte is VM-exit MSR-store address 5426 * + (MSR count * 16) - 1. (The arithmetic used for the computation 5427 * uses more bits than the processor's physical-address width.) 5428 * 5429 * If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits 5430 * in the range 63:32. 5431 * 5432 * [Intel SDM] 5433 */ 5434 static void test_exit_msr_store(void) 5435 { 5436 exit_msr_store = alloc_page(); 5437 u64 tmp; 5438 u32 exit_msr_st_cnt = 1; 5439 int i; 5440 u32 addr_len = 64; 5441 5442 vmcs_write(EXI_MSR_ST_CNT, exit_msr_st_cnt); 5443 5444 /* Check first 4 bits of VM-exit MSR-store address */ 5445 for (i = 0; i < 4; i++) { 5446 tmp = (u64)exit_msr_store | 1ull << i; 5447 vmcs_write(EXIT_MSR_ST_ADDR, tmp); 5448 report_prefix_pushf("VM-exit MSR-store addr [4:0] %lx", 5449 tmp & 0xf); 5450 test_vmx_invalid_controls(); 5451 report_prefix_pop(); 5452 } 5453 5454 if (basic_msr.val & (1ul << 48)) 5455 addr_len = 32; 5456 5457 test_vmcs_addr_values("VM-exit-MSR-store address", 5458 EXIT_MSR_ST_ADDR, 16, false, false, 5459 4, addr_len - 1); 5460 5461 /* 5462 * Check last byte of VM-exit MSR-store address 5463 */ 5464 exit_msr_store = (struct vmx_msr_entry *)((u64)exit_msr_store & ~0xf); 5465 5466 for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len); 5467 i < 64; i++) { 5468 tmp = ((u64)exit_msr_store + exit_msr_st_cnt * 16 - 1) | 5469 1ul << i; 5470 vmcs_write(EXIT_MSR_ST_ADDR, 5471 tmp - (exit_msr_st_cnt * 16 - 1)); 5472 test_vmx_invalid_controls(); 5473 } 5474 5475 vmcs_write(EXI_MSR_ST_CNT, 2); 5476 vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 16); 5477 test_vmx_invalid_controls(); 5478 vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 32); 5479 test_vmx_valid_controls(); 5480 vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 48); 5481 test_vmx_valid_controls(); 5482 } 5483 5484 /* 5485 * Tests for VM-exit controls 5486 */ 5487 static void test_vm_exit_ctls(void) 5488 { 5489 test_exit_msr_store(); 5490 } 5491 5492 /* 5493 * Check that the virtual CPU checks all of the VMX controls as 5494 * documented in the Intel SDM. 5495 */ 5496 static void vmx_controls_test(void) 5497 { 5498 /* 5499 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will 5500 * fail due to invalid guest state, should we make it that 5501 * far. 5502 */ 5503 vmcs_write(GUEST_RFLAGS, 0); 5504 5505 test_vm_execution_ctls(); 5506 test_vm_exit_ctls(); 5507 test_vm_entry_ctls(); 5508 } 5509 5510 struct apic_reg_virt_config { 5511 bool apic_register_virtualization; 5512 bool use_tpr_shadow; 5513 bool virtualize_apic_accesses; 5514 bool virtualize_x2apic_mode; 5515 bool activate_secondary_controls; 5516 }; 5517 5518 struct apic_reg_test { 5519 const char *name; 5520 struct apic_reg_virt_config apic_reg_virt_config; 5521 }; 5522 5523 struct apic_reg_virt_expectation { 5524 enum Reason rd_exit_reason; 5525 enum Reason wr_exit_reason; 5526 u32 val; 5527 u32 (*virt_fn)(u32); 5528 5529 /* 5530 * If false, accessing the APIC access address from L2 is treated as a 5531 * normal memory operation, rather than triggering virtualization. 5532 */ 5533 bool virtualize_apic_accesses; 5534 }; 5535 5536 static u32 apic_virt_identity(u32 val) 5537 { 5538 return val; 5539 } 5540 5541 static u32 apic_virt_nibble1(u32 val) 5542 { 5543 return val & 0xf0; 5544 } 5545 5546 static u32 apic_virt_byte3(u32 val) 5547 { 5548 return val & (0xff << 24); 5549 } 5550 5551 static bool apic_reg_virt_exit_expectation( 5552 u32 reg, struct apic_reg_virt_config *config, 5553 struct apic_reg_virt_expectation *expectation) 5554 { 5555 /* Good configs, where some L2 APIC accesses are virtualized. */ 5556 bool virtualize_apic_accesses_only = 5557 config->virtualize_apic_accesses && 5558 !config->use_tpr_shadow && 5559 !config->apic_register_virtualization && 5560 !config->virtualize_x2apic_mode && 5561 config->activate_secondary_controls; 5562 bool virtualize_apic_accesses_and_use_tpr_shadow = 5563 config->virtualize_apic_accesses && 5564 config->use_tpr_shadow && 5565 !config->apic_register_virtualization && 5566 !config->virtualize_x2apic_mode && 5567 config->activate_secondary_controls; 5568 bool apic_register_virtualization = 5569 config->virtualize_apic_accesses && 5570 config->use_tpr_shadow && 5571 config->apic_register_virtualization && 5572 !config->virtualize_x2apic_mode && 5573 config->activate_secondary_controls; 5574 5575 expectation->val = MAGIC_VAL_1; 5576 expectation->virt_fn = apic_virt_identity; 5577 expectation->virtualize_apic_accesses = 5578 config->virtualize_apic_accesses && 5579 config->activate_secondary_controls; 5580 if (virtualize_apic_accesses_only) { 5581 expectation->rd_exit_reason = VMX_APIC_ACCESS; 5582 expectation->wr_exit_reason = VMX_APIC_ACCESS; 5583 } else if (virtualize_apic_accesses_and_use_tpr_shadow) { 5584 switch (reg) { 5585 case APIC_TASKPRI: 5586 expectation->rd_exit_reason = VMX_VMCALL; 5587 expectation->wr_exit_reason = VMX_VMCALL; 5588 expectation->virt_fn = apic_virt_nibble1; 5589 break; 5590 default: 5591 expectation->rd_exit_reason = VMX_APIC_ACCESS; 5592 expectation->wr_exit_reason = VMX_APIC_ACCESS; 5593 } 5594 } else if (apic_register_virtualization) { 5595 expectation->rd_exit_reason = VMX_VMCALL; 5596 5597 switch (reg) { 5598 case APIC_ID: 5599 case APIC_EOI: 5600 case APIC_LDR: 5601 case APIC_DFR: 5602 case APIC_SPIV: 5603 case APIC_ESR: 5604 case APIC_ICR: 5605 case APIC_LVTT: 5606 case APIC_LVTTHMR: 5607 case APIC_LVTPC: 5608 case APIC_LVT0: 5609 case APIC_LVT1: 5610 case APIC_LVTERR: 5611 case APIC_TMICT: 5612 case APIC_TDCR: 5613 expectation->wr_exit_reason = VMX_APIC_WRITE; 5614 break; 5615 case APIC_LVR: 5616 case APIC_ISR ... APIC_ISR + 0x70: 5617 case APIC_TMR ... APIC_TMR + 0x70: 5618 case APIC_IRR ... APIC_IRR + 0x70: 5619 expectation->wr_exit_reason = VMX_APIC_ACCESS; 5620 break; 5621 case APIC_TASKPRI: 5622 expectation->wr_exit_reason = VMX_VMCALL; 5623 expectation->virt_fn = apic_virt_nibble1; 5624 break; 5625 case APIC_ICR2: 5626 expectation->wr_exit_reason = VMX_VMCALL; 5627 expectation->virt_fn = apic_virt_byte3; 5628 break; 5629 default: 5630 expectation->rd_exit_reason = VMX_APIC_ACCESS; 5631 expectation->wr_exit_reason = VMX_APIC_ACCESS; 5632 } 5633 } else if (!expectation->virtualize_apic_accesses) { 5634 /* 5635 * No APIC registers are directly virtualized. This includes 5636 * VTPR, which can be virtualized through MOV to/from CR8 via 5637 * the use TPR shadow control, but not through directly 5638 * accessing VTPR. 5639 */ 5640 expectation->rd_exit_reason = VMX_VMCALL; 5641 expectation->wr_exit_reason = VMX_VMCALL; 5642 } else { 5643 printf("Cannot parse APIC register virtualization config:\n" 5644 "\tvirtualize_apic_accesses: %d\n" 5645 "\tuse_tpr_shadow: %d\n" 5646 "\tapic_register_virtualization: %d\n" 5647 "\tvirtualize_x2apic_mode: %d\n" 5648 "\tactivate_secondary_controls: %d\n", 5649 config->virtualize_apic_accesses, 5650 config->use_tpr_shadow, 5651 config->apic_register_virtualization, 5652 config->virtualize_x2apic_mode, 5653 config->activate_secondary_controls); 5654 5655 return false; 5656 } 5657 5658 return true; 5659 } 5660 5661 struct apic_reg_test apic_reg_tests[] = { 5662 /* Good configs, where some L2 APIC accesses are virtualized. */ 5663 { 5664 .name = "Virtualize APIC accesses", 5665 .apic_reg_virt_config = { 5666 .virtualize_apic_accesses = true, 5667 .use_tpr_shadow = false, 5668 .apic_register_virtualization = false, 5669 .virtualize_x2apic_mode = false, 5670 .activate_secondary_controls = true, 5671 }, 5672 }, 5673 { 5674 .name = "Virtualize APIC accesses + Use TPR shadow", 5675 .apic_reg_virt_config = { 5676 .virtualize_apic_accesses = true, 5677 .use_tpr_shadow = true, 5678 .apic_register_virtualization = false, 5679 .virtualize_x2apic_mode = false, 5680 .activate_secondary_controls = true, 5681 }, 5682 }, 5683 { 5684 .name = "APIC-register virtualization", 5685 .apic_reg_virt_config = { 5686 .virtualize_apic_accesses = true, 5687 .use_tpr_shadow = true, 5688 .apic_register_virtualization = true, 5689 .virtualize_x2apic_mode = false, 5690 .activate_secondary_controls = true, 5691 }, 5692 }, 5693 5694 /* 5695 * Test that the secondary processor-based VM-execution controls are 5696 * correctly ignored when "activate secondary controls" is disabled. 5697 */ 5698 { 5699 .name = "Activate secondary controls off", 5700 .apic_reg_virt_config = { 5701 .virtualize_apic_accesses = true, 5702 .use_tpr_shadow = false, 5703 .apic_register_virtualization = true, 5704 .virtualize_x2apic_mode = true, 5705 .activate_secondary_controls = false, 5706 }, 5707 }, 5708 { 5709 .name = "Activate secondary controls off + Use TPR shadow", 5710 .apic_reg_virt_config = { 5711 .virtualize_apic_accesses = true, 5712 .use_tpr_shadow = true, 5713 .apic_register_virtualization = true, 5714 .virtualize_x2apic_mode = true, 5715 .activate_secondary_controls = false, 5716 }, 5717 }, 5718 5719 /* 5720 * Test that the APIC access address is treated like an arbitrary memory 5721 * address when "virtualize APIC accesses" is disabled. 5722 */ 5723 { 5724 .name = "Virtualize APIC accesses off + Use TPR shadow", 5725 .apic_reg_virt_config = { 5726 .virtualize_apic_accesses = false, 5727 .use_tpr_shadow = true, 5728 .apic_register_virtualization = true, 5729 .virtualize_x2apic_mode = true, 5730 .activate_secondary_controls = true, 5731 }, 5732 }, 5733 5734 /* 5735 * Test that VM entry fails due to invalid controls when 5736 * "APIC-register virtualization" is enabled while "use TPR shadow" is 5737 * disabled. 5738 */ 5739 { 5740 .name = "APIC-register virtualization + Use TPR shadow off", 5741 .apic_reg_virt_config = { 5742 .virtualize_apic_accesses = true, 5743 .use_tpr_shadow = false, 5744 .apic_register_virtualization = true, 5745 .virtualize_x2apic_mode = false, 5746 .activate_secondary_controls = true, 5747 }, 5748 }, 5749 5750 /* 5751 * Test that VM entry fails due to invalid controls when 5752 * "Virtualize x2APIC mode" is enabled while "use TPR shadow" is 5753 * disabled. 5754 */ 5755 { 5756 .name = "Virtualize x2APIC mode + Use TPR shadow off", 5757 .apic_reg_virt_config = { 5758 .virtualize_apic_accesses = false, 5759 .use_tpr_shadow = false, 5760 .apic_register_virtualization = false, 5761 .virtualize_x2apic_mode = true, 5762 .activate_secondary_controls = true, 5763 }, 5764 }, 5765 { 5766 .name = "Virtualize x2APIC mode + Use TPR shadow off v2", 5767 .apic_reg_virt_config = { 5768 .virtualize_apic_accesses = false, 5769 .use_tpr_shadow = false, 5770 .apic_register_virtualization = true, 5771 .virtualize_x2apic_mode = true, 5772 .activate_secondary_controls = true, 5773 }, 5774 }, 5775 5776 /* 5777 * Test that VM entry fails due to invalid controls when 5778 * "virtualize x2APIC mode" is enabled while "virtualize APIC accesses" 5779 * is enabled. 5780 */ 5781 { 5782 .name = "Virtualize x2APIC mode + Virtualize APIC accesses", 5783 .apic_reg_virt_config = { 5784 .virtualize_apic_accesses = true, 5785 .use_tpr_shadow = true, 5786 .apic_register_virtualization = false, 5787 .virtualize_x2apic_mode = true, 5788 .activate_secondary_controls = true, 5789 }, 5790 }, 5791 { 5792 .name = "Virtualize x2APIC mode + Virtualize APIC accesses v2", 5793 .apic_reg_virt_config = { 5794 .virtualize_apic_accesses = true, 5795 .use_tpr_shadow = true, 5796 .apic_register_virtualization = true, 5797 .virtualize_x2apic_mode = true, 5798 .activate_secondary_controls = true, 5799 }, 5800 }, 5801 }; 5802 5803 enum Apic_op { 5804 APIC_OP_XAPIC_RD, 5805 APIC_OP_XAPIC_WR, 5806 TERMINATE, 5807 }; 5808 5809 static u32 vmx_xapic_read(u32 *apic_access_address, u32 reg) 5810 { 5811 return *(volatile u32 *)((uintptr_t)apic_access_address + reg); 5812 } 5813 5814 static void vmx_xapic_write(u32 *apic_access_address, u32 reg, u32 val) 5815 { 5816 *(volatile u32 *)((uintptr_t)apic_access_address + reg) = val; 5817 } 5818 5819 struct apic_reg_virt_guest_args { 5820 enum Apic_op op; 5821 u32 *apic_access_address; 5822 u32 reg; 5823 u32 val; 5824 bool check_rd; 5825 u32 (*virt_fn)(u32); 5826 } apic_reg_virt_guest_args; 5827 5828 static void apic_reg_virt_guest(void) 5829 { 5830 volatile struct apic_reg_virt_guest_args *args = 5831 &apic_reg_virt_guest_args; 5832 5833 for (;;) { 5834 enum Apic_op op = args->op; 5835 u32 *apic_access_address = args->apic_access_address; 5836 u32 reg = args->reg; 5837 u32 val = args->val; 5838 bool check_rd = args->check_rd; 5839 u32 (*virt_fn)(u32) = args->virt_fn; 5840 5841 if (op == TERMINATE) 5842 break; 5843 5844 if (op == APIC_OP_XAPIC_RD) { 5845 u32 ret = vmx_xapic_read(apic_access_address, reg); 5846 5847 if (check_rd) { 5848 u32 want = virt_fn(val); 5849 u32 got = virt_fn(ret); 5850 5851 report(got == want, 5852 "read 0x%x, expected 0x%x.", got, want); 5853 } 5854 } else if (op == APIC_OP_XAPIC_WR) { 5855 vmx_xapic_write(apic_access_address, reg, val); 5856 } 5857 5858 /* 5859 * The L1 should always execute a vmcall after it's done testing 5860 * an individual APIC operation. This helps to validate that the 5861 * L1 and L2 are in sync with each other, as expected. 5862 */ 5863 vmcall(); 5864 } 5865 } 5866 5867 static void test_xapic_rd( 5868 u32 reg, struct apic_reg_virt_expectation *expectation, 5869 u32 *apic_access_address, u32 *virtual_apic_page) 5870 { 5871 u32 val = expectation->val; 5872 u32 exit_reason_want = expectation->rd_exit_reason; 5873 struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; 5874 5875 report_prefix_pushf("xapic - reading 0x%03x", reg); 5876 5877 /* Configure guest to do an xapic read */ 5878 args->op = APIC_OP_XAPIC_RD; 5879 args->apic_access_address = apic_access_address; 5880 args->reg = reg; 5881 args->val = val; 5882 args->check_rd = exit_reason_want == VMX_VMCALL; 5883 args->virt_fn = expectation->virt_fn; 5884 5885 /* Setup virtual APIC page */ 5886 if (!expectation->virtualize_apic_accesses) { 5887 apic_access_address[apic_reg_index(reg)] = val; 5888 virtual_apic_page[apic_reg_index(reg)] = 0; 5889 } else if (exit_reason_want == VMX_VMCALL) { 5890 apic_access_address[apic_reg_index(reg)] = 0; 5891 virtual_apic_page[apic_reg_index(reg)] = val; 5892 } 5893 5894 /* Enter guest */ 5895 enter_guest(); 5896 5897 /* 5898 * Validate the behavior and 5899 * pass a magic value back to the guest. 5900 */ 5901 if (exit_reason_want == VMX_APIC_ACCESS) { 5902 u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff; 5903 5904 assert_exit_reason(exit_reason_want); 5905 report(apic_page_offset == reg, 5906 "got APIC access exit @ page offset 0x%03x, want 0x%03x", 5907 apic_page_offset, reg); 5908 skip_exit_insn(); 5909 5910 /* Reenter guest so it can consume/check rcx and exit again. */ 5911 enter_guest(); 5912 } else if (exit_reason_want != VMX_VMCALL) { 5913 report_fail("Oops, bad exit expectation: %u.", exit_reason_want); 5914 } 5915 5916 skip_exit_vmcall(); 5917 report_prefix_pop(); 5918 } 5919 5920 static void test_xapic_wr( 5921 u32 reg, struct apic_reg_virt_expectation *expectation, 5922 u32 *apic_access_address, u32 *virtual_apic_page) 5923 { 5924 u32 val = expectation->val; 5925 u32 exit_reason_want = expectation->wr_exit_reason; 5926 struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; 5927 bool virtualized = 5928 expectation->virtualize_apic_accesses && 5929 (exit_reason_want == VMX_APIC_WRITE || 5930 exit_reason_want == VMX_VMCALL); 5931 bool checked = false; 5932 5933 report_prefix_pushf("xapic - writing 0x%x to 0x%03x", val, reg); 5934 5935 /* Configure guest to do an xapic read */ 5936 args->op = APIC_OP_XAPIC_WR; 5937 args->apic_access_address = apic_access_address; 5938 args->reg = reg; 5939 args->val = val; 5940 5941 /* Setup virtual APIC page */ 5942 if (virtualized || !expectation->virtualize_apic_accesses) { 5943 apic_access_address[apic_reg_index(reg)] = 0; 5944 virtual_apic_page[apic_reg_index(reg)] = 0; 5945 } 5946 5947 /* Enter guest */ 5948 enter_guest(); 5949 5950 /* 5951 * Validate the behavior and 5952 * pass a magic value back to the guest. 5953 */ 5954 if (exit_reason_want == VMX_APIC_ACCESS) { 5955 u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff; 5956 5957 assert_exit_reason(exit_reason_want); 5958 report(apic_page_offset == reg, 5959 "got APIC access exit @ page offset 0x%03x, want 0x%03x", 5960 apic_page_offset, reg); 5961 skip_exit_insn(); 5962 5963 /* Reenter guest so it can consume/check rcx and exit again. */ 5964 enter_guest(); 5965 } else if (exit_reason_want == VMX_APIC_WRITE) { 5966 assert_exit_reason(exit_reason_want); 5967 report(virtual_apic_page[apic_reg_index(reg)] == val, 5968 "got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%x", 5969 apic_reg_index(reg), 5970 virtual_apic_page[apic_reg_index(reg)], val); 5971 checked = true; 5972 5973 /* Reenter guest so it can consume/check rcx and exit again. */ 5974 enter_guest(); 5975 } else if (exit_reason_want != VMX_VMCALL) { 5976 report_fail("Oops, bad exit expectation: %u.", exit_reason_want); 5977 } 5978 5979 assert_exit_reason(VMX_VMCALL); 5980 if (virtualized && !checked) { 5981 u32 want = expectation->virt_fn(val); 5982 u32 got = virtual_apic_page[apic_reg_index(reg)]; 5983 got = expectation->virt_fn(got); 5984 5985 report(got == want, "exitless write; val is 0x%x, want 0x%x", 5986 got, want); 5987 } else if (!expectation->virtualize_apic_accesses && !checked) { 5988 u32 got = apic_access_address[apic_reg_index(reg)]; 5989 5990 report(got == val, 5991 "non-virtualized write; val is 0x%x, want 0x%x", got, 5992 val); 5993 } else if (!expectation->virtualize_apic_accesses && checked) { 5994 report_fail("Non-virtualized write was prematurely checked!"); 5995 } 5996 5997 skip_exit_vmcall(); 5998 report_prefix_pop(); 5999 } 6000 6001 enum Config_type { 6002 CONFIG_TYPE_GOOD, 6003 CONFIG_TYPE_UNSUPPORTED, 6004 CONFIG_TYPE_VMENTRY_FAILS_EARLY, 6005 }; 6006 6007 static enum Config_type configure_apic_reg_virt_test( 6008 struct apic_reg_virt_config *apic_reg_virt_config) 6009 { 6010 u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 6011 u32 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); 6012 /* Configs where L2 entry fails early, due to invalid controls. */ 6013 bool use_tpr_shadow_incorrectly_off = 6014 !apic_reg_virt_config->use_tpr_shadow && 6015 (apic_reg_virt_config->apic_register_virtualization || 6016 apic_reg_virt_config->virtualize_x2apic_mode) && 6017 apic_reg_virt_config->activate_secondary_controls; 6018 bool virtualize_apic_accesses_incorrectly_on = 6019 apic_reg_virt_config->virtualize_apic_accesses && 6020 apic_reg_virt_config->virtualize_x2apic_mode && 6021 apic_reg_virt_config->activate_secondary_controls; 6022 bool vmentry_fails_early = 6023 use_tpr_shadow_incorrectly_off || 6024 virtualize_apic_accesses_incorrectly_on; 6025 6026 if (apic_reg_virt_config->activate_secondary_controls) { 6027 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) { 6028 printf("VM-execution control \"activate secondary controls\" NOT supported.\n"); 6029 return CONFIG_TYPE_UNSUPPORTED; 6030 } 6031 cpu_exec_ctrl0 |= CPU_SECONDARY; 6032 } else { 6033 cpu_exec_ctrl0 &= ~CPU_SECONDARY; 6034 } 6035 6036 if (apic_reg_virt_config->virtualize_apic_accesses) { 6037 if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES)) { 6038 printf("VM-execution control \"virtualize APIC accesses\" NOT supported.\n"); 6039 return CONFIG_TYPE_UNSUPPORTED; 6040 } 6041 cpu_exec_ctrl1 |= CPU_VIRT_APIC_ACCESSES; 6042 } else { 6043 cpu_exec_ctrl1 &= ~CPU_VIRT_APIC_ACCESSES; 6044 } 6045 6046 if (apic_reg_virt_config->use_tpr_shadow) { 6047 if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) { 6048 printf("VM-execution control \"use TPR shadow\" NOT supported.\n"); 6049 return CONFIG_TYPE_UNSUPPORTED; 6050 } 6051 cpu_exec_ctrl0 |= CPU_TPR_SHADOW; 6052 } else { 6053 cpu_exec_ctrl0 &= ~CPU_TPR_SHADOW; 6054 } 6055 6056 if (apic_reg_virt_config->apic_register_virtualization) { 6057 if (!(ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT)) { 6058 printf("VM-execution control \"APIC-register virtualization\" NOT supported.\n"); 6059 return CONFIG_TYPE_UNSUPPORTED; 6060 } 6061 cpu_exec_ctrl1 |= CPU_APIC_REG_VIRT; 6062 } else { 6063 cpu_exec_ctrl1 &= ~CPU_APIC_REG_VIRT; 6064 } 6065 6066 if (apic_reg_virt_config->virtualize_x2apic_mode) { 6067 if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_X2APIC)) { 6068 printf("VM-execution control \"virtualize x2APIC mode\" NOT supported.\n"); 6069 return CONFIG_TYPE_UNSUPPORTED; 6070 } 6071 cpu_exec_ctrl1 |= CPU_VIRT_X2APIC; 6072 } else { 6073 cpu_exec_ctrl1 &= ~CPU_VIRT_X2APIC; 6074 } 6075 6076 vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); 6077 vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); 6078 6079 if (vmentry_fails_early) 6080 return CONFIG_TYPE_VMENTRY_FAILS_EARLY; 6081 6082 return CONFIG_TYPE_GOOD; 6083 } 6084 6085 static bool cpu_has_apicv(void) 6086 { 6087 return ((ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT) && 6088 (ctrl_cpu_rev[1].clr & CPU_VINTD) && 6089 (ctrl_pin_rev.clr & PIN_POST_INTR)); 6090 } 6091 6092 /* Validates APIC register access across valid virtualization configurations. */ 6093 static void apic_reg_virt_test(void) 6094 { 6095 u32 *apic_access_address; 6096 u32 *virtual_apic_page; 6097 u64 control; 6098 u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 6099 u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); 6100 int i; 6101 struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; 6102 6103 if (!cpu_has_apicv()) { 6104 report_skip("%s : Not all required APICv bits supported", __func__); 6105 return; 6106 } 6107 6108 control = cpu_exec_ctrl1; 6109 control &= ~CPU_VINTD; 6110 vmcs_write(CPU_EXEC_CTRL1, control); 6111 6112 test_set_guest(apic_reg_virt_guest); 6113 6114 /* 6115 * From the SDM: The 1-setting of the "virtualize APIC accesses" 6116 * VM-execution is guaranteed to apply only if translations to the 6117 * APIC-access address use a 4-KByte page. 6118 */ 6119 apic_access_address = alloc_page(); 6120 force_4k_page(apic_access_address); 6121 vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_address)); 6122 6123 virtual_apic_page = alloc_page(); 6124 vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); 6125 6126 for (i = 0; i < ARRAY_SIZE(apic_reg_tests); i++) { 6127 struct apic_reg_test *apic_reg_test = &apic_reg_tests[i]; 6128 struct apic_reg_virt_config *apic_reg_virt_config = 6129 &apic_reg_test->apic_reg_virt_config; 6130 enum Config_type config_type; 6131 u32 reg; 6132 6133 printf("--- %s test ---\n", apic_reg_test->name); 6134 config_type = 6135 configure_apic_reg_virt_test(apic_reg_virt_config); 6136 if (config_type == CONFIG_TYPE_UNSUPPORTED) { 6137 printf("Skip because of missing features.\n"); 6138 continue; 6139 } 6140 6141 if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) { 6142 enter_guest_with_bad_controls(); 6143 continue; 6144 } 6145 6146 for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) { 6147 struct apic_reg_virt_expectation expectation = {}; 6148 bool ok; 6149 6150 ok = apic_reg_virt_exit_expectation( 6151 reg, apic_reg_virt_config, &expectation); 6152 if (!ok) { 6153 report_fail("Malformed test."); 6154 break; 6155 } 6156 6157 test_xapic_rd(reg, &expectation, apic_access_address, 6158 virtual_apic_page); 6159 test_xapic_wr(reg, &expectation, apic_access_address, 6160 virtual_apic_page); 6161 } 6162 } 6163 6164 /* Terminate the guest */ 6165 vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); 6166 vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); 6167 args->op = TERMINATE; 6168 enter_guest(); 6169 assert_exit_reason(VMX_VMCALL); 6170 } 6171 6172 struct virt_x2apic_mode_config { 6173 struct apic_reg_virt_config apic_reg_virt_config; 6174 bool virtual_interrupt_delivery; 6175 bool use_msr_bitmaps; 6176 bool disable_x2apic_msr_intercepts; 6177 bool disable_x2apic; 6178 }; 6179 6180 struct virt_x2apic_mode_test_case { 6181 const char *name; 6182 struct virt_x2apic_mode_config virt_x2apic_mode_config; 6183 }; 6184 6185 enum Virt_x2apic_mode_behavior_type { 6186 X2APIC_ACCESS_VIRTUALIZED, 6187 X2APIC_ACCESS_PASSED_THROUGH, 6188 X2APIC_ACCESS_TRIGGERS_GP, 6189 }; 6190 6191 struct virt_x2apic_mode_expectation { 6192 enum Reason rd_exit_reason; 6193 enum Reason wr_exit_reason; 6194 6195 /* 6196 * RDMSR and WRMSR handle 64-bit values. However, except for ICR, all of 6197 * the x2APIC registers are 32 bits. Notice: 6198 * 1. vmx_x2apic_read() clears the upper 32 bits for 32-bit registers. 6199 * 2. vmx_x2apic_write() expects the val arg to be well-formed. 6200 */ 6201 u64 rd_val; 6202 u64 wr_val; 6203 6204 /* 6205 * Compares input to virtualized output; 6206 * 1st arg is pointer to return expected virtualization output. 6207 */ 6208 u64 (*virt_fn)(u64); 6209 6210 enum Virt_x2apic_mode_behavior_type rd_behavior; 6211 enum Virt_x2apic_mode_behavior_type wr_behavior; 6212 bool wr_only; 6213 }; 6214 6215 static u64 virt_x2apic_mode_identity(u64 val) 6216 { 6217 return val; 6218 } 6219 6220 static u64 virt_x2apic_mode_nibble1(u64 val) 6221 { 6222 return val & 0xf0; 6223 } 6224 6225 static void virt_x2apic_mode_rd_expectation( 6226 u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic, 6227 bool apic_register_virtualization, bool virtual_interrupt_delivery, 6228 struct virt_x2apic_mode_expectation *expectation) 6229 { 6230 enum x2apic_reg_semantics semantics = get_x2apic_reg_semantics(reg); 6231 6232 expectation->rd_exit_reason = VMX_VMCALL; 6233 expectation->virt_fn = virt_x2apic_mode_identity; 6234 if (virt_x2apic_mode_on && apic_register_virtualization) { 6235 expectation->rd_val = MAGIC_VAL_1; 6236 if (reg == APIC_PROCPRI && virtual_interrupt_delivery) 6237 expectation->virt_fn = virt_x2apic_mode_nibble1; 6238 else if (reg == APIC_TASKPRI) 6239 expectation->virt_fn = virt_x2apic_mode_nibble1; 6240 expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED; 6241 } else if (virt_x2apic_mode_on && !apic_register_virtualization && 6242 reg == APIC_TASKPRI) { 6243 expectation->rd_val = MAGIC_VAL_1; 6244 expectation->virt_fn = virt_x2apic_mode_nibble1; 6245 expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED; 6246 } else if (!disable_x2apic && (semantics & X2APIC_READABLE)) { 6247 expectation->rd_val = apic_read(reg); 6248 expectation->rd_behavior = X2APIC_ACCESS_PASSED_THROUGH; 6249 } else { 6250 expectation->rd_behavior = X2APIC_ACCESS_TRIGGERS_GP; 6251 } 6252 } 6253 6254 /* 6255 * get_x2apic_wr_val() creates an innocuous write value for an x2APIC register. 6256 * 6257 * For writable registers, get_x2apic_wr_val() deposits the write value into the 6258 * val pointer arg and returns true. For non-writable registers, val is not 6259 * modified and get_x2apic_wr_val() returns false. 6260 */ 6261 static bool get_x2apic_wr_val(u32 reg, u64 *val) 6262 { 6263 switch (reg) { 6264 case APIC_TASKPRI: 6265 /* Bits 31:8 are reserved. */ 6266 *val &= 0xff; 6267 break; 6268 case APIC_EOI: 6269 case APIC_ESR: 6270 case APIC_TMICT: 6271 /* 6272 * EOI, ESR: WRMSR of a non-zero value causes #GP(0). 6273 * TMICT: A write of 0 to the initial-count register effectively 6274 * stops the local APIC timer, in both one-shot and 6275 * periodic mode. 6276 */ 6277 *val = 0; 6278 break; 6279 case APIC_SPIV: 6280 case APIC_LVTT: 6281 case APIC_LVTTHMR: 6282 case APIC_LVTPC: 6283 case APIC_LVT0: 6284 case APIC_LVT1: 6285 case APIC_LVTERR: 6286 case APIC_TDCR: 6287 /* 6288 * To avoid writing a 1 to a reserved bit or causing some other 6289 * unintended side effect, read the current value and use it as 6290 * the write value. 6291 */ 6292 *val = apic_read(reg); 6293 break; 6294 case APIC_CMCI: 6295 if (!apic_lvt_entry_supported(6)) 6296 return false; 6297 *val = apic_read(reg); 6298 break; 6299 case APIC_ICR: 6300 *val = 0x40000 | 0xf1; 6301 break; 6302 case APIC_SELF_IPI: 6303 /* 6304 * With special processing (i.e., virtualize x2APIC mode + 6305 * virtual interrupt delivery), writing zero causes an 6306 * APIC-write VM exit. We plan to add a test for enabling 6307 * "virtual-interrupt delivery" in VMCS12, and that's where we 6308 * will test a self IPI with special processing. 6309 */ 6310 *val = 0x0; 6311 break; 6312 default: 6313 return false; 6314 } 6315 6316 return true; 6317 } 6318 6319 static bool special_processing_applies(u32 reg, u64 *val, 6320 bool virt_int_delivery) 6321 { 6322 bool special_processing = 6323 (reg == APIC_TASKPRI) || 6324 (virt_int_delivery && 6325 (reg == APIC_EOI || reg == APIC_SELF_IPI)); 6326 6327 if (special_processing) { 6328 TEST_ASSERT(get_x2apic_wr_val(reg, val)); 6329 return true; 6330 } 6331 6332 return false; 6333 } 6334 6335 static void virt_x2apic_mode_wr_expectation( 6336 u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic, 6337 bool virt_int_delivery, 6338 struct virt_x2apic_mode_expectation *expectation) 6339 { 6340 expectation->wr_exit_reason = VMX_VMCALL; 6341 expectation->wr_val = MAGIC_VAL_1; 6342 expectation->wr_only = false; 6343 6344 if (virt_x2apic_mode_on && 6345 special_processing_applies(reg, &expectation->wr_val, 6346 virt_int_delivery)) { 6347 expectation->wr_behavior = X2APIC_ACCESS_VIRTUALIZED; 6348 if (reg == APIC_SELF_IPI) 6349 expectation->wr_exit_reason = VMX_APIC_WRITE; 6350 } else if (!disable_x2apic && 6351 get_x2apic_wr_val(reg, &expectation->wr_val)) { 6352 expectation->wr_behavior = X2APIC_ACCESS_PASSED_THROUGH; 6353 if (reg == APIC_EOI || reg == APIC_SELF_IPI) 6354 expectation->wr_only = true; 6355 if (reg == APIC_ICR) 6356 expectation->wr_exit_reason = VMX_EXTINT; 6357 } else { 6358 expectation->wr_behavior = X2APIC_ACCESS_TRIGGERS_GP; 6359 /* 6360 * Writing 1 to a reserved bit triggers a #GP. 6361 * Thus, set the write value to 0, which seems 6362 * the most likely to detect a missed #GP. 6363 */ 6364 expectation->wr_val = 0; 6365 } 6366 } 6367 6368 static void virt_x2apic_mode_exit_expectation( 6369 u32 reg, struct virt_x2apic_mode_config *config, 6370 struct virt_x2apic_mode_expectation *expectation) 6371 { 6372 struct apic_reg_virt_config *base_config = 6373 &config->apic_reg_virt_config; 6374 bool virt_x2apic_mode_on = 6375 base_config->virtualize_x2apic_mode && 6376 config->use_msr_bitmaps && 6377 config->disable_x2apic_msr_intercepts && 6378 base_config->activate_secondary_controls; 6379 6380 virt_x2apic_mode_wr_expectation( 6381 reg, virt_x2apic_mode_on, config->disable_x2apic, 6382 config->virtual_interrupt_delivery, expectation); 6383 virt_x2apic_mode_rd_expectation( 6384 reg, virt_x2apic_mode_on, config->disable_x2apic, 6385 base_config->apic_register_virtualization, 6386 config->virtual_interrupt_delivery, expectation); 6387 } 6388 6389 struct virt_x2apic_mode_test_case virt_x2apic_mode_tests[] = { 6390 /* 6391 * Baseline "virtualize x2APIC mode" configuration: 6392 * - virtualize x2APIC mode 6393 * - virtual-interrupt delivery 6394 * - APIC-register virtualization 6395 * - x2APIC MSR intercepts disabled 6396 * 6397 * Reads come from virtual APIC page, special processing applies to 6398 * VTPR, EOI, and SELF IPI, and all other writes pass through to L1 6399 * APIC. 6400 */ 6401 { 6402 .name = "Baseline", 6403 .virt_x2apic_mode_config = { 6404 .virtual_interrupt_delivery = true, 6405 .use_msr_bitmaps = true, 6406 .disable_x2apic_msr_intercepts = true, 6407 .disable_x2apic = false, 6408 .apic_reg_virt_config = { 6409 .apic_register_virtualization = true, 6410 .use_tpr_shadow = true, 6411 .virtualize_apic_accesses = false, 6412 .virtualize_x2apic_mode = true, 6413 .activate_secondary_controls = true, 6414 }, 6415 }, 6416 }, 6417 { 6418 .name = "Baseline w/ x2apic disabled", 6419 .virt_x2apic_mode_config = { 6420 .virtual_interrupt_delivery = true, 6421 .use_msr_bitmaps = true, 6422 .disable_x2apic_msr_intercepts = true, 6423 .disable_x2apic = true, 6424 .apic_reg_virt_config = { 6425 .apic_register_virtualization = true, 6426 .use_tpr_shadow = true, 6427 .virtualize_apic_accesses = false, 6428 .virtualize_x2apic_mode = true, 6429 .activate_secondary_controls = true, 6430 }, 6431 }, 6432 }, 6433 6434 /* 6435 * Baseline, minus virtual-interrupt delivery. Reads come from virtual 6436 * APIC page, special processing applies to VTPR, and all other writes 6437 * pass through to L1 APIC. 6438 */ 6439 { 6440 .name = "Baseline - virtual interrupt delivery", 6441 .virt_x2apic_mode_config = { 6442 .virtual_interrupt_delivery = false, 6443 .use_msr_bitmaps = true, 6444 .disable_x2apic_msr_intercepts = true, 6445 .disable_x2apic = false, 6446 .apic_reg_virt_config = { 6447 .apic_register_virtualization = true, 6448 .use_tpr_shadow = true, 6449 .virtualize_apic_accesses = false, 6450 .virtualize_x2apic_mode = true, 6451 .activate_secondary_controls = true, 6452 }, 6453 }, 6454 }, 6455 6456 /* 6457 * Baseline, minus APIC-register virtualization. x2APIC reads pass 6458 * through to L1's APIC, unless reading VTPR 6459 */ 6460 { 6461 .name = "Virtualize x2APIC mode, no APIC reg virt", 6462 .virt_x2apic_mode_config = { 6463 .virtual_interrupt_delivery = true, 6464 .use_msr_bitmaps = true, 6465 .disable_x2apic_msr_intercepts = true, 6466 .disable_x2apic = false, 6467 .apic_reg_virt_config = { 6468 .apic_register_virtualization = false, 6469 .use_tpr_shadow = true, 6470 .virtualize_apic_accesses = false, 6471 .virtualize_x2apic_mode = true, 6472 .activate_secondary_controls = true, 6473 }, 6474 }, 6475 }, 6476 { 6477 .name = "Virtualize x2APIC mode, no APIC reg virt, x2APIC off", 6478 .virt_x2apic_mode_config = { 6479 .virtual_interrupt_delivery = true, 6480 .use_msr_bitmaps = true, 6481 .disable_x2apic_msr_intercepts = true, 6482 .disable_x2apic = true, 6483 .apic_reg_virt_config = { 6484 .apic_register_virtualization = false, 6485 .use_tpr_shadow = true, 6486 .virtualize_apic_accesses = false, 6487 .virtualize_x2apic_mode = true, 6488 .activate_secondary_controls = true, 6489 }, 6490 }, 6491 }, 6492 6493 /* 6494 * Enable "virtualize x2APIC mode" and "APIC-register virtualization", 6495 * and disable intercepts for the x2APIC MSRs, but fail to enable 6496 * "activate secondary controls" (i.e. L2 gets access to L1's x2APIC 6497 * MSRs). 6498 */ 6499 { 6500 .name = "Fail to enable activate secondary controls", 6501 .virt_x2apic_mode_config = { 6502 .virtual_interrupt_delivery = true, 6503 .use_msr_bitmaps = true, 6504 .disable_x2apic_msr_intercepts = true, 6505 .disable_x2apic = false, 6506 .apic_reg_virt_config = { 6507 .apic_register_virtualization = true, 6508 .use_tpr_shadow = true, 6509 .virtualize_apic_accesses = false, 6510 .virtualize_x2apic_mode = true, 6511 .activate_secondary_controls = false, 6512 }, 6513 }, 6514 }, 6515 6516 /* 6517 * Enable "APIC-register virtualization" and enable "activate secondary 6518 * controls" and disable intercepts for the x2APIC MSRs, but do not 6519 * enable the "virtualize x2APIC mode" VM-execution control (i.e. L2 6520 * gets access to L1's x2APIC MSRs). 6521 */ 6522 { 6523 .name = "Fail to enable virtualize x2APIC mode", 6524 .virt_x2apic_mode_config = { 6525 .virtual_interrupt_delivery = true, 6526 .use_msr_bitmaps = true, 6527 .disable_x2apic_msr_intercepts = true, 6528 .disable_x2apic = false, 6529 .apic_reg_virt_config = { 6530 .apic_register_virtualization = true, 6531 .use_tpr_shadow = true, 6532 .virtualize_apic_accesses = false, 6533 .virtualize_x2apic_mode = false, 6534 .activate_secondary_controls = true, 6535 }, 6536 }, 6537 }, 6538 6539 /* 6540 * Disable "Virtualize x2APIC mode", disable x2APIC MSR intercepts, and 6541 * enable "APIC-register virtualization" --> L2 gets L1's x2APIC MSRs. 6542 */ 6543 { 6544 .name = "Baseline", 6545 .virt_x2apic_mode_config = { 6546 .virtual_interrupt_delivery = true, 6547 .use_msr_bitmaps = true, 6548 .disable_x2apic_msr_intercepts = true, 6549 .disable_x2apic = false, 6550 .apic_reg_virt_config = { 6551 .apic_register_virtualization = true, 6552 .use_tpr_shadow = true, 6553 .virtualize_apic_accesses = false, 6554 .virtualize_x2apic_mode = false, 6555 .activate_secondary_controls = true, 6556 }, 6557 }, 6558 }, 6559 }; 6560 6561 enum X2apic_op { 6562 X2APIC_OP_RD, 6563 X2APIC_OP_WR, 6564 X2APIC_TERMINATE, 6565 }; 6566 6567 static u64 vmx_x2apic_read(u32 reg) 6568 { 6569 u32 msr_addr = x2apic_msr(reg); 6570 u64 val; 6571 6572 val = rdmsr(msr_addr); 6573 6574 return val; 6575 } 6576 6577 static void vmx_x2apic_write(u32 reg, u64 val) 6578 { 6579 u32 msr_addr = x2apic_msr(reg); 6580 6581 wrmsr(msr_addr, val); 6582 } 6583 6584 struct virt_x2apic_mode_guest_args { 6585 enum X2apic_op op; 6586 u32 reg; 6587 u64 val; 6588 bool should_gp; 6589 u64 (*virt_fn)(u64); 6590 } virt_x2apic_mode_guest_args; 6591 6592 static volatile bool handle_x2apic_gp_ran; 6593 static volatile u32 handle_x2apic_gp_insn_len; 6594 static void handle_x2apic_gp(struct ex_regs *regs) 6595 { 6596 handle_x2apic_gp_ran = true; 6597 regs->rip += handle_x2apic_gp_insn_len; 6598 } 6599 6600 static handler setup_x2apic_gp_handler(void) 6601 { 6602 handler old_handler; 6603 6604 old_handler = handle_exception(GP_VECTOR, handle_x2apic_gp); 6605 /* RDMSR and WRMSR are both 2 bytes, assuming no prefixes. */ 6606 handle_x2apic_gp_insn_len = 2; 6607 6608 return old_handler; 6609 } 6610 6611 static void teardown_x2apic_gp_handler(handler old_handler) 6612 { 6613 handle_exception(GP_VECTOR, old_handler); 6614 6615 /* 6616 * Defensively reset instruction length, so that if the handler is 6617 * incorrectly used, it will loop infinitely, rather than run off into 6618 * la la land. 6619 */ 6620 handle_x2apic_gp_insn_len = 0; 6621 handle_x2apic_gp_ran = false; 6622 } 6623 6624 static void virt_x2apic_mode_guest(void) 6625 { 6626 volatile struct virt_x2apic_mode_guest_args *args = 6627 &virt_x2apic_mode_guest_args; 6628 6629 for (;;) { 6630 enum X2apic_op op = args->op; 6631 u32 reg = args->reg; 6632 u64 val = args->val; 6633 bool should_gp = args->should_gp; 6634 u64 (*virt_fn)(u64) = args->virt_fn; 6635 handler old_handler; 6636 6637 if (op == X2APIC_TERMINATE) 6638 break; 6639 6640 if (should_gp) { 6641 TEST_ASSERT(!handle_x2apic_gp_ran); 6642 old_handler = setup_x2apic_gp_handler(); 6643 } 6644 6645 if (op == X2APIC_OP_RD) { 6646 u64 ret = vmx_x2apic_read(reg); 6647 6648 if (!should_gp) { 6649 u64 want = virt_fn(val); 6650 u64 got = virt_fn(ret); 6651 6652 report(got == want, 6653 "APIC read; got 0x%lx, want 0x%lx.", 6654 got, want); 6655 } 6656 } else if (op == X2APIC_OP_WR) { 6657 vmx_x2apic_write(reg, val); 6658 } 6659 6660 if (should_gp) { 6661 report(handle_x2apic_gp_ran, 6662 "x2APIC op triggered GP."); 6663 teardown_x2apic_gp_handler(old_handler); 6664 } 6665 6666 /* 6667 * The L1 should always execute a vmcall after it's done testing 6668 * an individual APIC operation. This helps to validate that the 6669 * L1 and L2 are in sync with each other, as expected. 6670 */ 6671 vmcall(); 6672 } 6673 } 6674 6675 static void test_x2apic_rd( 6676 u32 reg, struct virt_x2apic_mode_expectation *expectation, 6677 u32 *virtual_apic_page) 6678 { 6679 u64 val = expectation->rd_val; 6680 u32 exit_reason_want = expectation->rd_exit_reason; 6681 struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; 6682 6683 report_prefix_pushf("x2apic - reading 0x%03x", reg); 6684 6685 /* Configure guest to do an x2apic read */ 6686 args->op = X2APIC_OP_RD; 6687 args->reg = reg; 6688 args->val = val; 6689 args->should_gp = expectation->rd_behavior == X2APIC_ACCESS_TRIGGERS_GP; 6690 args->virt_fn = expectation->virt_fn; 6691 6692 /* Setup virtual APIC page */ 6693 if (expectation->rd_behavior == X2APIC_ACCESS_VIRTUALIZED) 6694 virtual_apic_page[apic_reg_index(reg)] = (u32)val; 6695 6696 /* Enter guest */ 6697 enter_guest(); 6698 6699 if (exit_reason_want != VMX_VMCALL) { 6700 report_fail("Oops, bad exit expectation: %u.", exit_reason_want); 6701 } 6702 6703 skip_exit_vmcall(); 6704 report_prefix_pop(); 6705 } 6706 6707 static volatile bool handle_x2apic_ipi_ran; 6708 static void handle_x2apic_ipi(isr_regs_t *regs) 6709 { 6710 handle_x2apic_ipi_ran = true; 6711 eoi(); 6712 } 6713 6714 static void test_x2apic_wr( 6715 u32 reg, struct virt_x2apic_mode_expectation *expectation, 6716 u32 *virtual_apic_page) 6717 { 6718 u64 val = expectation->wr_val; 6719 u32 exit_reason_want = expectation->wr_exit_reason; 6720 struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; 6721 int ipi_vector = 0xf1; 6722 u32 restore_val = 0; 6723 6724 report_prefix_pushf("x2apic - writing 0x%lx to 0x%03x", val, reg); 6725 6726 /* Configure guest to do an x2apic read */ 6727 args->op = X2APIC_OP_WR; 6728 args->reg = reg; 6729 args->val = val; 6730 args->should_gp = expectation->wr_behavior == X2APIC_ACCESS_TRIGGERS_GP; 6731 6732 /* Setup virtual APIC page */ 6733 if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) 6734 virtual_apic_page[apic_reg_index(reg)] = 0; 6735 if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH && !expectation->wr_only) 6736 restore_val = apic_read(reg); 6737 6738 /* Setup IPI handler */ 6739 handle_x2apic_ipi_ran = false; 6740 handle_irq(ipi_vector, handle_x2apic_ipi); 6741 6742 /* Enter guest */ 6743 enter_guest(); 6744 6745 /* 6746 * Validate the behavior and 6747 * pass a magic value back to the guest. 6748 */ 6749 if (exit_reason_want == VMX_EXTINT) { 6750 assert_exit_reason(exit_reason_want); 6751 6752 /* Clear the external interrupt. */ 6753 sti_nop_cli(); 6754 report(handle_x2apic_ipi_ran, 6755 "Got pending interrupt after IRQ enabled."); 6756 6757 enter_guest(); 6758 } else if (exit_reason_want == VMX_APIC_WRITE) { 6759 assert_exit_reason(exit_reason_want); 6760 report(virtual_apic_page[apic_reg_index(reg)] == val, 6761 "got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%lx", 6762 apic_reg_index(reg), 6763 virtual_apic_page[apic_reg_index(reg)], val); 6764 6765 /* Reenter guest so it can consume/check rcx and exit again. */ 6766 enter_guest(); 6767 } else if (exit_reason_want != VMX_VMCALL) { 6768 report_fail("Oops, bad exit expectation: %u.", exit_reason_want); 6769 } 6770 6771 assert_exit_reason(VMX_VMCALL); 6772 if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) { 6773 u64 want = val; 6774 u32 got = virtual_apic_page[apic_reg_index(reg)]; 6775 6776 report(got == want, "x2APIC write; got 0x%x, want 0x%lx", got, 6777 want); 6778 } else if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH) { 6779 if (!expectation->wr_only) { 6780 u32 got = apic_read(reg); 6781 bool ok; 6782 6783 /* 6784 * When L1's TPR is passed through to L2, the lower 6785 * nibble can be lost. For example, if L2 executes 6786 * WRMSR(0x808, 0x78), then, L1 might read 0x70. 6787 * 6788 * Here's how the lower nibble can get lost: 6789 * 1. L2 executes WRMSR(0x808, 0x78). 6790 * 2. L2 exits to L0 with a WRMSR exit. 6791 * 3. L0 emulates WRMSR, by writing L1's TPR. 6792 * 4. L0 re-enters L2. 6793 * 5. L2 exits to L0 (reason doesn't matter). 6794 * 6. L0 reflects L2's exit to L1. 6795 * 7. Before entering L1, L0 exits to user-space 6796 * (e.g., to satisfy TPR access reporting). 6797 * 8. User-space executes KVM_SET_REGS ioctl, which 6798 * clears the lower nibble of L1's TPR. 6799 */ 6800 if (reg == APIC_TASKPRI) { 6801 got = apic_virt_nibble1(got); 6802 val = apic_virt_nibble1(val); 6803 } 6804 6805 ok = got == val; 6806 report(ok, 6807 "non-virtualized write; val is 0x%x, want 0x%lx", 6808 got, val); 6809 apic_write(reg, restore_val); 6810 } else { 6811 report_pass("non-virtualized and write-only OK"); 6812 } 6813 } 6814 skip_exit_insn(); 6815 6816 report_prefix_pop(); 6817 } 6818 6819 static enum Config_type configure_virt_x2apic_mode_test( 6820 struct virt_x2apic_mode_config *virt_x2apic_mode_config, 6821 u8 *msr_bitmap_page) 6822 { 6823 int msr; 6824 u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 6825 u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); 6826 6827 /* x2apic-specific VMCS config */ 6828 if (virt_x2apic_mode_config->use_msr_bitmaps) { 6829 /* virt_x2apic_mode_test() checks for MSR bitmaps support */ 6830 cpu_exec_ctrl0 |= CPU_MSR_BITMAP; 6831 } else { 6832 cpu_exec_ctrl0 &= ~CPU_MSR_BITMAP; 6833 } 6834 6835 if (virt_x2apic_mode_config->virtual_interrupt_delivery) { 6836 if (!(ctrl_cpu_rev[1].clr & CPU_VINTD)) { 6837 report_skip("%s : \"virtual-interrupt delivery\" exec control not supported", __func__); 6838 return CONFIG_TYPE_UNSUPPORTED; 6839 } 6840 cpu_exec_ctrl1 |= CPU_VINTD; 6841 } else { 6842 cpu_exec_ctrl1 &= ~CPU_VINTD; 6843 } 6844 6845 vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); 6846 vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); 6847 6848 /* x2APIC MSR intercepts are usually off for "Virtualize x2APIC mode" */ 6849 for (msr = 0x800; msr <= 0x8ff; msr++) { 6850 if (virt_x2apic_mode_config->disable_x2apic_msr_intercepts) { 6851 clear_bit(msr, msr_bitmap_page + 0x000); 6852 clear_bit(msr, msr_bitmap_page + 0x800); 6853 } else { 6854 set_bit(msr, msr_bitmap_page + 0x000); 6855 set_bit(msr, msr_bitmap_page + 0x800); 6856 } 6857 } 6858 6859 /* x2APIC mode can impact virtualization */ 6860 reset_apic(); 6861 if (!virt_x2apic_mode_config->disable_x2apic) 6862 enable_x2apic(); 6863 6864 return configure_apic_reg_virt_test( 6865 &virt_x2apic_mode_config->apic_reg_virt_config); 6866 } 6867 6868 static void virt_x2apic_mode_test(void) 6869 { 6870 u32 *virtual_apic_page; 6871 u8 *msr_bitmap_page; 6872 u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 6873 u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); 6874 int i; 6875 struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; 6876 6877 if (!cpu_has_apicv()) { 6878 report_skip("%s : Not all required APICv bits supported", __func__); 6879 return; 6880 } 6881 6882 /* 6883 * This is to exercise an issue in KVM's logic to merge L0's and L1's 6884 * MSR bitmaps. Previously, an L1 could get at L0's x2APIC MSRs by 6885 * writing the IA32_SPEC_CTRL MSR or the IA32_PRED_CMD MSRs. KVM would 6886 * then proceed to manipulate the MSR bitmaps, as if VMCS12 had the 6887 * "Virtualize x2APIC mod" control set, even when it didn't. 6888 */ 6889 if (this_cpu_has(X86_FEATURE_SPEC_CTRL)) 6890 wrmsr(MSR_IA32_SPEC_CTRL, 1); 6891 6892 /* 6893 * Check that VMCS12 supports: 6894 * - "Virtual-APIC address", indicated by "use TPR shadow" 6895 * - "MSR-bitmap address", indicated by "use MSR bitmaps" 6896 */ 6897 if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) { 6898 report_skip("%s : \"Use TPR shadow\" exec control not supported", __func__); 6899 return; 6900 } else if (!(ctrl_cpu_rev[0].clr & CPU_MSR_BITMAP)) { 6901 report_skip("%s : \"Use MSR bitmaps\" exec control not supported", __func__); 6902 return; 6903 } 6904 6905 test_set_guest(virt_x2apic_mode_guest); 6906 6907 virtual_apic_page = alloc_page(); 6908 vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); 6909 6910 msr_bitmap_page = alloc_page(); 6911 memset(msr_bitmap_page, 0xff, PAGE_SIZE); 6912 vmcs_write(MSR_BITMAP, virt_to_phys(msr_bitmap_page)); 6913 6914 for (i = 0; i < ARRAY_SIZE(virt_x2apic_mode_tests); i++) { 6915 struct virt_x2apic_mode_test_case *virt_x2apic_mode_test_case = 6916 &virt_x2apic_mode_tests[i]; 6917 struct virt_x2apic_mode_config *virt_x2apic_mode_config = 6918 &virt_x2apic_mode_test_case->virt_x2apic_mode_config; 6919 enum Config_type config_type; 6920 u32 reg; 6921 6922 printf("--- %s test ---\n", virt_x2apic_mode_test_case->name); 6923 config_type = 6924 configure_virt_x2apic_mode_test(virt_x2apic_mode_config, 6925 msr_bitmap_page); 6926 if (config_type == CONFIG_TYPE_UNSUPPORTED) { 6927 report_skip("Skip because of missing features."); 6928 continue; 6929 } else if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) { 6930 enter_guest_with_bad_controls(); 6931 continue; 6932 } 6933 6934 for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) { 6935 struct virt_x2apic_mode_expectation expectation; 6936 6937 virt_x2apic_mode_exit_expectation( 6938 reg, virt_x2apic_mode_config, &expectation); 6939 6940 test_x2apic_rd(reg, &expectation, virtual_apic_page); 6941 test_x2apic_wr(reg, &expectation, virtual_apic_page); 6942 } 6943 } 6944 6945 6946 /* Terminate the guest */ 6947 vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); 6948 vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); 6949 args->op = X2APIC_TERMINATE; 6950 enter_guest(); 6951 assert_exit_reason(VMX_VMCALL); 6952 } 6953 6954 static void test_ctl_reg(const char *cr_name, u64 cr, u64 fixed0, u64 fixed1) 6955 { 6956 u64 val; 6957 u64 cr_saved = vmcs_read(cr); 6958 int i; 6959 6960 val = fixed0 & fixed1; 6961 if (cr == HOST_CR4) 6962 vmcs_write(cr, val | X86_CR4_PAE); 6963 else 6964 vmcs_write(cr, val); 6965 report_prefix_pushf("%s %lx", cr_name, val); 6966 if (val == fixed0) 6967 test_vmx_vmlaunch(0); 6968 else 6969 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 6970 report_prefix_pop(); 6971 6972 for (i = 0; i < 64; i++) { 6973 6974 /* Set a bit when the corresponding bit in fixed1 is 0 */ 6975 if ((fixed1 & (1ull << i)) == 0) { 6976 if (cr == HOST_CR4 && ((1ull << i) & X86_CR4_SMEP || 6977 (1ull << i) & X86_CR4_SMAP)) 6978 continue; 6979 6980 vmcs_write(cr, cr_saved | (1ull << i)); 6981 report_prefix_pushf("%s %llx", cr_name, 6982 cr_saved | (1ull << i)); 6983 test_vmx_vmlaunch( 6984 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 6985 report_prefix_pop(); 6986 } 6987 6988 /* Unset a bit when the corresponding bit in fixed0 is 1 */ 6989 if (fixed0 & (1ull << i)) { 6990 vmcs_write(cr, cr_saved & ~(1ull << i)); 6991 report_prefix_pushf("%s %llx", cr_name, 6992 cr_saved & ~(1ull << i)); 6993 test_vmx_vmlaunch( 6994 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 6995 report_prefix_pop(); 6996 } 6997 } 6998 6999 vmcs_write(cr, cr_saved); 7000 } 7001 7002 /* 7003 * 1. The CR0 field must not set any bit to a value not supported in VMX 7004 * operation. 7005 * 2. The CR4 field must not set any bit to a value not supported in VMX 7006 * operation. 7007 * 3. On processors that support Intel 64 architecture, the CR3 field must 7008 * be such that bits 63:52 and bits in the range 51:32 beyond the 7009 * processor's physical-address width must be 0. 7010 * 7011 * [Intel SDM] 7012 */ 7013 static void test_host_ctl_regs(void) 7014 { 7015 u64 fixed0, fixed1, cr3, cr3_saved; 7016 int i; 7017 7018 /* Test CR0 */ 7019 fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0); 7020 fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1); 7021 test_ctl_reg("HOST_CR0", HOST_CR0, fixed0, fixed1); 7022 7023 /* Test CR4 */ 7024 fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0); 7025 fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1) & 7026 ~(X86_CR4_SMEP | X86_CR4_SMAP); 7027 test_ctl_reg("HOST_CR4", HOST_CR4, fixed0, fixed1); 7028 7029 /* Test CR3 */ 7030 cr3_saved = vmcs_read(HOST_CR3); 7031 for (i = cpuid_maxphyaddr(); i < 64; i++) { 7032 cr3 = cr3_saved | (1ul << i); 7033 vmcs_write(HOST_CR3, cr3); 7034 report_prefix_pushf("HOST_CR3 %lx", cr3); 7035 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7036 report_prefix_pop(); 7037 } 7038 7039 vmcs_write(HOST_CR3, cr3_saved); 7040 } 7041 7042 static void test_efer_vmlaunch(u32 fld, bool ok) 7043 { 7044 if (fld == HOST_EFER) { 7045 if (ok) 7046 test_vmx_vmlaunch(0); 7047 else 7048 test_vmx_vmlaunch2(VMXERR_ENTRY_INVALID_CONTROL_FIELD, 7049 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7050 } else { 7051 test_guest_state("EFER test", !ok, GUEST_EFER, "GUEST_EFER"); 7052 } 7053 } 7054 7055 static void test_efer_one(u32 fld, const char * fld_name, u64 efer, 7056 u32 ctrl_fld, u64 ctrl, 7057 int i, const char *efer_bit_name) 7058 { 7059 bool ok; 7060 7061 ok = true; 7062 if (ctrl_fld == EXI_CONTROLS && (ctrl & EXI_LOAD_EFER)) { 7063 if (!!(efer & EFER_LMA) != !!(ctrl & EXI_HOST_64)) 7064 ok = false; 7065 if (!!(efer & EFER_LME) != !!(ctrl & EXI_HOST_64)) 7066 ok = false; 7067 } 7068 if (ctrl_fld == ENT_CONTROLS && (ctrl & ENT_LOAD_EFER)) { 7069 /* Check LMA too since CR0.PG is set. */ 7070 if (!!(efer & EFER_LMA) != !!(ctrl & ENT_GUEST_64)) 7071 ok = false; 7072 if (!!(efer & EFER_LME) != !!(ctrl & ENT_GUEST_64)) 7073 ok = false; 7074 } 7075 7076 /* 7077 * Skip the test if it would enter the guest in 32-bit mode. 7078 * Perhaps write the test in assembly and make sure it 7079 * can be run in either mode? 7080 */ 7081 if (fld == GUEST_EFER && ok && !(ctrl & ENT_GUEST_64)) 7082 return; 7083 7084 vmcs_write(ctrl_fld, ctrl); 7085 vmcs_write(fld, efer); 7086 report_prefix_pushf("%s %s bit turned %s, controls %s", 7087 fld_name, efer_bit_name, 7088 (i & 1) ? "on" : "off", 7089 (i & 2) ? "on" : "off"); 7090 7091 test_efer_vmlaunch(fld, ok); 7092 report_prefix_pop(); 7093 } 7094 7095 static void test_efer_bit(u32 fld, const char * fld_name, 7096 u32 ctrl_fld, u64 ctrl_bit, u64 efer_bit, 7097 const char *efer_bit_name) 7098 { 7099 u64 efer_saved = vmcs_read(fld); 7100 u32 ctrl_saved = vmcs_read(ctrl_fld); 7101 int i; 7102 7103 for (i = 0; i < 4; i++) { 7104 u64 efer = efer_saved & ~efer_bit; 7105 u64 ctrl = ctrl_saved & ~ctrl_bit; 7106 7107 if (i & 1) 7108 efer |= efer_bit; 7109 if (i & 2) 7110 ctrl |= ctrl_bit; 7111 7112 test_efer_one(fld, fld_name, efer, ctrl_fld, ctrl, 7113 i, efer_bit_name); 7114 } 7115 7116 vmcs_write(ctrl_fld, ctrl_saved); 7117 vmcs_write(fld, efer_saved); 7118 } 7119 7120 static void test_efer(u32 fld, const char * fld_name, u32 ctrl_fld, 7121 u64 ctrl_bit1, u64 ctrl_bit2) 7122 { 7123 u64 efer_saved = vmcs_read(fld); 7124 u32 ctrl_saved = vmcs_read(ctrl_fld); 7125 u64 efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 7126 u64 i; 7127 u64 efer; 7128 7129 if (this_cpu_has(X86_FEATURE_NX)) 7130 efer_reserved_bits &= ~EFER_NX; 7131 7132 if (!ctrl_bit1) { 7133 report_skip("%s : \"Load-IA32-EFER\" exit control not supported", __func__); 7134 goto test_entry_exit_mode; 7135 } 7136 7137 report_prefix_pushf("%s %lx", fld_name, efer_saved); 7138 test_efer_vmlaunch(fld, true); 7139 report_prefix_pop(); 7140 7141 /* 7142 * Check reserved bits 7143 */ 7144 vmcs_write(ctrl_fld, ctrl_saved & ~ctrl_bit1); 7145 for (i = 0; i < 64; i++) { 7146 if ((1ull << i) & efer_reserved_bits) { 7147 efer = efer_saved | (1ull << i); 7148 vmcs_write(fld, efer); 7149 report_prefix_pushf("%s %lx", fld_name, efer); 7150 test_efer_vmlaunch(fld, true); 7151 report_prefix_pop(); 7152 } 7153 } 7154 7155 vmcs_write(ctrl_fld, ctrl_saved | ctrl_bit1); 7156 for (i = 0; i < 64; i++) { 7157 if ((1ull << i) & efer_reserved_bits) { 7158 efer = efer_saved | (1ull << i); 7159 vmcs_write(fld, efer); 7160 report_prefix_pushf("%s %lx", fld_name, efer); 7161 test_efer_vmlaunch(fld, false); 7162 report_prefix_pop(); 7163 } 7164 } 7165 7166 vmcs_write(ctrl_fld, ctrl_saved); 7167 vmcs_write(fld, efer_saved); 7168 7169 /* 7170 * Check LMA and LME bits 7171 */ 7172 test_efer_bit(fld, fld_name, 7173 ctrl_fld, ctrl_bit1, 7174 EFER_LMA, 7175 "EFER_LMA"); 7176 test_efer_bit(fld, fld_name, 7177 ctrl_fld, ctrl_bit1, 7178 EFER_LME, 7179 "EFER_LME"); 7180 7181 test_entry_exit_mode: 7182 test_efer_bit(fld, fld_name, 7183 ctrl_fld, ctrl_bit2, 7184 EFER_LMA, 7185 "EFER_LMA"); 7186 test_efer_bit(fld, fld_name, 7187 ctrl_fld, ctrl_bit2, 7188 EFER_LME, 7189 "EFER_LME"); 7190 } 7191 7192 /* 7193 * If the 'load IA32_EFER' VM-exit control is 1, bits reserved in the 7194 * IA32_EFER MSR must be 0 in the field for that register. In addition, 7195 * the values of the LMA and LME bits in the field must each be that of 7196 * the 'host address-space size' VM-exit control. 7197 * 7198 * [Intel SDM] 7199 */ 7200 static void test_host_efer(void) 7201 { 7202 test_efer(HOST_EFER, "HOST_EFER", EXI_CONTROLS, 7203 ctrl_exit_rev.clr & EXI_LOAD_EFER, 7204 EXI_HOST_64); 7205 } 7206 7207 /* 7208 * If the 'load IA32_EFER' VM-enter control is 1, bits reserved in the 7209 * IA32_EFER MSR must be 0 in the field for that register. In addition, 7210 * the values of the LMA and LME bits in the field must each be that of 7211 * the 'IA32e-mode guest' VM-exit control. 7212 */ 7213 static void test_guest_efer(void) 7214 { 7215 if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) { 7216 report_skip("%s : \"Load-IA32-EFER\" entry control not supported", __func__); 7217 return; 7218 } 7219 7220 vmcs_write(GUEST_EFER, rdmsr(MSR_EFER)); 7221 test_efer(GUEST_EFER, "GUEST_EFER", ENT_CONTROLS, 7222 ctrl_enter_rev.clr & ENT_LOAD_EFER, 7223 ENT_GUEST_64); 7224 } 7225 7226 /* 7227 * PAT values higher than 8 are uninteresting since they're likely lumped 7228 * in with "8". We only test values above 8 one bit at a time, 7229 * in order to reduce the number of VM-Entries and keep the runtime reasonable. 7230 */ 7231 #define PAT_VAL_LIMIT 8 7232 7233 static void test_pat(u32 field, const char * field_name, u32 ctrl_field, 7234 u64 ctrl_bit) 7235 { 7236 u64 pat_msr_saved = rdmsr(MSR_IA32_CR_PAT); 7237 u32 ctrl_saved = vmcs_read(ctrl_field); 7238 u64 pat_saved = vmcs_read(field); 7239 u64 i, val; 7240 u32 j; 7241 int error; 7242 7243 vmcs_clear_bits(ctrl_field, ctrl_bit); 7244 7245 for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) { 7246 /* Test PAT0..PAT7 fields */ 7247 for (j = 0; j < (i ? 8 : 1); j++) { 7248 val = i << j * 8; 7249 vmcs_write(field, val); 7250 if (field == HOST_PAT) { 7251 report_prefix_pushf("%s %lx", field_name, val); 7252 test_vmx_vmlaunch(0); 7253 report_prefix_pop(); 7254 7255 } else { // GUEST_PAT 7256 test_guest_state("ENT_LOAD_PAT disabled", false, 7257 val, "GUEST_PAT"); 7258 } 7259 } 7260 } 7261 7262 vmcs_set_bits(ctrl_field, ctrl_bit); 7263 for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) { 7264 /* Test PAT0..PAT7 fields */ 7265 for (j = 0; j < (i ? 8 : 1); j++) { 7266 val = i << j * 8; 7267 vmcs_write(field, val); 7268 7269 if (field == HOST_PAT) { 7270 report_prefix_pushf("%s %lx", field_name, val); 7271 if (i == 0x2 || i == 0x3 || i >= 0x8) 7272 error = 7273 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; 7274 else 7275 error = 0; 7276 7277 test_vmx_vmlaunch(error); 7278 7279 if (!error) 7280 report(rdmsr(MSR_IA32_CR_PAT) == val, 7281 "Expected PAT = 0x%lx, got 0x%lx", 7282 val, rdmsr(MSR_IA32_CR_PAT)); 7283 wrmsr(MSR_IA32_CR_PAT, pat_msr_saved); 7284 7285 report_prefix_pop(); 7286 7287 } else { // GUEST_PAT 7288 error = (i == 0x2 || i == 0x3 || i >= 0x8); 7289 test_guest_state("ENT_LOAD_PAT enabled", !!error, 7290 val, "GUEST_PAT"); 7291 7292 if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) 7293 wrmsr(MSR_IA32_CR_PAT, pat_msr_saved); 7294 } 7295 7296 } 7297 } 7298 7299 vmcs_write(ctrl_field, ctrl_saved); 7300 vmcs_write(field, pat_saved); 7301 } 7302 7303 /* 7304 * If the "load IA32_PAT" VM-exit control is 1, the value of the field 7305 * for the IA32_PAT MSR must be one that could be written by WRMSR 7306 * without fault at CPL 0. Specifically, each of the 8 bytes in the 7307 * field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 7308 * 6 (WB), or 7 (UC-). 7309 * 7310 * [Intel SDM] 7311 */ 7312 static void test_load_host_pat(void) 7313 { 7314 /* 7315 * "load IA32_PAT" VM-exit control 7316 */ 7317 if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) { 7318 report_skip("%s : \"Load-IA32-PAT\" exit control not supported", __func__); 7319 return; 7320 } 7321 7322 test_pat(HOST_PAT, "HOST_PAT", EXI_CONTROLS, EXI_LOAD_PAT); 7323 } 7324 7325 union cpuidA_eax { 7326 struct { 7327 unsigned int version_id:8; 7328 unsigned int num_counters_gp:8; 7329 unsigned int bit_width:8; 7330 unsigned int mask_length:8; 7331 } split; 7332 unsigned int full; 7333 }; 7334 7335 union cpuidA_edx { 7336 struct { 7337 unsigned int num_counters_fixed:5; 7338 unsigned int bit_width_fixed:8; 7339 unsigned int reserved:9; 7340 } split; 7341 unsigned int full; 7342 }; 7343 7344 static bool valid_pgc(u64 val) 7345 { 7346 struct cpuid id; 7347 union cpuidA_eax eax; 7348 union cpuidA_edx edx; 7349 u64 mask; 7350 7351 id = cpuid(0xA); 7352 eax.full = id.a; 7353 edx.full = id.d; 7354 mask = ~(((1ull << eax.split.num_counters_gp) - 1) | 7355 (((1ull << edx.split.num_counters_fixed) - 1) << 32)); 7356 7357 return !(val & mask); 7358 } 7359 7360 static void test_pgc_vmlaunch(u32 xerror, u32 xreason, bool xfail, bool host) 7361 { 7362 u32 inst_err; 7363 u64 obs; 7364 bool success; 7365 struct vmx_state_area_test_data *data = &vmx_state_area_test_data; 7366 7367 if (host) { 7368 success = vmlaunch(); 7369 obs = rdmsr(data->msr); 7370 if (!success) { 7371 inst_err = vmcs_read(VMX_INST_ERROR); 7372 report(xerror == inst_err, "vmlaunch failed, " 7373 "VMX Inst Error is %d (expected %d)", 7374 inst_err, xerror); 7375 } else { 7376 report(!data->enabled || data->exp == obs, 7377 "Host state is 0x%lx (expected 0x%lx)", 7378 obs, data->exp); 7379 report(success != xfail, "vmlaunch succeeded"); 7380 } 7381 } else { 7382 test_guest_state("load GUEST_PERF_GLOBAL_CTRL", xfail, 7383 GUEST_PERF_GLOBAL_CTRL, 7384 "GUEST_PERF_GLOBAL_CTRL"); 7385 } 7386 } 7387 7388 /* 7389 * test_load_perf_global_ctrl is a generic function for testing the 7390 * "load IA32_PERF_GLOBAL_CTRL" VM-{Entry,Exit} controls. This test function 7391 * tests the provided ctrl_val when disabled and enabled. 7392 * 7393 * @nr: VMCS field number corresponding to the host/guest state field 7394 * @name: Name of the above VMCS field for printing in test report 7395 * @ctrl_nr: VMCS field number corresponding to the VM-{Entry,Exit} control 7396 * @ctrl_val: Bit to set on the ctrl_field 7397 */ 7398 static void test_perf_global_ctrl(u32 nr, const char *name, u32 ctrl_nr, 7399 const char *ctrl_name, u64 ctrl_val) 7400 { 7401 u64 ctrl_saved = vmcs_read(ctrl_nr); 7402 u64 pgc_saved = vmcs_read(nr); 7403 u64 i, val; 7404 bool host = nr == HOST_PERF_GLOBAL_CTRL; 7405 struct vmx_state_area_test_data *data = &vmx_state_area_test_data; 7406 7407 data->msr = MSR_CORE_PERF_GLOBAL_CTRL; 7408 msr_bmp_init(); 7409 vmcs_write(ctrl_nr, ctrl_saved & ~ctrl_val); 7410 data->enabled = false; 7411 report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=0 on %s", 7412 ctrl_name); 7413 7414 for (i = 0; i < 64; i++) { 7415 val = 1ull << i; 7416 vmcs_write(nr, val); 7417 report_prefix_pushf("%s = 0x%lx", name, val); 7418 test_pgc_vmlaunch(0, VMX_VMCALL, false, host); 7419 report_prefix_pop(); 7420 } 7421 report_prefix_pop(); 7422 7423 vmcs_write(ctrl_nr, ctrl_saved | ctrl_val); 7424 data->enabled = true; 7425 report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=1 on %s", 7426 ctrl_name); 7427 for (i = 0; i < 64; i++) { 7428 val = 1ull << i; 7429 data->exp = val; 7430 vmcs_write(nr, val); 7431 report_prefix_pushf("%s = 0x%lx", name, val); 7432 if (valid_pgc(val)) { 7433 test_pgc_vmlaunch(0, VMX_VMCALL, false, host); 7434 } else { 7435 if (host) 7436 test_pgc_vmlaunch( 7437 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD, 7438 0, 7439 true, 7440 host); 7441 else 7442 test_pgc_vmlaunch( 7443 0, 7444 VMX_ENTRY_FAILURE | VMX_FAIL_STATE, 7445 true, 7446 host); 7447 } 7448 report_prefix_pop(); 7449 } 7450 7451 data->enabled = false; 7452 report_prefix_pop(); 7453 vmcs_write(ctrl_nr, ctrl_saved); 7454 vmcs_write(nr, pgc_saved); 7455 } 7456 7457 static void test_load_host_perf_global_ctrl(void) 7458 { 7459 if (!this_cpu_has_perf_global_ctrl()) { 7460 report_skip("%s : \"IA32_PERF_GLOBAL_CTRL\" MSR not supported", __func__); 7461 return; 7462 } 7463 7464 if (!(ctrl_exit_rev.clr & EXI_LOAD_PERF)) { 7465 report_skip("%s : \"Load IA32_PERF_GLOBAL_CTRL\" exit control not supported", __func__); 7466 return; 7467 } 7468 7469 test_perf_global_ctrl(HOST_PERF_GLOBAL_CTRL, "HOST_PERF_GLOBAL_CTRL", 7470 EXI_CONTROLS, "EXI_CONTROLS", EXI_LOAD_PERF); 7471 } 7472 7473 7474 static void test_load_guest_perf_global_ctrl(void) 7475 { 7476 if (!this_cpu_has_perf_global_ctrl()) { 7477 report_skip("%s : \"IA32_PERF_GLOBAL_CTRL\" MSR not supported", __func__); 7478 return; 7479 } 7480 7481 if (!(ctrl_enter_rev.clr & ENT_LOAD_PERF)) { 7482 report_skip("%s : \"Load IA32_PERF_GLOBAL_CTRL\" entry control not supported", __func__); 7483 return; 7484 } 7485 7486 test_perf_global_ctrl(GUEST_PERF_GLOBAL_CTRL, "GUEST_PERF_GLOBAL_CTRL", 7487 ENT_CONTROLS, "ENT_CONTROLS", ENT_LOAD_PERF); 7488 } 7489 7490 7491 /* 7492 * test_vmcs_field - test a value for the given VMCS field 7493 * @field: VMCS field 7494 * @field_name: string name of VMCS field 7495 * @bit_start: starting bit 7496 * @bit_end: ending bit 7497 * @val: value that the bit range must or must not contain 7498 * @valid_val: whether value given in 'val' must be valid or not 7499 * @error: expected VMCS error when vmentry fails for an invalid value 7500 */ 7501 static void test_vmcs_field(u64 field, const char *field_name, u32 bit_start, 7502 u32 bit_end, u64 val, bool valid_val, u32 error) 7503 { 7504 u64 field_saved = vmcs_read(field); 7505 u32 i; 7506 u64 tmp; 7507 u32 bit_on; 7508 u64 mask = ~0ull; 7509 7510 mask = (mask >> bit_end) << bit_end; 7511 mask = mask | ((1 << bit_start) - 1); 7512 tmp = (field_saved & mask) | (val << bit_start); 7513 7514 vmcs_write(field, tmp); 7515 report_prefix_pushf("%s %lx", field_name, tmp); 7516 if (valid_val) 7517 test_vmx_vmlaunch(0); 7518 else 7519 test_vmx_vmlaunch(error); 7520 report_prefix_pop(); 7521 7522 for (i = bit_start; i <= bit_end; i = i + 2) { 7523 bit_on = ((1ull < i) & (val << bit_start)) ? 0 : 1; 7524 if (bit_on) 7525 tmp = field_saved | (1ull << i); 7526 else 7527 tmp = field_saved & ~(1ull << i); 7528 vmcs_write(field, tmp); 7529 report_prefix_pushf("%s %lx", field_name, tmp); 7530 if (valid_val) 7531 test_vmx_vmlaunch(error); 7532 else 7533 test_vmx_vmlaunch(0); 7534 report_prefix_pop(); 7535 } 7536 7537 vmcs_write(field, field_saved); 7538 } 7539 7540 static void test_canonical(u64 field, const char * field_name, bool host) 7541 { 7542 u64 addr_saved = vmcs_read(field); 7543 7544 /* 7545 * Use the existing value if possible. Writing a random canonical 7546 * value is not an option as doing so would corrupt the field being 7547 * tested and likely hose the test. 7548 */ 7549 if (is_canonical(addr_saved)) { 7550 if (host) { 7551 report_prefix_pushf("%s %lx", field_name, addr_saved); 7552 test_vmx_vmlaunch(0); 7553 report_prefix_pop(); 7554 } else { 7555 test_guest_state("Test canonical address", false, 7556 addr_saved, field_name); 7557 } 7558 } 7559 7560 vmcs_write(field, NONCANONICAL); 7561 7562 if (host) { 7563 report_prefix_pushf("%s %llx", field_name, NONCANONICAL); 7564 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7565 report_prefix_pop(); 7566 } else { 7567 test_guest_state("Test non-canonical address", true, 7568 NONCANONICAL, field_name); 7569 } 7570 7571 vmcs_write(field, addr_saved); 7572 } 7573 7574 #define TEST_RPL_TI_FLAGS(reg, name) \ 7575 test_vmcs_field(reg, name, 0, 2, 0x0, true, \ 7576 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7577 7578 #define TEST_CS_TR_FLAGS(reg, name) \ 7579 test_vmcs_field(reg, name, 3, 15, 0x0000, false, \ 7580 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7581 7582 /* 7583 * 1. In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the 7584 * RPL (bits 1:0) and the TI flag (bit 2) must be 0. 7585 * 2. The selector fields for CS and TR cannot be 0000H. 7586 * 3. The selector field for SS cannot be 0000H if the "host address-space 7587 * size" VM-exit control is 0. 7588 * 4. On processors that support Intel 64 architecture, the base-address 7589 * fields for FS, GS and TR must contain canonical addresses. 7590 */ 7591 static void test_host_segment_regs(void) 7592 { 7593 u16 selector_saved; 7594 7595 /* 7596 * Test RPL and TI flags 7597 */ 7598 TEST_RPL_TI_FLAGS(HOST_SEL_CS, "HOST_SEL_CS"); 7599 TEST_RPL_TI_FLAGS(HOST_SEL_SS, "HOST_SEL_SS"); 7600 TEST_RPL_TI_FLAGS(HOST_SEL_DS, "HOST_SEL_DS"); 7601 TEST_RPL_TI_FLAGS(HOST_SEL_ES, "HOST_SEL_ES"); 7602 TEST_RPL_TI_FLAGS(HOST_SEL_FS, "HOST_SEL_FS"); 7603 TEST_RPL_TI_FLAGS(HOST_SEL_GS, "HOST_SEL_GS"); 7604 TEST_RPL_TI_FLAGS(HOST_SEL_TR, "HOST_SEL_TR"); 7605 7606 /* 7607 * Test that CS and TR fields can not be 0x0000 7608 */ 7609 TEST_CS_TR_FLAGS(HOST_SEL_CS, "HOST_SEL_CS"); 7610 TEST_CS_TR_FLAGS(HOST_SEL_TR, "HOST_SEL_TR"); 7611 7612 /* 7613 * SS field can not be 0x0000 if "host address-space size" VM-exit 7614 * control is 0 7615 */ 7616 selector_saved = vmcs_read(HOST_SEL_SS); 7617 vmcs_write(HOST_SEL_SS, 0); 7618 report_prefix_pushf("HOST_SEL_SS 0"); 7619 if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) { 7620 test_vmx_vmlaunch(0); 7621 } else { 7622 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7623 } 7624 report_prefix_pop(); 7625 7626 vmcs_write(HOST_SEL_SS, selector_saved); 7627 7628 /* 7629 * Base address for FS, GS and TR must be canonical 7630 */ 7631 test_canonical(HOST_BASE_FS, "HOST_BASE_FS", true); 7632 test_canonical(HOST_BASE_GS, "HOST_BASE_GS", true); 7633 test_canonical(HOST_BASE_TR, "HOST_BASE_TR", true); 7634 } 7635 7636 /* 7637 * On processors that support Intel 64 architecture, the base-address 7638 * fields for GDTR and IDTR must contain canonical addresses. 7639 */ 7640 static void test_host_desc_tables(void) 7641 { 7642 test_canonical(HOST_BASE_GDTR, "HOST_BASE_GDTR", true); 7643 test_canonical(HOST_BASE_IDTR, "HOST_BASE_IDTR", true); 7644 } 7645 7646 /* 7647 * If the "host address-space size" VM-exit control is 0, the following must 7648 * hold: 7649 * - The "IA-32e mode guest" VM-entry control is 0. 7650 * - Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0. 7651 * - Bits 63:32 in the RIP field are 0. 7652 * 7653 * If the "host address-space size" VM-exit control is 1, the following must 7654 * hold: 7655 * - Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1. 7656 * - The RIP field contains a canonical address. 7657 * 7658 */ 7659 static void test_host_addr_size(void) 7660 { 7661 u64 cr4_saved = vmcs_read(HOST_CR4); 7662 u64 rip_saved = vmcs_read(HOST_RIP); 7663 u64 entry_ctrl_saved = vmcs_read(ENT_CONTROLS); 7664 7665 assert(vmcs_read(EXI_CONTROLS) & EXI_HOST_64); 7666 assert(cr4_saved & X86_CR4_PAE); 7667 7668 vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64); 7669 report_prefix_pushf("\"IA-32e mode guest\" enabled"); 7670 test_vmx_vmlaunch(0); 7671 report_prefix_pop(); 7672 7673 if (this_cpu_has(X86_FEATURE_PCID)) { 7674 vmcs_write(HOST_CR4, cr4_saved | X86_CR4_PCIDE); 7675 report_prefix_pushf("\"CR4.PCIDE\" set"); 7676 test_vmx_vmlaunch(0); 7677 report_prefix_pop(); 7678 } 7679 7680 vmcs_write(HOST_CR4, cr4_saved & ~X86_CR4_PAE); 7681 report_prefix_pushf("\"CR4.PAE\" unset"); 7682 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7683 vmcs_write(HOST_CR4, cr4_saved); 7684 report_prefix_pop(); 7685 7686 vmcs_write(HOST_RIP, NONCANONICAL); 7687 report_prefix_pushf("HOST_RIP %llx", NONCANONICAL); 7688 test_vmx_vmlaunch_must_fail(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7689 report_prefix_pop(); 7690 7691 vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64); 7692 vmcs_write(HOST_RIP, rip_saved); 7693 vmcs_write(HOST_CR4, cr4_saved); 7694 7695 /* 7696 * Restore host's active CR4 and RIP values by triggering a VM-Exit. 7697 * The original CR4 and RIP values in the VMCS are restored between 7698 * testcases as needed, but don't guarantee a VM-Exit and so the active 7699 * CR4 and RIP may still hold a test value. Running with the test CR4 7700 * and RIP values at some point is unavoidable, and the active values 7701 * are unlikely to affect VM-Enter, so the above doesn't force a VM-exit 7702 * between testcases. Note, if VM-Enter is surrounded by CALL+RET then 7703 * the active RIP will already be restored, but that's also not 7704 * guaranteed, and CR4 needs to be restored regardless. 7705 */ 7706 report_prefix_pushf("restore host state"); 7707 test_vmx_vmlaunch(0); 7708 report_prefix_pop(); 7709 } 7710 7711 /* 7712 * Check that the virtual CPU checks the VMX Host State Area as 7713 * documented in the Intel SDM. 7714 */ 7715 static void vmx_host_state_area_test(void) 7716 { 7717 /* 7718 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will 7719 * fail due to invalid guest state, should we make it that 7720 * far. 7721 */ 7722 vmcs_write(GUEST_RFLAGS, 0); 7723 7724 test_host_ctl_regs(); 7725 7726 test_canonical(HOST_SYSENTER_ESP, "HOST_SYSENTER_ESP", true); 7727 test_canonical(HOST_SYSENTER_EIP, "HOST_SYSENTER_EIP", true); 7728 7729 test_host_efer(); 7730 test_load_host_pat(); 7731 test_host_segment_regs(); 7732 test_host_desc_tables(); 7733 test_host_addr_size(); 7734 test_load_host_perf_global_ctrl(); 7735 } 7736 7737 /* 7738 * If the "load debug controls" VM-entry control is 1, bits 63:32 in 7739 * the DR7 field must be 0. 7740 * 7741 * [Intel SDM] 7742 */ 7743 static void test_guest_dr7(void) 7744 { 7745 u32 ent_saved = vmcs_read(ENT_CONTROLS); 7746 u64 dr7_saved = vmcs_read(GUEST_DR7); 7747 u64 val; 7748 int i; 7749 7750 if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS) { 7751 vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS); 7752 for (i = 0; i < 64; i++) { 7753 val = 1ull << i; 7754 vmcs_write(GUEST_DR7, val); 7755 test_guest_state("ENT_LOAD_DBGCTLS disabled", false, 7756 val, "GUEST_DR7"); 7757 } 7758 } 7759 if (ctrl_enter_rev.clr & ENT_LOAD_DBGCTLS) { 7760 vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS); 7761 for (i = 0; i < 64; i++) { 7762 val = 1ull << i; 7763 vmcs_write(GUEST_DR7, val); 7764 test_guest_state("ENT_LOAD_DBGCTLS enabled", i >= 32, 7765 val, "GUEST_DR7"); 7766 } 7767 } 7768 vmcs_write(GUEST_DR7, dr7_saved); 7769 vmcs_write(ENT_CONTROLS, ent_saved); 7770 } 7771 7772 /* 7773 * If the "load IA32_PAT" VM-entry control is 1, the value of the field 7774 * for the IA32_PAT MSR must be one that could be written by WRMSR 7775 * without fault at CPL 0. Specifically, each of the 8 bytes in the 7776 * field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 7777 * 6 (WB), or 7 (UC-). 7778 * 7779 * [Intel SDM] 7780 */ 7781 static void test_load_guest_pat(void) 7782 { 7783 /* 7784 * "load IA32_PAT" VM-entry control 7785 */ 7786 if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) { 7787 report_skip("%s : \"Load-IA32-PAT\" entry control not supported", __func__); 7788 return; 7789 } 7790 7791 test_pat(GUEST_PAT, "GUEST_PAT", ENT_CONTROLS, ENT_LOAD_PAT); 7792 } 7793 7794 #define MSR_IA32_BNDCFGS_RSVD_MASK 0x00000ffc 7795 7796 /* 7797 * If the "load IA32_BNDCFGS" VM-entry control is 1, the following 7798 * checks are performed on the field for the IA32_BNDCFGS MSR: 7799 * 7800 * - Bits reserved in the IA32_BNDCFGS MSR must be 0. 7801 * - The linear address in bits 63:12 must be canonical. 7802 * 7803 * [Intel SDM] 7804 */ 7805 static void test_load_guest_bndcfgs(void) 7806 { 7807 u64 bndcfgs_saved = vmcs_read(GUEST_BNDCFGS); 7808 u64 bndcfgs; 7809 7810 if (!(ctrl_enter_rev.clr & ENT_LOAD_BNDCFGS)) { 7811 report_skip("%s : \"Load-IA32-BNDCFGS\" entry control not supported", __func__); 7812 return; 7813 } 7814 7815 vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS); 7816 7817 vmcs_write(GUEST_BNDCFGS, NONCANONICAL); 7818 test_guest_state("ENT_LOAD_BNDCFGS disabled", false, 7819 GUEST_BNDCFGS, "GUEST_BNDCFGS"); 7820 bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK; 7821 vmcs_write(GUEST_BNDCFGS, bndcfgs); 7822 test_guest_state("ENT_LOAD_BNDCFGS disabled", false, 7823 GUEST_BNDCFGS, "GUEST_BNDCFGS"); 7824 7825 vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS); 7826 7827 vmcs_write(GUEST_BNDCFGS, NONCANONICAL); 7828 test_guest_state("ENT_LOAD_BNDCFGS enabled", true, 7829 GUEST_BNDCFGS, "GUEST_BNDCFGS"); 7830 bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK; 7831 vmcs_write(GUEST_BNDCFGS, bndcfgs); 7832 test_guest_state("ENT_LOAD_BNDCFGS enabled", true, 7833 GUEST_BNDCFGS, "GUEST_BNDCFGS"); 7834 7835 vmcs_write(GUEST_BNDCFGS, bndcfgs_saved); 7836 } 7837 7838 #define GUEST_SEG_UNUSABLE_MASK (1u << 16) 7839 #define GUEST_SEG_SEL_TI_MASK (1u << 2) 7840 7841 7842 #define TEST_SEGMENT_SEL(test, xfail, sel, val) \ 7843 do { \ 7844 vmcs_write(sel, val); \ 7845 test_guest_state(test " segment", xfail, val, xstr(sel)); \ 7846 } while (0) 7847 7848 #define TEST_INVALID_SEG_SEL(sel, val) \ 7849 TEST_SEGMENT_SEL("Invalid: " xstr(val), true, sel, val); 7850 7851 #define TEST_VALID_SEG_SEL(sel, val) \ 7852 TEST_SEGMENT_SEL("Valid: " xstr(val), false, sel, val); 7853 7854 /* 7855 * The following checks are done on the Selector field of the Guest Segment 7856 * Registers: 7857 * - TR. The TI flag (bit 2) must be 0. 7858 * - LDTR. If LDTR is usable, the TI flag (bit 2) must be 0. 7859 * - SS. If the guest will not be virtual-8086 and the "unrestricted 7860 * guest" VM-execution control is 0, the RPL (bits 1:0) must equal 7861 * the RPL of the selector field for CS. 7862 * 7863 * [Intel SDM] 7864 */ 7865 static void test_guest_segment_sel_fields(void) 7866 { 7867 u16 sel_saved; 7868 u32 ar_saved; 7869 u32 cpu_ctrl0_saved; 7870 u32 cpu_ctrl1_saved; 7871 u16 cs_rpl_bits; 7872 7873 /* 7874 * Test for GUEST_SEL_TR 7875 */ 7876 sel_saved = vmcs_read(GUEST_SEL_TR); 7877 TEST_INVALID_SEG_SEL(GUEST_SEL_TR, sel_saved | GUEST_SEG_SEL_TI_MASK); 7878 vmcs_write(GUEST_SEL_TR, sel_saved); 7879 7880 /* 7881 * Test for GUEST_SEL_LDTR 7882 */ 7883 sel_saved = vmcs_read(GUEST_SEL_LDTR); 7884 ar_saved = vmcs_read(GUEST_AR_LDTR); 7885 /* LDTR is set unusable */ 7886 vmcs_write(GUEST_AR_LDTR, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7887 TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved | GUEST_SEG_SEL_TI_MASK); 7888 TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved & ~GUEST_SEG_SEL_TI_MASK); 7889 /* LDTR is set usable */ 7890 vmcs_write(GUEST_AR_LDTR, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7891 TEST_INVALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved | GUEST_SEG_SEL_TI_MASK); 7892 7893 TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved & ~GUEST_SEG_SEL_TI_MASK); 7894 7895 vmcs_write(GUEST_AR_LDTR, ar_saved); 7896 vmcs_write(GUEST_SEL_LDTR, sel_saved); 7897 7898 /* 7899 * Test for GUEST_SEL_SS 7900 */ 7901 cpu_ctrl0_saved = vmcs_read(CPU_EXEC_CTRL0); 7902 cpu_ctrl1_saved = vmcs_read(CPU_EXEC_CTRL1); 7903 ar_saved = vmcs_read(GUEST_AR_SS); 7904 /* Turn off "unrestricted guest" vm-execution control */ 7905 vmcs_write(CPU_EXEC_CTRL1, cpu_ctrl1_saved & ~CPU_URG); 7906 cs_rpl_bits = vmcs_read(GUEST_SEL_CS) & 0x3; 7907 sel_saved = vmcs_read(GUEST_SEL_SS); 7908 TEST_INVALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3))); 7909 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3))); 7910 /* Make SS usable if it's unusable or vice-versa */ 7911 if (ar_saved & GUEST_SEG_UNUSABLE_MASK) 7912 vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7913 else 7914 vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7915 TEST_INVALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3))); 7916 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3))); 7917 7918 /* Need a valid EPTP as the passing case fully enters the guest. */ 7919 if (enable_unrestricted_guest(true)) 7920 goto skip_ss_tests; 7921 7922 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3))); 7923 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3))); 7924 7925 /* Make SS usable if it's unusable or vice-versa */ 7926 if (vmcs_read(GUEST_AR_SS) & GUEST_SEG_UNUSABLE_MASK) 7927 vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7928 else 7929 vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7930 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3))); 7931 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3))); 7932 skip_ss_tests: 7933 7934 vmcs_write(GUEST_AR_SS, ar_saved); 7935 vmcs_write(GUEST_SEL_SS, sel_saved); 7936 vmcs_write(CPU_EXEC_CTRL0, cpu_ctrl0_saved); 7937 vmcs_write(CPU_EXEC_CTRL1, cpu_ctrl1_saved); 7938 } 7939 7940 #define TEST_SEGMENT_BASE_ADDR_UPPER_BITS(xfail, seg_base) \ 7941 do { \ 7942 addr_saved = vmcs_read(seg_base); \ 7943 for (i = 32; i < 63; i = i + 4) { \ 7944 addr = addr_saved | 1ull << i; \ 7945 vmcs_write(seg_base, addr); \ 7946 test_guest_state("seg.BASE[63:32] != 0, usable = " xstr(xfail), \ 7947 xfail, addr, xstr(seg_base)); \ 7948 } \ 7949 vmcs_write(seg_base, addr_saved); \ 7950 } while (0) 7951 7952 #define TEST_SEGMENT_BASE_ADDR_CANONICAL(xfail, seg_base) \ 7953 do { \ 7954 addr_saved = vmcs_read(seg_base); \ 7955 vmcs_write(seg_base, NONCANONICAL); \ 7956 test_guest_state("seg.BASE non-canonical, usable = " xstr(xfail), \ 7957 xfail, NONCANONICAL, xstr(seg_base)); \ 7958 vmcs_write(seg_base, addr_saved); \ 7959 } while (0) 7960 7961 /* 7962 * The following checks are done on the Base Address field of the Guest 7963 * Segment Registers on processors that support Intel 64 architecture: 7964 * - TR, FS, GS : The address must be canonical. 7965 * - LDTR : If LDTR is usable, the address must be canonical. 7966 * - CS : Bits 63:32 of the address must be zero. 7967 * - SS, DS, ES : If the register is usable, bits 63:32 of the address 7968 * must be zero. 7969 * 7970 * [Intel SDM] 7971 */ 7972 static void test_guest_segment_base_addr_fields(void) 7973 { 7974 u64 addr_saved; 7975 u64 addr; 7976 u32 ar_saved; 7977 int i; 7978 7979 /* 7980 * The address of TR, FS, GS and LDTR must be canonical. 7981 */ 7982 TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_TR); 7983 TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_FS); 7984 TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_GS); 7985 ar_saved = vmcs_read(GUEST_AR_LDTR); 7986 /* Make LDTR unusable */ 7987 vmcs_write(GUEST_AR_LDTR, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7988 TEST_SEGMENT_BASE_ADDR_CANONICAL(false, GUEST_BASE_LDTR); 7989 /* Make LDTR usable */ 7990 vmcs_write(GUEST_AR_LDTR, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7991 TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_LDTR); 7992 7993 vmcs_write(GUEST_AR_LDTR, ar_saved); 7994 7995 /* 7996 * Bits 63:32 in CS, SS, DS and ES base address must be zero 7997 */ 7998 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_CS); 7999 ar_saved = vmcs_read(GUEST_AR_SS); 8000 /* Make SS unusable */ 8001 vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK); 8002 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_SS); 8003 /* Make SS usable */ 8004 vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 8005 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_SS); 8006 vmcs_write(GUEST_AR_SS, ar_saved); 8007 8008 ar_saved = vmcs_read(GUEST_AR_DS); 8009 /* Make DS unusable */ 8010 vmcs_write(GUEST_AR_DS, ar_saved | GUEST_SEG_UNUSABLE_MASK); 8011 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_DS); 8012 /* Make DS usable */ 8013 vmcs_write(GUEST_AR_DS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 8014 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_DS); 8015 vmcs_write(GUEST_AR_DS, ar_saved); 8016 8017 ar_saved = vmcs_read(GUEST_AR_ES); 8018 /* Make ES unusable */ 8019 vmcs_write(GUEST_AR_ES, ar_saved | GUEST_SEG_UNUSABLE_MASK); 8020 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_ES); 8021 /* Make ES usable */ 8022 vmcs_write(GUEST_AR_ES, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 8023 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_ES); 8024 vmcs_write(GUEST_AR_ES, ar_saved); 8025 } 8026 8027 /* 8028 * Check that the virtual CPU checks the VMX Guest State Area as 8029 * documented in the Intel SDM. 8030 */ 8031 static void vmx_guest_state_area_test(void) 8032 { 8033 vmx_set_test_stage(1); 8034 test_set_guest(guest_state_test_main); 8035 8036 /* 8037 * The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field 8038 * must each contain a canonical address. 8039 */ 8040 test_canonical(GUEST_SYSENTER_ESP, "GUEST_SYSENTER_ESP", false); 8041 test_canonical(GUEST_SYSENTER_EIP, "GUEST_SYSENTER_EIP", false); 8042 8043 test_guest_dr7(); 8044 test_load_guest_pat(); 8045 test_guest_efer(); 8046 test_load_guest_perf_global_ctrl(); 8047 test_load_guest_bndcfgs(); 8048 8049 test_guest_segment_sel_fields(); 8050 test_guest_segment_base_addr_fields(); 8051 8052 test_canonical(GUEST_BASE_GDTR, "GUEST_BASE_GDTR", false); 8053 test_canonical(GUEST_BASE_IDTR, "GUEST_BASE_IDTR", false); 8054 8055 u32 guest_desc_limit_saved = vmcs_read(GUEST_LIMIT_GDTR); 8056 int i; 8057 for (i = 16; i <= 31; i++) { 8058 u32 tmp = guest_desc_limit_saved | (1ull << i); 8059 vmcs_write(GUEST_LIMIT_GDTR, tmp); 8060 test_guest_state("GDT.limit > 0xffff", true, tmp, "GUEST_LIMIT_GDTR"); 8061 } 8062 vmcs_write(GUEST_LIMIT_GDTR, guest_desc_limit_saved); 8063 8064 guest_desc_limit_saved = vmcs_read(GUEST_LIMIT_IDTR); 8065 for (i = 16; i <= 31; i++) { 8066 u32 tmp = guest_desc_limit_saved | (1ull << i); 8067 vmcs_write(GUEST_LIMIT_IDTR, tmp); 8068 test_guest_state("IDT.limit > 0xffff", true, tmp, "GUEST_LIMIT_IDTR"); 8069 } 8070 vmcs_write(GUEST_LIMIT_IDTR, guest_desc_limit_saved); 8071 8072 /* 8073 * Let the guest finish execution 8074 */ 8075 vmx_set_test_stage(2); 8076 enter_guest(); 8077 } 8078 8079 extern void unrestricted_guest_main(void); 8080 asm (".code32\n" 8081 "unrestricted_guest_main:\n" 8082 "vmcall\n" 8083 "nop\n" 8084 "mov $1, %edi\n" 8085 "call hypercall\n" 8086 ".code64\n"); 8087 8088 static void setup_unrestricted_guest(void) 8089 { 8090 vmcs_write(GUEST_CR0, vmcs_read(GUEST_CR0) & ~(X86_CR0_PG)); 8091 vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) & ~ENT_GUEST_64); 8092 vmcs_write(GUEST_EFER, vmcs_read(GUEST_EFER) & ~EFER_LMA); 8093 vmcs_write(GUEST_RIP, virt_to_phys(unrestricted_guest_main)); 8094 } 8095 8096 static void unsetup_unrestricted_guest(void) 8097 { 8098 vmcs_write(GUEST_CR0, vmcs_read(GUEST_CR0) | X86_CR0_PG); 8099 vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_GUEST_64); 8100 vmcs_write(GUEST_EFER, vmcs_read(GUEST_EFER) | EFER_LMA); 8101 vmcs_write(GUEST_RIP, (u64) phys_to_virt(vmcs_read(GUEST_RIP))); 8102 vmcs_write(GUEST_RSP, (u64) phys_to_virt(vmcs_read(GUEST_RSP))); 8103 } 8104 8105 /* 8106 * If "unrestricted guest" secondary VM-execution control is set, guests 8107 * can run in unpaged protected mode. 8108 */ 8109 static void vmentry_unrestricted_guest_test(void) 8110 { 8111 if (enable_unrestricted_guest(true)) { 8112 report_skip("%s: \"Unrestricted guest\" exec control not supported", __func__); 8113 return; 8114 } 8115 8116 test_set_guest(unrestricted_guest_main); 8117 setup_unrestricted_guest(); 8118 test_guest_state("Unrestricted guest test", false, CPU_URG, "CPU_URG"); 8119 8120 /* 8121 * Let the guest finish execution as a regular guest 8122 */ 8123 unsetup_unrestricted_guest(); 8124 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) & ~CPU_URG); 8125 enter_guest(); 8126 } 8127 8128 static bool valid_vmcs_for_vmentry(void) 8129 { 8130 struct vmcs *current_vmcs = NULL; 8131 8132 if (vmcs_save(¤t_vmcs)) 8133 return false; 8134 8135 return current_vmcs && !current_vmcs->hdr.shadow_vmcs; 8136 } 8137 8138 static void try_vmentry_in_movss_shadow(void) 8139 { 8140 u32 vm_inst_err; 8141 u32 flags; 8142 bool early_failure = false; 8143 u32 expected_flags = X86_EFLAGS_FIXED; 8144 bool valid_vmcs = valid_vmcs_for_vmentry(); 8145 8146 expected_flags |= valid_vmcs ? X86_EFLAGS_ZF : X86_EFLAGS_CF; 8147 8148 /* 8149 * Indirectly set VM_INST_ERR to 12 ("VMREAD/VMWRITE from/to 8150 * unsupported VMCS component"). 8151 */ 8152 vmcs_write(~0u, 0); 8153 8154 __asm__ __volatile__ ("mov %[host_rsp], %%edx;" 8155 "vmwrite %%rsp, %%rdx;" 8156 "mov 0f, %%rax;" 8157 "mov %[host_rip], %%edx;" 8158 "vmwrite %%rax, %%rdx;" 8159 "mov $-1, %%ah;" 8160 "sahf;" 8161 "mov %%ss, %%ax;" 8162 "mov %%ax, %%ss;" 8163 "vmlaunch;" 8164 "mov $1, %[early_failure];" 8165 "0: lahf;" 8166 "movzbl %%ah, %[flags]" 8167 : [early_failure] "+r" (early_failure), 8168 [flags] "=&a" (flags) 8169 : [host_rsp] "i" (HOST_RSP), 8170 [host_rip] "i" (HOST_RIP) 8171 : "rdx", "cc", "memory"); 8172 vm_inst_err = vmcs_read(VMX_INST_ERROR); 8173 8174 report(early_failure, "Early VM-entry failure"); 8175 report(flags == expected_flags, "RFLAGS[8:0] is %x (actual %x)", 8176 expected_flags, flags); 8177 if (valid_vmcs) 8178 report(vm_inst_err == VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, 8179 "VM-instruction error is %d (actual %d)", 8180 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, vm_inst_err); 8181 } 8182 8183 static void vmentry_movss_shadow_test(void) 8184 { 8185 struct vmcs *orig_vmcs; 8186 8187 TEST_ASSERT(!vmcs_save(&orig_vmcs)); 8188 8189 /* 8190 * Set the launched flag on the current VMCS to verify the correct 8191 * error priority, below. 8192 */ 8193 test_set_guest(v2_null_test_guest); 8194 enter_guest(); 8195 8196 /* 8197 * With bit 1 of the guest's RFLAGS clear, VM-entry should 8198 * fail due to invalid guest state (if we make it that far). 8199 */ 8200 vmcs_write(GUEST_RFLAGS, 0); 8201 8202 /* 8203 * "VM entry with events blocked by MOV SS" takes precedence over 8204 * "VMLAUNCH with non-clear VMCS." 8205 */ 8206 report_prefix_push("valid current-VMCS"); 8207 try_vmentry_in_movss_shadow(); 8208 report_prefix_pop(); 8209 8210 /* 8211 * VMfailInvalid takes precedence over "VM entry with events 8212 * blocked by MOV SS." 8213 */ 8214 TEST_ASSERT(!vmcs_clear(orig_vmcs)); 8215 report_prefix_push("no current-VMCS"); 8216 try_vmentry_in_movss_shadow(); 8217 report_prefix_pop(); 8218 8219 TEST_ASSERT(!make_vmcs_current(orig_vmcs)); 8220 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); 8221 } 8222 8223 static void vmx_ldtr_test_guest(void) 8224 { 8225 u16 ldtr = sldt(); 8226 8227 report(ldtr == NP_SEL, "Expected %x for L2 LDTR selector (got %x)", 8228 NP_SEL, ldtr); 8229 } 8230 8231 /* 8232 * Ensure that the L1 LDTR is set to 0 on VM-exit. 8233 */ 8234 static void vmx_ldtr_test(void) 8235 { 8236 const u8 ldt_ar = 0x82; /* Present LDT */ 8237 u16 sel = FIRST_SPARE_SEL; 8238 8239 /* Set up a non-zero L1 LDTR prior to VM-entry. */ 8240 set_gdt_entry(sel, 0, 0, ldt_ar, 0); 8241 lldt(sel); 8242 8243 test_set_guest(vmx_ldtr_test_guest); 8244 /* 8245 * Set up a different LDTR for L2. The actual GDT contents are 8246 * irrelevant, since we stuff the hidden descriptor state 8247 * straight into the VMCS rather than reading it from the GDT. 8248 */ 8249 vmcs_write(GUEST_SEL_LDTR, NP_SEL); 8250 vmcs_write(GUEST_AR_LDTR, ldt_ar); 8251 enter_guest(); 8252 8253 /* 8254 * VM-exit should clear LDTR (and make it unusable, but we 8255 * won't verify that here). 8256 */ 8257 sel = sldt(); 8258 report(!sel, "Expected 0 for L1 LDTR selector (got %x)", sel); 8259 } 8260 8261 static void vmx_single_vmcall_guest(void) 8262 { 8263 vmcall(); 8264 } 8265 8266 static void vmx_cr_load_test(void) 8267 { 8268 unsigned long cr3, cr4, orig_cr3, orig_cr4; 8269 u32 ctrls[2] = {0}; 8270 pgd_t *pml5; 8271 8272 orig_cr4 = read_cr4(); 8273 orig_cr3 = read_cr3(); 8274 8275 if (!this_cpu_has(X86_FEATURE_PCID)) { 8276 report_skip("%s : PCID not detected", __func__); 8277 return; 8278 } 8279 if (!this_cpu_has(X86_FEATURE_MCE)) { 8280 report_skip("%s : MCE not detected", __func__); 8281 return; 8282 } 8283 8284 TEST_ASSERT(!(orig_cr3 & X86_CR3_PCID_MASK)); 8285 8286 /* Enable PCID for L1. */ 8287 cr4 = orig_cr4 | X86_CR4_PCIDE; 8288 cr3 = orig_cr3 | 0x1; 8289 TEST_ASSERT(!write_cr4_safe(cr4)); 8290 write_cr3(cr3); 8291 8292 test_set_guest(vmx_single_vmcall_guest); 8293 vmcs_write(HOST_CR4, cr4); 8294 vmcs_write(HOST_CR3, cr3); 8295 enter_guest(); 8296 8297 /* 8298 * No exception is expected. 8299 * 8300 * NB. KVM loads the last guest write to CR4 into CR4 read 8301 * shadow. In order to trigger an exit to KVM, we can toggle a 8302 * bit that is owned by KVM. We use CR4.MCE, which shall 8303 * have no side effect because normally no guest MCE (e.g., as the 8304 * result of bad memory) would happen during this test. 8305 */ 8306 TEST_ASSERT(!write_cr4_safe(cr4 ^ X86_CR4_MCE)); 8307 8308 /* Cleanup L1 state. */ 8309 write_cr3(orig_cr3); 8310 TEST_ASSERT(!write_cr4_safe(orig_cr4)); 8311 8312 if (!this_cpu_has(X86_FEATURE_LA57)) 8313 goto done; 8314 8315 /* 8316 * Allocate a full page for PML5 to guarantee alignment, though only 8317 * the first entry needs to be filled (the test's virtual addresses 8318 * most definitely do not have any of bits 56:48 set). 8319 */ 8320 pml5 = alloc_page(); 8321 *pml5 = orig_cr3 | PT_PRESENT_MASK | PT_WRITABLE_MASK; 8322 8323 /* 8324 * Transition to/from 5-level paging in the host via VM-Exit. CR4.LA57 8325 * can't be toggled while long is active via MOV CR4, but there are no 8326 * such restrictions on VM-Exit. 8327 */ 8328 lol_5level: 8329 vmcs_write(HOST_CR4, orig_cr4 | X86_CR4_LA57); 8330 vmcs_write(HOST_CR3, virt_to_phys(pml5)); 8331 enter_guest(); 8332 8333 /* 8334 * VMREAD with a memory operand to verify KVM detects the LA57 change, 8335 * e.g. uses the correct guest root level in gva_to_gpa(). 8336 */ 8337 TEST_ASSERT(vmcs_readm(HOST_CR3) == virt_to_phys(pml5)); 8338 TEST_ASSERT(vmcs_readm(HOST_CR4) == (orig_cr4 | X86_CR4_LA57)); 8339 8340 vmcs_write(HOST_CR4, orig_cr4); 8341 vmcs_write(HOST_CR3, orig_cr3); 8342 enter_guest(); 8343 8344 TEST_ASSERT(vmcs_readm(HOST_CR3) == orig_cr3); 8345 TEST_ASSERT(vmcs_readm(HOST_CR4) == orig_cr4); 8346 8347 /* 8348 * And now do the same LA57 shenanigans with EPT enabled. KVM uses 8349 * two separate MMUs when L1 uses TDP, whereas the above shadow paging 8350 * version shares an MMU between L1 and L2. 8351 * 8352 * If the saved execution controls are non-zero then the EPT version 8353 * has already run. In that case, restore the old controls. If EPT 8354 * setup fails, e.g. EPT isn't supported, fall through and finish up. 8355 */ 8356 if (ctrls[0]) { 8357 vmcs_write(CPU_EXEC_CTRL0, ctrls[0]); 8358 vmcs_write(CPU_EXEC_CTRL1, ctrls[1]); 8359 } else if (!setup_ept(false)) { 8360 ctrls[0] = vmcs_read(CPU_EXEC_CTRL0); 8361 ctrls[1] = vmcs_read(CPU_EXEC_CTRL1); 8362 goto lol_5level; 8363 } 8364 8365 free_page(pml5); 8366 8367 done: 8368 skip_exit_vmcall(); 8369 enter_guest(); 8370 } 8371 8372 static void vmx_cr4_osxsave_test_guest(void) 8373 { 8374 write_cr4(read_cr4() & ~X86_CR4_OSXSAVE); 8375 } 8376 8377 /* 8378 * Ensure that kvm recalculates the L1 guest's CPUID.01H:ECX.OSXSAVE 8379 * after VM-exit from an L2 guest that sets CR4.OSXSAVE to a different 8380 * value than in L1. 8381 */ 8382 static void vmx_cr4_osxsave_test(void) 8383 { 8384 if (!this_cpu_has(X86_FEATURE_XSAVE)) { 8385 report_skip("%s : XSAVE not detected", __func__); 8386 return; 8387 } 8388 8389 if (!(read_cr4() & X86_CR4_OSXSAVE)) { 8390 unsigned long cr4 = read_cr4() | X86_CR4_OSXSAVE; 8391 8392 write_cr4(cr4); 8393 vmcs_write(GUEST_CR4, cr4); 8394 vmcs_write(HOST_CR4, cr4); 8395 } 8396 8397 TEST_ASSERT(this_cpu_has(X86_FEATURE_OSXSAVE)); 8398 8399 test_set_guest(vmx_cr4_osxsave_test_guest); 8400 enter_guest(); 8401 8402 TEST_ASSERT(this_cpu_has(X86_FEATURE_OSXSAVE)); 8403 } 8404 8405 /* 8406 * FNOP with both CR0.TS and CR0.EM clear should not generate #NM, and the L2 8407 * guest should exit normally. 8408 */ 8409 static void vmx_no_nm_test(void) 8410 { 8411 test_set_guest(fnop); 8412 vmcs_write(GUEST_CR0, read_cr0() & ~(X86_CR0_TS | X86_CR0_EM)); 8413 enter_guest(); 8414 } 8415 8416 bool vmx_pending_event_ipi_fired; 8417 static void vmx_pending_event_ipi_isr(isr_regs_t *regs) 8418 { 8419 vmx_pending_event_ipi_fired = true; 8420 eoi(); 8421 } 8422 8423 bool vmx_pending_event_guest_run; 8424 static void vmx_pending_event_guest(void) 8425 { 8426 vmcall(); 8427 vmx_pending_event_guest_run = true; 8428 } 8429 8430 static void vmx_pending_event_test_core(bool guest_hlt) 8431 { 8432 int ipi_vector = 0xf1; 8433 8434 vmx_pending_event_ipi_fired = false; 8435 handle_irq(ipi_vector, vmx_pending_event_ipi_isr); 8436 8437 vmx_pending_event_guest_run = false; 8438 test_set_guest(vmx_pending_event_guest); 8439 8440 vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT); 8441 8442 enter_guest(); 8443 skip_exit_vmcall(); 8444 8445 if (guest_hlt) 8446 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 8447 8448 cli(); 8449 apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | 8450 APIC_DM_FIXED | ipi_vector, 8451 0); 8452 8453 enter_guest(); 8454 8455 assert_exit_reason(VMX_EXTINT); 8456 report(!vmx_pending_event_guest_run, 8457 "Guest did not run before host received IPI"); 8458 8459 sti_nop_cli(); 8460 report(vmx_pending_event_ipi_fired, 8461 "Got pending interrupt after IRQ enabled"); 8462 8463 if (guest_hlt) 8464 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 8465 8466 enter_guest(); 8467 report(vmx_pending_event_guest_run, 8468 "Guest finished running when no interrupt"); 8469 } 8470 8471 static void vmx_pending_event_test(void) 8472 { 8473 vmx_pending_event_test_core(false); 8474 } 8475 8476 static void vmx_pending_event_hlt_test(void) 8477 { 8478 vmx_pending_event_test_core(true); 8479 } 8480 8481 static int vmx_window_test_db_count; 8482 8483 static void vmx_window_test_db_handler(struct ex_regs *regs) 8484 { 8485 vmx_window_test_db_count++; 8486 } 8487 8488 static void vmx_nmi_window_test_guest(void) 8489 { 8490 handle_exception(DB_VECTOR, vmx_window_test_db_handler); 8491 8492 asm volatile("vmcall\n\t" 8493 "nop\n\t"); 8494 8495 handle_exception(DB_VECTOR, NULL); 8496 } 8497 8498 static void verify_nmi_window_exit(u64 rip) 8499 { 8500 u32 exit_reason = vmcs_read(EXI_REASON); 8501 8502 report(exit_reason == VMX_NMI_WINDOW, 8503 "Exit reason (%d) is 'NMI window'", exit_reason); 8504 report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx", 8505 vmcs_read(GUEST_RIP), rip); 8506 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 8507 } 8508 8509 static void vmx_nmi_window_test(void) 8510 { 8511 u64 nop_addr; 8512 void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]); 8513 8514 if (!(ctrl_pin_rev.clr & PIN_VIRT_NMI)) { 8515 report_skip("%s : \"Virtual NMIs\" exec control not supported", __func__); 8516 return; 8517 } 8518 8519 if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) { 8520 report_skip("%s : \"NMI-window exiting\" exec control not supported", __func__); 8521 return; 8522 } 8523 8524 vmx_window_test_db_count = 0; 8525 8526 report_prefix_push("NMI-window"); 8527 test_set_guest(vmx_nmi_window_test_guest); 8528 vmcs_set_bits(PIN_CONTROLS, PIN_VIRT_NMI); 8529 enter_guest(); 8530 skip_exit_vmcall(); 8531 nop_addr = vmcs_read(GUEST_RIP); 8532 8533 /* 8534 * Ask for "NMI-window exiting," and expect an immediate VM-exit. 8535 * RIP will not advance. 8536 */ 8537 report_prefix_push("active, no blocking"); 8538 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW); 8539 enter_guest(); 8540 verify_nmi_window_exit(nop_addr); 8541 report_prefix_pop(); 8542 8543 /* 8544 * Ask for "NMI-window exiting" in a MOV-SS shadow, and expect 8545 * a VM-exit on the next instruction after the nop. (The nop 8546 * is one byte.) 8547 */ 8548 report_prefix_push("active, blocking by MOV-SS"); 8549 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); 8550 enter_guest(); 8551 verify_nmi_window_exit(nop_addr + 1); 8552 report_prefix_pop(); 8553 8554 /* 8555 * Ask for "NMI-window exiting" (with event injection), and 8556 * expect a VM-exit after the event is injected. (RIP should 8557 * be at the address specified in the IDT entry for #DB.) 8558 */ 8559 report_prefix_push("active, no blocking, injecting #DB"); 8560 vmcs_write(ENT_INTR_INFO, 8561 INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); 8562 enter_guest(); 8563 verify_nmi_window_exit((u64)db_fault_addr); 8564 report_prefix_pop(); 8565 8566 /* 8567 * Ask for "NMI-window exiting" with NMI blocking, and expect 8568 * a VM-exit after the next IRET (i.e. after the #DB handler 8569 * returns). So, RIP should be back at one byte past the nop. 8570 */ 8571 report_prefix_push("active, blocking by NMI"); 8572 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_NMI); 8573 enter_guest(); 8574 verify_nmi_window_exit(nop_addr + 1); 8575 report(vmx_window_test_db_count == 1, 8576 "#DB handler executed once (actual %d times)", 8577 vmx_window_test_db_count); 8578 report_prefix_pop(); 8579 8580 if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) { 8581 report_skip("CPU does not support activity state HLT."); 8582 } else { 8583 /* 8584 * Ask for "NMI-window exiting" when entering activity 8585 * state HLT, and expect an immediate VM-exit. RIP is 8586 * still one byte past the nop. 8587 */ 8588 report_prefix_push("halted, no blocking"); 8589 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 8590 enter_guest(); 8591 verify_nmi_window_exit(nop_addr + 1); 8592 report_prefix_pop(); 8593 8594 /* 8595 * Ask for "NMI-window exiting" when entering activity 8596 * state HLT (with event injection), and expect a 8597 * VM-exit after the event is injected. (RIP should be 8598 * at the address specified in the IDT entry for #DB.) 8599 */ 8600 report_prefix_push("halted, no blocking, injecting #DB"); 8601 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 8602 vmcs_write(ENT_INTR_INFO, 8603 INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | 8604 DB_VECTOR); 8605 enter_guest(); 8606 verify_nmi_window_exit((u64)db_fault_addr); 8607 report_prefix_pop(); 8608 } 8609 8610 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW); 8611 enter_guest(); 8612 report_prefix_pop(); 8613 } 8614 8615 static void vmx_intr_window_test_guest(void) 8616 { 8617 handle_exception(DB_VECTOR, vmx_window_test_db_handler); 8618 8619 /* 8620 * The two consecutive STIs are to ensure that only the first 8621 * one has a shadow. Note that NOP and STI are one byte 8622 * instructions. 8623 */ 8624 asm volatile("vmcall\n\t" 8625 "nop\n\t" 8626 "sti\n\t" 8627 "sti\n\t"); 8628 8629 handle_exception(DB_VECTOR, NULL); 8630 } 8631 8632 static void verify_intr_window_exit(u64 rip) 8633 { 8634 u32 exit_reason = vmcs_read(EXI_REASON); 8635 8636 report(exit_reason == VMX_INTR_WINDOW, 8637 "Exit reason (%d) is 'interrupt window'", exit_reason); 8638 report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx", 8639 vmcs_read(GUEST_RIP), rip); 8640 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 8641 } 8642 8643 static void vmx_intr_window_test(void) 8644 { 8645 u64 vmcall_addr; 8646 u64 nop_addr; 8647 unsigned int orig_db_gate_type; 8648 void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]); 8649 8650 if (!(ctrl_cpu_rev[0].clr & CPU_INTR_WINDOW)) { 8651 report_skip("%s : \"Interrupt-window exiting\" exec control not supported", __func__); 8652 return; 8653 } 8654 8655 /* 8656 * Change the IDT entry for #DB from interrupt gate to trap gate, 8657 * so that it won't clear RFLAGS.IF. We don't want interrupts to 8658 * be disabled after vectoring a #DB. 8659 */ 8660 orig_db_gate_type = boot_idt[DB_VECTOR].type; 8661 boot_idt[DB_VECTOR].type = 15; 8662 8663 report_prefix_push("interrupt-window"); 8664 test_set_guest(vmx_intr_window_test_guest); 8665 enter_guest(); 8666 assert_exit_reason(VMX_VMCALL); 8667 vmcall_addr = vmcs_read(GUEST_RIP); 8668 8669 /* 8670 * Ask for "interrupt-window exiting" with RFLAGS.IF set and 8671 * no blocking; expect an immediate VM-exit. Note that we have 8672 * not advanced past the vmcall instruction yet, so RIP should 8673 * point to the vmcall instruction. 8674 */ 8675 report_prefix_push("active, no blocking, RFLAGS.IF=1"); 8676 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); 8677 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_IF); 8678 enter_guest(); 8679 verify_intr_window_exit(vmcall_addr); 8680 report_prefix_pop(); 8681 8682 /* 8683 * Ask for "interrupt-window exiting" (with event injection) 8684 * with RFLAGS.IF set and no blocking; expect a VM-exit after 8685 * the event is injected. That is, RIP should should be at the 8686 * address specified in the IDT entry for #DB. 8687 */ 8688 report_prefix_push("active, no blocking, RFLAGS.IF=1, injecting #DB"); 8689 vmcs_write(ENT_INTR_INFO, 8690 INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); 8691 vmcall_addr = vmcs_read(GUEST_RIP); 8692 enter_guest(); 8693 verify_intr_window_exit((u64)db_fault_addr); 8694 report_prefix_pop(); 8695 8696 /* 8697 * Let the L2 guest run through the IRET, back to the VMCALL. 8698 * We have to clear the "interrupt-window exiting" 8699 * VM-execution control, or it would just keep causing 8700 * VM-exits. Then, advance past the VMCALL and set the 8701 * "interrupt-window exiting" VM-execution control again. 8702 */ 8703 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); 8704 enter_guest(); 8705 skip_exit_vmcall(); 8706 nop_addr = vmcs_read(GUEST_RIP); 8707 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); 8708 8709 /* 8710 * Ask for "interrupt-window exiting" in a MOV-SS shadow with 8711 * RFLAGS.IF set, and expect a VM-exit on the next 8712 * instruction. (NOP is one byte.) 8713 */ 8714 report_prefix_push("active, blocking by MOV-SS, RFLAGS.IF=1"); 8715 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); 8716 enter_guest(); 8717 verify_intr_window_exit(nop_addr + 1); 8718 report_prefix_pop(); 8719 8720 /* 8721 * Back up to the NOP and ask for "interrupt-window exiting" 8722 * in an STI shadow with RFLAGS.IF set, and expect a VM-exit 8723 * on the next instruction. (NOP is one byte.) 8724 */ 8725 report_prefix_push("active, blocking by STI, RFLAGS.IF=1"); 8726 vmcs_write(GUEST_RIP, nop_addr); 8727 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_STI); 8728 enter_guest(); 8729 verify_intr_window_exit(nop_addr + 1); 8730 report_prefix_pop(); 8731 8732 /* 8733 * Ask for "interrupt-window exiting" with RFLAGS.IF clear, 8734 * and expect a VM-exit on the instruction following the STI 8735 * shadow. Only the first STI (which is one byte past the NOP) 8736 * should have a shadow. The second STI (which is two bytes 8737 * past the NOP) has no shadow. Therefore, the interrupt 8738 * window opens at three bytes past the NOP. 8739 */ 8740 report_prefix_push("active, RFLAGS.IF = 0"); 8741 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); 8742 enter_guest(); 8743 verify_intr_window_exit(nop_addr + 3); 8744 report_prefix_pop(); 8745 8746 if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) { 8747 report_skip("CPU does not support activity state HLT."); 8748 } else { 8749 /* 8750 * Ask for "interrupt-window exiting" when entering 8751 * activity state HLT, and expect an immediate 8752 * VM-exit. RIP is still three bytes past the nop. 8753 */ 8754 report_prefix_push("halted, no blocking"); 8755 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 8756 enter_guest(); 8757 verify_intr_window_exit(nop_addr + 3); 8758 report_prefix_pop(); 8759 8760 /* 8761 * Ask for "interrupt-window exiting" when entering 8762 * activity state HLT (with event injection), and 8763 * expect a VM-exit after the event is injected. That 8764 * is, RIP should should be at the address specified 8765 * in the IDT entry for #DB. 8766 */ 8767 report_prefix_push("halted, no blocking, injecting #DB"); 8768 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 8769 vmcs_write(ENT_INTR_INFO, 8770 INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | 8771 DB_VECTOR); 8772 enter_guest(); 8773 verify_intr_window_exit((u64)db_fault_addr); 8774 report_prefix_pop(); 8775 } 8776 8777 boot_idt[DB_VECTOR].type = orig_db_gate_type; 8778 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); 8779 enter_guest(); 8780 report_prefix_pop(); 8781 } 8782 8783 #define GUEST_TSC_OFFSET (1u << 30) 8784 8785 static u64 guest_tsc; 8786 8787 static void vmx_store_tsc_test_guest(void) 8788 { 8789 guest_tsc = rdtsc(); 8790 } 8791 8792 /* 8793 * This test ensures that when IA32_TSC is in the VM-exit MSR-store 8794 * list, the value saved is not subject to the TSC offset that is 8795 * applied to RDTSC/RDTSCP/RDMSR(IA32_TSC) in guest execution. 8796 */ 8797 static void vmx_store_tsc_test(void) 8798 { 8799 struct vmx_msr_entry msr_entry = { .index = MSR_IA32_TSC }; 8800 u64 low, high; 8801 8802 if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) { 8803 report_skip("%s : \"Use TSC offsetting\" exec control not supported", __func__); 8804 return; 8805 } 8806 8807 test_set_guest(vmx_store_tsc_test_guest); 8808 8809 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET); 8810 vmcs_write(EXI_MSR_ST_CNT, 1); 8811 vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(&msr_entry)); 8812 vmcs_write(TSC_OFFSET, GUEST_TSC_OFFSET); 8813 8814 low = rdtsc(); 8815 enter_guest(); 8816 high = rdtsc(); 8817 8818 report(low + GUEST_TSC_OFFSET <= guest_tsc && 8819 guest_tsc <= high + GUEST_TSC_OFFSET, 8820 "RDTSC value in the guest (%lu) is in range [%lu, %lu]", 8821 guest_tsc, low + GUEST_TSC_OFFSET, high + GUEST_TSC_OFFSET); 8822 report(low <= msr_entry.value && msr_entry.value <= high, 8823 "IA32_TSC value saved in the VM-exit MSR-store list (%lu) is in range [%lu, %lu]", 8824 msr_entry.value, low, high); 8825 } 8826 8827 static void vmx_preemption_timer_zero_test_db_handler(struct ex_regs *regs) 8828 { 8829 } 8830 8831 static void vmx_preemption_timer_zero_test_guest(void) 8832 { 8833 while (vmx_get_test_stage() < 3) 8834 vmcall(); 8835 } 8836 8837 static void vmx_preemption_timer_zero_activate_preemption_timer(void) 8838 { 8839 vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT); 8840 vmcs_write(PREEMPT_TIMER_VALUE, 0); 8841 } 8842 8843 static void vmx_preemption_timer_zero_advance_past_vmcall(void) 8844 { 8845 vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT); 8846 enter_guest(); 8847 skip_exit_vmcall(); 8848 } 8849 8850 static void vmx_preemption_timer_zero_inject_db(bool intercept_db) 8851 { 8852 vmx_preemption_timer_zero_activate_preemption_timer(); 8853 vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | 8854 INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); 8855 vmcs_write(EXC_BITMAP, intercept_db ? 1 << DB_VECTOR : 0); 8856 enter_guest(); 8857 } 8858 8859 static void vmx_preemption_timer_zero_set_pending_dbg(u32 exception_bitmap) 8860 { 8861 vmx_preemption_timer_zero_activate_preemption_timer(); 8862 vmcs_write(GUEST_PENDING_DEBUG, PENDING_DBG_TRAP | DR6_TRAP1); 8863 vmcs_write(EXC_BITMAP, exception_bitmap); 8864 enter_guest(); 8865 } 8866 8867 static void vmx_preemption_timer_zero_expect_preempt_at_rip(u64 expected_rip) 8868 { 8869 u32 reason = (u32)vmcs_read(EXI_REASON); 8870 u64 guest_rip = vmcs_read(GUEST_RIP); 8871 8872 report(reason == VMX_PREEMPT && guest_rip == expected_rip, 8873 "Exit reason is 0x%x (expected 0x%x) and guest RIP is %lx (0x%lx expected).", 8874 reason, VMX_PREEMPT, guest_rip, expected_rip); 8875 } 8876 8877 /* 8878 * This test ensures that when the VMX preemption timer is zero at 8879 * VM-entry, a VM-exit occurs after any event injection and after any 8880 * pending debug exceptions are raised, but before execution of any 8881 * guest instructions. 8882 */ 8883 static void vmx_preemption_timer_zero_test(void) 8884 { 8885 u64 db_fault_address = (u64)get_idt_addr(&boot_idt[DB_VECTOR]); 8886 handler old_db; 8887 u32 reason; 8888 8889 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 8890 report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__); 8891 return; 8892 } 8893 8894 /* 8895 * Install a custom #DB handler that doesn't abort. 8896 */ 8897 old_db = handle_exception(DB_VECTOR, 8898 vmx_preemption_timer_zero_test_db_handler); 8899 8900 test_set_guest(vmx_preemption_timer_zero_test_guest); 8901 8902 /* 8903 * VMX-preemption timer should fire after event injection. 8904 */ 8905 vmx_set_test_stage(0); 8906 vmx_preemption_timer_zero_inject_db(0); 8907 vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address); 8908 vmx_preemption_timer_zero_advance_past_vmcall(); 8909 8910 /* 8911 * VMX-preemption timer should fire after event injection. 8912 * Exception bitmap is irrelevant, since you can't intercept 8913 * an event that you injected. 8914 */ 8915 vmx_set_test_stage(1); 8916 vmx_preemption_timer_zero_inject_db(true); 8917 vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address); 8918 vmx_preemption_timer_zero_advance_past_vmcall(); 8919 8920 /* 8921 * VMX-preemption timer should fire after pending debug exceptions 8922 * have delivered a #DB trap. 8923 */ 8924 vmx_set_test_stage(2); 8925 vmx_preemption_timer_zero_set_pending_dbg(0); 8926 vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address); 8927 vmx_preemption_timer_zero_advance_past_vmcall(); 8928 8929 /* 8930 * VMX-preemption timer would fire after pending debug exceptions 8931 * have delivered a #DB trap, but in this case, the #DB trap is 8932 * intercepted. 8933 */ 8934 vmx_set_test_stage(3); 8935 vmx_preemption_timer_zero_set_pending_dbg(1 << DB_VECTOR); 8936 reason = (u32)vmcs_read(EXI_REASON); 8937 report(reason == VMX_EXC_NMI, "Exit reason is 0x%x (expected 0x%x)", 8938 reason, VMX_EXC_NMI); 8939 8940 vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT); 8941 enter_guest(); 8942 8943 handle_exception(DB_VECTOR, old_db); 8944 } 8945 8946 static u64 vmx_preemption_timer_tf_test_prev_rip; 8947 8948 static void vmx_preemption_timer_tf_test_db_handler(struct ex_regs *regs) 8949 { 8950 extern char vmx_preemption_timer_tf_test_endloop; 8951 8952 if (vmx_get_test_stage() == 2) { 8953 /* 8954 * Stage 2 means that we're done, one way or another. 8955 * Arrange for the iret to drop us out of the wbinvd 8956 * loop and stop single-stepping. 8957 */ 8958 regs->rip = (u64)&vmx_preemption_timer_tf_test_endloop; 8959 regs->rflags &= ~X86_EFLAGS_TF; 8960 } else if (regs->rip == vmx_preemption_timer_tf_test_prev_rip) { 8961 /* 8962 * The RIP should alternate between the wbinvd and the 8963 * jmp instruction in the code below. If we ever see 8964 * the same instruction twice in a row, that means a 8965 * single-step trap has been dropped. Let the 8966 * hypervisor know about the failure by executing a 8967 * VMCALL. 8968 */ 8969 vmcall(); 8970 } 8971 vmx_preemption_timer_tf_test_prev_rip = regs->rip; 8972 } 8973 8974 static void vmx_preemption_timer_tf_test_guest(void) 8975 { 8976 /* 8977 * The hypervisor doesn't intercept WBINVD, so the loop below 8978 * shouldn't be a problem--it's just two instructions 8979 * executing in VMX non-root mode. However, when the 8980 * hypervisor is running in a virtual environment, the parent 8981 * hypervisor might intercept WBINVD and emulate it. If the 8982 * parent hypervisor is broken, the single-step trap after the 8983 * WBINVD might be lost. 8984 */ 8985 asm volatile("vmcall\n\t" 8986 "0: wbinvd\n\t" 8987 "1: jmp 0b\n\t" 8988 "vmx_preemption_timer_tf_test_endloop:"); 8989 } 8990 8991 /* 8992 * Ensure that the delivery of a "VMX-preemption timer expired" 8993 * VM-exit doesn't disrupt single-stepping in the guest. Note that 8994 * passing this test doesn't ensure correctness, because the test will 8995 * only fail if the VMX-preemtion timer fires at the right time (or 8996 * the wrong time, as it were). 8997 */ 8998 static void vmx_preemption_timer_tf_test(void) 8999 { 9000 handler old_db; 9001 u32 reason; 9002 int i; 9003 9004 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 9005 report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__); 9006 return; 9007 } 9008 9009 old_db = handle_exception(DB_VECTOR, 9010 vmx_preemption_timer_tf_test_db_handler); 9011 9012 test_set_guest(vmx_preemption_timer_tf_test_guest); 9013 9014 enter_guest(); 9015 skip_exit_vmcall(); 9016 9017 vmx_set_test_stage(1); 9018 vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT); 9019 vmcs_write(PREEMPT_TIMER_VALUE, 50000); 9020 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF); 9021 9022 /* 9023 * The only exit we should see is "VMX-preemption timer 9024 * expired." If we get a VMCALL exit, that means the #DB 9025 * handler has detected a missing single-step trap. It doesn't 9026 * matter where the guest RIP is when the VMX-preemption timer 9027 * expires (whether it's in the WBINVD loop or in the #DB 9028 * handler)--a single-step trap should never be discarded. 9029 */ 9030 for (i = 0; i < 10000; i++) { 9031 enter_guest(); 9032 reason = (u32)vmcs_read(EXI_REASON); 9033 if (reason == VMX_PREEMPT) 9034 continue; 9035 TEST_ASSERT(reason == VMX_VMCALL); 9036 skip_exit_insn(); 9037 break; 9038 } 9039 9040 report(reason == VMX_PREEMPT, "No single-step traps skipped"); 9041 9042 vmx_set_test_stage(2); 9043 vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT); 9044 enter_guest(); 9045 9046 handle_exception(DB_VECTOR, old_db); 9047 } 9048 9049 #define VMX_PREEMPTION_TIMER_EXPIRY_CYCLES 1000000 9050 9051 static u64 vmx_preemption_timer_expiry_start; 9052 static u64 vmx_preemption_timer_expiry_finish; 9053 9054 static void vmx_preemption_timer_expiry_test_guest(void) 9055 { 9056 vmcall(); 9057 vmx_preemption_timer_expiry_start = fenced_rdtsc(); 9058 9059 while (vmx_get_test_stage() == 0) 9060 vmx_preemption_timer_expiry_finish = fenced_rdtsc(); 9061 } 9062 9063 /* 9064 * Test that the VMX-preemption timer is not excessively delayed. 9065 * 9066 * Per the SDM, volume 3, VM-entry starts the VMX-preemption timer 9067 * with the unsigned value in the VMX-preemption timer-value field, 9068 * and the VMX-preemption timer counts down by 1 every time bit X in 9069 * the TSC changes due to a TSC increment (where X is 9070 * IA32_VMX_MISC[4:0]). If the timer counts down to zero in any state 9071 * other than the wait-for-SIPI state, the logical processor 9072 * transitions to the C0 C-state and causes a VM-exit. 9073 * 9074 * The guest code above reads the starting TSC after VM-entry. At this 9075 * point, the VMX-preemption timer has already been activated. Next, 9076 * the guest code reads the current TSC in a loop, storing the value 9077 * read to memory. 9078 * 9079 * If the RDTSC in the loop reads a value past the VMX-preemption 9080 * timer deadline, then the VMX-preemption timer VM-exit must be 9081 * delivered before the next instruction retires. Even if a higher 9082 * priority SMI is delivered first, the VMX-preemption timer VM-exit 9083 * must be delivered before the next instruction retires. Hence, a TSC 9084 * value past the VMX-preemption timer deadline might be read, but it 9085 * cannot be stored. If a TSC value past the deadline *is* stored, 9086 * then the architectural specification has been violated. 9087 */ 9088 static void vmx_preemption_timer_expiry_test(void) 9089 { 9090 u32 preemption_timer_value; 9091 union vmx_misc misc; 9092 u64 tsc_deadline; 9093 u32 reason; 9094 9095 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 9096 report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__); 9097 return; 9098 } 9099 9100 test_set_guest(vmx_preemption_timer_expiry_test_guest); 9101 9102 enter_guest(); 9103 skip_exit_vmcall(); 9104 9105 misc.val = rdmsr(MSR_IA32_VMX_MISC); 9106 preemption_timer_value = 9107 VMX_PREEMPTION_TIMER_EXPIRY_CYCLES >> misc.pt_bit; 9108 9109 vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT); 9110 vmcs_write(PREEMPT_TIMER_VALUE, preemption_timer_value); 9111 vmx_set_test_stage(0); 9112 9113 enter_guest(); 9114 reason = (u32)vmcs_read(EXI_REASON); 9115 TEST_ASSERT(reason == VMX_PREEMPT); 9116 9117 tsc_deadline = ((vmx_preemption_timer_expiry_start >> misc.pt_bit) << 9118 misc.pt_bit) + (preemption_timer_value << misc.pt_bit); 9119 9120 report(vmx_preemption_timer_expiry_finish < tsc_deadline, 9121 "Last stored guest TSC (%lu) < TSC deadline (%lu)", 9122 vmx_preemption_timer_expiry_finish, tsc_deadline); 9123 9124 vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT); 9125 vmx_set_test_stage(1); 9126 enter_guest(); 9127 } 9128 9129 static void vmx_db_test_guest(void) 9130 { 9131 /* 9132 * For a hardware generated single-step #DB. 9133 */ 9134 asm volatile("vmcall;" 9135 "nop;" 9136 ".Lpost_nop:"); 9137 /* 9138 * ...in a MOVSS shadow, with pending debug exceptions. 9139 */ 9140 asm volatile("vmcall;" 9141 "nop;" 9142 ".Lpost_movss_nop:"); 9143 /* 9144 * For an L0 synthesized single-step #DB. (L0 intercepts WBINVD and 9145 * emulates it in software.) 9146 */ 9147 asm volatile("vmcall;" 9148 "wbinvd;" 9149 ".Lpost_wbinvd:"); 9150 /* 9151 * ...in a MOVSS shadow, with pending debug exceptions. 9152 */ 9153 asm volatile("vmcall;" 9154 "wbinvd;" 9155 ".Lpost_movss_wbinvd:"); 9156 /* 9157 * For a hardware generated single-step #DB in a transactional region. 9158 */ 9159 asm volatile("vmcall;" 9160 ".Lxbegin: xbegin .Lskip_rtm;" 9161 "xend;" 9162 ".Lskip_rtm:"); 9163 } 9164 9165 /* 9166 * Clear the pending debug exceptions and RFLAGS.TF and re-enter 9167 * L2. No #DB is delivered and L2 continues to the next point of 9168 * interest. 9169 */ 9170 static void dismiss_db(void) 9171 { 9172 vmcs_write(GUEST_PENDING_DEBUG, 0); 9173 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); 9174 enter_guest(); 9175 } 9176 9177 /* 9178 * Check a variety of VMCS fields relevant to an intercepted #DB exception. 9179 * Then throw away the #DB exception and resume L2. 9180 */ 9181 static void check_db_exit(bool xfail_qual, bool xfail_dr6, bool xfail_pdbg, 9182 void *expected_rip, u64 expected_exit_qual, 9183 u64 expected_dr6) 9184 { 9185 u32 reason = vmcs_read(EXI_REASON); 9186 u32 intr_info = vmcs_read(EXI_INTR_INFO); 9187 u64 exit_qual = vmcs_read(EXI_QUALIFICATION); 9188 u64 guest_rip = vmcs_read(GUEST_RIP); 9189 u64 guest_pending_dbg = vmcs_read(GUEST_PENDING_DEBUG); 9190 u64 dr6 = read_dr6(); 9191 const u32 expected_intr_info = INTR_INFO_VALID_MASK | 9192 INTR_TYPE_HARD_EXCEPTION | DB_VECTOR; 9193 9194 report(reason == VMX_EXC_NMI && intr_info == expected_intr_info, 9195 "Expected #DB VM-exit"); 9196 report((u64)expected_rip == guest_rip, "Expected RIP %p (actual %lx)", 9197 expected_rip, guest_rip); 9198 report_xfail(xfail_pdbg, 0 == guest_pending_dbg, 9199 "Expected pending debug exceptions 0 (actual %lx)", 9200 guest_pending_dbg); 9201 report_xfail(xfail_qual, expected_exit_qual == exit_qual, 9202 "Expected exit qualification %lx (actual %lx)", 9203 expected_exit_qual, exit_qual); 9204 report_xfail(xfail_dr6, expected_dr6 == dr6, 9205 "Expected DR6 %lx (actual %lx)", expected_dr6, dr6); 9206 dismiss_db(); 9207 } 9208 9209 /* 9210 * Assuming the guest has just exited on a VMCALL instruction, skip 9211 * over the vmcall, and set the guest's RFLAGS.TF in the VMCS. If 9212 * pending debug exceptions are non-zero, set the VMCS up as if the 9213 * previous instruction was a MOVSS that generated the indicated 9214 * pending debug exceptions. Then enter L2. 9215 */ 9216 static void single_step_guest(const char *test_name, u64 starting_dr6, 9217 u64 pending_debug_exceptions) 9218 { 9219 printf("\n%s\n", test_name); 9220 skip_exit_vmcall(); 9221 write_dr6(starting_dr6); 9222 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF); 9223 if (pending_debug_exceptions) { 9224 vmcs_write(GUEST_PENDING_DEBUG, pending_debug_exceptions); 9225 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); 9226 } 9227 enter_guest(); 9228 } 9229 9230 /* 9231 * When L1 intercepts #DB, verify that a single-step trap clears 9232 * pending debug exceptions, populates the exit qualification field 9233 * properly, and that DR6 is not prematurely clobbered. In a 9234 * (simulated) MOVSS shadow, make sure that the pending debug 9235 * exception bits are properly accumulated into the exit qualification 9236 * field. 9237 */ 9238 static void vmx_db_test(void) 9239 { 9240 /* 9241 * We are going to set a few arbitrary bits in DR6 to verify that 9242 * (a) DR6 is not modified by an intercepted #DB, and 9243 * (b) stale bits in DR6 (DR6.BD, in particular) don't leak into 9244 * the exit qualification field for a subsequent #DB exception. 9245 */ 9246 const u64 starting_dr6 = DR6_ACTIVE_LOW | DR6_BS | DR6_TRAP3 | DR6_TRAP1; 9247 extern char post_nop asm(".Lpost_nop"); 9248 extern char post_movss_nop asm(".Lpost_movss_nop"); 9249 extern char post_wbinvd asm(".Lpost_wbinvd"); 9250 extern char post_movss_wbinvd asm(".Lpost_movss_wbinvd"); 9251 extern char xbegin asm(".Lxbegin"); 9252 extern char skip_rtm asm(".Lskip_rtm"); 9253 9254 /* 9255 * L1 wants to intercept #DB exceptions encountered in L2. 9256 */ 9257 vmcs_write(EXC_BITMAP, BIT(DB_VECTOR)); 9258 9259 /* 9260 * Start L2 and run it up to the first point of interest. 9261 */ 9262 test_set_guest(vmx_db_test_guest); 9263 enter_guest(); 9264 9265 /* 9266 * Hardware-delivered #DB trap for single-step sets the 9267 * standard that L0 has to follow for emulated instructions. 9268 */ 9269 single_step_guest("Hardware delivered single-step", starting_dr6, 0); 9270 check_db_exit(false, false, false, &post_nop, DR6_BS, starting_dr6); 9271 9272 /* 9273 * Hardware-delivered #DB trap for single-step in MOVSS shadow 9274 * also sets the standard that L0 has to follow for emulated 9275 * instructions. Here, we establish the VMCS pending debug 9276 * exceptions to indicate that the simulated MOVSS triggered a 9277 * data breakpoint as well as the single-step trap. 9278 */ 9279 single_step_guest("Hardware delivered single-step in MOVSS shadow", 9280 starting_dr6, DR6_BS | PENDING_DBG_TRAP | DR6_TRAP0); 9281 check_db_exit(false, false, false, &post_movss_nop, DR6_BS | DR6_TRAP0, 9282 starting_dr6); 9283 9284 /* 9285 * L0 synthesized #DB trap for single-step is buggy, because 9286 * kvm (a) clobbers DR6 too early, and (b) tries its best to 9287 * reconstitute the exit qualification from the prematurely 9288 * modified DR6, but fails miserably. 9289 */ 9290 single_step_guest("Software synthesized single-step", starting_dr6, 0); 9291 check_db_exit(false, false, false, &post_wbinvd, DR6_BS, starting_dr6); 9292 9293 /* 9294 * L0 synthesized #DB trap for single-step in MOVSS shadow is 9295 * even worse, because L0 also leaves the pending debug 9296 * exceptions in the VMCS instead of accumulating them into 9297 * the exit qualification field for the #DB exception. 9298 */ 9299 single_step_guest("Software synthesized single-step in MOVSS shadow", 9300 starting_dr6, DR6_BS | PENDING_DBG_TRAP | DR6_TRAP0); 9301 check_db_exit(true, false, true, &post_movss_wbinvd, DR6_BS | DR6_TRAP0, 9302 starting_dr6); 9303 9304 /* 9305 * Optional RTM test for hardware that supports RTM, to 9306 * demonstrate that the current volume 3 of the SDM 9307 * (325384-067US), table 27-1 is incorrect. Bit 16 of the exit 9308 * qualification for debug exceptions is not reserved. It is 9309 * set to 1 if a debug exception (#DB) or a breakpoint 9310 * exception (#BP) occurs inside an RTM region while advanced 9311 * debugging of RTM transactional regions is enabled. 9312 */ 9313 if (this_cpu_has(X86_FEATURE_RTM)) { 9314 vmcs_write(ENT_CONTROLS, 9315 vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS); 9316 /* 9317 * Set DR7.RTM[bit 11] and IA32_DEBUGCTL.RTM[bit 15] 9318 * in the guest to enable advanced debugging of RTM 9319 * transactional regions. 9320 */ 9321 vmcs_write(GUEST_DR7, BIT(11)); 9322 vmcs_write(GUEST_DEBUGCTL, BIT(15)); 9323 single_step_guest("Hardware delivered single-step in " 9324 "transactional region", starting_dr6, 0); 9325 check_db_exit(false, false, false, &xbegin, BIT(16), 9326 starting_dr6); 9327 } else { 9328 vmcs_write(GUEST_RIP, (u64)&skip_rtm); 9329 enter_guest(); 9330 } 9331 } 9332 9333 static void enable_vid(void) 9334 { 9335 void *virtual_apic_page; 9336 9337 assert(cpu_has_apicv()); 9338 9339 enable_x2apic(); 9340 disable_intercept_for_x2apic_msrs(); 9341 9342 virtual_apic_page = alloc_page(); 9343 vmcs_write(APIC_VIRT_ADDR, (u64)virtual_apic_page); 9344 9345 vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT); 9346 9347 vmcs_write(EOI_EXIT_BITMAP0, 0x0); 9348 vmcs_write(EOI_EXIT_BITMAP1, 0x0); 9349 vmcs_write(EOI_EXIT_BITMAP2, 0x0); 9350 vmcs_write(EOI_EXIT_BITMAP3, 0x0); 9351 9352 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY | CPU_TPR_SHADOW); 9353 vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VINTD | CPU_VIRT_X2APIC); 9354 } 9355 9356 #define PI_VECTOR 255 9357 9358 static void enable_posted_interrupts(void) 9359 { 9360 void *pi_desc = alloc_page(); 9361 9362 vmcs_set_bits(PIN_CONTROLS, PIN_POST_INTR); 9363 vmcs_set_bits(EXI_CONTROLS, EXI_INTA); 9364 vmcs_write(PINV, PI_VECTOR); 9365 vmcs_write(POSTED_INTR_DESC_ADDR, (u64)pi_desc); 9366 } 9367 9368 static void trigger_ioapic_scan_thread(void *data) 9369 { 9370 /* Wait until other CPU entered L2 */ 9371 while (vmx_get_test_stage() != 1) 9372 ; 9373 9374 /* Trigger ioapic scan */ 9375 ioapic_set_redir(0xf, 0x79, TRIGGER_LEVEL); 9376 vmx_set_test_stage(2); 9377 } 9378 9379 static void irq_79_handler_guest(isr_regs_t *regs) 9380 { 9381 eoi(); 9382 9383 /* L1 expects vmexit on VMX_VMCALL and not VMX_EOI_INDUCED */ 9384 vmcall(); 9385 } 9386 9387 /* 9388 * Constant for num of busy-loop iterations after which 9389 * a timer interrupt should have happened in host 9390 */ 9391 #define TIMER_INTERRUPT_DELAY 100000000 9392 9393 static void vmx_eoi_bitmap_ioapic_scan_test_guest(void) 9394 { 9395 handle_irq(0x79, irq_79_handler_guest); 9396 sti(); 9397 9398 /* Signal to L1 CPU to trigger ioapic scan */ 9399 vmx_set_test_stage(1); 9400 /* Wait until L1 CPU to trigger ioapic scan */ 9401 while (vmx_get_test_stage() != 2) 9402 ; 9403 9404 /* 9405 * Wait for L0 timer interrupt to be raised while we run in L2 9406 * such that L0 will process the IOAPIC scan request before 9407 * resuming L2 9408 */ 9409 delay(TIMER_INTERRUPT_DELAY); 9410 9411 asm volatile ("int $0x79"); 9412 } 9413 9414 static void vmx_eoi_bitmap_ioapic_scan_test(void) 9415 { 9416 if (!cpu_has_apicv() || (cpu_count() < 2)) { 9417 report_skip("%s : Not all required APICv bits supported or CPU count < 2", __func__); 9418 return; 9419 } 9420 9421 enable_vid(); 9422 9423 on_cpu_async(1, trigger_ioapic_scan_thread, NULL); 9424 test_set_guest(vmx_eoi_bitmap_ioapic_scan_test_guest); 9425 9426 /* 9427 * Launch L2. 9428 * We expect the exit reason to be VMX_VMCALL (and not EOI INDUCED). 9429 * In case the reason isn't VMX_VMCALL, the assertion inside 9430 * skip_exit_vmcall() will fail. 9431 */ 9432 enter_guest(); 9433 skip_exit_vmcall(); 9434 9435 /* Let L2 finish */ 9436 enter_guest(); 9437 report_pass(__func__); 9438 } 9439 9440 #define HLT_WITH_RVI_VECTOR (0xf1) 9441 9442 bool vmx_hlt_with_rvi_guest_isr_fired; 9443 static void vmx_hlt_with_rvi_guest_isr(isr_regs_t *regs) 9444 { 9445 vmx_hlt_with_rvi_guest_isr_fired = true; 9446 eoi(); 9447 } 9448 9449 static void vmx_hlt_with_rvi_guest(void) 9450 { 9451 handle_irq(HLT_WITH_RVI_VECTOR, vmx_hlt_with_rvi_guest_isr); 9452 9453 sti_nop(); 9454 asm volatile ("nop"); 9455 9456 vmcall(); 9457 } 9458 9459 static void vmx_hlt_with_rvi_test(void) 9460 { 9461 if (!cpu_has_apicv()) { 9462 report_skip("%s : Not all required APICv bits supported", __func__); 9463 return; 9464 } 9465 9466 enable_vid(); 9467 9468 vmx_hlt_with_rvi_guest_isr_fired = false; 9469 test_set_guest(vmx_hlt_with_rvi_guest); 9470 9471 enter_guest(); 9472 skip_exit_vmcall(); 9473 9474 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 9475 vmcs_write(GUEST_INT_STATUS, HLT_WITH_RVI_VECTOR); 9476 enter_guest(); 9477 9478 report(vmx_hlt_with_rvi_guest_isr_fired, "Interrupt raised in guest"); 9479 } 9480 9481 static void set_irq_line_thread(void *data) 9482 { 9483 /* Wait until other CPU entered L2 */ 9484 while (vmx_get_test_stage() != 1) 9485 ; 9486 9487 /* Set irq-line 0xf to raise vector 0x78 for vCPU 0 */ 9488 ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL); 9489 vmx_set_test_stage(2); 9490 } 9491 9492 static bool irq_78_handler_vmcall_before_eoi; 9493 static void irq_78_handler_guest(isr_regs_t *regs) 9494 { 9495 set_irq_line(0xf, 0); 9496 if (irq_78_handler_vmcall_before_eoi) 9497 vmcall(); 9498 eoi(); 9499 vmcall(); 9500 } 9501 9502 static void vmx_apic_passthrough_guest(void) 9503 { 9504 handle_irq(0x78, irq_78_handler_guest); 9505 sti(); 9506 9507 /* If requested, wait for other CPU to trigger ioapic scan */ 9508 if (vmx_get_test_stage() < 1) { 9509 vmx_set_test_stage(1); 9510 while (vmx_get_test_stage() != 2) 9511 ; 9512 } 9513 9514 set_irq_line(0xf, 1); 9515 } 9516 9517 static void vmx_apic_passthrough(bool set_irq_line_from_thread) 9518 { 9519 if (set_irq_line_from_thread && (cpu_count() < 2)) { 9520 report_skip("%s : CPU count < 2", __func__); 9521 return; 9522 } 9523 9524 /* Test device is required for generating IRQs */ 9525 if (!test_device_enabled()) { 9526 report_skip("%s : No test device enabled", __func__); 9527 return; 9528 } 9529 u64 cpu_ctrl_0 = CPU_SECONDARY; 9530 u64 cpu_ctrl_1 = 0; 9531 9532 disable_intercept_for_x2apic_msrs(); 9533 9534 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 9535 9536 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0); 9537 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1); 9538 9539 if (set_irq_line_from_thread) { 9540 irq_78_handler_vmcall_before_eoi = false; 9541 on_cpu_async(1, set_irq_line_thread, NULL); 9542 } else { 9543 irq_78_handler_vmcall_before_eoi = true; 9544 ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL); 9545 vmx_set_test_stage(2); 9546 } 9547 test_set_guest(vmx_apic_passthrough_guest); 9548 9549 if (irq_78_handler_vmcall_before_eoi) { 9550 /* Before EOI remote_irr should still be set */ 9551 enter_guest(); 9552 skip_exit_vmcall(); 9553 TEST_ASSERT_EQ_MSG(1, (int)ioapic_read_redir(0xf).remote_irr, 9554 "IOAPIC pass-through: remote_irr=1 before EOI"); 9555 } 9556 9557 /* After EOI remote_irr should be cleared */ 9558 enter_guest(); 9559 skip_exit_vmcall(); 9560 TEST_ASSERT_EQ_MSG(0, (int)ioapic_read_redir(0xf).remote_irr, 9561 "IOAPIC pass-through: remote_irr=0 after EOI"); 9562 9563 /* Let L2 finish */ 9564 enter_guest(); 9565 report_pass(__func__); 9566 } 9567 9568 static void vmx_apic_passthrough_test(void) 9569 { 9570 vmx_apic_passthrough(false); 9571 } 9572 9573 static void vmx_apic_passthrough_thread_test(void) 9574 { 9575 vmx_apic_passthrough(true); 9576 } 9577 9578 static void vmx_apic_passthrough_tpr_threshold_guest(void) 9579 { 9580 cli(); 9581 apic_set_tpr(0); 9582 } 9583 9584 static bool vmx_apic_passthrough_tpr_threshold_ipi_isr_fired; 9585 static void vmx_apic_passthrough_tpr_threshold_ipi_isr(isr_regs_t *regs) 9586 { 9587 vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = true; 9588 eoi(); 9589 } 9590 9591 static void vmx_apic_passthrough_tpr_threshold_test(void) 9592 { 9593 int ipi_vector = 0xe1; 9594 9595 disable_intercept_for_x2apic_msrs(); 9596 vmcs_clear_bits(PIN_CONTROLS, PIN_EXTINT); 9597 9598 /* Raise L0 TPR-threshold by queueing vector in LAPIC IRR */ 9599 cli(); 9600 apic_set_tpr((ipi_vector >> 4) + 1); 9601 apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | 9602 APIC_DM_FIXED | ipi_vector, 9603 0); 9604 9605 test_set_guest(vmx_apic_passthrough_tpr_threshold_guest); 9606 enter_guest(); 9607 9608 report(apic_get_tpr() == 0, "TPR was zero by guest"); 9609 9610 /* Clean pending self-IPI */ 9611 vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = false; 9612 handle_irq(ipi_vector, vmx_apic_passthrough_tpr_threshold_ipi_isr); 9613 sti_nop(); 9614 report(vmx_apic_passthrough_tpr_threshold_ipi_isr_fired, "self-IPI fired"); 9615 9616 report_pass(__func__); 9617 } 9618 9619 static u64 init_signal_test_exit_reason; 9620 static bool init_signal_test_thread_continued; 9621 9622 static void init_signal_test_thread(void *data) 9623 { 9624 struct vmcs *test_vmcs = data; 9625 9626 /* Enter VMX operation (i.e. exec VMXON) */ 9627 u64 *ap_vmxon_region = alloc_page(); 9628 enable_vmx(); 9629 init_vmx(ap_vmxon_region); 9630 TEST_ASSERT(!__vmxon_safe(ap_vmxon_region)); 9631 9632 /* Signal CPU have entered VMX operation */ 9633 vmx_set_test_stage(1); 9634 9635 /* Wait for BSP CPU to send INIT signal */ 9636 while (vmx_get_test_stage() != 2) 9637 ; 9638 9639 /* 9640 * Signal that we continue as usual as INIT signal 9641 * should be blocked while CPU is in VMX operation 9642 */ 9643 vmx_set_test_stage(3); 9644 9645 /* Wait for signal to enter VMX non-root mode */ 9646 while (vmx_get_test_stage() != 4) 9647 ; 9648 9649 /* Enter VMX non-root mode */ 9650 test_set_guest(v2_null_test_guest); 9651 make_vmcs_current(test_vmcs); 9652 enter_guest(); 9653 /* Save exit reason for BSP CPU to compare to expected result */ 9654 init_signal_test_exit_reason = vmcs_read(EXI_REASON); 9655 /* VMCLEAR test-vmcs so it could be loaded by BSP CPU */ 9656 vmcs_clear(test_vmcs); 9657 launched = false; 9658 /* Signal that CPU exited to VMX root mode */ 9659 vmx_set_test_stage(5); 9660 9661 /* Wait for BSP CPU to signal to exit VMX operation */ 9662 while (vmx_get_test_stage() != 6) 9663 ; 9664 9665 /* Exit VMX operation (i.e. exec VMXOFF) */ 9666 vmx_off(); 9667 9668 /* 9669 * Signal to BSP CPU that we continue as usual as INIT signal 9670 * should have been consumed by VMX_INIT exit from guest 9671 */ 9672 vmx_set_test_stage(7); 9673 9674 /* Wait for BSP CPU to signal to enter VMX operation */ 9675 while (vmx_get_test_stage() != 8) 9676 ; 9677 /* Enter VMX operation (i.e. exec VMXON) */ 9678 TEST_ASSERT(!__vmxon_safe(ap_vmxon_region)); 9679 /* Signal to BSP we are in VMX operation */ 9680 vmx_set_test_stage(9); 9681 9682 /* Wait for BSP CPU to send INIT signal */ 9683 while (vmx_get_test_stage() != 10) 9684 ; 9685 9686 /* Exit VMX operation (i.e. exec VMXOFF) */ 9687 vmx_off(); 9688 9689 /* 9690 * Exiting VMX operation should result in latched 9691 * INIT signal being processed. Therefore, we should 9692 * never reach the below code. Thus, signal to BSP 9693 * CPU if we have reached here so it is able to 9694 * report an issue if it happens. 9695 */ 9696 init_signal_test_thread_continued = true; 9697 } 9698 9699 #define INIT_SIGNAL_TEST_DELAY 100000000ULL 9700 9701 static void vmx_init_signal_test(void) 9702 { 9703 struct vmcs *test_vmcs; 9704 9705 if (cpu_count() < 2) { 9706 report_skip("%s : CPU count < 2", __func__); 9707 return; 9708 } 9709 9710 /* VMCLEAR test-vmcs so it could be loaded by other CPU */ 9711 vmcs_save(&test_vmcs); 9712 vmcs_clear(test_vmcs); 9713 9714 vmx_set_test_stage(0); 9715 on_cpu_async(1, init_signal_test_thread, test_vmcs); 9716 9717 /* Wait for other CPU to enter VMX operation */ 9718 while (vmx_get_test_stage() != 1) 9719 ; 9720 9721 /* Send INIT signal to other CPU */ 9722 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT, 9723 id_map[1]); 9724 /* Signal other CPU we have sent INIT signal */ 9725 vmx_set_test_stage(2); 9726 9727 /* 9728 * Wait reasonable amount of time for INIT signal to 9729 * be received on other CPU and verify that other CPU 9730 * have proceed as usual to next test stage as INIT 9731 * signal should be blocked while other CPU in 9732 * VMX operation 9733 */ 9734 delay(INIT_SIGNAL_TEST_DELAY); 9735 report(vmx_get_test_stage() == 3, 9736 "INIT signal blocked when CPU in VMX operation"); 9737 /* No point to continue if we failed at this point */ 9738 if (vmx_get_test_stage() != 3) 9739 return; 9740 9741 /* Signal other CPU to enter VMX non-root mode */ 9742 init_signal_test_exit_reason = -1ull; 9743 vmx_set_test_stage(4); 9744 /* 9745 * Wait reasonable amount of time for other CPU 9746 * to exit to VMX root mode 9747 */ 9748 delay(INIT_SIGNAL_TEST_DELAY); 9749 if (vmx_get_test_stage() != 5) { 9750 report_fail("Pending INIT signal didn't result in VMX exit"); 9751 return; 9752 } 9753 report(init_signal_test_exit_reason == VMX_INIT, 9754 "INIT signal during VMX non-root mode result in exit-reason %s (%lu)", 9755 exit_reason_description(init_signal_test_exit_reason), 9756 init_signal_test_exit_reason); 9757 9758 /* Run guest to completion */ 9759 make_vmcs_current(test_vmcs); 9760 enter_guest(); 9761 9762 /* Signal other CPU to exit VMX operation */ 9763 init_signal_test_thread_continued = false; 9764 vmx_set_test_stage(6); 9765 9766 /* Wait reasonable amount of time for other CPU to exit VMX operation */ 9767 delay(INIT_SIGNAL_TEST_DELAY); 9768 report(vmx_get_test_stage() == 7, 9769 "INIT signal consumed on VMX_INIT exit"); 9770 /* No point to continue if we failed at this point */ 9771 if (vmx_get_test_stage() != 7) 9772 return; 9773 9774 /* Signal other CPU to enter VMX operation */ 9775 vmx_set_test_stage(8); 9776 /* Wait for other CPU to enter VMX operation */ 9777 while (vmx_get_test_stage() != 9) 9778 ; 9779 9780 /* Send INIT signal to other CPU */ 9781 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT, 9782 id_map[1]); 9783 /* Signal other CPU we have sent INIT signal */ 9784 vmx_set_test_stage(10); 9785 9786 /* 9787 * Wait reasonable amount of time for other CPU 9788 * to exit VMX operation and process INIT signal 9789 */ 9790 delay(INIT_SIGNAL_TEST_DELAY); 9791 report(!init_signal_test_thread_continued, 9792 "INIT signal processed after exit VMX operation"); 9793 9794 /* 9795 * TODO: Send SIPI to other CPU to sipi_entry (See x86/cstart64.S) 9796 * to re-init it to kvm-unit-tests standard environment. 9797 * Somehow (?) verify that SIPI was indeed received. 9798 */ 9799 } 9800 9801 #define SIPI_SIGNAL_TEST_DELAY 100000000ULL 9802 9803 static void vmx_sipi_test_guest(void) 9804 { 9805 if (apic_id() == 0) { 9806 /* wait AP enter guest with activity=WAIT_SIPI */ 9807 while (vmx_get_test_stage() != 1) 9808 ; 9809 delay(SIPI_SIGNAL_TEST_DELAY); 9810 9811 /* First SIPI signal */ 9812 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP | APIC_INT_ASSERT, id_map[1]); 9813 report_pass("BSP(L2): Send first SIPI to cpu[%d]", id_map[1]); 9814 9815 /* wait AP enter guest */ 9816 while (vmx_get_test_stage() != 2) 9817 ; 9818 delay(SIPI_SIGNAL_TEST_DELAY); 9819 9820 /* Second SIPI signal should be ignored since AP is not in WAIT_SIPI state */ 9821 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP | APIC_INT_ASSERT, id_map[1]); 9822 report_pass("BSP(L2): Send second SIPI to cpu[%d]", id_map[1]); 9823 9824 /* Delay a while to check whether second SIPI would cause VMExit */ 9825 delay(SIPI_SIGNAL_TEST_DELAY); 9826 9827 /* Test is done, notify AP to exit test */ 9828 vmx_set_test_stage(3); 9829 9830 /* wait AP exit non-root mode */ 9831 while (vmx_get_test_stage() != 5) 9832 ; 9833 } else { 9834 /* wait BSP notify test is done */ 9835 while (vmx_get_test_stage() != 3) 9836 ; 9837 9838 /* AP exit guest */ 9839 vmx_set_test_stage(4); 9840 } 9841 } 9842 9843 static void sipi_test_ap_thread(void *data) 9844 { 9845 struct vmcs *ap_vmcs; 9846 u64 *ap_vmxon_region; 9847 void *ap_stack, *ap_syscall_stack; 9848 u64 cpu_ctrl_0 = CPU_SECONDARY; 9849 u64 cpu_ctrl_1 = 0; 9850 9851 /* Enter VMX operation (i.e. exec VMXON) */ 9852 ap_vmxon_region = alloc_page(); 9853 enable_vmx(); 9854 init_vmx(ap_vmxon_region); 9855 TEST_ASSERT(!__vmxon_safe(ap_vmxon_region)); 9856 init_vmcs(&ap_vmcs); 9857 make_vmcs_current(ap_vmcs); 9858 9859 /* Set stack for AP */ 9860 ap_stack = alloc_page(); 9861 ap_syscall_stack = alloc_page(); 9862 vmcs_write(GUEST_RSP, (u64)(ap_stack + PAGE_SIZE - 1)); 9863 vmcs_write(GUEST_SYSENTER_ESP, (u64)(ap_syscall_stack + PAGE_SIZE - 1)); 9864 9865 /* passthrough lapic to L2 */ 9866 disable_intercept_for_x2apic_msrs(); 9867 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 9868 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0); 9869 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1); 9870 9871 /* Set guest activity state to wait-for-SIPI state */ 9872 vmcs_write(GUEST_ACTV_STATE, ACTV_WAIT_SIPI); 9873 9874 vmx_set_test_stage(1); 9875 9876 /* AP enter guest */ 9877 enter_guest(); 9878 9879 if (vmcs_read(EXI_REASON) == VMX_SIPI) { 9880 report_pass("AP: Handle SIPI VMExit"); 9881 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 9882 vmx_set_test_stage(2); 9883 } else { 9884 report_fail("AP: Unexpected VMExit, reason=%ld", vmcs_read(EXI_REASON)); 9885 vmx_off(); 9886 return; 9887 } 9888 9889 /* AP enter guest */ 9890 enter_guest(); 9891 9892 report(vmcs_read(EXI_REASON) != VMX_SIPI, 9893 "AP: should no SIPI VMExit since activity is not in WAIT_SIPI state"); 9894 9895 /* notify BSP that AP is already exit from non-root mode */ 9896 vmx_set_test_stage(5); 9897 9898 /* Leave VMX operation */ 9899 vmx_off(); 9900 } 9901 9902 static void vmx_sipi_signal_test(void) 9903 { 9904 if (!(rdmsr(MSR_IA32_VMX_MISC) & MSR_IA32_VMX_MISC_ACTIVITY_WAIT_SIPI)) { 9905 report_skip("%s : \"ACTIVITY_WAIT_SIPI state\" not supported", __func__); 9906 return; 9907 } 9908 9909 if (cpu_count() < 2) { 9910 report_skip("%s : CPU count < 2", __func__); 9911 return; 9912 } 9913 9914 u64 cpu_ctrl_0 = CPU_SECONDARY; 9915 u64 cpu_ctrl_1 = 0; 9916 9917 /* passthrough lapic to L2 */ 9918 disable_intercept_for_x2apic_msrs(); 9919 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 9920 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0); 9921 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1); 9922 9923 test_set_guest(vmx_sipi_test_guest); 9924 9925 /* update CR3 on AP */ 9926 on_cpu(1, update_cr3, (void *)read_cr3()); 9927 9928 /* start AP */ 9929 on_cpu_async(1, sipi_test_ap_thread, NULL); 9930 9931 vmx_set_test_stage(0); 9932 9933 /* BSP enter guest */ 9934 enter_guest(); 9935 } 9936 9937 9938 enum vmcs_access { 9939 ACCESS_VMREAD, 9940 ACCESS_VMWRITE, 9941 ACCESS_NONE, 9942 }; 9943 9944 struct vmcs_shadow_test_common { 9945 enum vmcs_access op; 9946 enum Reason reason; 9947 u64 field; 9948 u64 value; 9949 u64 flags; 9950 u64 time; 9951 } l1_l2_common; 9952 9953 static inline u64 vmread_flags(u64 field, u64 *val) 9954 { 9955 u64 flags; 9956 9957 asm volatile ("vmread %2, %1; pushf; pop %0" 9958 : "=r" (flags), "=rm" (*val) : "r" (field) : "cc"); 9959 return flags & X86_EFLAGS_ALU; 9960 } 9961 9962 static inline u64 vmwrite_flags(u64 field, u64 val) 9963 { 9964 u64 flags; 9965 9966 asm volatile ("vmwrite %1, %2; pushf; pop %0" 9967 : "=r"(flags) : "rm" (val), "r" (field) : "cc"); 9968 return flags & X86_EFLAGS_ALU; 9969 } 9970 9971 static void vmx_vmcs_shadow_test_guest(void) 9972 { 9973 struct vmcs_shadow_test_common *c = &l1_l2_common; 9974 u64 start; 9975 9976 while (c->op != ACCESS_NONE) { 9977 start = rdtsc(); 9978 switch (c->op) { 9979 default: 9980 c->flags = -1ull; 9981 break; 9982 case ACCESS_VMREAD: 9983 c->flags = vmread_flags(c->field, &c->value); 9984 break; 9985 case ACCESS_VMWRITE: 9986 c->flags = vmwrite_flags(c->field, 0); 9987 break; 9988 } 9989 c->time = rdtsc() - start; 9990 vmcall(); 9991 } 9992 } 9993 9994 static u64 vmread_from_shadow(u64 field) 9995 { 9996 struct vmcs *primary; 9997 struct vmcs *shadow; 9998 u64 value; 9999 10000 TEST_ASSERT(!vmcs_save(&primary)); 10001 shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); 10002 TEST_ASSERT(!make_vmcs_current(shadow)); 10003 value = vmcs_read(field); 10004 TEST_ASSERT(!make_vmcs_current(primary)); 10005 return value; 10006 } 10007 10008 static u64 vmwrite_to_shadow(u64 field, u64 value) 10009 { 10010 struct vmcs *primary; 10011 struct vmcs *shadow; 10012 10013 TEST_ASSERT(!vmcs_save(&primary)); 10014 shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); 10015 TEST_ASSERT(!make_vmcs_current(shadow)); 10016 vmcs_write(field, value); 10017 value = vmcs_read(field); 10018 TEST_ASSERT(!make_vmcs_current(primary)); 10019 return value; 10020 } 10021 10022 static void vmcs_shadow_test_access(u8 *bitmap[2], enum vmcs_access access) 10023 { 10024 struct vmcs_shadow_test_common *c = &l1_l2_common; 10025 10026 c->op = access; 10027 vmcs_write(VMX_INST_ERROR, 0); 10028 enter_guest(); 10029 c->reason = vmcs_read(EXI_REASON) & 0xffff; 10030 if (c->reason != VMX_VMCALL) { 10031 skip_exit_insn(); 10032 enter_guest(); 10033 } 10034 skip_exit_vmcall(); 10035 } 10036 10037 static void vmcs_shadow_test_field(u8 *bitmap[2], u64 field) 10038 { 10039 struct vmcs_shadow_test_common *c = &l1_l2_common; 10040 struct vmcs *shadow; 10041 u64 value; 10042 uintptr_t flags[2]; 10043 bool good_shadow; 10044 u32 vmx_inst_error; 10045 10046 report_prefix_pushf("field %lx", field); 10047 c->field = field; 10048 10049 shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); 10050 if (shadow != (struct vmcs *)-1ull) { 10051 flags[ACCESS_VMREAD] = vmread_flags(field, &value); 10052 flags[ACCESS_VMWRITE] = vmwrite_flags(field, value); 10053 good_shadow = !flags[ACCESS_VMREAD] && !flags[ACCESS_VMWRITE]; 10054 } else { 10055 /* 10056 * When VMCS link pointer is -1ull, VMWRITE/VMREAD on 10057 * shadowed-fields should fail with setting RFLAGS.CF. 10058 */ 10059 flags[ACCESS_VMREAD] = X86_EFLAGS_CF; 10060 flags[ACCESS_VMWRITE] = X86_EFLAGS_CF; 10061 good_shadow = false; 10062 } 10063 10064 /* Intercept both VMREAD and VMWRITE. */ 10065 report_prefix_push("no VMREAD/VMWRITE permission"); 10066 /* VMWRITE/VMREAD done on reserved-bit should always intercept */ 10067 if (!(field >> VMCS_FIELD_RESERVED_SHIFT)) { 10068 set_bit(field, bitmap[ACCESS_VMREAD]); 10069 set_bit(field, bitmap[ACCESS_VMWRITE]); 10070 } 10071 vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); 10072 report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE"); 10073 vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); 10074 report(c->reason == VMX_VMREAD, "not shadowed for VMREAD"); 10075 report_prefix_pop(); 10076 10077 if (field >> VMCS_FIELD_RESERVED_SHIFT) 10078 goto out; 10079 10080 /* Permit shadowed VMREAD. */ 10081 report_prefix_push("VMREAD permission only"); 10082 clear_bit(field, bitmap[ACCESS_VMREAD]); 10083 set_bit(field, bitmap[ACCESS_VMWRITE]); 10084 if (good_shadow) 10085 value = vmwrite_to_shadow(field, MAGIC_VAL_1 + field); 10086 vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); 10087 report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE"); 10088 vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); 10089 vmx_inst_error = vmcs_read(VMX_INST_ERROR); 10090 report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)", 10091 c->time); 10092 report(c->flags == flags[ACCESS_VMREAD], 10093 "ALU flags after VMREAD (%lx) are as expected (%lx)", 10094 c->flags, flags[ACCESS_VMREAD]); 10095 if (good_shadow) 10096 report(c->value == value, 10097 "value read from shadow (%lx) is as expected (%lx)", 10098 c->value, value); 10099 else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD]) 10100 report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, 10101 "VMX_INST_ERROR (%d) is as expected (%d)", 10102 vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 10103 report_prefix_pop(); 10104 10105 /* Permit shadowed VMWRITE. */ 10106 report_prefix_push("VMWRITE permission only"); 10107 set_bit(field, bitmap[ACCESS_VMREAD]); 10108 clear_bit(field, bitmap[ACCESS_VMWRITE]); 10109 if (good_shadow) 10110 vmwrite_to_shadow(field, MAGIC_VAL_1 + field); 10111 vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); 10112 vmx_inst_error = vmcs_read(VMX_INST_ERROR); 10113 report(c->reason == VMX_VMCALL, 10114 "shadowed for VMWRITE (in %ld cycles)", 10115 c->time); 10116 report(c->flags == flags[ACCESS_VMREAD], 10117 "ALU flags after VMWRITE (%lx) are as expected (%lx)", 10118 c->flags, flags[ACCESS_VMREAD]); 10119 if (good_shadow) { 10120 value = vmread_from_shadow(field); 10121 report(value == 0, 10122 "shadow VMCS value (%lx) is as expected (%lx)", value, 10123 0ul); 10124 } else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) { 10125 report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, 10126 "VMX_INST_ERROR (%d) is as expected (%d)", 10127 vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 10128 } 10129 vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); 10130 report(c->reason == VMX_VMREAD, "not shadowed for VMREAD"); 10131 report_prefix_pop(); 10132 10133 /* Permit shadowed VMREAD and VMWRITE. */ 10134 report_prefix_push("VMREAD and VMWRITE permission"); 10135 clear_bit(field, bitmap[ACCESS_VMREAD]); 10136 clear_bit(field, bitmap[ACCESS_VMWRITE]); 10137 if (good_shadow) 10138 vmwrite_to_shadow(field, MAGIC_VAL_1 + field); 10139 vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); 10140 vmx_inst_error = vmcs_read(VMX_INST_ERROR); 10141 report(c->reason == VMX_VMCALL, 10142 "shadowed for VMWRITE (in %ld cycles)", 10143 c->time); 10144 report(c->flags == flags[ACCESS_VMREAD], 10145 "ALU flags after VMWRITE (%lx) are as expected (%lx)", 10146 c->flags, flags[ACCESS_VMREAD]); 10147 if (good_shadow) { 10148 value = vmread_from_shadow(field); 10149 report(value == 0, 10150 "shadow VMCS value (%lx) is as expected (%lx)", value, 10151 0ul); 10152 } else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) { 10153 report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, 10154 "VMX_INST_ERROR (%d) is as expected (%d)", 10155 vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 10156 } 10157 vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); 10158 vmx_inst_error = vmcs_read(VMX_INST_ERROR); 10159 report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)", 10160 c->time); 10161 report(c->flags == flags[ACCESS_VMREAD], 10162 "ALU flags after VMREAD (%lx) are as expected (%lx)", 10163 c->flags, flags[ACCESS_VMREAD]); 10164 if (good_shadow) 10165 report(c->value == 0, 10166 "value read from shadow (%lx) is as expected (%lx)", 10167 c->value, 0ul); 10168 else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD]) 10169 report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, 10170 "VMX_INST_ERROR (%d) is as expected (%d)", 10171 vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 10172 report_prefix_pop(); 10173 10174 out: 10175 report_prefix_pop(); 10176 } 10177 10178 static void vmx_vmcs_shadow_test_body(u8 *bitmap[2]) 10179 { 10180 unsigned base; 10181 unsigned index; 10182 unsigned bit; 10183 unsigned highest_index = rdmsr(MSR_IA32_VMX_VMCS_ENUM); 10184 10185 /* Run test on all possible valid VMCS fields */ 10186 for (base = 0; 10187 base < (1 << VMCS_FIELD_RESERVED_SHIFT); 10188 base += (1 << VMCS_FIELD_TYPE_SHIFT)) 10189 for (index = 0; index <= highest_index; index++) 10190 vmcs_shadow_test_field(bitmap, base + index); 10191 10192 /* 10193 * Run tests on some invalid VMCS fields 10194 * (Have reserved bit set). 10195 */ 10196 for (bit = VMCS_FIELD_RESERVED_SHIFT; bit < VMCS_FIELD_BIT_SIZE; bit++) 10197 vmcs_shadow_test_field(bitmap, (1ull << bit)); 10198 } 10199 10200 static void vmx_vmcs_shadow_test(void) 10201 { 10202 u8 *bitmap[2]; 10203 struct vmcs *shadow; 10204 10205 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) { 10206 report_skip("%s : \"Activate secondary controls\" not supported", __func__); 10207 return; 10208 } 10209 10210 if (!(ctrl_cpu_rev[1].clr & CPU_SHADOW_VMCS)) { 10211 report_skip("%s : \"VMCS shadowing\" not supported", __func__); 10212 return; 10213 } 10214 10215 if (!(rdmsr(MSR_IA32_VMX_MISC) & 10216 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) { 10217 report_skip("%s : VMWRITE can't modify VM-exit information fields.", __func__); 10218 return; 10219 } 10220 10221 test_set_guest(vmx_vmcs_shadow_test_guest); 10222 10223 bitmap[ACCESS_VMREAD] = alloc_page(); 10224 bitmap[ACCESS_VMWRITE] = alloc_page(); 10225 10226 vmcs_write(VMREAD_BITMAP, virt_to_phys(bitmap[ACCESS_VMREAD])); 10227 vmcs_write(VMWRITE_BITMAP, virt_to_phys(bitmap[ACCESS_VMWRITE])); 10228 10229 shadow = alloc_page(); 10230 shadow->hdr.revision_id = basic_msr.revision; 10231 shadow->hdr.shadow_vmcs = 1; 10232 TEST_ASSERT(!vmcs_clear(shadow)); 10233 10234 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_RDTSC); 10235 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY); 10236 vmcs_set_bits(CPU_EXEC_CTRL1, CPU_SHADOW_VMCS); 10237 10238 vmcs_write(VMCS_LINK_PTR, virt_to_phys(shadow)); 10239 report_prefix_push("valid link pointer"); 10240 vmx_vmcs_shadow_test_body(bitmap); 10241 report_prefix_pop(); 10242 10243 vmcs_write(VMCS_LINK_PTR, -1ull); 10244 report_prefix_push("invalid link pointer"); 10245 vmx_vmcs_shadow_test_body(bitmap); 10246 report_prefix_pop(); 10247 10248 l1_l2_common.op = ACCESS_NONE; 10249 enter_guest(); 10250 } 10251 10252 /* 10253 * This test monitors the difference between a guest RDTSC instruction 10254 * and the IA32_TIME_STAMP_COUNTER MSR value stored in the VMCS12 10255 * VM-exit MSR-store list when taking a VM-exit on the instruction 10256 * following RDTSC. 10257 */ 10258 #define RDTSC_DIFF_ITERS 100000 10259 #define RDTSC_DIFF_FAILS 100 10260 #define HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD 750 10261 10262 /* 10263 * Set 'use TSC offsetting' and set the guest offset to the 10264 * inverse of the host's current TSC value, so that the guest starts running 10265 * with an effective TSC value of 0. 10266 */ 10267 static void reset_guest_tsc_to_zero(void) 10268 { 10269 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET); 10270 vmcs_write(TSC_OFFSET, -rdtsc()); 10271 } 10272 10273 static void rdtsc_vmexit_diff_test_guest(void) 10274 { 10275 int i; 10276 10277 for (i = 0; i < RDTSC_DIFF_ITERS; i++) 10278 /* Ensure rdtsc is the last instruction before the vmcall. */ 10279 asm volatile("rdtsc; vmcall" : : : "eax", "edx"); 10280 } 10281 10282 /* 10283 * This function only considers the "use TSC offsetting" VM-execution 10284 * control. It does not handle "use TSC scaling" (because the latter 10285 * isn't available to the host today.) 10286 */ 10287 static unsigned long long host_time_to_guest_time(unsigned long long t) 10288 { 10289 TEST_ASSERT(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 10290 !(vmcs_read(CPU_EXEC_CTRL1) & CPU_USE_TSC_SCALING)); 10291 10292 if (vmcs_read(CPU_EXEC_CTRL0) & CPU_USE_TSC_OFFSET) 10293 t += vmcs_read(TSC_OFFSET); 10294 10295 return t; 10296 } 10297 10298 static unsigned long long rdtsc_vmexit_diff_test_iteration(void) 10299 { 10300 unsigned long long guest_tsc, host_to_guest_tsc; 10301 10302 enter_guest(); 10303 skip_exit_vmcall(); 10304 guest_tsc = (u32) regs.rax + (regs.rdx << 32); 10305 host_to_guest_tsc = host_time_to_guest_time(exit_msr_store[0].value); 10306 10307 return host_to_guest_tsc - guest_tsc; 10308 } 10309 10310 static void rdtsc_vmexit_diff_test(void) 10311 { 10312 unsigned long long delta; 10313 int fail = 0; 10314 int i; 10315 10316 if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) 10317 test_skip("CPU doesn't support the 'use TSC offsetting' processor-based VM-execution control.\n"); 10318 10319 test_set_guest(rdtsc_vmexit_diff_test_guest); 10320 10321 reset_guest_tsc_to_zero(); 10322 10323 /* 10324 * Set up the VMCS12 VM-exit MSR-store list to store just one 10325 * MSR: IA32_TIME_STAMP_COUNTER. Note that the value stored is 10326 * in the host time domain (i.e., it is not adjusted according 10327 * to the TSC multiplier and TSC offset fields in the VMCS12, 10328 * as a guest RDTSC would be.) 10329 */ 10330 exit_msr_store = alloc_page(); 10331 exit_msr_store[0].index = MSR_IA32_TSC; 10332 vmcs_write(EXI_MSR_ST_CNT, 1); 10333 vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(exit_msr_store)); 10334 10335 for (i = 0; i < RDTSC_DIFF_ITERS && fail < RDTSC_DIFF_FAILS; i++) { 10336 delta = rdtsc_vmexit_diff_test_iteration(); 10337 if (delta >= HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD) 10338 fail++; 10339 } 10340 10341 enter_guest(); 10342 10343 report(fail < RDTSC_DIFF_FAILS, 10344 "RDTSC to VM-exit delta too high in %d of %d iterations, last = %llu", 10345 fail, i, delta); 10346 } 10347 10348 static int invalid_msr_init(struct vmcs *vmcs) 10349 { 10350 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 10351 printf("\tPreemption timer is not supported\n"); 10352 return VMX_TEST_EXIT; 10353 } 10354 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); 10355 preempt_val = 10000000; 10356 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 10357 preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F; 10358 10359 if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT)) 10360 printf("\tSave preemption value is not supported\n"); 10361 10362 vmcs_write(ENT_MSR_LD_CNT, 1); 10363 vmcs_write(ENTER_MSR_LD_ADDR, (u64)0x13370000); 10364 10365 return VMX_TEST_START; 10366 } 10367 10368 10369 static void invalid_msr_main(void) 10370 { 10371 report_fail("Invalid MSR load"); 10372 } 10373 10374 static int invalid_msr_exit_handler(union exit_reason exit_reason) 10375 { 10376 report_fail("Invalid MSR load"); 10377 print_vmexit_info(exit_reason); 10378 return VMX_TEST_EXIT; 10379 } 10380 10381 static int invalid_msr_entry_failure(struct vmentry_result *result) 10382 { 10383 report(result->exit_reason.failed_vmentry && 10384 result->exit_reason.basic == VMX_FAIL_MSR, "Invalid MSR load"); 10385 return VMX_TEST_VMEXIT; 10386 } 10387 10388 /* 10389 * The max number of MSRs in an atomic switch MSR list is: 10390 * (111B + 1) * 512 = 4096 10391 * 10392 * Each list entry consumes: 10393 * 4-byte MSR index + 4 bytes reserved + 8-byte data = 16 bytes 10394 * 10395 * Allocate 128 kB to cover max_msr_list_size (i.e., 64 kB) and then some. 10396 */ 10397 static const u32 msr_list_page_order = 5; 10398 10399 static void atomic_switch_msr_limit_test_guest(void) 10400 { 10401 vmcall(); 10402 } 10403 10404 static void populate_msr_list(struct vmx_msr_entry *msr_list, 10405 size_t byte_capacity, int count) 10406 { 10407 int i; 10408 10409 for (i = 0; i < count; i++) { 10410 msr_list[i].index = MSR_IA32_TSC; 10411 msr_list[i].reserved = 0; 10412 msr_list[i].value = 0x1234567890abcdef; 10413 } 10414 10415 memset(msr_list + count, 0xff, 10416 byte_capacity - count * sizeof(*msr_list)); 10417 } 10418 10419 static int max_msr_list_size(void) 10420 { 10421 u32 vmx_misc = rdmsr(MSR_IA32_VMX_MISC); 10422 u32 factor = ((vmx_misc & GENMASK(27, 25)) >> 25) + 1; 10423 10424 return factor * 512; 10425 } 10426 10427 static void atomic_switch_msrs_test(int count) 10428 { 10429 struct vmx_msr_entry *vm_enter_load; 10430 struct vmx_msr_entry *vm_exit_load; 10431 struct vmx_msr_entry *vm_exit_store; 10432 int max_allowed = max_msr_list_size(); 10433 int byte_capacity = 1ul << (msr_list_page_order + PAGE_SHIFT); 10434 /* Exceeding the max MSR list size at exit triggers KVM to abort. */ 10435 int exit_count = count > max_allowed ? max_allowed : count; 10436 int cleanup_count = count > max_allowed ? 2 : 1; 10437 int i; 10438 10439 /* 10440 * Check for the IA32_TSC MSR, 10441 * available with the "TSC flag" and used to populate the MSR lists. 10442 */ 10443 if (!(cpuid(1).d & (1 << 4))) { 10444 report_skip("%s : \"Time Stamp Counter\" not supported", __func__); 10445 return; 10446 } 10447 10448 /* Set L2 guest. */ 10449 test_set_guest(atomic_switch_msr_limit_test_guest); 10450 10451 /* Setup atomic MSR switch lists. */ 10452 vm_enter_load = alloc_pages(msr_list_page_order); 10453 vm_exit_load = alloc_pages(msr_list_page_order); 10454 vm_exit_store = alloc_pages(msr_list_page_order); 10455 10456 vmcs_write(ENTER_MSR_LD_ADDR, (u64)vm_enter_load); 10457 vmcs_write(EXIT_MSR_LD_ADDR, (u64)vm_exit_load); 10458 vmcs_write(EXIT_MSR_ST_ADDR, (u64)vm_exit_store); 10459 10460 /* 10461 * VM-Enter should succeed up to the max number of MSRs per list, and 10462 * should not consume junk beyond the last entry. 10463 */ 10464 populate_msr_list(vm_enter_load, byte_capacity, count); 10465 populate_msr_list(vm_exit_load, byte_capacity, exit_count); 10466 populate_msr_list(vm_exit_store, byte_capacity, exit_count); 10467 10468 vmcs_write(ENT_MSR_LD_CNT, count); 10469 vmcs_write(EXI_MSR_LD_CNT, exit_count); 10470 vmcs_write(EXI_MSR_ST_CNT, exit_count); 10471 10472 if (count <= max_allowed) { 10473 enter_guest(); 10474 assert_exit_reason(VMX_VMCALL); 10475 skip_exit_vmcall(); 10476 } else { 10477 u32 exit_qual; 10478 10479 test_guest_state("Invalid MSR Load Count", true, count, 10480 "ENT_MSR_LD_CNT"); 10481 10482 exit_qual = vmcs_read(EXI_QUALIFICATION); 10483 report(exit_qual == max_allowed + 1, "exit_qual, %u, is %u.", 10484 exit_qual, max_allowed + 1); 10485 } 10486 10487 /* Cleanup. */ 10488 vmcs_write(ENT_MSR_LD_CNT, 0); 10489 vmcs_write(EXI_MSR_LD_CNT, 0); 10490 vmcs_write(EXI_MSR_ST_CNT, 0); 10491 for (i = 0; i < cleanup_count; i++) { 10492 enter_guest(); 10493 skip_exit_vmcall(); 10494 } 10495 free_pages_by_order(vm_enter_load, msr_list_page_order); 10496 free_pages_by_order(vm_exit_load, msr_list_page_order); 10497 free_pages_by_order(vm_exit_store, msr_list_page_order); 10498 } 10499 10500 static void atomic_switch_max_msrs_test(void) 10501 { 10502 atomic_switch_msrs_test(max_msr_list_size()); 10503 } 10504 10505 static void atomic_switch_overflow_msrs_test(void) 10506 { 10507 if (test_device_enabled()) 10508 atomic_switch_msrs_test(max_msr_list_size() + 1); 10509 else 10510 test_skip("Test is only supported on KVM"); 10511 } 10512 10513 static void vmx_pf_exception_test_guest(void) 10514 { 10515 ac_test_run(PT_LEVEL_PML4, false); 10516 } 10517 10518 static void vmx_pf_exception_forced_emulation_test_guest(void) 10519 { 10520 ac_test_run(PT_LEVEL_PML4, true); 10521 } 10522 10523 typedef void (*invalidate_tlb_t)(void *data); 10524 typedef void (*pf_exception_test_guest_t)(void); 10525 10526 10527 static void __vmx_pf_exception_test(invalidate_tlb_t inv_fn, void *data, 10528 pf_exception_test_guest_t guest_fn) 10529 { 10530 u64 efer; 10531 struct cpuid cpuid; 10532 10533 test_set_guest(guest_fn); 10534 10535 /* Intercept INVLPG when to perform TLB invalidation from L1 (this). */ 10536 if (inv_fn) 10537 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INVLPG); 10538 else 10539 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INVLPG); 10540 10541 enter_guest(); 10542 10543 while (vmcs_read(EXI_REASON) != VMX_VMCALL) { 10544 switch (vmcs_read(EXI_REASON)) { 10545 case VMX_RDMSR: 10546 assert(regs.rcx == MSR_EFER); 10547 efer = vmcs_read(GUEST_EFER); 10548 regs.rdx = efer >> 32; 10549 regs.rax = efer & 0xffffffff; 10550 break; 10551 case VMX_WRMSR: 10552 assert(regs.rcx == MSR_EFER); 10553 efer = regs.rdx << 32 | (regs.rax & 0xffffffff); 10554 vmcs_write(GUEST_EFER, efer); 10555 break; 10556 case VMX_CPUID: 10557 cpuid = (struct cpuid) {0, 0, 0, 0}; 10558 cpuid = raw_cpuid(regs.rax, regs.rcx); 10559 regs.rax = cpuid.a; 10560 regs.rbx = cpuid.b; 10561 regs.rcx = cpuid.c; 10562 regs.rdx = cpuid.d; 10563 break; 10564 case VMX_INVLPG: 10565 inv_fn(data); 10566 break; 10567 default: 10568 assert_msg(false, 10569 "Unexpected exit to L1, exit_reason: %s (0x%lx)", 10570 exit_reason_description(vmcs_read(EXI_REASON)), 10571 vmcs_read(EXI_REASON)); 10572 } 10573 skip_exit_insn(); 10574 enter_guest(); 10575 } 10576 10577 assert_exit_reason(VMX_VMCALL); 10578 } 10579 10580 static void vmx_pf_exception_test(void) 10581 { 10582 __vmx_pf_exception_test(NULL, NULL, vmx_pf_exception_test_guest); 10583 } 10584 10585 static void vmx_pf_exception_forced_emulation_test(void) 10586 { 10587 __vmx_pf_exception_test(NULL, NULL, vmx_pf_exception_forced_emulation_test_guest); 10588 } 10589 10590 static void invalidate_tlb_no_vpid(void *data) 10591 { 10592 /* If VPID is disabled, the TLB is flushed on VM-Enter and VM-Exit. */ 10593 } 10594 10595 static void vmx_pf_no_vpid_test(void) 10596 { 10597 if (is_vpid_supported()) 10598 vmcs_clear_bits(CPU_EXEC_CTRL1, CPU_VPID); 10599 10600 __vmx_pf_exception_test(invalidate_tlb_no_vpid, NULL, 10601 vmx_pf_exception_test_guest); 10602 } 10603 10604 static void invalidate_tlb_invvpid_addr(void *data) 10605 { 10606 invvpid(INVVPID_ALL, *(u16 *)data, vmcs_read(EXI_QUALIFICATION)); 10607 } 10608 10609 static void invalidate_tlb_new_vpid(void *data) 10610 { 10611 u16 *vpid = data; 10612 10613 /* 10614 * Bump VPID to effectively flush L2's TLB from L0's perspective. 10615 * Invalidate all VPIDs when the VPID wraps to zero as hardware/KVM is 10616 * architecturally allowed to keep TLB entries indefinitely. 10617 */ 10618 ++(*vpid); 10619 if (*vpid == 0) { 10620 ++(*vpid); 10621 invvpid(INVVPID_ALL, 0, 0); 10622 } 10623 vmcs_write(VPID, *vpid); 10624 } 10625 10626 static void __vmx_pf_vpid_test(invalidate_tlb_t inv_fn, u16 vpid) 10627 { 10628 if (!is_vpid_supported()) 10629 test_skip("VPID unsupported"); 10630 10631 if (!is_invvpid_supported()) 10632 test_skip("INVVPID unsupported"); 10633 10634 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY); 10635 vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VPID); 10636 vmcs_write(VPID, vpid); 10637 10638 __vmx_pf_exception_test(inv_fn, &vpid, vmx_pf_exception_test_guest); 10639 } 10640 10641 static void vmx_pf_invvpid_test(void) 10642 { 10643 if (!is_invvpid_type_supported(INVVPID_ADDR)) 10644 test_skip("INVVPID ADDR unsupported"); 10645 10646 __vmx_pf_vpid_test(invalidate_tlb_invvpid_addr, 0xaaaa); 10647 } 10648 10649 static void vmx_pf_vpid_test(void) 10650 { 10651 /* Need INVVPID(ALL) to flush VPIDs upon wrap/reuse. */ 10652 if (!is_invvpid_type_supported(INVVPID_ALL)) 10653 test_skip("INVVPID ALL unsupported"); 10654 10655 __vmx_pf_vpid_test(invalidate_tlb_new_vpid, 1); 10656 } 10657 10658 static void vmx_l2_ac_test(void) 10659 { 10660 bool hit_ac = false; 10661 10662 write_cr0(read_cr0() | X86_CR0_AM); 10663 write_rflags(read_rflags() | X86_EFLAGS_AC); 10664 10665 run_in_user(generate_usermode_ac, AC_VECTOR, 0, 0, 0, 0, &hit_ac); 10666 report(hit_ac, "Usermode #AC handled in L2"); 10667 vmcall(); 10668 } 10669 10670 struct vmx_exception_test { 10671 u8 vector; 10672 void (*guest_code)(void); 10673 }; 10674 10675 struct vmx_exception_test vmx_exception_tests[] = { 10676 { GP_VECTOR, generate_non_canonical_gp }, 10677 { UD_VECTOR, generate_ud }, 10678 { DE_VECTOR, generate_de }, 10679 { DB_VECTOR, generate_single_step_db }, 10680 { BP_VECTOR, generate_bp }, 10681 { AC_VECTOR, vmx_l2_ac_test }, 10682 { OF_VECTOR, generate_of }, 10683 { NM_VECTOR, generate_cr0_ts_nm }, 10684 { NM_VECTOR, generate_cr0_em_nm }, 10685 }; 10686 10687 static u8 vmx_exception_test_vector; 10688 10689 static void vmx_exception_handler(struct ex_regs *regs) 10690 { 10691 report(regs->vector == vmx_exception_test_vector, 10692 "Handling %s in L2's exception handler", 10693 exception_mnemonic(vmx_exception_test_vector)); 10694 vmcall(); 10695 } 10696 10697 static void handle_exception_in_l2(u8 vector) 10698 { 10699 handler old_handler = handle_exception(vector, vmx_exception_handler); 10700 10701 vmx_exception_test_vector = vector; 10702 10703 enter_guest(); 10704 report(vmcs_read(EXI_REASON) == VMX_VMCALL, 10705 "%s handled by L2", exception_mnemonic(vector)); 10706 10707 handle_exception(vector, old_handler); 10708 } 10709 10710 static void handle_exception_in_l1(u32 vector) 10711 { 10712 u32 old_eb = vmcs_read(EXC_BITMAP); 10713 u32 intr_type; 10714 u32 intr_info; 10715 10716 vmcs_write(EXC_BITMAP, old_eb | (1u << vector)); 10717 10718 enter_guest(); 10719 10720 if (vector == BP_VECTOR || vector == OF_VECTOR) 10721 intr_type = VMX_INTR_TYPE_SOFT_EXCEPTION; 10722 else 10723 intr_type = VMX_INTR_TYPE_HARD_EXCEPTION; 10724 10725 intr_info = vmcs_read(EXI_INTR_INFO); 10726 report((vmcs_read(EXI_REASON) == VMX_EXC_NMI) && 10727 (intr_info & INTR_INFO_VALID_MASK) && 10728 (intr_info & INTR_INFO_VECTOR_MASK) == vector && 10729 ((intr_info & INTR_INFO_INTR_TYPE_MASK) >> INTR_INFO_INTR_TYPE_SHIFT) == intr_type, 10730 "%s correctly routed to L1", exception_mnemonic(vector)); 10731 10732 vmcs_write(EXC_BITMAP, old_eb); 10733 } 10734 10735 static void vmx_exception_test(void) 10736 { 10737 struct vmx_exception_test *t; 10738 int i; 10739 10740 for (i = 0; i < ARRAY_SIZE(vmx_exception_tests); i++) { 10741 t = &vmx_exception_tests[i]; 10742 10743 /* 10744 * Override the guest code before each run even though it's the 10745 * same code, the VMCS guest state needs to be reinitialized. 10746 */ 10747 test_override_guest(t->guest_code); 10748 handle_exception_in_l2(t->vector); 10749 10750 test_override_guest(t->guest_code); 10751 handle_exception_in_l1(t->vector); 10752 } 10753 10754 test_set_guest_finished(); 10755 } 10756 10757 enum Vid_op { 10758 VID_OP_SET_ISR, 10759 VID_OP_NOP, 10760 VID_OP_SET_CR8, 10761 VID_OP_SELF_IPI, 10762 VID_OP_TERMINATE, 10763 VID_OP_SPIN, 10764 VID_OP_SPIN_IRR, 10765 VID_OP_HLT, 10766 }; 10767 10768 struct vmx_basic_vid_test_guest_args { 10769 enum Vid_op op; 10770 u8 nr; 10771 u32 isr_exec_cnt; 10772 u32 *virtual_apic_page; 10773 u64 *pi_desc; 10774 u32 dest; 10775 bool in_guest; 10776 } vmx_basic_vid_test_guest_args; 10777 10778 /* 10779 * From the SDM, Bit x of the VIRR is 10780 * at bit position (x & 1FH) 10781 * at offset (200H | ((x & E0H) >> 1)). 10782 */ 10783 static void set_virr_bit(volatile u32 *virtual_apic_page, u8 nr) 10784 { 10785 u32 page_offset = (0x200 | ((nr & 0xE0) >> 1)) / sizeof(u32); 10786 u32 mask = 1 << (nr & 0x1f); 10787 10788 virtual_apic_page[page_offset] |= mask; 10789 } 10790 10791 static void clear_virr_bit(volatile u32 *virtual_apic_page, u8 nr) 10792 { 10793 u32 page_offset = (0x200 | ((nr & 0xE0) >> 1)) / sizeof(u32); 10794 u32 mask = 1 << (nr & 0x1f); 10795 10796 virtual_apic_page[page_offset] &= ~mask; 10797 } 10798 10799 static bool get_virr_bit(volatile u32 *virtual_apic_page, u8 nr) 10800 { 10801 u32 page_offset = (0x200 | ((nr & 0xE0) >> 1)) / sizeof(u32); 10802 u32 mask = 1 << (nr & 0x1f); 10803 10804 return virtual_apic_page[page_offset] & mask; 10805 } 10806 10807 static void vmx_vid_test_isr(isr_regs_t *regs) 10808 { 10809 volatile struct vmx_basic_vid_test_guest_args *args = 10810 &vmx_basic_vid_test_guest_args; 10811 10812 args->isr_exec_cnt++; 10813 barrier(); 10814 eoi(); 10815 } 10816 10817 static void vmx_basic_vid_test_guest(void) 10818 { 10819 volatile struct vmx_basic_vid_test_guest_args *args = 10820 &vmx_basic_vid_test_guest_args; 10821 10822 sti_nop(); 10823 for (;;) { 10824 enum Vid_op op = args->op; 10825 u8 nr = args->nr; 10826 10827 switch (op) { 10828 case VID_OP_TERMINATE: 10829 return; 10830 case VID_OP_SET_ISR: 10831 handle_irq(nr, vmx_vid_test_isr); 10832 break; 10833 case VID_OP_SET_CR8: 10834 write_cr8(nr); 10835 break; 10836 case VID_OP_SELF_IPI: 10837 vmx_x2apic_write(APIC_SELF_IPI, nr); 10838 break; 10839 case VID_OP_HLT: 10840 cli(); 10841 barrier(); 10842 args->in_guest = true; 10843 barrier(); 10844 safe_halt(); 10845 break; 10846 case VID_OP_SPIN: 10847 args->in_guest = true; 10848 while (!args->isr_exec_cnt) 10849 pause(); 10850 break; 10851 case VID_OP_SPIN_IRR: { 10852 u32 *virtual_apic_page = args->virtual_apic_page; 10853 u8 nr = args->nr; 10854 10855 args->in_guest = true; 10856 while (!get_virr_bit(virtual_apic_page, nr)) 10857 pause(); 10858 clear_virr_bit(virtual_apic_page, nr); 10859 break; 10860 } 10861 default: 10862 break; 10863 } 10864 10865 vmcall(); 10866 } 10867 } 10868 10869 static void set_isrs_for_vmx_basic_vid_test(void) 10870 { 10871 volatile struct vmx_basic_vid_test_guest_args *args = 10872 &vmx_basic_vid_test_guest_args; 10873 u16 nr; 10874 10875 /* 10876 * kvm-unit-tests uses vector 32 for IPIs, so don't install a test ISR 10877 * for that vector. 10878 */ 10879 for (nr = 0x21; nr < 0x100; nr++) { 10880 vmcs_write(GUEST_INT_STATUS, 0); 10881 args->virtual_apic_page = get_vapic_page(); 10882 args->op = VID_OP_SET_ISR; 10883 args->nr = nr; 10884 args->isr_exec_cnt = 0; 10885 enter_guest(); 10886 skip_exit_vmcall(); 10887 } 10888 report(true, "Set ISR for vectors 33-255."); 10889 } 10890 10891 static void vmx_posted_interrupts_test_worker(void *data) 10892 { 10893 volatile struct vmx_basic_vid_test_guest_args *args = 10894 &vmx_basic_vid_test_guest_args; 10895 10896 while (!args->in_guest) 10897 pause(); 10898 10899 test_and_set_bit(args->nr, args->pi_desc); 10900 test_and_set_bit(256, args->pi_desc); 10901 apic_icr_write(PI_VECTOR, args->dest); 10902 } 10903 10904 /* 10905 * Test virtual interrupt delivery (VID) at VM-entry or TPR virtualization 10906 * 10907 * Args: 10908 * nr: vector under test 10909 * tpr: task priority under test 10910 * tpr_virt: If true, then test VID during TPR virtualization. Otherwise, 10911 * test VID during VM-entry. 10912 */ 10913 static void test_basic_vid(u8 nr, u8 tpr, enum Vid_op op, u32 isr_exec_cnt_want, 10914 bool eoi_exit_induced) 10915 { 10916 volatile struct vmx_basic_vid_test_guest_args *args = 10917 &vmx_basic_vid_test_guest_args; 10918 u16 rvi_want = isr_exec_cnt_want ? 0 : nr; 10919 u16 int_status; 10920 10921 /* 10922 * From the SDM: 10923 * IF "interrupt-window exiting" is 0 AND 10924 * RVI[7:4] > VPPR[7:4] (see Section 29.1.1 for definition of VPPR) 10925 * THEN recognize a pending virtual interrupt; 10926 * ELSE 10927 * do not recognize a pending virtual interrupt; 10928 * FI; 10929 * 10930 * Thus, VPPR dictates whether a virtual interrupt is recognized. 10931 * However, PPR virtualization, which occurs before virtual interrupt 10932 * delivery, sets VPPR to VTPR, when SVI is 0. 10933 */ 10934 args->isr_exec_cnt = 0; 10935 args->virtual_apic_page = get_vapic_page(); 10936 args->op = op; 10937 args->in_guest = false; 10938 switch (op) { 10939 case VID_OP_SELF_IPI: 10940 vmcs_write(GUEST_INT_STATUS, 0); 10941 args->nr = nr; 10942 set_vtpr(0); 10943 break; 10944 case VID_OP_SET_CR8: 10945 vmcs_write(GUEST_INT_STATUS, nr); 10946 args->nr = task_priority_class(tpr); 10947 set_vtpr(0xff); 10948 break; 10949 case VID_OP_SPIN: 10950 case VID_OP_SPIN_IRR: 10951 case VID_OP_HLT: 10952 vmcs_write(GUEST_INT_STATUS, 0); 10953 args->nr = nr; 10954 set_vtpr(tpr); 10955 barrier(); 10956 on_cpu_async(1, vmx_posted_interrupts_test_worker, NULL); 10957 break; 10958 default: 10959 vmcs_write(GUEST_INT_STATUS, nr); 10960 set_vtpr(tpr); 10961 break; 10962 } 10963 10964 enter_guest(); 10965 if (eoi_exit_induced) { 10966 u32 exit_cnt; 10967 10968 assert_exit_reason(VMX_EOI_INDUCED); 10969 for (exit_cnt = 1; exit_cnt < isr_exec_cnt_want; exit_cnt++) { 10970 enter_guest(); 10971 assert_exit_reason(VMX_EOI_INDUCED); 10972 } 10973 enter_guest(); 10974 } 10975 skip_exit_vmcall(); 10976 TEST_ASSERT_EQ(args->isr_exec_cnt, isr_exec_cnt_want); 10977 int_status = vmcs_read(GUEST_INT_STATUS); 10978 TEST_ASSERT_EQ(int_status, rvi_want); 10979 } 10980 10981 /* 10982 * Test recognizing and delivering virtual interrupts via "Virtual-interrupt 10983 * delivery" for two scenarios: 10984 * 1. When there is a pending interrupt at VM-entry. 10985 * 2. When there is a pending interrupt during TPR virtualization. 10986 */ 10987 static void vmx_basic_vid_test(void) 10988 { 10989 volatile struct vmx_basic_vid_test_guest_args *args = 10990 &vmx_basic_vid_test_guest_args; 10991 u8 nr_class; 10992 10993 if (!cpu_has_apicv()) { 10994 report_skip("%s : Not all required APICv bits supported", __func__); 10995 return; 10996 } 10997 10998 enable_vid(); 10999 test_set_guest(vmx_basic_vid_test_guest); 11000 set_isrs_for_vmx_basic_vid_test(); 11001 11002 for (nr_class = 2; nr_class < 16; nr_class++) { 11003 u16 nr; 11004 u8 nr_sub_class; 11005 11006 for (nr_sub_class = 0; nr_sub_class < 16; nr_sub_class++) { 11007 u16 tpr; 11008 11009 nr = (nr_class << 4) | nr_sub_class; 11010 11011 /* 11012 * Don't test the reserved IPI vector, as the test ISR 11013 * was not installed. 11014 */ 11015 if (nr == 0x20) 11016 continue; 11017 11018 test_basic_vid(nr, /*tpr=*/0, VID_OP_SELF_IPI, 11019 /*isr_exec_cnt_want=*/1, 11020 /*eoi_exit_induced=*/false); 11021 for (tpr = 0; tpr < 256; tpr++) { 11022 u32 isr_exec_cnt_want = 11023 task_priority_class(nr) > 11024 task_priority_class(tpr) ? 1 : 0; 11025 11026 test_basic_vid(nr, tpr, VID_OP_NOP, 11027 isr_exec_cnt_want, 11028 /*eoi_exit_induced=*/false); 11029 test_basic_vid(nr, tpr, VID_OP_SET_CR8, 11030 isr_exec_cnt_want, 11031 /*eoi_exit_induced=*/false); 11032 } 11033 report(true, "TPR 0-255 for vector 0x%x.", nr); 11034 } 11035 } 11036 11037 /* Terminate the guest */ 11038 args->op = VID_OP_TERMINATE; 11039 enter_guest(); 11040 assert_exit_reason(VMX_VMCALL); 11041 } 11042 11043 static void test_eoi_virt(u8 nr, u8 lo_pri_nr, bool eoi_exit_induced) 11044 { 11045 u32 *virtual_apic_page = get_vapic_page(); 11046 11047 set_virr_bit(virtual_apic_page, lo_pri_nr); 11048 test_basic_vid(nr, /*tpr=*/0, VID_OP_NOP, /*isr_exec_cnt_want=*/2, 11049 eoi_exit_induced); 11050 TEST_ASSERT(!get_virr_bit(virtual_apic_page, lo_pri_nr)); 11051 TEST_ASSERT(!get_virr_bit(virtual_apic_page, nr)); 11052 } 11053 11054 static void vmx_eoi_virt_test(void) 11055 { 11056 volatile struct vmx_basic_vid_test_guest_args *args = 11057 &vmx_basic_vid_test_guest_args; 11058 u16 nr; 11059 u16 lo_pri_nr; 11060 11061 if (!cpu_has_apicv()) { 11062 report_skip("%s : Not all required APICv bits supported", __func__); 11063 return; 11064 } 11065 11066 enable_vid(); /* Note, enable_vid sets APIC_VIRT_ADDR field in VMCS. */ 11067 test_set_guest(vmx_basic_vid_test_guest); 11068 set_isrs_for_vmx_basic_vid_test(); 11069 11070 /* Now test EOI virtualization without induced EOI exits. */ 11071 for (nr = 0x22; nr < 0x100; nr++) { 11072 for (lo_pri_nr = 0x21; lo_pri_nr < nr; lo_pri_nr++) 11073 test_eoi_virt(nr, lo_pri_nr, 11074 /*eoi_exit_induced=*/false); 11075 11076 report(true, "Low priority nrs 0x21-0x%x for nr 0x%x.", 11077 nr - 1, nr); 11078 } 11079 11080 /* Finally, test EOI virtualization with induced EOI exits. */ 11081 vmcs_write(EOI_EXIT_BITMAP0, GENMASK_ULL(63, 0)); 11082 vmcs_write(EOI_EXIT_BITMAP1, GENMASK_ULL(63, 0)); 11083 vmcs_write(EOI_EXIT_BITMAP2, GENMASK_ULL(63, 0)); 11084 vmcs_write(EOI_EXIT_BITMAP3, GENMASK_ULL(63, 0)); 11085 for (nr = 0x22; nr < 0x100; nr++) { 11086 for (lo_pri_nr = 0x21; lo_pri_nr < nr; lo_pri_nr++) 11087 test_eoi_virt(nr, lo_pri_nr, 11088 /*eoi_exit_induced=*/true); 11089 11090 report(true, 11091 "Low priority nrs 0x21-0x%x for nr 0x%x, with induced EOI exits.", 11092 nr - 1, nr); 11093 } 11094 11095 /* Terminate the guest */ 11096 args->op = VID_OP_TERMINATE; 11097 enter_guest(); 11098 assert_exit_reason(VMX_VMCALL); 11099 } 11100 11101 static void vmx_posted_interrupts_test(void) 11102 { 11103 volatile struct vmx_basic_vid_test_guest_args *args = 11104 &vmx_basic_vid_test_guest_args; 11105 u16 vector; 11106 u8 class; 11107 11108 if (!cpu_has_apicv()) { 11109 report_skip("%s : Not all required APICv bits supported", __func__); 11110 return; 11111 } 11112 11113 if (cpu_count() < 2) { 11114 report_skip("%s : CPU count < 2", __func__); 11115 return; 11116 } 11117 11118 enable_vid(); 11119 enable_posted_interrupts(); 11120 args->pi_desc = get_pi_desc(); 11121 args->dest = apic_id(); 11122 11123 test_set_guest(vmx_basic_vid_test_guest); 11124 set_isrs_for_vmx_basic_vid_test(); 11125 11126 for (class = 0; class < 16; class++) { 11127 for (vector = 33; vector < 256; vector++) { 11128 /* 11129 * If the vector isn't above TPR, then the vector should 11130 * be moved from PIR to the IRR, but never serviced. 11131 * 11132 * Only test posted interrupts to a halted vCPU if the 11133 * interrupt is expected to be serviced. Otherwise, the 11134 * vCPU will HLT indefinitely. 11135 */ 11136 if (task_priority_class(vector) <= class) { 11137 test_basic_vid(vector, class << 4, 11138 VID_OP_SPIN_IRR, 0, false); 11139 continue; 11140 } 11141 11142 test_basic_vid(vector, class << 4, VID_OP_SPIN, 1, false); 11143 test_basic_vid(vector, class << 4, VID_OP_HLT, 1, false); 11144 } 11145 } 11146 report(true, "Posted vectors 33-25 cross TPR classes 0-0xf, running and sometimes halted\n"); 11147 11148 /* Terminate the guest */ 11149 args->op = VID_OP_TERMINATE; 11150 enter_guest(); 11151 } 11152 11153 #define TEST(name) { #name, .v2 = name } 11154 11155 /* name/init/guest_main/exit_handler/syscall_handler/guest_regs */ 11156 struct vmx_test vmx_tests[] = { 11157 { "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} }, 11158 { "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} }, 11159 { "preemption timer", preemption_timer_init, preemption_timer_main, 11160 preemption_timer_exit_handler, NULL, {0} }, 11161 { "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main, 11162 test_ctrl_pat_exit_handler, NULL, {0} }, 11163 { "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main, 11164 test_ctrl_efer_exit_handler, NULL, {0} }, 11165 { "CR shadowing", NULL, cr_shadowing_main, 11166 cr_shadowing_exit_handler, NULL, {0} }, 11167 { "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler, 11168 NULL, {0} }, 11169 { "instruction intercept", insn_intercept_init, insn_intercept_main, 11170 insn_intercept_exit_handler, NULL, {0} }, 11171 { "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} }, 11172 { "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} }, 11173 { "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} }, 11174 { "interrupt", interrupt_init, interrupt_main, 11175 interrupt_exit_handler, NULL, {0} }, 11176 { "nmi_hlt", nmi_hlt_init, nmi_hlt_main, 11177 nmi_hlt_exit_handler, NULL, {0} }, 11178 { "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler, 11179 NULL, {0} }, 11180 { "MSR switch", msr_switch_init, msr_switch_main, 11181 msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure }, 11182 { "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} }, 11183 { "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main, 11184 disable_rdtscp_exit_handler, NULL, {0} }, 11185 { "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main, 11186 exit_monitor_from_l2_handler, NULL, {0} }, 11187 { "invalid_msr", invalid_msr_init, invalid_msr_main, 11188 invalid_msr_exit_handler, NULL, {0}, invalid_msr_entry_failure}, 11189 /* Basic V2 tests. */ 11190 TEST(v2_null_test), 11191 TEST(v2_multiple_entries_test), 11192 TEST(fixture_test_case1), 11193 TEST(fixture_test_case2), 11194 /* Opcode tests. */ 11195 TEST(invvpid_test), 11196 /* VM-entry tests */ 11197 TEST(vmx_controls_test), 11198 TEST(vmx_host_state_area_test), 11199 TEST(vmx_guest_state_area_test), 11200 TEST(vmentry_movss_shadow_test), 11201 TEST(vmentry_unrestricted_guest_test), 11202 /* APICv tests */ 11203 TEST(vmx_eoi_bitmap_ioapic_scan_test), 11204 TEST(vmx_hlt_with_rvi_test), 11205 TEST(apic_reg_virt_test), 11206 TEST(virt_x2apic_mode_test), 11207 TEST(vmx_basic_vid_test), 11208 TEST(vmx_eoi_virt_test), 11209 TEST(vmx_posted_interrupts_test), 11210 /* APIC pass-through tests */ 11211 TEST(vmx_apic_passthrough_test), 11212 TEST(vmx_apic_passthrough_thread_test), 11213 TEST(vmx_apic_passthrough_tpr_threshold_test), 11214 TEST(vmx_init_signal_test), 11215 TEST(vmx_sipi_signal_test), 11216 /* VMCS Shadowing tests */ 11217 TEST(vmx_vmcs_shadow_test), 11218 /* Regression tests */ 11219 TEST(vmx_ldtr_test), 11220 TEST(vmx_cr_load_test), 11221 TEST(vmx_cr4_osxsave_test), 11222 TEST(vmx_no_nm_test), 11223 TEST(vmx_db_test), 11224 TEST(vmx_nmi_window_test), 11225 TEST(vmx_intr_window_test), 11226 TEST(vmx_pending_event_test), 11227 TEST(vmx_pending_event_hlt_test), 11228 TEST(vmx_store_tsc_test), 11229 TEST(vmx_preemption_timer_zero_test), 11230 TEST(vmx_preemption_timer_tf_test), 11231 TEST(vmx_preemption_timer_expiry_test), 11232 /* EPT access tests. */ 11233 TEST(ept_access_test_not_present), 11234 TEST(ept_access_test_read_only), 11235 TEST(ept_access_test_write_only), 11236 TEST(ept_access_test_read_write), 11237 TEST(ept_access_test_execute_only), 11238 TEST(ept_access_test_read_execute), 11239 TEST(ept_access_test_write_execute), 11240 TEST(ept_access_test_read_write_execute), 11241 TEST(ept_access_test_reserved_bits), 11242 TEST(ept_access_test_ignored_bits), 11243 TEST(ept_access_test_paddr_not_present_ad_disabled), 11244 TEST(ept_access_test_paddr_not_present_ad_enabled), 11245 TEST(ept_access_test_paddr_read_only_ad_disabled), 11246 TEST(ept_access_test_paddr_read_only_ad_enabled), 11247 TEST(ept_access_test_paddr_read_write), 11248 TEST(ept_access_test_paddr_read_write_execute), 11249 TEST(ept_access_test_paddr_read_execute_ad_disabled), 11250 TEST(ept_access_test_paddr_read_execute_ad_enabled), 11251 TEST(ept_access_test_paddr_not_present_page_fault), 11252 TEST(ept_access_test_force_2m_page), 11253 /* Atomic MSR switch tests. */ 11254 TEST(atomic_switch_max_msrs_test), 11255 TEST(atomic_switch_overflow_msrs_test), 11256 TEST(rdtsc_vmexit_diff_test), 11257 TEST(vmx_mtf_test), 11258 TEST(vmx_mtf_pdpte_test), 11259 TEST(vmx_pf_exception_test), 11260 TEST(vmx_pf_exception_forced_emulation_test), 11261 TEST(vmx_pf_no_vpid_test), 11262 TEST(vmx_pf_invvpid_test), 11263 TEST(vmx_pf_vpid_test), 11264 TEST(vmx_exception_test), 11265 { NULL, NULL, NULL, NULL, NULL, {0} }, 11266 }; 11267