xref: /kvm-unit-tests/x86/vmx_tests.c (revision d86e74112c20a8ee9149bfd62adf2228db4466dc)
1 /*
2  * All test cases of nested virtualization should be in this file
3  *
4  * Author : Arthur Chunqi Li <yzt356@gmail.com>
5  */
6 
7 #include <asm/debugreg.h>
8 
9 #include "vmx.h"
10 #include "msr.h"
11 #include "processor.h"
12 #include "vm.h"
13 #include "pci.h"
14 #include "fwcfg.h"
15 #include "isr.h"
16 #include "desc.h"
17 #include "apic.h"
18 #include "types.h"
19 #include "vmalloc.h"
20 #include "alloc_page.h"
21 #include "smp.h"
22 #include "delay.h"
23 
24 #define NONCANONICAL            0xaaaaaaaaaaaaaaaaull
25 
26 #define VPID_CAP_INVVPID_TYPES_SHIFT 40
27 
28 u64 ia32_pat;
29 u64 ia32_efer;
30 void *io_bitmap_a, *io_bitmap_b;
31 u16 ioport;
32 
33 unsigned long *pml4;
34 u64 eptp;
35 void *data_page1, *data_page2;
36 
37 phys_addr_t pci_physaddr;
38 
39 void *pml_log;
40 #define PML_INDEX 512
41 
42 static inline unsigned ffs(unsigned x)
43 {
44 	int pos = -1;
45 
46 	__asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0"
47 			     : "+r"(pos) : "rm"(x) : "eax");
48 	return pos + 1;
49 }
50 
51 static inline void vmcall(void)
52 {
53 	asm volatile("vmcall");
54 }
55 
56 static void basic_guest_main(void)
57 {
58 	report(1, "Basic VMX test");
59 }
60 
61 static int basic_exit_handler(union exit_reason exit_reason)
62 {
63 	report(0, "Basic VMX test");
64 	print_vmexit_info(exit_reason);
65 	return VMX_TEST_EXIT;
66 }
67 
68 static void vmenter_main(void)
69 {
70 	u64 rax;
71 	u64 rsp, resume_rsp;
72 
73 	report(1, "test vmlaunch");
74 
75 	asm volatile(
76 		"mov %%rsp, %0\n\t"
77 		"mov %3, %%rax\n\t"
78 		"vmcall\n\t"
79 		"mov %%rax, %1\n\t"
80 		"mov %%rsp, %2\n\t"
81 		: "=r"(rsp), "=r"(rax), "=r"(resume_rsp)
82 		: "g"(0xABCD));
83 	report((rax == 0xFFFF) && (rsp == resume_rsp), "test vmresume");
84 }
85 
86 static int vmenter_exit_handler(union exit_reason exit_reason)
87 {
88 	u64 guest_rip = vmcs_read(GUEST_RIP);
89 
90 	switch (exit_reason.basic) {
91 	case VMX_VMCALL:
92 		if (regs.rax != 0xABCD) {
93 			report(0, "test vmresume");
94 			return VMX_TEST_VMEXIT;
95 		}
96 		regs.rax = 0xFFFF;
97 		vmcs_write(GUEST_RIP, guest_rip + 3);
98 		return VMX_TEST_RESUME;
99 	default:
100 		report(0, "test vmresume");
101 		print_vmexit_info(exit_reason);
102 	}
103 	return VMX_TEST_VMEXIT;
104 }
105 
106 u32 preempt_scale;
107 volatile unsigned long long tsc_val;
108 volatile u32 preempt_val;
109 u64 saved_rip;
110 
111 static int preemption_timer_init(struct vmcs *vmcs)
112 {
113 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
114 		printf("\tPreemption timer is not supported\n");
115 		return VMX_TEST_EXIT;
116 	}
117 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
118 	preempt_val = 10000000;
119 	vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
120 	preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
121 
122 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
123 		printf("\tSave preemption value is not supported\n");
124 
125 	return VMX_TEST_START;
126 }
127 
128 static void preemption_timer_main(void)
129 {
130 	tsc_val = rdtsc();
131 	if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) {
132 		vmx_set_test_stage(0);
133 		vmcall();
134 		if (vmx_get_test_stage() == 1)
135 			vmcall();
136 	}
137 	vmx_set_test_stage(1);
138 	while (vmx_get_test_stage() == 1) {
139 		if (((rdtsc() - tsc_val) >> preempt_scale)
140 				> 10 * preempt_val) {
141 			vmx_set_test_stage(2);
142 			vmcall();
143 		}
144 	}
145 	tsc_val = rdtsc();
146 	asm volatile ("hlt");
147 	vmcall();
148 	vmx_set_test_stage(5);
149 	vmcall();
150 }
151 
152 static int preemption_timer_exit_handler(union exit_reason exit_reason)
153 {
154 	bool guest_halted;
155 	u64 guest_rip;
156 	u32 insn_len;
157 	u32 ctrl_exit;
158 
159 	guest_rip = vmcs_read(GUEST_RIP);
160 	insn_len = vmcs_read(EXI_INST_LEN);
161 	switch (exit_reason.basic) {
162 	case VMX_PREEMPT:
163 		switch (vmx_get_test_stage()) {
164 		case 1:
165 		case 2:
166 			report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val,
167 			       "busy-wait for preemption timer");
168 			vmx_set_test_stage(3);
169 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
170 			return VMX_TEST_RESUME;
171 		case 3:
172 			guest_halted =
173 				(vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT);
174 			report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val
175 			        && guest_halted,
176 			       "preemption timer during hlt");
177 			vmx_set_test_stage(4);
178 			vmcs_write(PIN_CONTROLS,
179 				   vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
180 			vmcs_write(EXI_CONTROLS,
181 				   vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_PREEMPT);
182 			vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
183 			return VMX_TEST_RESUME;
184 		case 4:
185 			report(saved_rip == guest_rip,
186 			       "preemption timer with 0 value");
187 			break;
188 		default:
189 			report(false, "Invalid stage.");
190 			print_vmexit_info(exit_reason);
191 			break;
192 		}
193 		break;
194 	case VMX_VMCALL:
195 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
196 		switch (vmx_get_test_stage()) {
197 		case 0:
198 			report(vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val,
199 			       "Keep preemption value");
200 			vmx_set_test_stage(1);
201 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
202 			ctrl_exit = (vmcs_read(EXI_CONTROLS) |
203 				EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr;
204 			vmcs_write(EXI_CONTROLS, ctrl_exit);
205 			return VMX_TEST_RESUME;
206 		case 1:
207 			report(vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val,
208 			       "Save preemption value");
209 			return VMX_TEST_RESUME;
210 		case 2:
211 			report(0, "busy-wait for preemption timer");
212 			vmx_set_test_stage(3);
213 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
214 			return VMX_TEST_RESUME;
215 		case 3:
216 			report(0, "preemption timer during hlt");
217 			vmx_set_test_stage(4);
218 			/* fall through */
219 		case 4:
220 			vmcs_write(PIN_CONTROLS,
221 				   vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
222 			vmcs_write(PREEMPT_TIMER_VALUE, 0);
223 			saved_rip = guest_rip + insn_len;
224 			return VMX_TEST_RESUME;
225 		case 5:
226 			report(0,
227 			       "preemption timer with 0 value (vmcall stage 5)");
228 			break;
229 		default:
230 			// Should not reach here
231 			report(false, "unexpected stage, %d",
232 			       vmx_get_test_stage());
233 			print_vmexit_info(exit_reason);
234 			return VMX_TEST_VMEXIT;
235 		}
236 		break;
237 	default:
238 		report(false, "Unknown exit reason, 0x%x", exit_reason.full);
239 		print_vmexit_info(exit_reason);
240 	}
241 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
242 	return VMX_TEST_VMEXIT;
243 }
244 
245 static void msr_bmp_init(void)
246 {
247 	void *msr_bitmap;
248 	u32 ctrl_cpu0;
249 
250 	msr_bitmap = alloc_page();
251 	ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
252 	ctrl_cpu0 |= CPU_MSR_BITMAP;
253 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
254 	vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
255 }
256 
257 static void *get_msr_bitmap(void)
258 {
259 	void *msr_bitmap;
260 
261 	if (vmcs_read(CPU_EXEC_CTRL0) & CPU_MSR_BITMAP) {
262 		msr_bitmap = (void *)vmcs_read(MSR_BITMAP);
263 	} else {
264 		msr_bitmap = alloc_page();
265 		memset(msr_bitmap, 0xff, PAGE_SIZE);
266 		vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
267 		vmcs_set_bits(CPU_EXEC_CTRL0, CPU_MSR_BITMAP);
268 	}
269 
270 	return msr_bitmap;
271 }
272 
273 static void disable_intercept_for_x2apic_msrs(void)
274 {
275 	unsigned long *msr_bitmap = (unsigned long *)get_msr_bitmap();
276 	u32 msr;
277 
278 	for (msr = APIC_BASE_MSR;
279 		 msr < (APIC_BASE_MSR+0xff);
280 		 msr += BITS_PER_LONG) {
281 		unsigned int word = msr / BITS_PER_LONG;
282 
283 		msr_bitmap[word] = 0;
284 		msr_bitmap[word + (0x800 / sizeof(long))] = 0;
285 	}
286 }
287 
288 static int test_ctrl_pat_init(struct vmcs *vmcs)
289 {
290 	u64 ctrl_ent;
291 	u64 ctrl_exi;
292 
293 	msr_bmp_init();
294 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) &&
295 	    !(ctrl_exit_rev.clr & EXI_LOAD_PAT) &&
296 	    !(ctrl_enter_rev.clr & ENT_LOAD_PAT)) {
297 		printf("\tSave/load PAT is not supported\n");
298 		return 1;
299 	}
300 
301 	ctrl_ent = vmcs_read(ENT_CONTROLS);
302 	ctrl_exi = vmcs_read(EXI_CONTROLS);
303 	ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT;
304 	ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT);
305 	vmcs_write(ENT_CONTROLS, ctrl_ent);
306 	vmcs_write(EXI_CONTROLS, ctrl_exi);
307 	ia32_pat = rdmsr(MSR_IA32_CR_PAT);
308 	vmcs_write(GUEST_PAT, 0x0);
309 	vmcs_write(HOST_PAT, ia32_pat);
310 	return VMX_TEST_START;
311 }
312 
313 static void test_ctrl_pat_main(void)
314 {
315 	u64 guest_ia32_pat;
316 
317 	guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
318 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT))
319 		printf("\tENT_LOAD_PAT is not supported.\n");
320 	else {
321 		if (guest_ia32_pat != 0) {
322 			report(0, "Entry load PAT");
323 			return;
324 		}
325 	}
326 	wrmsr(MSR_IA32_CR_PAT, 0x6);
327 	vmcall();
328 	guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
329 	if (ctrl_enter_rev.clr & ENT_LOAD_PAT)
330 		report(guest_ia32_pat == ia32_pat, "Entry load PAT");
331 }
332 
333 static int test_ctrl_pat_exit_handler(union exit_reason exit_reason)
334 {
335 	u64 guest_rip;
336 	u64 guest_pat;
337 
338 	guest_rip = vmcs_read(GUEST_RIP);
339 	switch (exit_reason.basic) {
340 	case VMX_VMCALL:
341 		guest_pat = vmcs_read(GUEST_PAT);
342 		if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) {
343 			printf("\tEXI_SAVE_PAT is not supported\n");
344 			vmcs_write(GUEST_PAT, 0x6);
345 		} else {
346 			report(guest_pat == 0x6, "Exit save PAT");
347 		}
348 		if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT))
349 			printf("\tEXI_LOAD_PAT is not supported\n");
350 		else
351 			report(rdmsr(MSR_IA32_CR_PAT) == ia32_pat,
352 			       "Exit load PAT");
353 		vmcs_write(GUEST_PAT, ia32_pat);
354 		vmcs_write(GUEST_RIP, guest_rip + 3);
355 		return VMX_TEST_RESUME;
356 	default:
357 		printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full);
358 		break;
359 	}
360 	return VMX_TEST_VMEXIT;
361 }
362 
363 static int test_ctrl_efer_init(struct vmcs *vmcs)
364 {
365 	u64 ctrl_ent;
366 	u64 ctrl_exi;
367 
368 	msr_bmp_init();
369 	ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER;
370 	ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER;
371 	vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr);
372 	vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr);
373 	ia32_efer = rdmsr(MSR_EFER);
374 	vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX);
375 	vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX);
376 	return VMX_TEST_START;
377 }
378 
379 static void test_ctrl_efer_main(void)
380 {
381 	u64 guest_ia32_efer;
382 
383 	guest_ia32_efer = rdmsr(MSR_EFER);
384 	if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER))
385 		printf("\tENT_LOAD_EFER is not supported.\n");
386 	else {
387 		if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) {
388 			report(0, "Entry load EFER");
389 			return;
390 		}
391 	}
392 	wrmsr(MSR_EFER, ia32_efer);
393 	vmcall();
394 	guest_ia32_efer = rdmsr(MSR_EFER);
395 	if (ctrl_enter_rev.clr & ENT_LOAD_EFER)
396 		report(guest_ia32_efer == ia32_efer, "Entry load EFER");
397 }
398 
399 static int test_ctrl_efer_exit_handler(union exit_reason exit_reason)
400 {
401 	u64 guest_rip;
402 	u64 guest_efer;
403 
404 	guest_rip = vmcs_read(GUEST_RIP);
405 	switch (exit_reason.basic) {
406 	case VMX_VMCALL:
407 		guest_efer = vmcs_read(GUEST_EFER);
408 		if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) {
409 			printf("\tEXI_SAVE_EFER is not supported\n");
410 			vmcs_write(GUEST_EFER, ia32_efer);
411 		} else {
412 			report(guest_efer == ia32_efer, "Exit save EFER");
413 		}
414 		if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) {
415 			printf("\tEXI_LOAD_EFER is not supported\n");
416 			wrmsr(MSR_EFER, ia32_efer ^ EFER_NX);
417 		} else {
418 			report(rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX),
419 			       "Exit load EFER");
420 		}
421 		vmcs_write(GUEST_PAT, ia32_efer);
422 		vmcs_write(GUEST_RIP, guest_rip + 3);
423 		return VMX_TEST_RESUME;
424 	default:
425 		printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full);
426 		break;
427 	}
428 	return VMX_TEST_VMEXIT;
429 }
430 
431 u32 guest_cr0, guest_cr4;
432 
433 static void cr_shadowing_main(void)
434 {
435 	u32 cr0, cr4, tmp;
436 
437 	// Test read through
438 	vmx_set_test_stage(0);
439 	guest_cr0 = read_cr0();
440 	if (vmx_get_test_stage() == 1)
441 		report(0, "Read through CR0");
442 	else
443 		vmcall();
444 	vmx_set_test_stage(1);
445 	guest_cr4 = read_cr4();
446 	if (vmx_get_test_stage() == 2)
447 		report(0, "Read through CR4");
448 	else
449 		vmcall();
450 	// Test write through
451 	guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP);
452 	guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE);
453 	vmx_set_test_stage(2);
454 	write_cr0(guest_cr0);
455 	if (vmx_get_test_stage() == 3)
456 		report(0, "Write throuth CR0");
457 	else
458 		vmcall();
459 	vmx_set_test_stage(3);
460 	write_cr4(guest_cr4);
461 	if (vmx_get_test_stage() == 4)
462 		report(0, "Write through CR4");
463 	else
464 		vmcall();
465 	// Test read shadow
466 	vmx_set_test_stage(4);
467 	vmcall();
468 	cr0 = read_cr0();
469 	if (vmx_get_test_stage() != 5)
470 		report(cr0 == guest_cr0, "Read shadowing CR0");
471 	vmx_set_test_stage(5);
472 	cr4 = read_cr4();
473 	if (vmx_get_test_stage() != 6)
474 		report(cr4 == guest_cr4, "Read shadowing CR4");
475 	// Test write shadow (same value with shadow)
476 	vmx_set_test_stage(6);
477 	write_cr0(guest_cr0);
478 	if (vmx_get_test_stage() == 7)
479 		report(0, "Write shadowing CR0 (same value with shadow)");
480 	else
481 		vmcall();
482 	vmx_set_test_stage(7);
483 	write_cr4(guest_cr4);
484 	if (vmx_get_test_stage() == 8)
485 		report(0, "Write shadowing CR4 (same value with shadow)");
486 	else
487 		vmcall();
488 	// Test write shadow (different value)
489 	vmx_set_test_stage(8);
490 	tmp = guest_cr0 ^ X86_CR0_TS;
491 	asm volatile("mov %0, %%rsi\n\t"
492 		"mov %%rsi, %%cr0\n\t"
493 		::"m"(tmp)
494 		:"rsi", "memory", "cc");
495 	report(vmx_get_test_stage() == 9,
496 	       "Write shadowing different X86_CR0_TS");
497 	vmx_set_test_stage(9);
498 	tmp = guest_cr0 ^ X86_CR0_MP;
499 	asm volatile("mov %0, %%rsi\n\t"
500 		"mov %%rsi, %%cr0\n\t"
501 		::"m"(tmp)
502 		:"rsi", "memory", "cc");
503 	report(vmx_get_test_stage() == 10,
504 	       "Write shadowing different X86_CR0_MP");
505 	vmx_set_test_stage(10);
506 	tmp = guest_cr4 ^ X86_CR4_TSD;
507 	asm volatile("mov %0, %%rsi\n\t"
508 		"mov %%rsi, %%cr4\n\t"
509 		::"m"(tmp)
510 		:"rsi", "memory", "cc");
511 	report(vmx_get_test_stage() == 11,
512 	       "Write shadowing different X86_CR4_TSD");
513 	vmx_set_test_stage(11);
514 	tmp = guest_cr4 ^ X86_CR4_DE;
515 	asm volatile("mov %0, %%rsi\n\t"
516 		"mov %%rsi, %%cr4\n\t"
517 		::"m"(tmp)
518 		:"rsi", "memory", "cc");
519 	report(vmx_get_test_stage() == 12,
520 	       "Write shadowing different X86_CR4_DE");
521 }
522 
523 static int cr_shadowing_exit_handler(union exit_reason exit_reason)
524 {
525 	u64 guest_rip;
526 	u32 insn_len;
527 	u32 exit_qual;
528 
529 	guest_rip = vmcs_read(GUEST_RIP);
530 	insn_len = vmcs_read(EXI_INST_LEN);
531 	exit_qual = vmcs_read(EXI_QUALIFICATION);
532 	switch (exit_reason.basic) {
533 	case VMX_VMCALL:
534 		switch (vmx_get_test_stage()) {
535 		case 0:
536 			report(guest_cr0 == vmcs_read(GUEST_CR0),
537 			       "Read through CR0");
538 			break;
539 		case 1:
540 			report(guest_cr4 == vmcs_read(GUEST_CR4),
541 			       "Read through CR4");
542 			break;
543 		case 2:
544 			report(guest_cr0 == vmcs_read(GUEST_CR0),
545 			       "Write through CR0");
546 			break;
547 		case 3:
548 			report(guest_cr4 == vmcs_read(GUEST_CR4),
549 			       "Write through CR4");
550 			break;
551 		case 4:
552 			guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP);
553 			guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE);
554 			vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP);
555 			vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP));
556 			vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE);
557 			vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE));
558 			break;
559 		case 6:
560 			report(guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP)),
561 			       "Write shadowing CR0 (same value)");
562 			break;
563 		case 7:
564 			report(guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE)),
565 			       "Write shadowing CR4 (same value)");
566 			break;
567 		default:
568 			// Should not reach here
569 			report(false, "unexpected stage, %d",
570 			       vmx_get_test_stage());
571 			print_vmexit_info(exit_reason);
572 			return VMX_TEST_VMEXIT;
573 		}
574 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
575 		return VMX_TEST_RESUME;
576 	case VMX_CR:
577 		switch (vmx_get_test_stage()) {
578 		case 4:
579 			report(0, "Read shadowing CR0");
580 			vmx_inc_test_stage();
581 			break;
582 		case 5:
583 			report(0, "Read shadowing CR4");
584 			vmx_inc_test_stage();
585 			break;
586 		case 6:
587 			report(0, "Write shadowing CR0 (same value)");
588 			vmx_inc_test_stage();
589 			break;
590 		case 7:
591 			report(0, "Write shadowing CR4 (same value)");
592 			vmx_inc_test_stage();
593 			break;
594 		case 8:
595 		case 9:
596 			// 0x600 encodes "mov %esi, %cr0"
597 			if (exit_qual == 0x600)
598 				vmx_inc_test_stage();
599 			break;
600 		case 10:
601 		case 11:
602 			// 0x604 encodes "mov %esi, %cr4"
603 			if (exit_qual == 0x604)
604 				vmx_inc_test_stage();
605 			break;
606 		default:
607 			// Should not reach here
608 			report(false, "unexpected stage, %d",
609 			       vmx_get_test_stage());
610 			print_vmexit_info(exit_reason);
611 			return VMX_TEST_VMEXIT;
612 		}
613 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
614 		return VMX_TEST_RESUME;
615 	default:
616 		report(false, "Unknown exit reason, 0x%x", exit_reason.full);
617 		print_vmexit_info(exit_reason);
618 	}
619 	return VMX_TEST_VMEXIT;
620 }
621 
622 static int iobmp_init(struct vmcs *vmcs)
623 {
624 	u32 ctrl_cpu0;
625 
626 	io_bitmap_a = alloc_page();
627 	io_bitmap_b = alloc_page();
628 	ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
629 	ctrl_cpu0 |= CPU_IO_BITMAP;
630 	ctrl_cpu0 &= (~CPU_IO);
631 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
632 	vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a);
633 	vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b);
634 	return VMX_TEST_START;
635 }
636 
637 static void iobmp_main(void)
638 {
639 	// stage 0, test IO pass
640 	vmx_set_test_stage(0);
641 	inb(0x5000);
642 	outb(0x0, 0x5000);
643 	report(vmx_get_test_stage() == 0, "I/O bitmap - I/O pass");
644 	// test IO width, in/out
645 	((u8 *)io_bitmap_a)[0] = 0xFF;
646 	vmx_set_test_stage(2);
647 	inb(0x0);
648 	report(vmx_get_test_stage() == 3, "I/O bitmap - trap in");
649 	vmx_set_test_stage(3);
650 	outw(0x0, 0x0);
651 	report(vmx_get_test_stage() == 4, "I/O bitmap - trap out");
652 	vmx_set_test_stage(4);
653 	inl(0x0);
654 	report(vmx_get_test_stage() == 5, "I/O bitmap - I/O width, long");
655 	// test low/high IO port
656 	vmx_set_test_stage(5);
657 	((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8));
658 	inb(0x5000);
659 	report(vmx_get_test_stage() == 6, "I/O bitmap - I/O port, low part");
660 	vmx_set_test_stage(6);
661 	((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8));
662 	inb(0x9000);
663 	report(vmx_get_test_stage() == 7, "I/O bitmap - I/O port, high part");
664 	// test partial pass
665 	vmx_set_test_stage(7);
666 	inl(0x4FFF);
667 	report(vmx_get_test_stage() == 8, "I/O bitmap - partial pass");
668 	// test overrun
669 	vmx_set_test_stage(8);
670 	memset(io_bitmap_a, 0x0, PAGE_SIZE);
671 	memset(io_bitmap_b, 0x0, PAGE_SIZE);
672 	inl(0xFFFF);
673 	report(vmx_get_test_stage() == 9, "I/O bitmap - overrun");
674 	vmx_set_test_stage(9);
675 	vmcall();
676 	outb(0x0, 0x0);
677 	report(vmx_get_test_stage() == 9,
678 	       "I/O bitmap - ignore unconditional exiting");
679 	vmx_set_test_stage(10);
680 	vmcall();
681 	outb(0x0, 0x0);
682 	report(vmx_get_test_stage() == 11,
683 	       "I/O bitmap - unconditional exiting");
684 }
685 
686 static int iobmp_exit_handler(union exit_reason exit_reason)
687 {
688 	u64 guest_rip;
689 	ulong exit_qual;
690 	u32 insn_len, ctrl_cpu0;
691 
692 	guest_rip = vmcs_read(GUEST_RIP);
693 	exit_qual = vmcs_read(EXI_QUALIFICATION);
694 	insn_len = vmcs_read(EXI_INST_LEN);
695 	switch (exit_reason.basic) {
696 	case VMX_IO:
697 		switch (vmx_get_test_stage()) {
698 		case 0:
699 		case 1:
700 			vmx_inc_test_stage();
701 			break;
702 		case 2:
703 			report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE,
704 			       "I/O bitmap - I/O width, byte");
705 			report(exit_qual & VMX_IO_IN,
706 			       "I/O bitmap - I/O direction, in");
707 			vmx_inc_test_stage();
708 			break;
709 		case 3:
710 			report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD,
711 			       "I/O bitmap - I/O width, word");
712 			report(!(exit_qual & VMX_IO_IN),
713 			       "I/O bitmap - I/O direction, out");
714 			vmx_inc_test_stage();
715 			break;
716 		case 4:
717 			report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG,
718 			       "I/O bitmap - I/O width, long");
719 			vmx_inc_test_stage();
720 			break;
721 		case 5:
722 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000)
723 				vmx_inc_test_stage();
724 			break;
725 		case 6:
726 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000)
727 				vmx_inc_test_stage();
728 			break;
729 		case 7:
730 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF)
731 				vmx_inc_test_stage();
732 			break;
733 		case 8:
734 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF)
735 				vmx_inc_test_stage();
736 			break;
737 		case 9:
738 		case 10:
739 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
740 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO);
741 			vmx_inc_test_stage();
742 			break;
743 		default:
744 			// Should not reach here
745 			report(false, "unexpected stage, %d",
746 			       vmx_get_test_stage());
747 			print_vmexit_info(exit_reason);
748 			return VMX_TEST_VMEXIT;
749 		}
750 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
751 		return VMX_TEST_RESUME;
752 	case VMX_VMCALL:
753 		switch (vmx_get_test_stage()) {
754 		case 9:
755 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
756 			ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP;
757 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
758 			break;
759 		case 10:
760 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
761 			ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO;
762 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
763 			break;
764 		default:
765 			// Should not reach here
766 			report(false, "unexpected stage, %d",
767 			       vmx_get_test_stage());
768 			print_vmexit_info(exit_reason);
769 			return VMX_TEST_VMEXIT;
770 		}
771 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
772 		return VMX_TEST_RESUME;
773 	default:
774 		printf("guest_rip = %#lx\n", guest_rip);
775 		printf("\tERROR : Unknown exit reason, 0x%x\n", exit_reason.full);
776 		break;
777 	}
778 	return VMX_TEST_VMEXIT;
779 }
780 
781 #define INSN_CPU0		0
782 #define INSN_CPU1		1
783 #define INSN_ALWAYS_TRAP	2
784 
785 #define FIELD_EXIT_QUAL		(1 << 0)
786 #define FIELD_INSN_INFO		(1 << 1)
787 
788 asm(
789 	"insn_hlt: hlt;ret\n\t"
790 	"insn_invlpg: invlpg 0x12345678;ret\n\t"
791 	"insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t"
792 	"insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t"
793 	"insn_rdtsc: rdtsc;ret\n\t"
794 	"insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t"
795 	"insn_cr3_store: mov %cr3,%rax;ret\n\t"
796 #ifdef __x86_64__
797 	"insn_cr8_load: xor %eax, %eax; mov %rax,%cr8;ret\n\t"
798 	"insn_cr8_store: mov %cr8,%rax;ret\n\t"
799 #endif
800 	"insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t"
801 	"insn_pause: pause;ret\n\t"
802 	"insn_wbinvd: wbinvd;ret\n\t"
803 	"insn_cpuid: mov $10, %eax; cpuid;ret\n\t"
804 	"insn_invd: invd;ret\n\t"
805 	"insn_sgdt: sgdt gdt64_desc;ret\n\t"
806 	"insn_lgdt: lgdt gdt64_desc;ret\n\t"
807 	"insn_sidt: sidt idt_descr;ret\n\t"
808 	"insn_lidt: lidt idt_descr;ret\n\t"
809 	"insn_sldt: sldt %ax;ret\n\t"
810 	"insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t"
811 	"insn_str: str %ax;ret\n\t"
812 	"insn_rdrand: rdrand %rax;ret\n\t"
813 	"insn_rdseed: rdseed %rax;ret\n\t"
814 );
815 extern void insn_hlt(void);
816 extern void insn_invlpg(void);
817 extern void insn_mwait(void);
818 extern void insn_rdpmc(void);
819 extern void insn_rdtsc(void);
820 extern void insn_cr3_load(void);
821 extern void insn_cr3_store(void);
822 #ifdef __x86_64__
823 extern void insn_cr8_load(void);
824 extern void insn_cr8_store(void);
825 #endif
826 extern void insn_monitor(void);
827 extern void insn_pause(void);
828 extern void insn_wbinvd(void);
829 extern void insn_sgdt(void);
830 extern void insn_lgdt(void);
831 extern void insn_sidt(void);
832 extern void insn_lidt(void);
833 extern void insn_sldt(void);
834 extern void insn_lldt(void);
835 extern void insn_str(void);
836 extern void insn_cpuid(void);
837 extern void insn_invd(void);
838 extern void insn_rdrand(void);
839 extern void insn_rdseed(void);
840 
841 u32 cur_insn;
842 u64 cr3;
843 
844 #define X86_FEATURE_MONITOR	(1 << 3)
845 
846 typedef bool (*supported_fn)(void);
847 
848 static bool monitor_supported(void)
849 {
850 	return this_cpu_has(X86_FEATURE_MWAIT);
851 }
852 
853 struct insn_table {
854 	const char *name;
855 	u32 flag;
856 	void (*insn_func)(void);
857 	u32 type;
858 	u32 reason;
859 	ulong exit_qual;
860 	u32 insn_info;
861 	// Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define
862 	// which field need to be tested, reason is always tested
863 	u32 test_field;
864 	const supported_fn supported_fn;
865 	u8 disabled;
866 };
867 
868 /*
869  * Add more test cases of instruction intercept here. Elements in this
870  * table is:
871  *	name/control flag/insn function/type/exit reason/exit qulification/
872  *	instruction info/field to test
873  * The last field defines which fields (exit_qual and insn_info) need to be
874  * tested in exit handler. If set to 0, only "reason" is checked.
875  */
876 static struct insn_table insn_table[] = {
877 	// Flags for Primary Processor-Based VM-Execution Controls
878 	{"HLT",  CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0},
879 	{"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14,
880 		0x12345678, 0, FIELD_EXIT_QUAL},
881 	{"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0, &monitor_supported},
882 	{"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0},
883 	{"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0},
884 	{"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0,
885 		FIELD_EXIT_QUAL},
886 	{"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0,
887 		FIELD_EXIT_QUAL},
888 #ifdef __x86_64__
889 	{"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0,
890 		FIELD_EXIT_QUAL},
891 	{"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0,
892 		FIELD_EXIT_QUAL},
893 #endif
894 	{"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0, &monitor_supported},
895 	{"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0},
896 	// Flags for Secondary Processor-Based VM-Execution Controls
897 	{"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0},
898 	{"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0},
899 	{"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0},
900 	{"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0},
901 	{"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0},
902 	{"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0},
903 	{"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0},
904 	{"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0},
905 	/* LTR causes a #GP if done with a busy selector, so it is not tested.  */
906 	{"RDRAND", CPU_RDRAND, insn_rdrand, INSN_CPU1, VMX_RDRAND, 0, 0, 0},
907 	{"RDSEED", CPU_RDSEED, insn_rdseed, INSN_CPU1, VMX_RDSEED, 0, 0, 0},
908 	// Instructions always trap
909 	{"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0},
910 	{"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0},
911 	// Instructions never trap
912 	{NULL},
913 };
914 
915 static int insn_intercept_init(struct vmcs *vmcs)
916 {
917 	u32 ctrl_cpu, cur_insn;
918 
919 	ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY;
920 	ctrl_cpu &= ctrl_cpu_rev[0].clr;
921 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu);
922 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set);
923 	cr3 = read_cr3();
924 
925 	for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
926 		if (insn_table[cur_insn].supported_fn == NULL)
927 			continue;
928 		insn_table[cur_insn].disabled = !insn_table[cur_insn].supported_fn();
929 	}
930 	return VMX_TEST_START;
931 }
932 
933 static void insn_intercept_main(void)
934 {
935 	for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
936 		vmx_set_test_stage(cur_insn * 2);
937 		if ((insn_table[cur_insn].type == INSN_CPU0 &&
938 		     !(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) ||
939 		    (insn_table[cur_insn].type == INSN_CPU1 &&
940 		     !(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) {
941 			printf("\tCPU_CTRL%d.CPU_%s is not supported.\n",
942 			       insn_table[cur_insn].type - INSN_CPU0,
943 			       insn_table[cur_insn].name);
944 			continue;
945 		}
946 
947 		if (insn_table[cur_insn].disabled) {
948 			printf("\tFeature required for %s is not supported.\n",
949 			       insn_table[cur_insn].name);
950 			continue;
951 		}
952 
953 		if ((insn_table[cur_insn].type == INSN_CPU0 &&
954 		     !(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) ||
955 		    (insn_table[cur_insn].type == INSN_CPU1 &&
956 		     !(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) {
957 			/* skip hlt, it stalls the guest and is tested below */
958 			if (insn_table[cur_insn].insn_func != insn_hlt)
959 				insn_table[cur_insn].insn_func();
960 			report(vmx_get_test_stage() == cur_insn * 2,
961 					"execute %s",
962 					insn_table[cur_insn].name);
963 		} else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP)
964 			printf("\tCPU_CTRL%d.CPU_%s always traps.\n",
965 			       insn_table[cur_insn].type - INSN_CPU0,
966 			       insn_table[cur_insn].name);
967 
968 		vmcall();
969 
970 		insn_table[cur_insn].insn_func();
971 		report(vmx_get_test_stage() == cur_insn * 2 + 1,
972 				"intercept %s",
973 				insn_table[cur_insn].name);
974 
975 		vmx_set_test_stage(cur_insn * 2 + 1);
976 		vmcall();
977 	}
978 }
979 
980 static int insn_intercept_exit_handler(union exit_reason exit_reason)
981 {
982 	u64 guest_rip;
983 	ulong exit_qual;
984 	u32 insn_len;
985 	u32 insn_info;
986 	bool pass;
987 
988 	guest_rip = vmcs_read(GUEST_RIP);
989 	exit_qual = vmcs_read(EXI_QUALIFICATION);
990 	insn_len = vmcs_read(EXI_INST_LEN);
991 	insn_info = vmcs_read(EXI_INST_INFO);
992 
993 	if (exit_reason.basic == VMX_VMCALL) {
994 		u32 val = 0;
995 
996 		if (insn_table[cur_insn].type == INSN_CPU0)
997 			val = vmcs_read(CPU_EXEC_CTRL0);
998 		else if (insn_table[cur_insn].type == INSN_CPU1)
999 			val = vmcs_read(CPU_EXEC_CTRL1);
1000 
1001 		if (vmx_get_test_stage() & 1)
1002 			val &= ~insn_table[cur_insn].flag;
1003 		else
1004 			val |= insn_table[cur_insn].flag;
1005 
1006 		if (insn_table[cur_insn].type == INSN_CPU0)
1007 			vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set);
1008 		else if (insn_table[cur_insn].type == INSN_CPU1)
1009 			vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set);
1010 	} else {
1011 		pass = (cur_insn * 2 == vmx_get_test_stage()) &&
1012 			insn_table[cur_insn].reason == exit_reason.full;
1013 		if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL &&
1014 		    insn_table[cur_insn].exit_qual != exit_qual)
1015 			pass = false;
1016 		if (insn_table[cur_insn].test_field & FIELD_INSN_INFO &&
1017 		    insn_table[cur_insn].insn_info != insn_info)
1018 			pass = false;
1019 		if (pass)
1020 			vmx_inc_test_stage();
1021 	}
1022 	vmcs_write(GUEST_RIP, guest_rip + insn_len);
1023 	return VMX_TEST_RESUME;
1024 }
1025 
1026 /**
1027  * __setup_ept - Setup the VMCS fields to enable Extended Page Tables (EPT)
1028  * @hpa:	Host physical address of the top-level, a.k.a. root, EPT table
1029  * @enable_ad:	Whether or not to enable Access/Dirty bits for EPT entries
1030  *
1031  * Returns 0 on success, 1 on failure.
1032  *
1033  * Note that @hpa doesn't need to point at actual memory if VM-Launch is
1034  * expected to fail, e.g. setup_dummy_ept() arbitrarily passes '0' to satisfy
1035  * the various EPTP consistency checks, but doesn't ensure backing for HPA '0'.
1036  */
1037 static int __setup_ept(u64 hpa, bool enable_ad)
1038 {
1039 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1040 	    !(ctrl_cpu_rev[1].clr & CPU_EPT)) {
1041 		printf("\tEPT is not supported");
1042 		return 1;
1043 	}
1044 	if (!(ept_vpid.val & EPT_CAP_WB)) {
1045 		printf("WB memtype for EPT walks not supported\n");
1046 		return 1;
1047 	}
1048 	if (!(ept_vpid.val & EPT_CAP_PWL4)) {
1049 		printf("\tPWL4 is not supported\n");
1050 		return 1;
1051 	}
1052 
1053 	eptp = EPT_MEM_TYPE_WB;
1054 	eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT);
1055 	eptp |= hpa;
1056 	if (enable_ad)
1057 		eptp |= EPTP_AD_FLAG;
1058 
1059 	vmcs_write(EPTP, eptp);
1060 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0)| CPU_SECONDARY);
1061 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1)| CPU_EPT);
1062 
1063 	return 0;
1064 }
1065 
1066 /**
1067  * setup_ept - Enable Extended Page Tables (EPT) and setup an identity map
1068  * @enable_ad:	Whether or not to enable Access/Dirty bits for EPT entries
1069  *
1070  * Returns 0 on success, 1 on failure.
1071  *
1072  * This is the "real" function for setting up EPT tables, i.e. use this for
1073  * tests that need to run code in the guest with EPT enabled.
1074  */
1075 static int setup_ept(bool enable_ad)
1076 {
1077 	unsigned long end_of_memory;
1078 
1079 	pml4 = alloc_page();
1080 
1081 	if (__setup_ept(virt_to_phys(pml4), enable_ad))
1082 		return 1;
1083 
1084 	end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE);
1085 	if (end_of_memory < (1ul << 32))
1086 		end_of_memory = (1ul << 32);
1087 	/* Cannot use large EPT pages if we need to track EPT
1088 	 * accessed/dirty bits at 4K granularity.
1089 	 */
1090 	setup_ept_range(pml4, 0, end_of_memory, 0,
1091 			!enable_ad && ept_2m_supported(),
1092 			EPT_WA | EPT_RA | EPT_EA);
1093 	return 0;
1094 }
1095 
1096 /**
1097  * setup_dummy_ept - Enable Extended Page Tables (EPT) with a dummy root HPA
1098  *
1099  * Setup EPT using a semi-arbitrary dummy root HPA.  This function is intended
1100  * for use by tests that need EPT enabled to verify dependent VMCS controls
1101  * but never expect to fully enter the guest, i.e. don't need setup the actual
1102  * EPT tables.
1103  */
1104 static void setup_dummy_ept(void)
1105 {
1106 	if (__setup_ept(0, false))
1107 		report_abort("EPT setup unexpectedly failed");
1108 }
1109 
1110 static int enable_unrestricted_guest(void)
1111 {
1112 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1113 	    !(ctrl_cpu_rev[1].clr & CPU_URG) ||
1114 	    !(ctrl_cpu_rev[1].clr & CPU_EPT))
1115 		return 1;
1116 
1117 	setup_dummy_ept();
1118 
1119 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
1120 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG);
1121 
1122 	return 0;
1123 }
1124 
1125 static void ept_enable_ad_bits(void)
1126 {
1127 	eptp |= EPTP_AD_FLAG;
1128 	vmcs_write(EPTP, eptp);
1129 }
1130 
1131 static void ept_disable_ad_bits(void)
1132 {
1133 	eptp &= ~EPTP_AD_FLAG;
1134 	vmcs_write(EPTP, eptp);
1135 }
1136 
1137 static int ept_ad_enabled(void)
1138 {
1139 	return eptp & EPTP_AD_FLAG;
1140 }
1141 
1142 static void ept_enable_ad_bits_or_skip_test(void)
1143 {
1144 	if (!ept_ad_bits_supported())
1145 		test_skip("EPT AD bits not supported.");
1146 	ept_enable_ad_bits();
1147 }
1148 
1149 static int apic_version;
1150 
1151 static int ept_init_common(bool have_ad)
1152 {
1153 	int ret;
1154 	struct pci_dev pcidev;
1155 
1156 	if (setup_ept(have_ad))
1157 		return VMX_TEST_EXIT;
1158 	data_page1 = alloc_page();
1159 	data_page2 = alloc_page();
1160 	*((u32 *)data_page1) = MAGIC_VAL_1;
1161 	*((u32 *)data_page2) = MAGIC_VAL_2;
1162 	install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2,
1163 			EPT_RA | EPT_WA | EPT_EA);
1164 
1165 	apic_version = apic_read(APIC_LVR);
1166 
1167 	ret = pci_find_dev(PCI_VENDOR_ID_REDHAT, PCI_DEVICE_ID_REDHAT_TEST);
1168 	if (ret != PCIDEVADDR_INVALID) {
1169 		pci_dev_init(&pcidev, ret);
1170 		pci_physaddr = pcidev.resource[PCI_TESTDEV_BAR_MEM];
1171 	}
1172 
1173 	return VMX_TEST_START;
1174 }
1175 
1176 static int ept_init(struct vmcs *vmcs)
1177 {
1178 	return ept_init_common(false);
1179 }
1180 
1181 static void ept_common(void)
1182 {
1183 	vmx_set_test_stage(0);
1184 	if (*((u32 *)data_page2) != MAGIC_VAL_1 ||
1185 			*((u32 *)data_page1) != MAGIC_VAL_1)
1186 		report(0, "EPT basic framework - read");
1187 	else {
1188 		*((u32 *)data_page2) = MAGIC_VAL_3;
1189 		vmcall();
1190 		if (vmx_get_test_stage() == 1) {
1191 			if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
1192 					*((u32 *)data_page2) == MAGIC_VAL_2)
1193 				report(1, "EPT basic framework");
1194 			else
1195 				report(1, "EPT basic framework - remap");
1196 		}
1197 	}
1198 	// Test EPT Misconfigurations
1199 	vmx_set_test_stage(1);
1200 	vmcall();
1201 	*((u32 *)data_page1) = MAGIC_VAL_1;
1202 	if (vmx_get_test_stage() != 2) {
1203 		report(0, "EPT misconfigurations");
1204 		goto t1;
1205 	}
1206 	vmx_set_test_stage(2);
1207 	vmcall();
1208 	*((u32 *)data_page1) = MAGIC_VAL_1;
1209 	report(vmx_get_test_stage() == 3, "EPT misconfigurations");
1210 t1:
1211 	// Test EPT violation
1212 	vmx_set_test_stage(3);
1213 	vmcall();
1214 	*((u32 *)data_page1) = MAGIC_VAL_1;
1215 	report(vmx_get_test_stage() == 4, "EPT violation - page permission");
1216 	// Violation caused by EPT paging structure
1217 	vmx_set_test_stage(4);
1218 	vmcall();
1219 	*((u32 *)data_page1) = MAGIC_VAL_2;
1220 	report(vmx_get_test_stage() == 5, "EPT violation - paging structure");
1221 
1222 	// MMIO Read/Write
1223 	vmx_set_test_stage(5);
1224 	vmcall();
1225 
1226 	*(u32 volatile *)pci_physaddr;
1227 	report(vmx_get_test_stage() == 6, "MMIO EPT violation - read");
1228 
1229 	*(u32 volatile *)pci_physaddr = MAGIC_VAL_1;
1230 	report(vmx_get_test_stage() == 7, "MMIO EPT violation - write");
1231 }
1232 
1233 static void ept_main(void)
1234 {
1235 	ept_common();
1236 
1237 	// Test EPT access to L1 MMIO
1238 	vmx_set_test_stage(7);
1239 	report(*((u32 *)0xfee00030UL) == apic_version, "EPT - MMIO access");
1240 
1241 	// Test invalid operand for INVEPT
1242 	vmcall();
1243 	report(vmx_get_test_stage() == 8, "EPT - unsupported INVEPT");
1244 }
1245 
1246 static bool invept_test(int type, u64 eptp)
1247 {
1248 	bool ret, supported;
1249 
1250 	supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type);
1251 	ret = invept(type, eptp);
1252 
1253 	if (ret == !supported)
1254 		return false;
1255 
1256 	if (!supported)
1257 		printf("WARNING: unsupported invept passed!\n");
1258 	else
1259 		printf("WARNING: invept failed!\n");
1260 
1261 	return true;
1262 }
1263 
1264 static int pml_exit_handler(union exit_reason exit_reason)
1265 {
1266 	u16 index, count;
1267 	u64 *pmlbuf = pml_log;
1268 	u64 guest_rip = vmcs_read(GUEST_RIP);;
1269 	u64 guest_cr3 = vmcs_read(GUEST_CR3);
1270 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1271 
1272 	switch (exit_reason.basic) {
1273 	case VMX_VMCALL:
1274 		switch (vmx_get_test_stage()) {
1275 		case 0:
1276 			index = vmcs_read(GUEST_PML_INDEX);
1277 			for (count = index + 1; count < PML_INDEX; count++) {
1278 				if (pmlbuf[count] == (u64)data_page2) {
1279 					vmx_inc_test_stage();
1280 					clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1281 					break;
1282 				}
1283 			}
1284 			break;
1285 		case 1:
1286 			index = vmcs_read(GUEST_PML_INDEX);
1287 			/* Keep clearing the dirty bit till a overflow */
1288 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1289 			break;
1290 		default:
1291 			report(false, "unexpected stage, %d.",
1292 			       vmx_get_test_stage());
1293 			print_vmexit_info(exit_reason);
1294 			return VMX_TEST_VMEXIT;
1295 		}
1296 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1297 		return VMX_TEST_RESUME;
1298 	case VMX_PML_FULL:
1299 		vmx_inc_test_stage();
1300 		vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
1301 		return VMX_TEST_RESUME;
1302 	default:
1303 		report(false, "Unknown exit reason, 0x%x", exit_reason.full);
1304 		print_vmexit_info(exit_reason);
1305 	}
1306 	return VMX_TEST_VMEXIT;
1307 }
1308 
1309 static int ept_exit_handler_common(union exit_reason exit_reason, bool have_ad)
1310 {
1311 	u64 guest_rip;
1312 	u64 guest_cr3;
1313 	u32 insn_len;
1314 	u32 exit_qual;
1315 	static unsigned long data_page1_pte, data_page1_pte_pte, memaddr_pte,
1316 			     guest_pte_addr;
1317 
1318 	guest_rip = vmcs_read(GUEST_RIP);
1319 	guest_cr3 = vmcs_read(GUEST_CR3);
1320 	insn_len = vmcs_read(EXI_INST_LEN);
1321 	exit_qual = vmcs_read(EXI_QUALIFICATION);
1322 	pteval_t *ptep;
1323 	switch (exit_reason.basic) {
1324 	case VMX_VMCALL:
1325 		switch (vmx_get_test_stage()) {
1326 		case 0:
1327 			check_ept_ad(pml4, guest_cr3,
1328 				     (unsigned long)data_page1,
1329 				     have_ad ? EPT_ACCESS_FLAG : 0,
1330 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1331 			check_ept_ad(pml4, guest_cr3,
1332 				     (unsigned long)data_page2,
1333 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0,
1334 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1335 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1336 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1337 			if (have_ad)
1338 				ept_sync(INVEPT_SINGLE, eptp);;
1339 			if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
1340 					*((u32 *)data_page2) == MAGIC_VAL_2) {
1341 				vmx_inc_test_stage();
1342 				install_ept(pml4, (unsigned long)data_page2,
1343 						(unsigned long)data_page2,
1344 						EPT_RA | EPT_WA | EPT_EA);
1345 			} else
1346 				report(0, "EPT basic framework - write");
1347 			break;
1348 		case 1:
1349 			install_ept(pml4, (unsigned long)data_page1,
1350  				(unsigned long)data_page1, EPT_WA);
1351 			ept_sync(INVEPT_SINGLE, eptp);
1352 			break;
1353 		case 2:
1354 			install_ept(pml4, (unsigned long)data_page1,
1355  				(unsigned long)data_page1,
1356  				EPT_RA | EPT_WA | EPT_EA |
1357  				(2 << EPT_MEM_TYPE_SHIFT));
1358 			ept_sync(INVEPT_SINGLE, eptp);
1359 			break;
1360 		case 3:
1361 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1362 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1,
1363 						1, &data_page1_pte));
1364 			set_ept_pte(pml4, (unsigned long)data_page1,
1365 				1, data_page1_pte & ~EPT_PRESENT);
1366 			ept_sync(INVEPT_SINGLE, eptp);
1367 			break;
1368 		case 4:
1369 			ptep = get_pte_level((pgd_t *)guest_cr3, data_page1, /*level=*/2);
1370 			guest_pte_addr = virt_to_phys(ptep) & PAGE_MASK;
1371 
1372 			TEST_ASSERT(get_ept_pte(pml4, guest_pte_addr, 2, &data_page1_pte_pte));
1373 			set_ept_pte(pml4, guest_pte_addr, 2,
1374 				data_page1_pte_pte & ~EPT_PRESENT);
1375 			ept_sync(INVEPT_SINGLE, eptp);
1376 			break;
1377 		case 5:
1378 			install_ept(pml4, (unsigned long)pci_physaddr,
1379 				(unsigned long)pci_physaddr, 0);
1380 			ept_sync(INVEPT_SINGLE, eptp);
1381 			break;
1382 		case 7:
1383 			if (!invept_test(0, eptp))
1384 				vmx_inc_test_stage();
1385 			break;
1386 		// Should not reach here
1387 		default:
1388 			report(false, "ERROR - unexpected stage, %d.",
1389 			       vmx_get_test_stage());
1390 			print_vmexit_info(exit_reason);
1391 			return VMX_TEST_VMEXIT;
1392 		}
1393 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1394 		return VMX_TEST_RESUME;
1395 	case VMX_EPT_MISCONFIG:
1396 		switch (vmx_get_test_stage()) {
1397 		case 1:
1398 		case 2:
1399 			vmx_inc_test_stage();
1400 			install_ept(pml4, (unsigned long)data_page1,
1401  				(unsigned long)data_page1,
1402  				EPT_RA | EPT_WA | EPT_EA);
1403 			ept_sync(INVEPT_SINGLE, eptp);
1404 			break;
1405 		// Should not reach here
1406 		default:
1407 			report(false, "ERROR - unexpected stage, %d.",
1408 			       vmx_get_test_stage());
1409 			print_vmexit_info(exit_reason);
1410 			return VMX_TEST_VMEXIT;
1411 		}
1412 		return VMX_TEST_RESUME;
1413 	case VMX_EPT_VIOLATION:
1414 		/*
1415 		 * Exit-qualifications are masked not to account for advanced
1416 		 * VM-exit information. Once KVM supports this feature, this
1417 		 * masking should be removed.
1418 		 */
1419 		exit_qual &= ~EPT_VLT_GUEST_MASK;
1420 
1421 		switch(vmx_get_test_stage()) {
1422 		case 3:
1423 			check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
1424 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1425 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1426 			if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD |
1427 					EPT_VLT_PADDR))
1428 				vmx_inc_test_stage();
1429 			set_ept_pte(pml4, (unsigned long)data_page1,
1430 				1, data_page1_pte | (EPT_PRESENT));
1431 			ept_sync(INVEPT_SINGLE, eptp);
1432 			break;
1433 		case 4:
1434 			check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
1435 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1436 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1437 			if (exit_qual == (EPT_VLT_RD |
1438 					  (have_ad ? EPT_VLT_WR : 0) |
1439 					  EPT_VLT_LADDR_VLD))
1440 				vmx_inc_test_stage();
1441 			set_ept_pte(pml4, guest_pte_addr, 2,
1442 				data_page1_pte_pte | (EPT_PRESENT));
1443 			ept_sync(INVEPT_SINGLE, eptp);
1444 			break;
1445 		case 5:
1446 			if (exit_qual & EPT_VLT_RD)
1447 				vmx_inc_test_stage();
1448 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr,
1449 						1, &memaddr_pte));
1450 			set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA);
1451 			ept_sync(INVEPT_SINGLE, eptp);
1452 			break;
1453 		case 6:
1454 			if (exit_qual & EPT_VLT_WR)
1455 				vmx_inc_test_stage();
1456 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr,
1457 						1, &memaddr_pte));
1458 			set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA | EPT_WA);
1459 			ept_sync(INVEPT_SINGLE, eptp);
1460 			break;
1461 		default:
1462 			// Should not reach here
1463 			report(false, "ERROR : unexpected stage, %d",
1464 			       vmx_get_test_stage());
1465 			print_vmexit_info(exit_reason);
1466 			return VMX_TEST_VMEXIT;
1467 		}
1468 		return VMX_TEST_RESUME;
1469 	default:
1470 		report(false, "Unknown exit reason, 0x%x", exit_reason.full);
1471 		print_vmexit_info(exit_reason);
1472 	}
1473 	return VMX_TEST_VMEXIT;
1474 }
1475 
1476 static int ept_exit_handler(union exit_reason exit_reason)
1477 {
1478 	return ept_exit_handler_common(exit_reason, false);
1479 }
1480 
1481 static int eptad_init(struct vmcs *vmcs)
1482 {
1483 	int r = ept_init_common(true);
1484 
1485 	if (r == VMX_TEST_EXIT)
1486 		return r;
1487 
1488 	if ((rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & EPT_CAP_AD_FLAG) == 0) {
1489 		printf("\tEPT A/D bits are not supported");
1490 		return VMX_TEST_EXIT;
1491 	}
1492 
1493 	return r;
1494 }
1495 
1496 static int pml_init(struct vmcs *vmcs)
1497 {
1498 	u32 ctrl_cpu;
1499 	int r = eptad_init(vmcs);
1500 
1501 	if (r == VMX_TEST_EXIT)
1502 		return r;
1503 
1504 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1505 		!(ctrl_cpu_rev[1].clr & CPU_PML)) {
1506 		printf("\tPML is not supported");
1507 		return VMX_TEST_EXIT;
1508 	}
1509 
1510 	pml_log = alloc_page();
1511 	vmcs_write(PMLADDR, (u64)pml_log);
1512 	vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
1513 
1514 	ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML;
1515 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu);
1516 
1517 	return VMX_TEST_START;
1518 }
1519 
1520 static void pml_main(void)
1521 {
1522 	int count = 0;
1523 
1524 	vmx_set_test_stage(0);
1525 	*((u32 *)data_page2) = 0x1;
1526 	vmcall();
1527 	report(vmx_get_test_stage() == 1, "PML - Dirty GPA Logging");
1528 
1529 	while (vmx_get_test_stage() == 1) {
1530 		vmcall();
1531 		*((u32 *)data_page2) = 0x1;
1532 		if (count++ > PML_INDEX)
1533 			break;
1534 	}
1535 	report(vmx_get_test_stage() == 2, "PML Full Event");
1536 }
1537 
1538 static void eptad_main(void)
1539 {
1540 	ept_common();
1541 }
1542 
1543 static int eptad_exit_handler(union exit_reason exit_reason)
1544 {
1545 	return ept_exit_handler_common(exit_reason, true);
1546 }
1547 
1548 static bool invvpid_test(int type, u16 vpid)
1549 {
1550 	bool ret, supported;
1551 
1552 	supported = ept_vpid.val &
1553 		(VPID_CAP_INVVPID_ADDR >> INVVPID_ADDR << type);
1554 	ret = invvpid(type, vpid, 0);
1555 
1556 	if (ret == !supported)
1557 		return false;
1558 
1559 	if (!supported)
1560 		printf("WARNING: unsupported invvpid passed!\n");
1561 	else
1562 		printf("WARNING: invvpid failed!\n");
1563 
1564 	return true;
1565 }
1566 
1567 static int vpid_init(struct vmcs *vmcs)
1568 {
1569 	u32 ctrl_cpu1;
1570 
1571 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1572 		!(ctrl_cpu_rev[1].clr & CPU_VPID)) {
1573 		printf("\tVPID is not supported");
1574 		return VMX_TEST_EXIT;
1575 	}
1576 
1577 	ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
1578 	ctrl_cpu1 |= CPU_VPID;
1579 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
1580 	return VMX_TEST_START;
1581 }
1582 
1583 static void vpid_main(void)
1584 {
1585 	vmx_set_test_stage(0);
1586 	vmcall();
1587 	report(vmx_get_test_stage() == 1, "INVVPID SINGLE ADDRESS");
1588 	vmx_set_test_stage(2);
1589 	vmcall();
1590 	report(vmx_get_test_stage() == 3, "INVVPID SINGLE");
1591 	vmx_set_test_stage(4);
1592 	vmcall();
1593 	report(vmx_get_test_stage() == 5, "INVVPID ALL");
1594 }
1595 
1596 static int vpid_exit_handler(union exit_reason exit_reason)
1597 {
1598 	u64 guest_rip;
1599 	u32 insn_len;
1600 
1601 	guest_rip = vmcs_read(GUEST_RIP);
1602 	insn_len = vmcs_read(EXI_INST_LEN);
1603 
1604 	switch (exit_reason.basic) {
1605 	case VMX_VMCALL:
1606 		switch(vmx_get_test_stage()) {
1607 		case 0:
1608 			if (!invvpid_test(INVVPID_ADDR, 1))
1609 				vmx_inc_test_stage();
1610 			break;
1611 		case 2:
1612 			if (!invvpid_test(INVVPID_CONTEXT_GLOBAL, 1))
1613 				vmx_inc_test_stage();
1614 			break;
1615 		case 4:
1616 			if (!invvpid_test(INVVPID_ALL, 1))
1617 				vmx_inc_test_stage();
1618 			break;
1619 		default:
1620 			report(false, "ERROR: unexpected stage, %d",
1621 					vmx_get_test_stage());
1622 			print_vmexit_info(exit_reason);
1623 			return VMX_TEST_VMEXIT;
1624 		}
1625 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1626 		return VMX_TEST_RESUME;
1627 	default:
1628 		report(false, "Unknown exit reason, 0x%x", exit_reason.full);
1629 		print_vmexit_info(exit_reason);
1630 	}
1631 	return VMX_TEST_VMEXIT;
1632 }
1633 
1634 #define TIMER_VECTOR	222
1635 
1636 static volatile bool timer_fired;
1637 
1638 static void timer_isr(isr_regs_t *regs)
1639 {
1640 	timer_fired = true;
1641 	apic_write(APIC_EOI, 0);
1642 }
1643 
1644 static int interrupt_init(struct vmcs *vmcs)
1645 {
1646 	msr_bmp_init();
1647 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
1648 	handle_irq(TIMER_VECTOR, timer_isr);
1649 	return VMX_TEST_START;
1650 }
1651 
1652 static void interrupt_main(void)
1653 {
1654 	long long start, loops;
1655 
1656 	vmx_set_test_stage(0);
1657 
1658 	apic_write(APIC_LVTT, TIMER_VECTOR);
1659 	irq_enable();
1660 
1661 	apic_write(APIC_TMICT, 1);
1662 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1663 		asm volatile ("nop");
1664 	report(timer_fired, "direct interrupt while running guest");
1665 
1666 	apic_write(APIC_TMICT, 0);
1667 	irq_disable();
1668 	vmcall();
1669 	timer_fired = false;
1670 	apic_write(APIC_TMICT, 1);
1671 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1672 		asm volatile ("nop");
1673 	report(timer_fired, "intercepted interrupt while running guest");
1674 
1675 	irq_enable();
1676 	apic_write(APIC_TMICT, 0);
1677 	irq_disable();
1678 	vmcall();
1679 	timer_fired = false;
1680 	start = rdtsc();
1681 	apic_write(APIC_TMICT, 1000000);
1682 
1683 	asm volatile ("sti; hlt");
1684 
1685 	report(rdtsc() - start > 1000000 && timer_fired,
1686 	       "direct interrupt + hlt");
1687 
1688 	apic_write(APIC_TMICT, 0);
1689 	irq_disable();
1690 	vmcall();
1691 	timer_fired = false;
1692 	start = rdtsc();
1693 	apic_write(APIC_TMICT, 1000000);
1694 
1695 	asm volatile ("sti; hlt");
1696 
1697 	report(rdtsc() - start > 10000 && timer_fired,
1698 	       "intercepted interrupt + hlt");
1699 
1700 	apic_write(APIC_TMICT, 0);
1701 	irq_disable();
1702 	vmcall();
1703 	timer_fired = false;
1704 	start = rdtsc();
1705 	apic_write(APIC_TMICT, 1000000);
1706 
1707 	irq_enable();
1708 	asm volatile ("nop");
1709 	vmcall();
1710 
1711 	report(rdtsc() - start > 10000 && timer_fired,
1712 	       "direct interrupt + activity state hlt");
1713 
1714 	apic_write(APIC_TMICT, 0);
1715 	irq_disable();
1716 	vmcall();
1717 	timer_fired = false;
1718 	start = rdtsc();
1719 	apic_write(APIC_TMICT, 1000000);
1720 
1721 	irq_enable();
1722 	asm volatile ("nop");
1723 	vmcall();
1724 
1725 	report(rdtsc() - start > 10000 && timer_fired,
1726 	       "intercepted interrupt + activity state hlt");
1727 
1728 	apic_write(APIC_TMICT, 0);
1729 	irq_disable();
1730 	vmx_set_test_stage(7);
1731 	vmcall();
1732 	timer_fired = false;
1733 	apic_write(APIC_TMICT, 1);
1734 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1735 		asm volatile ("nop");
1736 	report(timer_fired,
1737 	       "running a guest with interrupt acknowledgement set");
1738 
1739 	apic_write(APIC_TMICT, 0);
1740 	irq_enable();
1741 	timer_fired = false;
1742 	vmcall();
1743 	report(timer_fired, "Inject an event to a halted guest");
1744 }
1745 
1746 static int interrupt_exit_handler(union exit_reason exit_reason)
1747 {
1748 	u64 guest_rip = vmcs_read(GUEST_RIP);
1749 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1750 
1751 	switch (exit_reason.basic) {
1752 	case VMX_VMCALL:
1753 		switch (vmx_get_test_stage()) {
1754 		case 0:
1755 		case 2:
1756 		case 5:
1757 			vmcs_write(PIN_CONTROLS,
1758 				   vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
1759 			break;
1760 		case 7:
1761 			vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA);
1762 			vmcs_write(PIN_CONTROLS,
1763 				   vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
1764 			break;
1765 		case 1:
1766 		case 3:
1767 			vmcs_write(PIN_CONTROLS,
1768 				   vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
1769 			break;
1770 		case 4:
1771 		case 6:
1772 			vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
1773 			break;
1774 
1775 		case 8:
1776 			vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
1777 			vmcs_write(ENT_INTR_INFO,
1778 				   TIMER_VECTOR |
1779 				   (VMX_INTR_TYPE_EXT_INTR << INTR_INFO_INTR_TYPE_SHIFT) |
1780 				   INTR_INFO_VALID_MASK);
1781 			break;
1782 		}
1783 		vmx_inc_test_stage();
1784 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1785 		return VMX_TEST_RESUME;
1786 	case VMX_EXTINT:
1787 		if (vmcs_read(EXI_CONTROLS) & EXI_INTA) {
1788 			int vector = vmcs_read(EXI_INTR_INFO) & 0xff;
1789 			handle_external_interrupt(vector);
1790 		} else {
1791 			irq_enable();
1792 			asm volatile ("nop");
1793 			irq_disable();
1794 		}
1795 		if (vmx_get_test_stage() >= 2)
1796 			vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
1797 		return VMX_TEST_RESUME;
1798 	default:
1799 		report(false, "Unknown exit reason, 0x%x", exit_reason.full);
1800 		print_vmexit_info(exit_reason);
1801 	}
1802 
1803 	return VMX_TEST_VMEXIT;
1804 }
1805 
1806 
1807 static volatile int nmi_fired;
1808 
1809 #define NMI_DELAY 100000000ULL
1810 
1811 static void nmi_isr(isr_regs_t *regs)
1812 {
1813 	nmi_fired = true;
1814 }
1815 
1816 static int nmi_hlt_init(struct vmcs *vmcs)
1817 {
1818 	msr_bmp_init();
1819 	handle_irq(NMI_VECTOR, nmi_isr);
1820 	vmcs_write(PIN_CONTROLS,
1821 		   vmcs_read(PIN_CONTROLS) & ~PIN_NMI);
1822 	vmcs_write(PIN_CONTROLS,
1823 		   vmcs_read(PIN_CONTROLS) & ~PIN_VIRT_NMI);
1824 	return VMX_TEST_START;
1825 }
1826 
1827 static void nmi_message_thread(void *data)
1828 {
1829     while (vmx_get_test_stage() != 1)
1830         pause();
1831 
1832     delay(NMI_DELAY);
1833     apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]);
1834 
1835     while (vmx_get_test_stage() != 2)
1836         pause();
1837 
1838     delay(NMI_DELAY);
1839     apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]);
1840 }
1841 
1842 static void nmi_hlt_main(void)
1843 {
1844     long long start;
1845 
1846     if (cpu_count() < 2) {
1847         report_skip(__func__);
1848         vmx_set_test_stage(-1);
1849         return;
1850     }
1851 
1852     vmx_set_test_stage(0);
1853     on_cpu_async(1, nmi_message_thread, NULL);
1854     start = rdtsc();
1855     vmx_set_test_stage(1);
1856     asm volatile ("hlt");
1857     report((rdtsc() - start > NMI_DELAY) && nmi_fired,
1858             "direct NMI + hlt");
1859     if (!nmi_fired)
1860         vmx_set_test_stage(-1);
1861     nmi_fired = false;
1862 
1863     vmcall();
1864 
1865     start = rdtsc();
1866     vmx_set_test_stage(2);
1867     asm volatile ("hlt");
1868     report((rdtsc() - start > NMI_DELAY) && !nmi_fired,
1869             "intercepted NMI + hlt");
1870     if (nmi_fired) {
1871         report(!nmi_fired, "intercepted NMI was dispatched");
1872         vmx_set_test_stage(-1);
1873         return;
1874     }
1875     vmx_set_test_stage(3);
1876 }
1877 
1878 static int nmi_hlt_exit_handler(union exit_reason exit_reason)
1879 {
1880     u64 guest_rip = vmcs_read(GUEST_RIP);
1881     u32 insn_len = vmcs_read(EXI_INST_LEN);
1882 
1883     switch (vmx_get_test_stage()) {
1884     case 1:
1885         if (exit_reason.basic != VMX_VMCALL) {
1886             report(false, "VMEXIT not due to vmcall. Exit reason 0x%x",
1887                    exit_reason.full);
1888             print_vmexit_info(exit_reason);
1889             return VMX_TEST_VMEXIT;
1890         }
1891 
1892         vmcs_write(PIN_CONTROLS,
1893                vmcs_read(PIN_CONTROLS) | PIN_NMI);
1894         vmcs_write(PIN_CONTROLS,
1895                vmcs_read(PIN_CONTROLS) | PIN_VIRT_NMI);
1896         vmcs_write(GUEST_RIP, guest_rip + insn_len);
1897         break;
1898 
1899     case 2:
1900         if (exit_reason.basic != VMX_EXC_NMI) {
1901             report(false, "VMEXIT not due to NMI intercept. Exit reason 0x%x",
1902                    exit_reason.full);
1903             print_vmexit_info(exit_reason);
1904             return VMX_TEST_VMEXIT;
1905         }
1906         report(true, "NMI intercept while running guest");
1907         vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
1908         break;
1909 
1910     case 3:
1911         break;
1912 
1913     default:
1914         return VMX_TEST_VMEXIT;
1915     }
1916 
1917     if (vmx_get_test_stage() == 3)
1918         return VMX_TEST_VMEXIT;
1919 
1920     return VMX_TEST_RESUME;
1921 }
1922 
1923 
1924 static int dbgctls_init(struct vmcs *vmcs)
1925 {
1926 	u64 dr7 = 0x402;
1927 	u64 zero = 0;
1928 
1929 	msr_bmp_init();
1930 	asm volatile(
1931 		"mov %0,%%dr0\n\t"
1932 		"mov %0,%%dr1\n\t"
1933 		"mov %0,%%dr2\n\t"
1934 		"mov %1,%%dr7\n\t"
1935 		: : "r" (zero), "r" (dr7));
1936 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
1937 	vmcs_write(GUEST_DR7, 0x404);
1938 	vmcs_write(GUEST_DEBUGCTL, 0x2);
1939 
1940 	vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
1941 	vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS);
1942 
1943 	return VMX_TEST_START;
1944 }
1945 
1946 static void dbgctls_main(void)
1947 {
1948 	u64 dr7, debugctl;
1949 
1950 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1951 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1952 	/* Commented out: KVM does not support DEBUGCTL so far */
1953 	(void)debugctl;
1954 	report(dr7 == 0x404, "Load debug controls" /* && debugctl == 0x2 */);
1955 
1956 	dr7 = 0x408;
1957 	asm volatile("mov %0,%%dr7" : : "r" (dr7));
1958 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
1959 
1960 	vmx_set_test_stage(0);
1961 	vmcall();
1962 	report(vmx_get_test_stage() == 1, "Save debug controls");
1963 
1964 	if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS ||
1965 	    ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) {
1966 		printf("\tDebug controls are always loaded/saved\n");
1967 		return;
1968 	}
1969 	vmx_set_test_stage(2);
1970 	vmcall();
1971 
1972 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1973 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1974 	/* Commented out: KVM does not support DEBUGCTL so far */
1975 	(void)debugctl;
1976 	report(dr7 == 0x402,
1977 	       "Guest=host debug controls" /* && debugctl == 0x1 */);
1978 
1979 	dr7 = 0x408;
1980 	asm volatile("mov %0,%%dr7" : : "r" (dr7));
1981 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
1982 
1983 	vmx_set_test_stage(3);
1984 	vmcall();
1985 	report(vmx_get_test_stage() == 4, "Don't save debug controls");
1986 }
1987 
1988 static int dbgctls_exit_handler(union exit_reason exit_reason)
1989 {
1990 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1991 	u64 guest_rip = vmcs_read(GUEST_RIP);
1992 	u64 dr7, debugctl;
1993 
1994 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1995 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1996 
1997 	switch (exit_reason.basic) {
1998 	case VMX_VMCALL:
1999 		switch (vmx_get_test_stage()) {
2000 		case 0:
2001 			if (dr7 == 0x400 && debugctl == 0 &&
2002 			    vmcs_read(GUEST_DR7) == 0x408 /* &&
2003 			    Commented out: KVM does not support DEBUGCTL so far
2004 			    vmcs_read(GUEST_DEBUGCTL) == 0x3 */)
2005 				vmx_inc_test_stage();
2006 			break;
2007 		case 2:
2008 			dr7 = 0x402;
2009 			asm volatile("mov %0,%%dr7" : : "r" (dr7));
2010 			wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
2011 			vmcs_write(GUEST_DR7, 0x404);
2012 			vmcs_write(GUEST_DEBUGCTL, 0x2);
2013 
2014 			vmcs_write(ENT_CONTROLS,
2015 				vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS);
2016 			vmcs_write(EXI_CONTROLS,
2017 				vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS);
2018 			break;
2019 		case 3:
2020 			if (dr7 == 0x400 && debugctl == 0 &&
2021 			    vmcs_read(GUEST_DR7) == 0x404 /* &&
2022 			    Commented out: KVM does not support DEBUGCTL so far
2023 			    vmcs_read(GUEST_DEBUGCTL) == 0x2 */)
2024 				vmx_inc_test_stage();
2025 			break;
2026 		}
2027 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
2028 		return VMX_TEST_RESUME;
2029 	default:
2030 		report(false, "Unknown exit reason, %d", exit_reason.full);
2031 		print_vmexit_info(exit_reason);
2032 	}
2033 	return VMX_TEST_VMEXIT;
2034 }
2035 
2036 struct vmx_msr_entry {
2037 	u32 index;
2038 	u32 reserved;
2039 	u64 value;
2040 } __attribute__((packed));
2041 
2042 #define MSR_MAGIC 0x31415926
2043 struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load;
2044 
2045 static int msr_switch_init(struct vmcs *vmcs)
2046 {
2047 	msr_bmp_init();
2048 	exit_msr_store = alloc_page();
2049 	exit_msr_load = alloc_page();
2050 	entry_msr_load = alloc_page();
2051 	entry_msr_load[0].index = MSR_KERNEL_GS_BASE;
2052 	entry_msr_load[0].value = MSR_MAGIC;
2053 
2054 	vmx_set_test_stage(1);
2055 	vmcs_write(ENT_MSR_LD_CNT, 1);
2056 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load);
2057 	vmcs_write(EXI_MSR_ST_CNT, 1);
2058 	vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store);
2059 	vmcs_write(EXI_MSR_LD_CNT, 1);
2060 	vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load);
2061 	return VMX_TEST_START;
2062 }
2063 
2064 static void msr_switch_main(void)
2065 {
2066 	if (vmx_get_test_stage() == 1) {
2067 		report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC,
2068 		       "VM entry MSR load");
2069 		vmx_set_test_stage(2);
2070 		wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1);
2071 		exit_msr_store[0].index = MSR_KERNEL_GS_BASE;
2072 		exit_msr_load[0].index = MSR_KERNEL_GS_BASE;
2073 		exit_msr_load[0].value = MSR_MAGIC + 2;
2074 	}
2075 	vmcall();
2076 }
2077 
2078 static int msr_switch_exit_handler(union exit_reason exit_reason)
2079 {
2080 	if (exit_reason.basic == VMX_VMCALL && vmx_get_test_stage() == 2) {
2081 		report(exit_msr_store[0].value == MSR_MAGIC + 1,
2082 		       "VM exit MSR store");
2083 		report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2,
2084 		       "VM exit MSR load");
2085 		vmx_set_test_stage(3);
2086 		entry_msr_load[0].index = MSR_FS_BASE;
2087 		return VMX_TEST_RESUME;
2088 	}
2089 	printf("ERROR %s: unexpected stage=%u or reason=0x%x\n",
2090 		__func__, vmx_get_test_stage(), exit_reason.full);
2091 	return VMX_TEST_EXIT;
2092 }
2093 
2094 static int msr_switch_entry_failure(struct vmentry_result *result)
2095 {
2096 	if (result->vm_fail) {
2097 		printf("ERROR %s: VM-Fail on %s\n", __func__, result->instr);
2098 		return VMX_TEST_EXIT;
2099 	}
2100 
2101 	if (result->exit_reason.failed_vmentry &&
2102 	    result->exit_reason.basic == VMX_FAIL_MSR &&
2103 	    vmx_get_test_stage() == 3) {
2104 		report(vmcs_read(EXI_QUALIFICATION) == 1,
2105 		       "VM entry MSR load: try to load FS_BASE");
2106 		return VMX_TEST_VMEXIT;
2107 	}
2108 	printf("ERROR %s: unexpected stage=%u or reason=%x\n",
2109 		__func__, vmx_get_test_stage(), result->exit_reason.full);
2110 	return VMX_TEST_EXIT;
2111 }
2112 
2113 static int vmmcall_init(struct vmcs *vmcs)
2114 {
2115 	vmcs_write(EXC_BITMAP, 1 << UD_VECTOR);
2116 	return VMX_TEST_START;
2117 }
2118 
2119 static void vmmcall_main(void)
2120 {
2121 	asm volatile(
2122 		"mov $0xABCD, %%rax\n\t"
2123 		"vmmcall\n\t"
2124 		::: "rax");
2125 
2126 	report(0, "VMMCALL");
2127 }
2128 
2129 static int vmmcall_exit_handler(union exit_reason exit_reason)
2130 {
2131 	switch (exit_reason.basic) {
2132 	case VMX_VMCALL:
2133 		printf("here\n");
2134 		report(0, "VMMCALL triggers #UD");
2135 		break;
2136 	case VMX_EXC_NMI:
2137 		report((vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR,
2138 		       "VMMCALL triggers #UD");
2139 		break;
2140 	default:
2141 		report(false, "Unknown exit reason, 0x%x", exit_reason.full);
2142 		print_vmexit_info(exit_reason);
2143 	}
2144 
2145 	return VMX_TEST_VMEXIT;
2146 }
2147 
2148 static int disable_rdtscp_init(struct vmcs *vmcs)
2149 {
2150 	u32 ctrl_cpu1;
2151 
2152 	if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) {
2153 		ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
2154 		ctrl_cpu1 &= ~CPU_RDTSCP;
2155 		vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
2156 	}
2157 
2158 	return VMX_TEST_START;
2159 }
2160 
2161 static void disable_rdtscp_ud_handler(struct ex_regs *regs)
2162 {
2163 	switch (vmx_get_test_stage()) {
2164 	case 0:
2165 		report(true, "RDTSCP triggers #UD");
2166 		vmx_inc_test_stage();
2167 		regs->rip += 3;
2168 		break;
2169 	case 2:
2170 		report(true, "RDPID triggers #UD");
2171 		vmx_inc_test_stage();
2172 		regs->rip += 4;
2173 		break;
2174 	}
2175 	return;
2176 
2177 }
2178 
2179 static void disable_rdtscp_main(void)
2180 {
2181 	/* Test that #UD is properly injected in L2.  */
2182 	handle_exception(UD_VECTOR, disable_rdtscp_ud_handler);
2183 
2184 	vmx_set_test_stage(0);
2185 	asm volatile("rdtscp" : : : "eax", "ecx", "edx");
2186 	vmcall();
2187 	asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax");
2188 
2189 	handle_exception(UD_VECTOR, 0);
2190 	vmcall();
2191 }
2192 
2193 static int disable_rdtscp_exit_handler(union exit_reason exit_reason)
2194 {
2195 	switch (exit_reason.basic) {
2196 	case VMX_VMCALL:
2197 		switch (vmx_get_test_stage()) {
2198 		case 0:
2199 			report(false, "RDTSCP triggers #UD");
2200 			vmx_inc_test_stage();
2201 			/* fallthrough */
2202 		case 1:
2203 			vmx_inc_test_stage();
2204 			vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3);
2205 			return VMX_TEST_RESUME;
2206 		case 2:
2207 			report(false, "RDPID triggers #UD");
2208 			break;
2209 		}
2210 		break;
2211 
2212 	default:
2213 		report(false, "Unknown exit reason, 0x%x", exit_reason.full);
2214 		print_vmexit_info(exit_reason);
2215 	}
2216 	return VMX_TEST_VMEXIT;
2217 }
2218 
2219 static int int3_init(struct vmcs *vmcs)
2220 {
2221 	vmcs_write(EXC_BITMAP, ~0u);
2222 	return VMX_TEST_START;
2223 }
2224 
2225 static void int3_guest_main(void)
2226 {
2227 	asm volatile ("int3");
2228 }
2229 
2230 static int int3_exit_handler(union exit_reason exit_reason)
2231 {
2232 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
2233 
2234 	report(exit_reason.basic == VMX_EXC_NMI &&
2235 	       (intr_info & INTR_INFO_VALID_MASK) &&
2236 	       (intr_info & INTR_INFO_VECTOR_MASK) == BP_VECTOR &&
2237 	       ((intr_info & INTR_INFO_INTR_TYPE_MASK) >>
2238 	        INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION,
2239 	       "L1 intercepts #BP");
2240 
2241 	return VMX_TEST_VMEXIT;
2242 }
2243 
2244 static int into_init(struct vmcs *vmcs)
2245 {
2246 	vmcs_write(EXC_BITMAP, ~0u);
2247 	return VMX_TEST_START;
2248 }
2249 
2250 static void into_guest_main(void)
2251 {
2252 	struct far_pointer32 fp = {
2253 		.offset = (uintptr_t)&&into,
2254 		.selector = KERNEL_CS32,
2255 	};
2256 	register uintptr_t rsp asm("rsp");
2257 
2258 	if (fp.offset != (uintptr_t)&&into) {
2259 		printf("Code address too high.\n");
2260 		return;
2261 	}
2262 	if ((u32)rsp != rsp) {
2263 		printf("Stack address too high.\n");
2264 		return;
2265 	}
2266 
2267 	asm goto ("lcall *%0" : : "m" (fp) : "rax" : into);
2268 	return;
2269 into:
2270 	asm volatile (".code32;"
2271 		      "movl $0x7fffffff, %eax;"
2272 		      "addl %eax, %eax;"
2273 		      "into;"
2274 		      "lret;"
2275 		      ".code64");
2276 	__builtin_unreachable();
2277 }
2278 
2279 static int into_exit_handler(union exit_reason exit_reason)
2280 {
2281 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
2282 
2283 	report(exit_reason.basic == VMX_EXC_NMI &&
2284 	       (intr_info & INTR_INFO_VALID_MASK) &&
2285 	       (intr_info & INTR_INFO_VECTOR_MASK) == OF_VECTOR &&
2286 	       ((intr_info & INTR_INFO_INTR_TYPE_MASK) >>
2287 	        INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION,
2288 	       "L1 intercepts #OF");
2289 
2290 	return VMX_TEST_VMEXIT;
2291 }
2292 
2293 static void exit_monitor_from_l2_main(void)
2294 {
2295 	printf("Calling exit(0) from l2...\n");
2296 	exit(0);
2297 }
2298 
2299 static int exit_monitor_from_l2_handler(union exit_reason exit_reason)
2300 {
2301 	report(false, "The guest should have killed the VMM");
2302 	return VMX_TEST_EXIT;
2303 }
2304 
2305 static void assert_exit_reason(u64 expected)
2306 {
2307 	u64 actual = vmcs_read(EXI_REASON);
2308 
2309 	TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.",
2310 			   exit_reason_description(expected),
2311 			   exit_reason_description(actual));
2312 }
2313 
2314 static void skip_exit_insn(void)
2315 {
2316 	u64 guest_rip = vmcs_read(GUEST_RIP);
2317 	u32 insn_len = vmcs_read(EXI_INST_LEN);
2318 	vmcs_write(GUEST_RIP, guest_rip + insn_len);
2319 }
2320 
2321 static void skip_exit_vmcall(void)
2322 {
2323 	assert_exit_reason(VMX_VMCALL);
2324 	skip_exit_insn();
2325 }
2326 
2327 static void v2_null_test_guest(void)
2328 {
2329 }
2330 
2331 static void v2_null_test(void)
2332 {
2333 	test_set_guest(v2_null_test_guest);
2334 	enter_guest();
2335 	report(1, __func__);
2336 }
2337 
2338 static void v2_multiple_entries_test_guest(void)
2339 {
2340 	vmx_set_test_stage(1);
2341 	vmcall();
2342 	vmx_set_test_stage(2);
2343 }
2344 
2345 static void v2_multiple_entries_test(void)
2346 {
2347 	test_set_guest(v2_multiple_entries_test_guest);
2348 	enter_guest();
2349 	TEST_ASSERT_EQ(vmx_get_test_stage(), 1);
2350 	skip_exit_vmcall();
2351 	enter_guest();
2352 	TEST_ASSERT_EQ(vmx_get_test_stage(), 2);
2353 	report(1, __func__);
2354 }
2355 
2356 static int fixture_test_data = 1;
2357 
2358 static void fixture_test_teardown(void *data)
2359 {
2360 	*((int *) data) = 1;
2361 }
2362 
2363 static void fixture_test_guest(void)
2364 {
2365 	fixture_test_data++;
2366 }
2367 
2368 
2369 static void fixture_test_setup(void)
2370 {
2371 	TEST_ASSERT_EQ_MSG(1, fixture_test_data,
2372 			   "fixture_test_teardown didn't run?!");
2373 	fixture_test_data = 2;
2374 	test_add_teardown(fixture_test_teardown, &fixture_test_data);
2375 	test_set_guest(fixture_test_guest);
2376 }
2377 
2378 static void fixture_test_case1(void)
2379 {
2380 	fixture_test_setup();
2381 	TEST_ASSERT_EQ(2, fixture_test_data);
2382 	enter_guest();
2383 	TEST_ASSERT_EQ(3, fixture_test_data);
2384 	report(1, __func__);
2385 }
2386 
2387 static void fixture_test_case2(void)
2388 {
2389 	fixture_test_setup();
2390 	TEST_ASSERT_EQ(2, fixture_test_data);
2391 	enter_guest();
2392 	TEST_ASSERT_EQ(3, fixture_test_data);
2393 	report(1, __func__);
2394 }
2395 
2396 enum ept_access_op {
2397 	OP_READ,
2398 	OP_WRITE,
2399 	OP_EXEC,
2400 	OP_FLUSH_TLB,
2401 	OP_EXIT,
2402 };
2403 
2404 static struct ept_access_test_data {
2405 	unsigned long gpa;
2406 	unsigned long *gva;
2407 	unsigned long hpa;
2408 	unsigned long *hva;
2409 	enum ept_access_op op;
2410 } ept_access_test_data;
2411 
2412 extern unsigned char ret42_start;
2413 extern unsigned char ret42_end;
2414 
2415 /* Returns 42. */
2416 asm(
2417 	".align 64\n"
2418 	"ret42_start:\n"
2419 	"mov $42, %eax\n"
2420 	"ret\n"
2421 	"ret42_end:\n"
2422 );
2423 
2424 static void
2425 diagnose_ept_violation_qual(u64 expected, u64 actual)
2426 {
2427 
2428 #define DIAGNOSE(flag)							\
2429 do {									\
2430 	if ((expected & flag) != (actual & flag))			\
2431 		printf(#flag " %sexpected\n",				\
2432 		       (expected & flag) ? "" : "un");			\
2433 } while (0)
2434 
2435 	DIAGNOSE(EPT_VLT_RD);
2436 	DIAGNOSE(EPT_VLT_WR);
2437 	DIAGNOSE(EPT_VLT_FETCH);
2438 	DIAGNOSE(EPT_VLT_PERM_RD);
2439 	DIAGNOSE(EPT_VLT_PERM_WR);
2440 	DIAGNOSE(EPT_VLT_PERM_EX);
2441 	DIAGNOSE(EPT_VLT_LADDR_VLD);
2442 	DIAGNOSE(EPT_VLT_PADDR);
2443 
2444 #undef DIAGNOSE
2445 }
2446 
2447 static void do_ept_access_op(enum ept_access_op op)
2448 {
2449 	ept_access_test_data.op = op;
2450 	enter_guest();
2451 }
2452 
2453 /*
2454  * Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only
2455  * needed by tests that modify guest PTEs.
2456  */
2457 static void ept_access_test_guest_flush_tlb(void)
2458 {
2459 	do_ept_access_op(OP_FLUSH_TLB);
2460 	skip_exit_vmcall();
2461 }
2462 
2463 /*
2464  * Modifies the EPT entry at @level in the mapping of @gpa. First clears the
2465  * bits in @clear then sets the bits in @set. @mkhuge transforms the entry into
2466  * a huge page.
2467  */
2468 static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level,
2469 				 unsigned long clear, unsigned long set)
2470 {
2471 	struct ept_access_test_data *data = &ept_access_test_data;
2472 	unsigned long orig_pte;
2473 	unsigned long pte;
2474 
2475 	/* Screw with the mapping at the requested level. */
2476 	TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte));
2477 	pte = orig_pte;
2478 	if (mkhuge)
2479 		pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE;
2480 	else
2481 		pte = orig_pte;
2482 	pte = (pte & ~clear) | set;
2483 	set_ept_pte(pml4, gpa, level, pte);
2484 	ept_sync(INVEPT_SINGLE, eptp);
2485 
2486 	return orig_pte;
2487 }
2488 
2489 static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte)
2490 {
2491 	set_ept_pte(pml4, gpa, level, orig_pte);
2492 	ept_sync(INVEPT_SINGLE, eptp);
2493 }
2494 
2495 static void do_ept_violation(bool leaf, enum ept_access_op op,
2496 			     u64 expected_qual, u64 expected_paddr)
2497 {
2498 	u64 qual;
2499 
2500 	/* Try the access and observe the violation. */
2501 	do_ept_access_op(op);
2502 
2503 	assert_exit_reason(VMX_EPT_VIOLATION);
2504 
2505 	qual = vmcs_read(EXI_QUALIFICATION);
2506 
2507 	/* Mask undefined bits (which may later be defined in certain cases). */
2508 	qual &= ~(EPT_VLT_GUEST_USER | EPT_VLT_GUEST_RW | EPT_VLT_GUEST_EX |
2509 		 EPT_VLT_PERM_USER_EX);
2510 
2511 	diagnose_ept_violation_qual(expected_qual, qual);
2512 	TEST_EXPECT_EQ(expected_qual, qual);
2513 
2514 	#if 0
2515 	/* Disable for now otherwise every test will fail */
2516 	TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
2517 		       (unsigned long) (
2518 			       op == OP_EXEC ? data->gva + 1 : data->gva));
2519 	#endif
2520 	/*
2521 	 * TODO: tests that probe expected_paddr in pages other than the one at
2522 	 * the beginning of the 1g region.
2523 	 */
2524 	TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr);
2525 }
2526 
2527 static void
2528 ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear,
2529 			      unsigned long set, enum ept_access_op op,
2530 			      u64 expected_qual)
2531 {
2532 	struct ept_access_test_data *data = &ept_access_test_data;
2533 	unsigned long orig_pte;
2534 
2535 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2536 
2537 	do_ept_violation(level == 1 || mkhuge, op, expected_qual,
2538 			 op == OP_EXEC ? data->gpa + sizeof(unsigned long) :
2539 					 data->gpa);
2540 
2541 	/* Fix the violation and resume the op loop. */
2542 	ept_untwiddle(data->gpa, level, orig_pte);
2543 	enter_guest();
2544 	skip_exit_vmcall();
2545 }
2546 
2547 static void
2548 ept_violation_at_level(int level, unsigned long clear, unsigned long set,
2549 		       enum ept_access_op op, u64 expected_qual)
2550 {
2551 	ept_violation_at_level_mkhuge(false, level, clear, set, op,
2552 				      expected_qual);
2553 	if (ept_huge_pages_supported(level))
2554 		ept_violation_at_level_mkhuge(true, level, clear, set, op,
2555 					      expected_qual);
2556 }
2557 
2558 static void ept_violation(unsigned long clear, unsigned long set,
2559 			  enum ept_access_op op, u64 expected_qual)
2560 {
2561 	ept_violation_at_level(1, clear, set, op, expected_qual);
2562 	ept_violation_at_level(2, clear, set, op, expected_qual);
2563 	ept_violation_at_level(3, clear, set, op, expected_qual);
2564 	ept_violation_at_level(4, clear, set, op, expected_qual);
2565 }
2566 
2567 static void ept_access_violation(unsigned long access, enum ept_access_op op,
2568 				       u64 expected_qual)
2569 {
2570 	ept_violation(EPT_PRESENT, access, op,
2571 		      expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2572 }
2573 
2574 /*
2575  * For translations that don't involve a GVA, that is physical address (paddr)
2576  * accesses, EPT violations don't set the flag EPT_VLT_PADDR.  For a typical
2577  * guest memory access, the hardware does GVA -> GPA -> HPA.  However, certain
2578  * translations don't involve GVAs, such as when the hardware does the guest
2579  * page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU
2580  * might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides
2581  * on isn't present in the EPT, then the EPT violation will be for GPA_2 and
2582  * the EPT_VLT_PADDR bit will be clear in the exit qualification.
2583  *
2584  * Note that paddr violations can also be triggered by loading PAE page tables
2585  * with wonky addresses. We don't test that yet.
2586  *
2587  * This function modifies the EPT entry that maps the GPA that the guest page
2588  * table entry mapping ept_access_test_data.gva resides on.
2589  *
2590  *	@ept_access	EPT permissions to set. Other permissions are cleared.
2591  *
2592  *	@pte_ad		Set the A/D bits on the guest PTE accordingly.
2593  *
2594  *	@op		Guest operation to perform with
2595  *			ept_access_test_data.gva.
2596  *
2597  *	@expect_violation
2598  *			Is a violation expected during the paddr access?
2599  *
2600  *	@expected_qual	Expected qualification for the EPT violation.
2601  *			EPT_VLT_PADDR should be clear.
2602  */
2603 static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad,
2604 			     enum ept_access_op op, bool expect_violation,
2605 			     u64 expected_qual)
2606 {
2607 	struct ept_access_test_data *data = &ept_access_test_data;
2608 	unsigned long *ptep;
2609 	unsigned long gpa;
2610 	unsigned long orig_epte;
2611 	unsigned long epte;
2612 	int i;
2613 
2614 	/* Modify the guest PTE mapping data->gva according to @pte_ad.  */
2615 	ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1);
2616 	TEST_ASSERT(ptep);
2617 	TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa);
2618 	*ptep = (*ptep & ~PT_AD_MASK) | pte_ad;
2619 	ept_access_test_guest_flush_tlb();
2620 
2621 	/*
2622 	 * Now modify the access bits on the EPT entry for the GPA that the
2623 	 * guest PTE resides on. Note that by modifying a single EPT entry,
2624 	 * we're potentially affecting 512 guest PTEs. However, we've carefully
2625 	 * constructed our test such that those other 511 PTEs aren't used by
2626 	 * the guest: data->gva is at the beginning of a 1G huge page, thus the
2627 	 * PTE we're modifying is at the beginning of a 4K page and the
2628 	 * following 511 entires are also under our control (and not touched by
2629 	 * the guest).
2630 	 */
2631 	gpa = virt_to_phys(ptep);
2632 	TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0);
2633 	/*
2634 	 * Make sure the guest page table page is mapped with a 4K EPT entry,
2635 	 * otherwise our level=1 twiddling below will fail. We use the
2636 	 * identity map (gpa = gpa) since page tables are shared with the host.
2637 	 */
2638 	install_ept(pml4, gpa, gpa, EPT_PRESENT);
2639 	orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1,
2640 				/*clear=*/EPT_PRESENT, /*set=*/ept_access);
2641 
2642 	if (expect_violation) {
2643 		do_ept_violation(/*leaf=*/true, op,
2644 				 expected_qual | EPT_VLT_LADDR_VLD, gpa);
2645 		ept_untwiddle(gpa, /*level=*/1, orig_epte);
2646 		do_ept_access_op(op);
2647 	} else {
2648 		do_ept_access_op(op);
2649 		if (ept_ad_enabled()) {
2650 			for (i = EPT_PAGE_LEVEL; i > 0; i--) {
2651 				TEST_ASSERT(get_ept_pte(pml4, gpa, i, &epte));
2652 				TEST_ASSERT(epte & EPT_ACCESS_FLAG);
2653 				if (i == 1)
2654 					TEST_ASSERT(epte & EPT_DIRTY_FLAG);
2655 				else
2656 					TEST_ASSERT_EQ(epte & EPT_DIRTY_FLAG, 0);
2657 			}
2658 		}
2659 
2660 		ept_untwiddle(gpa, /*level=*/1, orig_epte);
2661 	}
2662 
2663 	TEST_ASSERT(*ptep & PT_ACCESSED_MASK);
2664 	if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE)
2665 		TEST_ASSERT(*ptep & PT_DIRTY_MASK);
2666 
2667 	skip_exit_vmcall();
2668 }
2669 
2670 static void ept_access_allowed_paddr(unsigned long ept_access,
2671 				     unsigned long pte_ad,
2672 				     enum ept_access_op op)
2673 {
2674 	ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false,
2675 			 /*expected_qual=*/-1);
2676 }
2677 
2678 static void ept_access_violation_paddr(unsigned long ept_access,
2679 				       unsigned long pte_ad,
2680 				       enum ept_access_op op,
2681 				       u64 expected_qual)
2682 {
2683 	ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true,
2684 			 expected_qual);
2685 }
2686 
2687 
2688 static void ept_allowed_at_level_mkhuge(bool mkhuge, int level,
2689 					unsigned long clear,
2690 					unsigned long set,
2691 					enum ept_access_op op)
2692 {
2693 	struct ept_access_test_data *data = &ept_access_test_data;
2694 	unsigned long orig_pte;
2695 
2696 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2697 
2698 	/* No violation. Should proceed to vmcall. */
2699 	do_ept_access_op(op);
2700 	skip_exit_vmcall();
2701 
2702 	ept_untwiddle(data->gpa, level, orig_pte);
2703 }
2704 
2705 static void ept_allowed_at_level(int level, unsigned long clear,
2706 				 unsigned long set, enum ept_access_op op)
2707 {
2708 	ept_allowed_at_level_mkhuge(false, level, clear, set, op);
2709 	if (ept_huge_pages_supported(level))
2710 		ept_allowed_at_level_mkhuge(true, level, clear, set, op);
2711 }
2712 
2713 static void ept_allowed(unsigned long clear, unsigned long set,
2714 			enum ept_access_op op)
2715 {
2716 	ept_allowed_at_level(1, clear, set, op);
2717 	ept_allowed_at_level(2, clear, set, op);
2718 	ept_allowed_at_level(3, clear, set, op);
2719 	ept_allowed_at_level(4, clear, set, op);
2720 }
2721 
2722 static void ept_ignored_bit(int bit)
2723 {
2724 	/* Set the bit. */
2725 	ept_allowed(0, 1ul << bit, OP_READ);
2726 	ept_allowed(0, 1ul << bit, OP_WRITE);
2727 	ept_allowed(0, 1ul << bit, OP_EXEC);
2728 
2729 	/* Clear the bit. */
2730 	ept_allowed(1ul << bit, 0, OP_READ);
2731 	ept_allowed(1ul << bit, 0, OP_WRITE);
2732 	ept_allowed(1ul << bit, 0, OP_EXEC);
2733 }
2734 
2735 static void ept_access_allowed(unsigned long access, enum ept_access_op op)
2736 {
2737 	ept_allowed(EPT_PRESENT, access, op);
2738 }
2739 
2740 
2741 static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level,
2742 					     unsigned long clear,
2743 					     unsigned long set,
2744 					     enum ept_access_op op)
2745 {
2746 	struct ept_access_test_data *data = &ept_access_test_data;
2747 	unsigned long orig_pte;
2748 
2749 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2750 
2751 	do_ept_access_op(op);
2752 	assert_exit_reason(VMX_EPT_MISCONFIG);
2753 
2754 	/* Intel 27.2.1, "For all other VM exits, this field is cleared." */
2755 	#if 0
2756 	/* broken: */
2757 	TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0);
2758 	#endif
2759 	#if 0
2760 	/*
2761 	 * broken:
2762 	 * According to description of exit qual for EPT violation,
2763 	 * EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid.
2764 	 * However, I can't find anything that says GUEST_LINEAR_ADDRESS ought
2765 	 * to be set for msiconfig.
2766 	 */
2767 	TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
2768 		       (unsigned long) (
2769 			       op == OP_EXEC ? data->gva + 1 : data->gva));
2770 	#endif
2771 
2772 	/* Fix the violation and resume the op loop. */
2773 	ept_untwiddle(data->gpa, level, orig_pte);
2774 	enter_guest();
2775 	skip_exit_vmcall();
2776 }
2777 
2778 static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level,
2779 					  unsigned long clear,
2780 					  unsigned long set)
2781 {
2782 	/* The op shouldn't matter (read, write, exec), so try them all! */
2783 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ);
2784 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE);
2785 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC);
2786 }
2787 
2788 static void ept_misconfig_at_level(int level, unsigned long clear,
2789 				   unsigned long set)
2790 {
2791 	ept_misconfig_at_level_mkhuge(false, level, clear, set);
2792 	if (ept_huge_pages_supported(level))
2793 		ept_misconfig_at_level_mkhuge(true, level, clear, set);
2794 }
2795 
2796 static void ept_misconfig(unsigned long clear, unsigned long set)
2797 {
2798 	ept_misconfig_at_level(1, clear, set);
2799 	ept_misconfig_at_level(2, clear, set);
2800 	ept_misconfig_at_level(3, clear, set);
2801 	ept_misconfig_at_level(4, clear, set);
2802 }
2803 
2804 static void ept_access_misconfig(unsigned long access)
2805 {
2806 	ept_misconfig(EPT_PRESENT, access);
2807 }
2808 
2809 static void ept_reserved_bit_at_level_nohuge(int level, int bit)
2810 {
2811 	/* Setting the bit causes a misconfig. */
2812 	ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit);
2813 
2814 	/* Making the entry non-present turns reserved bits into ignored. */
2815 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2816 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2817 }
2818 
2819 static void ept_reserved_bit_at_level_huge(int level, int bit)
2820 {
2821 	/* Setting the bit causes a misconfig. */
2822 	ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit);
2823 
2824 	/* Making the entry non-present turns reserved bits into ignored. */
2825 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2826 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2827 }
2828 
2829 static void ept_reserved_bit_at_level(int level, int bit)
2830 {
2831 	/* Setting the bit causes a misconfig. */
2832 	ept_misconfig_at_level(level, 0, 1ul << bit);
2833 
2834 	/* Making the entry non-present turns reserved bits into ignored. */
2835 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2836 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2837 }
2838 
2839 static void ept_reserved_bit(int bit)
2840 {
2841 	ept_reserved_bit_at_level(1, bit);
2842 	ept_reserved_bit_at_level(2, bit);
2843 	ept_reserved_bit_at_level(3, bit);
2844 	ept_reserved_bit_at_level(4, bit);
2845 }
2846 
2847 #define PAGE_2M_ORDER 9
2848 #define PAGE_1G_ORDER 18
2849 
2850 static void *get_1g_page(void)
2851 {
2852 	static void *alloc;
2853 
2854 	if (!alloc)
2855 		alloc = alloc_pages(PAGE_1G_ORDER);
2856 	return alloc;
2857 }
2858 
2859 static void ept_access_test_teardown(void *unused)
2860 {
2861 	/* Exit the guest cleanly. */
2862 	do_ept_access_op(OP_EXIT);
2863 }
2864 
2865 static void ept_access_test_guest(void)
2866 {
2867 	struct ept_access_test_data *data = &ept_access_test_data;
2868 	int (*code)(void) = (int (*)(void)) &data->gva[1];
2869 
2870 	while (true) {
2871 		switch (data->op) {
2872 		case OP_READ:
2873 			TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1);
2874 			break;
2875 		case OP_WRITE:
2876 			*data->gva = MAGIC_VAL_2;
2877 			TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2);
2878 			*data->gva = MAGIC_VAL_1;
2879 			break;
2880 		case OP_EXEC:
2881 			TEST_ASSERT_EQ(42, code());
2882 			break;
2883 		case OP_FLUSH_TLB:
2884 			write_cr3(read_cr3());
2885 			break;
2886 		case OP_EXIT:
2887 			return;
2888 		default:
2889 			TEST_ASSERT_MSG(false, "Unknown op %d", data->op);
2890 		}
2891 		vmcall();
2892 	}
2893 }
2894 
2895 static void ept_access_test_setup(void)
2896 {
2897 	struct ept_access_test_data *data = &ept_access_test_data;
2898 	unsigned long npages = 1ul << PAGE_1G_ORDER;
2899 	unsigned long size = npages * PAGE_SIZE;
2900 	unsigned long *page_table = current_page_table();
2901 	unsigned long pte;
2902 
2903 	if (setup_ept(false))
2904 		test_skip("EPT not supported");
2905 
2906 	/* We use data->gpa = 1 << 39 so that test data has a separate pml4 entry */
2907 	if (cpuid_maxphyaddr() < 40)
2908 		test_skip("Test needs MAXPHYADDR >= 40");
2909 
2910 	test_set_guest(ept_access_test_guest);
2911 	test_add_teardown(ept_access_test_teardown, NULL);
2912 
2913 	data->hva = get_1g_page();
2914 	TEST_ASSERT(data->hva);
2915 	data->hpa = virt_to_phys(data->hva);
2916 
2917 	data->gpa = 1ul << 39;
2918 	data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2),
2919 				   size);
2920 	TEST_ASSERT(!any_present_pages(page_table, data->gva, size));
2921 	install_pages(page_table, data->gpa, size, data->gva);
2922 
2923 	/*
2924 	 * Make sure nothing's mapped here so the tests that screw with the
2925 	 * pml4 entry don't inadvertently break something.
2926 	 */
2927 	TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0);
2928 	TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0);
2929 	install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT);
2930 
2931 	data->hva[0] = MAGIC_VAL_1;
2932 	memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start);
2933 }
2934 
2935 static void ept_access_test_not_present(void)
2936 {
2937 	ept_access_test_setup();
2938 	/* --- */
2939 	ept_access_violation(0, OP_READ, EPT_VLT_RD);
2940 	ept_access_violation(0, OP_WRITE, EPT_VLT_WR);
2941 	ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH);
2942 }
2943 
2944 static void ept_access_test_read_only(void)
2945 {
2946 	ept_access_test_setup();
2947 
2948 	/* r-- */
2949 	ept_access_allowed(EPT_RA, OP_READ);
2950 	ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD);
2951 	ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD);
2952 }
2953 
2954 static void ept_access_test_write_only(void)
2955 {
2956 	ept_access_test_setup();
2957 	/* -w- */
2958 	ept_access_misconfig(EPT_WA);
2959 }
2960 
2961 static void ept_access_test_read_write(void)
2962 {
2963 	ept_access_test_setup();
2964 	/* rw- */
2965 	ept_access_allowed(EPT_RA | EPT_WA, OP_READ);
2966 	ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE);
2967 	ept_access_violation(EPT_RA | EPT_WA, OP_EXEC,
2968 			   EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR);
2969 }
2970 
2971 
2972 static void ept_access_test_execute_only(void)
2973 {
2974 	ept_access_test_setup();
2975 	/* --x */
2976 	if (ept_execute_only_supported()) {
2977 		ept_access_violation(EPT_EA, OP_READ,
2978 				     EPT_VLT_RD | EPT_VLT_PERM_EX);
2979 		ept_access_violation(EPT_EA, OP_WRITE,
2980 				     EPT_VLT_WR | EPT_VLT_PERM_EX);
2981 		ept_access_allowed(EPT_EA, OP_EXEC);
2982 	} else {
2983 		ept_access_misconfig(EPT_EA);
2984 	}
2985 }
2986 
2987 static void ept_access_test_read_execute(void)
2988 {
2989 	ept_access_test_setup();
2990 	/* r-x */
2991 	ept_access_allowed(EPT_RA | EPT_EA, OP_READ);
2992 	ept_access_violation(EPT_RA | EPT_EA, OP_WRITE,
2993 			   EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX);
2994 	ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC);
2995 }
2996 
2997 static void ept_access_test_write_execute(void)
2998 {
2999 	ept_access_test_setup();
3000 	/* -wx */
3001 	ept_access_misconfig(EPT_WA | EPT_EA);
3002 }
3003 
3004 static void ept_access_test_read_write_execute(void)
3005 {
3006 	ept_access_test_setup();
3007 	/* rwx */
3008 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ);
3009 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE);
3010 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC);
3011 }
3012 
3013 static void ept_access_test_reserved_bits(void)
3014 {
3015 	int i;
3016 	int maxphyaddr;
3017 
3018 	ept_access_test_setup();
3019 
3020 	/* Reserved bits above maxphyaddr. */
3021 	maxphyaddr = cpuid_maxphyaddr();
3022 	for (i = maxphyaddr; i <= 51; i++) {
3023 		report_prefix_pushf("reserved_bit=%d", i);
3024 		ept_reserved_bit(i);
3025 		report_prefix_pop();
3026 	}
3027 
3028 	/* Level-specific reserved bits. */
3029 	ept_reserved_bit_at_level_nohuge(2, 3);
3030 	ept_reserved_bit_at_level_nohuge(2, 4);
3031 	ept_reserved_bit_at_level_nohuge(2, 5);
3032 	ept_reserved_bit_at_level_nohuge(2, 6);
3033 	/* 2M alignment. */
3034 	for (i = 12; i < 20; i++) {
3035 		report_prefix_pushf("reserved_bit=%d", i);
3036 		ept_reserved_bit_at_level_huge(2, i);
3037 		report_prefix_pop();
3038 	}
3039 	ept_reserved_bit_at_level_nohuge(3, 3);
3040 	ept_reserved_bit_at_level_nohuge(3, 4);
3041 	ept_reserved_bit_at_level_nohuge(3, 5);
3042 	ept_reserved_bit_at_level_nohuge(3, 6);
3043 	/* 1G alignment. */
3044 	for (i = 12; i < 29; i++) {
3045 		report_prefix_pushf("reserved_bit=%d", i);
3046 		ept_reserved_bit_at_level_huge(3, i);
3047 		report_prefix_pop();
3048 	}
3049 	ept_reserved_bit_at_level(4, 3);
3050 	ept_reserved_bit_at_level(4, 4);
3051 	ept_reserved_bit_at_level(4, 5);
3052 	ept_reserved_bit_at_level(4, 6);
3053 	ept_reserved_bit_at_level(4, 7);
3054 }
3055 
3056 static void ept_access_test_ignored_bits(void)
3057 {
3058 	ept_access_test_setup();
3059 	/*
3060 	 * Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as
3061 	 * far as translation is concerned even if AD bits are enabled in the
3062 	 * EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution
3063 	 * control is 0.
3064 	 */
3065 	ept_ignored_bit(8);
3066 	ept_ignored_bit(9);
3067 	ept_ignored_bit(10);
3068 	ept_ignored_bit(11);
3069 	ept_ignored_bit(52);
3070 	ept_ignored_bit(53);
3071 	ept_ignored_bit(54);
3072 	ept_ignored_bit(55);
3073 	ept_ignored_bit(56);
3074 	ept_ignored_bit(57);
3075 	ept_ignored_bit(58);
3076 	ept_ignored_bit(59);
3077 	ept_ignored_bit(60);
3078 	ept_ignored_bit(61);
3079 	ept_ignored_bit(62);
3080 	ept_ignored_bit(63);
3081 }
3082 
3083 static void ept_access_test_paddr_not_present_ad_disabled(void)
3084 {
3085 	ept_access_test_setup();
3086 	ept_disable_ad_bits();
3087 
3088 	ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD);
3089 	ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD);
3090 	ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD);
3091 }
3092 
3093 static void ept_access_test_paddr_not_present_ad_enabled(void)
3094 {
3095 	u64 qual = EPT_VLT_RD | EPT_VLT_WR;
3096 
3097 	ept_access_test_setup();
3098 	ept_enable_ad_bits_or_skip_test();
3099 
3100 	ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual);
3101 	ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual);
3102 	ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual);
3103 }
3104 
3105 static void ept_access_test_paddr_read_only_ad_disabled(void)
3106 {
3107 	/*
3108 	 * When EPT AD bits are disabled, all accesses to guest paging
3109 	 * structures are reported separately as a read and (after
3110 	 * translation of the GPA to host physical address) a read+write
3111 	 * if the A/D bits have to be set.
3112 	 */
3113 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
3114 
3115 	ept_access_test_setup();
3116 	ept_disable_ad_bits();
3117 
3118 	/* Can't update A bit, so all accesses fail. */
3119 	ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
3120 	ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
3121 	ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
3122 	/* AD bits disabled, so only writes try to update the D bit. */
3123 	ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ);
3124 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
3125 	ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC);
3126 	/* Both A and D already set, so read-only is OK. */
3127 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ);
3128 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE);
3129 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC);
3130 }
3131 
3132 static void ept_access_test_paddr_read_only_ad_enabled(void)
3133 {
3134 	/*
3135 	 * When EPT AD bits are enabled, all accesses to guest paging
3136 	 * structures are considered writes as far as EPT translation
3137 	 * is concerned.
3138 	 */
3139 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
3140 
3141 	ept_access_test_setup();
3142 	ept_enable_ad_bits_or_skip_test();
3143 
3144 	ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
3145 	ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
3146 	ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
3147 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual);
3148 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
3149 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual);
3150 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual);
3151 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual);
3152 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual);
3153 }
3154 
3155 static void ept_access_test_paddr_read_write(void)
3156 {
3157 	ept_access_test_setup();
3158 	/* Read-write access to paging structure. */
3159 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ);
3160 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE);
3161 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC);
3162 }
3163 
3164 static void ept_access_test_paddr_read_write_execute(void)
3165 {
3166 	ept_access_test_setup();
3167 	/* RWX access to paging structure. */
3168 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ);
3169 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE);
3170 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC);
3171 }
3172 
3173 static void ept_access_test_paddr_read_execute_ad_disabled(void)
3174 {
3175   	/*
3176 	 * When EPT AD bits are disabled, all accesses to guest paging
3177 	 * structures are reported separately as a read and (after
3178 	 * translation of the GPA to host physical address) a read+write
3179 	 * if the A/D bits have to be set.
3180 	 */
3181 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
3182 
3183 	ept_access_test_setup();
3184 	ept_disable_ad_bits();
3185 
3186 	/* Can't update A bit, so all accesses fail. */
3187 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
3188 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
3189 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
3190 	/* AD bits disabled, so only writes try to update the D bit. */
3191 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ);
3192 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
3193 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC);
3194 	/* Both A and D already set, so read-only is OK. */
3195 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ);
3196 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE);
3197 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC);
3198 }
3199 
3200 static void ept_access_test_paddr_read_execute_ad_enabled(void)
3201 {
3202 	/*
3203 	 * When EPT AD bits are enabled, all accesses to guest paging
3204 	 * structures are considered writes as far as EPT translation
3205 	 * is concerned.
3206 	 */
3207 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
3208 
3209 	ept_access_test_setup();
3210 	ept_enable_ad_bits_or_skip_test();
3211 
3212 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
3213 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
3214 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
3215 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual);
3216 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
3217 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual);
3218 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual);
3219 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual);
3220 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual);
3221 }
3222 
3223 static void ept_access_test_paddr_not_present_page_fault(void)
3224 {
3225 	ept_access_test_setup();
3226 	/*
3227 	 * TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is
3228 	 * page is read-only in EPT but GVA is also mapped read only in PT.
3229 	 * Thus guest page fault before host takes EPT violation for trying to
3230 	 * update A bit.
3231 	 */
3232 }
3233 
3234 static void ept_access_test_force_2m_page(void)
3235 {
3236 	ept_access_test_setup();
3237 
3238 	TEST_ASSERT_EQ(ept_2m_supported(), true);
3239 	ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ);
3240 	ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE,
3241 				      EPT_VLT_WR | EPT_VLT_PERM_RD |
3242 				      EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
3243 	ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA);
3244 }
3245 
3246 static bool invvpid_valid(u64 type, u64 vpid, u64 gla)
3247 {
3248 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3249 
3250 	TEST_ASSERT(msr & VPID_CAP_INVVPID);
3251 
3252 	if (type < INVVPID_ADDR || type > INVVPID_CONTEXT_LOCAL)
3253 		return false;
3254 
3255 	if (!(msr & (1ull << (type + VPID_CAP_INVVPID_TYPES_SHIFT))))
3256 		return false;
3257 
3258 	if (vpid >> 16)
3259 		return false;
3260 
3261 	if (type != INVVPID_ALL && !vpid)
3262 		return false;
3263 
3264 	if (type == INVVPID_ADDR && !is_canonical(gla))
3265 		return false;
3266 
3267 	return true;
3268 }
3269 
3270 static void try_invvpid(u64 type, u64 vpid, u64 gla)
3271 {
3272 	int rc;
3273 	bool valid = invvpid_valid(type, vpid, gla);
3274 	u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT
3275 		: VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID;
3276 	/*
3277 	 * Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so
3278 	 * that we can tell if it is updated by INVVPID.
3279 	 */
3280 	vmcs_read(~0);
3281 	rc = invvpid(type, vpid, gla);
3282 	report(!rc == valid, "INVVPID type %ld VPID %lx GLA %lx %s", type,
3283 	       vpid, gla,
3284 	       valid ? "passes" : "fails");
3285 	report(vmcs_read(VMX_INST_ERROR) == expected,
3286 	       "After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)",
3287 	       rc ? "failed" : "successful",
3288 	       expected, vmcs_read(VMX_INST_ERROR));
3289 }
3290 
3291 static void ds_invvpid(void *data)
3292 {
3293 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3294 	u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
3295 
3296 	TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
3297 	asm volatile("invvpid %0, %1"
3298 		     :
3299 		     : "m"(*(struct invvpid_operand *)data),
3300 		       "r"(type));
3301 }
3302 
3303 /*
3304  * The SS override is ignored in 64-bit mode, so we use an addressing
3305  * mode with %rsp as the base register to generate an implicit SS
3306  * reference.
3307  */
3308 static void ss_invvpid(void *data)
3309 {
3310 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3311 	u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
3312 
3313 	TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
3314 	asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1"
3315 		     : "+r"(data)
3316 		     : "r"(type));
3317 }
3318 
3319 static void invvpid_test_gp(void)
3320 {
3321 	bool fault;
3322 
3323 	fault = test_for_exception(GP_VECTOR, &ds_invvpid,
3324 				   (void *)NONCANONICAL);
3325 	report(fault, "INVVPID with non-canonical DS operand raises #GP");
3326 }
3327 
3328 static void invvpid_test_ss(void)
3329 {
3330 	bool fault;
3331 
3332 	fault = test_for_exception(SS_VECTOR, &ss_invvpid,
3333 				   (void *)NONCANONICAL);
3334 	report(fault, "INVVPID with non-canonical SS operand raises #SS");
3335 }
3336 
3337 static void invvpid_test_pf(void)
3338 {
3339 	void *vpage = alloc_vpage();
3340 	bool fault;
3341 
3342 	fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage);
3343 	report(fault, "INVVPID with unmapped operand raises #PF");
3344 }
3345 
3346 static void try_compat_invvpid(void *unused)
3347 {
3348 	struct far_pointer32 fp = {
3349 		.offset = (uintptr_t)&&invvpid,
3350 		.selector = KERNEL_CS32,
3351 	};
3352 	register uintptr_t rsp asm("rsp");
3353 
3354 	TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid,
3355 			"Code address too high.");
3356 	TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high.");
3357 
3358 	asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid);
3359 	return;
3360 invvpid:
3361 	asm volatile (".code32;"
3362 		      "invvpid (%eax), %eax;"
3363 		      "lret;"
3364 		      ".code64");
3365 	__builtin_unreachable();
3366 }
3367 
3368 static void invvpid_test_compatibility_mode(void)
3369 {
3370 	bool fault;
3371 
3372 	fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL);
3373 	report(fault, "Compatibility mode INVVPID raises #UD");
3374 }
3375 
3376 static void invvpid_test_not_in_vmx_operation(void)
3377 {
3378 	bool fault;
3379 
3380 	TEST_ASSERT(!vmx_off());
3381 	fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL);
3382 	report(fault, "INVVPID outside of VMX operation raises #UD");
3383 	TEST_ASSERT(!vmx_on());
3384 }
3385 
3386 /*
3387  * This does not test real-address mode, virtual-8086 mode, protected mode,
3388  * or CPL > 0.
3389  */
3390 static void invvpid_test_v2(void)
3391 {
3392 	u64 msr;
3393 	int i;
3394 	unsigned types = 0;
3395 	unsigned type;
3396 
3397 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
3398 	    !(ctrl_cpu_rev[1].clr & CPU_VPID))
3399 		test_skip("VPID not supported");
3400 
3401 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3402 
3403 	if (!(msr & VPID_CAP_INVVPID))
3404 		test_skip("INVVPID not supported.\n");
3405 
3406 	if (msr & VPID_CAP_INVVPID_ADDR)
3407 		types |= 1u << INVVPID_ADDR;
3408 	if (msr & VPID_CAP_INVVPID_CXTGLB)
3409 		types |= 1u << INVVPID_CONTEXT_GLOBAL;
3410 	if (msr & VPID_CAP_INVVPID_ALL)
3411 		types |= 1u << INVVPID_ALL;
3412 	if (msr & VPID_CAP_INVVPID_CXTLOC)
3413 		types |= 1u << INVVPID_CONTEXT_LOCAL;
3414 
3415 	if (!types)
3416 		test_skip("No INVVPID types supported.\n");
3417 
3418 	for (i = -127; i < 128; i++)
3419 		try_invvpid(i, 0xffff, 0);
3420 
3421 	/*
3422 	 * VPID must not be more than 16 bits.
3423 	 */
3424 	for (i = 0; i < 64; i++)
3425 		for (type = 0; type < 4; type++)
3426 			if (types & (1u << type))
3427 				try_invvpid(type, 1ul << i, 0);
3428 
3429 	/*
3430 	 * VPID must not be zero, except for "all contexts."
3431 	 */
3432 	for (type = 0; type < 4; type++)
3433 		if (types & (1u << type))
3434 			try_invvpid(type, 0, 0);
3435 
3436 	/*
3437 	 * The gla operand is only validated for single-address INVVPID.
3438 	 */
3439 	if (types & (1u << INVVPID_ADDR))
3440 		try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL);
3441 
3442 	invvpid_test_gp();
3443 	invvpid_test_ss();
3444 	invvpid_test_pf();
3445 	invvpid_test_compatibility_mode();
3446 	invvpid_test_not_in_vmx_operation();
3447 }
3448 
3449 /*
3450  * Test for early VMLAUNCH failure. Returns true if VMLAUNCH makes it
3451  * at least as far as the guest-state checks. Returns false if the
3452  * VMLAUNCH fails early and execution falls through to the next
3453  * instruction.
3454  */
3455 static bool vmlaunch_succeeds(void)
3456 {
3457 	u32 exit_reason;
3458 
3459 	/*
3460 	 * Indirectly set VMX_INST_ERR to 12 ("VMREAD/VMWRITE from/to
3461 	 * unsupported VMCS component"). The caller can then check
3462 	 * to see if a failed VM-entry sets VMX_INST_ERR as expected.
3463 	 */
3464 	vmcs_write(~0u, 0);
3465 
3466 	vmcs_write(HOST_RIP, (uintptr_t)&&success);
3467 	__asm__ __volatile__ goto ("vmwrite %%rsp, %0; vmlaunch"
3468 				   :
3469 				   : "r" ((u64)HOST_RSP)
3470 				   : "cc", "memory"
3471 				   : success);
3472 	return false;
3473 success:
3474 	exit_reason = vmcs_read(EXI_REASON);
3475 	TEST_ASSERT(exit_reason == (VMX_FAIL_STATE | VMX_ENTRY_FAILURE) ||
3476 		    exit_reason == (VMX_FAIL_MSR | VMX_ENTRY_FAILURE));
3477 	return true;
3478 }
3479 
3480 /*
3481  * Try to launch the current VMCS.
3482  */
3483 static void test_vmx_vmlaunch(u32 xerror)
3484 {
3485 	bool success = vmlaunch_succeeds();
3486 	u32 vmx_inst_err;
3487 
3488 	report(success == !xerror, "vmlaunch %s",
3489 	       !xerror ? "succeeds" : "fails");
3490 	if (!success && xerror) {
3491 		vmx_inst_err = vmcs_read(VMX_INST_ERROR);
3492 		report(vmx_inst_err == xerror,
3493 		       "VMX inst error is %d (actual %d)", xerror,
3494 		       vmx_inst_err);
3495 	}
3496 }
3497 
3498 /*
3499  * Try to launch the current VMCS, and expect one of two possible
3500  * errors (or success) codes.
3501  */
3502 static void test_vmx_vmlaunch2(u32 xerror1, u32 xerror2)
3503 {
3504 	bool success = vmlaunch_succeeds();
3505 	u32 vmx_inst_err;
3506 
3507 	if (!xerror1 == !xerror2)
3508 		report(success == !xerror1, "vmlaunch %s",
3509 		       !xerror1 ? "succeeds" : "fails");
3510 
3511 	if (!success && (xerror1 || xerror2)) {
3512 		vmx_inst_err = vmcs_read(VMX_INST_ERROR);
3513 		report(vmx_inst_err == xerror1 || vmx_inst_err == xerror2,
3514 		       "VMX inst error is %d or %d (actual %d)", xerror1,
3515 		       xerror2, vmx_inst_err);
3516 	}
3517 }
3518 
3519 static void test_vmx_invalid_controls(void)
3520 {
3521 	test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3522 }
3523 
3524 static void test_vmx_valid_controls(void)
3525 {
3526 	test_vmx_vmlaunch(0);
3527 }
3528 
3529 /*
3530  * Test a particular value of a VM-execution control bit, if the value
3531  * is required or if the value is zero.
3532  */
3533 static void test_rsvd_ctl_bit_value(const char *name, union vmx_ctrl_msr msr,
3534 				    enum Encoding encoding, unsigned bit,
3535 				    unsigned val)
3536 {
3537 	u32 mask = 1u << bit;
3538 	bool expected;
3539 	u32 controls;
3540 
3541 	if (msr.set & mask)
3542 		TEST_ASSERT(msr.clr & mask);
3543 
3544 	/*
3545 	 * We can't arbitrarily turn on a control bit, because it may
3546 	 * introduce dependencies on other VMCS fields. So, we only
3547 	 * test turning on bits that have a required setting.
3548 	 */
3549 	if (val && (msr.clr & mask) && !(msr.set & mask))
3550 		return;
3551 
3552 	report_prefix_pushf("%s %s bit %d",
3553 			    val ? "Set" : "Clear", name, bit);
3554 
3555 	controls = vmcs_read(encoding);
3556 	if (val) {
3557 		vmcs_write(encoding, msr.set | mask);
3558 		expected = (msr.clr & mask);
3559 	} else {
3560 		vmcs_write(encoding, msr.set & ~mask);
3561 		expected = !(msr.set & mask);
3562 	}
3563 	if (expected)
3564 		test_vmx_valid_controls();
3565 	else
3566 		test_vmx_invalid_controls();
3567 	vmcs_write(encoding, controls);
3568 	report_prefix_pop();
3569 }
3570 
3571 /*
3572  * Test reserved values of a VM-execution control bit, based on the
3573  * allowed bit settings from the corresponding VMX capability MSR.
3574  */
3575 static void test_rsvd_ctl_bit(const char *name, union vmx_ctrl_msr msr,
3576 			      enum Encoding encoding, unsigned bit)
3577 {
3578 	test_rsvd_ctl_bit_value(name, msr, encoding, bit, 0);
3579 	test_rsvd_ctl_bit_value(name, msr, encoding, bit, 1);
3580 }
3581 
3582 /*
3583  * Reserved bits in the pin-based VM-execution controls must be set
3584  * properly. Software may consult the VMX capability MSRs to determine
3585  * the proper settings.
3586  * [Intel SDM]
3587  */
3588 static void test_pin_based_ctls(void)
3589 {
3590 	unsigned bit;
3591 
3592 	printf("%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PIN" :
3593 	       "MSR_IA32_VMX_PINBASED_CTLS", ctrl_pin_rev.val);
3594 	for (bit = 0; bit < 32; bit++)
3595 		test_rsvd_ctl_bit("pin-based controls",
3596 				  ctrl_pin_rev, PIN_CONTROLS, bit);
3597 }
3598 
3599 /*
3600  * Reserved bits in the primary processor-based VM-execution controls
3601  * must be set properly. Software may consult the VMX capability MSRs
3602  * to determine the proper settings.
3603  * [Intel SDM]
3604  */
3605 static void test_primary_processor_based_ctls(void)
3606 {
3607 	unsigned bit;
3608 
3609 	printf("\n%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PROC" :
3610 	       "MSR_IA32_VMX_PROCBASED_CTLS", ctrl_cpu_rev[0].val);
3611 	for (bit = 0; bit < 32; bit++)
3612 		test_rsvd_ctl_bit("primary processor-based controls",
3613 				  ctrl_cpu_rev[0], CPU_EXEC_CTRL0, bit);
3614 }
3615 
3616 /*
3617  * If the "activate secondary controls" primary processor-based
3618  * VM-execution control is 1, reserved bits in the secondary
3619  * processor-based VM-execution controls must be cleared. Software may
3620  * consult the VMX capability MSRs to determine which bits are
3621  * reserved.
3622  * If the "activate secondary controls" primary processor-based
3623  * VM-execution control is 0 (or if the processor does not support the
3624  * 1-setting of that control), no checks are performed on the
3625  * secondary processor-based VM-execution controls.
3626  * [Intel SDM]
3627  */
3628 static void test_secondary_processor_based_ctls(void)
3629 {
3630 	u32 primary;
3631 	u32 secondary;
3632 	unsigned bit;
3633 
3634 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY))
3635 		return;
3636 
3637 	primary = vmcs_read(CPU_EXEC_CTRL0);
3638 	secondary = vmcs_read(CPU_EXEC_CTRL1);
3639 
3640 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3641 	printf("\nMSR_IA32_VMX_PROCBASED_CTLS2: %lx\n", ctrl_cpu_rev[1].val);
3642 	for (bit = 0; bit < 32; bit++)
3643 		test_rsvd_ctl_bit("secondary processor-based controls",
3644 				  ctrl_cpu_rev[1], CPU_EXEC_CTRL1, bit);
3645 
3646 	/*
3647 	 * When the "activate secondary controls" VM-execution control
3648 	 * is clear, there are no checks on the secondary controls.
3649 	 */
3650 	vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
3651 	vmcs_write(CPU_EXEC_CTRL1, ~0);
3652 	report(vmlaunch_succeeds(),
3653 	       "Secondary processor-based controls ignored");
3654 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3655 	vmcs_write(CPU_EXEC_CTRL0, primary);
3656 }
3657 
3658 static void try_cr3_target_count(unsigned i, unsigned max)
3659 {
3660 	report_prefix_pushf("CR3 target count 0x%x", i);
3661 	vmcs_write(CR3_TARGET_COUNT, i);
3662 	if (i <= max)
3663 		test_vmx_valid_controls();
3664 	else
3665 		test_vmx_invalid_controls();
3666 	report_prefix_pop();
3667 }
3668 
3669 /*
3670  * The CR3-target count must not be greater than 4. Future processors
3671  * may support a different number of CR3-target values. Software
3672  * should read the VMX capability MSR IA32_VMX_MISC to determine the
3673  * number of values supported.
3674  * [Intel SDM]
3675  */
3676 static void test_cr3_targets(void)
3677 {
3678 	unsigned supported_targets = (rdmsr(MSR_IA32_VMX_MISC) >> 16) & 0x1ff;
3679 	u32 cr3_targets = vmcs_read(CR3_TARGET_COUNT);
3680 	unsigned i;
3681 
3682 	printf("\nSupported CR3 targets: %d\n", supported_targets);
3683 	TEST_ASSERT(supported_targets <= 256);
3684 
3685 	try_cr3_target_count(-1u, supported_targets);
3686 	try_cr3_target_count(0x80000000, supported_targets);
3687 	try_cr3_target_count(0x7fffffff, supported_targets);
3688 	for (i = 0; i <= supported_targets + 1; i++)
3689 		try_cr3_target_count(i, supported_targets);
3690 	vmcs_write(CR3_TARGET_COUNT, cr3_targets);
3691 
3692 	/* VMWRITE to nonexistent target fields should fail. */
3693 	for (i = supported_targets; i < 256; i++)
3694 		TEST_ASSERT(vmcs_write(CR3_TARGET_0 + i*2, 0));
3695 }
3696 
3697 /*
3698  * Test a particular address setting in the VMCS
3699  */
3700 static void test_vmcs_addr(const char *name,
3701 			   enum Encoding encoding,
3702 			   u64 align,
3703 			   bool ignored,
3704 			   bool skip_beyond_mapped_ram,
3705 			   u64 addr)
3706 {
3707 	report_prefix_pushf("%s = %lx", name, addr);
3708 	vmcs_write(encoding, addr);
3709 	if (skip_beyond_mapped_ram &&
3710 	    addr > fwcfg_get_u64(FW_CFG_RAM_SIZE) - align &&
3711 	    addr < (1ul << cpuid_maxphyaddr()))
3712 		printf("Skipping physical address beyond mapped RAM\n");
3713 	else if (ignored || (IS_ALIGNED(addr, align) &&
3714 	    addr < (1ul << cpuid_maxphyaddr())))
3715 		test_vmx_valid_controls();
3716 	else
3717 		test_vmx_invalid_controls();
3718 	report_prefix_pop();
3719 }
3720 
3721 /*
3722  * Test interesting values for a VMCS address
3723  */
3724 static void test_vmcs_addr_values(const char *name,
3725 				  enum Encoding encoding,
3726 				  u64 align,
3727 				  bool ignored,
3728 				  bool skip_beyond_mapped_ram,
3729 				  u32 bit_start, u32 bit_end)
3730 {
3731 	unsigned i;
3732 	u64 orig_val = vmcs_read(encoding);
3733 
3734 	for (i = bit_start; i <= bit_end; i++)
3735 		test_vmcs_addr(name, encoding, align, ignored,
3736 			       skip_beyond_mapped_ram, 1ul << i);
3737 
3738 	test_vmcs_addr(name, encoding, align, ignored,
3739 		       skip_beyond_mapped_ram, PAGE_SIZE - 1);
3740 	test_vmcs_addr(name, encoding, align, ignored,
3741 		       skip_beyond_mapped_ram, PAGE_SIZE);
3742 	test_vmcs_addr(name, encoding, align, ignored,
3743 		       skip_beyond_mapped_ram,
3744 		      (1ul << cpuid_maxphyaddr()) - PAGE_SIZE);
3745 	test_vmcs_addr(name, encoding, align, ignored,
3746 		       skip_beyond_mapped_ram, -1ul);
3747 
3748 	vmcs_write(encoding, orig_val);
3749 }
3750 
3751 /*
3752  * Test a physical address reference in the VMCS, when the corresponding
3753  * feature is enabled and when the corresponding feature is disabled.
3754  */
3755 static void test_vmcs_addr_reference(u32 control_bit, enum Encoding field,
3756 				     const char *field_name,
3757 				     const char *control_name, u64 align,
3758 				     bool skip_beyond_mapped_ram,
3759 				     bool control_primary)
3760 {
3761 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
3762 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
3763 	u64 page_addr;
3764 
3765 	if (control_primary) {
3766 		if (!(ctrl_cpu_rev[0].clr & control_bit))
3767 			return;
3768 	} else {
3769 		if (!(ctrl_cpu_rev[1].clr & control_bit))
3770 			return;
3771 	}
3772 
3773 	page_addr = vmcs_read(field);
3774 
3775 	report_prefix_pushf("%s enabled", control_name);
3776 	if (control_primary) {
3777 		vmcs_write(CPU_EXEC_CTRL0, primary | control_bit);
3778 	} else {
3779 		vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3780 		vmcs_write(CPU_EXEC_CTRL1, secondary | control_bit);
3781 	}
3782 
3783 	test_vmcs_addr_values(field_name, field, align, false,
3784 			      skip_beyond_mapped_ram, 0, 63);
3785 	report_prefix_pop();
3786 
3787 	report_prefix_pushf("%s disabled", control_name);
3788 	if (control_primary) {
3789 		vmcs_write(CPU_EXEC_CTRL0, primary & ~control_bit);
3790 	} else {
3791 		vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
3792 		vmcs_write(CPU_EXEC_CTRL1, secondary & ~control_bit);
3793 	}
3794 
3795 	test_vmcs_addr_values(field_name, field, align, true, false, 0, 63);
3796 	report_prefix_pop();
3797 
3798 	vmcs_write(field, page_addr);
3799 	vmcs_write(CPU_EXEC_CTRL0, primary);
3800 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3801 }
3802 
3803 /*
3804  * If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of
3805  * each I/O-bitmap address must be 0. Neither address should set any
3806  * bits beyond the processor's physical-address width.
3807  * [Intel SDM]
3808  */
3809 static void test_io_bitmaps(void)
3810 {
3811 	test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_A,
3812 				 "I/O bitmap A", "Use I/O bitmaps",
3813 				 PAGE_SIZE, false, true);
3814 	test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_B,
3815 				 "I/O bitmap B", "Use I/O bitmaps",
3816 				 PAGE_SIZE, false, true);
3817 }
3818 
3819 /*
3820  * If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of
3821  * the MSR-bitmap address must be 0. The address should not set any
3822  * bits beyond the processor's physical-address width.
3823  * [Intel SDM]
3824  */
3825 static void test_msr_bitmap(void)
3826 {
3827 	test_vmcs_addr_reference(CPU_MSR_BITMAP, MSR_BITMAP,
3828 				 "MSR bitmap", "Use MSR bitmaps",
3829 				 PAGE_SIZE, false, true);
3830 }
3831 
3832 /*
3833  * If the "use TPR shadow" VM-execution control is 1, the virtual-APIC
3834  * address must satisfy the following checks:
3835  * - Bits 11:0 of the address must be 0.
3836  * - The address should not set any bits beyond the processor's
3837  *   physical-address width.
3838  * [Intel SDM]
3839  */
3840 static void test_apic_virt_addr(void)
3841 {
3842 	/*
3843 	 * Ensure the processor will never use the virtual-APIC page, since
3844 	 * we will point it to invalid RAM.  Otherwise KVM is puzzled about
3845 	 * what we're trying to achieve and fails vmentry.
3846 	 */
3847 	u32 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0);
3848 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0 | CPU_CR8_LOAD | CPU_CR8_STORE);
3849 	test_vmcs_addr_reference(CPU_TPR_SHADOW, APIC_VIRT_ADDR,
3850 				 "virtual-APIC address", "Use TPR shadow",
3851 				 PAGE_SIZE, false, true);
3852 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0);
3853 }
3854 
3855 /*
3856  * If the "virtualize APIC-accesses" VM-execution control is 1, the
3857  * APIC-access address must satisfy the following checks:
3858  *  - Bits 11:0 of the address must be 0.
3859  *  - The address should not set any bits beyond the processor's
3860  *    physical-address width.
3861  * [Intel SDM]
3862  */
3863 static void test_apic_access_addr(void)
3864 {
3865 	void *apic_access_page = alloc_page();
3866 
3867 	vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_page));
3868 
3869 	test_vmcs_addr_reference(CPU_VIRT_APIC_ACCESSES, APIC_ACCS_ADDR,
3870 				 "APIC-access address",
3871 				 "virtualize APIC-accesses", PAGE_SIZE,
3872 				 true, false);
3873 }
3874 
3875 static bool set_bit_pattern(u8 mask, u32 *secondary)
3876 {
3877 	u8 i;
3878 	bool flag = false;
3879 	u32 test_bits[3] = {
3880 		CPU_VIRT_X2APIC,
3881 		CPU_APIC_REG_VIRT,
3882 		CPU_VINTD
3883 	};
3884 
3885         for (i = 0; i < ARRAY_SIZE(test_bits); i++) {
3886 		if ((mask & (1u << i)) &&
3887 		    (ctrl_cpu_rev[1].clr & test_bits[i])) {
3888 			*secondary |= test_bits[i];
3889 			flag = true;
3890 		}
3891 	}
3892 
3893 	return (flag);
3894 }
3895 
3896 /*
3897  * If the "use TPR shadow" VM-execution control is 0, the following
3898  * VM-execution controls must also be 0:
3899  * 	- virtualize x2APIC mode
3900  *	- APIC-register virtualization
3901  *	- virtual-interrupt delivery
3902  *    [Intel SDM]
3903  *
3904  * 2. If the "virtualize x2APIC mode" VM-execution control is 1, the
3905  *    "virtualize APIC accesses" VM-execution control must be 0.
3906  *    [Intel SDM]
3907  */
3908 static void test_apic_virtual_ctls(void)
3909 {
3910 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3911 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3912 	u32 primary = saved_primary;
3913 	u32 secondary = saved_secondary;
3914 	bool ctrl = false;
3915 	char str[10] = "disabled";
3916 	u8 i = 0, j;
3917 
3918 	/*
3919 	 * First test
3920 	 */
3921 	if (!((ctrl_cpu_rev[0].clr & (CPU_SECONDARY | CPU_TPR_SHADOW)) ==
3922 	    (CPU_SECONDARY | CPU_TPR_SHADOW)))
3923 		return;
3924 
3925 	primary |= CPU_SECONDARY;
3926 	primary &= ~CPU_TPR_SHADOW;
3927 	vmcs_write(CPU_EXEC_CTRL0, primary);
3928 
3929 	while (1) {
3930 		for (j = 1; j < 8; j++) {
3931 			secondary &= ~(CPU_VIRT_X2APIC | CPU_APIC_REG_VIRT | CPU_VINTD);
3932 			if (primary & CPU_TPR_SHADOW) {
3933 				ctrl = true;
3934 			} else {
3935 				if (! set_bit_pattern(j, &secondary))
3936 					ctrl = true;
3937 				else
3938 					ctrl = false;
3939 			}
3940 
3941 			vmcs_write(CPU_EXEC_CTRL1, secondary);
3942 			report_prefix_pushf("Use TPR shadow %s, virtualize x2APIC mode %s, APIC-register virtualization %s, virtual-interrupt delivery %s",
3943 				str, (secondary & CPU_VIRT_X2APIC) ? "enabled" : "disabled", (secondary & CPU_APIC_REG_VIRT) ? "enabled" : "disabled", (secondary & CPU_VINTD) ? "enabled" : "disabled");
3944 			if (ctrl)
3945 				test_vmx_valid_controls();
3946 			else
3947 				test_vmx_invalid_controls();
3948 			report_prefix_pop();
3949 		}
3950 
3951 		if (i == 1)
3952 			break;
3953 		i++;
3954 
3955 		primary |= CPU_TPR_SHADOW;
3956 		vmcs_write(CPU_EXEC_CTRL0, primary);
3957 		strcpy(str, "enabled");
3958 	}
3959 
3960 	/*
3961 	 * Second test
3962 	 */
3963 	u32 apic_virt_ctls = (CPU_VIRT_X2APIC | CPU_VIRT_APIC_ACCESSES);
3964 
3965 	primary = saved_primary;
3966 	secondary = saved_secondary;
3967 	if (!((ctrl_cpu_rev[1].clr & apic_virt_ctls) == apic_virt_ctls))
3968 		return;
3969 
3970 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3971 	secondary &= ~CPU_VIRT_APIC_ACCESSES;
3972 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_X2APIC);
3973 	report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access disabled");
3974 	test_vmx_valid_controls();
3975 	report_prefix_pop();
3976 
3977 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_APIC_ACCESSES);
3978 	report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access enabled");
3979 	test_vmx_valid_controls();
3980 	report_prefix_pop();
3981 
3982 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_X2APIC);
3983 	report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access enabled");
3984 	test_vmx_invalid_controls();
3985 	report_prefix_pop();
3986 
3987 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_APIC_ACCESSES);
3988 	report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access disabled");
3989 	test_vmx_valid_controls();
3990 	report_prefix_pop();
3991 
3992 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
3993 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
3994 }
3995 
3996 /*
3997  * If the "virtual-interrupt delivery" VM-execution control is 1, the
3998  * "external-interrupt exiting" VM-execution control must be 1.
3999  * [Intel SDM]
4000  */
4001 static void test_virtual_intr_ctls(void)
4002 {
4003 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
4004 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
4005 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
4006 	u32 primary = saved_primary;
4007 	u32 secondary = saved_secondary;
4008 	u32 pin = saved_pin;
4009 
4010 	if (!((ctrl_cpu_rev[1].clr & CPU_VINTD) &&
4011 	    (ctrl_pin_rev.clr & PIN_EXTINT)))
4012 		return;
4013 
4014 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW);
4015 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VINTD);
4016 	vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT);
4017 	report_prefix_pushf("Virtualize interrupt-delivery disabled; external-interrupt exiting disabled");
4018 	test_vmx_valid_controls();
4019 	report_prefix_pop();
4020 
4021 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VINTD);
4022 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled");
4023 	test_vmx_invalid_controls();
4024 	report_prefix_pop();
4025 
4026 	vmcs_write(PIN_CONTROLS, pin | PIN_EXTINT);
4027 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting enabled");
4028 	test_vmx_valid_controls();
4029 	report_prefix_pop();
4030 
4031 	vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT);
4032 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled");
4033 	test_vmx_invalid_controls();
4034 	report_prefix_pop();
4035 
4036 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
4037 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
4038 	vmcs_write(PIN_CONTROLS, saved_pin);
4039 }
4040 
4041 static void test_pi_desc_addr(u64 addr, bool ctrl)
4042 {
4043 	vmcs_write(POSTED_INTR_DESC_ADDR, addr);
4044 	report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-descriptor-address 0x%lx", addr);
4045 	if (ctrl)
4046 		test_vmx_valid_controls();
4047 	else
4048 		test_vmx_invalid_controls();
4049 	report_prefix_pop();
4050 }
4051 
4052 /*
4053  * If the “process posted interrupts†VM-execution control is 1, the
4054  * following must be true:
4055  *
4056  *	- The “virtual-interrupt delivery†VM-execution control is 1.
4057  *	- The “acknowledge interrupt on exit†VM-exit control is 1.
4058  *	- The posted-interrupt notification vector has a value in the
4059  *	- range 0–255 (bits 15:8 are all 0).
4060  *	- Bits 5:0 of the posted-interrupt descriptor address are all 0.
4061  *	- The posted-interrupt descriptor address does not set any bits
4062  *	  beyond the processor's physical-address width.
4063  * [Intel SDM]
4064  */
4065 static void test_posted_intr(void)
4066 {
4067 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
4068 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
4069 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
4070 	u32 exit_ctl_saved = vmcs_read(EXI_CONTROLS);
4071 	u32 primary = saved_primary;
4072 	u32 secondary = saved_secondary;
4073 	u32 pin = saved_pin;
4074 	u32 exit_ctl = exit_ctl_saved;
4075 	u16 vec;
4076 	int i;
4077 
4078 	if (!((ctrl_pin_rev.clr & PIN_POST_INTR) &&
4079 	    (ctrl_cpu_rev[1].clr & CPU_VINTD) &&
4080 	    (ctrl_exit_rev.clr & EXI_INTA)))
4081 		return;
4082 
4083 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW);
4084 
4085 	/*
4086 	 * Test virtual-interrupt-delivery and acknowledge-interrupt-on-exit
4087 	 */
4088 	pin |= PIN_POST_INTR;
4089 	vmcs_write(PIN_CONTROLS, pin);
4090 	secondary &= ~CPU_VINTD;
4091 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4092 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled");
4093 	test_vmx_invalid_controls();
4094 	report_prefix_pop();
4095 
4096 	secondary |= CPU_VINTD;
4097 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4098 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled");
4099 	test_vmx_invalid_controls();
4100 	report_prefix_pop();
4101 
4102 	exit_ctl &= ~EXI_INTA;
4103 	vmcs_write(EXI_CONTROLS, exit_ctl);
4104 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit disabled");
4105 	test_vmx_invalid_controls();
4106 	report_prefix_pop();
4107 
4108 	exit_ctl |= EXI_INTA;
4109 	vmcs_write(EXI_CONTROLS, exit_ctl);
4110 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled");
4111 	test_vmx_valid_controls();
4112 	report_prefix_pop();
4113 
4114 	secondary &= ~CPU_VINTD;
4115 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4116 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled; acknowledge-interrupt-on-exit enabled");
4117 	test_vmx_invalid_controls();
4118 	report_prefix_pop();
4119 
4120 	secondary |= CPU_VINTD;
4121 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4122 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled");
4123 	test_vmx_valid_controls();
4124 	report_prefix_pop();
4125 
4126 	/*
4127 	 * Test posted-interrupt notification vector
4128 	 */
4129 	for (i = 0; i < 8; i++) {
4130 		vec = (1ul << i);
4131 		vmcs_write(PINV, vec);
4132 		report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
4133 		test_vmx_valid_controls();
4134 		report_prefix_pop();
4135 	}
4136 	for (i = 8; i < 16; i++) {
4137 		vec = (1ul << i);
4138 		vmcs_write(PINV, vec);
4139 		report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
4140 		test_vmx_invalid_controls();
4141 		report_prefix_pop();
4142 	}
4143 
4144 	vec &= ~(0xff << 8);
4145 	vmcs_write(PINV, vec);
4146 	report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
4147 	test_vmx_valid_controls();
4148 	report_prefix_pop();
4149 
4150 	/*
4151 	 * Test posted-interrupt descriptor addresss
4152 	 */
4153 	for (i = 0; i < 6; i++) {
4154 		test_pi_desc_addr(1ul << i, false);
4155 	}
4156 
4157 	test_pi_desc_addr(0xf0, false);
4158 	test_pi_desc_addr(0xff, false);
4159 	test_pi_desc_addr(0x0f, false);
4160 	test_pi_desc_addr(0x8000, true);
4161 	test_pi_desc_addr(0x00, true);
4162 	test_pi_desc_addr(0xc000, true);
4163 
4164 	test_vmcs_addr_values("process-posted interrupts",
4165 			       POSTED_INTR_DESC_ADDR, 64,
4166 			       false, false, 0, 63);
4167 
4168 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
4169 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
4170 	vmcs_write(PIN_CONTROLS, saved_pin);
4171 }
4172 
4173 static void test_apic_ctls(void)
4174 {
4175 	test_apic_virt_addr();
4176 	test_apic_access_addr();
4177 	test_apic_virtual_ctls();
4178 	test_virtual_intr_ctls();
4179 	test_posted_intr();
4180 }
4181 
4182 /*
4183  * If the “enable VPID†VM-execution control is 1, the value of the
4184  * of the VPID VM-execution control field must not be 0000H.
4185  * [Intel SDM]
4186  */
4187 static void test_vpid(void)
4188 {
4189 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
4190 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
4191 	u16 vpid = 0x0000;
4192 	int i;
4193 
4194 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4195 	    (ctrl_cpu_rev[1].clr & CPU_VPID))) {
4196 		printf("Secondary controls and/or VPID not supported\n");
4197 		return;
4198 	}
4199 
4200 	vmcs_write(CPU_EXEC_CTRL0, saved_primary | CPU_SECONDARY);
4201 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary & ~CPU_VPID);
4202 	vmcs_write(VPID, vpid);
4203 	report_prefix_pushf("VPID disabled; VPID value %x", vpid);
4204 	test_vmx_valid_controls();
4205 	report_prefix_pop();
4206 
4207 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary | CPU_VPID);
4208 	report_prefix_pushf("VPID enabled; VPID value %x", vpid);
4209 	test_vmx_invalid_controls();
4210 	report_prefix_pop();
4211 
4212 	for (i = 0; i < 16; i++) {
4213 		vpid = (short)1 << i;;
4214 		vmcs_write(VPID, vpid);
4215 		report_prefix_pushf("VPID enabled; VPID value %x", vpid);
4216 		test_vmx_valid_controls();
4217 		report_prefix_pop();
4218 	}
4219 
4220 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
4221 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
4222 }
4223 
4224 static void set_vtpr(unsigned vtpr)
4225 {
4226 	*(u32 *)phys_to_virt(vmcs_read(APIC_VIRT_ADDR) + APIC_TASKPRI) = vtpr;
4227 }
4228 
4229 static void try_tpr_threshold_and_vtpr(unsigned threshold, unsigned vtpr)
4230 {
4231 	bool valid = true;
4232 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4233 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4234 
4235 	if ((primary & CPU_TPR_SHADOW) &&
4236 	    (!(primary & CPU_SECONDARY) ||
4237 	     !(secondary & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES))))
4238 		valid = (threshold & 0xf) <= ((vtpr >> 4) & 0xf);
4239 
4240 	set_vtpr(vtpr);
4241 	report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0x%x",
4242 	    threshold, (vtpr >> 4) & 0xf);
4243 	if (valid)
4244 		test_vmx_valid_controls();
4245 	else
4246 		test_vmx_invalid_controls();
4247 	report_prefix_pop();
4248 }
4249 
4250 static void test_invalid_event_injection(void)
4251 {
4252 	u32 ent_intr_info_save = vmcs_read(ENT_INTR_INFO);
4253 	u32 ent_intr_error_save = vmcs_read(ENT_INTR_ERROR);
4254 	u32 ent_inst_len_save = vmcs_read(ENT_INST_LEN);
4255 	u32 primary_save = vmcs_read(CPU_EXEC_CTRL0);
4256 	u32 secondary_save = vmcs_read(CPU_EXEC_CTRL1);
4257 	u64 guest_cr0_save = vmcs_read(GUEST_CR0);
4258 	u32 ent_intr_info_base = INTR_INFO_VALID_MASK;
4259 	u32 ent_intr_info, ent_intr_err, ent_intr_len;
4260 	u32 cnt;
4261 
4262 	/* Setup */
4263 	report_prefix_push("invalid event injection");
4264 	vmcs_write(ENT_INTR_ERROR, 0x00000000);
4265 	vmcs_write(ENT_INST_LEN, 0x00000001);
4266 
4267 	/* The field’s interruption type is not set to a reserved value. */
4268 	ent_intr_info = ent_intr_info_base | INTR_TYPE_RESERVED | DE_VECTOR;
4269 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4270 			    "RESERVED interruption type invalid [-]",
4271 			    ent_intr_info);
4272 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4273 	test_vmx_invalid_controls();
4274 	report_prefix_pop();
4275 
4276 	ent_intr_info = ent_intr_info_base | INTR_TYPE_EXT_INTR |
4277 			DE_VECTOR;
4278 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4279 			    "RESERVED interruption type invalid [+]",
4280 			    ent_intr_info);
4281 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4282 	test_vmx_valid_controls();
4283 	report_prefix_pop();
4284 
4285 	/* If the interruption type is other event, the vector is 0. */
4286 	ent_intr_info = ent_intr_info_base | INTR_TYPE_OTHER_EVENT | DB_VECTOR;
4287 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4288 			    "(OTHER EVENT && vector != 0) invalid [-]",
4289 			    ent_intr_info);
4290 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4291 	test_vmx_invalid_controls();
4292 	report_prefix_pop();
4293 
4294 	/* If the interruption type is NMI, the vector is 2 (negative case). */
4295 	ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | DE_VECTOR;
4296 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4297 			    "(NMI && vector != 2) invalid [-]", ent_intr_info);
4298 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4299 	test_vmx_invalid_controls();
4300 	report_prefix_pop();
4301 
4302 	/* If the interruption type is NMI, the vector is 2 (positive case). */
4303 	ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | NMI_VECTOR;
4304 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4305 			    "(NMI && vector == 2) valid [+]", ent_intr_info);
4306 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4307 	test_vmx_valid_controls();
4308 	report_prefix_pop();
4309 
4310 	/*
4311 	 * If the interruption type
4312 	 * is HW exception, the vector is at most 31.
4313 	 */
4314 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 0x20;
4315 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4316 			    "(HW exception && vector > 31) invalid [-]",
4317 			    ent_intr_info);
4318 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4319 	test_vmx_invalid_controls();
4320 	report_prefix_pop();
4321 
4322 	/*
4323 	 * deliver-error-code is 1 iff either
4324 	 * (a) the "unrestricted guest" VM-execution control is 0
4325 	 * (b) CR0.PE is set.
4326 	 */
4327 
4328 	/* Assert that unrestricted guest is disabled or unsupported */
4329 	assert(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
4330 	       !(secondary_save & CPU_URG));
4331 
4332 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION |
4333 			GP_VECTOR;
4334 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4335 			    "error code <-> (!URG || prot_mode) [-]",
4336 			    ent_intr_info);
4337 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4338 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4339 	test_vmx_invalid_controls();
4340 	report_prefix_pop();
4341 
4342 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4343 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4344 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4345 			    "error code <-> (!URG || prot_mode) [+]",
4346 			    ent_intr_info);
4347 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4348 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4349 	test_vmx_valid_controls();
4350 	report_prefix_pop();
4351 
4352 	if (enable_unrestricted_guest())
4353 		goto skip_unrestricted_guest;
4354 
4355 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4356 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4357 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4358 			    "error code <-> (!URG || prot_mode) [-]",
4359 			    ent_intr_info);
4360 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4361 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4362 	test_vmx_invalid_controls();
4363 	report_prefix_pop();
4364 
4365 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION |
4366 			GP_VECTOR;
4367 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4368 			    "error code <-> (!URG || prot_mode) [-]",
4369 			    ent_intr_info);
4370 	vmcs_write(GUEST_CR0, guest_cr0_save | X86_CR0_PE);
4371 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4372 	test_vmx_invalid_controls();
4373 	report_prefix_pop();
4374 
4375 	vmcs_write(CPU_EXEC_CTRL1, secondary_save);
4376 	vmcs_write(CPU_EXEC_CTRL0, primary_save);
4377 
4378 skip_unrestricted_guest:
4379 	vmcs_write(GUEST_CR0, guest_cr0_save);
4380 
4381 	/* deliver-error-code is 1 iff the interruption type is HW exception */
4382 	report_prefix_push("error code <-> HW exception");
4383 	for (cnt = 0; cnt < 8; cnt++) {
4384 		u32 exception_type_mask = cnt << 8;
4385 		u32 deliver_error_code_mask =
4386 			exception_type_mask != INTR_TYPE_HARD_EXCEPTION ?
4387 			INTR_INFO_DELIVER_CODE_MASK : 0;
4388 
4389 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4390 				exception_type_mask | GP_VECTOR;
4391 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4392 				    ent_intr_info);
4393 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4394 		test_vmx_invalid_controls();
4395 		report_prefix_pop();
4396 	}
4397 	report_prefix_pop();
4398 
4399 	/*
4400 	 * deliver-error-code is 1 iff the the vector
4401 	 * indicates an exception that would normally deliver an error code
4402 	 */
4403 	report_prefix_push("error code <-> vector delivers error code");
4404 	for (cnt = 0; cnt < 32; cnt++) {
4405 		bool has_error_code = false;
4406 		u32 deliver_error_code_mask;
4407 
4408 		switch (cnt) {
4409 		case DF_VECTOR:
4410 		case TS_VECTOR:
4411 		case NP_VECTOR:
4412 		case SS_VECTOR:
4413 		case GP_VECTOR:
4414 		case PF_VECTOR:
4415 		case AC_VECTOR:
4416 			has_error_code = true;
4417 		}
4418 
4419 		/* Negative case */
4420 		deliver_error_code_mask = has_error_code ?
4421 						0 :
4422 						INTR_INFO_DELIVER_CODE_MASK;
4423 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4424 				INTR_TYPE_HARD_EXCEPTION | cnt;
4425 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4426 				    ent_intr_info);
4427 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4428 		test_vmx_invalid_controls();
4429 		report_prefix_pop();
4430 
4431 		/* Positive case */
4432 		deliver_error_code_mask = has_error_code ?
4433 						INTR_INFO_DELIVER_CODE_MASK :
4434 						0;
4435 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4436 				INTR_TYPE_HARD_EXCEPTION | cnt;
4437 		report_prefix_pushf("VM-entry intr info=0x%x [+]",
4438 				    ent_intr_info);
4439 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4440 		test_vmx_valid_controls();
4441 		report_prefix_pop();
4442 	}
4443 	report_prefix_pop();
4444 
4445 	/* Reserved bits in the field (30:12) are 0. */
4446 	report_prefix_push("reserved bits clear");
4447 	for (cnt = 12; cnt <= 30; cnt++) {
4448 		ent_intr_info = ent_intr_info_base |
4449 				INTR_INFO_DELIVER_CODE_MASK |
4450 				INTR_TYPE_HARD_EXCEPTION | GP_VECTOR |
4451 				(1U << cnt);
4452 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4453 				    ent_intr_info);
4454 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4455 		test_vmx_invalid_controls();
4456 		report_prefix_pop();
4457 	}
4458 	report_prefix_pop();
4459 
4460 	/*
4461 	 * If deliver-error-code is 1
4462 	 * bits 31:16 of the VM-entry exception error-code field are 0.
4463 	 */
4464 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4465 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4466 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4467 			    "VM-entry exception error code[31:16] clear",
4468 			    ent_intr_info);
4469 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4470 	for (cnt = 16; cnt <= 31; cnt++) {
4471 		ent_intr_err = 1U << cnt;
4472 		report_prefix_pushf("VM-entry intr error=0x%x [-]",
4473 				    ent_intr_err);
4474 		vmcs_write(ENT_INTR_ERROR, ent_intr_err);
4475 		test_vmx_invalid_controls();
4476 		report_prefix_pop();
4477 	}
4478 	vmcs_write(ENT_INTR_ERROR, 0x00000000);
4479 	report_prefix_pop();
4480 
4481 	/*
4482 	 * If the interruption type is software interrupt, software exception,
4483 	 * or privileged software exception, the VM-entry instruction-length
4484 	 * field is in the range 0–15.
4485 	 */
4486 
4487 	for (cnt = 0; cnt < 3; cnt++) {
4488 		switch (cnt) {
4489 		case 0:
4490 			ent_intr_info = ent_intr_info_base |
4491 					INTR_TYPE_SOFT_INTR;
4492 			break;
4493 		case 1:
4494 			ent_intr_info = ent_intr_info_base |
4495 					INTR_TYPE_SOFT_EXCEPTION;
4496 			break;
4497 		case 2:
4498 			ent_intr_info = ent_intr_info_base |
4499 					INTR_TYPE_PRIV_SW_EXCEPTION;
4500 			break;
4501 		}
4502 		report_prefix_pushf("%s, VM-entry intr info=0x%x",
4503 				    "VM-entry instruction-length check",
4504 				    ent_intr_info);
4505 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4506 
4507 		/* Instruction length set to -1 (0xFFFFFFFF) should fail */
4508 		ent_intr_len = -1;
4509 		report_prefix_pushf("VM-entry intr length = 0x%x [-]",
4510 				    ent_intr_len);
4511 		vmcs_write(ENT_INST_LEN, ent_intr_len);
4512 		test_vmx_invalid_controls();
4513 		report_prefix_pop();
4514 
4515 		/* Instruction length set to 16 should fail */
4516 		ent_intr_len = 0x00000010;
4517 		report_prefix_pushf("VM-entry intr length = 0x%x [-]",
4518 				    ent_intr_len);
4519 		vmcs_write(ENT_INST_LEN, 0x00000010);
4520 		test_vmx_invalid_controls();
4521 		report_prefix_pop();
4522 
4523 		report_prefix_pop();
4524 	}
4525 
4526 	/* Cleanup */
4527 	vmcs_write(ENT_INTR_INFO, ent_intr_info_save);
4528 	vmcs_write(ENT_INTR_ERROR, ent_intr_error_save);
4529 	vmcs_write(ENT_INST_LEN, ent_inst_len_save);
4530 	vmcs_write(CPU_EXEC_CTRL0, primary_save);
4531 	vmcs_write(CPU_EXEC_CTRL1, secondary_save);
4532 	vmcs_write(GUEST_CR0, guest_cr0_save);
4533 	report_prefix_pop();
4534 }
4535 
4536 /*
4537  * Test interesting vTPR values for a given TPR threshold.
4538  */
4539 static void test_vtpr_values(unsigned threshold)
4540 {
4541 	try_tpr_threshold_and_vtpr(threshold, (threshold - 1) << 4);
4542 	try_tpr_threshold_and_vtpr(threshold, threshold << 4);
4543 	try_tpr_threshold_and_vtpr(threshold, (threshold + 1) << 4);
4544 }
4545 
4546 static void try_tpr_threshold(unsigned threshold)
4547 {
4548 	bool valid = true;
4549 
4550 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4551 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4552 
4553 	if ((primary & CPU_TPR_SHADOW) && !((primary & CPU_SECONDARY) &&
4554 	    (secondary & CPU_VINTD)))
4555 		valid = !(threshold >> 4);
4556 
4557 	set_vtpr(-1);
4558 	vmcs_write(TPR_THRESHOLD, threshold);
4559 	report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0xf", threshold);
4560 	if (valid)
4561 		test_vmx_valid_controls();
4562 	else
4563 		test_vmx_invalid_controls();
4564 	report_prefix_pop();
4565 
4566 	if (valid)
4567 		test_vtpr_values(threshold);
4568 }
4569 
4570 /*
4571  * Test interesting TPR threshold values.
4572  */
4573 static void test_tpr_threshold_values(void)
4574 {
4575 	unsigned i;
4576 
4577 	for (i = 0; i < 0x10; i++)
4578 		try_tpr_threshold(i);
4579 	for (i = 4; i < 32; i++)
4580 		try_tpr_threshold(1u << i);
4581 	try_tpr_threshold(-1u);
4582 	try_tpr_threshold(0x7fffffff);
4583 }
4584 
4585 /*
4586  * This test covers the following two VM entry checks:
4587  *
4588  *      i) If the "use TPR shadow" VM-execution control is 1 and the
4589  *         "virtual-interrupt delivery" VM-execution control is 0, bits
4590  *         31:4 of the TPR threshold VM-execution control field must
4591 	   be 0.
4592  *         [Intel SDM]
4593  *
4594  *      ii) If the "use TPR shadow" VM-execution control is 1, the
4595  *          "virtual-interrupt delivery" VM-execution control is 0
4596  *          and the "virtualize APIC accesses" VM-execution control
4597  *          is 0, the value of bits 3:0 of the TPR threshold VM-execution
4598  *          control field must not be greater than the value of bits
4599  *          7:4 of VTPR.
4600  *          [Intel SDM]
4601  */
4602 static void test_tpr_threshold(void)
4603 {
4604 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4605 	u64 apic_virt_addr = vmcs_read(APIC_VIRT_ADDR);
4606 	u64 threshold = vmcs_read(TPR_THRESHOLD);
4607 	void *virtual_apic_page;
4608 
4609 	if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW))
4610 		return;
4611 
4612 	virtual_apic_page = alloc_page();
4613 	memset(virtual_apic_page, 0xff, PAGE_SIZE);
4614 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
4615 
4616 	vmcs_write(CPU_EXEC_CTRL0, primary & ~(CPU_TPR_SHADOW | CPU_SECONDARY));
4617 	report_prefix_pushf("Use TPR shadow disabled, secondary controls disabled");
4618 	test_tpr_threshold_values();
4619 	report_prefix_pop();
4620 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_TPR_SHADOW);
4621 	report_prefix_pushf("Use TPR shadow enabled, secondary controls disabled");
4622 	test_tpr_threshold_values();
4623 	report_prefix_pop();
4624 
4625 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4626 	    (ctrl_cpu_rev[1].clr & (CPU_VINTD  | CPU_VIRT_APIC_ACCESSES))))
4627 		goto out;
4628 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4629 
4630 	if (ctrl_cpu_rev[1].clr & CPU_VINTD) {
4631 		vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD);
4632 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled");
4633 		test_tpr_threshold_values();
4634 		report_prefix_pop();
4635 
4636 		vmcs_write(CPU_EXEC_CTRL0,
4637 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4638 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled");
4639 		test_tpr_threshold_values();
4640 		report_prefix_pop();
4641 	}
4642 
4643 	if (ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES) {
4644 		vmcs_write(CPU_EXEC_CTRL0,
4645 			   vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY);
4646 		vmcs_write(CPU_EXEC_CTRL1, CPU_VIRT_APIC_ACCESSES);
4647 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4648 		test_tpr_threshold_values();
4649 		report_prefix_pop();
4650 
4651 		vmcs_write(CPU_EXEC_CTRL0,
4652 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4653 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4654 		test_tpr_threshold_values();
4655 		report_prefix_pop();
4656 	}
4657 
4658 	if ((ctrl_cpu_rev[1].clr &
4659 	     (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) ==
4660 	    (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) {
4661 		vmcs_write(CPU_EXEC_CTRL0,
4662 			   vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY);
4663 		vmcs_write(CPU_EXEC_CTRL1,
4664 			   CPU_VINTD | CPU_VIRT_APIC_ACCESSES);
4665 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4666 		test_tpr_threshold_values();
4667 		report_prefix_pop();
4668 
4669 		vmcs_write(CPU_EXEC_CTRL0,
4670 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4671 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4672 		test_tpr_threshold_values();
4673 		report_prefix_pop();
4674 	}
4675 
4676 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4677 out:
4678 	vmcs_write(TPR_THRESHOLD, threshold);
4679 	vmcs_write(APIC_VIRT_ADDR, apic_virt_addr);
4680 	vmcs_write(CPU_EXEC_CTRL0, primary);
4681 }
4682 
4683 /*
4684  * This test verifies the following two vmentry checks:
4685  *
4686  *  If the "NMI exiting" VM-execution control is 0, "Virtual NMIs"
4687  *  VM-execution control must be 0.
4688  *  [Intel SDM]
4689  *
4690  *  If the “virtual NMIs” VM-execution control is 0, the “NMI-window
4691  *  exiting” VM-execution control must be 0.
4692  *  [Intel SDM]
4693  */
4694 static void test_nmi_ctrls(void)
4695 {
4696 	u32 pin_ctrls, cpu_ctrls0, test_pin_ctrls, test_cpu_ctrls0;
4697 
4698 	if ((ctrl_pin_rev.clr & (PIN_NMI | PIN_VIRT_NMI)) !=
4699 	    (PIN_NMI | PIN_VIRT_NMI)) {
4700 		printf("NMI exiting and Virtual NMIs are not supported !\n");
4701 		return;
4702 	}
4703 
4704 	/* Save the controls so that we can restore them after our tests */
4705 	pin_ctrls = vmcs_read(PIN_CONTROLS);
4706 	cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0);
4707 
4708 	test_pin_ctrls = pin_ctrls & ~(PIN_NMI | PIN_VIRT_NMI);
4709 	test_cpu_ctrls0 = cpu_ctrls0 & ~CPU_NMI_WINDOW;
4710 
4711 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4712 	report_prefix_pushf("NMI-exiting disabled, virtual-NMIs disabled");
4713 	test_vmx_valid_controls();
4714 	report_prefix_pop();
4715 
4716 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_VIRT_NMI);
4717 	report_prefix_pushf("NMI-exiting disabled, virtual-NMIs enabled");
4718 	test_vmx_invalid_controls();
4719 	report_prefix_pop();
4720 
4721 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4722 	report_prefix_pushf("NMI-exiting enabled, virtual-NMIs enabled");
4723 	test_vmx_valid_controls();
4724 	report_prefix_pop();
4725 
4726 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_NMI);
4727 	report_prefix_pushf("NMI-exiting enabled, virtual-NMIs disabled");
4728 	test_vmx_valid_controls();
4729 	report_prefix_pop();
4730 
4731 	if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) {
4732 		report_info("NMI-window exiting is not supported, skipping...");
4733 		goto done;
4734 	}
4735 
4736 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4737 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW);
4738 	report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting enabled");
4739 	test_vmx_invalid_controls();
4740 	report_prefix_pop();
4741 
4742 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4743 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0);
4744 	report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting disabled");
4745 	test_vmx_valid_controls();
4746 	report_prefix_pop();
4747 
4748 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4749 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW);
4750 	report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting enabled");
4751 	test_vmx_valid_controls();
4752 	report_prefix_pop();
4753 
4754 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4755 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0);
4756 	report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting disabled");
4757 	test_vmx_valid_controls();
4758 	report_prefix_pop();
4759 
4760 	/* Restore the controls to their original values */
4761 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0);
4762 done:
4763 	vmcs_write(PIN_CONTROLS, pin_ctrls);
4764 }
4765 
4766 static void test_eptp_ad_bit(u64 eptp, bool ctrl)
4767 {
4768 	vmcs_write(EPTP, eptp);
4769 	report_prefix_pushf("Enable-EPT enabled; EPT accessed and dirty flag %s",
4770 	    (eptp & EPTP_AD_FLAG) ? "1": "0");
4771 	if (ctrl)
4772 		test_vmx_valid_controls();
4773 	else
4774 		test_vmx_invalid_controls();
4775 	report_prefix_pop();
4776 
4777 }
4778 
4779 /*
4780  * 1. If the "enable EPT" VM-execution control is 1, the "EPTP VM-execution"
4781  *    control field must satisfy the following checks:
4782  *
4783  *     - The EPT memory type (bits 2:0) must be a value supported by the
4784  *	 processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR.
4785  *     - Bits 5:3 (1 less than the EPT page-walk length) must indicate a
4786  *	 supported EPT page-walk length.
4787  *     - Bit 6 (enable bit for accessed and dirty flags for EPT) must be
4788  *	 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP MSR is read as 0,
4789  *	 indicating that the processor does not support accessed and dirty
4790  *	 dirty flags for EPT.
4791  *     - Reserved bits 11:7 and 63:N (where N is the processor's
4792  *	 physical-address width) must all be 0.
4793  *
4794  * 2. If the "unrestricted guest" VM-execution control is 1, the
4795  *    "enable EPT" VM-execution control must also be 1.
4796  */
4797 static void test_ept_eptp(void)
4798 {
4799 	u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0);
4800 	u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1);
4801 	u64 eptp_saved = vmcs_read(EPTP);
4802 	u32 primary = primary_saved;
4803 	u32 secondary = secondary_saved;
4804 	u64 msr, eptp = eptp_saved;
4805 	bool un_cache = false;
4806 	bool wr_bk = false;
4807 	bool ctrl;
4808 	u32 i, maxphysaddr;
4809 	u64 j, resv_bits_mask = 0;
4810 
4811 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4812 	    (ctrl_cpu_rev[1].clr & CPU_EPT))) {
4813 		printf("\"CPU secondary\" and/or \"enable EPT\" execution controls are not supported !\n");
4814 		return;
4815 	}
4816 
4817 	/*
4818 	 * Memory type (bits 2:0)
4819 	 */
4820 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
4821 	if (msr & EPT_CAP_UC)
4822 		un_cache = true;
4823 	if (msr & EPT_CAP_WB)
4824 		wr_bk = true;
4825 
4826 	/* Support for 4-level EPT is mandatory. */
4827 	report(msr & EPT_CAP_PWL4, "4-level EPT support check");
4828 
4829 	primary |= CPU_SECONDARY;
4830 	vmcs_write(CPU_EXEC_CTRL0, primary);
4831 	secondary |= CPU_EPT;
4832 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4833 	eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4834 	    (3ul << EPTP_PG_WALK_LEN_SHIFT);
4835 	vmcs_write(EPTP, eptp);
4836 
4837 	for (i = 0; i < 8; i++) {
4838 		if (i == 0) {
4839 			if (un_cache) {
4840 				report_info("EPT paging structure memory-type is Un-cacheable\n");
4841 				ctrl = true;
4842 			} else {
4843 				ctrl = false;
4844 			}
4845 		} else if (i == 6) {
4846 			if (wr_bk) {
4847 				report_info("EPT paging structure memory-type is Write-back\n");
4848 				ctrl = true;
4849 			} else {
4850 				ctrl = false;
4851 			}
4852 		} else {
4853 			ctrl = false;
4854 		}
4855 
4856 		eptp = (eptp & ~EPT_MEM_TYPE_MASK) | i;
4857 		vmcs_write(EPTP, eptp);
4858 		report_prefix_pushf("Enable-EPT enabled; EPT memory type %lu",
4859 		    eptp & EPT_MEM_TYPE_MASK);
4860 		if (ctrl)
4861 			test_vmx_valid_controls();
4862 		else
4863 			test_vmx_invalid_controls();
4864 		report_prefix_pop();
4865 	}
4866 
4867 	eptp = (eptp & ~EPT_MEM_TYPE_MASK) | 6ul;
4868 
4869 	/*
4870 	 * Page walk length (bits 5:3).  Note, the value in VMCS.EPTP "is 1
4871 	 * less than the EPT page-walk length".
4872 	 */
4873 	for (i = 0; i < 8; i++) {
4874 		eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4875 		    (i << EPTP_PG_WALK_LEN_SHIFT);
4876 		if (i == 3 || (i == 4 && (msr & EPT_CAP_PWL5)))
4877 			ctrl = true;
4878 		else
4879 			ctrl = false;
4880 
4881 		vmcs_write(EPTP, eptp);
4882 		report_prefix_pushf("Enable-EPT enabled; EPT page walk length %lu",
4883 		    eptp & EPTP_PG_WALK_LEN_MASK);
4884 		if (ctrl)
4885 			test_vmx_valid_controls();
4886 		else
4887 			test_vmx_invalid_controls();
4888 		report_prefix_pop();
4889 	}
4890 
4891 	eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4892 	    3ul << EPTP_PG_WALK_LEN_SHIFT;
4893 
4894 	/*
4895 	 * Accessed and dirty flag (bit 6)
4896 	 */
4897 	if (msr & EPT_CAP_AD_FLAG) {
4898 		report_info("Processor supports accessed and dirty flag");
4899 		eptp &= ~EPTP_AD_FLAG;
4900 		test_eptp_ad_bit(eptp, true);
4901 
4902 		eptp |= EPTP_AD_FLAG;
4903 		test_eptp_ad_bit(eptp, true);
4904 	} else {
4905 		report_info("Processor does not supports accessed and dirty flag");
4906 		eptp &= ~EPTP_AD_FLAG;
4907 		test_eptp_ad_bit(eptp, true);
4908 
4909 		eptp |= EPTP_AD_FLAG;
4910 		test_eptp_ad_bit(eptp, false);
4911 	}
4912 
4913 	/*
4914 	 * Reserved bits [11:7] and [63:N]
4915 	 */
4916 	for (i = 0; i < 32; i++) {
4917 		eptp = (eptp &
4918 		    ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)) |
4919 		    (i << EPTP_RESERV_BITS_SHIFT);
4920 		vmcs_write(EPTP, eptp);
4921 		report_prefix_pushf("Enable-EPT enabled; reserved bits [11:7] %lu",
4922 		    (eptp >> EPTP_RESERV_BITS_SHIFT) &
4923 		    EPTP_RESERV_BITS_MASK);
4924 		if (i == 0)
4925 			test_vmx_valid_controls();
4926 		else
4927 			test_vmx_invalid_controls();
4928 		report_prefix_pop();
4929 	}
4930 
4931 	eptp = (eptp & ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT));
4932 
4933 	maxphysaddr = cpuid_maxphyaddr();
4934 	for (i = 0; i < (63 - maxphysaddr + 1); i++) {
4935 		resv_bits_mask |= 1ul << i;
4936 	}
4937 
4938 	for (j = maxphysaddr - 1; j <= 63; j++) {
4939 		eptp = (eptp & ~(resv_bits_mask << maxphysaddr)) |
4940 		    (j < maxphysaddr ? 0 : 1ul << j);
4941 		vmcs_write(EPTP, eptp);
4942 		report_prefix_pushf("Enable-EPT enabled; reserved bits [63:N] %lu",
4943 		    (eptp >> maxphysaddr) & resv_bits_mask);
4944 		if (j < maxphysaddr)
4945 			test_vmx_valid_controls();
4946 		else
4947 			test_vmx_invalid_controls();
4948 		report_prefix_pop();
4949 	}
4950 
4951 	secondary &= ~(CPU_EPT | CPU_URG);
4952 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4953 	report_prefix_pushf("Enable-EPT disabled, unrestricted-guest disabled");
4954 	test_vmx_valid_controls();
4955 	report_prefix_pop();
4956 
4957 	if (!(ctrl_cpu_rev[1].clr & CPU_URG))
4958 		goto skip_unrestricted_guest;
4959 
4960 	secondary |= CPU_URG;
4961 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4962 	report_prefix_pushf("Enable-EPT disabled, unrestricted-guest enabled");
4963 	test_vmx_invalid_controls();
4964 	report_prefix_pop();
4965 
4966 	secondary |= CPU_EPT;
4967 	setup_dummy_ept();
4968 	report_prefix_pushf("Enable-EPT enabled, unrestricted-guest enabled");
4969 	test_vmx_valid_controls();
4970 	report_prefix_pop();
4971 
4972 skip_unrestricted_guest:
4973 	secondary &= ~CPU_URG;
4974 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4975 	report_prefix_pushf("Enable-EPT enabled, unrestricted-guest disabled");
4976 	test_vmx_valid_controls();
4977 	report_prefix_pop();
4978 
4979 	vmcs_write(CPU_EXEC_CTRL0, primary_saved);
4980 	vmcs_write(CPU_EXEC_CTRL1, secondary_saved);
4981 	vmcs_write(EPTP, eptp_saved);
4982 }
4983 
4984 /*
4985  * If the 'enable PML' VM-execution control is 1, the 'enable EPT'
4986  * VM-execution control must also be 1. In addition, the PML address
4987  * must satisfy the following checks:
4988  *
4989  *    * Bits 11:0 of the address must be 0.
4990  *    * The address should not set any bits beyond the processor's
4991  *	physical-address width.
4992  *
4993  *  [Intel SDM]
4994  */
4995 static void test_pml(void)
4996 {
4997 	u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0);
4998 	u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1);
4999 	u32 primary = primary_saved;
5000 	u32 secondary = secondary_saved;
5001 
5002 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
5003 	    (ctrl_cpu_rev[1].clr & CPU_EPT) && (ctrl_cpu_rev[1].clr & CPU_PML))) {
5004 		printf("\"Secondary execution\" control or \"enable EPT\" control or \"enable PML\" control is not supported !\n");
5005 		return;
5006 	}
5007 
5008 	primary |= CPU_SECONDARY;
5009 	vmcs_write(CPU_EXEC_CTRL0, primary);
5010 	secondary &= ~(CPU_PML | CPU_EPT);
5011 	vmcs_write(CPU_EXEC_CTRL1, secondary);
5012 	report_prefix_pushf("enable-PML disabled, enable-EPT disabled");
5013 	test_vmx_valid_controls();
5014 	report_prefix_pop();
5015 
5016 	secondary |= CPU_PML;
5017 	vmcs_write(CPU_EXEC_CTRL1, secondary);
5018 	report_prefix_pushf("enable-PML enabled, enable-EPT disabled");
5019 	test_vmx_invalid_controls();
5020 	report_prefix_pop();
5021 
5022 	secondary |= CPU_EPT;
5023 	setup_dummy_ept();
5024 	report_prefix_pushf("enable-PML enabled, enable-EPT enabled");
5025 	test_vmx_valid_controls();
5026 	report_prefix_pop();
5027 
5028 	secondary &= ~CPU_PML;
5029 	vmcs_write(CPU_EXEC_CTRL1, secondary);
5030 	report_prefix_pushf("enable-PML disabled, enable EPT enabled");
5031 	test_vmx_valid_controls();
5032 	report_prefix_pop();
5033 
5034 	test_vmcs_addr_reference(CPU_PML, PMLADDR, "PML address", "PML",
5035 				 PAGE_SIZE, false, false);
5036 
5037 	vmcs_write(CPU_EXEC_CTRL0, primary_saved);
5038 	vmcs_write(CPU_EXEC_CTRL1, secondary_saved);
5039 }
5040 
5041  /*
5042  * If the "activate VMX-preemption timer" VM-execution control is 0, the
5043  * the "save VMX-preemption timer value" VM-exit control must also be 0.
5044  *
5045  *  [Intel SDM]
5046  */
5047 static void test_vmx_preemption_timer(void)
5048 {
5049 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
5050 	u32 saved_exit = vmcs_read(EXI_CONTROLS);
5051 	u32 pin = saved_pin;
5052 	u32 exit = saved_exit;
5053 
5054 	if (!((ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) ||
5055 	    (ctrl_pin_rev.clr & PIN_PREEMPT))) {
5056 		printf("\"Save-VMX-preemption-timer\" control and/or \"Enable-VMX-preemption-timer\" control is not supported\n");
5057 		return;
5058 	}
5059 
5060 	pin |= PIN_PREEMPT;
5061 	vmcs_write(PIN_CONTROLS, pin);
5062 	exit &= ~EXI_SAVE_PREEMPT;
5063 	vmcs_write(EXI_CONTROLS, exit);
5064 	report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer disabled");
5065 	test_vmx_valid_controls();
5066 	report_prefix_pop();
5067 
5068 	exit |= EXI_SAVE_PREEMPT;
5069 	vmcs_write(EXI_CONTROLS, exit);
5070 	report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer enabled");
5071 	test_vmx_valid_controls();
5072 	report_prefix_pop();
5073 
5074 	pin &= ~PIN_PREEMPT;
5075 	vmcs_write(PIN_CONTROLS, pin);
5076 	report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer enabled");
5077 	test_vmx_invalid_controls();
5078 	report_prefix_pop();
5079 
5080 	exit &= ~EXI_SAVE_PREEMPT;
5081 	vmcs_write(EXI_CONTROLS, exit);
5082 	report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer disabled");
5083 	test_vmx_valid_controls();
5084 	report_prefix_pop();
5085 
5086 	vmcs_write(PIN_CONTROLS, saved_pin);
5087 	vmcs_write(EXI_CONTROLS, saved_exit);
5088 }
5089 
5090 extern unsigned char test_mtf1;
5091 extern unsigned char test_mtf2;
5092 extern unsigned char test_mtf3;
5093 extern unsigned char test_mtf4;
5094 
5095 static void test_mtf_guest(void)
5096 {
5097 	asm ("vmcall;\n\t"
5098 	     "out %al, $0x80;\n\t"
5099 	     "test_mtf1:\n\t"
5100 	     "vmcall;\n\t"
5101 	     "out %al, $0x80;\n\t"
5102 	     "test_mtf2:\n\t"
5103 	     /*
5104 	      * Prepare for the 'MOV CR3' test. Attempt to induce a
5105 	      * general-protection fault by moving a non-canonical address into
5106 	      * CR3. The 'MOV CR3' instruction does not take an imm64 operand,
5107 	      * so we must MOV the desired value into a register first.
5108 	      *
5109 	      * MOV RAX is done before the VMCALL such that MTF is only enabled
5110 	      * for the instruction under test.
5111 	      */
5112 	     "mov $0x8000000000000000, %rax;\n\t"
5113 	     "vmcall;\n\t"
5114 	     "mov %rax, %cr3;\n\t"
5115 	     "test_mtf3:\n\t"
5116 	     "vmcall;\n\t"
5117 	     /*
5118 	      * ICEBP/INT1 instruction. Though the instruction is now
5119 	      * documented, don't rely on assemblers enumerating the
5120 	      * instruction. Resort to hand assembly.
5121 	      */
5122 	     ".byte 0xf1;\n\t"
5123 	     "vmcall;\n\t"
5124 	     "test_mtf4:\n\t"
5125 	     "mov $0, %eax;\n\t");
5126 }
5127 
5128 static void test_mtf_gp_handler(struct ex_regs *regs)
5129 {
5130 	regs->rip = (unsigned long) &test_mtf3;
5131 }
5132 
5133 static void test_mtf_db_handler(struct ex_regs *regs)
5134 {
5135 }
5136 
5137 static void enable_mtf(void)
5138 {
5139 	u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
5140 
5141 	vmcs_write(CPU_EXEC_CTRL0, ctrl0 | CPU_MTF);
5142 }
5143 
5144 static void disable_mtf(void)
5145 {
5146 	u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
5147 
5148 	vmcs_write(CPU_EXEC_CTRL0, ctrl0 & ~CPU_MTF);
5149 }
5150 
5151 static void enable_tf(void)
5152 {
5153 	unsigned long rflags = vmcs_read(GUEST_RFLAGS);
5154 
5155 	vmcs_write(GUEST_RFLAGS, rflags | X86_EFLAGS_TF);
5156 }
5157 
5158 static void disable_tf(void)
5159 {
5160 	unsigned long rflags = vmcs_read(GUEST_RFLAGS);
5161 
5162 	vmcs_write(GUEST_RFLAGS, rflags & ~X86_EFLAGS_TF);
5163 }
5164 
5165 static void report_mtf(const char *insn_name, unsigned long exp_rip)
5166 {
5167 	unsigned long rip = vmcs_read(GUEST_RIP);
5168 
5169 	assert_exit_reason(VMX_MTF);
5170 	report(rip == exp_rip, "MTF VM-exit after %s. RIP: 0x%lx (expected 0x%lx)",
5171 	       insn_name, rip, exp_rip);
5172 }
5173 
5174 static void vmx_mtf_test(void)
5175 {
5176 	unsigned long pending_dbg;
5177 	handler old_gp, old_db;
5178 
5179 	if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) {
5180 		printf("CPU does not support the 'monitor trap flag' processor-based VM-execution control.\n");
5181 		return;
5182 	}
5183 
5184 	test_set_guest(test_mtf_guest);
5185 
5186 	/* Expect an MTF VM-exit after OUT instruction */
5187 	enter_guest();
5188 	skip_exit_vmcall();
5189 
5190 	enable_mtf();
5191 	enter_guest();
5192 	report_mtf("OUT", (unsigned long) &test_mtf1);
5193 	disable_mtf();
5194 
5195 	/*
5196 	 * Concurrent #DB trap and MTF on instruction boundary. Expect MTF
5197 	 * VM-exit with populated 'pending debug exceptions' VMCS field.
5198 	 */
5199 	enter_guest();
5200 	skip_exit_vmcall();
5201 
5202 	enable_mtf();
5203 	enable_tf();
5204 
5205 	enter_guest();
5206 	report_mtf("OUT", (unsigned long) &test_mtf2);
5207 	pending_dbg = vmcs_read(GUEST_PENDING_DEBUG);
5208 	report(pending_dbg & DR_STEP,
5209 	       "'pending debug exceptions' field after MTF VM-exit: 0x%lx (expected 0x%lx)",
5210 	       pending_dbg, (unsigned long) DR_STEP);
5211 
5212 	disable_mtf();
5213 	disable_tf();
5214 	vmcs_write(GUEST_PENDING_DEBUG, 0);
5215 
5216 	/*
5217 	 * #GP exception takes priority over MTF. Expect MTF VM-exit with RIP
5218 	 * advanced to first instruction of #GP handler.
5219 	 */
5220 	enter_guest();
5221 	skip_exit_vmcall();
5222 
5223 	old_gp = handle_exception(GP_VECTOR, test_mtf_gp_handler);
5224 
5225 	enable_mtf();
5226 	enter_guest();
5227 	report_mtf("MOV CR3", (unsigned long) get_idt_addr(&boot_idt[GP_VECTOR]));
5228 	disable_mtf();
5229 
5230 	/*
5231 	 * Concurrent MTF and privileged software exception (i.e. ICEBP/INT1).
5232 	 * MTF should follow the delivery of #DB trap, though the SDM doesn't
5233 	 * provide clear indication of the relative priority.
5234 	 */
5235 	enter_guest();
5236 	skip_exit_vmcall();
5237 
5238 	handle_exception(GP_VECTOR, old_gp);
5239 	old_db = handle_exception(DB_VECTOR, test_mtf_db_handler);
5240 
5241 	enable_mtf();
5242 	enter_guest();
5243 	report_mtf("INT1", (unsigned long) get_idt_addr(&boot_idt[DB_VECTOR]));
5244 	disable_mtf();
5245 
5246 	enter_guest();
5247 	skip_exit_vmcall();
5248 	handle_exception(DB_VECTOR, old_db);
5249 	vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | INTR_TYPE_OTHER_EVENT);
5250 	enter_guest();
5251 	report_mtf("injected MTF", (unsigned long) &test_mtf4);
5252 	enter_guest();
5253 }
5254 
5255 /*
5256  * Tests for VM-execution control fields
5257  */
5258 static void test_vm_execution_ctls(void)
5259 {
5260 	test_pin_based_ctls();
5261 	test_primary_processor_based_ctls();
5262 	test_secondary_processor_based_ctls();
5263 	test_cr3_targets();
5264 	test_io_bitmaps();
5265 	test_msr_bitmap();
5266 	test_apic_ctls();
5267 	test_tpr_threshold();
5268 	test_nmi_ctrls();
5269 	test_pml();
5270 	test_vpid();
5271 	test_ept_eptp();
5272 	test_vmx_preemption_timer();
5273 }
5274 
5275  /*
5276   * The following checks are performed for the VM-entry MSR-load address if
5277   * the VM-entry MSR-load count field is non-zero:
5278   *
5279   *    - The lower 4 bits of the VM-entry MSR-load address must be 0.
5280   *      The address should not set any bits beyond the processor’s
5281   *      physical-address width.
5282   *
5283   *    - The address of the last byte in the VM-entry MSR-load area
5284   *      should not set any bits beyond the processor’s physical-address
5285   *      width. The address of this last byte is VM-entry MSR-load address
5286   *      + (MSR count * 16) - 1. (The arithmetic used for the computation
5287   *      uses more bits than the processor’s physical-address width.)
5288   *
5289   *
5290   *  [Intel SDM]
5291   */
5292 static void test_entry_msr_load(void)
5293 {
5294 	entry_msr_load = alloc_page();
5295 	u64 tmp;
5296 	u32 entry_msr_ld_cnt = 1;
5297 	int i;
5298 	u32 addr_len = 64;
5299 
5300 	vmcs_write(ENT_MSR_LD_CNT, entry_msr_ld_cnt);
5301 
5302 	/* Check first 4 bits of VM-entry MSR-load address */
5303 	for (i = 0; i < 4; i++) {
5304 		tmp = (u64)entry_msr_load | 1ull << i;
5305 		vmcs_write(ENTER_MSR_LD_ADDR, tmp);
5306 		report_prefix_pushf("VM-entry MSR-load addr [4:0] %lx",
5307 				    tmp & 0xf);
5308 		test_vmx_invalid_controls();
5309 		report_prefix_pop();
5310 	}
5311 
5312 	if (basic.val & (1ul << 48))
5313 		addr_len = 32;
5314 
5315 	test_vmcs_addr_values("VM-entry-MSR-load address",
5316 				ENTER_MSR_LD_ADDR, 16, false, false,
5317 				4, addr_len - 1);
5318 
5319 	/*
5320 	 * Check last byte of VM-entry MSR-load address
5321 	 */
5322 	entry_msr_load = (struct vmx_msr_entry *)((u64)entry_msr_load & ~0xf);
5323 
5324 	for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len);
5325 							i < 64; i++) {
5326 		tmp = ((u64)entry_msr_load + entry_msr_ld_cnt * 16 - 1) |
5327 			1ul << i;
5328 		vmcs_write(ENTER_MSR_LD_ADDR,
5329 			   tmp - (entry_msr_ld_cnt * 16 - 1));
5330 		test_vmx_invalid_controls();
5331 	}
5332 
5333 	vmcs_write(ENT_MSR_LD_CNT, 2);
5334 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 16);
5335 	test_vmx_invalid_controls();
5336 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 32);
5337 	test_vmx_valid_controls();
5338 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 48);
5339 	test_vmx_valid_controls();
5340 }
5341 
5342 static struct vmx_state_area_test_data {
5343 	u32 msr;
5344 	u64 exp;
5345 	bool enabled;
5346 } vmx_state_area_test_data;
5347 
5348 static void guest_state_test_main(void)
5349 {
5350 	u64 obs;
5351 	struct vmx_state_area_test_data *data = &vmx_state_area_test_data;
5352 
5353 	while (1) {
5354 		if (vmx_get_test_stage() == 2)
5355 			break;
5356 
5357 		if (data->enabled) {
5358 			obs = rdmsr(data->msr);
5359 			report(data->exp == obs,
5360 			       "Guest state is 0x%lx (expected 0x%lx)",
5361 			       obs, data->exp);
5362 		}
5363 
5364 		vmcall();
5365 	}
5366 
5367 	asm volatile("fnop");
5368 }
5369 
5370 static void test_guest_state(const char *test, bool xfail, u64 field,
5371 			     const char * field_name)
5372 {
5373 	struct vmentry_result result;
5374 	u8 abort_flags;
5375 
5376 	abort_flags = ABORT_ON_EARLY_VMENTRY_FAIL;
5377 	if (!xfail)
5378 		abort_flags = ABORT_ON_INVALID_GUEST_STATE;
5379 
5380 	__enter_guest(abort_flags, &result);
5381 
5382 	report(result.exit_reason.failed_vmentry == xfail &&
5383 	       ((xfail && result.exit_reason.basic == VMX_FAIL_STATE) ||
5384 	        (!xfail && result.exit_reason.basic == VMX_VMCALL)) &&
5385 		(!xfail || vmcs_read(EXI_QUALIFICATION) == ENTRY_FAIL_DEFAULT),
5386 	        "%s, %s %lx", test, field_name, field);
5387 
5388 	if (!result.exit_reason.failed_vmentry)
5389 		skip_exit_insn();
5390 }
5391 
5392 /*
5393  * Tests for VM-entry control fields
5394  */
5395 static void test_vm_entry_ctls(void)
5396 {
5397 	test_invalid_event_injection();
5398 	test_entry_msr_load();
5399 }
5400 
5401 /*
5402  * The following checks are performed for the VM-exit MSR-store address if
5403  * the VM-exit MSR-store count field is non-zero:
5404  *
5405  *    - The lower 4 bits of the VM-exit MSR-store address must be 0.
5406  *      The address should not set any bits beyond the processor’s
5407  *      physical-address width.
5408  *
5409  *    - The address of the last byte in the VM-exit MSR-store area
5410  *      should not set any bits beyond the processor’s physical-address
5411  *      width. The address of this last byte is VM-exit MSR-store address
5412  *      + (MSR count * 16) - 1. (The arithmetic used for the computation
5413  *      uses more bits than the processor’s physical-address width.)
5414  *
5415  * If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits
5416  * in the range 63:32.
5417  *
5418  *  [Intel SDM]
5419  */
5420 static void test_exit_msr_store(void)
5421 {
5422 	exit_msr_store = alloc_page();
5423 	u64 tmp;
5424 	u32 exit_msr_st_cnt = 1;
5425 	int i;
5426 	u32 addr_len = 64;
5427 
5428 	vmcs_write(EXI_MSR_ST_CNT, exit_msr_st_cnt);
5429 
5430 	/* Check first 4 bits of VM-exit MSR-store address */
5431 	for (i = 0; i < 4; i++) {
5432 		tmp = (u64)exit_msr_store | 1ull << i;
5433 		vmcs_write(EXIT_MSR_ST_ADDR, tmp);
5434 		report_prefix_pushf("VM-exit MSR-store addr [4:0] %lx",
5435 				    tmp & 0xf);
5436 		test_vmx_invalid_controls();
5437 		report_prefix_pop();
5438 	}
5439 
5440 	if (basic.val & (1ul << 48))
5441 		addr_len = 32;
5442 
5443 	test_vmcs_addr_values("VM-exit-MSR-store address",
5444 				EXIT_MSR_ST_ADDR, 16, false, false,
5445 				4, addr_len - 1);
5446 
5447 	/*
5448 	 * Check last byte of VM-exit MSR-store address
5449 	 */
5450 	exit_msr_store = (struct vmx_msr_entry *)((u64)exit_msr_store & ~0xf);
5451 
5452 	for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len);
5453 							i < 64; i++) {
5454 		tmp = ((u64)exit_msr_store + exit_msr_st_cnt * 16 - 1) |
5455 			1ul << i;
5456 		vmcs_write(EXIT_MSR_ST_ADDR,
5457 			   tmp - (exit_msr_st_cnt * 16 - 1));
5458 		test_vmx_invalid_controls();
5459 	}
5460 
5461 	vmcs_write(EXI_MSR_ST_CNT, 2);
5462 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 16);
5463 	test_vmx_invalid_controls();
5464 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 32);
5465 	test_vmx_valid_controls();
5466 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 48);
5467 	test_vmx_valid_controls();
5468 }
5469 
5470 /*
5471  * Tests for VM-exit controls
5472  */
5473 static void test_vm_exit_ctls(void)
5474 {
5475 	test_exit_msr_store();
5476 }
5477 
5478 /*
5479  * Check that the virtual CPU checks all of the VMX controls as
5480  * documented in the Intel SDM.
5481  */
5482 static void vmx_controls_test(void)
5483 {
5484 	/*
5485 	 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will
5486 	 * fail due to invalid guest state, should we make it that
5487 	 * far.
5488 	 */
5489 	vmcs_write(GUEST_RFLAGS, 0);
5490 
5491 	test_vm_execution_ctls();
5492 	test_vm_exit_ctls();
5493 	test_vm_entry_ctls();
5494 }
5495 
5496 struct apic_reg_virt_config {
5497 	bool apic_register_virtualization;
5498 	bool use_tpr_shadow;
5499 	bool virtualize_apic_accesses;
5500 	bool virtualize_x2apic_mode;
5501 	bool activate_secondary_controls;
5502 };
5503 
5504 struct apic_reg_test {
5505 	const char *name;
5506 	struct apic_reg_virt_config apic_reg_virt_config;
5507 };
5508 
5509 struct apic_reg_virt_expectation {
5510 	enum Reason rd_exit_reason;
5511 	enum Reason wr_exit_reason;
5512 	u32 val;
5513 	u32 (*virt_fn)(u32);
5514 
5515 	/*
5516 	 * If false, accessing the APIC access address from L2 is treated as a
5517 	 * normal memory operation, rather than triggering virtualization.
5518 	 */
5519 	bool virtualize_apic_accesses;
5520 };
5521 
5522 static u32 apic_virt_identity(u32 val)
5523 {
5524 	return val;
5525 }
5526 
5527 static u32 apic_virt_nibble1(u32 val)
5528 {
5529 	return val & 0xf0;
5530 }
5531 
5532 static u32 apic_virt_byte3(u32 val)
5533 {
5534 	return val & (0xff << 24);
5535 }
5536 
5537 static bool apic_reg_virt_exit_expectation(
5538 	u32 reg, struct apic_reg_virt_config *config,
5539 	struct apic_reg_virt_expectation *expectation)
5540 {
5541 	/* Good configs, where some L2 APIC accesses are virtualized. */
5542 	bool virtualize_apic_accesses_only =
5543 		config->virtualize_apic_accesses &&
5544 		!config->use_tpr_shadow &&
5545 		!config->apic_register_virtualization &&
5546 		!config->virtualize_x2apic_mode &&
5547 		config->activate_secondary_controls;
5548 	bool virtualize_apic_accesses_and_use_tpr_shadow =
5549 		config->virtualize_apic_accesses &&
5550 		config->use_tpr_shadow &&
5551 		!config->apic_register_virtualization &&
5552 		!config->virtualize_x2apic_mode &&
5553 		config->activate_secondary_controls;
5554 	bool apic_register_virtualization =
5555 		config->virtualize_apic_accesses &&
5556 		config->use_tpr_shadow &&
5557 		config->apic_register_virtualization &&
5558 		!config->virtualize_x2apic_mode &&
5559 		config->activate_secondary_controls;
5560 
5561 	expectation->val = MAGIC_VAL_1;
5562 	expectation->virt_fn = apic_virt_identity;
5563 	expectation->virtualize_apic_accesses =
5564 		config->virtualize_apic_accesses &&
5565 		config->activate_secondary_controls;
5566 	if (virtualize_apic_accesses_only) {
5567 		expectation->rd_exit_reason = VMX_APIC_ACCESS;
5568 		expectation->wr_exit_reason = VMX_APIC_ACCESS;
5569 	} else if (virtualize_apic_accesses_and_use_tpr_shadow) {
5570 		switch (reg) {
5571 		case APIC_TASKPRI:
5572 			expectation->rd_exit_reason = VMX_VMCALL;
5573 			expectation->wr_exit_reason = VMX_VMCALL;
5574 			expectation->virt_fn = apic_virt_nibble1;
5575 			break;
5576 		default:
5577 			expectation->rd_exit_reason = VMX_APIC_ACCESS;
5578 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5579 		}
5580 	} else if (apic_register_virtualization) {
5581 		expectation->rd_exit_reason = VMX_VMCALL;
5582 
5583 		switch (reg) {
5584 		case APIC_ID:
5585 		case APIC_EOI:
5586 		case APIC_LDR:
5587 		case APIC_DFR:
5588 		case APIC_SPIV:
5589 		case APIC_ESR:
5590 		case APIC_ICR:
5591 		case APIC_LVTT:
5592 		case APIC_LVTTHMR:
5593 		case APIC_LVTPC:
5594 		case APIC_LVT0:
5595 		case APIC_LVT1:
5596 		case APIC_LVTERR:
5597 		case APIC_TMICT:
5598 		case APIC_TDCR:
5599 			expectation->wr_exit_reason = VMX_APIC_WRITE;
5600 			break;
5601 		case APIC_LVR:
5602 		case APIC_ISR ... APIC_ISR + 0x70:
5603 		case APIC_TMR ... APIC_TMR + 0x70:
5604 		case APIC_IRR ... APIC_IRR + 0x70:
5605 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5606 			break;
5607 		case APIC_TASKPRI:
5608 			expectation->wr_exit_reason = VMX_VMCALL;
5609 			expectation->virt_fn = apic_virt_nibble1;
5610 			break;
5611 		case APIC_ICR2:
5612 			expectation->wr_exit_reason = VMX_VMCALL;
5613 			expectation->virt_fn = apic_virt_byte3;
5614 			break;
5615 		default:
5616 			expectation->rd_exit_reason = VMX_APIC_ACCESS;
5617 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5618 		}
5619 	} else if (!expectation->virtualize_apic_accesses) {
5620 		/*
5621 		 * No APIC registers are directly virtualized. This includes
5622 		 * VTPR, which can be virtualized through MOV to/from CR8 via
5623 		 * the use TPR shadow control, but not through directly
5624 		 * accessing VTPR.
5625 		 */
5626 		expectation->rd_exit_reason = VMX_VMCALL;
5627 		expectation->wr_exit_reason = VMX_VMCALL;
5628 	} else {
5629 		printf("Cannot parse APIC register virtualization config:\n"
5630 		       "\tvirtualize_apic_accesses: %d\n"
5631 		       "\tuse_tpr_shadow: %d\n"
5632 		       "\tapic_register_virtualization: %d\n"
5633 		       "\tvirtualize_x2apic_mode: %d\n"
5634 		       "\tactivate_secondary_controls: %d\n",
5635 		       config->virtualize_apic_accesses,
5636 		       config->use_tpr_shadow,
5637 		       config->apic_register_virtualization,
5638 		       config->virtualize_x2apic_mode,
5639 		       config->activate_secondary_controls);
5640 
5641 		return false;
5642 	}
5643 
5644 	return true;
5645 }
5646 
5647 struct apic_reg_test apic_reg_tests[] = {
5648 	/* Good configs, where some L2 APIC accesses are virtualized. */
5649 	{
5650 		.name = "Virtualize APIC accesses",
5651 		.apic_reg_virt_config = {
5652 			.virtualize_apic_accesses = true,
5653 			.use_tpr_shadow = false,
5654 			.apic_register_virtualization = false,
5655 			.virtualize_x2apic_mode = false,
5656 			.activate_secondary_controls = true,
5657 		},
5658 	},
5659 	{
5660 		.name = "Virtualize APIC accesses + Use TPR shadow",
5661 		.apic_reg_virt_config = {
5662 			.virtualize_apic_accesses = true,
5663 			.use_tpr_shadow = true,
5664 			.apic_register_virtualization = false,
5665 			.virtualize_x2apic_mode = false,
5666 			.activate_secondary_controls = true,
5667 		},
5668 	},
5669 	{
5670 		.name = "APIC-register virtualization",
5671 		.apic_reg_virt_config = {
5672 			.virtualize_apic_accesses = true,
5673 			.use_tpr_shadow = true,
5674 			.apic_register_virtualization = true,
5675 			.virtualize_x2apic_mode = false,
5676 			.activate_secondary_controls = true,
5677 		},
5678 	},
5679 
5680 	/*
5681 	 * Test that the secondary processor-based VM-execution controls are
5682 	 * correctly ignored when "activate secondary controls" is disabled.
5683 	 */
5684 	{
5685 		.name = "Activate secondary controls off",
5686 		.apic_reg_virt_config = {
5687 			.virtualize_apic_accesses = true,
5688 			.use_tpr_shadow = false,
5689 			.apic_register_virtualization = true,
5690 			.virtualize_x2apic_mode = true,
5691 			.activate_secondary_controls = false,
5692 		},
5693 	},
5694 	{
5695 		.name = "Activate secondary controls off + Use TPR shadow",
5696 		.apic_reg_virt_config = {
5697 			.virtualize_apic_accesses = true,
5698 			.use_tpr_shadow = true,
5699 			.apic_register_virtualization = true,
5700 			.virtualize_x2apic_mode = true,
5701 			.activate_secondary_controls = false,
5702 		},
5703 	},
5704 
5705 	/*
5706 	 * Test that the APIC access address is treated like an arbitrary memory
5707 	 * address when "virtualize APIC accesses" is disabled.
5708 	 */
5709 	{
5710 		.name = "Virtualize APIC accesses off + Use TPR shadow",
5711 		.apic_reg_virt_config = {
5712 			.virtualize_apic_accesses = false,
5713 			.use_tpr_shadow = true,
5714 			.apic_register_virtualization = true,
5715 			.virtualize_x2apic_mode = true,
5716 			.activate_secondary_controls = true,
5717 		},
5718 	},
5719 
5720 	/*
5721 	 * Test that VM entry fails due to invalid controls when
5722 	 * "APIC-register virtualization" is enabled while "use TPR shadow" is
5723 	 * disabled.
5724 	 */
5725 	{
5726 		.name = "APIC-register virtualization + Use TPR shadow off",
5727 		.apic_reg_virt_config = {
5728 			.virtualize_apic_accesses = true,
5729 			.use_tpr_shadow = false,
5730 			.apic_register_virtualization = true,
5731 			.virtualize_x2apic_mode = false,
5732 			.activate_secondary_controls = true,
5733 		},
5734 	},
5735 
5736 	/*
5737 	 * Test that VM entry fails due to invalid controls when
5738 	 * "Virtualize x2APIC mode" is enabled while "use TPR shadow" is
5739 	 * disabled.
5740 	 */
5741 	{
5742 		.name = "Virtualize x2APIC mode + Use TPR shadow off",
5743 		.apic_reg_virt_config = {
5744 			.virtualize_apic_accesses = false,
5745 			.use_tpr_shadow = false,
5746 			.apic_register_virtualization = false,
5747 			.virtualize_x2apic_mode = true,
5748 			.activate_secondary_controls = true,
5749 		},
5750 	},
5751 	{
5752 		.name = "Virtualize x2APIC mode + Use TPR shadow off v2",
5753 		.apic_reg_virt_config = {
5754 			.virtualize_apic_accesses = false,
5755 			.use_tpr_shadow = false,
5756 			.apic_register_virtualization = true,
5757 			.virtualize_x2apic_mode = true,
5758 			.activate_secondary_controls = true,
5759 		},
5760 	},
5761 
5762 	/*
5763 	 * Test that VM entry fails due to invalid controls when
5764 	 * "virtualize x2APIC mode" is enabled while "virtualize APIC accesses"
5765 	 * is enabled.
5766 	 */
5767 	{
5768 		.name = "Virtualize x2APIC mode + Virtualize APIC accesses",
5769 		.apic_reg_virt_config = {
5770 			.virtualize_apic_accesses = true,
5771 			.use_tpr_shadow = true,
5772 			.apic_register_virtualization = false,
5773 			.virtualize_x2apic_mode = true,
5774 			.activate_secondary_controls = true,
5775 		},
5776 	},
5777 	{
5778 		.name = "Virtualize x2APIC mode + Virtualize APIC accesses v2",
5779 		.apic_reg_virt_config = {
5780 			.virtualize_apic_accesses = true,
5781 			.use_tpr_shadow = true,
5782 			.apic_register_virtualization = true,
5783 			.virtualize_x2apic_mode = true,
5784 			.activate_secondary_controls = true,
5785 		},
5786 	},
5787 };
5788 
5789 enum Apic_op {
5790 	APIC_OP_XAPIC_RD,
5791 	APIC_OP_XAPIC_WR,
5792 	TERMINATE,
5793 };
5794 
5795 static u32 vmx_xapic_read(u32 *apic_access_address, u32 reg)
5796 {
5797 	return *(volatile u32 *)((uintptr_t)apic_access_address + reg);
5798 }
5799 
5800 static void vmx_xapic_write(u32 *apic_access_address, u32 reg, u32 val)
5801 {
5802 	*(volatile u32 *)((uintptr_t)apic_access_address + reg) = val;
5803 }
5804 
5805 struct apic_reg_virt_guest_args {
5806 	enum Apic_op op;
5807 	u32 *apic_access_address;
5808 	u32 reg;
5809 	u32 val;
5810 	bool check_rd;
5811 	u32 (*virt_fn)(u32);
5812 } apic_reg_virt_guest_args;
5813 
5814 static void apic_reg_virt_guest(void)
5815 {
5816 	volatile struct apic_reg_virt_guest_args *args =
5817 		&apic_reg_virt_guest_args;
5818 
5819 	for (;;) {
5820 		enum Apic_op op = args->op;
5821 		u32 *apic_access_address = args->apic_access_address;
5822 		u32 reg = args->reg;
5823 		u32 val = args->val;
5824 		bool check_rd = args->check_rd;
5825 		u32 (*virt_fn)(u32) = args->virt_fn;
5826 
5827 		if (op == TERMINATE)
5828 			break;
5829 
5830 		if (op == APIC_OP_XAPIC_RD) {
5831 			u32 ret = vmx_xapic_read(apic_access_address, reg);
5832 
5833 			if (check_rd) {
5834 				u32 want = virt_fn(val);
5835 				u32 got = virt_fn(ret);
5836 
5837 				report(got == want,
5838 				       "read 0x%x, expected 0x%x.", got, want);
5839 			}
5840 		} else if (op == APIC_OP_XAPIC_WR) {
5841 			vmx_xapic_write(apic_access_address, reg, val);
5842 		}
5843 
5844 		/*
5845 		 * The L1 should always execute a vmcall after it's done testing
5846 		 * an individual APIC operation. This helps to validate that the
5847 		 * L1 and L2 are in sync with each other, as expected.
5848 		 */
5849 		vmcall();
5850 	}
5851 }
5852 
5853 static void test_xapic_rd(
5854 	u32 reg, struct apic_reg_virt_expectation *expectation,
5855 	u32 *apic_access_address, u32 *virtual_apic_page)
5856 {
5857 	u32 val = expectation->val;
5858 	u32 exit_reason_want = expectation->rd_exit_reason;
5859 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
5860 
5861 	report_prefix_pushf("xapic - reading 0x%03x", reg);
5862 
5863 	/* Configure guest to do an xapic read */
5864 	args->op = APIC_OP_XAPIC_RD;
5865 	args->apic_access_address = apic_access_address;
5866 	args->reg = reg;
5867 	args->val = val;
5868 	args->check_rd = exit_reason_want == VMX_VMCALL;
5869 	args->virt_fn = expectation->virt_fn;
5870 
5871 	/* Setup virtual APIC page */
5872 	if (!expectation->virtualize_apic_accesses) {
5873 		apic_access_address[apic_reg_index(reg)] = val;
5874 		virtual_apic_page[apic_reg_index(reg)] = 0;
5875 	} else if (exit_reason_want == VMX_VMCALL) {
5876 		apic_access_address[apic_reg_index(reg)] = 0;
5877 		virtual_apic_page[apic_reg_index(reg)] = val;
5878 	}
5879 
5880 	/* Enter guest */
5881 	enter_guest();
5882 
5883 	/*
5884 	 * Validate the behavior and
5885 	 * pass a magic value back to the guest.
5886 	 */
5887 	if (exit_reason_want == VMX_APIC_ACCESS) {
5888 		u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff;
5889 
5890 		assert_exit_reason(exit_reason_want);
5891 		report(apic_page_offset == reg,
5892 		       "got APIC access exit @ page offset 0x%03x, want 0x%03x",
5893 		       apic_page_offset, reg);
5894 		skip_exit_insn();
5895 
5896 		/* Reenter guest so it can consume/check rcx and exit again. */
5897 		enter_guest();
5898 	} else if (exit_reason_want != VMX_VMCALL) {
5899 		report(false, "Oops, bad exit expectation: %u.",
5900 		       exit_reason_want);
5901 	}
5902 
5903 	skip_exit_vmcall();
5904 	report_prefix_pop();
5905 }
5906 
5907 static void test_xapic_wr(
5908 	u32 reg, struct apic_reg_virt_expectation *expectation,
5909 	u32 *apic_access_address, u32 *virtual_apic_page)
5910 {
5911 	u32 val = expectation->val;
5912 	u32 exit_reason_want = expectation->wr_exit_reason;
5913 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
5914 	bool virtualized =
5915 		expectation->virtualize_apic_accesses &&
5916 		(exit_reason_want == VMX_APIC_WRITE ||
5917 		 exit_reason_want == VMX_VMCALL);
5918 	bool checked = false;
5919 
5920 	report_prefix_pushf("xapic - writing 0x%x to 0x%03x", val, reg);
5921 
5922 	/* Configure guest to do an xapic read */
5923 	args->op = APIC_OP_XAPIC_WR;
5924 	args->apic_access_address = apic_access_address;
5925 	args->reg = reg;
5926 	args->val = val;
5927 
5928 	/* Setup virtual APIC page */
5929 	if (virtualized || !expectation->virtualize_apic_accesses) {
5930 		apic_access_address[apic_reg_index(reg)] = 0;
5931 		virtual_apic_page[apic_reg_index(reg)] = 0;
5932 	}
5933 
5934 	/* Enter guest */
5935 	enter_guest();
5936 
5937 	/*
5938 	 * Validate the behavior and
5939 	 * pass a magic value back to the guest.
5940 	 */
5941 	if (exit_reason_want == VMX_APIC_ACCESS) {
5942 		u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff;
5943 
5944 		assert_exit_reason(exit_reason_want);
5945 		report(apic_page_offset == reg,
5946 		       "got APIC access exit @ page offset 0x%03x, want 0x%03x",
5947 		       apic_page_offset, reg);
5948 		skip_exit_insn();
5949 
5950 		/* Reenter guest so it can consume/check rcx and exit again. */
5951 		enter_guest();
5952 	} else if (exit_reason_want == VMX_APIC_WRITE) {
5953 		assert_exit_reason(exit_reason_want);
5954 		report(virtual_apic_page[apic_reg_index(reg)] == val,
5955 		       "got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%x",
5956 		       apic_reg_index(reg),
5957 		       virtual_apic_page[apic_reg_index(reg)], val);
5958 		checked = true;
5959 
5960 		/* Reenter guest so it can consume/check rcx and exit again. */
5961 		enter_guest();
5962 	} else if (exit_reason_want != VMX_VMCALL) {
5963 		report(false, "Oops, bad exit expectation: %u.",
5964 		       exit_reason_want);
5965 	}
5966 
5967 	assert_exit_reason(VMX_VMCALL);
5968 	if (virtualized && !checked) {
5969 		u32 want = expectation->virt_fn(val);
5970 		u32 got = virtual_apic_page[apic_reg_index(reg)];
5971 		got = expectation->virt_fn(got);
5972 
5973 		report(got == want, "exitless write; val is 0x%x, want 0x%x",
5974 		       got, want);
5975 	} else if (!expectation->virtualize_apic_accesses && !checked) {
5976 		u32 got = apic_access_address[apic_reg_index(reg)];
5977 
5978 		report(got == val,
5979 		       "non-virtualized write; val is 0x%x, want 0x%x", got,
5980 		       val);
5981 	} else if (!expectation->virtualize_apic_accesses && checked) {
5982 		report(false,
5983 		       "Non-virtualized write was prematurely checked!");
5984 	}
5985 
5986 	skip_exit_vmcall();
5987 	report_prefix_pop();
5988 }
5989 
5990 enum Config_type {
5991 	CONFIG_TYPE_GOOD,
5992 	CONFIG_TYPE_UNSUPPORTED,
5993 	CONFIG_TYPE_VMENTRY_FAILS_EARLY,
5994 };
5995 
5996 static enum Config_type configure_apic_reg_virt_test(
5997 	struct apic_reg_virt_config *apic_reg_virt_config)
5998 {
5999 	u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6000 	u32 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6001 	/* Configs where L2 entry fails early, due to invalid controls. */
6002 	bool use_tpr_shadow_incorrectly_off =
6003 		!apic_reg_virt_config->use_tpr_shadow &&
6004 		(apic_reg_virt_config->apic_register_virtualization ||
6005 		 apic_reg_virt_config->virtualize_x2apic_mode) &&
6006 		apic_reg_virt_config->activate_secondary_controls;
6007 	bool virtualize_apic_accesses_incorrectly_on =
6008 		apic_reg_virt_config->virtualize_apic_accesses &&
6009 		apic_reg_virt_config->virtualize_x2apic_mode &&
6010 		apic_reg_virt_config->activate_secondary_controls;
6011 	bool vmentry_fails_early =
6012 		use_tpr_shadow_incorrectly_off ||
6013 		virtualize_apic_accesses_incorrectly_on;
6014 
6015 	if (apic_reg_virt_config->activate_secondary_controls) {
6016 		if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) {
6017 			printf("VM-execution control \"activate secondary controls\" NOT supported.\n");
6018 			return CONFIG_TYPE_UNSUPPORTED;
6019 		}
6020 		cpu_exec_ctrl0 |= CPU_SECONDARY;
6021 	} else {
6022 		cpu_exec_ctrl0 &= ~CPU_SECONDARY;
6023 	}
6024 
6025 	if (apic_reg_virt_config->virtualize_apic_accesses) {
6026 		if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES)) {
6027 			printf("VM-execution control \"virtualize APIC accesses\" NOT supported.\n");
6028 			return CONFIG_TYPE_UNSUPPORTED;
6029 		}
6030 		cpu_exec_ctrl1 |= CPU_VIRT_APIC_ACCESSES;
6031 	} else {
6032 		cpu_exec_ctrl1 &= ~CPU_VIRT_APIC_ACCESSES;
6033 	}
6034 
6035 	if (apic_reg_virt_config->use_tpr_shadow) {
6036 		if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) {
6037 			printf("VM-execution control \"use TPR shadow\" NOT supported.\n");
6038 			return CONFIG_TYPE_UNSUPPORTED;
6039 		}
6040 		cpu_exec_ctrl0 |= CPU_TPR_SHADOW;
6041 	} else {
6042 		cpu_exec_ctrl0 &= ~CPU_TPR_SHADOW;
6043 	}
6044 
6045 	if (apic_reg_virt_config->apic_register_virtualization) {
6046 		if (!(ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT)) {
6047 			printf("VM-execution control \"APIC-register virtualization\" NOT supported.\n");
6048 			return CONFIG_TYPE_UNSUPPORTED;
6049 		}
6050 		cpu_exec_ctrl1 |= CPU_APIC_REG_VIRT;
6051 	} else {
6052 		cpu_exec_ctrl1 &= ~CPU_APIC_REG_VIRT;
6053 	}
6054 
6055 	if (apic_reg_virt_config->virtualize_x2apic_mode) {
6056 		if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_X2APIC)) {
6057 			printf("VM-execution control \"virtualize x2APIC mode\" NOT supported.\n");
6058 			return CONFIG_TYPE_UNSUPPORTED;
6059 		}
6060 		cpu_exec_ctrl1 |= CPU_VIRT_X2APIC;
6061 	} else {
6062 		cpu_exec_ctrl1 &= ~CPU_VIRT_X2APIC;
6063 	}
6064 
6065 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6066 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6067 
6068 	if (vmentry_fails_early)
6069 		return CONFIG_TYPE_VMENTRY_FAILS_EARLY;
6070 
6071 	return CONFIG_TYPE_GOOD;
6072 }
6073 
6074 static bool cpu_has_apicv(void)
6075 {
6076 	return ((ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT) &&
6077 		(ctrl_cpu_rev[1].clr & CPU_VINTD) &&
6078 		(ctrl_pin_rev.clr & PIN_POST_INTR));
6079 }
6080 
6081 /* Validates APIC register access across valid virtualization configurations. */
6082 static void apic_reg_virt_test(void)
6083 {
6084 	u32 *apic_access_address;
6085 	u32 *virtual_apic_page;
6086 	u64 control;
6087 	u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6088 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6089 	int i;
6090 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
6091 
6092 	if (!cpu_has_apicv()) {
6093 		report_skip(__func__);
6094 		return;
6095 	}
6096 
6097 	control = cpu_exec_ctrl1;
6098 	control &= ~CPU_VINTD;
6099 	vmcs_write(CPU_EXEC_CTRL1, control);
6100 
6101 	test_set_guest(apic_reg_virt_guest);
6102 
6103 	/*
6104 	 * From the SDM: The 1-setting of the "virtualize APIC accesses"
6105 	 * VM-execution is guaranteed to apply only if translations to the
6106 	 * APIC-access address use a 4-KByte page.
6107 	 */
6108 	apic_access_address = alloc_page();
6109 	force_4k_page(apic_access_address);
6110 	vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_address));
6111 
6112 	virtual_apic_page = alloc_page();
6113 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
6114 
6115 	for (i = 0; i < ARRAY_SIZE(apic_reg_tests); i++) {
6116 		struct apic_reg_test *apic_reg_test = &apic_reg_tests[i];
6117 		struct apic_reg_virt_config *apic_reg_virt_config =
6118 				&apic_reg_test->apic_reg_virt_config;
6119 		enum Config_type config_type;
6120 		u32 reg;
6121 
6122 		printf("--- %s test ---\n", apic_reg_test->name);
6123 		config_type =
6124 			configure_apic_reg_virt_test(apic_reg_virt_config);
6125 		if (config_type == CONFIG_TYPE_UNSUPPORTED) {
6126 			printf("Skip because of missing features.\n");
6127 			continue;
6128 		}
6129 
6130 		if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) {
6131 			enter_guest_with_bad_controls();
6132 			continue;
6133 		}
6134 
6135 		for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) {
6136 			struct apic_reg_virt_expectation expectation = {};
6137 			bool ok;
6138 
6139 			ok = apic_reg_virt_exit_expectation(
6140 				reg, apic_reg_virt_config, &expectation);
6141 			if (!ok) {
6142 				report(false, "Malformed test.");
6143 				break;
6144 			}
6145 
6146 			test_xapic_rd(reg, &expectation, apic_access_address,
6147 				      virtual_apic_page);
6148 			test_xapic_wr(reg, &expectation, apic_access_address,
6149 				      virtual_apic_page);
6150 		}
6151 	}
6152 
6153 	/* Terminate the guest */
6154 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6155 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6156 	args->op = TERMINATE;
6157 	enter_guest();
6158 	assert_exit_reason(VMX_VMCALL);
6159 }
6160 
6161 struct virt_x2apic_mode_config {
6162 	struct apic_reg_virt_config apic_reg_virt_config;
6163 	bool virtual_interrupt_delivery;
6164 	bool use_msr_bitmaps;
6165 	bool disable_x2apic_msr_intercepts;
6166 	bool disable_x2apic;
6167 };
6168 
6169 struct virt_x2apic_mode_test_case {
6170 	const char *name;
6171 	struct virt_x2apic_mode_config virt_x2apic_mode_config;
6172 };
6173 
6174 enum Virt_x2apic_mode_behavior_type {
6175 	X2APIC_ACCESS_VIRTUALIZED,
6176 	X2APIC_ACCESS_PASSED_THROUGH,
6177 	X2APIC_ACCESS_TRIGGERS_GP,
6178 };
6179 
6180 struct virt_x2apic_mode_expectation {
6181 	enum Reason rd_exit_reason;
6182 	enum Reason wr_exit_reason;
6183 
6184 	/*
6185 	 * RDMSR and WRMSR handle 64-bit values. However, except for ICR, all of
6186 	 * the x2APIC registers are 32 bits. Notice:
6187 	 *   1. vmx_x2apic_read() clears the upper 32 bits for 32-bit registers.
6188 	 *   2. vmx_x2apic_write() expects the val arg to be well-formed.
6189 	 */
6190 	u64 rd_val;
6191 	u64 wr_val;
6192 
6193 	/*
6194 	 * Compares input to virtualized output;
6195 	 * 1st arg is pointer to return expected virtualization output.
6196 	 */
6197 	u64 (*virt_fn)(u64);
6198 
6199 	enum Virt_x2apic_mode_behavior_type rd_behavior;
6200 	enum Virt_x2apic_mode_behavior_type wr_behavior;
6201 	bool wr_only;
6202 };
6203 
6204 static u64 virt_x2apic_mode_identity(u64 val)
6205 {
6206 	return val;
6207 }
6208 
6209 static u64 virt_x2apic_mode_nibble1(u64 val)
6210 {
6211 	return val & 0xf0;
6212 }
6213 
6214 static void virt_x2apic_mode_rd_expectation(
6215 	u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic,
6216 	bool apic_register_virtualization, bool virtual_interrupt_delivery,
6217 	struct virt_x2apic_mode_expectation *expectation)
6218 {
6219 	bool readable =
6220 		!x2apic_reg_reserved(reg) &&
6221 		reg != APIC_EOI;
6222 
6223 	expectation->rd_exit_reason = VMX_VMCALL;
6224 	expectation->virt_fn = virt_x2apic_mode_identity;
6225 	if (virt_x2apic_mode_on && apic_register_virtualization) {
6226 		expectation->rd_val = MAGIC_VAL_1;
6227 		if (reg == APIC_PROCPRI && virtual_interrupt_delivery)
6228 			expectation->virt_fn = virt_x2apic_mode_nibble1;
6229 		else if (reg == APIC_TASKPRI)
6230 			expectation->virt_fn = virt_x2apic_mode_nibble1;
6231 		expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED;
6232 	} else if (virt_x2apic_mode_on && !apic_register_virtualization &&
6233 		   reg == APIC_TASKPRI) {
6234 		expectation->rd_val = MAGIC_VAL_1;
6235 		expectation->virt_fn = virt_x2apic_mode_nibble1;
6236 		expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED;
6237 	} else if (!disable_x2apic && readable) {
6238 		expectation->rd_val = apic_read(reg);
6239 		expectation->rd_behavior = X2APIC_ACCESS_PASSED_THROUGH;
6240 	} else {
6241 		expectation->rd_behavior = X2APIC_ACCESS_TRIGGERS_GP;
6242 	}
6243 }
6244 
6245 /*
6246  * get_x2apic_wr_val() creates an innocuous write value for an x2APIC register.
6247  *
6248  * For writable registers, get_x2apic_wr_val() deposits the write value into the
6249  * val pointer arg and returns true. For non-writable registers, val is not
6250  * modified and get_x2apic_wr_val() returns false.
6251  */
6252 static bool get_x2apic_wr_val(u32 reg, u64 *val)
6253 {
6254 	switch (reg) {
6255 	case APIC_TASKPRI:
6256 		/* Bits 31:8 are reserved. */
6257 		*val &= 0xff;
6258 		break;
6259 	case APIC_EOI:
6260 	case APIC_ESR:
6261 	case APIC_TMICT:
6262 		/*
6263 		 * EOI, ESR: WRMSR of a non-zero value causes #GP(0).
6264 		 * TMICT: A write of 0 to the initial-count register effectively
6265 		 *        stops the local APIC timer, in both one-shot and
6266 		 *        periodic mode.
6267 		 */
6268 		*val = 0;
6269 		break;
6270 	case APIC_SPIV:
6271 	case APIC_LVTT:
6272 	case APIC_LVTTHMR:
6273 	case APIC_LVTPC:
6274 	case APIC_LVT0:
6275 	case APIC_LVT1:
6276 	case APIC_LVTERR:
6277 	case APIC_TDCR:
6278 		/*
6279 		 * To avoid writing a 1 to a reserved bit or causing some other
6280 		 * unintended side effect, read the current value and use it as
6281 		 * the write value.
6282 		 */
6283 		*val = apic_read(reg);
6284 		break;
6285 	case APIC_CMCI:
6286 		if (!apic_lvt_entry_supported(6))
6287 			return false;
6288 		*val = apic_read(reg);
6289 		break;
6290 	case APIC_ICR:
6291 		*val = 0x40000 | 0xf1;
6292 		break;
6293 	case APIC_SELF_IPI:
6294 		/*
6295 		 * With special processing (i.e., virtualize x2APIC mode +
6296 		 * virtual interrupt delivery), writing zero causes an
6297 		 * APIC-write VM exit. We plan to add a test for enabling
6298 		 * "virtual-interrupt delivery" in VMCS12, and that's where we
6299 		 * will test a self IPI with special processing.
6300 		 */
6301 		*val = 0x0;
6302 		break;
6303 	default:
6304 		return false;
6305 	}
6306 
6307 	return true;
6308 }
6309 
6310 static bool special_processing_applies(u32 reg, u64 *val,
6311 				       bool virt_int_delivery)
6312 {
6313 	bool special_processing =
6314 		(reg == APIC_TASKPRI) ||
6315 		(virt_int_delivery &&
6316 		 (reg == APIC_EOI || reg == APIC_SELF_IPI));
6317 
6318 	if (special_processing) {
6319 		TEST_ASSERT(get_x2apic_wr_val(reg, val));
6320 		return true;
6321 	}
6322 
6323 	return false;
6324 }
6325 
6326 static void virt_x2apic_mode_wr_expectation(
6327 	u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic,
6328 	bool virt_int_delivery,
6329 	struct virt_x2apic_mode_expectation *expectation)
6330 {
6331 	expectation->wr_exit_reason = VMX_VMCALL;
6332 	expectation->wr_val = MAGIC_VAL_1;
6333 	expectation->wr_only = false;
6334 
6335 	if (virt_x2apic_mode_on &&
6336 	    special_processing_applies(reg, &expectation->wr_val,
6337 				       virt_int_delivery)) {
6338 		expectation->wr_behavior = X2APIC_ACCESS_VIRTUALIZED;
6339 		if (reg == APIC_SELF_IPI)
6340 			expectation->wr_exit_reason = VMX_APIC_WRITE;
6341 	} else if (!disable_x2apic &&
6342 		   get_x2apic_wr_val(reg, &expectation->wr_val)) {
6343 		expectation->wr_behavior = X2APIC_ACCESS_PASSED_THROUGH;
6344 		if (reg == APIC_EOI || reg == APIC_SELF_IPI)
6345 			expectation->wr_only = true;
6346 		if (reg == APIC_ICR)
6347 			expectation->wr_exit_reason = VMX_EXTINT;
6348 	} else {
6349 		expectation->wr_behavior = X2APIC_ACCESS_TRIGGERS_GP;
6350 		/*
6351 		 * Writing 1 to a reserved bit triggers a #GP.
6352 		 * Thus, set the write value to 0, which seems
6353 		 * the most likely to detect a missed #GP.
6354 		 */
6355 		expectation->wr_val = 0;
6356 	}
6357 }
6358 
6359 static void virt_x2apic_mode_exit_expectation(
6360 	u32 reg, struct virt_x2apic_mode_config *config,
6361 	struct virt_x2apic_mode_expectation *expectation)
6362 {
6363 	struct apic_reg_virt_config *base_config =
6364 		&config->apic_reg_virt_config;
6365 	bool virt_x2apic_mode_on =
6366 		base_config->virtualize_x2apic_mode &&
6367 		config->use_msr_bitmaps &&
6368 		config->disable_x2apic_msr_intercepts &&
6369 		base_config->activate_secondary_controls;
6370 
6371 	virt_x2apic_mode_wr_expectation(
6372 		reg, virt_x2apic_mode_on, config->disable_x2apic,
6373 		config->virtual_interrupt_delivery, expectation);
6374 	virt_x2apic_mode_rd_expectation(
6375 		reg, virt_x2apic_mode_on, config->disable_x2apic,
6376 		base_config->apic_register_virtualization,
6377 		config->virtual_interrupt_delivery, expectation);
6378 }
6379 
6380 struct virt_x2apic_mode_test_case virt_x2apic_mode_tests[] = {
6381 	/*
6382 	 * Baseline "virtualize x2APIC mode" configuration:
6383 	 *   - virtualize x2APIC mode
6384 	 *   - virtual-interrupt delivery
6385 	 *   - APIC-register virtualization
6386 	 *   - x2APIC MSR intercepts disabled
6387 	 *
6388 	 * Reads come from virtual APIC page, special processing applies to
6389 	 * VTPR, EOI, and SELF IPI, and all other writes pass through to L1
6390 	 * APIC.
6391 	 */
6392 	{
6393 		.name = "Baseline",
6394 		.virt_x2apic_mode_config = {
6395 			.virtual_interrupt_delivery = true,
6396 			.use_msr_bitmaps = true,
6397 			.disable_x2apic_msr_intercepts = true,
6398 			.disable_x2apic = false,
6399 			.apic_reg_virt_config = {
6400 				.apic_register_virtualization = true,
6401 				.use_tpr_shadow = true,
6402 				.virtualize_apic_accesses = false,
6403 				.virtualize_x2apic_mode = true,
6404 				.activate_secondary_controls = true,
6405 			},
6406 		},
6407 	},
6408 	{
6409 		.name = "Baseline w/ x2apic disabled",
6410 		.virt_x2apic_mode_config = {
6411 			.virtual_interrupt_delivery = true,
6412 			.use_msr_bitmaps = true,
6413 			.disable_x2apic_msr_intercepts = true,
6414 			.disable_x2apic = true,
6415 			.apic_reg_virt_config = {
6416 				.apic_register_virtualization = true,
6417 				.use_tpr_shadow = true,
6418 				.virtualize_apic_accesses = false,
6419 				.virtualize_x2apic_mode = true,
6420 				.activate_secondary_controls = true,
6421 			},
6422 		},
6423 	},
6424 
6425 	/*
6426 	 * Baseline, minus virtual-interrupt delivery. Reads come from virtual
6427 	 * APIC page, special processing applies to VTPR, and all other writes
6428 	 * pass through to L1 APIC.
6429 	 */
6430 	{
6431 		.name = "Baseline - virtual interrupt delivery",
6432 		.virt_x2apic_mode_config = {
6433 			.virtual_interrupt_delivery = false,
6434 			.use_msr_bitmaps = true,
6435 			.disable_x2apic_msr_intercepts = true,
6436 			.disable_x2apic = false,
6437 			.apic_reg_virt_config = {
6438 				.apic_register_virtualization = true,
6439 				.use_tpr_shadow = true,
6440 				.virtualize_apic_accesses = false,
6441 				.virtualize_x2apic_mode = true,
6442 				.activate_secondary_controls = true,
6443 			},
6444 		},
6445 	},
6446 
6447 	/*
6448 	 * Baseline, minus APIC-register virtualization. x2APIC reads pass
6449 	 * through to L1's APIC, unless reading VTPR
6450 	 */
6451 	{
6452 		.name = "Virtualize x2APIC mode, no APIC reg virt",
6453 		.virt_x2apic_mode_config = {
6454 			.virtual_interrupt_delivery = true,
6455 			.use_msr_bitmaps = true,
6456 			.disable_x2apic_msr_intercepts = true,
6457 			.disable_x2apic = false,
6458 			.apic_reg_virt_config = {
6459 				.apic_register_virtualization = false,
6460 				.use_tpr_shadow = true,
6461 				.virtualize_apic_accesses = false,
6462 				.virtualize_x2apic_mode = true,
6463 				.activate_secondary_controls = true,
6464 			},
6465 		},
6466 	},
6467 	{
6468 		.name = "Virtualize x2APIC mode, no APIC reg virt, x2APIC off",
6469 		.virt_x2apic_mode_config = {
6470 			.virtual_interrupt_delivery = true,
6471 			.use_msr_bitmaps = true,
6472 			.disable_x2apic_msr_intercepts = true,
6473 			.disable_x2apic = true,
6474 			.apic_reg_virt_config = {
6475 				.apic_register_virtualization = false,
6476 				.use_tpr_shadow = true,
6477 				.virtualize_apic_accesses = false,
6478 				.virtualize_x2apic_mode = true,
6479 				.activate_secondary_controls = true,
6480 			},
6481 		},
6482 	},
6483 
6484 	/*
6485 	 * Enable "virtualize x2APIC mode" and "APIC-register virtualization",
6486 	 * and disable intercepts for the x2APIC MSRs, but fail to enable
6487 	 * "activate secondary controls" (i.e. L2 gets access to L1's x2APIC
6488 	 * MSRs).
6489 	 */
6490 	{
6491 		.name = "Fail to enable activate secondary controls",
6492 		.virt_x2apic_mode_config = {
6493 			.virtual_interrupt_delivery = true,
6494 			.use_msr_bitmaps = true,
6495 			.disable_x2apic_msr_intercepts = true,
6496 			.disable_x2apic = false,
6497 			.apic_reg_virt_config = {
6498 				.apic_register_virtualization = true,
6499 				.use_tpr_shadow = true,
6500 				.virtualize_apic_accesses = false,
6501 				.virtualize_x2apic_mode = true,
6502 				.activate_secondary_controls = false,
6503 			},
6504 		},
6505 	},
6506 
6507 	/*
6508 	 * Enable "APIC-register virtualization" and enable "activate secondary
6509 	 * controls" and disable intercepts for the x2APIC MSRs, but do not
6510 	 * enable the "virtualize x2APIC mode" VM-execution control (i.e. L2
6511 	 * gets access to L1's x2APIC MSRs).
6512 	 */
6513 	{
6514 		.name = "Fail to enable virtualize x2APIC mode",
6515 		.virt_x2apic_mode_config = {
6516 			.virtual_interrupt_delivery = true,
6517 			.use_msr_bitmaps = true,
6518 			.disable_x2apic_msr_intercepts = true,
6519 			.disable_x2apic = false,
6520 			.apic_reg_virt_config = {
6521 				.apic_register_virtualization = true,
6522 				.use_tpr_shadow = true,
6523 				.virtualize_apic_accesses = false,
6524 				.virtualize_x2apic_mode = false,
6525 				.activate_secondary_controls = true,
6526 			},
6527 		},
6528 	},
6529 
6530 	/*
6531 	 * Disable "Virtualize x2APIC mode", disable x2APIC MSR intercepts, and
6532 	 * enable "APIC-register virtualization" --> L2 gets L1's x2APIC MSRs.
6533 	 */
6534 	{
6535 		.name = "Baseline",
6536 		.virt_x2apic_mode_config = {
6537 			.virtual_interrupt_delivery = true,
6538 			.use_msr_bitmaps = true,
6539 			.disable_x2apic_msr_intercepts = true,
6540 			.disable_x2apic = false,
6541 			.apic_reg_virt_config = {
6542 				.apic_register_virtualization = true,
6543 				.use_tpr_shadow = true,
6544 				.virtualize_apic_accesses = false,
6545 				.virtualize_x2apic_mode = false,
6546 				.activate_secondary_controls = true,
6547 			},
6548 		},
6549 	},
6550 };
6551 
6552 enum X2apic_op {
6553 	X2APIC_OP_RD,
6554 	X2APIC_OP_WR,
6555 	X2APIC_TERMINATE,
6556 };
6557 
6558 static u64 vmx_x2apic_read(u32 reg)
6559 {
6560 	u32 msr_addr = x2apic_msr(reg);
6561 	u64 val;
6562 
6563 	val = rdmsr(msr_addr);
6564 
6565 	return val;
6566 }
6567 
6568 static void vmx_x2apic_write(u32 reg, u64 val)
6569 {
6570 	u32 msr_addr = x2apic_msr(reg);
6571 
6572 	wrmsr(msr_addr, val);
6573 }
6574 
6575 struct virt_x2apic_mode_guest_args {
6576 	enum X2apic_op op;
6577 	u32 reg;
6578 	u64 val;
6579 	bool should_gp;
6580 	u64 (*virt_fn)(u64);
6581 } virt_x2apic_mode_guest_args;
6582 
6583 static volatile bool handle_x2apic_gp_ran;
6584 static volatile u32 handle_x2apic_gp_insn_len;
6585 static void handle_x2apic_gp(struct ex_regs *regs)
6586 {
6587 	handle_x2apic_gp_ran = true;
6588 	regs->rip += handle_x2apic_gp_insn_len;
6589 }
6590 
6591 static handler setup_x2apic_gp_handler(void)
6592 {
6593 	handler old_handler;
6594 
6595 	old_handler = handle_exception(GP_VECTOR, handle_x2apic_gp);
6596 	/* RDMSR and WRMSR are both 2 bytes, assuming no prefixes. */
6597 	handle_x2apic_gp_insn_len = 2;
6598 
6599 	return old_handler;
6600 }
6601 
6602 static void teardown_x2apic_gp_handler(handler old_handler)
6603 {
6604 	handle_exception(GP_VECTOR, old_handler);
6605 
6606 	/*
6607 	 * Defensively reset instruction length, so that if the handler is
6608 	 * incorrectly used, it will loop infinitely, rather than run off into
6609 	 * la la land.
6610 	 */
6611 	handle_x2apic_gp_insn_len = 0;
6612 	handle_x2apic_gp_ran = false;
6613 }
6614 
6615 static void virt_x2apic_mode_guest(void)
6616 {
6617 	volatile struct virt_x2apic_mode_guest_args *args =
6618 		&virt_x2apic_mode_guest_args;
6619 
6620 	for (;;) {
6621 		enum X2apic_op op = args->op;
6622 		u32 reg = args->reg;
6623 		u64 val = args->val;
6624 		bool should_gp = args->should_gp;
6625 		u64 (*virt_fn)(u64) = args->virt_fn;
6626 		handler old_handler;
6627 
6628 		if (op == X2APIC_TERMINATE)
6629 			break;
6630 
6631 		if (should_gp) {
6632 			TEST_ASSERT(!handle_x2apic_gp_ran);
6633 			old_handler = setup_x2apic_gp_handler();
6634 		}
6635 
6636 		if (op == X2APIC_OP_RD) {
6637 			u64 ret = vmx_x2apic_read(reg);
6638 
6639 			if (!should_gp) {
6640 				u64 want = virt_fn(val);
6641 				u64 got = virt_fn(ret);
6642 
6643 				report(got == want,
6644 				       "APIC read; got 0x%lx, want 0x%lx.",
6645 				       got, want);
6646 			}
6647 		} else if (op == X2APIC_OP_WR) {
6648 			vmx_x2apic_write(reg, val);
6649 		}
6650 
6651 		if (should_gp) {
6652 			report(handle_x2apic_gp_ran,
6653 			       "x2APIC op triggered GP.");
6654 			teardown_x2apic_gp_handler(old_handler);
6655 		}
6656 
6657 		/*
6658 		 * The L1 should always execute a vmcall after it's done testing
6659 		 * an individual APIC operation. This helps to validate that the
6660 		 * L1 and L2 are in sync with each other, as expected.
6661 		 */
6662 		vmcall();
6663 	}
6664 }
6665 
6666 static void test_x2apic_rd(
6667 	u32 reg, struct virt_x2apic_mode_expectation *expectation,
6668 	u32 *virtual_apic_page)
6669 {
6670 	u64 val = expectation->rd_val;
6671 	u32 exit_reason_want = expectation->rd_exit_reason;
6672 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6673 
6674 	report_prefix_pushf("x2apic - reading 0x%03x", reg);
6675 
6676 	/* Configure guest to do an x2apic read */
6677 	args->op = X2APIC_OP_RD;
6678 	args->reg = reg;
6679 	args->val = val;
6680 	args->should_gp = expectation->rd_behavior == X2APIC_ACCESS_TRIGGERS_GP;
6681 	args->virt_fn = expectation->virt_fn;
6682 
6683 	/* Setup virtual APIC page */
6684 	if (expectation->rd_behavior == X2APIC_ACCESS_VIRTUALIZED)
6685 		virtual_apic_page[apic_reg_index(reg)] = (u32)val;
6686 
6687 	/* Enter guest */
6688 	enter_guest();
6689 
6690 	if (exit_reason_want != VMX_VMCALL) {
6691 		report(false, "Oops, bad exit expectation: %u.",
6692 		       exit_reason_want);
6693 	}
6694 
6695 	skip_exit_vmcall();
6696 	report_prefix_pop();
6697 }
6698 
6699 static volatile bool handle_x2apic_ipi_ran;
6700 static void handle_x2apic_ipi(isr_regs_t *regs)
6701 {
6702 	handle_x2apic_ipi_ran = true;
6703 	eoi();
6704 }
6705 
6706 static void test_x2apic_wr(
6707 	u32 reg, struct virt_x2apic_mode_expectation *expectation,
6708 	u32 *virtual_apic_page)
6709 {
6710 	u64 val = expectation->wr_val;
6711 	u32 exit_reason_want = expectation->wr_exit_reason;
6712 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6713 	int ipi_vector = 0xf1;
6714 	u32 restore_val = 0;
6715 
6716 	report_prefix_pushf("x2apic - writing 0x%lx to 0x%03x", val, reg);
6717 
6718 	/* Configure guest to do an x2apic read */
6719 	args->op = X2APIC_OP_WR;
6720 	args->reg = reg;
6721 	args->val = val;
6722 	args->should_gp = expectation->wr_behavior == X2APIC_ACCESS_TRIGGERS_GP;
6723 
6724 	/* Setup virtual APIC page */
6725 	if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED)
6726 		virtual_apic_page[apic_reg_index(reg)] = 0;
6727 	if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH && !expectation->wr_only)
6728 		restore_val = apic_read(reg);
6729 
6730 	/* Setup IPI handler */
6731 	handle_x2apic_ipi_ran = false;
6732 	handle_irq(ipi_vector, handle_x2apic_ipi);
6733 
6734 	/* Enter guest */
6735 	enter_guest();
6736 
6737 	/*
6738 	 * Validate the behavior and
6739 	 * pass a magic value back to the guest.
6740 	 */
6741 	if (exit_reason_want == VMX_EXTINT) {
6742 		assert_exit_reason(exit_reason_want);
6743 
6744 		/* Clear the external interrupt. */
6745 		irq_enable();
6746 		asm volatile ("nop");
6747 		irq_disable();
6748 		report(handle_x2apic_ipi_ran,
6749 		       "Got pending interrupt after IRQ enabled.");
6750 
6751 		enter_guest();
6752 	} else if (exit_reason_want == VMX_APIC_WRITE) {
6753 		assert_exit_reason(exit_reason_want);
6754 		report(virtual_apic_page[apic_reg_index(reg)] == val,
6755 		       "got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%lx",
6756 		       apic_reg_index(reg),
6757 		       virtual_apic_page[apic_reg_index(reg)], val);
6758 
6759 		/* Reenter guest so it can consume/check rcx and exit again. */
6760 		enter_guest();
6761 	} else if (exit_reason_want != VMX_VMCALL) {
6762 		report(false, "Oops, bad exit expectation: %u.",
6763 		       exit_reason_want);
6764 	}
6765 
6766 	assert_exit_reason(VMX_VMCALL);
6767 	if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) {
6768 		u64 want = val;
6769 		u32 got = virtual_apic_page[apic_reg_index(reg)];
6770 
6771 		report(got == want, "x2APIC write; got 0x%x, want 0x%lx", got,
6772 		       want);
6773 	} else if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH) {
6774 		if (!expectation->wr_only) {
6775 			u32 got = apic_read(reg);
6776 			bool ok;
6777 
6778 			/*
6779 			 * When L1's TPR is passed through to L2, the lower
6780 			 * nibble can be lost. For example, if L2 executes
6781 			 * WRMSR(0x808, 0x78), then, L1 might read 0x70.
6782 			 *
6783 			 * Here's how the lower nibble can get lost:
6784 			 *   1. L2 executes WRMSR(0x808, 0x78).
6785 			 *   2. L2 exits to L0 with a WRMSR exit.
6786 			 *   3. L0 emulates WRMSR, by writing L1's TPR.
6787 			 *   4. L0 re-enters L2.
6788 			 *   5. L2 exits to L0 (reason doesn't matter).
6789 			 *   6. L0 reflects L2's exit to L1.
6790 			 *   7. Before entering L1, L0 exits to user-space
6791 			 *      (e.g., to satisfy TPR access reporting).
6792 			 *   8. User-space executes KVM_SET_REGS ioctl, which
6793 			 *      clears the lower nibble of L1's TPR.
6794 			 */
6795 			if (reg == APIC_TASKPRI) {
6796 				got = apic_virt_nibble1(got);
6797 				val = apic_virt_nibble1(val);
6798 			}
6799 
6800 			ok = got == val;
6801 			report(ok,
6802 			       "non-virtualized write; val is 0x%x, want 0x%lx",
6803 			       got, val);
6804 			apic_write(reg, restore_val);
6805 		} else {
6806 			report(true, "non-virtualized and write-only OK");
6807 		}
6808 	}
6809 	skip_exit_insn();
6810 
6811 	report_prefix_pop();
6812 }
6813 
6814 static enum Config_type configure_virt_x2apic_mode_test(
6815 	struct virt_x2apic_mode_config *virt_x2apic_mode_config,
6816 	u8 *msr_bitmap_page)
6817 {
6818 	int msr;
6819 	u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6820 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6821 
6822 	/* x2apic-specific VMCS config */
6823 	if (virt_x2apic_mode_config->use_msr_bitmaps) {
6824 		/* virt_x2apic_mode_test() checks for MSR bitmaps support */
6825 		cpu_exec_ctrl0 |= CPU_MSR_BITMAP;
6826 	} else {
6827 		cpu_exec_ctrl0 &= ~CPU_MSR_BITMAP;
6828 	}
6829 
6830 	if (virt_x2apic_mode_config->virtual_interrupt_delivery) {
6831 		if (!(ctrl_cpu_rev[1].clr & CPU_VINTD)) {
6832 			report_skip("VM-execution control \"virtual-interrupt delivery\" NOT supported.\n");
6833 			return CONFIG_TYPE_UNSUPPORTED;
6834 		}
6835 		cpu_exec_ctrl1 |= CPU_VINTD;
6836 	} else {
6837 		cpu_exec_ctrl1 &= ~CPU_VINTD;
6838 	}
6839 
6840 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6841 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6842 
6843 	/* x2APIC MSR intercepts are usually off for "Virtualize x2APIC mode" */
6844 	for (msr = 0x800; msr <= 0x8ff; msr++) {
6845 		if (virt_x2apic_mode_config->disable_x2apic_msr_intercepts) {
6846 			clear_bit(msr, msr_bitmap_page + 0x000);
6847 			clear_bit(msr, msr_bitmap_page + 0x800);
6848 		} else {
6849 			set_bit(msr, msr_bitmap_page + 0x000);
6850 			set_bit(msr, msr_bitmap_page + 0x800);
6851 		}
6852 	}
6853 
6854 	/* x2APIC mode can impact virtualization */
6855 	reset_apic();
6856 	if (!virt_x2apic_mode_config->disable_x2apic)
6857 		enable_x2apic();
6858 
6859 	return configure_apic_reg_virt_test(
6860 		&virt_x2apic_mode_config->apic_reg_virt_config);
6861 }
6862 
6863 static void virt_x2apic_mode_test(void)
6864 {
6865 	u32 *virtual_apic_page;
6866 	u8 *msr_bitmap_page;
6867 	u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6868 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6869 	int i;
6870 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6871 
6872 	if (!cpu_has_apicv()) {
6873 		report_skip(__func__);
6874 		return;
6875 	}
6876 
6877 	/*
6878 	 * This is to exercise an issue in KVM's logic to merge L0's and L1's
6879 	 * MSR bitmaps. Previously, an L1 could get at L0's x2APIC MSRs by
6880 	 * writing the IA32_SPEC_CTRL MSR or the IA32_PRED_CMD MSRs. KVM would
6881 	 * then proceed to manipulate the MSR bitmaps, as if VMCS12 had the
6882 	 * "Virtualize x2APIC mod" control set, even when it didn't.
6883 	 */
6884 	if (has_spec_ctrl())
6885 		wrmsr(MSR_IA32_SPEC_CTRL, 1);
6886 
6887 	/*
6888 	 * Check that VMCS12 supports:
6889 	 *   - "Virtual-APIC address", indicated by "use TPR shadow"
6890 	 *   - "MSR-bitmap address", indicated by "use MSR bitmaps"
6891 	 */
6892 	if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) {
6893 		report_skip("VM-execution control \"use TPR shadow\" NOT supported.\n");
6894 		return;
6895 	} else if (!(ctrl_cpu_rev[0].clr & CPU_MSR_BITMAP)) {
6896 		report_skip("VM-execution control \"use MSR bitmaps\" NOT supported.\n");
6897 		return;
6898 	}
6899 
6900 	test_set_guest(virt_x2apic_mode_guest);
6901 
6902 	virtual_apic_page = alloc_page();
6903 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
6904 
6905 	msr_bitmap_page = alloc_page();
6906 	memset(msr_bitmap_page, 0xff, PAGE_SIZE);
6907 	vmcs_write(MSR_BITMAP, virt_to_phys(msr_bitmap_page));
6908 
6909 	for (i = 0; i < ARRAY_SIZE(virt_x2apic_mode_tests); i++) {
6910 		struct virt_x2apic_mode_test_case *virt_x2apic_mode_test_case =
6911 			&virt_x2apic_mode_tests[i];
6912 		struct virt_x2apic_mode_config *virt_x2apic_mode_config =
6913 			&virt_x2apic_mode_test_case->virt_x2apic_mode_config;
6914 		enum Config_type config_type;
6915 		u32 reg;
6916 
6917 		printf("--- %s test ---\n", virt_x2apic_mode_test_case->name);
6918 		config_type =
6919 			configure_virt_x2apic_mode_test(virt_x2apic_mode_config,
6920 							msr_bitmap_page);
6921 		if (config_type == CONFIG_TYPE_UNSUPPORTED) {
6922 			report_skip("Skip because of missing features.\n");
6923 			continue;
6924 		} else if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) {
6925 			enter_guest_with_bad_controls();
6926 			continue;
6927 		}
6928 
6929 		for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) {
6930 			struct virt_x2apic_mode_expectation expectation;
6931 
6932 			virt_x2apic_mode_exit_expectation(
6933 				reg, virt_x2apic_mode_config, &expectation);
6934 
6935 			test_x2apic_rd(reg, &expectation, virtual_apic_page);
6936 			test_x2apic_wr(reg, &expectation, virtual_apic_page);
6937 		}
6938 	}
6939 
6940 
6941 	/* Terminate the guest */
6942 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6943 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6944 	args->op = X2APIC_TERMINATE;
6945 	enter_guest();
6946 	assert_exit_reason(VMX_VMCALL);
6947 }
6948 
6949 static void test_ctl_reg(const char *cr_name, u64 cr, u64 fixed0, u64 fixed1)
6950 {
6951 	u64 val;
6952 	u64 cr_saved = vmcs_read(cr);
6953 	int i;
6954 
6955 	val = fixed0 & fixed1;
6956 	if (cr == HOST_CR4)
6957 		vmcs_write(cr, val | X86_CR4_PAE);
6958 	else
6959 		vmcs_write(cr, val);
6960 	report_prefix_pushf("%s %lx", cr_name, val);
6961 	if (val == fixed0)
6962 		test_vmx_vmlaunch(0);
6963 	else
6964 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6965 	report_prefix_pop();
6966 
6967 	for (i = 0; i < 64; i++) {
6968 
6969 		/* Set a bit when the corresponding bit in fixed1 is 0 */
6970 		if ((fixed1 & (1ull << i)) == 0) {
6971 			if (cr == HOST_CR4 && ((1ull << i) & X86_CR4_SMEP ||
6972 					       (1ull << i) & X86_CR4_SMAP))
6973 				continue;
6974 
6975 			vmcs_write(cr, cr_saved | (1ull << i));
6976 			report_prefix_pushf("%s %llx", cr_name,
6977 						cr_saved | (1ull << i));
6978 			test_vmx_vmlaunch(
6979 				VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6980 			report_prefix_pop();
6981 		}
6982 
6983 		/* Unset a bit when the corresponding bit in fixed0 is 1 */
6984 		if (fixed0 & (1ull << i)) {
6985 			vmcs_write(cr, cr_saved & ~(1ull << i));
6986 			report_prefix_pushf("%s %llx", cr_name,
6987 						cr_saved & ~(1ull << i));
6988 			test_vmx_vmlaunch(
6989 				VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6990 			report_prefix_pop();
6991 		}
6992 	}
6993 
6994 	vmcs_write(cr, cr_saved);
6995 }
6996 
6997 /*
6998  * 1. The CR0 field must not set any bit to a value not supported in VMX
6999  *    operation.
7000  * 2. The CR4 field must not set any bit to a value not supported in VMX
7001  *    operation.
7002  * 3. On processors that support Intel 64 architecture, the CR3 field must
7003  *    be such that bits 63:52 and bits in the range 51:32 beyond the
7004  *    processor’s physical-address width must be 0.
7005  *
7006  *  [Intel SDM]
7007  */
7008 static void test_host_ctl_regs(void)
7009 {
7010 	u64 fixed0, fixed1, cr3, cr3_saved;
7011 	int i;
7012 
7013 	/* Test CR0 */
7014 	fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0);
7015 	fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1);
7016 	test_ctl_reg("HOST_CR0", HOST_CR0, fixed0, fixed1);
7017 
7018 	/* Test CR4 */
7019 	fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
7020 	fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1) &
7021 		 ~(X86_CR4_SMEP | X86_CR4_SMAP);
7022 	test_ctl_reg("HOST_CR4", HOST_CR4, fixed0, fixed1);
7023 
7024 	/* Test CR3 */
7025 	cr3_saved = vmcs_read(HOST_CR3);
7026 	for (i = cpuid_maxphyaddr(); i < 64; i++) {
7027 		cr3 = cr3_saved | (1ul << i);
7028 		vmcs_write(HOST_CR3, cr3);
7029 		report_prefix_pushf("HOST_CR3 %lx", cr3);
7030 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7031 		report_prefix_pop();
7032 	}
7033 
7034 	vmcs_write(HOST_CR3, cr3_saved);
7035 }
7036 
7037 static void test_efer_vmlaunch(u32 fld, bool ok)
7038 {
7039 	if (fld == HOST_EFER) {
7040 		if (ok)
7041 			test_vmx_vmlaunch(0);
7042 		else
7043 			test_vmx_vmlaunch2(VMXERR_ENTRY_INVALID_CONTROL_FIELD,
7044 					VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7045 	} else {
7046 		test_guest_state("EFER test", !ok, GUEST_EFER, "GUEST_EFER");
7047 	}
7048 }
7049 
7050 static void test_efer_one(u32 fld, const char * fld_name, u64 efer,
7051 			  u32 ctrl_fld, u64 ctrl,
7052 			  int i, const char *efer_bit_name)
7053 {
7054 	bool ok;
7055 
7056 	ok = true;
7057 	if (ctrl_fld == EXI_CONTROLS && (ctrl & EXI_LOAD_EFER)) {
7058 		if (!!(efer & EFER_LMA) != !!(ctrl & EXI_HOST_64))
7059 			ok = false;
7060 		if (!!(efer & EFER_LME) != !!(ctrl & EXI_HOST_64))
7061 			ok = false;
7062 	}
7063 	if (ctrl_fld == ENT_CONTROLS && (ctrl & ENT_LOAD_EFER)) {
7064 		/* Check LMA too since CR0.PG is set.  */
7065 		if (!!(efer & EFER_LMA) != !!(ctrl & ENT_GUEST_64))
7066 			ok = false;
7067 		if (!!(efer & EFER_LME) != !!(ctrl & ENT_GUEST_64))
7068 			ok = false;
7069 	}
7070 
7071 	/*
7072 	 * Skip the test if it would enter the guest in 32-bit mode.
7073 	 * Perhaps write the test in assembly and make sure it
7074 	 * can be run in either mode?
7075 	 */
7076 	if (fld == GUEST_EFER && ok && !(ctrl & ENT_GUEST_64))
7077 		return;
7078 
7079 	vmcs_write(ctrl_fld, ctrl);
7080 	vmcs_write(fld, efer);
7081 	report_prefix_pushf("%s %s bit turned %s, controls %s",
7082 			    fld_name, efer_bit_name,
7083 			    (i & 1) ? "on" : "off",
7084 			    (i & 2) ? "on" : "off");
7085 
7086 	test_efer_vmlaunch(fld, ok);
7087 	report_prefix_pop();
7088 }
7089 
7090 static void test_efer_bit(u32 fld, const char * fld_name,
7091 			  u32 ctrl_fld, u64 ctrl_bit, u64 efer_bit,
7092 			  const char *efer_bit_name)
7093 {
7094 	u64 efer_saved = vmcs_read(fld);
7095 	u32 ctrl_saved = vmcs_read(ctrl_fld);
7096 	int i;
7097 
7098 	for (i = 0; i < 4; i++) {
7099 		u64 efer = efer_saved & ~efer_bit;
7100 		u64 ctrl = ctrl_saved & ~ctrl_bit;
7101 
7102 		if (i & 1)
7103 			efer |= efer_bit;
7104 		if (i & 2)
7105 			ctrl |= ctrl_bit;
7106 
7107 		test_efer_one(fld, fld_name, efer, ctrl_fld, ctrl,
7108 			      i, efer_bit_name);
7109 	}
7110 
7111 	vmcs_write(ctrl_fld, ctrl_saved);
7112 	vmcs_write(fld, efer_saved);
7113 }
7114 
7115 static void test_efer(u32 fld, const char * fld_name, u32 ctrl_fld,
7116 		      u64 ctrl_bit1, u64 ctrl_bit2)
7117 {
7118 	u64 efer_saved = vmcs_read(fld);
7119 	u32 ctrl_saved = vmcs_read(ctrl_fld);
7120 	u64 efer_reserved_bits =  ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
7121 	u64 i;
7122 	u64 efer;
7123 
7124 	if (cpu_has_efer_nx())
7125 		efer_reserved_bits &= ~EFER_NX;
7126 
7127 	if (!ctrl_bit1) {
7128 		printf("\"Load-IA32-EFER\" exit control not supported\n");
7129 		goto test_entry_exit_mode;
7130 	}
7131 
7132 	report_prefix_pushf("%s %lx", fld_name, efer_saved);
7133 	test_efer_vmlaunch(fld, true);
7134 	report_prefix_pop();
7135 
7136 	/*
7137 	 * Check reserved bits
7138 	 */
7139 	vmcs_write(ctrl_fld, ctrl_saved & ~ctrl_bit1);
7140 	for (i = 0; i < 64; i++) {
7141 		if ((1ull << i) & efer_reserved_bits) {
7142 			efer = efer_saved | (1ull << i);
7143 			vmcs_write(fld, efer);
7144 			report_prefix_pushf("%s %lx", fld_name, efer);
7145 			test_efer_vmlaunch(fld, true);
7146 			report_prefix_pop();
7147 		}
7148 	}
7149 
7150 	vmcs_write(ctrl_fld, ctrl_saved | ctrl_bit1);
7151 	for (i = 0; i < 64; i++) {
7152 		if ((1ull << i) & efer_reserved_bits) {
7153 			efer = efer_saved | (1ull << i);
7154 			vmcs_write(fld, efer);
7155 			report_prefix_pushf("%s %lx", fld_name, efer);
7156 			test_efer_vmlaunch(fld, false);
7157 			report_prefix_pop();
7158 		}
7159 	}
7160 
7161 	vmcs_write(ctrl_fld, ctrl_saved);
7162 	vmcs_write(fld, efer_saved);
7163 
7164 	/*
7165 	 * Check LMA and LME bits
7166 	 */
7167 	test_efer_bit(fld, fld_name,
7168 		      ctrl_fld, ctrl_bit1,
7169 		      EFER_LMA,
7170 		      "EFER_LMA");
7171 	test_efer_bit(fld, fld_name,
7172 		      ctrl_fld, ctrl_bit1,
7173 		      EFER_LME,
7174 		      "EFER_LME");
7175 
7176 test_entry_exit_mode:
7177 	test_efer_bit(fld, fld_name,
7178 		      ctrl_fld, ctrl_bit2,
7179 		      EFER_LMA,
7180 		      "EFER_LMA");
7181 	test_efer_bit(fld, fld_name,
7182 		      ctrl_fld, ctrl_bit2,
7183 		      EFER_LME,
7184 		      "EFER_LME");
7185 }
7186 
7187 /*
7188  * If the 'load IA32_EFER' VM-exit control is 1, bits reserved in the
7189  * IA32_EFER MSR must be 0 in the field for that register. In addition,
7190  * the values of the LMA and LME bits in the field must each be that of
7191  * the 'host address-space size' VM-exit control.
7192  *
7193  *  [Intel SDM]
7194  */
7195 static void test_host_efer(void)
7196 {
7197 	test_efer(HOST_EFER, "HOST_EFER", EXI_CONTROLS,
7198 		  ctrl_exit_rev.clr & EXI_LOAD_EFER,
7199 		  EXI_HOST_64);
7200 }
7201 
7202 /*
7203  * If the 'load IA32_EFER' VM-enter control is 1, bits reserved in the
7204  * IA32_EFER MSR must be 0 in the field for that register. In addition,
7205  * the values of the LMA and LME bits in the field must each be that of
7206  * the 'IA32e-mode guest' VM-exit control.
7207  */
7208 static void test_guest_efer(void)
7209 {
7210 	if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) {
7211 		printf("\"Load-IA32-EFER\" entry control not supported\n");
7212 		return;
7213 	}
7214 
7215 	vmcs_write(GUEST_EFER, rdmsr(MSR_EFER));
7216 	test_efer(GUEST_EFER, "GUEST_EFER", ENT_CONTROLS,
7217 		  ctrl_enter_rev.clr & ENT_LOAD_EFER,
7218 		  ENT_GUEST_64);
7219 }
7220 
7221 /*
7222  * PAT values higher than 8 are uninteresting since they're likely lumped
7223  * in with "8". We only test values above 8 one bit at a time,
7224  * in order to reduce the number of VM-Entries and keep the runtime reasonable.
7225  */
7226 #define	PAT_VAL_LIMIT	8
7227 
7228 static void test_pat(u32 field, const char * field_name, u32 ctrl_field,
7229 		     u64 ctrl_bit)
7230 {
7231 	u32 ctrl_saved = vmcs_read(ctrl_field);
7232 	u64 pat_saved = vmcs_read(field);
7233 	u64 i, val;
7234 	u32 j;
7235 	int error;
7236 
7237 	vmcs_clear_bits(ctrl_field, ctrl_bit);
7238 
7239 	for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) {
7240 		/* Test PAT0..PAT7 fields */
7241 		for (j = 0; j < (i ? 8 : 1); j++) {
7242 			val = i << j * 8;
7243 			vmcs_write(field, val);
7244 			if (field == HOST_PAT) {
7245 				report_prefix_pushf("%s %lx", field_name, val);
7246 				test_vmx_vmlaunch(0);
7247 				report_prefix_pop();
7248 
7249 			} else {	// GUEST_PAT
7250 				test_guest_state("ENT_LOAD_PAT enabled", false,
7251 						 val, "GUEST_PAT");
7252 			}
7253 		}
7254 	}
7255 
7256 	vmcs_set_bits(ctrl_field, ctrl_bit);
7257 	for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) {
7258 		/* Test PAT0..PAT7 fields */
7259 		for (j = 0; j < (i ? 8 : 1); j++) {
7260 			val = i << j * 8;
7261 			vmcs_write(field, val);
7262 
7263 			if (field == HOST_PAT) {
7264 				report_prefix_pushf("%s %lx", field_name, val);
7265 				if (i == 0x2 || i == 0x3 || i >= 0x8)
7266 					error =
7267 					VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
7268 				else
7269 					error = 0;
7270 
7271 				test_vmx_vmlaunch(error);
7272 				report_prefix_pop();
7273 
7274 			} else {	// GUEST_PAT
7275 				error = (i == 0x2 || i == 0x3 || i >= 0x8);
7276 				test_guest_state("ENT_LOAD_PAT enabled", !!error,
7277 						 val, "GUEST_PAT");
7278 			}
7279 
7280 		}
7281 	}
7282 
7283 	vmcs_write(ctrl_field, ctrl_saved);
7284 	vmcs_write(field, pat_saved);
7285 }
7286 
7287 /*
7288  *  If the "load IA32_PAT" VM-exit control is 1, the value of the field
7289  *  for the IA32_PAT MSR must be one that could be written by WRMSR
7290  *  without fault at CPL 0. Specifically, each of the 8 bytes in the
7291  *  field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
7292  *  6 (WB), or 7 (UC-).
7293  *
7294  *  [Intel SDM]
7295  */
7296 static void test_load_host_pat(void)
7297 {
7298 	/*
7299 	 * "load IA32_PAT" VM-exit control
7300 	 */
7301 	if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) {
7302 		printf("\"Load-IA32-PAT\" exit control not supported\n");
7303 		return;
7304 	}
7305 
7306 	test_pat(HOST_PAT, "HOST_PAT", EXI_CONTROLS, EXI_LOAD_PAT);
7307 }
7308 
7309 union cpuidA_eax {
7310 	struct {
7311 		unsigned int version_id:8;
7312 		unsigned int num_counters_gp:8;
7313 		unsigned int bit_width:8;
7314 		unsigned int mask_length:8;
7315 	} split;
7316 	unsigned int full;
7317 };
7318 
7319 union cpuidA_edx {
7320 	struct {
7321 		unsigned int num_counters_fixed:5;
7322 		unsigned int bit_width_fixed:8;
7323 		unsigned int reserved:9;
7324 	} split;
7325 	unsigned int full;
7326 };
7327 
7328 static bool valid_pgc(u64 val)
7329 {
7330 	struct cpuid id;
7331 	union cpuidA_eax eax;
7332 	union cpuidA_edx edx;
7333 	u64 mask;
7334 
7335 	id = cpuid(0xA);
7336 	eax.full = id.a;
7337 	edx.full = id.d;
7338 	mask = ~(((1ull << eax.split.num_counters_gp) - 1) |
7339 		 (((1ull << edx.split.num_counters_fixed) - 1) << 32));
7340 
7341 	return !(val & mask);
7342 }
7343 
7344 static void test_pgc_vmlaunch(u32 xerror, u32 xreason, bool xfail, bool host)
7345 {
7346 	u32 inst_err;
7347 	u64 obs;
7348 	bool success;
7349 	struct vmx_state_area_test_data *data = &vmx_state_area_test_data;
7350 
7351 	if (host) {
7352 		success = vmlaunch_succeeds();
7353 		obs = rdmsr(data->msr);
7354 		if (!success) {
7355 			inst_err = vmcs_read(VMX_INST_ERROR);
7356 			report(xerror == inst_err, "vmlaunch failed, "
7357 			       "VMX Inst Error is %d (expected %d)",
7358 			       inst_err, xerror);
7359 		} else {
7360 			report(!data->enabled || data->exp == obs,
7361 			       "Host state is 0x%lx (expected 0x%lx)",
7362 			       obs, data->exp);
7363 			report(success != xfail, "vmlaunch succeeded");
7364 		}
7365 	} else {
7366 		test_guest_state("load GUEST_PERF_GLOBAL_CTRL", xfail,
7367 				 GUEST_PERF_GLOBAL_CTRL,
7368 				 "GUEST_PERF_GLOBAL_CTRL");
7369 	}
7370 }
7371 
7372 /*
7373  * test_load_perf_global_ctrl is a generic function for testing the
7374  * "load IA32_PERF_GLOBAL_CTRL" VM-{Entry,Exit} controls. This test function
7375  * tests the provided ctrl_val when disabled and enabled.
7376  *
7377  * @nr: VMCS field number corresponding to the host/guest state field
7378  * @name: Name of the above VMCS field for printing in test report
7379  * @ctrl_nr: VMCS field number corresponding to the VM-{Entry,Exit} control
7380  * @ctrl_val: Bit to set on the ctrl_field
7381  */
7382 static void test_perf_global_ctrl(u32 nr, const char *name, u32 ctrl_nr,
7383 				  const char *ctrl_name, u64 ctrl_val)
7384 {
7385 	u64 ctrl_saved = vmcs_read(ctrl_nr);
7386 	u64 pgc_saved = vmcs_read(nr);
7387 	u64 i, val;
7388 	bool host = nr == HOST_PERF_GLOBAL_CTRL;
7389 	struct vmx_state_area_test_data *data = &vmx_state_area_test_data;
7390 
7391 	data->msr = MSR_CORE_PERF_GLOBAL_CTRL;
7392 	msr_bmp_init();
7393 	vmcs_write(ctrl_nr, ctrl_saved & ~ctrl_val);
7394 	data->enabled = false;
7395 	report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=0 on %s",
7396 			    ctrl_name);
7397 
7398 	for (i = 0; i < 64; i++) {
7399 		val = 1ull << i;
7400 		vmcs_write(nr, val);
7401 		report_prefix_pushf("%s = 0x%lx", name, val);
7402 		test_pgc_vmlaunch(0, VMX_VMCALL, false, host);
7403 		report_prefix_pop();
7404 	}
7405 	report_prefix_pop();
7406 
7407 	vmcs_write(ctrl_nr, ctrl_saved | ctrl_val);
7408 	data->enabled = true;
7409 	report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=1 on %s",
7410 			    ctrl_name);
7411 	for (i = 0; i < 64; i++) {
7412 		val = 1ull << i;
7413 		data->exp = val;
7414 		vmcs_write(nr, val);
7415 		report_prefix_pushf("%s = 0x%lx", name, val);
7416 		if (valid_pgc(val)) {
7417 			test_pgc_vmlaunch(0, VMX_VMCALL, false, host);
7418 		} else {
7419 			if (host)
7420 				test_pgc_vmlaunch(
7421 					VMXERR_ENTRY_INVALID_HOST_STATE_FIELD,
7422 					0,
7423 					true,
7424 					host);
7425 			else
7426 				test_pgc_vmlaunch(
7427 					0,
7428 					VMX_ENTRY_FAILURE | VMX_FAIL_STATE,
7429 					true,
7430 					host);
7431 		}
7432 		report_prefix_pop();
7433 	}
7434 
7435 	data->enabled = false;
7436 	report_prefix_pop();
7437 	vmcs_write(ctrl_nr, ctrl_saved);
7438 	vmcs_write(nr, pgc_saved);
7439 }
7440 
7441 static void test_load_host_perf_global_ctrl(void)
7442 {
7443 	if (!(ctrl_exit_rev.clr & EXI_LOAD_PERF)) {
7444 		printf("\"load IA32_PERF_GLOBAL_CTRL\" exit control not supported\n");
7445 		return;
7446 	}
7447 
7448 	test_perf_global_ctrl(HOST_PERF_GLOBAL_CTRL, "HOST_PERF_GLOBAL_CTRL",
7449 				   EXI_CONTROLS, "EXI_CONTROLS", EXI_LOAD_PERF);
7450 }
7451 
7452 
7453 static void test_load_guest_perf_global_ctrl(void)
7454 {
7455 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PERF)) {
7456 		printf("\"load IA32_PERF_GLOBAL_CTRL\" entry control not supported\n");
7457 		return;
7458 	}
7459 
7460 	test_perf_global_ctrl(GUEST_PERF_GLOBAL_CTRL, "GUEST_PERF_GLOBAL_CTRL",
7461 				   ENT_CONTROLS, "ENT_CONTROLS", ENT_LOAD_PERF);
7462 }
7463 
7464 
7465 /*
7466  * test_vmcs_field - test a value for the given VMCS field
7467  * @field: VMCS field
7468  * @field_name: string name of VMCS field
7469  * @bit_start: starting bit
7470  * @bit_end: ending bit
7471  * @val: value that the bit range must or must not contain
7472  * @valid_val: whether value given in 'val' must be valid or not
7473  * @error: expected VMCS error when vmentry fails for an invalid value
7474  */
7475 static void test_vmcs_field(u64 field, const char *field_name, u32 bit_start,
7476 			    u32 bit_end, u64 val, bool valid_val, u32 error)
7477 {
7478 	u64 field_saved = vmcs_read(field);
7479 	u32 i;
7480 	u64 tmp;
7481 	u32 bit_on;
7482 	u64 mask = ~0ull;
7483 
7484 	mask = (mask >> bit_end) << bit_end;
7485 	mask = mask | ((1 << bit_start) - 1);
7486 	tmp = (field_saved & mask) | (val << bit_start);
7487 
7488 	vmcs_write(field, tmp);
7489 	report_prefix_pushf("%s %lx", field_name, tmp);
7490 	if (valid_val)
7491 		test_vmx_vmlaunch(0);
7492 	else
7493 		test_vmx_vmlaunch(error);
7494 	report_prefix_pop();
7495 
7496 	for (i = bit_start; i <= bit_end; i = i + 2) {
7497 		bit_on = ((1ull < i) & (val << bit_start)) ? 0 : 1;
7498 		if (bit_on)
7499 			tmp = field_saved | (1ull << i);
7500 		else
7501 			tmp = field_saved & ~(1ull << i);
7502 		vmcs_write(field, tmp);
7503 		report_prefix_pushf("%s %lx", field_name, tmp);
7504 		if (valid_val)
7505 			test_vmx_vmlaunch(error);
7506 		else
7507 			test_vmx_vmlaunch(0);
7508 		report_prefix_pop();
7509 	}
7510 
7511 	vmcs_write(field, field_saved);
7512 }
7513 
7514 static void test_canonical(u64 field, const char * field_name, bool host)
7515 {
7516 	u64 addr_saved = vmcs_read(field);
7517 
7518 	/*
7519 	 * Use the existing value if possible.  Writing a random canonical
7520 	 * value is not an option as doing so would corrupt the field being
7521 	 * tested and likely hose the test.
7522 	 */
7523 	if (is_canonical(addr_saved)) {
7524 		if (host) {
7525 			report_prefix_pushf("%s %lx", field_name, addr_saved);
7526 			test_vmx_vmlaunch(0);
7527 			report_prefix_pop();
7528 		} else {
7529 			test_guest_state("Test canonical address", false,
7530 					 addr_saved, field_name);
7531 		}
7532 	}
7533 
7534 	vmcs_write(field, NONCANONICAL);
7535 
7536 	if (host) {
7537 		report_prefix_pushf("%s %llx", field_name, NONCANONICAL);
7538 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7539 		report_prefix_pop();
7540 	} else {
7541 		test_guest_state("Test non-canonical address", true,
7542 				 NONCANONICAL, field_name);
7543 	}
7544 
7545 	vmcs_write(field, addr_saved);
7546 }
7547 
7548 #define TEST_RPL_TI_FLAGS(reg, name)				\
7549 	test_vmcs_field(reg, name, 0, 2, 0x0, true,		\
7550 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7551 
7552 #define TEST_CS_TR_FLAGS(reg, name)				\
7553 	test_vmcs_field(reg, name, 3, 15, 0x0000, false,	\
7554 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7555 
7556 /*
7557  * 1. In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the
7558  *    RPL (bits 1:0) and the TI flag (bit 2) must be 0.
7559  * 2. The selector fields for CS and TR cannot be 0000H.
7560  * 3. The selector field for SS cannot be 0000H if the "host address-space
7561  *    size" VM-exit control is 0.
7562  * 4. On processors that support Intel 64 architecture, the base-address
7563  *    fields for FS, GS and TR must contain canonical addresses.
7564  */
7565 static void test_host_segment_regs(void)
7566 {
7567 	u16 selector_saved;
7568 
7569 	/*
7570 	 * Test RPL and TI flags
7571 	 */
7572 	TEST_RPL_TI_FLAGS(HOST_SEL_CS, "HOST_SEL_CS");
7573 	TEST_RPL_TI_FLAGS(HOST_SEL_SS, "HOST_SEL_SS");
7574 	TEST_RPL_TI_FLAGS(HOST_SEL_DS, "HOST_SEL_DS");
7575 	TEST_RPL_TI_FLAGS(HOST_SEL_ES, "HOST_SEL_ES");
7576 	TEST_RPL_TI_FLAGS(HOST_SEL_FS, "HOST_SEL_FS");
7577 	TEST_RPL_TI_FLAGS(HOST_SEL_GS, "HOST_SEL_GS");
7578 	TEST_RPL_TI_FLAGS(HOST_SEL_TR, "HOST_SEL_TR");
7579 
7580 	/*
7581 	 * Test that CS and TR fields can not be 0x0000
7582 	 */
7583 	TEST_CS_TR_FLAGS(HOST_SEL_CS, "HOST_SEL_CS");
7584 	TEST_CS_TR_FLAGS(HOST_SEL_TR, "HOST_SEL_TR");
7585 
7586 	/*
7587 	 * SS field can not be 0x0000 if "host address-space size" VM-exit
7588 	 * control is 0
7589 	 */
7590 	selector_saved = vmcs_read(HOST_SEL_SS);
7591 	vmcs_write(HOST_SEL_SS, 0);
7592 	report_prefix_pushf("HOST_SEL_SS 0");
7593 	if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) {
7594 		test_vmx_vmlaunch(0);
7595 	} else {
7596 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7597 	}
7598 	report_prefix_pop();
7599 
7600 	vmcs_write(HOST_SEL_SS, selector_saved);
7601 
7602 #ifdef __x86_64__
7603 	/*
7604 	 * Base address for FS, GS and TR must be canonical
7605 	 */
7606 	test_canonical(HOST_BASE_FS, "HOST_BASE_FS", true);
7607 	test_canonical(HOST_BASE_GS, "HOST_BASE_GS", true);
7608 	test_canonical(HOST_BASE_TR, "HOST_BASE_TR", true);
7609 #endif
7610 }
7611 
7612 /*
7613  *  On processors that support Intel 64 architecture, the base-address
7614  *  fields for GDTR and IDTR must contain canonical addresses.
7615  */
7616 static void test_host_desc_tables(void)
7617 {
7618 #ifdef __x86_64__
7619 	test_canonical(HOST_BASE_GDTR, "HOST_BASE_GDTR", true);
7620 	test_canonical(HOST_BASE_IDTR, "HOST_BASE_IDTR", true);
7621 #endif
7622 }
7623 
7624 /*
7625  * If the "host address-space size" VM-exit control is 0, the following must
7626  * hold:
7627  *    - The "IA-32e mode guest" VM-entry control is 0.
7628  *    - Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.
7629  *    - Bits 63:32 in the RIP field are 0.
7630  *
7631  * If the "host address-space size" VM-exit control is 1, the following must
7632  * hold:
7633  *    - Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.
7634  *    - The RIP field contains a canonical address.
7635  *
7636  */
7637 static void test_host_addr_size(void)
7638 {
7639 	u64 cr4_saved = vmcs_read(HOST_CR4);
7640 	u64 rip_saved = vmcs_read(HOST_RIP);
7641 	u64 entry_ctrl_saved = vmcs_read(ENT_CONTROLS);
7642 	int i;
7643 	u64 tmp;
7644 
7645 	if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) {
7646 		vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64);
7647 		report_prefix_pushf("\"IA-32e mode guest\" enabled");
7648 		test_vmx_vmlaunch(0);
7649 		report_prefix_pop();
7650 
7651 		vmcs_write(HOST_CR4, cr4_saved | X86_CR4_PCIDE);
7652 		report_prefix_pushf("\"CR4.PCIDE\" set");
7653 		test_vmx_vmlaunch(0);
7654 		report_prefix_pop();
7655 
7656 		for (i = 32; i <= 63; i = i + 4) {
7657 			tmp = rip_saved | 1ull << i;
7658 			vmcs_write(HOST_RIP, tmp);
7659 			report_prefix_pushf("HOST_RIP %lx", tmp);
7660 			test_vmx_vmlaunch(0);
7661 			report_prefix_pop();
7662 		}
7663 
7664 		if (cr4_saved & X86_CR4_PAE) {
7665 			vmcs_write(HOST_CR4, cr4_saved  & ~X86_CR4_PAE);
7666 			report_prefix_pushf("\"CR4.PAE\" unset");
7667 			test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7668 		} else {
7669 			report_prefix_pushf("\"CR4.PAE\" set");
7670 			test_vmx_vmlaunch(0);
7671 		}
7672 		report_prefix_pop();
7673 
7674 		vmcs_write(HOST_RIP, NONCANONICAL);
7675 		report_prefix_pushf("HOST_RIP %llx", NONCANONICAL);
7676 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7677 		report_prefix_pop();
7678 
7679 		vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64);
7680 		vmcs_write(HOST_RIP, rip_saved);
7681 		vmcs_write(HOST_CR4, cr4_saved);
7682 	}
7683 }
7684 
7685 /*
7686  * Check that the virtual CPU checks the VMX Host State Area as
7687  * documented in the Intel SDM.
7688  */
7689 static void vmx_host_state_area_test(void)
7690 {
7691 	/*
7692 	 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will
7693 	 * fail due to invalid guest state, should we make it that
7694 	 * far.
7695 	 */
7696 	vmcs_write(GUEST_RFLAGS, 0);
7697 
7698 	test_host_ctl_regs();
7699 
7700 	test_canonical(HOST_SYSENTER_ESP, "HOST_SYSENTER_ESP", true);
7701 	test_canonical(HOST_SYSENTER_EIP, "HOST_SYSENTER_EIP", true);
7702 
7703 	test_host_efer();
7704 	test_load_host_pat();
7705 	test_host_segment_regs();
7706 	test_host_desc_tables();
7707 	test_host_addr_size();
7708 	test_load_host_perf_global_ctrl();
7709 }
7710 
7711 /*
7712  * If the "load debug controls" VM-entry control is 1, bits 63:32 in
7713  * the DR7 field must be 0.
7714  *
7715  * [Intel SDM]
7716  */
7717 static void test_guest_dr7(void)
7718 {
7719 	u32 ent_saved = vmcs_read(ENT_CONTROLS);
7720 	u64 dr7_saved = vmcs_read(GUEST_DR7);
7721 	u64 val;
7722 	int i;
7723 
7724 	if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS) {
7725 		vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS);
7726 		for (i = 0; i < 64; i++) {
7727 			val = 1ull << i;
7728 			vmcs_write(GUEST_DR7, val);
7729 			test_guest_state("ENT_LOAD_DBGCTLS disabled", false,
7730 					 val, "GUEST_DR7");
7731 		}
7732 	}
7733 	if (ctrl_enter_rev.clr & ENT_LOAD_DBGCTLS) {
7734 		vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS);
7735 		for (i = 0; i < 64; i++) {
7736 			val = 1ull << i;
7737 			vmcs_write(GUEST_DR7, val);
7738 			test_guest_state("ENT_LOAD_DBGCTLS enabled", i >= 32,
7739 					 val, "GUEST_DR7");
7740 		}
7741 	}
7742 	vmcs_write(GUEST_DR7, dr7_saved);
7743 	vmcs_write(ENT_CONTROLS, ent_saved);
7744 }
7745 
7746 /*
7747  *  If the "load IA32_PAT" VM-entry control is 1, the value of the field
7748  *  for the IA32_PAT MSR must be one that could be written by WRMSR
7749  *  without fault at CPL 0. Specifically, each of the 8 bytes in the
7750  *  field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
7751  *  6 (WB), or 7 (UC-).
7752  *
7753  *  [Intel SDM]
7754  */
7755 static void test_load_guest_pat(void)
7756 {
7757 	/*
7758 	 * "load IA32_PAT" VM-entry control
7759 	 */
7760 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) {
7761 		printf("\"Load-IA32-PAT\" entry control not supported\n");
7762 		return;
7763 	}
7764 
7765 	test_pat(GUEST_PAT, "GUEST_PAT", ENT_CONTROLS, ENT_LOAD_PAT);
7766 }
7767 
7768 #define MSR_IA32_BNDCFGS_RSVD_MASK	0x00000ffc
7769 
7770 /*
7771  * If the “load IA32_BNDCFGS†VM-entry control is 1, the following
7772  * checks are performed on the field for the IA32_BNDCFGS MSR:
7773  *
7774  *   —  Bits reserved in the IA32_BNDCFGS MSR must be 0.
7775  *   —  The linear address in bits 63:12 must be canonical.
7776  *
7777  *  [Intel SDM]
7778  */
7779 static void test_load_guest_bndcfgs(void)
7780 {
7781 	u64 bndcfgs_saved = vmcs_read(GUEST_BNDCFGS);
7782 	u64 bndcfgs;
7783 
7784 	if (!(ctrl_enter_rev.clr & ENT_LOAD_BNDCFGS)) {
7785 		printf("\"Load-IA32-BNDCFGS\" entry control not supported\n");
7786 		return;
7787 	}
7788 
7789 	vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS);
7790 
7791 	vmcs_write(GUEST_BNDCFGS, NONCANONICAL);
7792 	test_guest_state("ENT_LOAD_BNDCFGS disabled", false,
7793 			 GUEST_BNDCFGS, "GUEST_BNDCFGS");
7794 	bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK;
7795 	vmcs_write(GUEST_BNDCFGS, bndcfgs);
7796 	test_guest_state("ENT_LOAD_BNDCFGS disabled", false,
7797 			 GUEST_BNDCFGS, "GUEST_BNDCFGS");
7798 
7799 	vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS);
7800 
7801 	vmcs_write(GUEST_BNDCFGS, NONCANONICAL);
7802 	test_guest_state("ENT_LOAD_BNDCFGS enabled", true,
7803 			 GUEST_BNDCFGS, "GUEST_BNDCFGS");
7804 	bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK;
7805 	vmcs_write(GUEST_BNDCFGS, bndcfgs);
7806 	test_guest_state("ENT_LOAD_BNDCFGS enabled", true,
7807 			 GUEST_BNDCFGS, "GUEST_BNDCFGS");
7808 
7809 	vmcs_write(GUEST_BNDCFGS, bndcfgs_saved);
7810 }
7811 
7812 /*
7813  * Check that the virtual CPU checks the VMX Guest State Area as
7814  * documented in the Intel SDM.
7815  */
7816 static void vmx_guest_state_area_test(void)
7817 {
7818 	vmx_set_test_stage(1);
7819 	test_set_guest(guest_state_test_main);
7820 
7821 	/*
7822 	 * The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field
7823 	 * must each contain a canonical address.
7824 	 */
7825 	test_canonical(GUEST_SYSENTER_ESP, "GUEST_SYSENTER_ESP", false);
7826 	test_canonical(GUEST_SYSENTER_EIP, "GUEST_SYSENTER_EIP", false);
7827 
7828 	test_guest_dr7();
7829 	test_load_guest_pat();
7830 	test_guest_efer();
7831 	test_load_guest_perf_global_ctrl();
7832 	test_load_guest_bndcfgs();
7833 
7834 	/*
7835 	 * Let the guest finish execution
7836 	 */
7837 	vmx_set_test_stage(2);
7838 	enter_guest();
7839 }
7840 
7841 static bool valid_vmcs_for_vmentry(void)
7842 {
7843 	struct vmcs *current_vmcs = NULL;
7844 
7845 	if (vmcs_save(&current_vmcs))
7846 		return false;
7847 
7848 	return current_vmcs && !current_vmcs->hdr.shadow_vmcs;
7849 }
7850 
7851 static void try_vmentry_in_movss_shadow(void)
7852 {
7853 	u32 vm_inst_err;
7854 	u32 flags;
7855 	bool early_failure = false;
7856 	u32 expected_flags = X86_EFLAGS_FIXED;
7857 	bool valid_vmcs = valid_vmcs_for_vmentry();
7858 
7859 	expected_flags |= valid_vmcs ? X86_EFLAGS_ZF : X86_EFLAGS_CF;
7860 
7861 	/*
7862 	 * Indirectly set VM_INST_ERR to 12 ("VMREAD/VMWRITE from/to
7863 	 * unsupported VMCS component").
7864 	 */
7865 	vmcs_write(~0u, 0);
7866 
7867 	__asm__ __volatile__ ("mov %[host_rsp], %%edx;"
7868 			      "vmwrite %%rsp, %%rdx;"
7869 			      "mov 0f, %%rax;"
7870 			      "mov %[host_rip], %%edx;"
7871 			      "vmwrite %%rax, %%rdx;"
7872 			      "mov $-1, %%ah;"
7873 			      "sahf;"
7874 			      "mov %%ss, %%ax;"
7875 			      "mov %%ax, %%ss;"
7876 			      "vmlaunch;"
7877 			      "mov $1, %[early_failure];"
7878 			      "0: lahf;"
7879 			      "movzbl %%ah, %[flags]"
7880 			      : [early_failure] "+r" (early_failure),
7881 				[flags] "=&a" (flags)
7882 			      : [host_rsp] "i" (HOST_RSP),
7883 				[host_rip] "i" (HOST_RIP)
7884 			      : "rdx", "cc", "memory");
7885 	vm_inst_err = vmcs_read(VMX_INST_ERROR);
7886 
7887 	report(early_failure, "Early VM-entry failure");
7888 	report(flags == expected_flags, "RFLAGS[8:0] is %x (actual %x)",
7889 	       expected_flags, flags);
7890 	if (valid_vmcs)
7891 		report(vm_inst_err == VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS,
7892 		       "VM-instruction error is %d (actual %d)",
7893 		       VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, vm_inst_err);
7894 }
7895 
7896 static void vmentry_movss_shadow_test(void)
7897 {
7898 	struct vmcs *orig_vmcs;
7899 
7900 	TEST_ASSERT(!vmcs_save(&orig_vmcs));
7901 
7902 	/*
7903 	 * Set the launched flag on the current VMCS to verify the correct
7904 	 * error priority, below.
7905 	 */
7906 	test_set_guest(v2_null_test_guest);
7907 	enter_guest();
7908 
7909 	/*
7910 	 * With bit 1 of the guest's RFLAGS clear, VM-entry should
7911 	 * fail due to invalid guest state (if we make it that far).
7912 	 */
7913 	vmcs_write(GUEST_RFLAGS, 0);
7914 
7915 	/*
7916 	 * "VM entry with events blocked by MOV SS" takes precedence over
7917 	 * "VMLAUNCH with non-clear VMCS."
7918 	 */
7919 	report_prefix_push("valid current-VMCS");
7920 	try_vmentry_in_movss_shadow();
7921 	report_prefix_pop();
7922 
7923 	/*
7924 	 * VMfailInvalid takes precedence over "VM entry with events
7925 	 * blocked by MOV SS."
7926 	 */
7927 	TEST_ASSERT(!vmcs_clear(orig_vmcs));
7928 	report_prefix_push("no current-VMCS");
7929 	try_vmentry_in_movss_shadow();
7930 	report_prefix_pop();
7931 
7932 	TEST_ASSERT(!make_vmcs_current(orig_vmcs));
7933 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
7934 }
7935 
7936 static void vmx_cr_load_test(void)
7937 {
7938 	unsigned long cr3, cr4, orig_cr3, orig_cr4;
7939 
7940 	orig_cr4 = read_cr4();
7941 	orig_cr3 = read_cr3();
7942 
7943 	if (!this_cpu_has(X86_FEATURE_PCID)) {
7944 		report_skip("PCID not detected");
7945 		return;
7946 	}
7947 	if (!this_cpu_has(X86_FEATURE_MCE)) {
7948 		report_skip("MCE not detected");
7949 		return;
7950 	}
7951 
7952 	TEST_ASSERT(!(orig_cr3 & X86_CR3_PCID_MASK));
7953 
7954 	/* Enable PCID for L1. */
7955 	cr4 = orig_cr4 | X86_CR4_PCIDE;
7956 	cr3 = orig_cr3 | 0x1;
7957 	TEST_ASSERT(!write_cr4_checking(cr4));
7958 	write_cr3(cr3);
7959 
7960 	test_set_guest(v2_null_test_guest);
7961 	vmcs_write(HOST_CR4, cr4);
7962 	vmcs_write(HOST_CR3, cr3);
7963 	enter_guest();
7964 
7965 	/*
7966 	 * No exception is expected.
7967 	 *
7968 	 * NB. KVM loads the last guest write to CR4 into CR4 read
7969 	 *     shadow. In order to trigger an exit to KVM, we can toggle a
7970 	 *     bit that is owned by KVM. We use CR4.MCE, which shall
7971 	 *     have no side effect because normally no guest MCE (e.g., as the
7972 	 *     result of bad memory) would happen during this test.
7973 	 */
7974 	TEST_ASSERT(!write_cr4_checking(cr4 ^ X86_CR4_MCE));
7975 
7976 	/* Cleanup L1 state. */
7977 	write_cr3(orig_cr3);
7978 	TEST_ASSERT(!write_cr4_checking(orig_cr4));
7979 }
7980 
7981 static void vmx_nm_test_guest(void)
7982 {
7983 	write_cr0(read_cr0() | X86_CR0_TS);
7984 	asm volatile("fnop");
7985 }
7986 
7987 static void check_nm_exit(const char *test)
7988 {
7989 	u32 reason = vmcs_read(EXI_REASON);
7990 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
7991 	const u32 expected = INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
7992 		NM_VECTOR;
7993 
7994 	report(reason == VMX_EXC_NMI && intr_info == expected, "%s", test);
7995 }
7996 
7997 /*
7998  * This test checks that:
7999  *
8000  * (a) If L2 launches with CR0.TS clear, but later sets CR0.TS, then
8001  *     a subsequent #NM VM-exit is reflected to L1.
8002  *
8003  * (b) If L2 launches with CR0.TS clear and CR0.EM set, then a
8004  *     subsequent #NM VM-exit is reflected to L1.
8005  */
8006 static void vmx_nm_test(void)
8007 {
8008 	unsigned long cr0 = read_cr0();
8009 
8010 	test_set_guest(vmx_nm_test_guest);
8011 
8012 	/*
8013 	 * L1 wants to intercept #NM exceptions encountered in L2.
8014 	 */
8015 	vmcs_write(EXC_BITMAP, 1 << NM_VECTOR);
8016 
8017 	/*
8018 	 * Launch L2 with CR0.TS clear, but don't claim host ownership of
8019 	 * any CR0 bits. L2 will set CR0.TS and then try to execute fnop,
8020 	 * which will raise #NM. L0 should reflect the #NM VM-exit to L1.
8021 	 */
8022 	vmcs_write(CR0_MASK, 0);
8023 	vmcs_write(GUEST_CR0, cr0 & ~X86_CR0_TS);
8024 	enter_guest();
8025 	check_nm_exit("fnop with CR0.TS set in L2 triggers #NM VM-exit to L1");
8026 
8027 	/*
8028 	 * Re-enter L2 at the fnop instruction, with CR0.TS clear but
8029 	 * CR0.EM set. The fnop will still raise #NM, and L0 should
8030 	 * reflect the #NM VM-exit to L1.
8031 	 */
8032 	vmcs_write(GUEST_CR0, (cr0 & ~X86_CR0_TS) | X86_CR0_EM);
8033 	enter_guest();
8034 	check_nm_exit("fnop with CR0.EM set in L2 triggers #NM VM-exit to L1");
8035 
8036 	/*
8037 	 * Re-enter L2 at the fnop instruction, with both CR0.TS and
8038 	 * CR0.EM clear. There will be no #NM, and the L2 guest should
8039 	 * exit normally.
8040 	 */
8041 	vmcs_write(GUEST_CR0, cr0 & ~(X86_CR0_TS | X86_CR0_EM));
8042 	enter_guest();
8043 }
8044 
8045 bool vmx_pending_event_ipi_fired;
8046 static void vmx_pending_event_ipi_isr(isr_regs_t *regs)
8047 {
8048 	vmx_pending_event_ipi_fired = true;
8049 	eoi();
8050 }
8051 
8052 bool vmx_pending_event_guest_run;
8053 static void vmx_pending_event_guest(void)
8054 {
8055 	vmcall();
8056 	vmx_pending_event_guest_run = true;
8057 }
8058 
8059 static void vmx_pending_event_test_core(bool guest_hlt)
8060 {
8061 	int ipi_vector = 0xf1;
8062 
8063 	vmx_pending_event_ipi_fired = false;
8064 	handle_irq(ipi_vector, vmx_pending_event_ipi_isr);
8065 
8066 	vmx_pending_event_guest_run = false;
8067 	test_set_guest(vmx_pending_event_guest);
8068 
8069 	vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT);
8070 
8071 	enter_guest();
8072 	skip_exit_vmcall();
8073 
8074 	if (guest_hlt)
8075 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8076 
8077 	irq_disable();
8078 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
8079 				   APIC_DM_FIXED | ipi_vector,
8080 				   0);
8081 
8082 	enter_guest();
8083 
8084 	assert_exit_reason(VMX_EXTINT);
8085 	report(!vmx_pending_event_guest_run,
8086 	       "Guest did not run before host received IPI");
8087 
8088 	irq_enable();
8089 	asm volatile ("nop");
8090 	irq_disable();
8091 	report(vmx_pending_event_ipi_fired,
8092 	       "Got pending interrupt after IRQ enabled");
8093 
8094 	if (guest_hlt)
8095 		vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
8096 
8097 	enter_guest();
8098 	report(vmx_pending_event_guest_run,
8099 	       "Guest finished running when no interrupt");
8100 }
8101 
8102 static void vmx_pending_event_test(void)
8103 {
8104 	vmx_pending_event_test_core(false);
8105 }
8106 
8107 static void vmx_pending_event_hlt_test(void)
8108 {
8109 	vmx_pending_event_test_core(true);
8110 }
8111 
8112 static int vmx_window_test_db_count;
8113 
8114 static void vmx_window_test_db_handler(struct ex_regs *regs)
8115 {
8116 	vmx_window_test_db_count++;
8117 }
8118 
8119 static void vmx_nmi_window_test_guest(void)
8120 {
8121 	handle_exception(DB_VECTOR, vmx_window_test_db_handler);
8122 
8123 	asm volatile("vmcall\n\t"
8124 		     "nop\n\t");
8125 
8126 	handle_exception(DB_VECTOR, NULL);
8127 }
8128 
8129 static void verify_nmi_window_exit(u64 rip)
8130 {
8131 	u32 exit_reason = vmcs_read(EXI_REASON);
8132 
8133 	report(exit_reason == VMX_NMI_WINDOW,
8134 	       "Exit reason (%d) is 'NMI window'", exit_reason);
8135 	report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx",
8136 	       vmcs_read(GUEST_RIP), rip);
8137 	vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
8138 }
8139 
8140 static void vmx_nmi_window_test(void)
8141 {
8142 	u64 nop_addr;
8143 	void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]);
8144 
8145 	if (!(ctrl_pin_rev.clr & PIN_VIRT_NMI)) {
8146 		report_skip("CPU does not support the \"Virtual NMIs\" VM-execution control.");
8147 		return;
8148 	}
8149 
8150 	if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) {
8151 		report_skip("CPU does not support the \"NMI-window exiting\" VM-execution control.");
8152 		return;
8153 	}
8154 
8155 	vmx_window_test_db_count = 0;
8156 
8157 	report_prefix_push("NMI-window");
8158 	test_set_guest(vmx_nmi_window_test_guest);
8159 	vmcs_set_bits(PIN_CONTROLS, PIN_VIRT_NMI);
8160 	enter_guest();
8161 	skip_exit_vmcall();
8162 	nop_addr = vmcs_read(GUEST_RIP);
8163 
8164 	/*
8165 	 * Ask for "NMI-window exiting," and expect an immediate VM-exit.
8166 	 * RIP will not advance.
8167 	 */
8168 	report_prefix_push("active, no blocking");
8169 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW);
8170 	enter_guest();
8171 	verify_nmi_window_exit(nop_addr);
8172 	report_prefix_pop();
8173 
8174 	/*
8175 	 * Ask for "NMI-window exiting" in a MOV-SS shadow, and expect
8176 	 * a VM-exit on the next instruction after the nop. (The nop
8177 	 * is one byte.)
8178 	 */
8179 	report_prefix_push("active, blocking by MOV-SS");
8180 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
8181 	enter_guest();
8182 	verify_nmi_window_exit(nop_addr + 1);
8183 	report_prefix_pop();
8184 
8185 	/*
8186 	 * Ask for "NMI-window exiting" (with event injection), and
8187 	 * expect a VM-exit after the event is injected. (RIP should
8188 	 * be at the address specified in the IDT entry for #DB.)
8189 	 */
8190 	report_prefix_push("active, no blocking, injecting #DB");
8191 	vmcs_write(ENT_INTR_INFO,
8192 		   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
8193 	enter_guest();
8194 	verify_nmi_window_exit((u64)db_fault_addr);
8195 	report_prefix_pop();
8196 
8197 	/*
8198 	 * Ask for "NMI-window exiting" with NMI blocking, and expect
8199 	 * a VM-exit after the next IRET (i.e. after the #DB handler
8200 	 * returns). So, RIP should be back at one byte past the nop.
8201 	 */
8202 	report_prefix_push("active, blocking by NMI");
8203 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_NMI);
8204 	enter_guest();
8205 	verify_nmi_window_exit(nop_addr + 1);
8206 	report(vmx_window_test_db_count == 1,
8207 	       "#DB handler executed once (actual %d times)",
8208 	       vmx_window_test_db_count);
8209 	report_prefix_pop();
8210 
8211 	if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) {
8212 		report_skip("CPU does not support activity state HLT.");
8213 	} else {
8214 		/*
8215 		 * Ask for "NMI-window exiting" when entering activity
8216 		 * state HLT, and expect an immediate VM-exit. RIP is
8217 		 * still one byte past the nop.
8218 		 */
8219 		report_prefix_push("halted, no blocking");
8220 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8221 		enter_guest();
8222 		verify_nmi_window_exit(nop_addr + 1);
8223 		report_prefix_pop();
8224 
8225 		/*
8226 		 * Ask for "NMI-window exiting" when entering activity
8227 		 * state HLT (with event injection), and expect a
8228 		 * VM-exit after the event is injected. (RIP should be
8229 		 * at the address specified in the IDT entry for #DB.)
8230 		 */
8231 		report_prefix_push("halted, no blocking, injecting #DB");
8232 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8233 		vmcs_write(ENT_INTR_INFO,
8234 			   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
8235 			   DB_VECTOR);
8236 		enter_guest();
8237 		verify_nmi_window_exit((u64)db_fault_addr);
8238 		report_prefix_pop();
8239 	}
8240 
8241 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW);
8242 	enter_guest();
8243 	report_prefix_pop();
8244 }
8245 
8246 static void vmx_intr_window_test_guest(void)
8247 {
8248 	handle_exception(DB_VECTOR, vmx_window_test_db_handler);
8249 
8250 	/*
8251 	 * The two consecutive STIs are to ensure that only the first
8252 	 * one has a shadow. Note that NOP and STI are one byte
8253 	 * instructions.
8254 	 */
8255 	asm volatile("vmcall\n\t"
8256 		     "nop\n\t"
8257 		     "sti\n\t"
8258 		     "sti\n\t");
8259 
8260 	handle_exception(DB_VECTOR, NULL);
8261 }
8262 
8263 static void verify_intr_window_exit(u64 rip)
8264 {
8265 	u32 exit_reason = vmcs_read(EXI_REASON);
8266 
8267 	report(exit_reason == VMX_INTR_WINDOW,
8268 	       "Exit reason (%d) is 'interrupt window'", exit_reason);
8269 	report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx",
8270 	       vmcs_read(GUEST_RIP), rip);
8271 	vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
8272 }
8273 
8274 static void vmx_intr_window_test(void)
8275 {
8276 	u64 vmcall_addr;
8277 	u64 nop_addr;
8278 	unsigned int orig_db_gate_type;
8279 	void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]);
8280 
8281 	if (!(ctrl_cpu_rev[0].clr & CPU_INTR_WINDOW)) {
8282 		report_skip("CPU does not support the \"interrupt-window exiting\" VM-execution control.");
8283 		return;
8284 	}
8285 
8286 	/*
8287 	 * Change the IDT entry for #DB from interrupt gate to trap gate,
8288 	 * so that it won't clear RFLAGS.IF. We don't want interrupts to
8289 	 * be disabled after vectoring a #DB.
8290 	 */
8291 	orig_db_gate_type = boot_idt[DB_VECTOR].type;
8292 	boot_idt[DB_VECTOR].type = 15;
8293 
8294 	report_prefix_push("interrupt-window");
8295 	test_set_guest(vmx_intr_window_test_guest);
8296 	enter_guest();
8297 	assert_exit_reason(VMX_VMCALL);
8298 	vmcall_addr = vmcs_read(GUEST_RIP);
8299 
8300 	/*
8301 	 * Ask for "interrupt-window exiting" with RFLAGS.IF set and
8302 	 * no blocking; expect an immediate VM-exit. Note that we have
8303 	 * not advanced past the vmcall instruction yet, so RIP should
8304 	 * point to the vmcall instruction.
8305 	 */
8306 	report_prefix_push("active, no blocking, RFLAGS.IF=1");
8307 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
8308 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_IF);
8309 	enter_guest();
8310 	verify_intr_window_exit(vmcall_addr);
8311 	report_prefix_pop();
8312 
8313 	/*
8314 	 * Ask for "interrupt-window exiting" (with event injection)
8315 	 * with RFLAGS.IF set and no blocking; expect a VM-exit after
8316 	 * the event is injected. That is, RIP should should be at the
8317 	 * address specified in the IDT entry for #DB.
8318 	 */
8319 	report_prefix_push("active, no blocking, RFLAGS.IF=1, injecting #DB");
8320 	vmcs_write(ENT_INTR_INFO,
8321 		   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
8322 	vmcall_addr = vmcs_read(GUEST_RIP);
8323 	enter_guest();
8324 	verify_intr_window_exit((u64)db_fault_addr);
8325 	report_prefix_pop();
8326 
8327 	/*
8328 	 * Let the L2 guest run through the IRET, back to the VMCALL.
8329 	 * We have to clear the "interrupt-window exiting"
8330 	 * VM-execution control, or it would just keep causing
8331 	 * VM-exits. Then, advance past the VMCALL and set the
8332 	 * "interrupt-window exiting" VM-execution control again.
8333 	 */
8334 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
8335 	enter_guest();
8336 	skip_exit_vmcall();
8337 	nop_addr = vmcs_read(GUEST_RIP);
8338 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
8339 
8340 	/*
8341 	 * Ask for "interrupt-window exiting" in a MOV-SS shadow with
8342 	 * RFLAGS.IF set, and expect a VM-exit on the next
8343 	 * instruction. (NOP is one byte.)
8344 	 */
8345 	report_prefix_push("active, blocking by MOV-SS, RFLAGS.IF=1");
8346 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
8347 	enter_guest();
8348 	verify_intr_window_exit(nop_addr + 1);
8349 	report_prefix_pop();
8350 
8351 	/*
8352 	 * Back up to the NOP and ask for "interrupt-window exiting"
8353 	 * in an STI shadow with RFLAGS.IF set, and expect a VM-exit
8354 	 * on the next instruction. (NOP is one byte.)
8355 	 */
8356 	report_prefix_push("active, blocking by STI, RFLAGS.IF=1");
8357 	vmcs_write(GUEST_RIP, nop_addr);
8358 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_STI);
8359 	enter_guest();
8360 	verify_intr_window_exit(nop_addr + 1);
8361 	report_prefix_pop();
8362 
8363 	/*
8364 	 * Ask for "interrupt-window exiting" with RFLAGS.IF clear,
8365 	 * and expect a VM-exit on the instruction following the STI
8366 	 * shadow. Only the first STI (which is one byte past the NOP)
8367 	 * should have a shadow. The second STI (which is two bytes
8368 	 * past the NOP) has no shadow. Therefore, the interrupt
8369 	 * window opens at three bytes past the NOP.
8370 	 */
8371 	report_prefix_push("active, RFLAGS.IF = 0");
8372 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
8373 	enter_guest();
8374 	verify_intr_window_exit(nop_addr + 3);
8375 	report_prefix_pop();
8376 
8377 	if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) {
8378 		report_skip("CPU does not support activity state HLT.");
8379 	} else {
8380 		/*
8381 		 * Ask for "interrupt-window exiting" when entering
8382 		 * activity state HLT, and expect an immediate
8383 		 * VM-exit. RIP is still three bytes past the nop.
8384 		 */
8385 		report_prefix_push("halted, no blocking");
8386 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8387 		enter_guest();
8388 		verify_intr_window_exit(nop_addr + 3);
8389 		report_prefix_pop();
8390 
8391 		/*
8392 		 * Ask for "interrupt-window exiting" when entering
8393 		 * activity state HLT (with event injection), and
8394 		 * expect a VM-exit after the event is injected. That
8395 		 * is, RIP should should be at the address specified
8396 		 * in the IDT entry for #DB.
8397 		 */
8398 		report_prefix_push("halted, no blocking, injecting #DB");
8399 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8400 		vmcs_write(ENT_INTR_INFO,
8401 			   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
8402 			   DB_VECTOR);
8403 		enter_guest();
8404 		verify_intr_window_exit((u64)db_fault_addr);
8405 		report_prefix_pop();
8406 	}
8407 
8408 	boot_idt[DB_VECTOR].type = orig_db_gate_type;
8409 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
8410 	enter_guest();
8411 	report_prefix_pop();
8412 }
8413 
8414 #define GUEST_TSC_OFFSET (1u << 30)
8415 
8416 static u64 guest_tsc;
8417 
8418 static void vmx_store_tsc_test_guest(void)
8419 {
8420 	guest_tsc = rdtsc();
8421 }
8422 
8423 /*
8424  * This test ensures that when IA32_TSC is in the VM-exit MSR-store
8425  * list, the value saved is not subject to the TSC offset that is
8426  * applied to RDTSC/RDTSCP/RDMSR(IA32_TSC) in guest execution.
8427  */
8428 static void vmx_store_tsc_test(void)
8429 {
8430 	struct vmx_msr_entry msr_entry = { .index = MSR_IA32_TSC };
8431 	u64 low, high;
8432 
8433 	if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) {
8434 		report_skip("'Use TSC offsetting' not supported");
8435 		return;
8436 	}
8437 
8438 	test_set_guest(vmx_store_tsc_test_guest);
8439 
8440 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET);
8441 	vmcs_write(EXI_MSR_ST_CNT, 1);
8442 	vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(&msr_entry));
8443 	vmcs_write(TSC_OFFSET, GUEST_TSC_OFFSET);
8444 
8445 	low = rdtsc();
8446 	enter_guest();
8447 	high = rdtsc();
8448 
8449 	report(low + GUEST_TSC_OFFSET <= guest_tsc &&
8450 	       guest_tsc <= high + GUEST_TSC_OFFSET,
8451 	       "RDTSC value in the guest (%lu) is in range [%lu, %lu]",
8452 	       guest_tsc, low + GUEST_TSC_OFFSET, high + GUEST_TSC_OFFSET);
8453 	report(low <= msr_entry.value && msr_entry.value <= high,
8454 	       "IA32_TSC value saved in the VM-exit MSR-store list (%lu) is in range [%lu, %lu]",
8455 	       msr_entry.value, low, high);
8456 }
8457 
8458 static void vmx_preemption_timer_zero_test_db_handler(struct ex_regs *regs)
8459 {
8460 }
8461 
8462 static void vmx_preemption_timer_zero_test_guest(void)
8463 {
8464 	while (vmx_get_test_stage() < 3)
8465 		vmcall();
8466 }
8467 
8468 static void vmx_preemption_timer_zero_activate_preemption_timer(void)
8469 {
8470 	vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT);
8471 	vmcs_write(PREEMPT_TIMER_VALUE, 0);
8472 }
8473 
8474 static void vmx_preemption_timer_zero_advance_past_vmcall(void)
8475 {
8476 	vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
8477 	enter_guest();
8478 	skip_exit_vmcall();
8479 }
8480 
8481 static void vmx_preemption_timer_zero_inject_db(bool intercept_db)
8482 {
8483 	vmx_preemption_timer_zero_activate_preemption_timer();
8484 	vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK |
8485 		   INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
8486 	vmcs_write(EXC_BITMAP, intercept_db ? 1 << DB_VECTOR : 0);
8487 	enter_guest();
8488 }
8489 
8490 static void vmx_preemption_timer_zero_set_pending_dbg(u32 exception_bitmap)
8491 {
8492 	vmx_preemption_timer_zero_activate_preemption_timer();
8493 	vmcs_write(GUEST_PENDING_DEBUG, BIT(12) | DR_TRAP1);
8494 	vmcs_write(EXC_BITMAP, exception_bitmap);
8495 	enter_guest();
8496 }
8497 
8498 static void vmx_preemption_timer_zero_expect_preempt_at_rip(u64 expected_rip)
8499 {
8500 	u32 reason = (u32)vmcs_read(EXI_REASON);
8501 	u64 guest_rip = vmcs_read(GUEST_RIP);
8502 
8503 	report(reason == VMX_PREEMPT && guest_rip == expected_rip,
8504 	       "Exit reason is 0x%x (expected 0x%x) and guest RIP is %lx (0x%lx expected).",
8505 	       reason, VMX_PREEMPT, guest_rip, expected_rip);
8506 }
8507 
8508 /*
8509  * This test ensures that when the VMX preemption timer is zero at
8510  * VM-entry, a VM-exit occurs after any event injection and after any
8511  * pending debug exceptions are raised, but before execution of any
8512  * guest instructions.
8513  */
8514 static void vmx_preemption_timer_zero_test(void)
8515 {
8516 	u64 db_fault_address = (u64)get_idt_addr(&boot_idt[DB_VECTOR]);
8517 	handler old_db;
8518 	u32 reason;
8519 
8520 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
8521 		report_skip("'Activate VMX-preemption timer' not supported");
8522 		return;
8523 	}
8524 
8525 	/*
8526 	 * Install a custom #DB handler that doesn't abort.
8527 	 */
8528 	old_db = handle_exception(DB_VECTOR,
8529 				  vmx_preemption_timer_zero_test_db_handler);
8530 
8531 	test_set_guest(vmx_preemption_timer_zero_test_guest);
8532 
8533 	/*
8534 	 * VMX-preemption timer should fire after event injection.
8535 	 */
8536 	vmx_set_test_stage(0);
8537 	vmx_preemption_timer_zero_inject_db(0);
8538 	vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address);
8539 	vmx_preemption_timer_zero_advance_past_vmcall();
8540 
8541 	/*
8542 	 * VMX-preemption timer should fire after event injection.
8543 	 * Exception bitmap is irrelevant, since you can't intercept
8544 	 * an event that you injected.
8545 	 */
8546 	vmx_set_test_stage(1);
8547 	vmx_preemption_timer_zero_inject_db(1 << DB_VECTOR);
8548 	vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address);
8549 	vmx_preemption_timer_zero_advance_past_vmcall();
8550 
8551 	/*
8552 	 * VMX-preemption timer should fire after pending debug exceptions
8553 	 * have delivered a #DB trap.
8554 	 */
8555 	vmx_set_test_stage(2);
8556 	vmx_preemption_timer_zero_set_pending_dbg(0);
8557 	vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address);
8558 	vmx_preemption_timer_zero_advance_past_vmcall();
8559 
8560 	/*
8561 	 * VMX-preemption timer would fire after pending debug exceptions
8562 	 * have delivered a #DB trap, but in this case, the #DB trap is
8563 	 * intercepted.
8564 	 */
8565 	vmx_set_test_stage(3);
8566 	vmx_preemption_timer_zero_set_pending_dbg(1 << DB_VECTOR);
8567 	reason = (u32)vmcs_read(EXI_REASON);
8568 	report(reason == VMX_EXC_NMI, "Exit reason is 0x%x (expected 0x%x)",
8569 	       reason, VMX_EXC_NMI);
8570 
8571 	vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
8572 	enter_guest();
8573 
8574 	handle_exception(DB_VECTOR, old_db);
8575 }
8576 
8577 static u64 vmx_preemption_timer_tf_test_prev_rip;
8578 
8579 static void vmx_preemption_timer_tf_test_db_handler(struct ex_regs *regs)
8580 {
8581 	extern char vmx_preemption_timer_tf_test_endloop;
8582 
8583 	if (vmx_get_test_stage() == 2) {
8584 		/*
8585 		 * Stage 2 means that we're done, one way or another.
8586 		 * Arrange for the iret to drop us out of the wbinvd
8587 		 * loop and stop single-stepping.
8588 		 */
8589 		regs->rip = (u64)&vmx_preemption_timer_tf_test_endloop;
8590 		regs->rflags &= ~X86_EFLAGS_TF;
8591 	} else if (regs->rip == vmx_preemption_timer_tf_test_prev_rip) {
8592 		/*
8593 		 * The RIP should alternate between the wbinvd and the
8594 		 * jmp instruction in the code below. If we ever see
8595 		 * the same instruction twice in a row, that means a
8596 		 * single-step trap has been dropped. Let the
8597 		 * hypervisor know about the failure by executing a
8598 		 * VMCALL.
8599 		 */
8600 		vmcall();
8601 	}
8602 	vmx_preemption_timer_tf_test_prev_rip = regs->rip;
8603 }
8604 
8605 static void vmx_preemption_timer_tf_test_guest(void)
8606 {
8607 	/*
8608 	 * The hypervisor doesn't intercept WBINVD, so the loop below
8609 	 * shouldn't be a problem--it's just two instructions
8610 	 * executing in VMX non-root mode. However, when the
8611 	 * hypervisor is running in a virtual environment, the parent
8612 	 * hypervisor might intercept WBINVD and emulate it. If the
8613 	 * parent hypervisor is broken, the single-step trap after the
8614 	 * WBINVD might be lost.
8615 	 */
8616 	asm volatile("vmcall\n\t"
8617 		     "0: wbinvd\n\t"
8618 		     "1: jmp 0b\n\t"
8619 		     "vmx_preemption_timer_tf_test_endloop:");
8620 }
8621 
8622 /*
8623  * Ensure that the delivery of a "VMX-preemption timer expired"
8624  * VM-exit doesn't disrupt single-stepping in the guest. Note that
8625  * passing this test doesn't ensure correctness, because the test will
8626  * only fail if the VMX-preemtion timer fires at the right time (or
8627  * the wrong time, as it were).
8628  */
8629 static void vmx_preemption_timer_tf_test(void)
8630 {
8631 	handler old_db;
8632 	u32 reason;
8633 	int i;
8634 
8635 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
8636 		report_skip("'Activate VMX-preemption timer' not supported");
8637 		return;
8638 	}
8639 
8640 	old_db = handle_exception(DB_VECTOR,
8641 				  vmx_preemption_timer_tf_test_db_handler);
8642 
8643 	test_set_guest(vmx_preemption_timer_tf_test_guest);
8644 
8645 	enter_guest();
8646 	skip_exit_vmcall();
8647 
8648 	vmx_set_test_stage(1);
8649 	vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT);
8650 	vmcs_write(PREEMPT_TIMER_VALUE, 50000);
8651 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF);
8652 
8653 	/*
8654 	 * The only exit we should see is "VMX-preemption timer
8655 	 * expired."  If we get a VMCALL exit, that means the #DB
8656 	 * handler has detected a missing single-step trap. It doesn't
8657 	 * matter where the guest RIP is when the VMX-preemption timer
8658 	 * expires (whether it's in the WBINVD loop or in the #DB
8659 	 * handler)--a single-step trap should never be discarded.
8660 	 */
8661 	for (i = 0; i < 10000; i++) {
8662 		enter_guest();
8663 		reason = (u32)vmcs_read(EXI_REASON);
8664 		if (reason == VMX_PREEMPT)
8665 			continue;
8666 		TEST_ASSERT(reason == VMX_VMCALL);
8667 		skip_exit_insn();
8668 		break;
8669 	}
8670 
8671 	report(reason == VMX_PREEMPT, "No single-step traps skipped");
8672 
8673 	vmx_set_test_stage(2);
8674 	vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
8675 	enter_guest();
8676 
8677 	handle_exception(DB_VECTOR, old_db);
8678 }
8679 
8680 #define VMX_PREEMPTION_TIMER_EXPIRY_CYCLES 1000000
8681 
8682 static u64 vmx_preemption_timer_expiry_start;
8683 static u64 vmx_preemption_timer_expiry_finish;
8684 
8685 static void vmx_preemption_timer_expiry_test_guest(void)
8686 {
8687 	vmcall();
8688 	vmx_preemption_timer_expiry_start = fenced_rdtsc();
8689 
8690 	while (vmx_get_test_stage() == 0)
8691 		vmx_preemption_timer_expiry_finish = fenced_rdtsc();
8692 }
8693 
8694 /*
8695  * Test that the VMX-preemption timer is not excessively delayed.
8696  *
8697  * Per the SDM, volume 3, VM-entry starts the VMX-preemption timer
8698  * with the unsigned value in the VMX-preemption timer-value field,
8699  * and the VMX-preemption timer counts down by 1 every time bit X in
8700  * the TSC changes due to a TSC increment (where X is
8701  * IA32_VMX_MISC[4:0]). If the timer counts down to zero in any state
8702  * other than the wait-for-SIPI state, the logical processor
8703  * transitions to the C0 C-state and causes a VM-exit.
8704  *
8705  * The guest code above reads the starting TSC after VM-entry. At this
8706  * point, the VMX-preemption timer has already been activated. Next,
8707  * the guest code reads the current TSC in a loop, storing the value
8708  * read to memory.
8709  *
8710  * If the RDTSC in the loop reads a value past the VMX-preemption
8711  * timer deadline, then the VMX-preemption timer VM-exit must be
8712  * delivered before the next instruction retires. Even if a higher
8713  * priority SMI is delivered first, the VMX-preemption timer VM-exit
8714  * must be delivered before the next instruction retires. Hence, a TSC
8715  * value past the VMX-preemption timer deadline might be read, but it
8716  * cannot be stored. If a TSC value past the deadline *is* stored,
8717  * then the architectural specification has been violated.
8718  */
8719 static void vmx_preemption_timer_expiry_test(void)
8720 {
8721 	u32 preemption_timer_value;
8722 	union vmx_misc misc;
8723 	u64 tsc_deadline;
8724 	u32 reason;
8725 
8726 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
8727 		report_skip("'Activate VMX-preemption timer' not supported");
8728 		return;
8729 	}
8730 
8731 	test_set_guest(vmx_preemption_timer_expiry_test_guest);
8732 
8733 	enter_guest();
8734 	skip_exit_vmcall();
8735 
8736 	misc.val = rdmsr(MSR_IA32_VMX_MISC);
8737 	preemption_timer_value =
8738 		VMX_PREEMPTION_TIMER_EXPIRY_CYCLES >> misc.pt_bit;
8739 
8740 	vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT);
8741 	vmcs_write(PREEMPT_TIMER_VALUE, preemption_timer_value);
8742 	vmx_set_test_stage(0);
8743 
8744 	enter_guest();
8745 	reason = (u32)vmcs_read(EXI_REASON);
8746 	TEST_ASSERT(reason == VMX_PREEMPT);
8747 
8748 	vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
8749 	vmx_set_test_stage(1);
8750 	enter_guest();
8751 
8752 	tsc_deadline = ((vmx_preemption_timer_expiry_start >> misc.pt_bit) <<
8753 			misc.pt_bit) + (preemption_timer_value << misc.pt_bit);
8754 
8755 	report(vmx_preemption_timer_expiry_finish < tsc_deadline,
8756 	       "Last stored guest TSC (%lu) < TSC deadline (%lu)",
8757 	       vmx_preemption_timer_expiry_finish, tsc_deadline);
8758 }
8759 
8760 static void vmx_db_test_guest(void)
8761 {
8762 	/*
8763 	 * For a hardware generated single-step #DB.
8764 	 */
8765 	asm volatile("vmcall;"
8766 		     "nop;"
8767 		     ".Lpost_nop:");
8768 	/*
8769 	 * ...in a MOVSS shadow, with pending debug exceptions.
8770 	 */
8771 	asm volatile("vmcall;"
8772 		     "nop;"
8773 		     ".Lpost_movss_nop:");
8774 	/*
8775 	 * For an L0 synthesized single-step #DB. (L0 intercepts WBINVD and
8776 	 * emulates it in software.)
8777 	 */
8778 	asm volatile("vmcall;"
8779 		     "wbinvd;"
8780 		     ".Lpost_wbinvd:");
8781 	/*
8782 	 * ...in a MOVSS shadow, with pending debug exceptions.
8783 	 */
8784 	asm volatile("vmcall;"
8785 		     "wbinvd;"
8786 		     ".Lpost_movss_wbinvd:");
8787 	/*
8788 	 * For a hardware generated single-step #DB in a transactional region.
8789 	 */
8790 	asm volatile("vmcall;"
8791 		     ".Lxbegin: xbegin .Lskip_rtm;"
8792 		     "xend;"
8793 		     ".Lskip_rtm:");
8794 }
8795 
8796 /*
8797  * Clear the pending debug exceptions and RFLAGS.TF and re-enter
8798  * L2. No #DB is delivered and L2 continues to the next point of
8799  * interest.
8800  */
8801 static void dismiss_db(void)
8802 {
8803 	vmcs_write(GUEST_PENDING_DEBUG, 0);
8804 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
8805 	enter_guest();
8806 }
8807 
8808 /*
8809  * Check a variety of VMCS fields relevant to an intercepted #DB exception.
8810  * Then throw away the #DB exception and resume L2.
8811  */
8812 static void check_db_exit(bool xfail_qual, bool xfail_dr6, bool xfail_pdbg,
8813 			  void *expected_rip, u64 expected_exit_qual,
8814 			  u64 expected_dr6)
8815 {
8816 	u32 reason = vmcs_read(EXI_REASON);
8817 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
8818 	u64 exit_qual = vmcs_read(EXI_QUALIFICATION);
8819 	u64 guest_rip = vmcs_read(GUEST_RIP);
8820 	u64 guest_pending_dbg = vmcs_read(GUEST_PENDING_DEBUG);
8821 	u64 dr6 = read_dr6();
8822 	const u32 expected_intr_info = INTR_INFO_VALID_MASK |
8823 		INTR_TYPE_HARD_EXCEPTION | DB_VECTOR;
8824 
8825 	report(reason == VMX_EXC_NMI && intr_info == expected_intr_info,
8826 	       "Expected #DB VM-exit");
8827 	report((u64)expected_rip == guest_rip, "Expected RIP %p (actual %lx)",
8828 	       expected_rip, guest_rip);
8829 	report_xfail(xfail_pdbg, 0 == guest_pending_dbg,
8830 		     "Expected pending debug exceptions 0 (actual %lx)",
8831 		     guest_pending_dbg);
8832 	report_xfail(xfail_qual, expected_exit_qual == exit_qual,
8833 		     "Expected exit qualification %lx (actual %lx)",
8834 		     expected_exit_qual, exit_qual);
8835 	report_xfail(xfail_dr6, expected_dr6 == dr6,
8836 		     "Expected DR6 %lx (actual %lx)", expected_dr6, dr6);
8837 	dismiss_db();
8838 }
8839 
8840 /*
8841  * Assuming the guest has just exited on a VMCALL instruction, skip
8842  * over the vmcall, and set the guest's RFLAGS.TF in the VMCS. If
8843  * pending debug exceptions are non-zero, set the VMCS up as if the
8844  * previous instruction was a MOVSS that generated the indicated
8845  * pending debug exceptions. Then enter L2.
8846  */
8847 static void single_step_guest(const char *test_name, u64 starting_dr6,
8848 			      u64 pending_debug_exceptions)
8849 {
8850 	printf("\n%s\n", test_name);
8851 	skip_exit_vmcall();
8852 	write_dr6(starting_dr6);
8853 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF);
8854 	if (pending_debug_exceptions) {
8855 		vmcs_write(GUEST_PENDING_DEBUG, pending_debug_exceptions);
8856 		vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
8857 	}
8858 	enter_guest();
8859 }
8860 
8861 /*
8862  * When L1 intercepts #DB, verify that a single-step trap clears
8863  * pending debug exceptions, populates the exit qualification field
8864  * properly, and that DR6 is not prematurely clobbered. In a
8865  * (simulated) MOVSS shadow, make sure that the pending debug
8866  * exception bits are properly accumulated into the exit qualification
8867  * field.
8868  */
8869 static void vmx_db_test(void)
8870 {
8871 	/*
8872 	 * We are going to set a few arbitrary bits in DR6 to verify that
8873 	 * (a) DR6 is not modified by an intercepted #DB, and
8874 	 * (b) stale bits in DR6 (DR6.BD, in particular) don't leak into
8875          *     the exit qualification field for a subsequent #DB exception.
8876 	 */
8877 	const u64 starting_dr6 = DR6_RESERVED | BIT(13) | DR_TRAP3 | DR_TRAP1;
8878 	extern char post_nop asm(".Lpost_nop");
8879 	extern char post_movss_nop asm(".Lpost_movss_nop");
8880 	extern char post_wbinvd asm(".Lpost_wbinvd");
8881 	extern char post_movss_wbinvd asm(".Lpost_movss_wbinvd");
8882 	extern char xbegin asm(".Lxbegin");
8883 	extern char skip_rtm asm(".Lskip_rtm");
8884 
8885 	/*
8886 	 * L1 wants to intercept #DB exceptions encountered in L2.
8887 	 */
8888 	vmcs_write(EXC_BITMAP, BIT(DB_VECTOR));
8889 
8890 	/*
8891 	 * Start L2 and run it up to the first point of interest.
8892 	 */
8893 	test_set_guest(vmx_db_test_guest);
8894 	enter_guest();
8895 
8896 	/*
8897 	 * Hardware-delivered #DB trap for single-step sets the
8898 	 * standard that L0 has to follow for emulated instructions.
8899 	 */
8900 	single_step_guest("Hardware delivered single-step", starting_dr6, 0);
8901 	check_db_exit(false, false, false, &post_nop, DR_STEP, starting_dr6);
8902 
8903 	/*
8904 	 * Hardware-delivered #DB trap for single-step in MOVSS shadow
8905 	 * also sets the standard that L0 has to follow for emulated
8906 	 * instructions. Here, we establish the VMCS pending debug
8907 	 * exceptions to indicate that the simulated MOVSS triggered a
8908 	 * data breakpoint as well as the single-step trap.
8909 	 */
8910 	single_step_guest("Hardware delivered single-step in MOVSS shadow",
8911 			  starting_dr6, BIT(12) | DR_STEP | DR_TRAP0 );
8912 	check_db_exit(false, false, false, &post_movss_nop, DR_STEP | DR_TRAP0,
8913 		      starting_dr6);
8914 
8915 	/*
8916 	 * L0 synthesized #DB trap for single-step is buggy, because
8917 	 * kvm (a) clobbers DR6 too early, and (b) tries its best to
8918 	 * reconstitute the exit qualification from the prematurely
8919 	 * modified DR6, but fails miserably.
8920 	 */
8921 	single_step_guest("Software synthesized single-step", starting_dr6, 0);
8922 	check_db_exit(false, false, false, &post_wbinvd, DR_STEP, starting_dr6);
8923 
8924 	/*
8925 	 * L0 synthesized #DB trap for single-step in MOVSS shadow is
8926 	 * even worse, because L0 also leaves the pending debug
8927 	 * exceptions in the VMCS instead of accumulating them into
8928 	 * the exit qualification field for the #DB exception.
8929 	 */
8930 	single_step_guest("Software synthesized single-step in MOVSS shadow",
8931 			  starting_dr6, BIT(12) | DR_STEP | DR_TRAP0);
8932 	check_db_exit(true, false, true, &post_movss_wbinvd, DR_STEP | DR_TRAP0,
8933 		      starting_dr6);
8934 
8935 	/*
8936 	 * Optional RTM test for hardware that supports RTM, to
8937 	 * demonstrate that the current volume 3 of the SDM
8938 	 * (325384-067US), table 27-1 is incorrect. Bit 16 of the exit
8939 	 * qualification for debug exceptions is not reserved. It is
8940 	 * set to 1 if a debug exception (#DB) or a breakpoint
8941 	 * exception (#BP) occurs inside an RTM region while advanced
8942 	 * debugging of RTM transactional regions is enabled.
8943 	 */
8944 	if (this_cpu_has(X86_FEATURE_RTM)) {
8945 		vmcs_write(ENT_CONTROLS,
8946 			   vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
8947 		/*
8948 		 * Set DR7.RTM[bit 11] and IA32_DEBUGCTL.RTM[bit 15]
8949 		 * in the guest to enable advanced debugging of RTM
8950 		 * transactional regions.
8951 		 */
8952 		vmcs_write(GUEST_DR7, BIT(11));
8953 		vmcs_write(GUEST_DEBUGCTL, BIT(15));
8954 		single_step_guest("Hardware delivered single-step in "
8955 				  "transactional region", starting_dr6, 0);
8956 		check_db_exit(false, false, false, &xbegin, BIT(16),
8957 			      starting_dr6);
8958 	} else {
8959 		vmcs_write(GUEST_RIP, (u64)&skip_rtm);
8960 		enter_guest();
8961 	}
8962 }
8963 
8964 static void enable_vid(void)
8965 {
8966 	void *virtual_apic_page;
8967 
8968 	assert(cpu_has_apicv());
8969 
8970 	disable_intercept_for_x2apic_msrs();
8971 
8972 	virtual_apic_page = alloc_page();
8973 	vmcs_write(APIC_VIRT_ADDR, (u64)virtual_apic_page);
8974 
8975 	vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT);
8976 
8977 	vmcs_write(EOI_EXIT_BITMAP0, 0x0);
8978 	vmcs_write(EOI_EXIT_BITMAP1, 0x0);
8979 	vmcs_write(EOI_EXIT_BITMAP2, 0x0);
8980 	vmcs_write(EOI_EXIT_BITMAP3, 0x0);
8981 
8982 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY | CPU_TPR_SHADOW);
8983 	vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VINTD | CPU_VIRT_X2APIC);
8984 }
8985 
8986 static void trigger_ioapic_scan_thread(void *data)
8987 {
8988 	/* Wait until other CPU entered L2 */
8989 	while (vmx_get_test_stage() != 1)
8990 		;
8991 
8992 	/* Trigger ioapic scan */
8993 	ioapic_set_redir(0xf, 0x79, TRIGGER_LEVEL);
8994 	vmx_set_test_stage(2);
8995 }
8996 
8997 static void irq_79_handler_guest(isr_regs_t *regs)
8998 {
8999 	eoi();
9000 
9001 	/* L1 expects vmexit on VMX_VMCALL and not VMX_EOI_INDUCED */
9002 	vmcall();
9003 }
9004 
9005 /*
9006  * Constant for num of busy-loop iterations after which
9007  * a timer interrupt should have happened in host
9008  */
9009 #define TIMER_INTERRUPT_DELAY 100000000
9010 
9011 static void vmx_eoi_bitmap_ioapic_scan_test_guest(void)
9012 {
9013 	handle_irq(0x79, irq_79_handler_guest);
9014 	irq_enable();
9015 
9016 	/* Signal to L1 CPU to trigger ioapic scan */
9017 	vmx_set_test_stage(1);
9018 	/* Wait until L1 CPU to trigger ioapic scan */
9019 	while (vmx_get_test_stage() != 2)
9020 		;
9021 
9022 	/*
9023 	 * Wait for L0 timer interrupt to be raised while we run in L2
9024 	 * such that L0 will process the IOAPIC scan request before
9025 	 * resuming L2
9026 	 */
9027 	delay(TIMER_INTERRUPT_DELAY);
9028 
9029 	asm volatile ("int $0x79");
9030 }
9031 
9032 static void vmx_eoi_bitmap_ioapic_scan_test(void)
9033 {
9034 	if (!cpu_has_apicv() || (cpu_count() < 2)) {
9035 		report_skip(__func__);
9036 		return;
9037 	}
9038 
9039 	enable_vid();
9040 
9041 	on_cpu_async(1, trigger_ioapic_scan_thread, NULL);
9042 	test_set_guest(vmx_eoi_bitmap_ioapic_scan_test_guest);
9043 
9044 	/*
9045 	 * Launch L2.
9046 	 * We expect the exit reason to be VMX_VMCALL (and not EOI INDUCED).
9047 	 * In case the reason isn't VMX_VMCALL, the asserion inside
9048 	 * skip_exit_vmcall() will fail.
9049 	 */
9050 	enter_guest();
9051 	skip_exit_vmcall();
9052 
9053 	/* Let L2 finish */
9054 	enter_guest();
9055 	report(1, __func__);
9056 }
9057 
9058 #define HLT_WITH_RVI_VECTOR		(0xf1)
9059 
9060 bool vmx_hlt_with_rvi_guest_isr_fired;
9061 static void vmx_hlt_with_rvi_guest_isr(isr_regs_t *regs)
9062 {
9063 	vmx_hlt_with_rvi_guest_isr_fired = true;
9064 	eoi();
9065 }
9066 
9067 static void vmx_hlt_with_rvi_guest(void)
9068 {
9069 	handle_irq(HLT_WITH_RVI_VECTOR, vmx_hlt_with_rvi_guest_isr);
9070 
9071 	irq_enable();
9072 	asm volatile ("nop");
9073 
9074 	vmcall();
9075 }
9076 
9077 static void vmx_hlt_with_rvi_test(void)
9078 {
9079 	if (!cpu_has_apicv()) {
9080 		report_skip(__func__);
9081 		return;
9082 	}
9083 
9084 	enable_vid();
9085 
9086 	vmx_hlt_with_rvi_guest_isr_fired = false;
9087 	test_set_guest(vmx_hlt_with_rvi_guest);
9088 
9089 	enter_guest();
9090 	skip_exit_vmcall();
9091 
9092 	vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
9093 	vmcs_write(GUEST_INT_STATUS, HLT_WITH_RVI_VECTOR);
9094 	enter_guest();
9095 
9096 	report(vmx_hlt_with_rvi_guest_isr_fired, "Interrupt raised in guest");
9097 }
9098 
9099 static void set_irq_line_thread(void *data)
9100 {
9101 	/* Wait until other CPU entered L2 */
9102 	while (vmx_get_test_stage() != 1)
9103 		;
9104 
9105 	/* Set irq-line 0xf to raise vector 0x78 for vCPU 0 */
9106 	ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL);
9107 	vmx_set_test_stage(2);
9108 }
9109 
9110 static bool irq_78_handler_vmcall_before_eoi;
9111 static void irq_78_handler_guest(isr_regs_t *regs)
9112 {
9113 	set_irq_line(0xf, 0);
9114 	if (irq_78_handler_vmcall_before_eoi)
9115 		vmcall();
9116 	eoi();
9117 	vmcall();
9118 }
9119 
9120 static void vmx_apic_passthrough_guest(void)
9121 {
9122 	handle_irq(0x78, irq_78_handler_guest);
9123 	irq_enable();
9124 
9125 	/* If requested, wait for other CPU to trigger ioapic scan */
9126 	if (vmx_get_test_stage() < 1) {
9127 		vmx_set_test_stage(1);
9128 		while (vmx_get_test_stage() != 2)
9129 			;
9130 	}
9131 
9132 	set_irq_line(0xf, 1);
9133 }
9134 
9135 static void vmx_apic_passthrough(bool set_irq_line_from_thread)
9136 {
9137 	if (set_irq_line_from_thread && (cpu_count() < 2)) {
9138 		report_skip(__func__);
9139 		return;
9140 	}
9141 
9142 	/* Test device is required for generating IRQs */
9143 	if (!test_device_enabled()) {
9144 		report_skip(__func__);
9145 		return;
9146 	}
9147 	u64 cpu_ctrl_0 = CPU_SECONDARY;
9148 	u64 cpu_ctrl_1 = 0;
9149 
9150 	disable_intercept_for_x2apic_msrs();
9151 
9152 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
9153 
9154 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0);
9155 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1);
9156 
9157 	if (set_irq_line_from_thread) {
9158 		irq_78_handler_vmcall_before_eoi = false;
9159 		on_cpu_async(1, set_irq_line_thread, NULL);
9160 	} else {
9161 		irq_78_handler_vmcall_before_eoi = true;
9162 		ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL);
9163 		vmx_set_test_stage(2);
9164 	}
9165 	test_set_guest(vmx_apic_passthrough_guest);
9166 
9167 	if (irq_78_handler_vmcall_before_eoi) {
9168 		/* Before EOI remote_irr should still be set */
9169 		enter_guest();
9170 		skip_exit_vmcall();
9171 		TEST_ASSERT_EQ_MSG(1, (int)ioapic_read_redir(0xf).remote_irr,
9172 			"IOAPIC pass-through: remote_irr=1 before EOI");
9173 	}
9174 
9175 	/* After EOI remote_irr should be cleared */
9176 	enter_guest();
9177 	skip_exit_vmcall();
9178 	TEST_ASSERT_EQ_MSG(0, (int)ioapic_read_redir(0xf).remote_irr,
9179 		"IOAPIC pass-through: remote_irr=0 after EOI");
9180 
9181 	/* Let L2 finish */
9182 	enter_guest();
9183 	report(1, __func__);
9184 }
9185 
9186 static void vmx_apic_passthrough_test(void)
9187 {
9188 	vmx_apic_passthrough(false);
9189 }
9190 
9191 static void vmx_apic_passthrough_thread_test(void)
9192 {
9193 	vmx_apic_passthrough(true);
9194 }
9195 
9196 static void vmx_apic_passthrough_tpr_threshold_guest(void)
9197 {
9198 	cli();
9199 	apic_set_tpr(0);
9200 }
9201 
9202 static bool vmx_apic_passthrough_tpr_threshold_ipi_isr_fired;
9203 static void vmx_apic_passthrough_tpr_threshold_ipi_isr(isr_regs_t *regs)
9204 {
9205 	vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = true;
9206 	eoi();
9207 }
9208 
9209 static void vmx_apic_passthrough_tpr_threshold_test(void)
9210 {
9211 	int ipi_vector = 0xe1;
9212 
9213 	disable_intercept_for_x2apic_msrs();
9214 	vmcs_clear_bits(PIN_CONTROLS, PIN_EXTINT);
9215 
9216 	/* Raise L0 TPR-threshold by queueing vector in LAPIC IRR */
9217 	cli();
9218 	apic_set_tpr((ipi_vector >> 4) + 1);
9219 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
9220 			APIC_DM_FIXED | ipi_vector,
9221 			0);
9222 
9223 	test_set_guest(vmx_apic_passthrough_tpr_threshold_guest);
9224 	enter_guest();
9225 
9226 	report(apic_get_tpr() == 0, "TPR was zero by guest");
9227 
9228 	/* Clean pending self-IPI */
9229 	vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = false;
9230 	handle_irq(ipi_vector, vmx_apic_passthrough_tpr_threshold_ipi_isr);
9231 	sti();
9232 	asm volatile ("nop");
9233 	report(vmx_apic_passthrough_tpr_threshold_ipi_isr_fired, "self-IPI fired");
9234 
9235 	report(1, __func__);
9236 }
9237 
9238 static u64 init_signal_test_exit_reason;
9239 static bool init_signal_test_thread_continued;
9240 
9241 static void init_signal_test_thread(void *data)
9242 {
9243 	struct vmcs *test_vmcs = data;
9244 
9245 	/* Enter VMX operation (i.e. exec VMXON) */
9246 	u64 *ap_vmxon_region = alloc_page();
9247 	enable_vmx();
9248 	init_vmx(ap_vmxon_region);
9249 	_vmx_on(ap_vmxon_region);
9250 
9251 	/* Signal CPU have entered VMX operation */
9252 	vmx_set_test_stage(1);
9253 
9254 	/* Wait for BSP CPU to send INIT signal */
9255 	while (vmx_get_test_stage() != 2)
9256 		;
9257 
9258 	/*
9259 	 * Signal that we continue as usual as INIT signal
9260 	 * should be blocked while CPU is in VMX operation
9261 	 */
9262 	vmx_set_test_stage(3);
9263 
9264 	/* Wait for signal to enter VMX non-root mode */
9265 	while (vmx_get_test_stage() != 4)
9266 		;
9267 
9268 	/* Enter VMX non-root mode */
9269 	test_set_guest(v2_null_test_guest);
9270 	make_vmcs_current(test_vmcs);
9271 	enter_guest();
9272 	/* Save exit reason for BSP CPU to compare to expected result */
9273 	init_signal_test_exit_reason = vmcs_read(EXI_REASON);
9274 	/* VMCLEAR test-vmcs so it could be loaded by BSP CPU */
9275 	vmcs_clear(test_vmcs);
9276 	launched = false;
9277 	/* Signal that CPU exited to VMX root mode */
9278 	vmx_set_test_stage(5);
9279 
9280 	/* Wait for BSP CPU to signal to exit VMX operation */
9281 	while (vmx_get_test_stage() != 6)
9282 		;
9283 
9284 	/* Exit VMX operation (i.e. exec VMXOFF) */
9285 	vmx_off();
9286 
9287 	/*
9288 	 * Signal to BSP CPU that we continue as usual as INIT signal
9289 	 * should have been consumed by VMX_INIT exit from guest
9290 	 */
9291 	vmx_set_test_stage(7);
9292 
9293 	/* Wait for BSP CPU to signal to enter VMX operation */
9294 	while (vmx_get_test_stage() != 8)
9295 		;
9296 	/* Enter VMX operation (i.e. exec VMXON) */
9297 	_vmx_on(ap_vmxon_region);
9298 	/* Signal to BSP we are in VMX operation */
9299 	vmx_set_test_stage(9);
9300 
9301 	/* Wait for BSP CPU to send INIT signal */
9302 	while (vmx_get_test_stage() != 10)
9303 		;
9304 
9305 	/* Exit VMX operation (i.e. exec VMXOFF) */
9306 	vmx_off();
9307 
9308 	/*
9309 	 * Exiting VMX operation should result in latched
9310 	 * INIT signal being processed. Therefore, we should
9311 	 * never reach the below code. Thus, signal to BSP
9312 	 * CPU if we have reached here so it is able to
9313 	 * report an issue if it happens.
9314 	 */
9315 	init_signal_test_thread_continued = true;
9316 }
9317 
9318 #define INIT_SIGNAL_TEST_DELAY	100000000ULL
9319 
9320 static void vmx_init_signal_test(void)
9321 {
9322 	struct vmcs *test_vmcs;
9323 
9324 	if (cpu_count() < 2) {
9325 		report_skip(__func__);
9326 		return;
9327 	}
9328 
9329 	/* VMCLEAR test-vmcs so it could be loaded by other CPU */
9330 	vmcs_save(&test_vmcs);
9331 	vmcs_clear(test_vmcs);
9332 
9333 	vmx_set_test_stage(0);
9334 	on_cpu_async(1, init_signal_test_thread, test_vmcs);
9335 
9336 	/* Wait for other CPU to enter VMX operation */
9337 	while (vmx_get_test_stage() != 1)
9338 		;
9339 
9340 	/* Send INIT signal to other CPU */
9341 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT,
9342 				   id_map[1]);
9343 	/* Signal other CPU we have sent INIT signal */
9344 	vmx_set_test_stage(2);
9345 
9346 	/*
9347 	 * Wait reasonable amount of time for INIT signal to
9348 	 * be received on other CPU and verify that other CPU
9349 	 * have proceed as usual to next test stage as INIT
9350 	 * signal should be blocked while other CPU in
9351 	 * VMX operation
9352 	 */
9353 	delay(INIT_SIGNAL_TEST_DELAY);
9354 	report(vmx_get_test_stage() == 3,
9355 	       "INIT signal blocked when CPU in VMX operation");
9356 	/* No point to continue if we failed at this point */
9357 	if (vmx_get_test_stage() != 3)
9358 		return;
9359 
9360 	/* Signal other CPU to enter VMX non-root mode */
9361 	init_signal_test_exit_reason = -1ull;
9362 	vmx_set_test_stage(4);
9363 	/*
9364 	 * Wait reasonable amont of time for other CPU
9365 	 * to exit to VMX root mode
9366 	 */
9367 	delay(INIT_SIGNAL_TEST_DELAY);
9368 	if (vmx_get_test_stage() != 5) {
9369 		report(false, "Pending INIT signal didn't result in VMX exit");
9370 		return;
9371 	}
9372 	report(init_signal_test_exit_reason == VMX_INIT,
9373 			"INIT signal during VMX non-root mode result in exit-reason %s (%lu)",
9374 			exit_reason_description(init_signal_test_exit_reason),
9375 			init_signal_test_exit_reason);
9376 
9377 	/* Run guest to completion */
9378 	make_vmcs_current(test_vmcs);
9379 	enter_guest();
9380 
9381 	/* Signal other CPU to exit VMX operation */
9382 	init_signal_test_thread_continued = false;
9383 	vmx_set_test_stage(6);
9384 
9385 	/* Wait reasonable amount of time for other CPU to exit VMX operation */
9386 	delay(INIT_SIGNAL_TEST_DELAY);
9387 	report(vmx_get_test_stage() == 7,
9388 	       "INIT signal consumed on VMX_INIT exit");
9389 	/* No point to continue if we failed at this point */
9390 	if (vmx_get_test_stage() != 7)
9391 		return;
9392 
9393 	/* Signal other CPU to enter VMX operation */
9394 	vmx_set_test_stage(8);
9395 	/* Wait for other CPU to enter VMX operation */
9396 	while (vmx_get_test_stage() != 9)
9397 		;
9398 
9399 	/* Send INIT signal to other CPU */
9400 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT,
9401 				   id_map[1]);
9402 	/* Signal other CPU we have sent INIT signal */
9403 	vmx_set_test_stage(10);
9404 
9405 	/*
9406 	 * Wait reasonable amount of time for other CPU
9407 	 * to exit VMX operation and process INIT signal
9408 	 */
9409 	delay(INIT_SIGNAL_TEST_DELAY);
9410 	report(!init_signal_test_thread_continued,
9411 	       "INIT signal processed after exit VMX operation");
9412 
9413 	/*
9414 	 * TODO: Send SIPI to other CPU to sipi_entry (See x86/cstart64.S)
9415 	 * to re-init it to kvm-unit-tests standard environment.
9416 	 * Somehow (?) verify that SIPI was indeed received.
9417 	 */
9418 }
9419 
9420 enum vmcs_access {
9421 	ACCESS_VMREAD,
9422 	ACCESS_VMWRITE,
9423 	ACCESS_NONE,
9424 };
9425 
9426 struct vmcs_shadow_test_common {
9427 	enum vmcs_access op;
9428 	enum Reason reason;
9429 	u64 field;
9430 	u64 value;
9431 	u64 flags;
9432 	u64 time;
9433 } l1_l2_common;
9434 
9435 static inline u64 vmread_flags(u64 field, u64 *val)
9436 {
9437 	u64 flags;
9438 
9439 	asm volatile ("vmread %2, %1; pushf; pop %0"
9440 		      : "=r" (flags), "=rm" (*val) : "r" (field) : "cc");
9441 	return flags & X86_EFLAGS_ALU;
9442 }
9443 
9444 static inline u64 vmwrite_flags(u64 field, u64 val)
9445 {
9446 	u64 flags;
9447 
9448 	asm volatile ("vmwrite %1, %2; pushf; pop %0"
9449 		      : "=r"(flags) : "rm" (val), "r" (field) : "cc");
9450 	return flags & X86_EFLAGS_ALU;
9451 }
9452 
9453 static void vmx_vmcs_shadow_test_guest(void)
9454 {
9455 	struct vmcs_shadow_test_common *c = &l1_l2_common;
9456 	u64 start;
9457 
9458 	while (c->op != ACCESS_NONE) {
9459 		start = rdtsc();
9460 		switch (c->op) {
9461 		default:
9462 			c->flags = -1ull;
9463 			break;
9464 		case ACCESS_VMREAD:
9465 			c->flags = vmread_flags(c->field, &c->value);
9466 			break;
9467 		case ACCESS_VMWRITE:
9468 			c->flags = vmwrite_flags(c->field, 0);
9469 			break;
9470 		}
9471 		c->time = rdtsc() - start;
9472 		vmcall();
9473 	}
9474 }
9475 
9476 static u64 vmread_from_shadow(u64 field)
9477 {
9478 	struct vmcs *primary;
9479 	struct vmcs *shadow;
9480 	u64 value;
9481 
9482 	TEST_ASSERT(!vmcs_save(&primary));
9483 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
9484 	TEST_ASSERT(!make_vmcs_current(shadow));
9485 	value = vmcs_read(field);
9486 	TEST_ASSERT(!make_vmcs_current(primary));
9487 	return value;
9488 }
9489 
9490 static u64 vmwrite_to_shadow(u64 field, u64 value)
9491 {
9492 	struct vmcs *primary;
9493 	struct vmcs *shadow;
9494 
9495 	TEST_ASSERT(!vmcs_save(&primary));
9496 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
9497 	TEST_ASSERT(!make_vmcs_current(shadow));
9498 	vmcs_write(field, value);
9499 	value = vmcs_read(field);
9500 	TEST_ASSERT(!make_vmcs_current(primary));
9501 	return value;
9502 }
9503 
9504 static void vmcs_shadow_test_access(u8 *bitmap[2], enum vmcs_access access)
9505 {
9506 	struct vmcs_shadow_test_common *c = &l1_l2_common;
9507 
9508 	c->op = access;
9509 	vmcs_write(VMX_INST_ERROR, 0);
9510 	enter_guest();
9511 	c->reason = vmcs_read(EXI_REASON) & 0xffff;
9512 	if (c->reason != VMX_VMCALL) {
9513 		skip_exit_insn();
9514 		enter_guest();
9515 	}
9516 	skip_exit_vmcall();
9517 }
9518 
9519 static void vmcs_shadow_test_field(u8 *bitmap[2], u64 field)
9520 {
9521 	struct vmcs_shadow_test_common *c = &l1_l2_common;
9522 	struct vmcs *shadow;
9523 	u64 value;
9524 	uintptr_t flags[2];
9525 	bool good_shadow;
9526 	u32 vmx_inst_error;
9527 
9528 	report_prefix_pushf("field %lx", field);
9529 	c->field = field;
9530 
9531 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
9532 	if (shadow != (struct vmcs *)-1ull) {
9533 		flags[ACCESS_VMREAD] = vmread_flags(field, &value);
9534 		flags[ACCESS_VMWRITE] = vmwrite_flags(field, value);
9535 		good_shadow = !flags[ACCESS_VMREAD] && !flags[ACCESS_VMWRITE];
9536 	} else {
9537 		/*
9538 		 * When VMCS link pointer is -1ull, VMWRITE/VMREAD on
9539 		 * shadowed-fields should fail with setting RFLAGS.CF.
9540 		 */
9541 		flags[ACCESS_VMREAD] = X86_EFLAGS_CF;
9542 		flags[ACCESS_VMWRITE] = X86_EFLAGS_CF;
9543 		good_shadow = false;
9544 	}
9545 
9546 	/* Intercept both VMREAD and VMWRITE. */
9547 	report_prefix_push("no VMREAD/VMWRITE permission");
9548 	/* VMWRITE/VMREAD done on reserved-bit should always intercept */
9549 	if (!(field >> VMCS_FIELD_RESERVED_SHIFT)) {
9550 		set_bit(field, bitmap[ACCESS_VMREAD]);
9551 		set_bit(field, bitmap[ACCESS_VMWRITE]);
9552 	}
9553 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
9554 	report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE");
9555 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
9556 	report(c->reason == VMX_VMREAD, "not shadowed for VMREAD");
9557 	report_prefix_pop();
9558 
9559 	if (field >> VMCS_FIELD_RESERVED_SHIFT)
9560 		goto out;
9561 
9562 	/* Permit shadowed VMREAD. */
9563 	report_prefix_push("VMREAD permission only");
9564 	clear_bit(field, bitmap[ACCESS_VMREAD]);
9565 	set_bit(field, bitmap[ACCESS_VMWRITE]);
9566 	if (good_shadow)
9567 		value = vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
9568 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
9569 	report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE");
9570 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
9571 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
9572 	report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)",
9573 	       c->time);
9574 	report(c->flags == flags[ACCESS_VMREAD],
9575 	       "ALU flags after VMREAD (%lx) are as expected (%lx)",
9576 	       c->flags, flags[ACCESS_VMREAD]);
9577 	if (good_shadow)
9578 		report(c->value == value,
9579 		       "value read from shadow (%lx) is as expected (%lx)",
9580 		       c->value, value);
9581 	else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD])
9582 		report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
9583 		       "VMX_INST_ERROR (%d) is as expected (%d)",
9584 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
9585 	report_prefix_pop();
9586 
9587 	/* Permit shadowed VMWRITE. */
9588 	report_prefix_push("VMWRITE permission only");
9589 	set_bit(field, bitmap[ACCESS_VMREAD]);
9590 	clear_bit(field, bitmap[ACCESS_VMWRITE]);
9591 	if (good_shadow)
9592 		vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
9593 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
9594 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
9595 	report(c->reason == VMX_VMCALL,
9596 		"shadowed for VMWRITE (in %ld cycles)",
9597 		c->time);
9598 	report(c->flags == flags[ACCESS_VMREAD],
9599 	       "ALU flags after VMWRITE (%lx) are as expected (%lx)",
9600 	       c->flags, flags[ACCESS_VMREAD]);
9601 	if (good_shadow) {
9602 		value = vmread_from_shadow(field);
9603 		report(value == 0,
9604 		       "shadow VMCS value (%lx) is as expected (%lx)", value,
9605 		       0ul);
9606 	} else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) {
9607 		report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
9608 		       "VMX_INST_ERROR (%d) is as expected (%d)",
9609 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
9610 	}
9611 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
9612 	report(c->reason == VMX_VMREAD, "not shadowed for VMREAD");
9613 	report_prefix_pop();
9614 
9615 	/* Permit shadowed VMREAD and VMWRITE. */
9616 	report_prefix_push("VMREAD and VMWRITE permission");
9617 	clear_bit(field, bitmap[ACCESS_VMREAD]);
9618 	clear_bit(field, bitmap[ACCESS_VMWRITE]);
9619 	if (good_shadow)
9620 		vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
9621 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
9622 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
9623 	report(c->reason == VMX_VMCALL,
9624 		"shadowed for VMWRITE (in %ld cycles)",
9625 		c->time);
9626 	report(c->flags == flags[ACCESS_VMREAD],
9627 	       "ALU flags after VMWRITE (%lx) are as expected (%lx)",
9628 	       c->flags, flags[ACCESS_VMREAD]);
9629 	if (good_shadow) {
9630 		value = vmread_from_shadow(field);
9631 		report(value == 0,
9632 		       "shadow VMCS value (%lx) is as expected (%lx)", value,
9633 		       0ul);
9634 	} else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) {
9635 		report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
9636 		       "VMX_INST_ERROR (%d) is as expected (%d)",
9637 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
9638 	}
9639 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
9640 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
9641 	report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)",
9642 	       c->time);
9643 	report(c->flags == flags[ACCESS_VMREAD],
9644 	       "ALU flags after VMREAD (%lx) are as expected (%lx)",
9645 	       c->flags, flags[ACCESS_VMREAD]);
9646 	if (good_shadow)
9647 		report(c->value == 0,
9648 		       "value read from shadow (%lx) is as expected (%lx)",
9649 		       c->value, 0ul);
9650 	else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD])
9651 		report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
9652 		       "VMX_INST_ERROR (%d) is as expected (%d)",
9653 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
9654 	report_prefix_pop();
9655 
9656 out:
9657 	report_prefix_pop();
9658 }
9659 
9660 static void vmx_vmcs_shadow_test_body(u8 *bitmap[2])
9661 {
9662 	unsigned base;
9663 	unsigned index;
9664 	unsigned bit;
9665 	unsigned highest_index = rdmsr(MSR_IA32_VMX_VMCS_ENUM);
9666 
9667 	/* Run test on all possible valid VMCS fields */
9668 	for (base = 0;
9669 	     base < (1 << VMCS_FIELD_RESERVED_SHIFT);
9670 	     base += (1 << VMCS_FIELD_TYPE_SHIFT))
9671 		for (index = 0; index <= highest_index; index++)
9672 			vmcs_shadow_test_field(bitmap, base + index);
9673 
9674 	/*
9675 	 * Run tests on some invalid VMCS fields
9676 	 * (Have reserved bit set).
9677 	 */
9678 	for (bit = VMCS_FIELD_RESERVED_SHIFT; bit < VMCS_FIELD_BIT_SIZE; bit++)
9679 		vmcs_shadow_test_field(bitmap, (1ull << bit));
9680 }
9681 
9682 static void vmx_vmcs_shadow_test(void)
9683 {
9684 	u8 *bitmap[2];
9685 	struct vmcs *shadow;
9686 
9687 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) {
9688 		printf("\t'Activate secondary controls' not supported.\n");
9689 		return;
9690 	}
9691 
9692 	if (!(ctrl_cpu_rev[1].clr & CPU_SHADOW_VMCS)) {
9693 		printf("\t'VMCS shadowing' not supported.\n");
9694 		return;
9695 	}
9696 
9697 	if (!(rdmsr(MSR_IA32_VMX_MISC) &
9698 	      MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) {
9699 		printf("\tVMWRITE can't modify VM-exit information fields.\n");
9700 		return;
9701 	}
9702 
9703 	test_set_guest(vmx_vmcs_shadow_test_guest);
9704 
9705 	bitmap[ACCESS_VMREAD] = alloc_page();
9706 	bitmap[ACCESS_VMWRITE] = alloc_page();
9707 
9708 	vmcs_write(VMREAD_BITMAP, virt_to_phys(bitmap[ACCESS_VMREAD]));
9709 	vmcs_write(VMWRITE_BITMAP, virt_to_phys(bitmap[ACCESS_VMWRITE]));
9710 
9711 	shadow = alloc_page();
9712 	shadow->hdr.revision_id = basic.revision;
9713 	shadow->hdr.shadow_vmcs = 1;
9714 	TEST_ASSERT(!vmcs_clear(shadow));
9715 
9716 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_RDTSC);
9717 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY);
9718 	vmcs_set_bits(CPU_EXEC_CTRL1, CPU_SHADOW_VMCS);
9719 
9720 	vmcs_write(VMCS_LINK_PTR, virt_to_phys(shadow));
9721 	report_prefix_push("valid link pointer");
9722 	vmx_vmcs_shadow_test_body(bitmap);
9723 	report_prefix_pop();
9724 
9725 	vmcs_write(VMCS_LINK_PTR, -1ull);
9726 	report_prefix_push("invalid link pointer");
9727 	vmx_vmcs_shadow_test_body(bitmap);
9728 	report_prefix_pop();
9729 
9730 	l1_l2_common.op = ACCESS_NONE;
9731 	enter_guest();
9732 }
9733 
9734 /*
9735  * This test monitors the difference between a guest RDTSC instruction
9736  * and the IA32_TIME_STAMP_COUNTER MSR value stored in the VMCS12
9737  * VM-exit MSR-store list when taking a VM-exit on the instruction
9738  * following RDTSC.
9739  */
9740 #define RDTSC_DIFF_ITERS 100000
9741 #define RDTSC_DIFF_FAILS 100
9742 #define HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD 750
9743 
9744 /*
9745  * Set 'use TSC offsetting' and set the guest offset to the
9746  * inverse of the host's current TSC value, so that the guest starts running
9747  * with an effective TSC value of 0.
9748  */
9749 static void reset_guest_tsc_to_zero(void)
9750 {
9751 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET);
9752 	vmcs_write(TSC_OFFSET, -rdtsc());
9753 }
9754 
9755 static void rdtsc_vmexit_diff_test_guest(void)
9756 {
9757 	int i;
9758 
9759 	for (i = 0; i < RDTSC_DIFF_ITERS; i++)
9760 		/* Ensure rdtsc is the last instruction before the vmcall. */
9761 		asm volatile("rdtsc; vmcall" : : : "eax", "edx");
9762 }
9763 
9764 /*
9765  * This function only considers the "use TSC offsetting" VM-execution
9766  * control.  It does not handle "use TSC scaling" (because the latter
9767  * isn't available to the host today.)
9768  */
9769 static unsigned long long host_time_to_guest_time(unsigned long long t)
9770 {
9771 	TEST_ASSERT(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
9772 		    !(vmcs_read(CPU_EXEC_CTRL1) & CPU_USE_TSC_SCALING));
9773 
9774 	if (vmcs_read(CPU_EXEC_CTRL0) & CPU_USE_TSC_OFFSET)
9775 		t += vmcs_read(TSC_OFFSET);
9776 
9777 	return t;
9778 }
9779 
9780 static unsigned long long rdtsc_vmexit_diff_test_iteration(void)
9781 {
9782 	unsigned long long guest_tsc, host_to_guest_tsc;
9783 
9784 	enter_guest();
9785 	skip_exit_vmcall();
9786 	guest_tsc = (u32) regs.rax + (regs.rdx << 32);
9787 	host_to_guest_tsc = host_time_to_guest_time(exit_msr_store[0].value);
9788 
9789 	return host_to_guest_tsc - guest_tsc;
9790 }
9791 
9792 static void rdtsc_vmexit_diff_test(void)
9793 {
9794 	int fail = 0;
9795 	int i;
9796 
9797 	if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET))
9798 		test_skip("CPU doesn't support the 'use TSC offsetting' processor-based VM-execution control.\n");
9799 
9800 	test_set_guest(rdtsc_vmexit_diff_test_guest);
9801 
9802 	reset_guest_tsc_to_zero();
9803 
9804 	/*
9805 	 * Set up the VMCS12 VM-exit MSR-store list to store just one
9806 	 * MSR: IA32_TIME_STAMP_COUNTER. Note that the value stored is
9807 	 * in the host time domain (i.e., it is not adjusted according
9808 	 * to the TSC multiplier and TSC offset fields in the VMCS12,
9809 	 * as a guest RDTSC would be.)
9810 	 */
9811 	exit_msr_store = alloc_page();
9812 	exit_msr_store[0].index = MSR_IA32_TSC;
9813 	vmcs_write(EXI_MSR_ST_CNT, 1);
9814 	vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(exit_msr_store));
9815 
9816 	for (i = 0; i < RDTSC_DIFF_ITERS; i++) {
9817 		if (rdtsc_vmexit_diff_test_iteration() >=
9818 		    HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD)
9819 			fail++;
9820 	}
9821 
9822 	enter_guest();
9823 
9824 	report(fail < RDTSC_DIFF_FAILS,
9825 	       "RDTSC to VM-exit delta too high in %d of %d iterations",
9826 	       fail, RDTSC_DIFF_ITERS);
9827 }
9828 
9829 static int invalid_msr_init(struct vmcs *vmcs)
9830 {
9831 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
9832 		printf("\tPreemption timer is not supported\n");
9833 		return VMX_TEST_EXIT;
9834 	}
9835 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
9836 	preempt_val = 10000000;
9837 	vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
9838 	preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
9839 
9840 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
9841 		printf("\tSave preemption value is not supported\n");
9842 
9843 	vmcs_write(ENT_MSR_LD_CNT, 1);
9844 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)0x13370000);
9845 
9846 	return VMX_TEST_START;
9847 }
9848 
9849 
9850 static void invalid_msr_main(void)
9851 {
9852 	report(0, "Invalid MSR load");
9853 }
9854 
9855 static int invalid_msr_exit_handler(union exit_reason exit_reason)
9856 {
9857 	report(0, "Invalid MSR load");
9858 	print_vmexit_info(exit_reason);
9859 	return VMX_TEST_EXIT;
9860 }
9861 
9862 static int invalid_msr_entry_failure(struct vmentry_result *result)
9863 {
9864 	report(result->exit_reason.failed_vmentry &&
9865 	       result->exit_reason.basic == VMX_FAIL_MSR, "Invalid MSR load");
9866 	return VMX_TEST_VMEXIT;
9867 }
9868 
9869 /*
9870  * The max number of MSRs in an atomic switch MSR list is:
9871  * (111B + 1) * 512 = 4096
9872  *
9873  * Each list entry consumes:
9874  * 4-byte MSR index + 4 bytes reserved + 8-byte data = 16 bytes
9875  *
9876  * Allocate 128 kB to cover max_msr_list_size (i.e., 64 kB) and then some.
9877  */
9878 static const u32 msr_list_page_order = 5;
9879 
9880 static void atomic_switch_msr_limit_test_guest(void)
9881 {
9882 	vmcall();
9883 }
9884 
9885 static void populate_msr_list(struct vmx_msr_entry *msr_list,
9886 			      size_t byte_capacity, int count)
9887 {
9888 	int i;
9889 
9890 	for (i = 0; i < count; i++) {
9891 		msr_list[i].index = MSR_IA32_TSC;
9892 		msr_list[i].reserved = 0;
9893 		msr_list[i].value = 0x1234567890abcdef;
9894 	}
9895 
9896 	memset(msr_list + count, 0xff,
9897 	       byte_capacity - count * sizeof(*msr_list));
9898 }
9899 
9900 static int max_msr_list_size(void)
9901 {
9902 	u32 vmx_misc = rdmsr(MSR_IA32_VMX_MISC);
9903 	u32 factor = ((vmx_misc & GENMASK(27, 25)) >> 25) + 1;
9904 
9905 	return factor * 512;
9906 }
9907 
9908 static void atomic_switch_msrs_test(int count)
9909 {
9910 	struct vmx_msr_entry *vm_enter_load;
9911         struct vmx_msr_entry *vm_exit_load;
9912         struct vmx_msr_entry *vm_exit_store;
9913 	int max_allowed = max_msr_list_size();
9914 	int byte_capacity = 1ul << (msr_list_page_order + PAGE_SHIFT);
9915 	/* Exceeding the max MSR list size at exit trigers KVM to abort. */
9916 	int exit_count = count > max_allowed ? max_allowed : count;
9917 	int cleanup_count = count > max_allowed ? 2 : 1;
9918 	int i;
9919 
9920 	/*
9921 	 * Check for the IA32_TSC MSR,
9922 	 * available with the "TSC flag" and used to populate the MSR lists.
9923 	 */
9924 	if (!(cpuid(1).d & (1 << 4))) {
9925 		report_skip(__func__);
9926 		return;
9927 	}
9928 
9929 	/* Set L2 guest. */
9930 	test_set_guest(atomic_switch_msr_limit_test_guest);
9931 
9932 	/* Setup atomic MSR switch lists. */
9933 	vm_enter_load = alloc_pages(msr_list_page_order);
9934 	vm_exit_load = alloc_pages(msr_list_page_order);
9935 	vm_exit_store = alloc_pages(msr_list_page_order);
9936 
9937 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)vm_enter_load);
9938 	vmcs_write(EXIT_MSR_LD_ADDR, (u64)vm_exit_load);
9939 	vmcs_write(EXIT_MSR_ST_ADDR, (u64)vm_exit_store);
9940 
9941 	/*
9942 	 * VM-Enter should succeed up to the max number of MSRs per list, and
9943 	 * should not consume junk beyond the last entry.
9944 	 */
9945 	populate_msr_list(vm_enter_load, byte_capacity, count);
9946 	populate_msr_list(vm_exit_load, byte_capacity, exit_count);
9947 	populate_msr_list(vm_exit_store, byte_capacity, exit_count);
9948 
9949 	vmcs_write(ENT_MSR_LD_CNT, count);
9950 	vmcs_write(EXI_MSR_LD_CNT, exit_count);
9951 	vmcs_write(EXI_MSR_ST_CNT, exit_count);
9952 
9953 	if (count <= max_allowed) {
9954 		enter_guest();
9955 		assert_exit_reason(VMX_VMCALL);
9956 		skip_exit_vmcall();
9957 	} else {
9958 		u32 exit_qual;
9959 
9960 		test_guest_state("Invalid MSR Load Count", true, count,
9961 				 "ENT_MSR_LD_CNT");
9962 
9963 		exit_qual = vmcs_read(EXI_QUALIFICATION);
9964 		report(exit_qual == max_allowed + 1, "exit_qual, %u, is %u.",
9965 		       exit_qual, max_allowed + 1);
9966 	}
9967 
9968 	/* Cleanup. */
9969 	vmcs_write(ENT_MSR_LD_CNT, 0);
9970 	vmcs_write(EXI_MSR_LD_CNT, 0);
9971 	vmcs_write(EXI_MSR_ST_CNT, 0);
9972 	for (i = 0; i < cleanup_count; i++) {
9973 		enter_guest();
9974 		skip_exit_vmcall();
9975 	}
9976 	free_pages_by_order(vm_enter_load, msr_list_page_order);
9977 	free_pages_by_order(vm_exit_load, msr_list_page_order);
9978 	free_pages_by_order(vm_exit_store, msr_list_page_order);
9979 }
9980 
9981 static void atomic_switch_max_msrs_test(void)
9982 {
9983 	atomic_switch_msrs_test(max_msr_list_size());
9984 }
9985 
9986 static void atomic_switch_overflow_msrs_test(void)
9987 {
9988 	if (test_device_enabled())
9989 		atomic_switch_msrs_test(max_msr_list_size() + 1);
9990 	else
9991 		test_skip("Test is only supported on KVM");
9992 }
9993 
9994 #define TEST(name) { #name, .v2 = name }
9995 
9996 /* name/init/guest_main/exit_handler/syscall_handler/guest_regs */
9997 struct vmx_test vmx_tests[] = {
9998 	{ "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} },
9999 	{ "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} },
10000 	{ "preemption timer", preemption_timer_init, preemption_timer_main,
10001 		preemption_timer_exit_handler, NULL, {0} },
10002 	{ "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main,
10003 		test_ctrl_pat_exit_handler, NULL, {0} },
10004 	{ "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main,
10005 		test_ctrl_efer_exit_handler, NULL, {0} },
10006 	{ "CR shadowing", NULL, cr_shadowing_main,
10007 		cr_shadowing_exit_handler, NULL, {0} },
10008 	{ "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler,
10009 		NULL, {0} },
10010 	{ "instruction intercept", insn_intercept_init, insn_intercept_main,
10011 		insn_intercept_exit_handler, NULL, {0} },
10012 	{ "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} },
10013 	{ "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} },
10014 	{ "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} },
10015 	{ "VPID", vpid_init, vpid_main, vpid_exit_handler, NULL, {0} },
10016 	{ "interrupt", interrupt_init, interrupt_main,
10017 		interrupt_exit_handler, NULL, {0} },
10018 	{ "nmi_hlt", nmi_hlt_init, nmi_hlt_main,
10019 		nmi_hlt_exit_handler, NULL, {0} },
10020 	{ "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler,
10021 		NULL, {0} },
10022 	{ "MSR switch", msr_switch_init, msr_switch_main,
10023 		msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure },
10024 	{ "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} },
10025 	{ "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main,
10026 		disable_rdtscp_exit_handler, NULL, {0} },
10027 	{ "int3", int3_init, int3_guest_main, int3_exit_handler, NULL, {0} },
10028 	{ "into", into_init, into_guest_main, into_exit_handler, NULL, {0} },
10029 	{ "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main,
10030 		exit_monitor_from_l2_handler, NULL, {0} },
10031 	{ "invalid_msr", invalid_msr_init, invalid_msr_main,
10032 		invalid_msr_exit_handler, NULL, {0}, invalid_msr_entry_failure},
10033 	/* Basic V2 tests. */
10034 	TEST(v2_null_test),
10035 	TEST(v2_multiple_entries_test),
10036 	TEST(fixture_test_case1),
10037 	TEST(fixture_test_case2),
10038 	/* Opcode tests. */
10039 	TEST(invvpid_test_v2),
10040 	/* VM-entry tests */
10041 	TEST(vmx_controls_test),
10042 	TEST(vmx_host_state_area_test),
10043 	TEST(vmx_guest_state_area_test),
10044 	TEST(vmentry_movss_shadow_test),
10045 	/* APICv tests */
10046 	TEST(vmx_eoi_bitmap_ioapic_scan_test),
10047 	TEST(vmx_hlt_with_rvi_test),
10048 	TEST(apic_reg_virt_test),
10049 	TEST(virt_x2apic_mode_test),
10050 	/* APIC pass-through tests */
10051 	TEST(vmx_apic_passthrough_test),
10052 	TEST(vmx_apic_passthrough_thread_test),
10053 	TEST(vmx_apic_passthrough_tpr_threshold_test),
10054 	TEST(vmx_init_signal_test),
10055 	/* VMCS Shadowing tests */
10056 	TEST(vmx_vmcs_shadow_test),
10057 	/* Regression tests */
10058 	TEST(vmx_cr_load_test),
10059 	TEST(vmx_nm_test),
10060 	TEST(vmx_db_test),
10061 	TEST(vmx_nmi_window_test),
10062 	TEST(vmx_intr_window_test),
10063 	TEST(vmx_pending_event_test),
10064 	TEST(vmx_pending_event_hlt_test),
10065 	TEST(vmx_store_tsc_test),
10066 	TEST(vmx_preemption_timer_zero_test),
10067 	TEST(vmx_preemption_timer_tf_test),
10068 	TEST(vmx_preemption_timer_expiry_test),
10069 	/* EPT access tests. */
10070 	TEST(ept_access_test_not_present),
10071 	TEST(ept_access_test_read_only),
10072 	TEST(ept_access_test_write_only),
10073 	TEST(ept_access_test_read_write),
10074 	TEST(ept_access_test_execute_only),
10075 	TEST(ept_access_test_read_execute),
10076 	TEST(ept_access_test_write_execute),
10077 	TEST(ept_access_test_read_write_execute),
10078 	TEST(ept_access_test_reserved_bits),
10079 	TEST(ept_access_test_ignored_bits),
10080 	TEST(ept_access_test_paddr_not_present_ad_disabled),
10081 	TEST(ept_access_test_paddr_not_present_ad_enabled),
10082 	TEST(ept_access_test_paddr_read_only_ad_disabled),
10083 	TEST(ept_access_test_paddr_read_only_ad_enabled),
10084 	TEST(ept_access_test_paddr_read_write),
10085 	TEST(ept_access_test_paddr_read_write_execute),
10086 	TEST(ept_access_test_paddr_read_execute_ad_disabled),
10087 	TEST(ept_access_test_paddr_read_execute_ad_enabled),
10088 	TEST(ept_access_test_paddr_not_present_page_fault),
10089 	TEST(ept_access_test_force_2m_page),
10090 	/* Atomic MSR switch tests. */
10091 	TEST(atomic_switch_max_msrs_test),
10092 	TEST(atomic_switch_overflow_msrs_test),
10093 	TEST(rdtsc_vmexit_diff_test),
10094 	TEST(vmx_mtf_test),
10095 	{ NULL, NULL, NULL, NULL, NULL, {0} },
10096 };
10097