1 /* 2 * All test cases of nested virtualization should be in this file 3 * 4 * Author : Arthur Chunqi Li <yzt356@gmail.com> 5 */ 6 7 #include <asm/debugreg.h> 8 9 #include "vmx.h" 10 #include "msr.h" 11 #include "processor.h" 12 #include "pmu.h" 13 #include "vm.h" 14 #include "pci.h" 15 #include "fwcfg.h" 16 #include "isr.h" 17 #include "desc.h" 18 #include "apic.h" 19 #include "vmalloc.h" 20 #include "alloc_page.h" 21 #include "smp.h" 22 #include "delay.h" 23 #include "access.h" 24 #include "x86/usermode.h" 25 26 /* 27 * vmcs.GUEST_PENDING_DEBUG has the same format as DR6, although some bits that 28 * are legal in DR6 are reserved in vmcs.GUEST_PENDING_DEBUG. And if any data 29 * or I/O breakpoint matches *and* was enabled, bit 12 is also set. 30 */ 31 #define PENDING_DBG_TRAP BIT(12) 32 33 #define VPID_CAP_INVVPID_TYPES_SHIFT 40 34 35 u64 ia32_pat; 36 u64 ia32_efer; 37 void *io_bitmap_a, *io_bitmap_b; 38 u16 ioport; 39 40 unsigned long *pml4; 41 u64 eptp; 42 void *data_page1, *data_page2; 43 44 phys_addr_t pci_physaddr; 45 46 void *pml_log; 47 #define PML_INDEX 512 48 49 static inline unsigned ffs(unsigned x) 50 { 51 int pos = -1; 52 53 __asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0" 54 : "+r"(pos) : "rm"(x) : "eax"); 55 return pos + 1; 56 } 57 58 static inline void vmcall(void) 59 { 60 asm volatile("vmcall"); 61 } 62 63 static void basic_guest_main(void) 64 { 65 report_pass("Basic VMX test"); 66 } 67 68 static int basic_exit_handler(union exit_reason exit_reason) 69 { 70 report_fail("Basic VMX test"); 71 print_vmexit_info(exit_reason); 72 return VMX_TEST_EXIT; 73 } 74 75 static void vmenter_main(void) 76 { 77 u64 rax; 78 u64 rsp, resume_rsp; 79 80 report_pass("test vmlaunch"); 81 82 asm volatile( 83 "mov %%rsp, %0\n\t" 84 "mov %3, %%rax\n\t" 85 "vmcall\n\t" 86 "mov %%rax, %1\n\t" 87 "mov %%rsp, %2\n\t" 88 : "=r"(rsp), "=r"(rax), "=r"(resume_rsp) 89 : "g"(0xABCD)); 90 report((rax == 0xFFFF) && (rsp == resume_rsp), "test vmresume"); 91 } 92 93 static int vmenter_exit_handler(union exit_reason exit_reason) 94 { 95 u64 guest_rip = vmcs_read(GUEST_RIP); 96 97 switch (exit_reason.basic) { 98 case VMX_VMCALL: 99 if (regs.rax != 0xABCD) { 100 report_fail("test vmresume"); 101 return VMX_TEST_VMEXIT; 102 } 103 regs.rax = 0xFFFF; 104 vmcs_write(GUEST_RIP, guest_rip + 3); 105 return VMX_TEST_RESUME; 106 default: 107 report_fail("test vmresume"); 108 print_vmexit_info(exit_reason); 109 } 110 return VMX_TEST_VMEXIT; 111 } 112 113 u32 preempt_scale; 114 volatile unsigned long long tsc_val; 115 volatile u32 preempt_val; 116 u64 saved_rip; 117 118 static int preemption_timer_init(struct vmcs *vmcs) 119 { 120 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 121 printf("\tPreemption timer is not supported\n"); 122 return VMX_TEST_EXIT; 123 } 124 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); 125 preempt_val = 10000000; 126 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 127 preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F; 128 129 if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT)) 130 printf("\tSave preemption value is not supported\n"); 131 132 return VMX_TEST_START; 133 } 134 135 static void preemption_timer_main(void) 136 { 137 tsc_val = rdtsc(); 138 if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) { 139 vmx_set_test_stage(0); 140 vmcall(); 141 if (vmx_get_test_stage() == 1) 142 vmcall(); 143 } 144 vmx_set_test_stage(1); 145 while (vmx_get_test_stage() == 1) { 146 if (((rdtsc() - tsc_val) >> preempt_scale) 147 > 10 * preempt_val) { 148 vmx_set_test_stage(2); 149 vmcall(); 150 } 151 } 152 tsc_val = rdtsc(); 153 asm volatile ("hlt"); 154 vmcall(); 155 vmx_set_test_stage(5); 156 vmcall(); 157 } 158 159 static int preemption_timer_exit_handler(union exit_reason exit_reason) 160 { 161 bool guest_halted; 162 u64 guest_rip; 163 u32 insn_len; 164 u32 ctrl_exit; 165 166 guest_rip = vmcs_read(GUEST_RIP); 167 insn_len = vmcs_read(EXI_INST_LEN); 168 switch (exit_reason.basic) { 169 case VMX_PREEMPT: 170 switch (vmx_get_test_stage()) { 171 case 1: 172 case 2: 173 report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val, 174 "busy-wait for preemption timer"); 175 vmx_set_test_stage(3); 176 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 177 return VMX_TEST_RESUME; 178 case 3: 179 guest_halted = 180 (vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT); 181 report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val 182 && guest_halted, 183 "preemption timer during hlt"); 184 vmx_set_test_stage(4); 185 vmcs_write(PIN_CONTROLS, 186 vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT); 187 vmcs_write(EXI_CONTROLS, 188 vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_PREEMPT); 189 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 190 return VMX_TEST_RESUME; 191 case 4: 192 report(saved_rip == guest_rip, 193 "preemption timer with 0 value"); 194 break; 195 default: 196 report_fail("Invalid stage."); 197 print_vmexit_info(exit_reason); 198 break; 199 } 200 break; 201 case VMX_VMCALL: 202 vmcs_write(GUEST_RIP, guest_rip + insn_len); 203 switch (vmx_get_test_stage()) { 204 case 0: 205 report(vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val, 206 "Keep preemption value"); 207 vmx_set_test_stage(1); 208 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 209 ctrl_exit = (vmcs_read(EXI_CONTROLS) | 210 EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr; 211 vmcs_write(EXI_CONTROLS, ctrl_exit); 212 return VMX_TEST_RESUME; 213 case 1: 214 report(vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val, 215 "Save preemption value"); 216 return VMX_TEST_RESUME; 217 case 2: 218 report_fail("busy-wait for preemption timer"); 219 vmx_set_test_stage(3); 220 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 221 return VMX_TEST_RESUME; 222 case 3: 223 report_fail("preemption timer during hlt"); 224 vmx_set_test_stage(4); 225 /* fall through */ 226 case 4: 227 vmcs_write(PIN_CONTROLS, 228 vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); 229 vmcs_write(PREEMPT_TIMER_VALUE, 0); 230 saved_rip = guest_rip + insn_len; 231 return VMX_TEST_RESUME; 232 case 5: 233 report_fail("preemption timer with 0 value (vmcall stage 5)"); 234 break; 235 default: 236 // Should not reach here 237 report_fail("unexpected stage, %d", 238 vmx_get_test_stage()); 239 print_vmexit_info(exit_reason); 240 return VMX_TEST_VMEXIT; 241 } 242 break; 243 default: 244 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 245 print_vmexit_info(exit_reason); 246 } 247 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT); 248 return VMX_TEST_VMEXIT; 249 } 250 251 static void msr_bmp_init(void) 252 { 253 void *msr_bitmap; 254 u32 ctrl_cpu0; 255 256 msr_bitmap = alloc_page(); 257 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 258 ctrl_cpu0 |= CPU_MSR_BITMAP; 259 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); 260 vmcs_write(MSR_BITMAP, (u64)msr_bitmap); 261 } 262 263 static void *get_msr_bitmap(void) 264 { 265 void *msr_bitmap; 266 267 if (vmcs_read(CPU_EXEC_CTRL0) & CPU_MSR_BITMAP) { 268 msr_bitmap = (void *)vmcs_read(MSR_BITMAP); 269 } else { 270 msr_bitmap = alloc_page(); 271 memset(msr_bitmap, 0xff, PAGE_SIZE); 272 vmcs_write(MSR_BITMAP, (u64)msr_bitmap); 273 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_MSR_BITMAP); 274 } 275 276 return msr_bitmap; 277 } 278 279 static void disable_intercept_for_x2apic_msrs(void) 280 { 281 unsigned long *msr_bitmap = (unsigned long *)get_msr_bitmap(); 282 u32 msr; 283 284 for (msr = APIC_BASE_MSR; 285 msr < (APIC_BASE_MSR+0xff); 286 msr += BITS_PER_LONG) { 287 unsigned int word = msr / BITS_PER_LONG; 288 289 msr_bitmap[word] = 0; 290 msr_bitmap[word + (0x800 / sizeof(long))] = 0; 291 } 292 } 293 294 static int test_ctrl_pat_init(struct vmcs *vmcs) 295 { 296 u64 ctrl_ent; 297 u64 ctrl_exi; 298 299 msr_bmp_init(); 300 if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) && 301 !(ctrl_exit_rev.clr & EXI_LOAD_PAT) && 302 !(ctrl_enter_rev.clr & ENT_LOAD_PAT)) { 303 printf("\tSave/load PAT is not supported\n"); 304 return 1; 305 } 306 307 ctrl_ent = vmcs_read(ENT_CONTROLS); 308 ctrl_exi = vmcs_read(EXI_CONTROLS); 309 ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT; 310 ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT); 311 vmcs_write(ENT_CONTROLS, ctrl_ent); 312 vmcs_write(EXI_CONTROLS, ctrl_exi); 313 ia32_pat = rdmsr(MSR_IA32_CR_PAT); 314 vmcs_write(GUEST_PAT, 0x0); 315 vmcs_write(HOST_PAT, ia32_pat); 316 return VMX_TEST_START; 317 } 318 319 static void test_ctrl_pat_main(void) 320 { 321 u64 guest_ia32_pat; 322 323 guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT); 324 if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) 325 printf("\tENT_LOAD_PAT is not supported.\n"); 326 else { 327 if (guest_ia32_pat != 0) { 328 report_fail("Entry load PAT"); 329 return; 330 } 331 } 332 wrmsr(MSR_IA32_CR_PAT, 0x6); 333 vmcall(); 334 guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT); 335 if (ctrl_enter_rev.clr & ENT_LOAD_PAT) 336 report(guest_ia32_pat == ia32_pat, "Entry load PAT"); 337 } 338 339 static int test_ctrl_pat_exit_handler(union exit_reason exit_reason) 340 { 341 u64 guest_rip; 342 u64 guest_pat; 343 344 guest_rip = vmcs_read(GUEST_RIP); 345 switch (exit_reason.basic) { 346 case VMX_VMCALL: 347 guest_pat = vmcs_read(GUEST_PAT); 348 if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) { 349 printf("\tEXI_SAVE_PAT is not supported\n"); 350 vmcs_write(GUEST_PAT, 0x6); 351 } else { 352 report(guest_pat == 0x6, "Exit save PAT"); 353 } 354 if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) 355 printf("\tEXI_LOAD_PAT is not supported\n"); 356 else 357 report(rdmsr(MSR_IA32_CR_PAT) == ia32_pat, 358 "Exit load PAT"); 359 vmcs_write(GUEST_PAT, ia32_pat); 360 vmcs_write(GUEST_RIP, guest_rip + 3); 361 return VMX_TEST_RESUME; 362 default: 363 printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full); 364 break; 365 } 366 return VMX_TEST_VMEXIT; 367 } 368 369 static int test_ctrl_efer_init(struct vmcs *vmcs) 370 { 371 u64 ctrl_ent; 372 u64 ctrl_exi; 373 374 msr_bmp_init(); 375 ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER; 376 ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER; 377 vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr); 378 vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr); 379 ia32_efer = rdmsr(MSR_EFER); 380 vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX); 381 vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX); 382 return VMX_TEST_START; 383 } 384 385 static void test_ctrl_efer_main(void) 386 { 387 u64 guest_ia32_efer; 388 389 guest_ia32_efer = rdmsr(MSR_EFER); 390 if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) 391 printf("\tENT_LOAD_EFER is not supported.\n"); 392 else { 393 if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) { 394 report_fail("Entry load EFER"); 395 return; 396 } 397 } 398 wrmsr(MSR_EFER, ia32_efer); 399 vmcall(); 400 guest_ia32_efer = rdmsr(MSR_EFER); 401 if (ctrl_enter_rev.clr & ENT_LOAD_EFER) 402 report(guest_ia32_efer == ia32_efer, "Entry load EFER"); 403 } 404 405 static int test_ctrl_efer_exit_handler(union exit_reason exit_reason) 406 { 407 u64 guest_rip; 408 u64 guest_efer; 409 410 guest_rip = vmcs_read(GUEST_RIP); 411 switch (exit_reason.basic) { 412 case VMX_VMCALL: 413 guest_efer = vmcs_read(GUEST_EFER); 414 if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) { 415 printf("\tEXI_SAVE_EFER is not supported\n"); 416 vmcs_write(GUEST_EFER, ia32_efer); 417 } else { 418 report(guest_efer == ia32_efer, "Exit save EFER"); 419 } 420 if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) { 421 printf("\tEXI_LOAD_EFER is not supported\n"); 422 wrmsr(MSR_EFER, ia32_efer ^ EFER_NX); 423 } else { 424 report(rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX), 425 "Exit load EFER"); 426 } 427 vmcs_write(GUEST_PAT, ia32_efer); 428 vmcs_write(GUEST_RIP, guest_rip + 3); 429 return VMX_TEST_RESUME; 430 default: 431 printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full); 432 break; 433 } 434 return VMX_TEST_VMEXIT; 435 } 436 437 u32 guest_cr0, guest_cr4; 438 439 static void cr_shadowing_main(void) 440 { 441 u32 cr0, cr4, tmp; 442 443 // Test read through 444 vmx_set_test_stage(0); 445 guest_cr0 = read_cr0(); 446 if (vmx_get_test_stage() == 1) 447 report_fail("Read through CR0"); 448 else 449 vmcall(); 450 vmx_set_test_stage(1); 451 guest_cr4 = read_cr4(); 452 if (vmx_get_test_stage() == 2) 453 report_fail("Read through CR4"); 454 else 455 vmcall(); 456 // Test write through 457 guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP); 458 guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE); 459 vmx_set_test_stage(2); 460 write_cr0(guest_cr0); 461 if (vmx_get_test_stage() == 3) 462 report_fail("Write through CR0"); 463 else 464 vmcall(); 465 vmx_set_test_stage(3); 466 write_cr4(guest_cr4); 467 if (vmx_get_test_stage() == 4) 468 report_fail("Write through CR4"); 469 else 470 vmcall(); 471 // Test read shadow 472 vmx_set_test_stage(4); 473 vmcall(); 474 cr0 = read_cr0(); 475 if (vmx_get_test_stage() != 5) 476 report(cr0 == guest_cr0, "Read shadowing CR0"); 477 vmx_set_test_stage(5); 478 cr4 = read_cr4(); 479 if (vmx_get_test_stage() != 6) 480 report(cr4 == guest_cr4, "Read shadowing CR4"); 481 // Test write shadow (same value with shadow) 482 vmx_set_test_stage(6); 483 write_cr0(guest_cr0); 484 if (vmx_get_test_stage() == 7) 485 report_fail("Write shadowing CR0 (same value with shadow)"); 486 else 487 vmcall(); 488 vmx_set_test_stage(7); 489 write_cr4(guest_cr4); 490 if (vmx_get_test_stage() == 8) 491 report_fail("Write shadowing CR4 (same value with shadow)"); 492 else 493 vmcall(); 494 // Test write shadow (different value) 495 vmx_set_test_stage(8); 496 tmp = guest_cr0 ^ X86_CR0_TS; 497 asm volatile("mov %0, %%rsi\n\t" 498 "mov %%rsi, %%cr0\n\t" 499 ::"m"(tmp) 500 :"rsi", "memory", "cc"); 501 report(vmx_get_test_stage() == 9, 502 "Write shadowing different X86_CR0_TS"); 503 vmx_set_test_stage(9); 504 tmp = guest_cr0 ^ X86_CR0_MP; 505 asm volatile("mov %0, %%rsi\n\t" 506 "mov %%rsi, %%cr0\n\t" 507 ::"m"(tmp) 508 :"rsi", "memory", "cc"); 509 report(vmx_get_test_stage() == 10, 510 "Write shadowing different X86_CR0_MP"); 511 vmx_set_test_stage(10); 512 tmp = guest_cr4 ^ X86_CR4_TSD; 513 asm volatile("mov %0, %%rsi\n\t" 514 "mov %%rsi, %%cr4\n\t" 515 ::"m"(tmp) 516 :"rsi", "memory", "cc"); 517 report(vmx_get_test_stage() == 11, 518 "Write shadowing different X86_CR4_TSD"); 519 vmx_set_test_stage(11); 520 tmp = guest_cr4 ^ X86_CR4_DE; 521 asm volatile("mov %0, %%rsi\n\t" 522 "mov %%rsi, %%cr4\n\t" 523 ::"m"(tmp) 524 :"rsi", "memory", "cc"); 525 report(vmx_get_test_stage() == 12, 526 "Write shadowing different X86_CR4_DE"); 527 } 528 529 static int cr_shadowing_exit_handler(union exit_reason exit_reason) 530 { 531 u64 guest_rip; 532 u32 insn_len; 533 u32 exit_qual; 534 535 guest_rip = vmcs_read(GUEST_RIP); 536 insn_len = vmcs_read(EXI_INST_LEN); 537 exit_qual = vmcs_read(EXI_QUALIFICATION); 538 switch (exit_reason.basic) { 539 case VMX_VMCALL: 540 switch (vmx_get_test_stage()) { 541 case 0: 542 report(guest_cr0 == vmcs_read(GUEST_CR0), 543 "Read through CR0"); 544 break; 545 case 1: 546 report(guest_cr4 == vmcs_read(GUEST_CR4), 547 "Read through CR4"); 548 break; 549 case 2: 550 report(guest_cr0 == vmcs_read(GUEST_CR0), 551 "Write through CR0"); 552 break; 553 case 3: 554 report(guest_cr4 == vmcs_read(GUEST_CR4), 555 "Write through CR4"); 556 break; 557 case 4: 558 guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP); 559 guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE); 560 vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP); 561 vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP)); 562 vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE); 563 vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE)); 564 break; 565 case 6: 566 report(guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP)), 567 "Write shadowing CR0 (same value)"); 568 break; 569 case 7: 570 report(guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE)), 571 "Write shadowing CR4 (same value)"); 572 break; 573 default: 574 // Should not reach here 575 report_fail("unexpected stage, %d", 576 vmx_get_test_stage()); 577 print_vmexit_info(exit_reason); 578 return VMX_TEST_VMEXIT; 579 } 580 vmcs_write(GUEST_RIP, guest_rip + insn_len); 581 return VMX_TEST_RESUME; 582 case VMX_CR: 583 switch (vmx_get_test_stage()) { 584 case 4: 585 report_fail("Read shadowing CR0"); 586 vmx_inc_test_stage(); 587 break; 588 case 5: 589 report_fail("Read shadowing CR4"); 590 vmx_inc_test_stage(); 591 break; 592 case 6: 593 report_fail("Write shadowing CR0 (same value)"); 594 vmx_inc_test_stage(); 595 break; 596 case 7: 597 report_fail("Write shadowing CR4 (same value)"); 598 vmx_inc_test_stage(); 599 break; 600 case 8: 601 case 9: 602 // 0x600 encodes "mov %esi, %cr0" 603 if (exit_qual == 0x600) 604 vmx_inc_test_stage(); 605 break; 606 case 10: 607 case 11: 608 // 0x604 encodes "mov %esi, %cr4" 609 if (exit_qual == 0x604) 610 vmx_inc_test_stage(); 611 break; 612 default: 613 // Should not reach here 614 report_fail("unexpected stage, %d", 615 vmx_get_test_stage()); 616 print_vmexit_info(exit_reason); 617 return VMX_TEST_VMEXIT; 618 } 619 vmcs_write(GUEST_RIP, guest_rip + insn_len); 620 return VMX_TEST_RESUME; 621 default: 622 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 623 print_vmexit_info(exit_reason); 624 } 625 return VMX_TEST_VMEXIT; 626 } 627 628 static int iobmp_init(struct vmcs *vmcs) 629 { 630 u32 ctrl_cpu0; 631 632 io_bitmap_a = alloc_page(); 633 io_bitmap_b = alloc_page(); 634 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 635 ctrl_cpu0 |= CPU_IO_BITMAP; 636 ctrl_cpu0 &= (~CPU_IO); 637 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); 638 vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a); 639 vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b); 640 return VMX_TEST_START; 641 } 642 643 static void iobmp_main(void) 644 { 645 // stage 0, test IO pass 646 vmx_set_test_stage(0); 647 inb(0x5000); 648 outb(0x0, 0x5000); 649 report(vmx_get_test_stage() == 0, "I/O bitmap - I/O pass"); 650 // test IO width, in/out 651 ((u8 *)io_bitmap_a)[0] = 0xFF; 652 vmx_set_test_stage(2); 653 inb(0x0); 654 report(vmx_get_test_stage() == 3, "I/O bitmap - trap in"); 655 vmx_set_test_stage(3); 656 outw(0x0, 0x0); 657 report(vmx_get_test_stage() == 4, "I/O bitmap - trap out"); 658 vmx_set_test_stage(4); 659 inl(0x0); 660 report(vmx_get_test_stage() == 5, "I/O bitmap - I/O width, long"); 661 // test low/high IO port 662 vmx_set_test_stage(5); 663 ((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8)); 664 inb(0x5000); 665 report(vmx_get_test_stage() == 6, "I/O bitmap - I/O port, low part"); 666 vmx_set_test_stage(6); 667 ((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8)); 668 inb(0x9000); 669 report(vmx_get_test_stage() == 7, "I/O bitmap - I/O port, high part"); 670 // test partial pass 671 vmx_set_test_stage(7); 672 inl(0x4FFF); 673 report(vmx_get_test_stage() == 8, "I/O bitmap - partial pass"); 674 // test overrun 675 vmx_set_test_stage(8); 676 memset(io_bitmap_a, 0x0, PAGE_SIZE); 677 memset(io_bitmap_b, 0x0, PAGE_SIZE); 678 inl(0xFFFF); 679 report(vmx_get_test_stage() == 9, "I/O bitmap - overrun"); 680 vmx_set_test_stage(9); 681 vmcall(); 682 outb(0x0, 0x0); 683 report(vmx_get_test_stage() == 9, 684 "I/O bitmap - ignore unconditional exiting"); 685 vmx_set_test_stage(10); 686 vmcall(); 687 outb(0x0, 0x0); 688 report(vmx_get_test_stage() == 11, 689 "I/O bitmap - unconditional exiting"); 690 } 691 692 static int iobmp_exit_handler(union exit_reason exit_reason) 693 { 694 u64 guest_rip; 695 ulong exit_qual; 696 u32 insn_len, ctrl_cpu0; 697 698 guest_rip = vmcs_read(GUEST_RIP); 699 exit_qual = vmcs_read(EXI_QUALIFICATION); 700 insn_len = vmcs_read(EXI_INST_LEN); 701 switch (exit_reason.basic) { 702 case VMX_IO: 703 switch (vmx_get_test_stage()) { 704 case 0: 705 case 1: 706 vmx_inc_test_stage(); 707 break; 708 case 2: 709 report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE, 710 "I/O bitmap - I/O width, byte"); 711 report(exit_qual & VMX_IO_IN, 712 "I/O bitmap - I/O direction, in"); 713 vmx_inc_test_stage(); 714 break; 715 case 3: 716 report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD, 717 "I/O bitmap - I/O width, word"); 718 report(!(exit_qual & VMX_IO_IN), 719 "I/O bitmap - I/O direction, out"); 720 vmx_inc_test_stage(); 721 break; 722 case 4: 723 report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG, 724 "I/O bitmap - I/O width, long"); 725 vmx_inc_test_stage(); 726 break; 727 case 5: 728 if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000) 729 vmx_inc_test_stage(); 730 break; 731 case 6: 732 if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000) 733 vmx_inc_test_stage(); 734 break; 735 case 7: 736 if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF) 737 vmx_inc_test_stage(); 738 break; 739 case 8: 740 if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF) 741 vmx_inc_test_stage(); 742 break; 743 case 9: 744 case 10: 745 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 746 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO); 747 vmx_inc_test_stage(); 748 break; 749 default: 750 // Should not reach here 751 report_fail("unexpected stage, %d", 752 vmx_get_test_stage()); 753 print_vmexit_info(exit_reason); 754 return VMX_TEST_VMEXIT; 755 } 756 vmcs_write(GUEST_RIP, guest_rip + insn_len); 757 return VMX_TEST_RESUME; 758 case VMX_VMCALL: 759 switch (vmx_get_test_stage()) { 760 case 9: 761 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 762 ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP; 763 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); 764 break; 765 case 10: 766 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 767 ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO; 768 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); 769 break; 770 default: 771 // Should not reach here 772 report_fail("unexpected stage, %d", 773 vmx_get_test_stage()); 774 print_vmexit_info(exit_reason); 775 return VMX_TEST_VMEXIT; 776 } 777 vmcs_write(GUEST_RIP, guest_rip + insn_len); 778 return VMX_TEST_RESUME; 779 default: 780 printf("guest_rip = %#lx\n", guest_rip); 781 printf("\tERROR : Unknown exit reason, 0x%x\n", exit_reason.full); 782 break; 783 } 784 return VMX_TEST_VMEXIT; 785 } 786 787 #define INSN_CPU0 0 788 #define INSN_CPU1 1 789 #define INSN_ALWAYS_TRAP 2 790 791 #define FIELD_EXIT_QUAL (1 << 0) 792 #define FIELD_INSN_INFO (1 << 1) 793 794 asm( 795 "insn_hlt: hlt;ret\n\t" 796 "insn_invlpg: invlpg 0x12345678;ret\n\t" 797 "insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t" 798 "insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t" 799 "insn_rdtsc: rdtsc;ret\n\t" 800 "insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t" 801 "insn_cr3_store: mov %cr3,%rax;ret\n\t" 802 "insn_cr8_load: xor %eax, %eax; mov %rax,%cr8;ret\n\t" 803 "insn_cr8_store: mov %cr8,%rax;ret\n\t" 804 "insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t" 805 "insn_pause: pause;ret\n\t" 806 "insn_wbinvd: wbinvd;ret\n\t" 807 "insn_cpuid: mov $10, %eax; cpuid;ret\n\t" 808 "insn_invd: invd;ret\n\t" 809 "insn_sgdt: sgdt gdt_descr;ret\n\t" 810 "insn_lgdt: lgdt gdt_descr;ret\n\t" 811 "insn_sidt: sidt idt_descr;ret\n\t" 812 "insn_lidt: lidt idt_descr;ret\n\t" 813 "insn_sldt: sldt %ax;ret\n\t" 814 "insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t" 815 "insn_str: str %ax;ret\n\t" 816 "insn_rdrand: rdrand %rax;ret\n\t" 817 "insn_rdseed: rdseed %rax;ret\n\t" 818 ); 819 extern void insn_hlt(void); 820 extern void insn_invlpg(void); 821 extern void insn_mwait(void); 822 extern void insn_rdpmc(void); 823 extern void insn_rdtsc(void); 824 extern void insn_cr3_load(void); 825 extern void insn_cr3_store(void); 826 extern void insn_cr8_load(void); 827 extern void insn_cr8_store(void); 828 extern void insn_monitor(void); 829 extern void insn_pause(void); 830 extern void insn_wbinvd(void); 831 extern void insn_sgdt(void); 832 extern void insn_lgdt(void); 833 extern void insn_sidt(void); 834 extern void insn_lidt(void); 835 extern void insn_sldt(void); 836 extern void insn_lldt(void); 837 extern void insn_str(void); 838 extern void insn_cpuid(void); 839 extern void insn_invd(void); 840 extern void insn_rdrand(void); 841 extern void insn_rdseed(void); 842 843 u32 cur_insn; 844 u64 cr3; 845 846 typedef bool (*supported_fn)(void); 847 848 static bool this_cpu_has_mwait(void) 849 { 850 return this_cpu_has(X86_FEATURE_MWAIT); 851 } 852 853 struct insn_table { 854 const char *name; 855 u32 flag; 856 void (*insn_func)(void); 857 u32 type; 858 u32 reason; 859 ulong exit_qual; 860 u32 insn_info; 861 // Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define 862 // which field need to be tested, reason is always tested 863 u32 test_field; 864 const supported_fn supported_fn; 865 u8 disabled; 866 }; 867 868 /* 869 * Add more test cases of instruction intercept here. Elements in this 870 * table is: 871 * name/control flag/insn function/type/exit reason/exit qulification/ 872 * instruction info/field to test 873 * The last field defines which fields (exit_qual and insn_info) need to be 874 * tested in exit handler. If set to 0, only "reason" is checked. 875 */ 876 static struct insn_table insn_table[] = { 877 // Flags for Primary Processor-Based VM-Execution Controls 878 {"HLT", CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0}, 879 {"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14, 880 0x12345678, 0, FIELD_EXIT_QUAL}, 881 {"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0, this_cpu_has_mwait}, 882 {"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0, this_cpu_has_pmu}, 883 {"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0}, 884 {"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0, 885 FIELD_EXIT_QUAL}, 886 {"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0, 887 FIELD_EXIT_QUAL}, 888 {"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0, 889 FIELD_EXIT_QUAL}, 890 {"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0, 891 FIELD_EXIT_QUAL}, 892 {"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0, this_cpu_has_mwait}, 893 {"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0}, 894 // Flags for Secondary Processor-Based VM-Execution Controls 895 {"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0}, 896 {"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0}, 897 {"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0}, 898 {"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0}, 899 {"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0}, 900 {"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0}, 901 {"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0}, 902 {"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0}, 903 /* LTR causes a #GP if done with a busy selector, so it is not tested. */ 904 {"RDRAND", CPU_RDRAND, insn_rdrand, INSN_CPU1, VMX_RDRAND, 0, 0, 0}, 905 {"RDSEED", CPU_RDSEED, insn_rdseed, INSN_CPU1, VMX_RDSEED, 0, 0, 0}, 906 // Instructions always trap 907 {"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0}, 908 {"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0}, 909 // Instructions never trap 910 {NULL}, 911 }; 912 913 static int insn_intercept_init(struct vmcs *vmcs) 914 { 915 u32 ctrl_cpu, cur_insn; 916 917 ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY; 918 ctrl_cpu &= ctrl_cpu_rev[0].clr; 919 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu); 920 vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set); 921 cr3 = read_cr3(); 922 923 for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) { 924 if (insn_table[cur_insn].supported_fn == NULL) 925 continue; 926 insn_table[cur_insn].disabled = !insn_table[cur_insn].supported_fn(); 927 } 928 return VMX_TEST_START; 929 } 930 931 static void insn_intercept_main(void) 932 { 933 for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) { 934 vmx_set_test_stage(cur_insn * 2); 935 if ((insn_table[cur_insn].type == INSN_CPU0 && 936 !(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) || 937 (insn_table[cur_insn].type == INSN_CPU1 && 938 !(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) { 939 printf("\tCPU_CTRL%d.CPU_%s is not supported.\n", 940 insn_table[cur_insn].type - INSN_CPU0, 941 insn_table[cur_insn].name); 942 continue; 943 } 944 945 if (insn_table[cur_insn].disabled) { 946 printf("\tFeature required for %s is not supported.\n", 947 insn_table[cur_insn].name); 948 continue; 949 } 950 951 if ((insn_table[cur_insn].type == INSN_CPU0 && 952 !(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) || 953 (insn_table[cur_insn].type == INSN_CPU1 && 954 !(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) { 955 /* skip hlt, it stalls the guest and is tested below */ 956 if (insn_table[cur_insn].insn_func != insn_hlt) 957 insn_table[cur_insn].insn_func(); 958 report(vmx_get_test_stage() == cur_insn * 2, 959 "execute %s", 960 insn_table[cur_insn].name); 961 } else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP) 962 printf("\tCPU_CTRL%d.CPU_%s always traps.\n", 963 insn_table[cur_insn].type - INSN_CPU0, 964 insn_table[cur_insn].name); 965 966 vmcall(); 967 968 insn_table[cur_insn].insn_func(); 969 report(vmx_get_test_stage() == cur_insn * 2 + 1, 970 "intercept %s", 971 insn_table[cur_insn].name); 972 973 vmx_set_test_stage(cur_insn * 2 + 1); 974 vmcall(); 975 } 976 } 977 978 static int insn_intercept_exit_handler(union exit_reason exit_reason) 979 { 980 u64 guest_rip; 981 ulong exit_qual; 982 u32 insn_len; 983 u32 insn_info; 984 bool pass; 985 986 guest_rip = vmcs_read(GUEST_RIP); 987 exit_qual = vmcs_read(EXI_QUALIFICATION); 988 insn_len = vmcs_read(EXI_INST_LEN); 989 insn_info = vmcs_read(EXI_INST_INFO); 990 991 if (exit_reason.basic == VMX_VMCALL) { 992 u32 val = 0; 993 994 if (insn_table[cur_insn].type == INSN_CPU0) 995 val = vmcs_read(CPU_EXEC_CTRL0); 996 else if (insn_table[cur_insn].type == INSN_CPU1) 997 val = vmcs_read(CPU_EXEC_CTRL1); 998 999 if (vmx_get_test_stage() & 1) 1000 val &= ~insn_table[cur_insn].flag; 1001 else 1002 val |= insn_table[cur_insn].flag; 1003 1004 if (insn_table[cur_insn].type == INSN_CPU0) 1005 vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set); 1006 else if (insn_table[cur_insn].type == INSN_CPU1) 1007 vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set); 1008 } else { 1009 pass = (cur_insn * 2 == vmx_get_test_stage()) && 1010 insn_table[cur_insn].reason == exit_reason.full; 1011 if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL && 1012 insn_table[cur_insn].exit_qual != exit_qual) 1013 pass = false; 1014 if (insn_table[cur_insn].test_field & FIELD_INSN_INFO && 1015 insn_table[cur_insn].insn_info != insn_info) 1016 pass = false; 1017 if (pass) 1018 vmx_inc_test_stage(); 1019 } 1020 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1021 return VMX_TEST_RESUME; 1022 } 1023 1024 /** 1025 * __setup_ept - Setup the VMCS fields to enable Extended Page Tables (EPT) 1026 * @hpa: Host physical address of the top-level, a.k.a. root, EPT table 1027 * @enable_ad: Whether or not to enable Access/Dirty bits for EPT entries 1028 * 1029 * Returns 0 on success, 1 on failure. 1030 * 1031 * Note that @hpa doesn't need to point at actual memory if VM-Launch is 1032 * expected to fail, e.g. setup_dummy_ept() arbitrarily passes '0' to satisfy 1033 * the various EPTP consistency checks, but doesn't ensure backing for HPA '0'. 1034 */ 1035 static int __setup_ept(u64 hpa, bool enable_ad) 1036 { 1037 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 1038 !(ctrl_cpu_rev[1].clr & CPU_EPT)) { 1039 printf("\tEPT is not supported\n"); 1040 return 1; 1041 } 1042 if (!(ept_vpid.val & EPT_CAP_WB)) { 1043 printf("\tWB memtype for EPT walks not supported\n"); 1044 return 1; 1045 } 1046 if (!(ept_vpid.val & EPT_CAP_PWL4)) { 1047 printf("\tPWL4 is not supported\n"); 1048 return 1; 1049 } 1050 1051 eptp = EPT_MEM_TYPE_WB; 1052 eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT); 1053 eptp |= hpa; 1054 if (enable_ad) 1055 eptp |= EPTP_AD_FLAG; 1056 1057 vmcs_write(EPTP, eptp); 1058 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0)| CPU_SECONDARY); 1059 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1)| CPU_EPT); 1060 1061 return 0; 1062 } 1063 1064 /** 1065 * setup_ept - Enable Extended Page Tables (EPT) and setup an identity map 1066 * @enable_ad: Whether or not to enable Access/Dirty bits for EPT entries 1067 * 1068 * Returns 0 on success, 1 on failure. 1069 * 1070 * This is the "real" function for setting up EPT tables, i.e. use this for 1071 * tests that need to run code in the guest with EPT enabled. 1072 */ 1073 static int setup_ept(bool enable_ad) 1074 { 1075 unsigned long end_of_memory; 1076 1077 pml4 = alloc_page(); 1078 1079 if (__setup_ept(virt_to_phys(pml4), enable_ad)) 1080 return 1; 1081 1082 end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE); 1083 if (end_of_memory < (1ul << 32)) 1084 end_of_memory = (1ul << 32); 1085 /* Cannot use large EPT pages if we need to track EPT 1086 * accessed/dirty bits at 4K granularity. 1087 */ 1088 setup_ept_range(pml4, 0, end_of_memory, 0, 1089 !enable_ad && ept_2m_supported(), 1090 EPT_WA | EPT_RA | EPT_EA); 1091 return 0; 1092 } 1093 1094 /** 1095 * setup_dummy_ept - Enable Extended Page Tables (EPT) with a dummy root HPA 1096 * 1097 * Setup EPT using a semi-arbitrary dummy root HPA. This function is intended 1098 * for use by tests that need EPT enabled to verify dependent VMCS controls 1099 * but never expect to fully enter the guest, i.e. don't need setup the actual 1100 * EPT tables. 1101 */ 1102 static void setup_dummy_ept(void) 1103 { 1104 if (__setup_ept(0, false)) 1105 report_abort("EPT setup unexpectedly failed"); 1106 } 1107 1108 static int enable_unrestricted_guest(bool need_valid_ept) 1109 { 1110 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 1111 !(ctrl_cpu_rev[1].clr & CPU_URG) || 1112 !(ctrl_cpu_rev[1].clr & CPU_EPT)) 1113 return 1; 1114 1115 if (need_valid_ept) 1116 setup_ept(false); 1117 else 1118 setup_dummy_ept(); 1119 1120 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); 1121 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG); 1122 1123 return 0; 1124 } 1125 1126 static void ept_enable_ad_bits(void) 1127 { 1128 eptp |= EPTP_AD_FLAG; 1129 vmcs_write(EPTP, eptp); 1130 } 1131 1132 static void ept_disable_ad_bits(void) 1133 { 1134 eptp &= ~EPTP_AD_FLAG; 1135 vmcs_write(EPTP, eptp); 1136 } 1137 1138 static int ept_ad_enabled(void) 1139 { 1140 return eptp & EPTP_AD_FLAG; 1141 } 1142 1143 static void ept_enable_ad_bits_or_skip_test(void) 1144 { 1145 if (!ept_ad_bits_supported()) 1146 test_skip("EPT AD bits not supported."); 1147 ept_enable_ad_bits(); 1148 } 1149 1150 static int apic_version; 1151 1152 static int ept_init_common(bool have_ad) 1153 { 1154 int ret; 1155 struct pci_dev pcidev; 1156 1157 /* INVEPT is required by the EPT violation handler. */ 1158 if (!is_invept_type_supported(INVEPT_SINGLE)) 1159 return VMX_TEST_EXIT; 1160 1161 if (setup_ept(have_ad)) 1162 return VMX_TEST_EXIT; 1163 1164 data_page1 = alloc_page(); 1165 data_page2 = alloc_page(); 1166 *((u32 *)data_page1) = MAGIC_VAL_1; 1167 *((u32 *)data_page2) = MAGIC_VAL_2; 1168 install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2, 1169 EPT_RA | EPT_WA | EPT_EA); 1170 1171 apic_version = apic_read(APIC_LVR); 1172 1173 ret = pci_find_dev(PCI_VENDOR_ID_REDHAT, PCI_DEVICE_ID_REDHAT_TEST); 1174 if (ret != PCIDEVADDR_INVALID) { 1175 pci_dev_init(&pcidev, ret); 1176 pci_physaddr = pcidev.resource[PCI_TESTDEV_BAR_MEM]; 1177 } 1178 1179 return VMX_TEST_START; 1180 } 1181 1182 static int ept_init(struct vmcs *vmcs) 1183 { 1184 return ept_init_common(false); 1185 } 1186 1187 static void ept_common(void) 1188 { 1189 vmx_set_test_stage(0); 1190 if (*((u32 *)data_page2) != MAGIC_VAL_1 || 1191 *((u32 *)data_page1) != MAGIC_VAL_1) 1192 report_fail("EPT basic framework - read"); 1193 else { 1194 *((u32 *)data_page2) = MAGIC_VAL_3; 1195 vmcall(); 1196 if (vmx_get_test_stage() == 1) { 1197 if (*((u32 *)data_page1) == MAGIC_VAL_3 && 1198 *((u32 *)data_page2) == MAGIC_VAL_2) 1199 report_pass("EPT basic framework"); 1200 else 1201 report_pass("EPT basic framework - remap"); 1202 } 1203 } 1204 // Test EPT Misconfigurations 1205 vmx_set_test_stage(1); 1206 vmcall(); 1207 *((u32 *)data_page1) = MAGIC_VAL_1; 1208 if (vmx_get_test_stage() != 2) { 1209 report_fail("EPT misconfigurations"); 1210 goto t1; 1211 } 1212 vmx_set_test_stage(2); 1213 vmcall(); 1214 *((u32 *)data_page1) = MAGIC_VAL_1; 1215 report(vmx_get_test_stage() == 3, "EPT misconfigurations"); 1216 t1: 1217 // Test EPT violation 1218 vmx_set_test_stage(3); 1219 vmcall(); 1220 *((u32 *)data_page1) = MAGIC_VAL_1; 1221 report(vmx_get_test_stage() == 4, "EPT violation - page permission"); 1222 // Violation caused by EPT paging structure 1223 vmx_set_test_stage(4); 1224 vmcall(); 1225 *((u32 *)data_page1) = MAGIC_VAL_2; 1226 report(vmx_get_test_stage() == 5, "EPT violation - paging structure"); 1227 1228 // MMIO Read/Write 1229 vmx_set_test_stage(5); 1230 vmcall(); 1231 1232 *(u32 volatile *)pci_physaddr; 1233 report(vmx_get_test_stage() == 6, "MMIO EPT violation - read"); 1234 1235 *(u32 volatile *)pci_physaddr = MAGIC_VAL_1; 1236 report(vmx_get_test_stage() == 7, "MMIO EPT violation - write"); 1237 } 1238 1239 static void ept_main(void) 1240 { 1241 ept_common(); 1242 1243 // Test EPT access to L1 MMIO 1244 vmx_set_test_stage(7); 1245 report(*((u32 *)0xfee00030UL) == apic_version, "EPT - MMIO access"); 1246 1247 // Test invalid operand for INVEPT 1248 vmcall(); 1249 report(vmx_get_test_stage() == 8, "EPT - unsupported INVEPT"); 1250 } 1251 1252 static bool invept_test(int type, u64 eptp) 1253 { 1254 bool ret, supported; 1255 1256 supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type); 1257 ret = __invept(type, eptp); 1258 1259 if (ret == !supported) 1260 return false; 1261 1262 if (!supported) 1263 printf("WARNING: unsupported invept passed!\n"); 1264 else 1265 printf("WARNING: invept failed!\n"); 1266 1267 return true; 1268 } 1269 1270 static int pml_exit_handler(union exit_reason exit_reason) 1271 { 1272 u16 index, count; 1273 u64 *pmlbuf = pml_log; 1274 u64 guest_rip = vmcs_read(GUEST_RIP);; 1275 u64 guest_cr3 = vmcs_read(GUEST_CR3); 1276 u32 insn_len = vmcs_read(EXI_INST_LEN); 1277 1278 switch (exit_reason.basic) { 1279 case VMX_VMCALL: 1280 switch (vmx_get_test_stage()) { 1281 case 0: 1282 index = vmcs_read(GUEST_PML_INDEX); 1283 for (count = index + 1; count < PML_INDEX; count++) { 1284 if (pmlbuf[count] == (u64)data_page2) { 1285 vmx_inc_test_stage(); 1286 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); 1287 break; 1288 } 1289 } 1290 break; 1291 case 1: 1292 index = vmcs_read(GUEST_PML_INDEX); 1293 /* Keep clearing the dirty bit till a overflow */ 1294 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); 1295 break; 1296 default: 1297 report_fail("unexpected stage, %d.", 1298 vmx_get_test_stage()); 1299 print_vmexit_info(exit_reason); 1300 return VMX_TEST_VMEXIT; 1301 } 1302 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1303 return VMX_TEST_RESUME; 1304 case VMX_PML_FULL: 1305 vmx_inc_test_stage(); 1306 vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1); 1307 return VMX_TEST_RESUME; 1308 default: 1309 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 1310 print_vmexit_info(exit_reason); 1311 } 1312 return VMX_TEST_VMEXIT; 1313 } 1314 1315 static int ept_exit_handler_common(union exit_reason exit_reason, bool have_ad) 1316 { 1317 u64 guest_rip; 1318 u64 guest_cr3; 1319 u32 insn_len; 1320 u32 exit_qual; 1321 static unsigned long data_page1_pte, data_page1_pte_pte, memaddr_pte, 1322 guest_pte_addr; 1323 1324 guest_rip = vmcs_read(GUEST_RIP); 1325 guest_cr3 = vmcs_read(GUEST_CR3); 1326 insn_len = vmcs_read(EXI_INST_LEN); 1327 exit_qual = vmcs_read(EXI_QUALIFICATION); 1328 pteval_t *ptep; 1329 switch (exit_reason.basic) { 1330 case VMX_VMCALL: 1331 switch (vmx_get_test_stage()) { 1332 case 0: 1333 check_ept_ad(pml4, guest_cr3, 1334 (unsigned long)data_page1, 1335 have_ad ? EPT_ACCESS_FLAG : 0, 1336 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); 1337 check_ept_ad(pml4, guest_cr3, 1338 (unsigned long)data_page2, 1339 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0, 1340 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); 1341 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); 1342 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); 1343 if (have_ad) 1344 invept(INVEPT_SINGLE, eptp); 1345 if (*((u32 *)data_page1) == MAGIC_VAL_3 && 1346 *((u32 *)data_page2) == MAGIC_VAL_2) { 1347 vmx_inc_test_stage(); 1348 install_ept(pml4, (unsigned long)data_page2, 1349 (unsigned long)data_page2, 1350 EPT_RA | EPT_WA | EPT_EA); 1351 } else 1352 report_fail("EPT basic framework - write"); 1353 break; 1354 case 1: 1355 install_ept(pml4, (unsigned long)data_page1, 1356 (unsigned long)data_page1, EPT_WA); 1357 invept(INVEPT_SINGLE, eptp); 1358 break; 1359 case 2: 1360 install_ept(pml4, (unsigned long)data_page1, 1361 (unsigned long)data_page1, 1362 EPT_RA | EPT_WA | EPT_EA | 1363 (2 << EPT_MEM_TYPE_SHIFT)); 1364 invept(INVEPT_SINGLE, eptp); 1365 break; 1366 case 3: 1367 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); 1368 TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1, 1369 1, &data_page1_pte)); 1370 set_ept_pte(pml4, (unsigned long)data_page1, 1371 1, data_page1_pte & ~EPT_PRESENT); 1372 invept(INVEPT_SINGLE, eptp); 1373 break; 1374 case 4: 1375 ptep = get_pte_level((pgd_t *)guest_cr3, data_page1, /*level=*/2); 1376 guest_pte_addr = virt_to_phys(ptep) & PAGE_MASK; 1377 1378 TEST_ASSERT(get_ept_pte(pml4, guest_pte_addr, 2, &data_page1_pte_pte)); 1379 set_ept_pte(pml4, guest_pte_addr, 2, 1380 data_page1_pte_pte & ~EPT_PRESENT); 1381 invept(INVEPT_SINGLE, eptp); 1382 break; 1383 case 5: 1384 install_ept(pml4, (unsigned long)pci_physaddr, 1385 (unsigned long)pci_physaddr, 0); 1386 invept(INVEPT_SINGLE, eptp); 1387 break; 1388 case 7: 1389 if (!invept_test(0, eptp)) 1390 vmx_inc_test_stage(); 1391 break; 1392 // Should not reach here 1393 default: 1394 report_fail("ERROR - unexpected stage, %d.", 1395 vmx_get_test_stage()); 1396 print_vmexit_info(exit_reason); 1397 return VMX_TEST_VMEXIT; 1398 } 1399 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1400 return VMX_TEST_RESUME; 1401 case VMX_EPT_MISCONFIG: 1402 switch (vmx_get_test_stage()) { 1403 case 1: 1404 case 2: 1405 vmx_inc_test_stage(); 1406 install_ept(pml4, (unsigned long)data_page1, 1407 (unsigned long)data_page1, 1408 EPT_RA | EPT_WA | EPT_EA); 1409 invept(INVEPT_SINGLE, eptp); 1410 break; 1411 // Should not reach here 1412 default: 1413 report_fail("ERROR - unexpected stage, %d.", 1414 vmx_get_test_stage()); 1415 print_vmexit_info(exit_reason); 1416 return VMX_TEST_VMEXIT; 1417 } 1418 return VMX_TEST_RESUME; 1419 case VMX_EPT_VIOLATION: 1420 /* 1421 * Exit-qualifications are masked not to account for advanced 1422 * VM-exit information. Once KVM supports this feature, this 1423 * masking should be removed. 1424 */ 1425 exit_qual &= ~EPT_VLT_GUEST_MASK; 1426 1427 switch(vmx_get_test_stage()) { 1428 case 3: 1429 check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0, 1430 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); 1431 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); 1432 if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD | 1433 EPT_VLT_PADDR)) 1434 vmx_inc_test_stage(); 1435 set_ept_pte(pml4, (unsigned long)data_page1, 1436 1, data_page1_pte | (EPT_PRESENT)); 1437 invept(INVEPT_SINGLE, eptp); 1438 break; 1439 case 4: 1440 check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0, 1441 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); 1442 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); 1443 if (exit_qual == (EPT_VLT_RD | 1444 (have_ad ? EPT_VLT_WR : 0) | 1445 EPT_VLT_LADDR_VLD)) 1446 vmx_inc_test_stage(); 1447 set_ept_pte(pml4, guest_pte_addr, 2, 1448 data_page1_pte_pte | (EPT_PRESENT)); 1449 invept(INVEPT_SINGLE, eptp); 1450 break; 1451 case 5: 1452 if (exit_qual & EPT_VLT_RD) 1453 vmx_inc_test_stage(); 1454 TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr, 1455 1, &memaddr_pte)); 1456 set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA); 1457 invept(INVEPT_SINGLE, eptp); 1458 break; 1459 case 6: 1460 if (exit_qual & EPT_VLT_WR) 1461 vmx_inc_test_stage(); 1462 TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr, 1463 1, &memaddr_pte)); 1464 set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA | EPT_WA); 1465 invept(INVEPT_SINGLE, eptp); 1466 break; 1467 default: 1468 // Should not reach here 1469 report_fail("ERROR : unexpected stage, %d", 1470 vmx_get_test_stage()); 1471 print_vmexit_info(exit_reason); 1472 return VMX_TEST_VMEXIT; 1473 } 1474 return VMX_TEST_RESUME; 1475 default: 1476 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 1477 print_vmexit_info(exit_reason); 1478 } 1479 return VMX_TEST_VMEXIT; 1480 } 1481 1482 static int ept_exit_handler(union exit_reason exit_reason) 1483 { 1484 return ept_exit_handler_common(exit_reason, false); 1485 } 1486 1487 static int eptad_init(struct vmcs *vmcs) 1488 { 1489 int r = ept_init_common(true); 1490 1491 if (r == VMX_TEST_EXIT) 1492 return r; 1493 1494 if (!ept_ad_bits_supported()) { 1495 printf("\tEPT A/D bits are not supported"); 1496 return VMX_TEST_EXIT; 1497 } 1498 1499 return r; 1500 } 1501 1502 static int pml_init(struct vmcs *vmcs) 1503 { 1504 u32 ctrl_cpu; 1505 int r = eptad_init(vmcs); 1506 1507 if (r == VMX_TEST_EXIT) 1508 return r; 1509 1510 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 1511 !(ctrl_cpu_rev[1].clr & CPU_PML)) { 1512 printf("\tPML is not supported"); 1513 return VMX_TEST_EXIT; 1514 } 1515 1516 pml_log = alloc_page(); 1517 vmcs_write(PMLADDR, (u64)pml_log); 1518 vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1); 1519 1520 ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML; 1521 vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu); 1522 1523 return VMX_TEST_START; 1524 } 1525 1526 static void pml_main(void) 1527 { 1528 int count = 0; 1529 1530 vmx_set_test_stage(0); 1531 *((u32 *)data_page2) = 0x1; 1532 vmcall(); 1533 report(vmx_get_test_stage() == 1, "PML - Dirty GPA Logging"); 1534 1535 while (vmx_get_test_stage() == 1) { 1536 vmcall(); 1537 *((u32 *)data_page2) = 0x1; 1538 if (count++ > PML_INDEX) 1539 break; 1540 } 1541 report(vmx_get_test_stage() == 2, "PML Full Event"); 1542 } 1543 1544 static void eptad_main(void) 1545 { 1546 ept_common(); 1547 } 1548 1549 static int eptad_exit_handler(union exit_reason exit_reason) 1550 { 1551 return ept_exit_handler_common(exit_reason, true); 1552 } 1553 1554 #define TIMER_VECTOR 222 1555 1556 static volatile bool timer_fired; 1557 1558 static void timer_isr(isr_regs_t *regs) 1559 { 1560 timer_fired = true; 1561 apic_write(APIC_EOI, 0); 1562 } 1563 1564 static int interrupt_init(struct vmcs *vmcs) 1565 { 1566 msr_bmp_init(); 1567 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 1568 handle_irq(TIMER_VECTOR, timer_isr); 1569 return VMX_TEST_START; 1570 } 1571 1572 static void interrupt_main(void) 1573 { 1574 long long start, loops; 1575 1576 vmx_set_test_stage(0); 1577 1578 apic_write(APIC_LVTT, TIMER_VECTOR); 1579 sti(); 1580 1581 apic_write(APIC_TMICT, 1); 1582 for (loops = 0; loops < 10000000 && !timer_fired; loops++) 1583 asm volatile ("nop"); 1584 report(timer_fired, "direct interrupt while running guest"); 1585 1586 apic_write(APIC_TMICT, 0); 1587 cli(); 1588 vmcall(); 1589 timer_fired = false; 1590 apic_write(APIC_TMICT, 1); 1591 for (loops = 0; loops < 10000000 && !timer_fired; loops++) 1592 asm volatile ("nop"); 1593 report(timer_fired, "intercepted interrupt while running guest"); 1594 1595 sti(); 1596 apic_write(APIC_TMICT, 0); 1597 cli(); 1598 vmcall(); 1599 timer_fired = false; 1600 start = rdtsc(); 1601 apic_write(APIC_TMICT, 1000000); 1602 1603 safe_halt(); 1604 1605 report(rdtsc() - start > 1000000 && timer_fired, 1606 "direct interrupt + hlt"); 1607 1608 apic_write(APIC_TMICT, 0); 1609 cli(); 1610 vmcall(); 1611 timer_fired = false; 1612 start = rdtsc(); 1613 apic_write(APIC_TMICT, 1000000); 1614 1615 safe_halt(); 1616 1617 report(rdtsc() - start > 10000 && timer_fired, 1618 "intercepted interrupt + hlt"); 1619 1620 apic_write(APIC_TMICT, 0); 1621 cli(); 1622 vmcall(); 1623 timer_fired = false; 1624 start = rdtsc(); 1625 apic_write(APIC_TMICT, 1000000); 1626 1627 sti_nop(); 1628 vmcall(); 1629 1630 report(rdtsc() - start > 10000 && timer_fired, 1631 "direct interrupt + activity state hlt"); 1632 1633 apic_write(APIC_TMICT, 0); 1634 cli(); 1635 vmcall(); 1636 timer_fired = false; 1637 start = rdtsc(); 1638 apic_write(APIC_TMICT, 1000000); 1639 1640 sti_nop(); 1641 vmcall(); 1642 1643 report(rdtsc() - start > 10000 && timer_fired, 1644 "intercepted interrupt + activity state hlt"); 1645 1646 apic_write(APIC_TMICT, 0); 1647 cli(); 1648 vmx_set_test_stage(7); 1649 vmcall(); 1650 timer_fired = false; 1651 apic_write(APIC_TMICT, 1); 1652 for (loops = 0; loops < 10000000 && !timer_fired; loops++) 1653 asm volatile ("nop"); 1654 report(timer_fired, 1655 "running a guest with interrupt acknowledgement set"); 1656 1657 apic_write(APIC_TMICT, 0); 1658 sti(); 1659 timer_fired = false; 1660 vmcall(); 1661 report(timer_fired, "Inject an event to a halted guest"); 1662 } 1663 1664 static int interrupt_exit_handler(union exit_reason exit_reason) 1665 { 1666 u64 guest_rip = vmcs_read(GUEST_RIP); 1667 u32 insn_len = vmcs_read(EXI_INST_LEN); 1668 1669 switch (exit_reason.basic) { 1670 case VMX_VMCALL: 1671 switch (vmx_get_test_stage()) { 1672 case 0: 1673 case 2: 1674 case 5: 1675 vmcs_write(PIN_CONTROLS, 1676 vmcs_read(PIN_CONTROLS) | PIN_EXTINT); 1677 break; 1678 case 7: 1679 vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA); 1680 vmcs_write(PIN_CONTROLS, 1681 vmcs_read(PIN_CONTROLS) | PIN_EXTINT); 1682 break; 1683 case 1: 1684 case 3: 1685 vmcs_write(PIN_CONTROLS, 1686 vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 1687 break; 1688 case 4: 1689 case 6: 1690 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 1691 break; 1692 1693 case 8: 1694 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 1695 vmcs_write(ENT_INTR_INFO, 1696 TIMER_VECTOR | 1697 (VMX_INTR_TYPE_EXT_INTR << INTR_INFO_INTR_TYPE_SHIFT) | 1698 INTR_INFO_VALID_MASK); 1699 break; 1700 } 1701 vmx_inc_test_stage(); 1702 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1703 return VMX_TEST_RESUME; 1704 case VMX_EXTINT: 1705 if (vmcs_read(EXI_CONTROLS) & EXI_INTA) { 1706 int vector = vmcs_read(EXI_INTR_INFO) & 0xff; 1707 handle_external_interrupt(vector); 1708 } else { 1709 sti_nop_cli(); 1710 } 1711 if (vmx_get_test_stage() >= 2) 1712 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 1713 return VMX_TEST_RESUME; 1714 default: 1715 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 1716 print_vmexit_info(exit_reason); 1717 } 1718 1719 return VMX_TEST_VMEXIT; 1720 } 1721 1722 1723 static volatile int nmi_fired; 1724 1725 #define NMI_DELAY 100000000ULL 1726 1727 static void nmi_isr(isr_regs_t *regs) 1728 { 1729 nmi_fired = true; 1730 } 1731 1732 static int nmi_hlt_init(struct vmcs *vmcs) 1733 { 1734 msr_bmp_init(); 1735 handle_irq(NMI_VECTOR, nmi_isr); 1736 vmcs_write(PIN_CONTROLS, 1737 vmcs_read(PIN_CONTROLS) & ~PIN_NMI); 1738 vmcs_write(PIN_CONTROLS, 1739 vmcs_read(PIN_CONTROLS) & ~PIN_VIRT_NMI); 1740 return VMX_TEST_START; 1741 } 1742 1743 static void nmi_message_thread(void *data) 1744 { 1745 while (vmx_get_test_stage() != 1) 1746 pause(); 1747 1748 delay(NMI_DELAY); 1749 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]); 1750 1751 while (vmx_get_test_stage() != 2) 1752 pause(); 1753 1754 delay(NMI_DELAY); 1755 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]); 1756 } 1757 1758 static void nmi_hlt_main(void) 1759 { 1760 long long start; 1761 1762 if (cpu_count() < 2) { 1763 report_skip("%s : CPU count < 2", __func__); 1764 vmx_set_test_stage(-1); 1765 return; 1766 } 1767 1768 vmx_set_test_stage(0); 1769 on_cpu_async(1, nmi_message_thread, NULL); 1770 start = rdtsc(); 1771 vmx_set_test_stage(1); 1772 asm volatile ("hlt"); 1773 report((rdtsc() - start > NMI_DELAY) && nmi_fired, 1774 "direct NMI + hlt"); 1775 if (!nmi_fired) 1776 vmx_set_test_stage(-1); 1777 nmi_fired = false; 1778 1779 vmcall(); 1780 1781 start = rdtsc(); 1782 vmx_set_test_stage(2); 1783 asm volatile ("hlt"); 1784 report((rdtsc() - start > NMI_DELAY) && !nmi_fired, 1785 "intercepted NMI + hlt"); 1786 if (nmi_fired) { 1787 report(!nmi_fired, "intercepted NMI was dispatched"); 1788 vmx_set_test_stage(-1); 1789 return; 1790 } 1791 vmx_set_test_stage(3); 1792 } 1793 1794 static int nmi_hlt_exit_handler(union exit_reason exit_reason) 1795 { 1796 u64 guest_rip = vmcs_read(GUEST_RIP); 1797 u32 insn_len = vmcs_read(EXI_INST_LEN); 1798 1799 switch (vmx_get_test_stage()) { 1800 case 1: 1801 if (exit_reason.basic != VMX_VMCALL) { 1802 report_fail("VMEXIT not due to vmcall. Exit reason 0x%x", 1803 exit_reason.full); 1804 print_vmexit_info(exit_reason); 1805 return VMX_TEST_VMEXIT; 1806 } 1807 1808 vmcs_write(PIN_CONTROLS, 1809 vmcs_read(PIN_CONTROLS) | PIN_NMI); 1810 vmcs_write(PIN_CONTROLS, 1811 vmcs_read(PIN_CONTROLS) | PIN_VIRT_NMI); 1812 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1813 break; 1814 1815 case 2: 1816 if (exit_reason.basic != VMX_EXC_NMI) { 1817 report_fail("VMEXIT not due to NMI intercept. Exit reason 0x%x", 1818 exit_reason.full); 1819 print_vmexit_info(exit_reason); 1820 return VMX_TEST_VMEXIT; 1821 } 1822 report_pass("NMI intercept while running guest"); 1823 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 1824 break; 1825 1826 case 3: 1827 break; 1828 1829 default: 1830 return VMX_TEST_VMEXIT; 1831 } 1832 1833 if (vmx_get_test_stage() == 3) 1834 return VMX_TEST_VMEXIT; 1835 1836 return VMX_TEST_RESUME; 1837 } 1838 1839 1840 static int dbgctls_init(struct vmcs *vmcs) 1841 { 1842 u64 dr7 = 0x402; 1843 u64 zero = 0; 1844 1845 msr_bmp_init(); 1846 asm volatile( 1847 "mov %0,%%dr0\n\t" 1848 "mov %0,%%dr1\n\t" 1849 "mov %0,%%dr2\n\t" 1850 "mov %1,%%dr7\n\t" 1851 : : "r" (zero), "r" (dr7)); 1852 wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1); 1853 vmcs_write(GUEST_DR7, 0x404); 1854 vmcs_write(GUEST_DEBUGCTL, 0x2); 1855 1856 vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS); 1857 vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS); 1858 1859 return VMX_TEST_START; 1860 } 1861 1862 static void dbgctls_main(void) 1863 { 1864 u64 dr7, debugctl; 1865 1866 asm volatile("mov %%dr7,%0" : "=r" (dr7)); 1867 debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); 1868 /* Commented out: KVM does not support DEBUGCTL so far */ 1869 (void)debugctl; 1870 report(dr7 == 0x404, "Load debug controls" /* && debugctl == 0x2 */); 1871 1872 dr7 = 0x408; 1873 asm volatile("mov %0,%%dr7" : : "r" (dr7)); 1874 wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3); 1875 1876 vmx_set_test_stage(0); 1877 vmcall(); 1878 report(vmx_get_test_stage() == 1, "Save debug controls"); 1879 1880 if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS || 1881 ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) { 1882 printf("\tDebug controls are always loaded/saved\n"); 1883 return; 1884 } 1885 vmx_set_test_stage(2); 1886 vmcall(); 1887 1888 asm volatile("mov %%dr7,%0" : "=r" (dr7)); 1889 debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); 1890 /* Commented out: KVM does not support DEBUGCTL so far */ 1891 (void)debugctl; 1892 report(dr7 == 0x402, 1893 "Guest=host debug controls" /* && debugctl == 0x1 */); 1894 1895 dr7 = 0x408; 1896 asm volatile("mov %0,%%dr7" : : "r" (dr7)); 1897 wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3); 1898 1899 vmx_set_test_stage(3); 1900 vmcall(); 1901 report(vmx_get_test_stage() == 4, "Don't save debug controls"); 1902 } 1903 1904 static int dbgctls_exit_handler(union exit_reason exit_reason) 1905 { 1906 u32 insn_len = vmcs_read(EXI_INST_LEN); 1907 u64 guest_rip = vmcs_read(GUEST_RIP); 1908 u64 dr7, debugctl; 1909 1910 asm volatile("mov %%dr7,%0" : "=r" (dr7)); 1911 debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); 1912 1913 switch (exit_reason.basic) { 1914 case VMX_VMCALL: 1915 switch (vmx_get_test_stage()) { 1916 case 0: 1917 if (dr7 == 0x400 && debugctl == 0 && 1918 vmcs_read(GUEST_DR7) == 0x408 /* && 1919 Commented out: KVM does not support DEBUGCTL so far 1920 vmcs_read(GUEST_DEBUGCTL) == 0x3 */) 1921 vmx_inc_test_stage(); 1922 break; 1923 case 2: 1924 dr7 = 0x402; 1925 asm volatile("mov %0,%%dr7" : : "r" (dr7)); 1926 wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1); 1927 vmcs_write(GUEST_DR7, 0x404); 1928 vmcs_write(GUEST_DEBUGCTL, 0x2); 1929 1930 vmcs_write(ENT_CONTROLS, 1931 vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS); 1932 vmcs_write(EXI_CONTROLS, 1933 vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS); 1934 break; 1935 case 3: 1936 if (dr7 == 0x400 && debugctl == 0 && 1937 vmcs_read(GUEST_DR7) == 0x404 /* && 1938 Commented out: KVM does not support DEBUGCTL so far 1939 vmcs_read(GUEST_DEBUGCTL) == 0x2 */) 1940 vmx_inc_test_stage(); 1941 break; 1942 } 1943 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1944 return VMX_TEST_RESUME; 1945 default: 1946 report_fail("Unknown exit reason, %d", exit_reason.full); 1947 print_vmexit_info(exit_reason); 1948 } 1949 return VMX_TEST_VMEXIT; 1950 } 1951 1952 struct vmx_msr_entry { 1953 u32 index; 1954 u32 reserved; 1955 u64 value; 1956 } __attribute__((packed)); 1957 1958 #define MSR_MAGIC 0x31415926 1959 struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load; 1960 1961 static int msr_switch_init(struct vmcs *vmcs) 1962 { 1963 msr_bmp_init(); 1964 exit_msr_store = alloc_page(); 1965 exit_msr_load = alloc_page(); 1966 entry_msr_load = alloc_page(); 1967 entry_msr_load[0].index = MSR_KERNEL_GS_BASE; 1968 entry_msr_load[0].value = MSR_MAGIC; 1969 1970 vmx_set_test_stage(1); 1971 vmcs_write(ENT_MSR_LD_CNT, 1); 1972 vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load); 1973 vmcs_write(EXI_MSR_ST_CNT, 1); 1974 vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store); 1975 vmcs_write(EXI_MSR_LD_CNT, 1); 1976 vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load); 1977 return VMX_TEST_START; 1978 } 1979 1980 static void msr_switch_main(void) 1981 { 1982 if (vmx_get_test_stage() == 1) { 1983 report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC, 1984 "VM entry MSR load"); 1985 vmx_set_test_stage(2); 1986 wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1); 1987 exit_msr_store[0].index = MSR_KERNEL_GS_BASE; 1988 exit_msr_load[0].index = MSR_KERNEL_GS_BASE; 1989 exit_msr_load[0].value = MSR_MAGIC + 2; 1990 } 1991 vmcall(); 1992 } 1993 1994 static int msr_switch_exit_handler(union exit_reason exit_reason) 1995 { 1996 if (exit_reason.basic == VMX_VMCALL && vmx_get_test_stage() == 2) { 1997 report(exit_msr_store[0].value == MSR_MAGIC + 1, 1998 "VM exit MSR store"); 1999 report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2, 2000 "VM exit MSR load"); 2001 vmx_set_test_stage(3); 2002 entry_msr_load[0].index = MSR_FS_BASE; 2003 return VMX_TEST_RESUME; 2004 } 2005 printf("ERROR %s: unexpected stage=%u or reason=0x%x\n", 2006 __func__, vmx_get_test_stage(), exit_reason.full); 2007 return VMX_TEST_EXIT; 2008 } 2009 2010 static int msr_switch_entry_failure(struct vmentry_result *result) 2011 { 2012 if (result->vm_fail) { 2013 printf("ERROR %s: VM-Fail on %s\n", __func__, result->instr); 2014 return VMX_TEST_EXIT; 2015 } 2016 2017 if (result->exit_reason.failed_vmentry && 2018 result->exit_reason.basic == VMX_FAIL_MSR && 2019 vmx_get_test_stage() == 3) { 2020 report(vmcs_read(EXI_QUALIFICATION) == 1, 2021 "VM entry MSR load: try to load FS_BASE"); 2022 return VMX_TEST_VMEXIT; 2023 } 2024 printf("ERROR %s: unexpected stage=%u or reason=%x\n", 2025 __func__, vmx_get_test_stage(), result->exit_reason.full); 2026 return VMX_TEST_EXIT; 2027 } 2028 2029 static int vmmcall_init(struct vmcs *vmcs) 2030 { 2031 vmcs_write(EXC_BITMAP, 1 << UD_VECTOR); 2032 return VMX_TEST_START; 2033 } 2034 2035 static void vmmcall_main(void) 2036 { 2037 asm volatile( 2038 "mov $0xABCD, %%rax\n\t" 2039 "vmmcall\n\t" 2040 ::: "rax"); 2041 2042 report_fail("VMMCALL"); 2043 } 2044 2045 static int vmmcall_exit_handler(union exit_reason exit_reason) 2046 { 2047 switch (exit_reason.basic) { 2048 case VMX_VMCALL: 2049 printf("here\n"); 2050 report_fail("VMMCALL triggers #UD"); 2051 break; 2052 case VMX_EXC_NMI: 2053 report((vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR, 2054 "VMMCALL triggers #UD"); 2055 break; 2056 default: 2057 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 2058 print_vmexit_info(exit_reason); 2059 } 2060 2061 return VMX_TEST_VMEXIT; 2062 } 2063 2064 static int disable_rdtscp_init(struct vmcs *vmcs) 2065 { 2066 u32 ctrl_cpu1; 2067 2068 if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) { 2069 ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1); 2070 ctrl_cpu1 &= ~CPU_RDTSCP; 2071 vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1); 2072 } 2073 2074 return VMX_TEST_START; 2075 } 2076 2077 static void disable_rdtscp_ud_handler(struct ex_regs *regs) 2078 { 2079 switch (vmx_get_test_stage()) { 2080 case 0: 2081 report_pass("RDTSCP triggers #UD"); 2082 vmx_inc_test_stage(); 2083 regs->rip += 3; 2084 break; 2085 case 2: 2086 report_pass("RDPID triggers #UD"); 2087 vmx_inc_test_stage(); 2088 regs->rip += 4; 2089 break; 2090 } 2091 return; 2092 2093 } 2094 2095 static void disable_rdtscp_main(void) 2096 { 2097 /* Test that #UD is properly injected in L2. */ 2098 handle_exception(UD_VECTOR, disable_rdtscp_ud_handler); 2099 2100 vmx_set_test_stage(0); 2101 asm volatile("rdtscp" : : : "eax", "ecx", "edx"); 2102 vmcall(); 2103 asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax"); 2104 2105 handle_exception(UD_VECTOR, 0); 2106 vmcall(); 2107 } 2108 2109 static int disable_rdtscp_exit_handler(union exit_reason exit_reason) 2110 { 2111 switch (exit_reason.basic) { 2112 case VMX_VMCALL: 2113 switch (vmx_get_test_stage()) { 2114 case 0: 2115 report_fail("RDTSCP triggers #UD"); 2116 vmx_inc_test_stage(); 2117 /* fallthrough */ 2118 case 1: 2119 vmx_inc_test_stage(); 2120 vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3); 2121 return VMX_TEST_RESUME; 2122 case 2: 2123 report_fail("RDPID triggers #UD"); 2124 break; 2125 } 2126 break; 2127 2128 default: 2129 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 2130 print_vmexit_info(exit_reason); 2131 } 2132 return VMX_TEST_VMEXIT; 2133 } 2134 2135 static void exit_monitor_from_l2_main(void) 2136 { 2137 printf("Calling exit(0) from l2...\n"); 2138 exit(0); 2139 } 2140 2141 static int exit_monitor_from_l2_handler(union exit_reason exit_reason) 2142 { 2143 report_fail("The guest should have killed the VMM"); 2144 return VMX_TEST_EXIT; 2145 } 2146 2147 static void assert_exit_reason(u64 expected) 2148 { 2149 u64 actual = vmcs_read(EXI_REASON); 2150 2151 TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.", 2152 exit_reason_description(expected), 2153 exit_reason_description(actual)); 2154 } 2155 2156 static void skip_exit_insn(void) 2157 { 2158 u64 guest_rip = vmcs_read(GUEST_RIP); 2159 u32 insn_len = vmcs_read(EXI_INST_LEN); 2160 vmcs_write(GUEST_RIP, guest_rip + insn_len); 2161 } 2162 2163 static void skip_exit_vmcall(void) 2164 { 2165 assert_exit_reason(VMX_VMCALL); 2166 skip_exit_insn(); 2167 } 2168 2169 static void v2_null_test_guest(void) 2170 { 2171 } 2172 2173 static void v2_null_test(void) 2174 { 2175 test_set_guest(v2_null_test_guest); 2176 enter_guest(); 2177 report_pass(__func__); 2178 } 2179 2180 static void v2_multiple_entries_test_guest(void) 2181 { 2182 vmx_set_test_stage(1); 2183 vmcall(); 2184 vmx_set_test_stage(2); 2185 } 2186 2187 static void v2_multiple_entries_test(void) 2188 { 2189 test_set_guest(v2_multiple_entries_test_guest); 2190 enter_guest(); 2191 TEST_ASSERT_EQ(vmx_get_test_stage(), 1); 2192 skip_exit_vmcall(); 2193 enter_guest(); 2194 TEST_ASSERT_EQ(vmx_get_test_stage(), 2); 2195 report_pass(__func__); 2196 } 2197 2198 static int fixture_test_data = 1; 2199 2200 static void fixture_test_teardown(void *data) 2201 { 2202 *((int *) data) = 1; 2203 } 2204 2205 static void fixture_test_guest(void) 2206 { 2207 fixture_test_data++; 2208 } 2209 2210 2211 static void fixture_test_setup(void) 2212 { 2213 TEST_ASSERT_EQ_MSG(1, fixture_test_data, 2214 "fixture_test_teardown didn't run?!"); 2215 fixture_test_data = 2; 2216 test_add_teardown(fixture_test_teardown, &fixture_test_data); 2217 test_set_guest(fixture_test_guest); 2218 } 2219 2220 static void fixture_test_case1(void) 2221 { 2222 fixture_test_setup(); 2223 TEST_ASSERT_EQ(2, fixture_test_data); 2224 enter_guest(); 2225 TEST_ASSERT_EQ(3, fixture_test_data); 2226 report_pass(__func__); 2227 } 2228 2229 static void fixture_test_case2(void) 2230 { 2231 fixture_test_setup(); 2232 TEST_ASSERT_EQ(2, fixture_test_data); 2233 enter_guest(); 2234 TEST_ASSERT_EQ(3, fixture_test_data); 2235 report_pass(__func__); 2236 } 2237 2238 enum ept_access_op { 2239 OP_READ, 2240 OP_WRITE, 2241 OP_EXEC, 2242 OP_FLUSH_TLB, 2243 OP_EXIT, 2244 }; 2245 2246 static struct ept_access_test_data { 2247 unsigned long gpa; 2248 unsigned long *gva; 2249 unsigned long hpa; 2250 unsigned long *hva; 2251 enum ept_access_op op; 2252 } ept_access_test_data; 2253 2254 extern unsigned char ret42_start; 2255 extern unsigned char ret42_end; 2256 2257 /* Returns 42. */ 2258 asm( 2259 ".align 64\n" 2260 "ret42_start:\n" 2261 "mov $42, %eax\n" 2262 "ret\n" 2263 "ret42_end:\n" 2264 ); 2265 2266 static void 2267 diagnose_ept_violation_qual(u64 expected, u64 actual) 2268 { 2269 2270 #define DIAGNOSE(flag) \ 2271 do { \ 2272 if ((expected & flag) != (actual & flag)) \ 2273 printf(#flag " %sexpected\n", \ 2274 (expected & flag) ? "" : "un"); \ 2275 } while (0) 2276 2277 DIAGNOSE(EPT_VLT_RD); 2278 DIAGNOSE(EPT_VLT_WR); 2279 DIAGNOSE(EPT_VLT_FETCH); 2280 DIAGNOSE(EPT_VLT_PERM_RD); 2281 DIAGNOSE(EPT_VLT_PERM_WR); 2282 DIAGNOSE(EPT_VLT_PERM_EX); 2283 DIAGNOSE(EPT_VLT_LADDR_VLD); 2284 DIAGNOSE(EPT_VLT_PADDR); 2285 2286 #undef DIAGNOSE 2287 } 2288 2289 static void do_ept_access_op(enum ept_access_op op) 2290 { 2291 ept_access_test_data.op = op; 2292 enter_guest(); 2293 } 2294 2295 /* 2296 * Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only 2297 * needed by tests that modify guest PTEs. 2298 */ 2299 static void ept_access_test_guest_flush_tlb(void) 2300 { 2301 do_ept_access_op(OP_FLUSH_TLB); 2302 skip_exit_vmcall(); 2303 } 2304 2305 /* 2306 * Modifies the EPT entry at @level in the mapping of @gpa. First clears the 2307 * bits in @clear then sets the bits in @set. @mkhuge transforms the entry into 2308 * a huge page. 2309 */ 2310 static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level, 2311 unsigned long clear, unsigned long set) 2312 { 2313 struct ept_access_test_data *data = &ept_access_test_data; 2314 unsigned long orig_pte; 2315 unsigned long pte; 2316 2317 /* Screw with the mapping at the requested level. */ 2318 TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte)); 2319 pte = orig_pte; 2320 if (mkhuge) 2321 pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE; 2322 else 2323 pte = orig_pte; 2324 pte = (pte & ~clear) | set; 2325 set_ept_pte(pml4, gpa, level, pte); 2326 invept(INVEPT_SINGLE, eptp); 2327 2328 return orig_pte; 2329 } 2330 2331 static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte) 2332 { 2333 set_ept_pte(pml4, gpa, level, orig_pte); 2334 invept(INVEPT_SINGLE, eptp); 2335 } 2336 2337 static void do_ept_violation(bool leaf, enum ept_access_op op, 2338 u64 expected_qual, u64 expected_paddr) 2339 { 2340 u64 qual; 2341 2342 /* Try the access and observe the violation. */ 2343 do_ept_access_op(op); 2344 2345 assert_exit_reason(VMX_EPT_VIOLATION); 2346 2347 qual = vmcs_read(EXI_QUALIFICATION); 2348 2349 /* Mask undefined bits (which may later be defined in certain cases). */ 2350 qual &= ~(EPT_VLT_GUEST_USER | EPT_VLT_GUEST_RW | EPT_VLT_GUEST_EX | 2351 EPT_VLT_PERM_USER_EX); 2352 2353 diagnose_ept_violation_qual(expected_qual, qual); 2354 TEST_EXPECT_EQ(expected_qual, qual); 2355 2356 #if 0 2357 /* Disable for now otherwise every test will fail */ 2358 TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS), 2359 (unsigned long) ( 2360 op == OP_EXEC ? data->gva + 1 : data->gva)); 2361 #endif 2362 /* 2363 * TODO: tests that probe expected_paddr in pages other than the one at 2364 * the beginning of the 1g region. 2365 */ 2366 TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr); 2367 } 2368 2369 static void 2370 ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear, 2371 unsigned long set, enum ept_access_op op, 2372 u64 expected_qual) 2373 { 2374 struct ept_access_test_data *data = &ept_access_test_data; 2375 unsigned long orig_pte; 2376 2377 orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); 2378 2379 do_ept_violation(level == 1 || mkhuge, op, expected_qual, 2380 op == OP_EXEC ? data->gpa + sizeof(unsigned long) : 2381 data->gpa); 2382 2383 /* Fix the violation and resume the op loop. */ 2384 ept_untwiddle(data->gpa, level, orig_pte); 2385 enter_guest(); 2386 skip_exit_vmcall(); 2387 } 2388 2389 static void 2390 ept_violation_at_level(int level, unsigned long clear, unsigned long set, 2391 enum ept_access_op op, u64 expected_qual) 2392 { 2393 ept_violation_at_level_mkhuge(false, level, clear, set, op, 2394 expected_qual); 2395 if (ept_huge_pages_supported(level)) 2396 ept_violation_at_level_mkhuge(true, level, clear, set, op, 2397 expected_qual); 2398 } 2399 2400 static void ept_violation(unsigned long clear, unsigned long set, 2401 enum ept_access_op op, u64 expected_qual) 2402 { 2403 ept_violation_at_level(1, clear, set, op, expected_qual); 2404 ept_violation_at_level(2, clear, set, op, expected_qual); 2405 ept_violation_at_level(3, clear, set, op, expected_qual); 2406 ept_violation_at_level(4, clear, set, op, expected_qual); 2407 } 2408 2409 static void ept_access_violation(unsigned long access, enum ept_access_op op, 2410 u64 expected_qual) 2411 { 2412 ept_violation(EPT_PRESENT, access, op, 2413 expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 2414 } 2415 2416 /* 2417 * For translations that don't involve a GVA, that is physical address (paddr) 2418 * accesses, EPT violations don't set the flag EPT_VLT_PADDR. For a typical 2419 * guest memory access, the hardware does GVA -> GPA -> HPA. However, certain 2420 * translations don't involve GVAs, such as when the hardware does the guest 2421 * page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU 2422 * might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides 2423 * on isn't present in the EPT, then the EPT violation will be for GPA_2 and 2424 * the EPT_VLT_PADDR bit will be clear in the exit qualification. 2425 * 2426 * Note that paddr violations can also be triggered by loading PAE page tables 2427 * with wonky addresses. We don't test that yet. 2428 * 2429 * This function modifies the EPT entry that maps the GPA that the guest page 2430 * table entry mapping ept_access_test_data.gva resides on. 2431 * 2432 * @ept_access EPT permissions to set. Other permissions are cleared. 2433 * 2434 * @pte_ad Set the A/D bits on the guest PTE accordingly. 2435 * 2436 * @op Guest operation to perform with 2437 * ept_access_test_data.gva. 2438 * 2439 * @expect_violation 2440 * Is a violation expected during the paddr access? 2441 * 2442 * @expected_qual Expected qualification for the EPT violation. 2443 * EPT_VLT_PADDR should be clear. 2444 */ 2445 static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad, 2446 enum ept_access_op op, bool expect_violation, 2447 u64 expected_qual) 2448 { 2449 struct ept_access_test_data *data = &ept_access_test_data; 2450 unsigned long *ptep; 2451 unsigned long gpa; 2452 unsigned long orig_epte; 2453 unsigned long epte; 2454 int i; 2455 2456 /* Modify the guest PTE mapping data->gva according to @pte_ad. */ 2457 ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1); 2458 TEST_ASSERT(ptep); 2459 TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa); 2460 *ptep = (*ptep & ~PT_AD_MASK) | pte_ad; 2461 ept_access_test_guest_flush_tlb(); 2462 2463 /* 2464 * Now modify the access bits on the EPT entry for the GPA that the 2465 * guest PTE resides on. Note that by modifying a single EPT entry, 2466 * we're potentially affecting 512 guest PTEs. However, we've carefully 2467 * constructed our test such that those other 511 PTEs aren't used by 2468 * the guest: data->gva is at the beginning of a 1G huge page, thus the 2469 * PTE we're modifying is at the beginning of a 4K page and the 2470 * following 511 entries are also under our control (and not touched by 2471 * the guest). 2472 */ 2473 gpa = virt_to_phys(ptep); 2474 TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0); 2475 /* 2476 * Make sure the guest page table page is mapped with a 4K EPT entry, 2477 * otherwise our level=1 twiddling below will fail. We use the 2478 * identity map (gpa = gpa) since page tables are shared with the host. 2479 */ 2480 install_ept(pml4, gpa, gpa, EPT_PRESENT); 2481 orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1, 2482 /*clear=*/EPT_PRESENT, /*set=*/ept_access); 2483 2484 if (expect_violation) { 2485 do_ept_violation(/*leaf=*/true, op, 2486 expected_qual | EPT_VLT_LADDR_VLD, gpa); 2487 ept_untwiddle(gpa, /*level=*/1, orig_epte); 2488 do_ept_access_op(op); 2489 } else { 2490 do_ept_access_op(op); 2491 if (ept_ad_enabled()) { 2492 for (i = EPT_PAGE_LEVEL; i > 0; i--) { 2493 TEST_ASSERT(get_ept_pte(pml4, gpa, i, &epte)); 2494 TEST_ASSERT(epte & EPT_ACCESS_FLAG); 2495 if (i == 1) 2496 TEST_ASSERT(epte & EPT_DIRTY_FLAG); 2497 else 2498 TEST_ASSERT_EQ(epte & EPT_DIRTY_FLAG, 0); 2499 } 2500 } 2501 2502 ept_untwiddle(gpa, /*level=*/1, orig_epte); 2503 } 2504 2505 TEST_ASSERT(*ptep & PT_ACCESSED_MASK); 2506 if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE) 2507 TEST_ASSERT(*ptep & PT_DIRTY_MASK); 2508 2509 skip_exit_vmcall(); 2510 } 2511 2512 static void ept_access_allowed_paddr(unsigned long ept_access, 2513 unsigned long pte_ad, 2514 enum ept_access_op op) 2515 { 2516 ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false, 2517 /*expected_qual=*/-1); 2518 } 2519 2520 static void ept_access_violation_paddr(unsigned long ept_access, 2521 unsigned long pte_ad, 2522 enum ept_access_op op, 2523 u64 expected_qual) 2524 { 2525 ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true, 2526 expected_qual); 2527 } 2528 2529 2530 static void ept_allowed_at_level_mkhuge(bool mkhuge, int level, 2531 unsigned long clear, 2532 unsigned long set, 2533 enum ept_access_op op) 2534 { 2535 struct ept_access_test_data *data = &ept_access_test_data; 2536 unsigned long orig_pte; 2537 2538 orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); 2539 2540 /* No violation. Should proceed to vmcall. */ 2541 do_ept_access_op(op); 2542 skip_exit_vmcall(); 2543 2544 ept_untwiddle(data->gpa, level, orig_pte); 2545 } 2546 2547 static void ept_allowed_at_level(int level, unsigned long clear, 2548 unsigned long set, enum ept_access_op op) 2549 { 2550 ept_allowed_at_level_mkhuge(false, level, clear, set, op); 2551 if (ept_huge_pages_supported(level)) 2552 ept_allowed_at_level_mkhuge(true, level, clear, set, op); 2553 } 2554 2555 static void ept_allowed(unsigned long clear, unsigned long set, 2556 enum ept_access_op op) 2557 { 2558 ept_allowed_at_level(1, clear, set, op); 2559 ept_allowed_at_level(2, clear, set, op); 2560 ept_allowed_at_level(3, clear, set, op); 2561 ept_allowed_at_level(4, clear, set, op); 2562 } 2563 2564 static void ept_ignored_bit(int bit) 2565 { 2566 /* Set the bit. */ 2567 ept_allowed(0, 1ul << bit, OP_READ); 2568 ept_allowed(0, 1ul << bit, OP_WRITE); 2569 ept_allowed(0, 1ul << bit, OP_EXEC); 2570 2571 /* Clear the bit. */ 2572 ept_allowed(1ul << bit, 0, OP_READ); 2573 ept_allowed(1ul << bit, 0, OP_WRITE); 2574 ept_allowed(1ul << bit, 0, OP_EXEC); 2575 } 2576 2577 static void ept_access_allowed(unsigned long access, enum ept_access_op op) 2578 { 2579 ept_allowed(EPT_PRESENT, access, op); 2580 } 2581 2582 2583 static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level, 2584 unsigned long clear, 2585 unsigned long set, 2586 enum ept_access_op op) 2587 { 2588 struct ept_access_test_data *data = &ept_access_test_data; 2589 unsigned long orig_pte; 2590 2591 orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); 2592 2593 do_ept_access_op(op); 2594 assert_exit_reason(VMX_EPT_MISCONFIG); 2595 2596 /* Intel 27.2.1, "For all other VM exits, this field is cleared." */ 2597 #if 0 2598 /* broken: */ 2599 TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0); 2600 #endif 2601 #if 0 2602 /* 2603 * broken: 2604 * According to description of exit qual for EPT violation, 2605 * EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid. 2606 * However, I can't find anything that says GUEST_LINEAR_ADDRESS ought 2607 * to be set for msiconfig. 2608 */ 2609 TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS), 2610 (unsigned long) ( 2611 op == OP_EXEC ? data->gva + 1 : data->gva)); 2612 #endif 2613 2614 /* Fix the violation and resume the op loop. */ 2615 ept_untwiddle(data->gpa, level, orig_pte); 2616 enter_guest(); 2617 skip_exit_vmcall(); 2618 } 2619 2620 static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level, 2621 unsigned long clear, 2622 unsigned long set) 2623 { 2624 /* The op shouldn't matter (read, write, exec), so try them all! */ 2625 ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ); 2626 ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE); 2627 ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC); 2628 } 2629 2630 static void ept_misconfig_at_level(int level, unsigned long clear, 2631 unsigned long set) 2632 { 2633 ept_misconfig_at_level_mkhuge(false, level, clear, set); 2634 if (ept_huge_pages_supported(level)) 2635 ept_misconfig_at_level_mkhuge(true, level, clear, set); 2636 } 2637 2638 static void ept_misconfig(unsigned long clear, unsigned long set) 2639 { 2640 ept_misconfig_at_level(1, clear, set); 2641 ept_misconfig_at_level(2, clear, set); 2642 ept_misconfig_at_level(3, clear, set); 2643 ept_misconfig_at_level(4, clear, set); 2644 } 2645 2646 static void ept_access_misconfig(unsigned long access) 2647 { 2648 ept_misconfig(EPT_PRESENT, access); 2649 } 2650 2651 static void ept_reserved_bit_at_level_nohuge(int level, int bit) 2652 { 2653 /* Setting the bit causes a misconfig. */ 2654 ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit); 2655 2656 /* Making the entry non-present turns reserved bits into ignored. */ 2657 ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, 2658 EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 2659 } 2660 2661 static void ept_reserved_bit_at_level_huge(int level, int bit) 2662 { 2663 /* Setting the bit causes a misconfig. */ 2664 ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit); 2665 2666 /* Making the entry non-present turns reserved bits into ignored. */ 2667 ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, 2668 EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 2669 } 2670 2671 static void ept_reserved_bit_at_level(int level, int bit) 2672 { 2673 /* Setting the bit causes a misconfig. */ 2674 ept_misconfig_at_level(level, 0, 1ul << bit); 2675 2676 /* Making the entry non-present turns reserved bits into ignored. */ 2677 ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, 2678 EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 2679 } 2680 2681 static void ept_reserved_bit(int bit) 2682 { 2683 ept_reserved_bit_at_level(1, bit); 2684 ept_reserved_bit_at_level(2, bit); 2685 ept_reserved_bit_at_level(3, bit); 2686 ept_reserved_bit_at_level(4, bit); 2687 } 2688 2689 #define PAGE_2M_ORDER 9 2690 #define PAGE_1G_ORDER 18 2691 2692 static void *get_1g_page(void) 2693 { 2694 static void *alloc; 2695 2696 if (!alloc) 2697 alloc = alloc_pages(PAGE_1G_ORDER); 2698 return alloc; 2699 } 2700 2701 static void ept_access_test_teardown(void *unused) 2702 { 2703 /* Exit the guest cleanly. */ 2704 do_ept_access_op(OP_EXIT); 2705 } 2706 2707 static void ept_access_test_guest(void) 2708 { 2709 struct ept_access_test_data *data = &ept_access_test_data; 2710 int (*code)(void) = (int (*)(void)) &data->gva[1]; 2711 2712 while (true) { 2713 switch (data->op) { 2714 case OP_READ: 2715 TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1); 2716 break; 2717 case OP_WRITE: 2718 *data->gva = MAGIC_VAL_2; 2719 TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2); 2720 *data->gva = MAGIC_VAL_1; 2721 break; 2722 case OP_EXEC: 2723 TEST_ASSERT_EQ(42, code()); 2724 break; 2725 case OP_FLUSH_TLB: 2726 write_cr3(read_cr3()); 2727 break; 2728 case OP_EXIT: 2729 return; 2730 default: 2731 TEST_ASSERT_MSG(false, "Unknown op %d", data->op); 2732 } 2733 vmcall(); 2734 } 2735 } 2736 2737 static void ept_access_test_setup(void) 2738 { 2739 struct ept_access_test_data *data = &ept_access_test_data; 2740 unsigned long npages = 1ul << PAGE_1G_ORDER; 2741 unsigned long size = npages * PAGE_SIZE; 2742 unsigned long *page_table = current_page_table(); 2743 unsigned long pte; 2744 2745 if (setup_ept(false)) 2746 test_skip("EPT not supported"); 2747 2748 /* We use data->gpa = 1 << 39 so that test data has a separate pml4 entry */ 2749 if (cpuid_maxphyaddr() < 40) 2750 test_skip("Test needs MAXPHYADDR >= 40"); 2751 2752 test_set_guest(ept_access_test_guest); 2753 test_add_teardown(ept_access_test_teardown, NULL); 2754 2755 data->hva = get_1g_page(); 2756 TEST_ASSERT(data->hva); 2757 data->hpa = virt_to_phys(data->hva); 2758 2759 data->gpa = 1ul << 39; 2760 data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2), 2761 size); 2762 TEST_ASSERT(!any_present_pages(page_table, data->gva, size)); 2763 install_pages(page_table, data->gpa, size, data->gva); 2764 2765 /* 2766 * Make sure nothing's mapped here so the tests that screw with the 2767 * pml4 entry don't inadvertently break something. 2768 */ 2769 TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0); 2770 TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0); 2771 install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT); 2772 2773 data->hva[0] = MAGIC_VAL_1; 2774 memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start); 2775 } 2776 2777 static void ept_access_test_not_present(void) 2778 { 2779 ept_access_test_setup(); 2780 /* --- */ 2781 ept_access_violation(0, OP_READ, EPT_VLT_RD); 2782 ept_access_violation(0, OP_WRITE, EPT_VLT_WR); 2783 ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH); 2784 } 2785 2786 static void ept_access_test_read_only(void) 2787 { 2788 ept_access_test_setup(); 2789 2790 /* r-- */ 2791 ept_access_allowed(EPT_RA, OP_READ); 2792 ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD); 2793 ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD); 2794 } 2795 2796 static void ept_access_test_write_only(void) 2797 { 2798 ept_access_test_setup(); 2799 /* -w- */ 2800 ept_access_misconfig(EPT_WA); 2801 } 2802 2803 static void ept_access_test_read_write(void) 2804 { 2805 ept_access_test_setup(); 2806 /* rw- */ 2807 ept_access_allowed(EPT_RA | EPT_WA, OP_READ); 2808 ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE); 2809 ept_access_violation(EPT_RA | EPT_WA, OP_EXEC, 2810 EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR); 2811 } 2812 2813 2814 static void ept_access_test_execute_only(void) 2815 { 2816 ept_access_test_setup(); 2817 /* --x */ 2818 if (ept_execute_only_supported()) { 2819 ept_access_violation(EPT_EA, OP_READ, 2820 EPT_VLT_RD | EPT_VLT_PERM_EX); 2821 ept_access_violation(EPT_EA, OP_WRITE, 2822 EPT_VLT_WR | EPT_VLT_PERM_EX); 2823 ept_access_allowed(EPT_EA, OP_EXEC); 2824 } else { 2825 ept_access_misconfig(EPT_EA); 2826 } 2827 } 2828 2829 static void ept_access_test_read_execute(void) 2830 { 2831 ept_access_test_setup(); 2832 /* r-x */ 2833 ept_access_allowed(EPT_RA | EPT_EA, OP_READ); 2834 ept_access_violation(EPT_RA | EPT_EA, OP_WRITE, 2835 EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX); 2836 ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC); 2837 } 2838 2839 static void ept_access_test_write_execute(void) 2840 { 2841 ept_access_test_setup(); 2842 /* -wx */ 2843 ept_access_misconfig(EPT_WA | EPT_EA); 2844 } 2845 2846 static void ept_access_test_read_write_execute(void) 2847 { 2848 ept_access_test_setup(); 2849 /* rwx */ 2850 ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ); 2851 ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE); 2852 ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC); 2853 } 2854 2855 static void ept_access_test_reserved_bits(void) 2856 { 2857 int i; 2858 int maxphyaddr; 2859 2860 ept_access_test_setup(); 2861 2862 /* Reserved bits above maxphyaddr. */ 2863 maxphyaddr = cpuid_maxphyaddr(); 2864 for (i = maxphyaddr; i <= 51; i++) { 2865 report_prefix_pushf("reserved_bit=%d", i); 2866 ept_reserved_bit(i); 2867 report_prefix_pop(); 2868 } 2869 2870 /* Level-specific reserved bits. */ 2871 ept_reserved_bit_at_level_nohuge(2, 3); 2872 ept_reserved_bit_at_level_nohuge(2, 4); 2873 ept_reserved_bit_at_level_nohuge(2, 5); 2874 ept_reserved_bit_at_level_nohuge(2, 6); 2875 /* 2M alignment. */ 2876 for (i = 12; i < 20; i++) { 2877 report_prefix_pushf("reserved_bit=%d", i); 2878 ept_reserved_bit_at_level_huge(2, i); 2879 report_prefix_pop(); 2880 } 2881 ept_reserved_bit_at_level_nohuge(3, 3); 2882 ept_reserved_bit_at_level_nohuge(3, 4); 2883 ept_reserved_bit_at_level_nohuge(3, 5); 2884 ept_reserved_bit_at_level_nohuge(3, 6); 2885 /* 1G alignment. */ 2886 for (i = 12; i < 29; i++) { 2887 report_prefix_pushf("reserved_bit=%d", i); 2888 ept_reserved_bit_at_level_huge(3, i); 2889 report_prefix_pop(); 2890 } 2891 ept_reserved_bit_at_level(4, 3); 2892 ept_reserved_bit_at_level(4, 4); 2893 ept_reserved_bit_at_level(4, 5); 2894 ept_reserved_bit_at_level(4, 6); 2895 ept_reserved_bit_at_level(4, 7); 2896 } 2897 2898 static void ept_access_test_ignored_bits(void) 2899 { 2900 ept_access_test_setup(); 2901 /* 2902 * Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as 2903 * far as translation is concerned even if AD bits are enabled in the 2904 * EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution 2905 * control is 0. 2906 */ 2907 ept_ignored_bit(8); 2908 ept_ignored_bit(9); 2909 ept_ignored_bit(10); 2910 ept_ignored_bit(11); 2911 ept_ignored_bit(52); 2912 ept_ignored_bit(53); 2913 ept_ignored_bit(54); 2914 ept_ignored_bit(55); 2915 ept_ignored_bit(56); 2916 ept_ignored_bit(57); 2917 ept_ignored_bit(58); 2918 ept_ignored_bit(59); 2919 ept_ignored_bit(60); 2920 ept_ignored_bit(61); 2921 ept_ignored_bit(62); 2922 ept_ignored_bit(63); 2923 } 2924 2925 static void ept_access_test_paddr_not_present_ad_disabled(void) 2926 { 2927 ept_access_test_setup(); 2928 ept_disable_ad_bits(); 2929 2930 ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD); 2931 ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD); 2932 ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD); 2933 } 2934 2935 static void ept_access_test_paddr_not_present_ad_enabled(void) 2936 { 2937 u64 qual = EPT_VLT_RD | EPT_VLT_WR; 2938 2939 ept_access_test_setup(); 2940 ept_enable_ad_bits_or_skip_test(); 2941 2942 ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual); 2943 ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual); 2944 ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual); 2945 } 2946 2947 static void ept_access_test_paddr_read_only_ad_disabled(void) 2948 { 2949 /* 2950 * When EPT AD bits are disabled, all accesses to guest paging 2951 * structures are reported separately as a read and (after 2952 * translation of the GPA to host physical address) a read+write 2953 * if the A/D bits have to be set. 2954 */ 2955 u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD; 2956 2957 ept_access_test_setup(); 2958 ept_disable_ad_bits(); 2959 2960 /* Can't update A bit, so all accesses fail. */ 2961 ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual); 2962 ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual); 2963 ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual); 2964 /* AD bits disabled, so only writes try to update the D bit. */ 2965 ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ); 2966 ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual); 2967 ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC); 2968 /* Both A and D already set, so read-only is OK. */ 2969 ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ); 2970 ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE); 2971 ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC); 2972 } 2973 2974 static void ept_access_test_paddr_read_only_ad_enabled(void) 2975 { 2976 /* 2977 * When EPT AD bits are enabled, all accesses to guest paging 2978 * structures are considered writes as far as EPT translation 2979 * is concerned. 2980 */ 2981 u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD; 2982 2983 ept_access_test_setup(); 2984 ept_enable_ad_bits_or_skip_test(); 2985 2986 ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual); 2987 ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual); 2988 ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual); 2989 ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual); 2990 ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual); 2991 ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual); 2992 ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual); 2993 ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual); 2994 ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual); 2995 } 2996 2997 static void ept_access_test_paddr_read_write(void) 2998 { 2999 ept_access_test_setup(); 3000 /* Read-write access to paging structure. */ 3001 ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ); 3002 ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE); 3003 ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC); 3004 } 3005 3006 static void ept_access_test_paddr_read_write_execute(void) 3007 { 3008 ept_access_test_setup(); 3009 /* RWX access to paging structure. */ 3010 ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ); 3011 ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE); 3012 ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC); 3013 } 3014 3015 static void ept_access_test_paddr_read_execute_ad_disabled(void) 3016 { 3017 /* 3018 * When EPT AD bits are disabled, all accesses to guest paging 3019 * structures are reported separately as a read and (after 3020 * translation of the GPA to host physical address) a read+write 3021 * if the A/D bits have to be set. 3022 */ 3023 u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX; 3024 3025 ept_access_test_setup(); 3026 ept_disable_ad_bits(); 3027 3028 /* Can't update A bit, so all accesses fail. */ 3029 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual); 3030 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual); 3031 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual); 3032 /* AD bits disabled, so only writes try to update the D bit. */ 3033 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ); 3034 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual); 3035 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC); 3036 /* Both A and D already set, so read-only is OK. */ 3037 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ); 3038 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE); 3039 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC); 3040 } 3041 3042 static void ept_access_test_paddr_read_execute_ad_enabled(void) 3043 { 3044 /* 3045 * When EPT AD bits are enabled, all accesses to guest paging 3046 * structures are considered writes as far as EPT translation 3047 * is concerned. 3048 */ 3049 u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX; 3050 3051 ept_access_test_setup(); 3052 ept_enable_ad_bits_or_skip_test(); 3053 3054 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual); 3055 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual); 3056 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual); 3057 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual); 3058 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual); 3059 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual); 3060 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual); 3061 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual); 3062 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual); 3063 } 3064 3065 static void ept_access_test_paddr_not_present_page_fault(void) 3066 { 3067 ept_access_test_setup(); 3068 /* 3069 * TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is 3070 * page is read-only in EPT but GVA is also mapped read only in PT. 3071 * Thus guest page fault before host takes EPT violation for trying to 3072 * update A bit. 3073 */ 3074 } 3075 3076 static void ept_access_test_force_2m_page(void) 3077 { 3078 ept_access_test_setup(); 3079 3080 TEST_ASSERT_EQ(ept_2m_supported(), true); 3081 ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ); 3082 ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE, 3083 EPT_VLT_WR | EPT_VLT_PERM_RD | 3084 EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 3085 ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA); 3086 } 3087 3088 static bool invvpid_valid(u64 type, u64 vpid, u64 gla) 3089 { 3090 if (!is_invvpid_type_supported(type)) 3091 return false; 3092 3093 if (vpid >> 16) 3094 return false; 3095 3096 if (type != INVVPID_ALL && !vpid) 3097 return false; 3098 3099 if (type == INVVPID_ADDR && !is_canonical(gla)) 3100 return false; 3101 3102 return true; 3103 } 3104 3105 static void try_invvpid(u64 type, u64 vpid, u64 gla) 3106 { 3107 int rc; 3108 bool valid = invvpid_valid(type, vpid, gla); 3109 u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT 3110 : VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID; 3111 /* 3112 * Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so 3113 * that we can tell if it is updated by INVVPID. 3114 */ 3115 vmcs_read(~0); 3116 rc = __invvpid(type, vpid, gla); 3117 report(!rc == valid, "INVVPID type %ld VPID %lx GLA %lx %s", type, 3118 vpid, gla, 3119 valid ? "passes" : "fails"); 3120 report(vmcs_read(VMX_INST_ERROR) == expected, 3121 "After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)", 3122 rc ? "failed" : "successful", 3123 expected, vmcs_read(VMX_INST_ERROR)); 3124 } 3125 3126 static inline unsigned long get_first_supported_invvpid_type(void) 3127 { 3128 u64 type = ffs(ept_vpid.val >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1; 3129 3130 __TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL); 3131 return type; 3132 } 3133 3134 static void ds_invvpid(void *data) 3135 { 3136 asm volatile("invvpid %0, %1" 3137 : 3138 : "m"(*(struct invvpid_operand *)data), 3139 "r"(get_first_supported_invvpid_type())); 3140 } 3141 3142 /* 3143 * The SS override is ignored in 64-bit mode, so we use an addressing 3144 * mode with %rsp as the base register to generate an implicit SS 3145 * reference. 3146 */ 3147 static void ss_invvpid(void *data) 3148 { 3149 asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1" 3150 : "+r"(data) 3151 : "r"(get_first_supported_invvpid_type())); 3152 } 3153 3154 static void invvpid_test_gp(void) 3155 { 3156 bool fault; 3157 3158 fault = test_for_exception(GP_VECTOR, &ds_invvpid, 3159 (void *)NONCANONICAL); 3160 report(fault, "INVVPID with non-canonical DS operand raises #GP"); 3161 } 3162 3163 static void invvpid_test_ss(void) 3164 { 3165 bool fault; 3166 3167 fault = test_for_exception(SS_VECTOR, &ss_invvpid, 3168 (void *)NONCANONICAL); 3169 report(fault, "INVVPID with non-canonical SS operand raises #SS"); 3170 } 3171 3172 static void invvpid_test_pf(void) 3173 { 3174 void *vpage = alloc_vpage(); 3175 bool fault; 3176 3177 fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage); 3178 report(fault, "INVVPID with unmapped operand raises #PF"); 3179 } 3180 3181 static void try_compat_invvpid(void *unused) 3182 { 3183 struct far_pointer32 fp = { 3184 .offset = (uintptr_t)&&invvpid, 3185 .selector = KERNEL_CS32, 3186 }; 3187 uintptr_t rsp; 3188 3189 asm volatile ("mov %%rsp, %0" : "=r"(rsp)); 3190 3191 TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid, 3192 "Code address too high."); 3193 TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high."); 3194 3195 asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid); 3196 return; 3197 invvpid: 3198 asm volatile (".code32;" 3199 "invvpid (%eax), %eax;" 3200 "lret;" 3201 ".code64"); 3202 __builtin_unreachable(); 3203 } 3204 3205 static void invvpid_test_compatibility_mode(void) 3206 { 3207 bool fault; 3208 3209 fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL); 3210 report(fault, "Compatibility mode INVVPID raises #UD"); 3211 } 3212 3213 static void invvpid_test_not_in_vmx_operation(void) 3214 { 3215 bool fault; 3216 3217 TEST_ASSERT(!vmx_off()); 3218 fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL); 3219 report(fault, "INVVPID outside of VMX operation raises #UD"); 3220 TEST_ASSERT(!vmx_on()); 3221 } 3222 3223 /* 3224 * This does not test real-address mode, virtual-8086 mode, protected mode, 3225 * or CPL > 0. 3226 */ 3227 static void invvpid_test(void) 3228 { 3229 int i; 3230 unsigned types = 0; 3231 unsigned type; 3232 3233 if (!is_vpid_supported()) 3234 test_skip("VPID not supported"); 3235 3236 if (!is_invvpid_supported()) 3237 test_skip("INVVPID not supported.\n"); 3238 3239 if (is_invvpid_type_supported(INVVPID_ADDR)) 3240 types |= 1u << INVVPID_ADDR; 3241 if (is_invvpid_type_supported(INVVPID_CONTEXT_GLOBAL)) 3242 types |= 1u << INVVPID_CONTEXT_GLOBAL; 3243 if (is_invvpid_type_supported(INVVPID_ALL)) 3244 types |= 1u << INVVPID_ALL; 3245 if (is_invvpid_type_supported(INVVPID_CONTEXT_LOCAL)) 3246 types |= 1u << INVVPID_CONTEXT_LOCAL; 3247 3248 if (!types) 3249 test_skip("No INVVPID types supported.\n"); 3250 3251 for (i = -127; i < 128; i++) 3252 try_invvpid(i, 0xffff, 0); 3253 3254 /* 3255 * VPID must not be more than 16 bits. 3256 */ 3257 for (i = 0; i < 64; i++) 3258 for (type = 0; type < 4; type++) 3259 if (types & (1u << type)) 3260 try_invvpid(type, 1ul << i, 0); 3261 3262 /* 3263 * VPID must not be zero, except for "all contexts." 3264 */ 3265 for (type = 0; type < 4; type++) 3266 if (types & (1u << type)) 3267 try_invvpid(type, 0, 0); 3268 3269 /* 3270 * The gla operand is only validated for single-address INVVPID. 3271 */ 3272 if (types & (1u << INVVPID_ADDR)) 3273 try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL); 3274 3275 invvpid_test_gp(); 3276 invvpid_test_ss(); 3277 invvpid_test_pf(); 3278 invvpid_test_compatibility_mode(); 3279 invvpid_test_not_in_vmx_operation(); 3280 } 3281 3282 /* 3283 * Test for early VMLAUNCH failure. Returns true if VMLAUNCH makes it 3284 * at least as far as the guest-state checks. Returns false if the 3285 * VMLAUNCH fails early and execution falls through to the next 3286 * instruction. 3287 */ 3288 static bool vmlaunch(void) 3289 { 3290 u32 exit_reason; 3291 3292 /* 3293 * Indirectly set VMX_INST_ERR to 12 ("VMREAD/VMWRITE from/to 3294 * unsupported VMCS component"). The caller can then check 3295 * to see if a failed VM-entry sets VMX_INST_ERR as expected. 3296 */ 3297 vmcs_write(~0u, 0); 3298 3299 vmcs_write(HOST_RIP, (uintptr_t)&&success); 3300 __asm__ __volatile__ goto ("vmwrite %%rsp, %0; vmlaunch" 3301 : 3302 : "r" ((u64)HOST_RSP) 3303 : "cc", "memory" 3304 : success); 3305 return false; 3306 success: 3307 exit_reason = vmcs_read(EXI_REASON); 3308 TEST_ASSERT(exit_reason == (VMX_FAIL_STATE | VMX_ENTRY_FAILURE) || 3309 exit_reason == (VMX_FAIL_MSR | VMX_ENTRY_FAILURE)); 3310 return true; 3311 } 3312 3313 /* 3314 * Try to launch the current VMCS. 3315 */ 3316 static void test_vmx_vmlaunch(u32 xerror) 3317 { 3318 bool success = vmlaunch(); 3319 u32 vmx_inst_err; 3320 3321 report(success == !xerror, "vmlaunch %s", 3322 !xerror ? "succeeds" : "fails"); 3323 if (!success && xerror) { 3324 vmx_inst_err = vmcs_read(VMX_INST_ERROR); 3325 report(vmx_inst_err == xerror, 3326 "VMX inst error is %d (actual %d)", xerror, 3327 vmx_inst_err); 3328 } 3329 } 3330 3331 /* 3332 * Try to launch the current VMCS, and expect one of two possible 3333 * errors (or success) codes. 3334 */ 3335 static void test_vmx_vmlaunch2(u32 xerror1, u32 xerror2) 3336 { 3337 bool success = vmlaunch(); 3338 u32 vmx_inst_err; 3339 3340 if (!xerror1 == !xerror2) 3341 report(success == !xerror1, "vmlaunch %s", 3342 !xerror1 ? "succeeds" : "fails"); 3343 3344 if (!success && (xerror1 || xerror2)) { 3345 vmx_inst_err = vmcs_read(VMX_INST_ERROR); 3346 report(vmx_inst_err == xerror1 || vmx_inst_err == xerror2, 3347 "VMX inst error is %d or %d (actual %d)", xerror1, 3348 xerror2, vmx_inst_err); 3349 } 3350 } 3351 3352 static void test_vmx_invalid_controls(void) 3353 { 3354 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_CONTROL_FIELD); 3355 } 3356 3357 static void test_vmx_valid_controls(void) 3358 { 3359 test_vmx_vmlaunch(0); 3360 } 3361 3362 /* 3363 * Test a particular value of a VM-execution control bit, if the value 3364 * is required or if the value is zero. 3365 */ 3366 static void test_rsvd_ctl_bit_value(const char *name, union vmx_ctrl_msr msr, 3367 enum Encoding encoding, unsigned bit, 3368 unsigned val) 3369 { 3370 u32 mask = 1u << bit; 3371 bool expected; 3372 u32 controls; 3373 3374 if (msr.set & mask) 3375 TEST_ASSERT(msr.clr & mask); 3376 3377 /* 3378 * We can't arbitrarily turn on a control bit, because it may 3379 * introduce dependencies on other VMCS fields. So, we only 3380 * test turning on bits that have a required setting. 3381 */ 3382 if (val && (msr.clr & mask) && !(msr.set & mask)) 3383 return; 3384 3385 report_prefix_pushf("%s %s bit %d", 3386 val ? "Set" : "Clear", name, bit); 3387 3388 controls = vmcs_read(encoding); 3389 if (val) { 3390 vmcs_write(encoding, msr.set | mask); 3391 expected = (msr.clr & mask); 3392 } else { 3393 vmcs_write(encoding, msr.set & ~mask); 3394 expected = !(msr.set & mask); 3395 } 3396 if (expected) 3397 test_vmx_valid_controls(); 3398 else 3399 test_vmx_invalid_controls(); 3400 vmcs_write(encoding, controls); 3401 report_prefix_pop(); 3402 } 3403 3404 /* 3405 * Test reserved values of a VM-execution control bit, based on the 3406 * allowed bit settings from the corresponding VMX capability MSR. 3407 */ 3408 static void test_rsvd_ctl_bit(const char *name, union vmx_ctrl_msr msr, 3409 enum Encoding encoding, unsigned bit) 3410 { 3411 test_rsvd_ctl_bit_value(name, msr, encoding, bit, 0); 3412 test_rsvd_ctl_bit_value(name, msr, encoding, bit, 1); 3413 } 3414 3415 /* 3416 * Reserved bits in the pin-based VM-execution controls must be set 3417 * properly. Software may consult the VMX capability MSRs to determine 3418 * the proper settings. 3419 * [Intel SDM] 3420 */ 3421 static void test_pin_based_ctls(void) 3422 { 3423 unsigned bit; 3424 3425 printf("%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PIN" : 3426 "MSR_IA32_VMX_PINBASED_CTLS", ctrl_pin_rev.val); 3427 for (bit = 0; bit < 32; bit++) 3428 test_rsvd_ctl_bit("pin-based controls", 3429 ctrl_pin_rev, PIN_CONTROLS, bit); 3430 } 3431 3432 /* 3433 * Reserved bits in the primary processor-based VM-execution controls 3434 * must be set properly. Software may consult the VMX capability MSRs 3435 * to determine the proper settings. 3436 * [Intel SDM] 3437 */ 3438 static void test_primary_processor_based_ctls(void) 3439 { 3440 unsigned bit; 3441 3442 printf("\n%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PROC" : 3443 "MSR_IA32_VMX_PROCBASED_CTLS", ctrl_cpu_rev[0].val); 3444 for (bit = 0; bit < 32; bit++) 3445 test_rsvd_ctl_bit("primary processor-based controls", 3446 ctrl_cpu_rev[0], CPU_EXEC_CTRL0, bit); 3447 } 3448 3449 /* 3450 * If the "activate secondary controls" primary processor-based 3451 * VM-execution control is 1, reserved bits in the secondary 3452 * processor-based VM-execution controls must be cleared. Software may 3453 * consult the VMX capability MSRs to determine which bits are 3454 * reserved. 3455 * If the "activate secondary controls" primary processor-based 3456 * VM-execution control is 0 (or if the processor does not support the 3457 * 1-setting of that control), no checks are performed on the 3458 * secondary processor-based VM-execution controls. 3459 * [Intel SDM] 3460 */ 3461 static void test_secondary_processor_based_ctls(void) 3462 { 3463 u32 primary; 3464 u32 secondary; 3465 unsigned bit; 3466 3467 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) 3468 return; 3469 3470 primary = vmcs_read(CPU_EXEC_CTRL0); 3471 secondary = vmcs_read(CPU_EXEC_CTRL1); 3472 3473 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); 3474 printf("\nMSR_IA32_VMX_PROCBASED_CTLS2: %lx\n", ctrl_cpu_rev[1].val); 3475 for (bit = 0; bit < 32; bit++) 3476 test_rsvd_ctl_bit("secondary processor-based controls", 3477 ctrl_cpu_rev[1], CPU_EXEC_CTRL1, bit); 3478 3479 /* 3480 * When the "activate secondary controls" VM-execution control 3481 * is clear, there are no checks on the secondary controls. 3482 */ 3483 vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY); 3484 vmcs_write(CPU_EXEC_CTRL1, ~0); 3485 report(vmlaunch(), 3486 "Secondary processor-based controls ignored"); 3487 vmcs_write(CPU_EXEC_CTRL1, secondary); 3488 vmcs_write(CPU_EXEC_CTRL0, primary); 3489 } 3490 3491 static void try_cr3_target_count(unsigned i, unsigned max) 3492 { 3493 report_prefix_pushf("CR3 target count 0x%x", i); 3494 vmcs_write(CR3_TARGET_COUNT, i); 3495 if (i <= max) 3496 test_vmx_valid_controls(); 3497 else 3498 test_vmx_invalid_controls(); 3499 report_prefix_pop(); 3500 } 3501 3502 /* 3503 * The CR3-target count must not be greater than 4. Future processors 3504 * may support a different number of CR3-target values. Software 3505 * should read the VMX capability MSR IA32_VMX_MISC to determine the 3506 * number of values supported. 3507 * [Intel SDM] 3508 */ 3509 static void test_cr3_targets(void) 3510 { 3511 unsigned supported_targets = (rdmsr(MSR_IA32_VMX_MISC) >> 16) & 0x1ff; 3512 u32 cr3_targets = vmcs_read(CR3_TARGET_COUNT); 3513 unsigned i; 3514 3515 printf("\nSupported CR3 targets: %d\n", supported_targets); 3516 TEST_ASSERT(supported_targets <= 256); 3517 3518 try_cr3_target_count(-1u, supported_targets); 3519 try_cr3_target_count(0x80000000, supported_targets); 3520 try_cr3_target_count(0x7fffffff, supported_targets); 3521 for (i = 0; i <= supported_targets + 1; i++) 3522 try_cr3_target_count(i, supported_targets); 3523 vmcs_write(CR3_TARGET_COUNT, cr3_targets); 3524 3525 /* VMWRITE to nonexistent target fields should fail. */ 3526 for (i = supported_targets; i < 256; i++) 3527 TEST_ASSERT(vmcs_write(CR3_TARGET_0 + i*2, 0)); 3528 } 3529 3530 /* 3531 * Test a particular address setting in the VMCS 3532 */ 3533 static void test_vmcs_addr(const char *name, 3534 enum Encoding encoding, 3535 u64 align, 3536 bool ignored, 3537 bool skip_beyond_mapped_ram, 3538 u64 addr) 3539 { 3540 report_prefix_pushf("%s = %lx", name, addr); 3541 vmcs_write(encoding, addr); 3542 if (skip_beyond_mapped_ram && 3543 addr > fwcfg_get_u64(FW_CFG_RAM_SIZE) - align && 3544 addr < (1ul << cpuid_maxphyaddr())) 3545 printf("Skipping physical address beyond mapped RAM\n"); 3546 else if (ignored || (IS_ALIGNED(addr, align) && 3547 addr < (1ul << cpuid_maxphyaddr()))) 3548 test_vmx_valid_controls(); 3549 else 3550 test_vmx_invalid_controls(); 3551 report_prefix_pop(); 3552 } 3553 3554 /* 3555 * Test interesting values for a VMCS address 3556 */ 3557 static void test_vmcs_addr_values(const char *name, 3558 enum Encoding encoding, 3559 u64 align, 3560 bool ignored, 3561 bool skip_beyond_mapped_ram, 3562 u32 bit_start, u32 bit_end) 3563 { 3564 unsigned i; 3565 u64 orig_val = vmcs_read(encoding); 3566 3567 for (i = bit_start; i <= bit_end; i++) 3568 test_vmcs_addr(name, encoding, align, ignored, 3569 skip_beyond_mapped_ram, 1ul << i); 3570 3571 test_vmcs_addr(name, encoding, align, ignored, 3572 skip_beyond_mapped_ram, PAGE_SIZE - 1); 3573 test_vmcs_addr(name, encoding, align, ignored, 3574 skip_beyond_mapped_ram, PAGE_SIZE); 3575 test_vmcs_addr(name, encoding, align, ignored, 3576 skip_beyond_mapped_ram, 3577 (1ul << cpuid_maxphyaddr()) - PAGE_SIZE); 3578 test_vmcs_addr(name, encoding, align, ignored, 3579 skip_beyond_mapped_ram, -1ul); 3580 3581 vmcs_write(encoding, orig_val); 3582 } 3583 3584 /* 3585 * Test a physical address reference in the VMCS, when the corresponding 3586 * feature is enabled and when the corresponding feature is disabled. 3587 */ 3588 static void test_vmcs_addr_reference(u32 control_bit, enum Encoding field, 3589 const char *field_name, 3590 const char *control_name, u64 align, 3591 bool skip_beyond_mapped_ram, 3592 bool control_primary) 3593 { 3594 u32 primary = vmcs_read(CPU_EXEC_CTRL0); 3595 u32 secondary = vmcs_read(CPU_EXEC_CTRL1); 3596 u64 page_addr; 3597 3598 if (control_primary) { 3599 if (!(ctrl_cpu_rev[0].clr & control_bit)) 3600 return; 3601 } else { 3602 if (!(ctrl_cpu_rev[1].clr & control_bit)) 3603 return; 3604 } 3605 3606 page_addr = vmcs_read(field); 3607 3608 report_prefix_pushf("%s enabled", control_name); 3609 if (control_primary) { 3610 vmcs_write(CPU_EXEC_CTRL0, primary | control_bit); 3611 } else { 3612 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); 3613 vmcs_write(CPU_EXEC_CTRL1, secondary | control_bit); 3614 } 3615 3616 test_vmcs_addr_values(field_name, field, align, false, 3617 skip_beyond_mapped_ram, 0, 63); 3618 report_prefix_pop(); 3619 3620 report_prefix_pushf("%s disabled", control_name); 3621 if (control_primary) { 3622 vmcs_write(CPU_EXEC_CTRL0, primary & ~control_bit); 3623 } else { 3624 vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY); 3625 vmcs_write(CPU_EXEC_CTRL1, secondary & ~control_bit); 3626 } 3627 3628 test_vmcs_addr_values(field_name, field, align, true, false, 0, 63); 3629 report_prefix_pop(); 3630 3631 vmcs_write(field, page_addr); 3632 vmcs_write(CPU_EXEC_CTRL0, primary); 3633 vmcs_write(CPU_EXEC_CTRL1, secondary); 3634 } 3635 3636 /* 3637 * If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of 3638 * each I/O-bitmap address must be 0. Neither address should set any 3639 * bits beyond the processor's physical-address width. 3640 * [Intel SDM] 3641 */ 3642 static void test_io_bitmaps(void) 3643 { 3644 test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_A, 3645 "I/O bitmap A", "Use I/O bitmaps", 3646 PAGE_SIZE, false, true); 3647 test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_B, 3648 "I/O bitmap B", "Use I/O bitmaps", 3649 PAGE_SIZE, false, true); 3650 } 3651 3652 /* 3653 * If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of 3654 * the MSR-bitmap address must be 0. The address should not set any 3655 * bits beyond the processor's physical-address width. 3656 * [Intel SDM] 3657 */ 3658 static void test_msr_bitmap(void) 3659 { 3660 test_vmcs_addr_reference(CPU_MSR_BITMAP, MSR_BITMAP, 3661 "MSR bitmap", "Use MSR bitmaps", 3662 PAGE_SIZE, false, true); 3663 } 3664 3665 /* 3666 * If the "use TPR shadow" VM-execution control is 1, the virtual-APIC 3667 * address must satisfy the following checks: 3668 * - Bits 11:0 of the address must be 0. 3669 * - The address should not set any bits beyond the processor's 3670 * physical-address width. 3671 * [Intel SDM] 3672 */ 3673 static void test_apic_virt_addr(void) 3674 { 3675 /* 3676 * Ensure the processor will never use the virtual-APIC page, since 3677 * we will point it to invalid RAM. Otherwise KVM is puzzled about 3678 * what we're trying to achieve and fails vmentry. 3679 */ 3680 u32 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0); 3681 vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0 | CPU_CR8_LOAD | CPU_CR8_STORE); 3682 test_vmcs_addr_reference(CPU_TPR_SHADOW, APIC_VIRT_ADDR, 3683 "virtual-APIC address", "Use TPR shadow", 3684 PAGE_SIZE, false, true); 3685 vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0); 3686 } 3687 3688 /* 3689 * If the "virtualize APIC-accesses" VM-execution control is 1, the 3690 * APIC-access address must satisfy the following checks: 3691 * - Bits 11:0 of the address must be 0. 3692 * - The address should not set any bits beyond the processor's 3693 * physical-address width. 3694 * [Intel SDM] 3695 */ 3696 static void test_apic_access_addr(void) 3697 { 3698 void *apic_access_page = alloc_page(); 3699 3700 vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_page)); 3701 3702 test_vmcs_addr_reference(CPU_VIRT_APIC_ACCESSES, APIC_ACCS_ADDR, 3703 "APIC-access address", 3704 "virtualize APIC-accesses", PAGE_SIZE, 3705 true, false); 3706 } 3707 3708 static bool set_bit_pattern(u8 mask, u32 *secondary) 3709 { 3710 u8 i; 3711 bool flag = false; 3712 u32 test_bits[3] = { 3713 CPU_VIRT_X2APIC, 3714 CPU_APIC_REG_VIRT, 3715 CPU_VINTD 3716 }; 3717 3718 for (i = 0; i < ARRAY_SIZE(test_bits); i++) { 3719 if ((mask & (1u << i)) && 3720 (ctrl_cpu_rev[1].clr & test_bits[i])) { 3721 *secondary |= test_bits[i]; 3722 flag = true; 3723 } 3724 } 3725 3726 return (flag); 3727 } 3728 3729 /* 3730 * If the "use TPR shadow" VM-execution control is 0, the following 3731 * VM-execution controls must also be 0: 3732 * - virtualize x2APIC mode 3733 * - APIC-register virtualization 3734 * - virtual-interrupt delivery 3735 * [Intel SDM] 3736 * 3737 * 2. If the "virtualize x2APIC mode" VM-execution control is 1, the 3738 * "virtualize APIC accesses" VM-execution control must be 0. 3739 * [Intel SDM] 3740 */ 3741 static void test_apic_virtual_ctls(void) 3742 { 3743 u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); 3744 u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); 3745 u32 primary = saved_primary; 3746 u32 secondary = saved_secondary; 3747 bool is_ctrl_valid = false; 3748 char str[10] = "disabled"; 3749 u8 i = 0, j; 3750 3751 /* 3752 * First test 3753 */ 3754 if (!((ctrl_cpu_rev[0].clr & (CPU_SECONDARY | CPU_TPR_SHADOW)) == 3755 (CPU_SECONDARY | CPU_TPR_SHADOW))) 3756 return; 3757 3758 primary |= CPU_SECONDARY; 3759 primary &= ~CPU_TPR_SHADOW; 3760 vmcs_write(CPU_EXEC_CTRL0, primary); 3761 3762 while (1) { 3763 for (j = 1; j < 8; j++) { 3764 secondary &= ~(CPU_VIRT_X2APIC | CPU_APIC_REG_VIRT | CPU_VINTD); 3765 if (primary & CPU_TPR_SHADOW) { 3766 is_ctrl_valid = true; 3767 } else { 3768 if (! set_bit_pattern(j, &secondary)) 3769 is_ctrl_valid = true; 3770 else 3771 is_ctrl_valid = false; 3772 } 3773 3774 vmcs_write(CPU_EXEC_CTRL1, secondary); 3775 report_prefix_pushf("Use TPR shadow %s, virtualize x2APIC mode %s, APIC-register virtualization %s, virtual-interrupt delivery %s", 3776 str, (secondary & CPU_VIRT_X2APIC) ? "enabled" : "disabled", (secondary & CPU_APIC_REG_VIRT) ? "enabled" : "disabled", (secondary & CPU_VINTD) ? "enabled" : "disabled"); 3777 if (is_ctrl_valid) 3778 test_vmx_valid_controls(); 3779 else 3780 test_vmx_invalid_controls(); 3781 report_prefix_pop(); 3782 } 3783 3784 if (i == 1) 3785 break; 3786 i++; 3787 3788 primary |= CPU_TPR_SHADOW; 3789 vmcs_write(CPU_EXEC_CTRL0, primary); 3790 strcpy(str, "enabled"); 3791 } 3792 3793 /* 3794 * Second test 3795 */ 3796 u32 apic_virt_ctls = (CPU_VIRT_X2APIC | CPU_VIRT_APIC_ACCESSES); 3797 3798 primary = saved_primary; 3799 secondary = saved_secondary; 3800 if (!((ctrl_cpu_rev[1].clr & apic_virt_ctls) == apic_virt_ctls)) 3801 return; 3802 3803 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); 3804 secondary &= ~CPU_VIRT_APIC_ACCESSES; 3805 vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_X2APIC); 3806 report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access disabled"); 3807 test_vmx_valid_controls(); 3808 report_prefix_pop(); 3809 3810 vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_APIC_ACCESSES); 3811 report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access enabled"); 3812 test_vmx_valid_controls(); 3813 report_prefix_pop(); 3814 3815 vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_X2APIC); 3816 report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access enabled"); 3817 test_vmx_invalid_controls(); 3818 report_prefix_pop(); 3819 3820 vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_APIC_ACCESSES); 3821 report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access disabled"); 3822 test_vmx_valid_controls(); 3823 report_prefix_pop(); 3824 3825 vmcs_write(CPU_EXEC_CTRL0, saved_primary); 3826 vmcs_write(CPU_EXEC_CTRL1, saved_secondary); 3827 } 3828 3829 /* 3830 * If the "virtual-interrupt delivery" VM-execution control is 1, the 3831 * "external-interrupt exiting" VM-execution control must be 1. 3832 * [Intel SDM] 3833 */ 3834 static void test_virtual_intr_ctls(void) 3835 { 3836 u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); 3837 u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); 3838 u32 saved_pin = vmcs_read(PIN_CONTROLS); 3839 u32 primary = saved_primary; 3840 u32 secondary = saved_secondary; 3841 u32 pin = saved_pin; 3842 3843 if (!((ctrl_cpu_rev[1].clr & CPU_VINTD) && 3844 (ctrl_pin_rev.clr & PIN_EXTINT))) 3845 return; 3846 3847 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW); 3848 vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VINTD); 3849 vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT); 3850 report_prefix_pushf("Virtualize interrupt-delivery disabled; external-interrupt exiting disabled"); 3851 test_vmx_valid_controls(); 3852 report_prefix_pop(); 3853 3854 vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VINTD); 3855 report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled"); 3856 test_vmx_invalid_controls(); 3857 report_prefix_pop(); 3858 3859 vmcs_write(PIN_CONTROLS, pin | PIN_EXTINT); 3860 report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting enabled"); 3861 test_vmx_valid_controls(); 3862 report_prefix_pop(); 3863 3864 vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT); 3865 report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled"); 3866 test_vmx_invalid_controls(); 3867 report_prefix_pop(); 3868 3869 vmcs_write(CPU_EXEC_CTRL0, saved_primary); 3870 vmcs_write(CPU_EXEC_CTRL1, saved_secondary); 3871 vmcs_write(PIN_CONTROLS, saved_pin); 3872 } 3873 3874 static void test_pi_desc_addr(u64 addr, bool is_ctrl_valid) 3875 { 3876 vmcs_write(POSTED_INTR_DESC_ADDR, addr); 3877 report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-descriptor-address 0x%lx", addr); 3878 if (is_ctrl_valid) 3879 test_vmx_valid_controls(); 3880 else 3881 test_vmx_invalid_controls(); 3882 report_prefix_pop(); 3883 } 3884 3885 /* 3886 * If the "process posted interrupts" VM-execution control is 1, the 3887 * following must be true: 3888 * 3889 * - The "virtual-interrupt delivery" VM-execution control is 1. 3890 * - The "acknowledge interrupt on exit" VM-exit control is 1. 3891 * - The posted-interrupt notification vector has a value in the 3892 * - range 0 - 255 (bits 15:8 are all 0). 3893 * - Bits 5:0 of the posted-interrupt descriptor address are all 0. 3894 * - The posted-interrupt descriptor address does not set any bits 3895 * beyond the processor's physical-address width. 3896 * [Intel SDM] 3897 */ 3898 static void test_posted_intr(void) 3899 { 3900 u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); 3901 u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); 3902 u32 saved_pin = vmcs_read(PIN_CONTROLS); 3903 u32 exit_ctl_saved = vmcs_read(EXI_CONTROLS); 3904 u32 primary = saved_primary; 3905 u32 secondary = saved_secondary; 3906 u32 pin = saved_pin; 3907 u32 exit_ctl = exit_ctl_saved; 3908 u16 vec; 3909 int i; 3910 3911 if (!((ctrl_pin_rev.clr & PIN_POST_INTR) && 3912 (ctrl_cpu_rev[1].clr & CPU_VINTD) && 3913 (ctrl_exit_rev.clr & EXI_INTA))) 3914 return; 3915 3916 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW); 3917 3918 /* 3919 * Test virtual-interrupt-delivery and acknowledge-interrupt-on-exit 3920 */ 3921 pin |= PIN_POST_INTR; 3922 vmcs_write(PIN_CONTROLS, pin); 3923 secondary &= ~CPU_VINTD; 3924 vmcs_write(CPU_EXEC_CTRL1, secondary); 3925 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled"); 3926 test_vmx_invalid_controls(); 3927 report_prefix_pop(); 3928 3929 secondary |= CPU_VINTD; 3930 vmcs_write(CPU_EXEC_CTRL1, secondary); 3931 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled"); 3932 test_vmx_invalid_controls(); 3933 report_prefix_pop(); 3934 3935 exit_ctl &= ~EXI_INTA; 3936 vmcs_write(EXI_CONTROLS, exit_ctl); 3937 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit disabled"); 3938 test_vmx_invalid_controls(); 3939 report_prefix_pop(); 3940 3941 exit_ctl |= EXI_INTA; 3942 vmcs_write(EXI_CONTROLS, exit_ctl); 3943 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled"); 3944 test_vmx_valid_controls(); 3945 report_prefix_pop(); 3946 3947 secondary &= ~CPU_VINTD; 3948 vmcs_write(CPU_EXEC_CTRL1, secondary); 3949 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled; acknowledge-interrupt-on-exit enabled"); 3950 test_vmx_invalid_controls(); 3951 report_prefix_pop(); 3952 3953 secondary |= CPU_VINTD; 3954 vmcs_write(CPU_EXEC_CTRL1, secondary); 3955 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled"); 3956 test_vmx_valid_controls(); 3957 report_prefix_pop(); 3958 3959 /* 3960 * Test posted-interrupt notification vector 3961 */ 3962 for (i = 0; i < 8; i++) { 3963 vec = (1ul << i); 3964 vmcs_write(PINV, vec); 3965 report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); 3966 test_vmx_valid_controls(); 3967 report_prefix_pop(); 3968 } 3969 for (i = 8; i < 16; i++) { 3970 vec = (1ul << i); 3971 vmcs_write(PINV, vec); 3972 report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); 3973 test_vmx_invalid_controls(); 3974 report_prefix_pop(); 3975 } 3976 3977 vec &= ~(0xff << 8); 3978 vmcs_write(PINV, vec); 3979 report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); 3980 test_vmx_valid_controls(); 3981 report_prefix_pop(); 3982 3983 /* 3984 * Test posted-interrupt descriptor address 3985 */ 3986 for (i = 0; i < 6; i++) { 3987 test_pi_desc_addr(1ul << i, false); 3988 } 3989 3990 test_pi_desc_addr(0xf0, false); 3991 test_pi_desc_addr(0xff, false); 3992 test_pi_desc_addr(0x0f, false); 3993 test_pi_desc_addr(0x8000, true); 3994 test_pi_desc_addr(0x00, true); 3995 test_pi_desc_addr(0xc000, true); 3996 3997 test_vmcs_addr_values("process-posted interrupts", 3998 POSTED_INTR_DESC_ADDR, 64, 3999 false, false, 0, 63); 4000 4001 vmcs_write(CPU_EXEC_CTRL0, saved_primary); 4002 vmcs_write(CPU_EXEC_CTRL1, saved_secondary); 4003 vmcs_write(PIN_CONTROLS, saved_pin); 4004 } 4005 4006 static void test_apic_ctls(void) 4007 { 4008 test_apic_virt_addr(); 4009 test_apic_access_addr(); 4010 test_apic_virtual_ctls(); 4011 test_virtual_intr_ctls(); 4012 test_posted_intr(); 4013 } 4014 4015 /* 4016 * If the "enable VPID" VM-execution control is 1, the value of the 4017 * of the VPID VM-execution control field must not be 0000H. 4018 * [Intel SDM] 4019 */ 4020 static void test_vpid(void) 4021 { 4022 u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); 4023 u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); 4024 u16 vpid = 0x0000; 4025 int i; 4026 4027 if (!is_vpid_supported()) { 4028 report_skip("%s : Secondary controls and/or VPID not supported", __func__); 4029 return; 4030 } 4031 4032 vmcs_write(CPU_EXEC_CTRL0, saved_primary | CPU_SECONDARY); 4033 vmcs_write(CPU_EXEC_CTRL1, saved_secondary & ~CPU_VPID); 4034 vmcs_write(VPID, vpid); 4035 report_prefix_pushf("VPID disabled; VPID value %x", vpid); 4036 test_vmx_valid_controls(); 4037 report_prefix_pop(); 4038 4039 vmcs_write(CPU_EXEC_CTRL1, saved_secondary | CPU_VPID); 4040 report_prefix_pushf("VPID enabled; VPID value %x", vpid); 4041 test_vmx_invalid_controls(); 4042 report_prefix_pop(); 4043 4044 for (i = 0; i < 16; i++) { 4045 vpid = (short)1 << i;; 4046 vmcs_write(VPID, vpid); 4047 report_prefix_pushf("VPID enabled; VPID value %x", vpid); 4048 test_vmx_valid_controls(); 4049 report_prefix_pop(); 4050 } 4051 4052 vmcs_write(CPU_EXEC_CTRL0, saved_primary); 4053 vmcs_write(CPU_EXEC_CTRL1, saved_secondary); 4054 } 4055 4056 static void set_vtpr(unsigned vtpr) 4057 { 4058 *(u32 *)phys_to_virt(vmcs_read(APIC_VIRT_ADDR) + APIC_TASKPRI) = vtpr; 4059 } 4060 4061 static void try_tpr_threshold_and_vtpr(unsigned threshold, unsigned vtpr) 4062 { 4063 bool valid = true; 4064 u32 primary = vmcs_read(CPU_EXEC_CTRL0); 4065 u32 secondary = vmcs_read(CPU_EXEC_CTRL1); 4066 4067 if ((primary & CPU_TPR_SHADOW) && 4068 (!(primary & CPU_SECONDARY) || 4069 !(secondary & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)))) 4070 valid = (threshold & 0xf) <= ((vtpr >> 4) & 0xf); 4071 4072 set_vtpr(vtpr); 4073 report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0x%x", 4074 threshold, (vtpr >> 4) & 0xf); 4075 if (valid) 4076 test_vmx_valid_controls(); 4077 else 4078 test_vmx_invalid_controls(); 4079 report_prefix_pop(); 4080 } 4081 4082 static void test_invalid_event_injection(void) 4083 { 4084 u32 ent_intr_info_save = vmcs_read(ENT_INTR_INFO); 4085 u32 ent_intr_error_save = vmcs_read(ENT_INTR_ERROR); 4086 u32 ent_inst_len_save = vmcs_read(ENT_INST_LEN); 4087 u32 primary_save = vmcs_read(CPU_EXEC_CTRL0); 4088 u32 secondary_save = vmcs_read(CPU_EXEC_CTRL1); 4089 u64 guest_cr0_save = vmcs_read(GUEST_CR0); 4090 u32 ent_intr_info_base = INTR_INFO_VALID_MASK; 4091 u32 ent_intr_info, ent_intr_err, ent_intr_len; 4092 u32 cnt; 4093 4094 /* Setup */ 4095 report_prefix_push("invalid event injection"); 4096 vmcs_write(ENT_INTR_ERROR, 0x00000000); 4097 vmcs_write(ENT_INST_LEN, 0x00000001); 4098 4099 /* The field's interruption type is not set to a reserved value. */ 4100 ent_intr_info = ent_intr_info_base | INTR_TYPE_RESERVED | DE_VECTOR; 4101 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4102 "RESERVED interruption type invalid [-]", 4103 ent_intr_info); 4104 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4105 test_vmx_invalid_controls(); 4106 report_prefix_pop(); 4107 4108 ent_intr_info = ent_intr_info_base | INTR_TYPE_EXT_INTR | 4109 DE_VECTOR; 4110 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4111 "RESERVED interruption type invalid [+]", 4112 ent_intr_info); 4113 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4114 test_vmx_valid_controls(); 4115 report_prefix_pop(); 4116 4117 /* If the interruption type is other event, the vector is 0. */ 4118 ent_intr_info = ent_intr_info_base | INTR_TYPE_OTHER_EVENT | DB_VECTOR; 4119 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4120 "(OTHER EVENT && vector != 0) invalid [-]", 4121 ent_intr_info); 4122 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4123 test_vmx_invalid_controls(); 4124 report_prefix_pop(); 4125 4126 /* If the interruption type is NMI, the vector is 2 (negative case). */ 4127 ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | DE_VECTOR; 4128 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4129 "(NMI && vector != 2) invalid [-]", ent_intr_info); 4130 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4131 test_vmx_invalid_controls(); 4132 report_prefix_pop(); 4133 4134 /* If the interruption type is NMI, the vector is 2 (positive case). */ 4135 ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | NMI_VECTOR; 4136 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4137 "(NMI && vector == 2) valid [+]", ent_intr_info); 4138 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4139 test_vmx_valid_controls(); 4140 report_prefix_pop(); 4141 4142 /* 4143 * If the interruption type 4144 * is HW exception, the vector is at most 31. 4145 */ 4146 ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 0x20; 4147 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4148 "(HW exception && vector > 31) invalid [-]", 4149 ent_intr_info); 4150 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4151 test_vmx_invalid_controls(); 4152 report_prefix_pop(); 4153 4154 /* 4155 * deliver-error-code is 1 iff either 4156 * (a) the "unrestricted guest" VM-execution control is 0 4157 * (b) CR0.PE is set. 4158 */ 4159 4160 /* Assert that unrestricted guest is disabled or unsupported */ 4161 assert(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 4162 !(secondary_save & CPU_URG)); 4163 4164 ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 4165 GP_VECTOR; 4166 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4167 "error code <-> (!URG || prot_mode) [-]", 4168 ent_intr_info); 4169 vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); 4170 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4171 test_vmx_invalid_controls(); 4172 report_prefix_pop(); 4173 4174 ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | 4175 INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; 4176 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4177 "error code <-> (!URG || prot_mode) [+]", 4178 ent_intr_info); 4179 vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); 4180 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4181 test_vmx_valid_controls(); 4182 report_prefix_pop(); 4183 4184 if (enable_unrestricted_guest(false)) 4185 goto skip_unrestricted_guest; 4186 4187 ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | 4188 INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; 4189 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4190 "error code <-> (!URG || prot_mode) [-]", 4191 ent_intr_info); 4192 vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); 4193 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4194 test_vmx_invalid_controls(); 4195 report_prefix_pop(); 4196 4197 ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 4198 GP_VECTOR; 4199 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4200 "error code <-> (!URG || prot_mode) [-]", 4201 ent_intr_info); 4202 vmcs_write(GUEST_CR0, guest_cr0_save | X86_CR0_PE); 4203 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4204 test_vmx_invalid_controls(); 4205 report_prefix_pop(); 4206 4207 vmcs_write(CPU_EXEC_CTRL1, secondary_save); 4208 vmcs_write(CPU_EXEC_CTRL0, primary_save); 4209 4210 skip_unrestricted_guest: 4211 vmcs_write(GUEST_CR0, guest_cr0_save); 4212 4213 /* deliver-error-code is 1 iff the interruption type is HW exception */ 4214 report_prefix_push("error code <-> HW exception"); 4215 for (cnt = 0; cnt < 8; cnt++) { 4216 u32 exception_type_mask = cnt << 8; 4217 u32 deliver_error_code_mask = 4218 exception_type_mask != INTR_TYPE_HARD_EXCEPTION ? 4219 INTR_INFO_DELIVER_CODE_MASK : 0; 4220 4221 ent_intr_info = ent_intr_info_base | deliver_error_code_mask | 4222 exception_type_mask | GP_VECTOR; 4223 report_prefix_pushf("VM-entry intr info=0x%x [-]", 4224 ent_intr_info); 4225 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4226 test_vmx_invalid_controls(); 4227 report_prefix_pop(); 4228 } 4229 report_prefix_pop(); 4230 4231 /* 4232 * deliver-error-code is 1 iff the the vector 4233 * indicates an exception that would normally deliver an error code 4234 */ 4235 report_prefix_push("error code <-> vector delivers error code"); 4236 for (cnt = 0; cnt < 32; cnt++) { 4237 bool has_error_code = false; 4238 u32 deliver_error_code_mask; 4239 4240 switch (cnt) { 4241 case DF_VECTOR: 4242 case TS_VECTOR: 4243 case NP_VECTOR: 4244 case SS_VECTOR: 4245 case GP_VECTOR: 4246 case PF_VECTOR: 4247 case AC_VECTOR: 4248 has_error_code = true; 4249 case CP_VECTOR: 4250 /* Some CPUs have error code and some do not, skip */ 4251 continue; 4252 } 4253 4254 /* Negative case */ 4255 deliver_error_code_mask = has_error_code ? 4256 0 : 4257 INTR_INFO_DELIVER_CODE_MASK; 4258 ent_intr_info = ent_intr_info_base | deliver_error_code_mask | 4259 INTR_TYPE_HARD_EXCEPTION | cnt; 4260 report_prefix_pushf("VM-entry intr info=0x%x [-]", 4261 ent_intr_info); 4262 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4263 test_vmx_invalid_controls(); 4264 report_prefix_pop(); 4265 4266 /* Positive case */ 4267 deliver_error_code_mask = has_error_code ? 4268 INTR_INFO_DELIVER_CODE_MASK : 4269 0; 4270 ent_intr_info = ent_intr_info_base | deliver_error_code_mask | 4271 INTR_TYPE_HARD_EXCEPTION | cnt; 4272 report_prefix_pushf("VM-entry intr info=0x%x [+]", 4273 ent_intr_info); 4274 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4275 test_vmx_valid_controls(); 4276 report_prefix_pop(); 4277 } 4278 report_prefix_pop(); 4279 4280 /* Reserved bits in the field (30:12) are 0. */ 4281 report_prefix_push("reserved bits clear"); 4282 for (cnt = 12; cnt <= 30; cnt++) { 4283 ent_intr_info = ent_intr_info_base | 4284 INTR_INFO_DELIVER_CODE_MASK | 4285 INTR_TYPE_HARD_EXCEPTION | GP_VECTOR | 4286 (1U << cnt); 4287 report_prefix_pushf("VM-entry intr info=0x%x [-]", 4288 ent_intr_info); 4289 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4290 test_vmx_invalid_controls(); 4291 report_prefix_pop(); 4292 } 4293 report_prefix_pop(); 4294 4295 /* 4296 * If deliver-error-code is 1 4297 * bits 31:16 of the VM-entry exception error-code field are 0. 4298 */ 4299 ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | 4300 INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; 4301 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4302 "VM-entry exception error code[31:16] clear", 4303 ent_intr_info); 4304 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4305 for (cnt = 16; cnt <= 31; cnt++) { 4306 ent_intr_err = 1U << cnt; 4307 report_prefix_pushf("VM-entry intr error=0x%x [-]", 4308 ent_intr_err); 4309 vmcs_write(ENT_INTR_ERROR, ent_intr_err); 4310 test_vmx_invalid_controls(); 4311 report_prefix_pop(); 4312 } 4313 vmcs_write(ENT_INTR_ERROR, 0x00000000); 4314 report_prefix_pop(); 4315 4316 /* 4317 * If the interruption type is software interrupt, software exception, 4318 * or privileged software exception, the VM-entry instruction-length 4319 * field is in the range 0 - 15. 4320 */ 4321 4322 for (cnt = 0; cnt < 3; cnt++) { 4323 switch (cnt) { 4324 case 0: 4325 ent_intr_info = ent_intr_info_base | 4326 INTR_TYPE_SOFT_INTR; 4327 break; 4328 case 1: 4329 ent_intr_info = ent_intr_info_base | 4330 INTR_TYPE_SOFT_EXCEPTION; 4331 break; 4332 case 2: 4333 ent_intr_info = ent_intr_info_base | 4334 INTR_TYPE_PRIV_SW_EXCEPTION; 4335 break; 4336 } 4337 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4338 "VM-entry instruction-length check", 4339 ent_intr_info); 4340 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4341 4342 /* Instruction length set to -1 (0xFFFFFFFF) should fail */ 4343 ent_intr_len = -1; 4344 report_prefix_pushf("VM-entry intr length = 0x%x [-]", 4345 ent_intr_len); 4346 vmcs_write(ENT_INST_LEN, ent_intr_len); 4347 test_vmx_invalid_controls(); 4348 report_prefix_pop(); 4349 4350 /* Instruction length set to 16 should fail */ 4351 ent_intr_len = 0x00000010; 4352 report_prefix_pushf("VM-entry intr length = 0x%x [-]", 4353 ent_intr_len); 4354 vmcs_write(ENT_INST_LEN, 0x00000010); 4355 test_vmx_invalid_controls(); 4356 report_prefix_pop(); 4357 4358 report_prefix_pop(); 4359 } 4360 4361 /* Cleanup */ 4362 vmcs_write(ENT_INTR_INFO, ent_intr_info_save); 4363 vmcs_write(ENT_INTR_ERROR, ent_intr_error_save); 4364 vmcs_write(ENT_INST_LEN, ent_inst_len_save); 4365 vmcs_write(CPU_EXEC_CTRL0, primary_save); 4366 vmcs_write(CPU_EXEC_CTRL1, secondary_save); 4367 vmcs_write(GUEST_CR0, guest_cr0_save); 4368 report_prefix_pop(); 4369 } 4370 4371 /* 4372 * Test interesting vTPR values for a given TPR threshold. 4373 */ 4374 static void test_vtpr_values(unsigned threshold) 4375 { 4376 try_tpr_threshold_and_vtpr(threshold, (threshold - 1) << 4); 4377 try_tpr_threshold_and_vtpr(threshold, threshold << 4); 4378 try_tpr_threshold_and_vtpr(threshold, (threshold + 1) << 4); 4379 } 4380 4381 static void try_tpr_threshold(unsigned threshold) 4382 { 4383 bool valid = true; 4384 4385 u32 primary = vmcs_read(CPU_EXEC_CTRL0); 4386 u32 secondary = vmcs_read(CPU_EXEC_CTRL1); 4387 4388 if ((primary & CPU_TPR_SHADOW) && !((primary & CPU_SECONDARY) && 4389 (secondary & CPU_VINTD))) 4390 valid = !(threshold >> 4); 4391 4392 set_vtpr(-1); 4393 vmcs_write(TPR_THRESHOLD, threshold); 4394 report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0xf", threshold); 4395 if (valid) 4396 test_vmx_valid_controls(); 4397 else 4398 test_vmx_invalid_controls(); 4399 report_prefix_pop(); 4400 4401 if (valid) 4402 test_vtpr_values(threshold); 4403 } 4404 4405 /* 4406 * Test interesting TPR threshold values. 4407 */ 4408 static void test_tpr_threshold_values(void) 4409 { 4410 unsigned i; 4411 4412 for (i = 0; i < 0x10; i++) 4413 try_tpr_threshold(i); 4414 for (i = 4; i < 32; i++) 4415 try_tpr_threshold(1u << i); 4416 try_tpr_threshold(-1u); 4417 try_tpr_threshold(0x7fffffff); 4418 } 4419 4420 /* 4421 * This test covers the following two VM entry checks: 4422 * 4423 * i) If the "use TPR shadow" VM-execution control is 1 and the 4424 * "virtual-interrupt delivery" VM-execution control is 0, bits 4425 * 31:4 of the TPR threshold VM-execution control field must 4426 be 0. 4427 * [Intel SDM] 4428 * 4429 * ii) If the "use TPR shadow" VM-execution control is 1, the 4430 * "virtual-interrupt delivery" VM-execution control is 0 4431 * and the "virtualize APIC accesses" VM-execution control 4432 * is 0, the value of bits 3:0 of the TPR threshold VM-execution 4433 * control field must not be greater than the value of bits 4434 * 7:4 of VTPR. 4435 * [Intel SDM] 4436 */ 4437 static void test_tpr_threshold(void) 4438 { 4439 u32 primary = vmcs_read(CPU_EXEC_CTRL0); 4440 u64 apic_virt_addr = vmcs_read(APIC_VIRT_ADDR); 4441 u64 threshold = vmcs_read(TPR_THRESHOLD); 4442 void *virtual_apic_page; 4443 4444 if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) 4445 return; 4446 4447 virtual_apic_page = alloc_page(); 4448 memset(virtual_apic_page, 0xff, PAGE_SIZE); 4449 vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); 4450 4451 vmcs_write(CPU_EXEC_CTRL0, primary & ~(CPU_TPR_SHADOW | CPU_SECONDARY)); 4452 report_prefix_pushf("Use TPR shadow disabled, secondary controls disabled"); 4453 test_tpr_threshold_values(); 4454 report_prefix_pop(); 4455 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_TPR_SHADOW); 4456 report_prefix_pushf("Use TPR shadow enabled, secondary controls disabled"); 4457 test_tpr_threshold_values(); 4458 report_prefix_pop(); 4459 4460 if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && 4461 (ctrl_cpu_rev[1].clr & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)))) 4462 goto out; 4463 u32 secondary = vmcs_read(CPU_EXEC_CTRL1); 4464 4465 if (ctrl_cpu_rev[1].clr & CPU_VINTD) { 4466 vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD); 4467 report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled"); 4468 test_tpr_threshold_values(); 4469 report_prefix_pop(); 4470 4471 vmcs_write(CPU_EXEC_CTRL0, 4472 vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); 4473 report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled"); 4474 test_tpr_threshold_values(); 4475 report_prefix_pop(); 4476 } 4477 4478 if (ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES) { 4479 vmcs_write(CPU_EXEC_CTRL0, 4480 vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY); 4481 vmcs_write(CPU_EXEC_CTRL1, CPU_VIRT_APIC_ACCESSES); 4482 report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); 4483 test_tpr_threshold_values(); 4484 report_prefix_pop(); 4485 4486 vmcs_write(CPU_EXEC_CTRL0, 4487 vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); 4488 report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); 4489 test_tpr_threshold_values(); 4490 report_prefix_pop(); 4491 } 4492 4493 if ((ctrl_cpu_rev[1].clr & 4494 (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) == 4495 (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) { 4496 vmcs_write(CPU_EXEC_CTRL0, 4497 vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY); 4498 vmcs_write(CPU_EXEC_CTRL1, 4499 CPU_VINTD | CPU_VIRT_APIC_ACCESSES); 4500 report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); 4501 test_tpr_threshold_values(); 4502 report_prefix_pop(); 4503 4504 vmcs_write(CPU_EXEC_CTRL0, 4505 vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); 4506 report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); 4507 test_tpr_threshold_values(); 4508 report_prefix_pop(); 4509 } 4510 4511 vmcs_write(CPU_EXEC_CTRL1, secondary); 4512 out: 4513 vmcs_write(TPR_THRESHOLD, threshold); 4514 vmcs_write(APIC_VIRT_ADDR, apic_virt_addr); 4515 vmcs_write(CPU_EXEC_CTRL0, primary); 4516 } 4517 4518 /* 4519 * This test verifies the following two vmentry checks: 4520 * 4521 * If the "NMI exiting" VM-execution control is 0, "Virtual NMIs" 4522 * VM-execution control must be 0. 4523 * [Intel SDM] 4524 * 4525 * If the "virtual NMIs" VM-execution control is 0, the "NMI-window 4526 * exiting" VM-execution control must be 0. 4527 * [Intel SDM] 4528 */ 4529 static void test_nmi_ctrls(void) 4530 { 4531 u32 pin_ctrls, cpu_ctrls0, test_pin_ctrls, test_cpu_ctrls0; 4532 4533 if ((ctrl_pin_rev.clr & (PIN_NMI | PIN_VIRT_NMI)) != 4534 (PIN_NMI | PIN_VIRT_NMI)) { 4535 report_skip("%s : NMI exiting and/or Virtual NMIs not supported", __func__); 4536 return; 4537 } 4538 4539 /* Save the controls so that we can restore them after our tests */ 4540 pin_ctrls = vmcs_read(PIN_CONTROLS); 4541 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0); 4542 4543 test_pin_ctrls = pin_ctrls & ~(PIN_NMI | PIN_VIRT_NMI); 4544 test_cpu_ctrls0 = cpu_ctrls0 & ~CPU_NMI_WINDOW; 4545 4546 vmcs_write(PIN_CONTROLS, test_pin_ctrls); 4547 report_prefix_pushf("NMI-exiting disabled, virtual-NMIs disabled"); 4548 test_vmx_valid_controls(); 4549 report_prefix_pop(); 4550 4551 vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_VIRT_NMI); 4552 report_prefix_pushf("NMI-exiting disabled, virtual-NMIs enabled"); 4553 test_vmx_invalid_controls(); 4554 report_prefix_pop(); 4555 4556 vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); 4557 report_prefix_pushf("NMI-exiting enabled, virtual-NMIs enabled"); 4558 test_vmx_valid_controls(); 4559 report_prefix_pop(); 4560 4561 vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_NMI); 4562 report_prefix_pushf("NMI-exiting enabled, virtual-NMIs disabled"); 4563 test_vmx_valid_controls(); 4564 report_prefix_pop(); 4565 4566 if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) { 4567 report_info("NMI-window exiting is not supported, skipping..."); 4568 goto done; 4569 } 4570 4571 vmcs_write(PIN_CONTROLS, test_pin_ctrls); 4572 vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW); 4573 report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting enabled"); 4574 test_vmx_invalid_controls(); 4575 report_prefix_pop(); 4576 4577 vmcs_write(PIN_CONTROLS, test_pin_ctrls); 4578 vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0); 4579 report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting disabled"); 4580 test_vmx_valid_controls(); 4581 report_prefix_pop(); 4582 4583 vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); 4584 vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW); 4585 report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting enabled"); 4586 test_vmx_valid_controls(); 4587 report_prefix_pop(); 4588 4589 vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); 4590 vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0); 4591 report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting disabled"); 4592 test_vmx_valid_controls(); 4593 report_prefix_pop(); 4594 4595 /* Restore the controls to their original values */ 4596 vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0); 4597 done: 4598 vmcs_write(PIN_CONTROLS, pin_ctrls); 4599 } 4600 4601 static void test_eptp_ad_bit(u64 eptp, bool is_ctrl_valid) 4602 { 4603 vmcs_write(EPTP, eptp); 4604 report_prefix_pushf("Enable-EPT enabled; EPT accessed and dirty flag %s", 4605 (eptp & EPTP_AD_FLAG) ? "1": "0"); 4606 if (is_ctrl_valid) 4607 test_vmx_valid_controls(); 4608 else 4609 test_vmx_invalid_controls(); 4610 report_prefix_pop(); 4611 4612 } 4613 4614 /* 4615 * 1. If the "enable EPT" VM-execution control is 1, the "EPTP VM-execution" 4616 * control field must satisfy the following checks: 4617 * 4618 * - The EPT memory type (bits 2:0) must be a value supported by the 4619 * processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR. 4620 * - Bits 5:3 (1 less than the EPT page-walk length) must indicate a 4621 * supported EPT page-walk length. 4622 * - Bit 6 (enable bit for accessed and dirty flags for EPT) must be 4623 * 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP MSR is read as 0, 4624 * indicating that the processor does not support accessed and dirty 4625 * dirty flags for EPT. 4626 * - Reserved bits 11:7 and 63:N (where N is the processor's 4627 * physical-address width) must all be 0. 4628 * 4629 * 2. If the "unrestricted guest" VM-execution control is 1, the 4630 * "enable EPT" VM-execution control must also be 1. 4631 */ 4632 static void test_ept_eptp(void) 4633 { 4634 u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0); 4635 u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1); 4636 u64 eptp_saved = vmcs_read(EPTP); 4637 u32 primary = primary_saved; 4638 u32 secondary = secondary_saved; 4639 u64 eptp = eptp_saved; 4640 u32 i, maxphysaddr; 4641 u64 j, resv_bits_mask = 0; 4642 4643 if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && 4644 (ctrl_cpu_rev[1].clr & CPU_EPT))) { 4645 report_skip("%s : \"CPU secondary\" and/or \"enable EPT\" exec control not supported", __func__); 4646 return; 4647 } 4648 4649 /* Support for 4-level EPT is mandatory. */ 4650 report(is_4_level_ept_supported(), "4-level EPT support check"); 4651 4652 primary |= CPU_SECONDARY; 4653 vmcs_write(CPU_EXEC_CTRL0, primary); 4654 secondary |= CPU_EPT; 4655 vmcs_write(CPU_EXEC_CTRL1, secondary); 4656 eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) | 4657 (3ul << EPTP_PG_WALK_LEN_SHIFT); 4658 vmcs_write(EPTP, eptp); 4659 4660 for (i = 0; i < 8; i++) { 4661 eptp = (eptp & ~EPT_MEM_TYPE_MASK) | i; 4662 vmcs_write(EPTP, eptp); 4663 report_prefix_pushf("Enable-EPT enabled; EPT memory type %lu", 4664 eptp & EPT_MEM_TYPE_MASK); 4665 if (is_ept_memtype_supported(i)) 4666 test_vmx_valid_controls(); 4667 else 4668 test_vmx_invalid_controls(); 4669 report_prefix_pop(); 4670 } 4671 4672 eptp = (eptp & ~EPT_MEM_TYPE_MASK) | 6ul; 4673 4674 /* 4675 * Page walk length (bits 5:3). Note, the value in VMCS.EPTP "is 1 4676 * less than the EPT page-walk length". 4677 */ 4678 for (i = 0; i < 8; i++) { 4679 eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) | 4680 (i << EPTP_PG_WALK_LEN_SHIFT); 4681 4682 vmcs_write(EPTP, eptp); 4683 report_prefix_pushf("Enable-EPT enabled; EPT page walk length %lu", 4684 eptp & EPTP_PG_WALK_LEN_MASK); 4685 if (i == 3 || (i == 4 && is_5_level_ept_supported())) 4686 test_vmx_valid_controls(); 4687 else 4688 test_vmx_invalid_controls(); 4689 report_prefix_pop(); 4690 } 4691 4692 eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) | 4693 3ul << EPTP_PG_WALK_LEN_SHIFT; 4694 4695 /* 4696 * Accessed and dirty flag (bit 6) 4697 */ 4698 if (ept_ad_bits_supported()) { 4699 report_info("Processor supports accessed and dirty flag"); 4700 eptp &= ~EPTP_AD_FLAG; 4701 test_eptp_ad_bit(eptp, true); 4702 4703 eptp |= EPTP_AD_FLAG; 4704 test_eptp_ad_bit(eptp, true); 4705 } else { 4706 report_info("Processor does not supports accessed and dirty flag"); 4707 eptp &= ~EPTP_AD_FLAG; 4708 test_eptp_ad_bit(eptp, true); 4709 4710 eptp |= EPTP_AD_FLAG; 4711 test_eptp_ad_bit(eptp, false); 4712 } 4713 4714 /* 4715 * Reserved bits [11:7] and [63:N] 4716 */ 4717 for (i = 0; i < 32; i++) { 4718 eptp = (eptp & 4719 ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)) | 4720 (i << EPTP_RESERV_BITS_SHIFT); 4721 vmcs_write(EPTP, eptp); 4722 report_prefix_pushf("Enable-EPT enabled; reserved bits [11:7] %lu", 4723 (eptp >> EPTP_RESERV_BITS_SHIFT) & 4724 EPTP_RESERV_BITS_MASK); 4725 if (i == 0) 4726 test_vmx_valid_controls(); 4727 else 4728 test_vmx_invalid_controls(); 4729 report_prefix_pop(); 4730 } 4731 4732 eptp = (eptp & ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)); 4733 4734 maxphysaddr = cpuid_maxphyaddr(); 4735 for (i = 0; i < (63 - maxphysaddr + 1); i++) { 4736 resv_bits_mask |= 1ul << i; 4737 } 4738 4739 for (j = maxphysaddr - 1; j <= 63; j++) { 4740 eptp = (eptp & ~(resv_bits_mask << maxphysaddr)) | 4741 (j < maxphysaddr ? 0 : 1ul << j); 4742 vmcs_write(EPTP, eptp); 4743 report_prefix_pushf("Enable-EPT enabled; reserved bits [63:N] %lu", 4744 (eptp >> maxphysaddr) & resv_bits_mask); 4745 if (j < maxphysaddr) 4746 test_vmx_valid_controls(); 4747 else 4748 test_vmx_invalid_controls(); 4749 report_prefix_pop(); 4750 } 4751 4752 secondary &= ~(CPU_EPT | CPU_URG); 4753 vmcs_write(CPU_EXEC_CTRL1, secondary); 4754 report_prefix_pushf("Enable-EPT disabled, unrestricted-guest disabled"); 4755 test_vmx_valid_controls(); 4756 report_prefix_pop(); 4757 4758 if (!(ctrl_cpu_rev[1].clr & CPU_URG)) 4759 goto skip_unrestricted_guest; 4760 4761 secondary |= CPU_URG; 4762 vmcs_write(CPU_EXEC_CTRL1, secondary); 4763 report_prefix_pushf("Enable-EPT disabled, unrestricted-guest enabled"); 4764 test_vmx_invalid_controls(); 4765 report_prefix_pop(); 4766 4767 secondary |= CPU_EPT; 4768 setup_dummy_ept(); 4769 report_prefix_pushf("Enable-EPT enabled, unrestricted-guest enabled"); 4770 test_vmx_valid_controls(); 4771 report_prefix_pop(); 4772 4773 skip_unrestricted_guest: 4774 secondary &= ~CPU_URG; 4775 vmcs_write(CPU_EXEC_CTRL1, secondary); 4776 report_prefix_pushf("Enable-EPT enabled, unrestricted-guest disabled"); 4777 test_vmx_valid_controls(); 4778 report_prefix_pop(); 4779 4780 vmcs_write(CPU_EXEC_CTRL0, primary_saved); 4781 vmcs_write(CPU_EXEC_CTRL1, secondary_saved); 4782 vmcs_write(EPTP, eptp_saved); 4783 } 4784 4785 /* 4786 * If the 'enable PML' VM-execution control is 1, the 'enable EPT' 4787 * VM-execution control must also be 1. In addition, the PML address 4788 * must satisfy the following checks: 4789 * 4790 * * Bits 11:0 of the address must be 0. 4791 * * The address should not set any bits beyond the processor's 4792 * physical-address width. 4793 * 4794 * [Intel SDM] 4795 */ 4796 static void test_pml(void) 4797 { 4798 u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0); 4799 u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1); 4800 u32 primary = primary_saved; 4801 u32 secondary = secondary_saved; 4802 4803 if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && 4804 (ctrl_cpu_rev[1].clr & CPU_EPT) && (ctrl_cpu_rev[1].clr & CPU_PML))) { 4805 report_skip("%s : \"Secondary execution\" or \"enable EPT\" or \"enable PML\" control not supported", __func__); 4806 return; 4807 } 4808 4809 primary |= CPU_SECONDARY; 4810 vmcs_write(CPU_EXEC_CTRL0, primary); 4811 secondary &= ~(CPU_PML | CPU_EPT); 4812 vmcs_write(CPU_EXEC_CTRL1, secondary); 4813 report_prefix_pushf("enable-PML disabled, enable-EPT disabled"); 4814 test_vmx_valid_controls(); 4815 report_prefix_pop(); 4816 4817 secondary |= CPU_PML; 4818 vmcs_write(CPU_EXEC_CTRL1, secondary); 4819 report_prefix_pushf("enable-PML enabled, enable-EPT disabled"); 4820 test_vmx_invalid_controls(); 4821 report_prefix_pop(); 4822 4823 secondary |= CPU_EPT; 4824 setup_dummy_ept(); 4825 report_prefix_pushf("enable-PML enabled, enable-EPT enabled"); 4826 test_vmx_valid_controls(); 4827 report_prefix_pop(); 4828 4829 secondary &= ~CPU_PML; 4830 vmcs_write(CPU_EXEC_CTRL1, secondary); 4831 report_prefix_pushf("enable-PML disabled, enable EPT enabled"); 4832 test_vmx_valid_controls(); 4833 report_prefix_pop(); 4834 4835 test_vmcs_addr_reference(CPU_PML, PMLADDR, "PML address", "PML", 4836 PAGE_SIZE, false, false); 4837 4838 vmcs_write(CPU_EXEC_CTRL0, primary_saved); 4839 vmcs_write(CPU_EXEC_CTRL1, secondary_saved); 4840 } 4841 4842 /* 4843 * If the "activate VMX-preemption timer" VM-execution control is 0, the 4844 * the "save VMX-preemption timer value" VM-exit control must also be 0. 4845 * 4846 * [Intel SDM] 4847 */ 4848 static void test_vmx_preemption_timer(void) 4849 { 4850 u32 saved_pin = vmcs_read(PIN_CONTROLS); 4851 u32 saved_exit = vmcs_read(EXI_CONTROLS); 4852 u32 pin = saved_pin; 4853 u32 exit = saved_exit; 4854 4855 if (!((ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) || 4856 (ctrl_pin_rev.clr & PIN_PREEMPT))) { 4857 report_skip("%s : \"Save-VMX-preemption-timer\" and/or \"Enable-VMX-preemption-timer\" control not supported", __func__); 4858 return; 4859 } 4860 4861 pin |= PIN_PREEMPT; 4862 vmcs_write(PIN_CONTROLS, pin); 4863 exit &= ~EXI_SAVE_PREEMPT; 4864 vmcs_write(EXI_CONTROLS, exit); 4865 report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer disabled"); 4866 test_vmx_valid_controls(); 4867 report_prefix_pop(); 4868 4869 exit |= EXI_SAVE_PREEMPT; 4870 vmcs_write(EXI_CONTROLS, exit); 4871 report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer enabled"); 4872 test_vmx_valid_controls(); 4873 report_prefix_pop(); 4874 4875 pin &= ~PIN_PREEMPT; 4876 vmcs_write(PIN_CONTROLS, pin); 4877 report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer enabled"); 4878 test_vmx_invalid_controls(); 4879 report_prefix_pop(); 4880 4881 exit &= ~EXI_SAVE_PREEMPT; 4882 vmcs_write(EXI_CONTROLS, exit); 4883 report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer disabled"); 4884 test_vmx_valid_controls(); 4885 report_prefix_pop(); 4886 4887 vmcs_write(PIN_CONTROLS, saved_pin); 4888 vmcs_write(EXI_CONTROLS, saved_exit); 4889 } 4890 4891 extern unsigned char test_mtf1; 4892 extern unsigned char test_mtf2; 4893 extern unsigned char test_mtf3; 4894 extern unsigned char test_mtf4; 4895 4896 static void test_mtf_guest(void) 4897 { 4898 asm ("vmcall;\n\t" 4899 "out %al, $0x80;\n\t" 4900 "test_mtf1:\n\t" 4901 "vmcall;\n\t" 4902 "out %al, $0x80;\n\t" 4903 "test_mtf2:\n\t" 4904 /* 4905 * Prepare for the 'MOV CR3' test. Attempt to induce a 4906 * general-protection fault by moving a non-canonical address into 4907 * CR3. The 'MOV CR3' instruction does not take an imm64 operand, 4908 * so we must MOV the desired value into a register first. 4909 * 4910 * MOV RAX is done before the VMCALL such that MTF is only enabled 4911 * for the instruction under test. 4912 */ 4913 "mov $0xaaaaaaaaaaaaaaaa, %rax;\n\t" 4914 "vmcall;\n\t" 4915 "mov %rax, %cr3;\n\t" 4916 "test_mtf3:\n\t" 4917 "vmcall;\n\t" 4918 /* 4919 * ICEBP/INT1 instruction. Though the instruction is now 4920 * documented, don't rely on assemblers enumerating the 4921 * instruction. Resort to hand assembly. 4922 */ 4923 ".byte 0xf1;\n\t" 4924 "vmcall;\n\t" 4925 "test_mtf4:\n\t" 4926 "mov $0, %eax;\n\t"); 4927 } 4928 4929 static void test_mtf_gp_handler(struct ex_regs *regs) 4930 { 4931 regs->rip = (unsigned long) &test_mtf3; 4932 } 4933 4934 static void test_mtf_db_handler(struct ex_regs *regs) 4935 { 4936 } 4937 4938 static void enable_mtf(void) 4939 { 4940 u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 4941 4942 vmcs_write(CPU_EXEC_CTRL0, ctrl0 | CPU_MTF); 4943 } 4944 4945 static void disable_mtf(void) 4946 { 4947 u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 4948 4949 vmcs_write(CPU_EXEC_CTRL0, ctrl0 & ~CPU_MTF); 4950 } 4951 4952 static void enable_tf(void) 4953 { 4954 unsigned long rflags = vmcs_read(GUEST_RFLAGS); 4955 4956 vmcs_write(GUEST_RFLAGS, rflags | X86_EFLAGS_TF); 4957 } 4958 4959 static void disable_tf(void) 4960 { 4961 unsigned long rflags = vmcs_read(GUEST_RFLAGS); 4962 4963 vmcs_write(GUEST_RFLAGS, rflags & ~X86_EFLAGS_TF); 4964 } 4965 4966 static void report_mtf(const char *insn_name, unsigned long exp_rip) 4967 { 4968 unsigned long rip = vmcs_read(GUEST_RIP); 4969 4970 assert_exit_reason(VMX_MTF); 4971 report(rip == exp_rip, "MTF VM-exit after %s. RIP: 0x%lx (expected 0x%lx)", 4972 insn_name, rip, exp_rip); 4973 } 4974 4975 static void vmx_mtf_test(void) 4976 { 4977 unsigned long pending_dbg; 4978 handler old_gp, old_db; 4979 4980 if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) { 4981 report_skip("%s : \"Monitor trap flag\" exec control not supported", __func__); 4982 return; 4983 } 4984 4985 test_set_guest(test_mtf_guest); 4986 4987 /* Expect an MTF VM-exit after OUT instruction */ 4988 enter_guest(); 4989 skip_exit_vmcall(); 4990 4991 enable_mtf(); 4992 enter_guest(); 4993 report_mtf("OUT", (unsigned long) &test_mtf1); 4994 disable_mtf(); 4995 4996 /* 4997 * Concurrent #DB trap and MTF on instruction boundary. Expect MTF 4998 * VM-exit with populated 'pending debug exceptions' VMCS field. 4999 */ 5000 enter_guest(); 5001 skip_exit_vmcall(); 5002 5003 enable_mtf(); 5004 enable_tf(); 5005 5006 enter_guest(); 5007 report_mtf("OUT", (unsigned long) &test_mtf2); 5008 pending_dbg = vmcs_read(GUEST_PENDING_DEBUG); 5009 report(pending_dbg & DR6_BS, 5010 "'pending debug exceptions' field after MTF VM-exit: 0x%lx (expected 0x%lx)", 5011 pending_dbg, (unsigned long) DR6_BS); 5012 5013 disable_mtf(); 5014 disable_tf(); 5015 vmcs_write(GUEST_PENDING_DEBUG, 0); 5016 5017 /* 5018 * #GP exception takes priority over MTF. Expect MTF VM-exit with RIP 5019 * advanced to first instruction of #GP handler. 5020 */ 5021 enter_guest(); 5022 skip_exit_vmcall(); 5023 5024 old_gp = handle_exception(GP_VECTOR, test_mtf_gp_handler); 5025 5026 enable_mtf(); 5027 enter_guest(); 5028 report_mtf("MOV CR3", (unsigned long) get_idt_addr(&boot_idt[GP_VECTOR])); 5029 disable_mtf(); 5030 5031 /* 5032 * Concurrent MTF and privileged software exception (i.e. ICEBP/INT1). 5033 * MTF should follow the delivery of #DB trap, though the SDM doesn't 5034 * provide clear indication of the relative priority. 5035 */ 5036 enter_guest(); 5037 skip_exit_vmcall(); 5038 5039 handle_exception(GP_VECTOR, old_gp); 5040 old_db = handle_exception(DB_VECTOR, test_mtf_db_handler); 5041 5042 enable_mtf(); 5043 enter_guest(); 5044 report_mtf("INT1", (unsigned long) get_idt_addr(&boot_idt[DB_VECTOR])); 5045 disable_mtf(); 5046 5047 enter_guest(); 5048 skip_exit_vmcall(); 5049 handle_exception(DB_VECTOR, old_db); 5050 vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | INTR_TYPE_OTHER_EVENT); 5051 enter_guest(); 5052 report_mtf("injected MTF", (unsigned long) &test_mtf4); 5053 enter_guest(); 5054 } 5055 5056 extern char vmx_mtf_pdpte_guest_begin; 5057 extern char vmx_mtf_pdpte_guest_end; 5058 5059 asm("vmx_mtf_pdpte_guest_begin:\n\t" 5060 "mov %cr0, %rax\n\t" /* save CR0 with PG=1 */ 5061 "vmcall\n\t" /* on return from this CR0.PG=0 */ 5062 "mov %rax, %cr0\n\t" /* restore CR0.PG=1 to enter PAE mode */ 5063 "vmcall\n\t" 5064 "retq\n\t" 5065 "vmx_mtf_pdpte_guest_end:"); 5066 5067 static void vmx_mtf_pdpte_test(void) 5068 { 5069 void *test_mtf_pdpte_guest; 5070 pteval_t *pdpt; 5071 u32 guest_ar_cs; 5072 u64 guest_efer; 5073 pteval_t *pte; 5074 u64 guest_cr0; 5075 u64 guest_cr3; 5076 u64 guest_cr4; 5077 u64 ent_ctls; 5078 int i; 5079 5080 if (setup_ept(false)) 5081 return; 5082 5083 if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) { 5084 report_skip("%s : \"Monitor trap flag\" exec control not supported", __func__); 5085 return; 5086 } 5087 5088 if (!(ctrl_cpu_rev[1].clr & CPU_URG)) { 5089 report_skip("%s : \"Unrestricted guest\" exec control not supported", __func__); 5090 return; 5091 } 5092 5093 vmcs_write(EXC_BITMAP, ~0); 5094 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG); 5095 5096 /* 5097 * Copy the guest code to an identity-mapped page. 5098 */ 5099 test_mtf_pdpte_guest = alloc_page(); 5100 memcpy(test_mtf_pdpte_guest, &vmx_mtf_pdpte_guest_begin, 5101 &vmx_mtf_pdpte_guest_end - &vmx_mtf_pdpte_guest_begin); 5102 5103 test_set_guest(test_mtf_pdpte_guest); 5104 5105 enter_guest(); 5106 skip_exit_vmcall(); 5107 5108 /* 5109 * Put the guest in non-paged 32-bit protected mode, ready to enter 5110 * PAE mode when CR0.PG is set. CR4.PAE will already have been set 5111 * when the guest started out in long mode. 5112 */ 5113 ent_ctls = vmcs_read(ENT_CONTROLS); 5114 vmcs_write(ENT_CONTROLS, ent_ctls & ~ENT_GUEST_64); 5115 5116 guest_efer = vmcs_read(GUEST_EFER); 5117 vmcs_write(GUEST_EFER, guest_efer & ~(EFER_LMA | EFER_LME)); 5118 5119 /* 5120 * Set CS access rights bits for 32-bit protected mode: 5121 * 3:0 B execute/read/accessed 5122 * 4 1 code or data 5123 * 6:5 0 descriptor privilege level 5124 * 7 1 present 5125 * 11:8 0 reserved 5126 * 12 0 available for use by system software 5127 * 13 0 64 bit mode not active 5128 * 14 1 default operation size 32-bit segment 5129 * 15 1 page granularity: segment limit in 4K units 5130 * 16 0 segment usable 5131 * 31:17 0 reserved 5132 */ 5133 guest_ar_cs = vmcs_read(GUEST_AR_CS); 5134 vmcs_write(GUEST_AR_CS, 0xc09b); 5135 5136 guest_cr0 = vmcs_read(GUEST_CR0); 5137 vmcs_write(GUEST_CR0, guest_cr0 & ~X86_CR0_PG); 5138 5139 guest_cr4 = vmcs_read(GUEST_CR4); 5140 vmcs_write(GUEST_CR4, guest_cr4 & ~X86_CR4_PCIDE); 5141 5142 guest_cr3 = vmcs_read(GUEST_CR3); 5143 5144 /* 5145 * Turn the 4-level page table into a PAE page table by following the 0th 5146 * PML4 entry to a PDPT page, and grab the first four PDPTEs from that 5147 * page. 5148 * 5149 * Why does this work? 5150 * 5151 * PAE uses 32-bit addressing which implies: 5152 * Bits 11:0 page offset 5153 * Bits 20:12 entry into 512-entry page table 5154 * Bits 29:21 entry into a 512-entry directory table 5155 * Bits 31:30 entry into the page directory pointer table. 5156 * Bits 63:32 zero 5157 * 5158 * As only 2 bits are needed to select the PDPTEs for the entire 5159 * 32-bit address space, take the first 4 PDPTEs in the level 3 page 5160 * directory pointer table. It doesn't matter which of these PDPTEs 5161 * are present because they must cover the guest code given that it 5162 * has already run successfully. 5163 * 5164 * Get a pointer to PTE for GVA=0 in the page directory pointer table 5165 */ 5166 pte = get_pte_level( 5167 (pgd_t *)phys_to_virt(guest_cr3 & ~X86_CR3_PCID_MASK), 0, 5168 PDPT_LEVEL); 5169 5170 /* 5171 * Need some memory for the 4-entry PAE page directory pointer 5172 * table. Use the end of the identity-mapped page where the guest code 5173 * is stored. There is definitely space as the guest code is only a 5174 * few bytes. 5175 */ 5176 pdpt = test_mtf_pdpte_guest + PAGE_SIZE - 4 * sizeof(pteval_t); 5177 5178 /* 5179 * Copy the first four PDPTEs into the PAE page table with reserved 5180 * bits cleared. Note that permission bits from the PML4E and PDPTE 5181 * are not propagated. 5182 */ 5183 for (i = 0; i < 4; i++) { 5184 TEST_ASSERT_EQ_MSG(0, (pte[i] & PDPTE64_RSVD_MASK), 5185 "PDPTE has invalid reserved bits"); 5186 TEST_ASSERT_EQ_MSG(0, (pte[i] & PDPTE64_PAGE_SIZE_MASK), 5187 "Cannot use 1GB super pages for PAE"); 5188 pdpt[i] = pte[i] & ~(PAE_PDPTE_RSVD_MASK); 5189 } 5190 vmcs_write(GUEST_CR3, virt_to_phys(pdpt)); 5191 5192 enable_mtf(); 5193 enter_guest(); 5194 assert_exit_reason(VMX_MTF); 5195 disable_mtf(); 5196 5197 /* 5198 * The four PDPTEs should have been loaded into the VMCS when 5199 * the guest set CR0.PG to enter PAE mode. 5200 */ 5201 for (i = 0; i < 4; i++) { 5202 u64 pdpte = vmcs_read(GUEST_PDPTE + 2 * i); 5203 5204 report(pdpte == pdpt[i], "PDPTE%d is 0x%lx (expected 0x%lx)", 5205 i, pdpte, pdpt[i]); 5206 } 5207 5208 /* 5209 * Now, try to enter the guest in PAE mode. If the PDPTEs in the 5210 * vmcs are wrong, this will fail. 5211 */ 5212 enter_guest(); 5213 skip_exit_vmcall(); 5214 5215 /* 5216 * Return guest to 64-bit mode and wrap up. 5217 */ 5218 vmcs_write(ENT_CONTROLS, ent_ctls); 5219 vmcs_write(GUEST_EFER, guest_efer); 5220 vmcs_write(GUEST_AR_CS, guest_ar_cs); 5221 vmcs_write(GUEST_CR0, guest_cr0); 5222 vmcs_write(GUEST_CR4, guest_cr4); 5223 vmcs_write(GUEST_CR3, guest_cr3); 5224 5225 enter_guest(); 5226 } 5227 5228 /* 5229 * Tests for VM-execution control fields 5230 */ 5231 static void test_vm_execution_ctls(void) 5232 { 5233 test_pin_based_ctls(); 5234 test_primary_processor_based_ctls(); 5235 test_secondary_processor_based_ctls(); 5236 test_cr3_targets(); 5237 test_io_bitmaps(); 5238 test_msr_bitmap(); 5239 test_apic_ctls(); 5240 test_tpr_threshold(); 5241 test_nmi_ctrls(); 5242 test_pml(); 5243 test_vpid(); 5244 test_ept_eptp(); 5245 test_vmx_preemption_timer(); 5246 } 5247 5248 /* 5249 * The following checks are performed for the VM-entry MSR-load address if 5250 * the VM-entry MSR-load count field is non-zero: 5251 * 5252 * - The lower 4 bits of the VM-entry MSR-load address must be 0. 5253 * The address should not set any bits beyond the processor's 5254 * physical-address width. 5255 * 5256 * - The address of the last byte in the VM-entry MSR-load area 5257 * should not set any bits beyond the processor's physical-address 5258 * width. The address of this last byte is VM-entry MSR-load address 5259 * + (MSR count * 16) - 1. (The arithmetic used for the computation 5260 * uses more bits than the processor's physical-address width.) 5261 * 5262 * 5263 * [Intel SDM] 5264 */ 5265 static void test_entry_msr_load(void) 5266 { 5267 entry_msr_load = alloc_page(); 5268 u64 tmp; 5269 u32 entry_msr_ld_cnt = 1; 5270 int i; 5271 u32 addr_len = 64; 5272 5273 vmcs_write(ENT_MSR_LD_CNT, entry_msr_ld_cnt); 5274 5275 /* Check first 4 bits of VM-entry MSR-load address */ 5276 for (i = 0; i < 4; i++) { 5277 tmp = (u64)entry_msr_load | 1ull << i; 5278 vmcs_write(ENTER_MSR_LD_ADDR, tmp); 5279 report_prefix_pushf("VM-entry MSR-load addr [4:0] %lx", 5280 tmp & 0xf); 5281 test_vmx_invalid_controls(); 5282 report_prefix_pop(); 5283 } 5284 5285 if (basic.val & (1ul << 48)) 5286 addr_len = 32; 5287 5288 test_vmcs_addr_values("VM-entry-MSR-load address", 5289 ENTER_MSR_LD_ADDR, 16, false, false, 5290 4, addr_len - 1); 5291 5292 /* 5293 * Check last byte of VM-entry MSR-load address 5294 */ 5295 entry_msr_load = (struct vmx_msr_entry *)((u64)entry_msr_load & ~0xf); 5296 5297 for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len); 5298 i < 64; i++) { 5299 tmp = ((u64)entry_msr_load + entry_msr_ld_cnt * 16 - 1) | 5300 1ul << i; 5301 vmcs_write(ENTER_MSR_LD_ADDR, 5302 tmp - (entry_msr_ld_cnt * 16 - 1)); 5303 test_vmx_invalid_controls(); 5304 } 5305 5306 vmcs_write(ENT_MSR_LD_CNT, 2); 5307 vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 16); 5308 test_vmx_invalid_controls(); 5309 vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 32); 5310 test_vmx_valid_controls(); 5311 vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 48); 5312 test_vmx_valid_controls(); 5313 } 5314 5315 static struct vmx_state_area_test_data { 5316 u32 msr; 5317 u64 exp; 5318 bool enabled; 5319 } vmx_state_area_test_data; 5320 5321 static void guest_state_test_main(void) 5322 { 5323 u64 obs; 5324 struct vmx_state_area_test_data *data = &vmx_state_area_test_data; 5325 5326 while (1) { 5327 if (vmx_get_test_stage() == 2) 5328 break; 5329 5330 if (data->enabled) { 5331 obs = rdmsr(data->msr); 5332 report(data->exp == obs, 5333 "Guest state is 0x%lx (expected 0x%lx)", 5334 obs, data->exp); 5335 } 5336 5337 vmcall(); 5338 } 5339 5340 asm volatile("fnop"); 5341 } 5342 5343 static void test_guest_state(const char *test, bool xfail, u64 field, 5344 const char * field_name) 5345 { 5346 struct vmentry_result result; 5347 u8 abort_flags; 5348 5349 abort_flags = ABORT_ON_EARLY_VMENTRY_FAIL; 5350 if (!xfail) 5351 abort_flags = ABORT_ON_INVALID_GUEST_STATE; 5352 5353 __enter_guest(abort_flags, &result); 5354 5355 report(result.exit_reason.failed_vmentry == xfail && 5356 ((xfail && result.exit_reason.basic == VMX_FAIL_STATE) || 5357 (!xfail && result.exit_reason.basic == VMX_VMCALL)) && 5358 (!xfail || vmcs_read(EXI_QUALIFICATION) == ENTRY_FAIL_DEFAULT), 5359 "%s, %s = %lx", test, field_name, field); 5360 5361 if (!result.exit_reason.failed_vmentry) 5362 skip_exit_insn(); 5363 } 5364 5365 /* 5366 * Tests for VM-entry control fields 5367 */ 5368 static void test_vm_entry_ctls(void) 5369 { 5370 test_invalid_event_injection(); 5371 test_entry_msr_load(); 5372 } 5373 5374 /* 5375 * The following checks are performed for the VM-exit MSR-store address if 5376 * the VM-exit MSR-store count field is non-zero: 5377 * 5378 * - The lower 4 bits of the VM-exit MSR-store address must be 0. 5379 * The address should not set any bits beyond the processor's 5380 * physical-address width. 5381 * 5382 * - The address of the last byte in the VM-exit MSR-store area 5383 * should not set any bits beyond the processor's physical-address 5384 * width. The address of this last byte is VM-exit MSR-store address 5385 * + (MSR count * 16) - 1. (The arithmetic used for the computation 5386 * uses more bits than the processor's physical-address width.) 5387 * 5388 * If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits 5389 * in the range 63:32. 5390 * 5391 * [Intel SDM] 5392 */ 5393 static void test_exit_msr_store(void) 5394 { 5395 exit_msr_store = alloc_page(); 5396 u64 tmp; 5397 u32 exit_msr_st_cnt = 1; 5398 int i; 5399 u32 addr_len = 64; 5400 5401 vmcs_write(EXI_MSR_ST_CNT, exit_msr_st_cnt); 5402 5403 /* Check first 4 bits of VM-exit MSR-store address */ 5404 for (i = 0; i < 4; i++) { 5405 tmp = (u64)exit_msr_store | 1ull << i; 5406 vmcs_write(EXIT_MSR_ST_ADDR, tmp); 5407 report_prefix_pushf("VM-exit MSR-store addr [4:0] %lx", 5408 tmp & 0xf); 5409 test_vmx_invalid_controls(); 5410 report_prefix_pop(); 5411 } 5412 5413 if (basic.val & (1ul << 48)) 5414 addr_len = 32; 5415 5416 test_vmcs_addr_values("VM-exit-MSR-store address", 5417 EXIT_MSR_ST_ADDR, 16, false, false, 5418 4, addr_len - 1); 5419 5420 /* 5421 * Check last byte of VM-exit MSR-store address 5422 */ 5423 exit_msr_store = (struct vmx_msr_entry *)((u64)exit_msr_store & ~0xf); 5424 5425 for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len); 5426 i < 64; i++) { 5427 tmp = ((u64)exit_msr_store + exit_msr_st_cnt * 16 - 1) | 5428 1ul << i; 5429 vmcs_write(EXIT_MSR_ST_ADDR, 5430 tmp - (exit_msr_st_cnt * 16 - 1)); 5431 test_vmx_invalid_controls(); 5432 } 5433 5434 vmcs_write(EXI_MSR_ST_CNT, 2); 5435 vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 16); 5436 test_vmx_invalid_controls(); 5437 vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 32); 5438 test_vmx_valid_controls(); 5439 vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 48); 5440 test_vmx_valid_controls(); 5441 } 5442 5443 /* 5444 * Tests for VM-exit controls 5445 */ 5446 static void test_vm_exit_ctls(void) 5447 { 5448 test_exit_msr_store(); 5449 } 5450 5451 /* 5452 * Check that the virtual CPU checks all of the VMX controls as 5453 * documented in the Intel SDM. 5454 */ 5455 static void vmx_controls_test(void) 5456 { 5457 /* 5458 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will 5459 * fail due to invalid guest state, should we make it that 5460 * far. 5461 */ 5462 vmcs_write(GUEST_RFLAGS, 0); 5463 5464 test_vm_execution_ctls(); 5465 test_vm_exit_ctls(); 5466 test_vm_entry_ctls(); 5467 } 5468 5469 struct apic_reg_virt_config { 5470 bool apic_register_virtualization; 5471 bool use_tpr_shadow; 5472 bool virtualize_apic_accesses; 5473 bool virtualize_x2apic_mode; 5474 bool activate_secondary_controls; 5475 }; 5476 5477 struct apic_reg_test { 5478 const char *name; 5479 struct apic_reg_virt_config apic_reg_virt_config; 5480 }; 5481 5482 struct apic_reg_virt_expectation { 5483 enum Reason rd_exit_reason; 5484 enum Reason wr_exit_reason; 5485 u32 val; 5486 u32 (*virt_fn)(u32); 5487 5488 /* 5489 * If false, accessing the APIC access address from L2 is treated as a 5490 * normal memory operation, rather than triggering virtualization. 5491 */ 5492 bool virtualize_apic_accesses; 5493 }; 5494 5495 static u32 apic_virt_identity(u32 val) 5496 { 5497 return val; 5498 } 5499 5500 static u32 apic_virt_nibble1(u32 val) 5501 { 5502 return val & 0xf0; 5503 } 5504 5505 static u32 apic_virt_byte3(u32 val) 5506 { 5507 return val & (0xff << 24); 5508 } 5509 5510 static bool apic_reg_virt_exit_expectation( 5511 u32 reg, struct apic_reg_virt_config *config, 5512 struct apic_reg_virt_expectation *expectation) 5513 { 5514 /* Good configs, where some L2 APIC accesses are virtualized. */ 5515 bool virtualize_apic_accesses_only = 5516 config->virtualize_apic_accesses && 5517 !config->use_tpr_shadow && 5518 !config->apic_register_virtualization && 5519 !config->virtualize_x2apic_mode && 5520 config->activate_secondary_controls; 5521 bool virtualize_apic_accesses_and_use_tpr_shadow = 5522 config->virtualize_apic_accesses && 5523 config->use_tpr_shadow && 5524 !config->apic_register_virtualization && 5525 !config->virtualize_x2apic_mode && 5526 config->activate_secondary_controls; 5527 bool apic_register_virtualization = 5528 config->virtualize_apic_accesses && 5529 config->use_tpr_shadow && 5530 config->apic_register_virtualization && 5531 !config->virtualize_x2apic_mode && 5532 config->activate_secondary_controls; 5533 5534 expectation->val = MAGIC_VAL_1; 5535 expectation->virt_fn = apic_virt_identity; 5536 expectation->virtualize_apic_accesses = 5537 config->virtualize_apic_accesses && 5538 config->activate_secondary_controls; 5539 if (virtualize_apic_accesses_only) { 5540 expectation->rd_exit_reason = VMX_APIC_ACCESS; 5541 expectation->wr_exit_reason = VMX_APIC_ACCESS; 5542 } else if (virtualize_apic_accesses_and_use_tpr_shadow) { 5543 switch (reg) { 5544 case APIC_TASKPRI: 5545 expectation->rd_exit_reason = VMX_VMCALL; 5546 expectation->wr_exit_reason = VMX_VMCALL; 5547 expectation->virt_fn = apic_virt_nibble1; 5548 break; 5549 default: 5550 expectation->rd_exit_reason = VMX_APIC_ACCESS; 5551 expectation->wr_exit_reason = VMX_APIC_ACCESS; 5552 } 5553 } else if (apic_register_virtualization) { 5554 expectation->rd_exit_reason = VMX_VMCALL; 5555 5556 switch (reg) { 5557 case APIC_ID: 5558 case APIC_EOI: 5559 case APIC_LDR: 5560 case APIC_DFR: 5561 case APIC_SPIV: 5562 case APIC_ESR: 5563 case APIC_ICR: 5564 case APIC_LVTT: 5565 case APIC_LVTTHMR: 5566 case APIC_LVTPC: 5567 case APIC_LVT0: 5568 case APIC_LVT1: 5569 case APIC_LVTERR: 5570 case APIC_TMICT: 5571 case APIC_TDCR: 5572 expectation->wr_exit_reason = VMX_APIC_WRITE; 5573 break; 5574 case APIC_LVR: 5575 case APIC_ISR ... APIC_ISR + 0x70: 5576 case APIC_TMR ... APIC_TMR + 0x70: 5577 case APIC_IRR ... APIC_IRR + 0x70: 5578 expectation->wr_exit_reason = VMX_APIC_ACCESS; 5579 break; 5580 case APIC_TASKPRI: 5581 expectation->wr_exit_reason = VMX_VMCALL; 5582 expectation->virt_fn = apic_virt_nibble1; 5583 break; 5584 case APIC_ICR2: 5585 expectation->wr_exit_reason = VMX_VMCALL; 5586 expectation->virt_fn = apic_virt_byte3; 5587 break; 5588 default: 5589 expectation->rd_exit_reason = VMX_APIC_ACCESS; 5590 expectation->wr_exit_reason = VMX_APIC_ACCESS; 5591 } 5592 } else if (!expectation->virtualize_apic_accesses) { 5593 /* 5594 * No APIC registers are directly virtualized. This includes 5595 * VTPR, which can be virtualized through MOV to/from CR8 via 5596 * the use TPR shadow control, but not through directly 5597 * accessing VTPR. 5598 */ 5599 expectation->rd_exit_reason = VMX_VMCALL; 5600 expectation->wr_exit_reason = VMX_VMCALL; 5601 } else { 5602 printf("Cannot parse APIC register virtualization config:\n" 5603 "\tvirtualize_apic_accesses: %d\n" 5604 "\tuse_tpr_shadow: %d\n" 5605 "\tapic_register_virtualization: %d\n" 5606 "\tvirtualize_x2apic_mode: %d\n" 5607 "\tactivate_secondary_controls: %d\n", 5608 config->virtualize_apic_accesses, 5609 config->use_tpr_shadow, 5610 config->apic_register_virtualization, 5611 config->virtualize_x2apic_mode, 5612 config->activate_secondary_controls); 5613 5614 return false; 5615 } 5616 5617 return true; 5618 } 5619 5620 struct apic_reg_test apic_reg_tests[] = { 5621 /* Good configs, where some L2 APIC accesses are virtualized. */ 5622 { 5623 .name = "Virtualize APIC accesses", 5624 .apic_reg_virt_config = { 5625 .virtualize_apic_accesses = true, 5626 .use_tpr_shadow = false, 5627 .apic_register_virtualization = false, 5628 .virtualize_x2apic_mode = false, 5629 .activate_secondary_controls = true, 5630 }, 5631 }, 5632 { 5633 .name = "Virtualize APIC accesses + Use TPR shadow", 5634 .apic_reg_virt_config = { 5635 .virtualize_apic_accesses = true, 5636 .use_tpr_shadow = true, 5637 .apic_register_virtualization = false, 5638 .virtualize_x2apic_mode = false, 5639 .activate_secondary_controls = true, 5640 }, 5641 }, 5642 { 5643 .name = "APIC-register virtualization", 5644 .apic_reg_virt_config = { 5645 .virtualize_apic_accesses = true, 5646 .use_tpr_shadow = true, 5647 .apic_register_virtualization = true, 5648 .virtualize_x2apic_mode = false, 5649 .activate_secondary_controls = true, 5650 }, 5651 }, 5652 5653 /* 5654 * Test that the secondary processor-based VM-execution controls are 5655 * correctly ignored when "activate secondary controls" is disabled. 5656 */ 5657 { 5658 .name = "Activate secondary controls off", 5659 .apic_reg_virt_config = { 5660 .virtualize_apic_accesses = true, 5661 .use_tpr_shadow = false, 5662 .apic_register_virtualization = true, 5663 .virtualize_x2apic_mode = true, 5664 .activate_secondary_controls = false, 5665 }, 5666 }, 5667 { 5668 .name = "Activate secondary controls off + Use TPR shadow", 5669 .apic_reg_virt_config = { 5670 .virtualize_apic_accesses = true, 5671 .use_tpr_shadow = true, 5672 .apic_register_virtualization = true, 5673 .virtualize_x2apic_mode = true, 5674 .activate_secondary_controls = false, 5675 }, 5676 }, 5677 5678 /* 5679 * Test that the APIC access address is treated like an arbitrary memory 5680 * address when "virtualize APIC accesses" is disabled. 5681 */ 5682 { 5683 .name = "Virtualize APIC accesses off + Use TPR shadow", 5684 .apic_reg_virt_config = { 5685 .virtualize_apic_accesses = false, 5686 .use_tpr_shadow = true, 5687 .apic_register_virtualization = true, 5688 .virtualize_x2apic_mode = true, 5689 .activate_secondary_controls = true, 5690 }, 5691 }, 5692 5693 /* 5694 * Test that VM entry fails due to invalid controls when 5695 * "APIC-register virtualization" is enabled while "use TPR shadow" is 5696 * disabled. 5697 */ 5698 { 5699 .name = "APIC-register virtualization + Use TPR shadow off", 5700 .apic_reg_virt_config = { 5701 .virtualize_apic_accesses = true, 5702 .use_tpr_shadow = false, 5703 .apic_register_virtualization = true, 5704 .virtualize_x2apic_mode = false, 5705 .activate_secondary_controls = true, 5706 }, 5707 }, 5708 5709 /* 5710 * Test that VM entry fails due to invalid controls when 5711 * "Virtualize x2APIC mode" is enabled while "use TPR shadow" is 5712 * disabled. 5713 */ 5714 { 5715 .name = "Virtualize x2APIC mode + Use TPR shadow off", 5716 .apic_reg_virt_config = { 5717 .virtualize_apic_accesses = false, 5718 .use_tpr_shadow = false, 5719 .apic_register_virtualization = false, 5720 .virtualize_x2apic_mode = true, 5721 .activate_secondary_controls = true, 5722 }, 5723 }, 5724 { 5725 .name = "Virtualize x2APIC mode + Use TPR shadow off v2", 5726 .apic_reg_virt_config = { 5727 .virtualize_apic_accesses = false, 5728 .use_tpr_shadow = false, 5729 .apic_register_virtualization = true, 5730 .virtualize_x2apic_mode = true, 5731 .activate_secondary_controls = true, 5732 }, 5733 }, 5734 5735 /* 5736 * Test that VM entry fails due to invalid controls when 5737 * "virtualize x2APIC mode" is enabled while "virtualize APIC accesses" 5738 * is enabled. 5739 */ 5740 { 5741 .name = "Virtualize x2APIC mode + Virtualize APIC accesses", 5742 .apic_reg_virt_config = { 5743 .virtualize_apic_accesses = true, 5744 .use_tpr_shadow = true, 5745 .apic_register_virtualization = false, 5746 .virtualize_x2apic_mode = true, 5747 .activate_secondary_controls = true, 5748 }, 5749 }, 5750 { 5751 .name = "Virtualize x2APIC mode + Virtualize APIC accesses v2", 5752 .apic_reg_virt_config = { 5753 .virtualize_apic_accesses = true, 5754 .use_tpr_shadow = true, 5755 .apic_register_virtualization = true, 5756 .virtualize_x2apic_mode = true, 5757 .activate_secondary_controls = true, 5758 }, 5759 }, 5760 }; 5761 5762 enum Apic_op { 5763 APIC_OP_XAPIC_RD, 5764 APIC_OP_XAPIC_WR, 5765 TERMINATE, 5766 }; 5767 5768 static u32 vmx_xapic_read(u32 *apic_access_address, u32 reg) 5769 { 5770 return *(volatile u32 *)((uintptr_t)apic_access_address + reg); 5771 } 5772 5773 static void vmx_xapic_write(u32 *apic_access_address, u32 reg, u32 val) 5774 { 5775 *(volatile u32 *)((uintptr_t)apic_access_address + reg) = val; 5776 } 5777 5778 struct apic_reg_virt_guest_args { 5779 enum Apic_op op; 5780 u32 *apic_access_address; 5781 u32 reg; 5782 u32 val; 5783 bool check_rd; 5784 u32 (*virt_fn)(u32); 5785 } apic_reg_virt_guest_args; 5786 5787 static void apic_reg_virt_guest(void) 5788 { 5789 volatile struct apic_reg_virt_guest_args *args = 5790 &apic_reg_virt_guest_args; 5791 5792 for (;;) { 5793 enum Apic_op op = args->op; 5794 u32 *apic_access_address = args->apic_access_address; 5795 u32 reg = args->reg; 5796 u32 val = args->val; 5797 bool check_rd = args->check_rd; 5798 u32 (*virt_fn)(u32) = args->virt_fn; 5799 5800 if (op == TERMINATE) 5801 break; 5802 5803 if (op == APIC_OP_XAPIC_RD) { 5804 u32 ret = vmx_xapic_read(apic_access_address, reg); 5805 5806 if (check_rd) { 5807 u32 want = virt_fn(val); 5808 u32 got = virt_fn(ret); 5809 5810 report(got == want, 5811 "read 0x%x, expected 0x%x.", got, want); 5812 } 5813 } else if (op == APIC_OP_XAPIC_WR) { 5814 vmx_xapic_write(apic_access_address, reg, val); 5815 } 5816 5817 /* 5818 * The L1 should always execute a vmcall after it's done testing 5819 * an individual APIC operation. This helps to validate that the 5820 * L1 and L2 are in sync with each other, as expected. 5821 */ 5822 vmcall(); 5823 } 5824 } 5825 5826 static void test_xapic_rd( 5827 u32 reg, struct apic_reg_virt_expectation *expectation, 5828 u32 *apic_access_address, u32 *virtual_apic_page) 5829 { 5830 u32 val = expectation->val; 5831 u32 exit_reason_want = expectation->rd_exit_reason; 5832 struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; 5833 5834 report_prefix_pushf("xapic - reading 0x%03x", reg); 5835 5836 /* Configure guest to do an xapic read */ 5837 args->op = APIC_OP_XAPIC_RD; 5838 args->apic_access_address = apic_access_address; 5839 args->reg = reg; 5840 args->val = val; 5841 args->check_rd = exit_reason_want == VMX_VMCALL; 5842 args->virt_fn = expectation->virt_fn; 5843 5844 /* Setup virtual APIC page */ 5845 if (!expectation->virtualize_apic_accesses) { 5846 apic_access_address[apic_reg_index(reg)] = val; 5847 virtual_apic_page[apic_reg_index(reg)] = 0; 5848 } else if (exit_reason_want == VMX_VMCALL) { 5849 apic_access_address[apic_reg_index(reg)] = 0; 5850 virtual_apic_page[apic_reg_index(reg)] = val; 5851 } 5852 5853 /* Enter guest */ 5854 enter_guest(); 5855 5856 /* 5857 * Validate the behavior and 5858 * pass a magic value back to the guest. 5859 */ 5860 if (exit_reason_want == VMX_APIC_ACCESS) { 5861 u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff; 5862 5863 assert_exit_reason(exit_reason_want); 5864 report(apic_page_offset == reg, 5865 "got APIC access exit @ page offset 0x%03x, want 0x%03x", 5866 apic_page_offset, reg); 5867 skip_exit_insn(); 5868 5869 /* Reenter guest so it can consume/check rcx and exit again. */ 5870 enter_guest(); 5871 } else if (exit_reason_want != VMX_VMCALL) { 5872 report_fail("Oops, bad exit expectation: %u.", exit_reason_want); 5873 } 5874 5875 skip_exit_vmcall(); 5876 report_prefix_pop(); 5877 } 5878 5879 static void test_xapic_wr( 5880 u32 reg, struct apic_reg_virt_expectation *expectation, 5881 u32 *apic_access_address, u32 *virtual_apic_page) 5882 { 5883 u32 val = expectation->val; 5884 u32 exit_reason_want = expectation->wr_exit_reason; 5885 struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; 5886 bool virtualized = 5887 expectation->virtualize_apic_accesses && 5888 (exit_reason_want == VMX_APIC_WRITE || 5889 exit_reason_want == VMX_VMCALL); 5890 bool checked = false; 5891 5892 report_prefix_pushf("xapic - writing 0x%x to 0x%03x", val, reg); 5893 5894 /* Configure guest to do an xapic read */ 5895 args->op = APIC_OP_XAPIC_WR; 5896 args->apic_access_address = apic_access_address; 5897 args->reg = reg; 5898 args->val = val; 5899 5900 /* Setup virtual APIC page */ 5901 if (virtualized || !expectation->virtualize_apic_accesses) { 5902 apic_access_address[apic_reg_index(reg)] = 0; 5903 virtual_apic_page[apic_reg_index(reg)] = 0; 5904 } 5905 5906 /* Enter guest */ 5907 enter_guest(); 5908 5909 /* 5910 * Validate the behavior and 5911 * pass a magic value back to the guest. 5912 */ 5913 if (exit_reason_want == VMX_APIC_ACCESS) { 5914 u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff; 5915 5916 assert_exit_reason(exit_reason_want); 5917 report(apic_page_offset == reg, 5918 "got APIC access exit @ page offset 0x%03x, want 0x%03x", 5919 apic_page_offset, reg); 5920 skip_exit_insn(); 5921 5922 /* Reenter guest so it can consume/check rcx and exit again. */ 5923 enter_guest(); 5924 } else if (exit_reason_want == VMX_APIC_WRITE) { 5925 assert_exit_reason(exit_reason_want); 5926 report(virtual_apic_page[apic_reg_index(reg)] == val, 5927 "got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%x", 5928 apic_reg_index(reg), 5929 virtual_apic_page[apic_reg_index(reg)], val); 5930 checked = true; 5931 5932 /* Reenter guest so it can consume/check rcx and exit again. */ 5933 enter_guest(); 5934 } else if (exit_reason_want != VMX_VMCALL) { 5935 report_fail("Oops, bad exit expectation: %u.", exit_reason_want); 5936 } 5937 5938 assert_exit_reason(VMX_VMCALL); 5939 if (virtualized && !checked) { 5940 u32 want = expectation->virt_fn(val); 5941 u32 got = virtual_apic_page[apic_reg_index(reg)]; 5942 got = expectation->virt_fn(got); 5943 5944 report(got == want, "exitless write; val is 0x%x, want 0x%x", 5945 got, want); 5946 } else if (!expectation->virtualize_apic_accesses && !checked) { 5947 u32 got = apic_access_address[apic_reg_index(reg)]; 5948 5949 report(got == val, 5950 "non-virtualized write; val is 0x%x, want 0x%x", got, 5951 val); 5952 } else if (!expectation->virtualize_apic_accesses && checked) { 5953 report_fail("Non-virtualized write was prematurely checked!"); 5954 } 5955 5956 skip_exit_vmcall(); 5957 report_prefix_pop(); 5958 } 5959 5960 enum Config_type { 5961 CONFIG_TYPE_GOOD, 5962 CONFIG_TYPE_UNSUPPORTED, 5963 CONFIG_TYPE_VMENTRY_FAILS_EARLY, 5964 }; 5965 5966 static enum Config_type configure_apic_reg_virt_test( 5967 struct apic_reg_virt_config *apic_reg_virt_config) 5968 { 5969 u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 5970 u32 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); 5971 /* Configs where L2 entry fails early, due to invalid controls. */ 5972 bool use_tpr_shadow_incorrectly_off = 5973 !apic_reg_virt_config->use_tpr_shadow && 5974 (apic_reg_virt_config->apic_register_virtualization || 5975 apic_reg_virt_config->virtualize_x2apic_mode) && 5976 apic_reg_virt_config->activate_secondary_controls; 5977 bool virtualize_apic_accesses_incorrectly_on = 5978 apic_reg_virt_config->virtualize_apic_accesses && 5979 apic_reg_virt_config->virtualize_x2apic_mode && 5980 apic_reg_virt_config->activate_secondary_controls; 5981 bool vmentry_fails_early = 5982 use_tpr_shadow_incorrectly_off || 5983 virtualize_apic_accesses_incorrectly_on; 5984 5985 if (apic_reg_virt_config->activate_secondary_controls) { 5986 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) { 5987 printf("VM-execution control \"activate secondary controls\" NOT supported.\n"); 5988 return CONFIG_TYPE_UNSUPPORTED; 5989 } 5990 cpu_exec_ctrl0 |= CPU_SECONDARY; 5991 } else { 5992 cpu_exec_ctrl0 &= ~CPU_SECONDARY; 5993 } 5994 5995 if (apic_reg_virt_config->virtualize_apic_accesses) { 5996 if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES)) { 5997 printf("VM-execution control \"virtualize APIC accesses\" NOT supported.\n"); 5998 return CONFIG_TYPE_UNSUPPORTED; 5999 } 6000 cpu_exec_ctrl1 |= CPU_VIRT_APIC_ACCESSES; 6001 } else { 6002 cpu_exec_ctrl1 &= ~CPU_VIRT_APIC_ACCESSES; 6003 } 6004 6005 if (apic_reg_virt_config->use_tpr_shadow) { 6006 if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) { 6007 printf("VM-execution control \"use TPR shadow\" NOT supported.\n"); 6008 return CONFIG_TYPE_UNSUPPORTED; 6009 } 6010 cpu_exec_ctrl0 |= CPU_TPR_SHADOW; 6011 } else { 6012 cpu_exec_ctrl0 &= ~CPU_TPR_SHADOW; 6013 } 6014 6015 if (apic_reg_virt_config->apic_register_virtualization) { 6016 if (!(ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT)) { 6017 printf("VM-execution control \"APIC-register virtualization\" NOT supported.\n"); 6018 return CONFIG_TYPE_UNSUPPORTED; 6019 } 6020 cpu_exec_ctrl1 |= CPU_APIC_REG_VIRT; 6021 } else { 6022 cpu_exec_ctrl1 &= ~CPU_APIC_REG_VIRT; 6023 } 6024 6025 if (apic_reg_virt_config->virtualize_x2apic_mode) { 6026 if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_X2APIC)) { 6027 printf("VM-execution control \"virtualize x2APIC mode\" NOT supported.\n"); 6028 return CONFIG_TYPE_UNSUPPORTED; 6029 } 6030 cpu_exec_ctrl1 |= CPU_VIRT_X2APIC; 6031 } else { 6032 cpu_exec_ctrl1 &= ~CPU_VIRT_X2APIC; 6033 } 6034 6035 vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); 6036 vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); 6037 6038 if (vmentry_fails_early) 6039 return CONFIG_TYPE_VMENTRY_FAILS_EARLY; 6040 6041 return CONFIG_TYPE_GOOD; 6042 } 6043 6044 static bool cpu_has_apicv(void) 6045 { 6046 return ((ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT) && 6047 (ctrl_cpu_rev[1].clr & CPU_VINTD) && 6048 (ctrl_pin_rev.clr & PIN_POST_INTR)); 6049 } 6050 6051 /* Validates APIC register access across valid virtualization configurations. */ 6052 static void apic_reg_virt_test(void) 6053 { 6054 u32 *apic_access_address; 6055 u32 *virtual_apic_page; 6056 u64 control; 6057 u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 6058 u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); 6059 int i; 6060 struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; 6061 6062 if (!cpu_has_apicv()) { 6063 report_skip("%s : Not all required APICv bits supported", __func__); 6064 return; 6065 } 6066 6067 control = cpu_exec_ctrl1; 6068 control &= ~CPU_VINTD; 6069 vmcs_write(CPU_EXEC_CTRL1, control); 6070 6071 test_set_guest(apic_reg_virt_guest); 6072 6073 /* 6074 * From the SDM: The 1-setting of the "virtualize APIC accesses" 6075 * VM-execution is guaranteed to apply only if translations to the 6076 * APIC-access address use a 4-KByte page. 6077 */ 6078 apic_access_address = alloc_page(); 6079 force_4k_page(apic_access_address); 6080 vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_address)); 6081 6082 virtual_apic_page = alloc_page(); 6083 vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); 6084 6085 for (i = 0; i < ARRAY_SIZE(apic_reg_tests); i++) { 6086 struct apic_reg_test *apic_reg_test = &apic_reg_tests[i]; 6087 struct apic_reg_virt_config *apic_reg_virt_config = 6088 &apic_reg_test->apic_reg_virt_config; 6089 enum Config_type config_type; 6090 u32 reg; 6091 6092 printf("--- %s test ---\n", apic_reg_test->name); 6093 config_type = 6094 configure_apic_reg_virt_test(apic_reg_virt_config); 6095 if (config_type == CONFIG_TYPE_UNSUPPORTED) { 6096 printf("Skip because of missing features.\n"); 6097 continue; 6098 } 6099 6100 if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) { 6101 enter_guest_with_bad_controls(); 6102 continue; 6103 } 6104 6105 for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) { 6106 struct apic_reg_virt_expectation expectation = {}; 6107 bool ok; 6108 6109 ok = apic_reg_virt_exit_expectation( 6110 reg, apic_reg_virt_config, &expectation); 6111 if (!ok) { 6112 report_fail("Malformed test."); 6113 break; 6114 } 6115 6116 test_xapic_rd(reg, &expectation, apic_access_address, 6117 virtual_apic_page); 6118 test_xapic_wr(reg, &expectation, apic_access_address, 6119 virtual_apic_page); 6120 } 6121 } 6122 6123 /* Terminate the guest */ 6124 vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); 6125 vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); 6126 args->op = TERMINATE; 6127 enter_guest(); 6128 assert_exit_reason(VMX_VMCALL); 6129 } 6130 6131 struct virt_x2apic_mode_config { 6132 struct apic_reg_virt_config apic_reg_virt_config; 6133 bool virtual_interrupt_delivery; 6134 bool use_msr_bitmaps; 6135 bool disable_x2apic_msr_intercepts; 6136 bool disable_x2apic; 6137 }; 6138 6139 struct virt_x2apic_mode_test_case { 6140 const char *name; 6141 struct virt_x2apic_mode_config virt_x2apic_mode_config; 6142 }; 6143 6144 enum Virt_x2apic_mode_behavior_type { 6145 X2APIC_ACCESS_VIRTUALIZED, 6146 X2APIC_ACCESS_PASSED_THROUGH, 6147 X2APIC_ACCESS_TRIGGERS_GP, 6148 }; 6149 6150 struct virt_x2apic_mode_expectation { 6151 enum Reason rd_exit_reason; 6152 enum Reason wr_exit_reason; 6153 6154 /* 6155 * RDMSR and WRMSR handle 64-bit values. However, except for ICR, all of 6156 * the x2APIC registers are 32 bits. Notice: 6157 * 1. vmx_x2apic_read() clears the upper 32 bits for 32-bit registers. 6158 * 2. vmx_x2apic_write() expects the val arg to be well-formed. 6159 */ 6160 u64 rd_val; 6161 u64 wr_val; 6162 6163 /* 6164 * Compares input to virtualized output; 6165 * 1st arg is pointer to return expected virtualization output. 6166 */ 6167 u64 (*virt_fn)(u64); 6168 6169 enum Virt_x2apic_mode_behavior_type rd_behavior; 6170 enum Virt_x2apic_mode_behavior_type wr_behavior; 6171 bool wr_only; 6172 }; 6173 6174 static u64 virt_x2apic_mode_identity(u64 val) 6175 { 6176 return val; 6177 } 6178 6179 static u64 virt_x2apic_mode_nibble1(u64 val) 6180 { 6181 return val & 0xf0; 6182 } 6183 6184 static void virt_x2apic_mode_rd_expectation( 6185 u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic, 6186 bool apic_register_virtualization, bool virtual_interrupt_delivery, 6187 struct virt_x2apic_mode_expectation *expectation) 6188 { 6189 enum x2apic_reg_semantics semantics = get_x2apic_reg_semantics(reg); 6190 6191 expectation->rd_exit_reason = VMX_VMCALL; 6192 expectation->virt_fn = virt_x2apic_mode_identity; 6193 if (virt_x2apic_mode_on && apic_register_virtualization) { 6194 expectation->rd_val = MAGIC_VAL_1; 6195 if (reg == APIC_PROCPRI && virtual_interrupt_delivery) 6196 expectation->virt_fn = virt_x2apic_mode_nibble1; 6197 else if (reg == APIC_TASKPRI) 6198 expectation->virt_fn = virt_x2apic_mode_nibble1; 6199 expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED; 6200 } else if (virt_x2apic_mode_on && !apic_register_virtualization && 6201 reg == APIC_TASKPRI) { 6202 expectation->rd_val = MAGIC_VAL_1; 6203 expectation->virt_fn = virt_x2apic_mode_nibble1; 6204 expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED; 6205 } else if (!disable_x2apic && (semantics & X2APIC_READABLE)) { 6206 expectation->rd_val = apic_read(reg); 6207 expectation->rd_behavior = X2APIC_ACCESS_PASSED_THROUGH; 6208 } else { 6209 expectation->rd_behavior = X2APIC_ACCESS_TRIGGERS_GP; 6210 } 6211 } 6212 6213 /* 6214 * get_x2apic_wr_val() creates an innocuous write value for an x2APIC register. 6215 * 6216 * For writable registers, get_x2apic_wr_val() deposits the write value into the 6217 * val pointer arg and returns true. For non-writable registers, val is not 6218 * modified and get_x2apic_wr_val() returns false. 6219 */ 6220 static bool get_x2apic_wr_val(u32 reg, u64 *val) 6221 { 6222 switch (reg) { 6223 case APIC_TASKPRI: 6224 /* Bits 31:8 are reserved. */ 6225 *val &= 0xff; 6226 break; 6227 case APIC_EOI: 6228 case APIC_ESR: 6229 case APIC_TMICT: 6230 /* 6231 * EOI, ESR: WRMSR of a non-zero value causes #GP(0). 6232 * TMICT: A write of 0 to the initial-count register effectively 6233 * stops the local APIC timer, in both one-shot and 6234 * periodic mode. 6235 */ 6236 *val = 0; 6237 break; 6238 case APIC_SPIV: 6239 case APIC_LVTT: 6240 case APIC_LVTTHMR: 6241 case APIC_LVTPC: 6242 case APIC_LVT0: 6243 case APIC_LVT1: 6244 case APIC_LVTERR: 6245 case APIC_TDCR: 6246 /* 6247 * To avoid writing a 1 to a reserved bit or causing some other 6248 * unintended side effect, read the current value and use it as 6249 * the write value. 6250 */ 6251 *val = apic_read(reg); 6252 break; 6253 case APIC_CMCI: 6254 if (!apic_lvt_entry_supported(6)) 6255 return false; 6256 *val = apic_read(reg); 6257 break; 6258 case APIC_ICR: 6259 *val = 0x40000 | 0xf1; 6260 break; 6261 case APIC_SELF_IPI: 6262 /* 6263 * With special processing (i.e., virtualize x2APIC mode + 6264 * virtual interrupt delivery), writing zero causes an 6265 * APIC-write VM exit. We plan to add a test for enabling 6266 * "virtual-interrupt delivery" in VMCS12, and that's where we 6267 * will test a self IPI with special processing. 6268 */ 6269 *val = 0x0; 6270 break; 6271 default: 6272 return false; 6273 } 6274 6275 return true; 6276 } 6277 6278 static bool special_processing_applies(u32 reg, u64 *val, 6279 bool virt_int_delivery) 6280 { 6281 bool special_processing = 6282 (reg == APIC_TASKPRI) || 6283 (virt_int_delivery && 6284 (reg == APIC_EOI || reg == APIC_SELF_IPI)); 6285 6286 if (special_processing) { 6287 TEST_ASSERT(get_x2apic_wr_val(reg, val)); 6288 return true; 6289 } 6290 6291 return false; 6292 } 6293 6294 static void virt_x2apic_mode_wr_expectation( 6295 u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic, 6296 bool virt_int_delivery, 6297 struct virt_x2apic_mode_expectation *expectation) 6298 { 6299 expectation->wr_exit_reason = VMX_VMCALL; 6300 expectation->wr_val = MAGIC_VAL_1; 6301 expectation->wr_only = false; 6302 6303 if (virt_x2apic_mode_on && 6304 special_processing_applies(reg, &expectation->wr_val, 6305 virt_int_delivery)) { 6306 expectation->wr_behavior = X2APIC_ACCESS_VIRTUALIZED; 6307 if (reg == APIC_SELF_IPI) 6308 expectation->wr_exit_reason = VMX_APIC_WRITE; 6309 } else if (!disable_x2apic && 6310 get_x2apic_wr_val(reg, &expectation->wr_val)) { 6311 expectation->wr_behavior = X2APIC_ACCESS_PASSED_THROUGH; 6312 if (reg == APIC_EOI || reg == APIC_SELF_IPI) 6313 expectation->wr_only = true; 6314 if (reg == APIC_ICR) 6315 expectation->wr_exit_reason = VMX_EXTINT; 6316 } else { 6317 expectation->wr_behavior = X2APIC_ACCESS_TRIGGERS_GP; 6318 /* 6319 * Writing 1 to a reserved bit triggers a #GP. 6320 * Thus, set the write value to 0, which seems 6321 * the most likely to detect a missed #GP. 6322 */ 6323 expectation->wr_val = 0; 6324 } 6325 } 6326 6327 static void virt_x2apic_mode_exit_expectation( 6328 u32 reg, struct virt_x2apic_mode_config *config, 6329 struct virt_x2apic_mode_expectation *expectation) 6330 { 6331 struct apic_reg_virt_config *base_config = 6332 &config->apic_reg_virt_config; 6333 bool virt_x2apic_mode_on = 6334 base_config->virtualize_x2apic_mode && 6335 config->use_msr_bitmaps && 6336 config->disable_x2apic_msr_intercepts && 6337 base_config->activate_secondary_controls; 6338 6339 virt_x2apic_mode_wr_expectation( 6340 reg, virt_x2apic_mode_on, config->disable_x2apic, 6341 config->virtual_interrupt_delivery, expectation); 6342 virt_x2apic_mode_rd_expectation( 6343 reg, virt_x2apic_mode_on, config->disable_x2apic, 6344 base_config->apic_register_virtualization, 6345 config->virtual_interrupt_delivery, expectation); 6346 } 6347 6348 struct virt_x2apic_mode_test_case virt_x2apic_mode_tests[] = { 6349 /* 6350 * Baseline "virtualize x2APIC mode" configuration: 6351 * - virtualize x2APIC mode 6352 * - virtual-interrupt delivery 6353 * - APIC-register virtualization 6354 * - x2APIC MSR intercepts disabled 6355 * 6356 * Reads come from virtual APIC page, special processing applies to 6357 * VTPR, EOI, and SELF IPI, and all other writes pass through to L1 6358 * APIC. 6359 */ 6360 { 6361 .name = "Baseline", 6362 .virt_x2apic_mode_config = { 6363 .virtual_interrupt_delivery = true, 6364 .use_msr_bitmaps = true, 6365 .disable_x2apic_msr_intercepts = true, 6366 .disable_x2apic = false, 6367 .apic_reg_virt_config = { 6368 .apic_register_virtualization = true, 6369 .use_tpr_shadow = true, 6370 .virtualize_apic_accesses = false, 6371 .virtualize_x2apic_mode = true, 6372 .activate_secondary_controls = true, 6373 }, 6374 }, 6375 }, 6376 { 6377 .name = "Baseline w/ x2apic disabled", 6378 .virt_x2apic_mode_config = { 6379 .virtual_interrupt_delivery = true, 6380 .use_msr_bitmaps = true, 6381 .disable_x2apic_msr_intercepts = true, 6382 .disable_x2apic = true, 6383 .apic_reg_virt_config = { 6384 .apic_register_virtualization = true, 6385 .use_tpr_shadow = true, 6386 .virtualize_apic_accesses = false, 6387 .virtualize_x2apic_mode = true, 6388 .activate_secondary_controls = true, 6389 }, 6390 }, 6391 }, 6392 6393 /* 6394 * Baseline, minus virtual-interrupt delivery. Reads come from virtual 6395 * APIC page, special processing applies to VTPR, and all other writes 6396 * pass through to L1 APIC. 6397 */ 6398 { 6399 .name = "Baseline - virtual interrupt delivery", 6400 .virt_x2apic_mode_config = { 6401 .virtual_interrupt_delivery = false, 6402 .use_msr_bitmaps = true, 6403 .disable_x2apic_msr_intercepts = true, 6404 .disable_x2apic = false, 6405 .apic_reg_virt_config = { 6406 .apic_register_virtualization = true, 6407 .use_tpr_shadow = true, 6408 .virtualize_apic_accesses = false, 6409 .virtualize_x2apic_mode = true, 6410 .activate_secondary_controls = true, 6411 }, 6412 }, 6413 }, 6414 6415 /* 6416 * Baseline, minus APIC-register virtualization. x2APIC reads pass 6417 * through to L1's APIC, unless reading VTPR 6418 */ 6419 { 6420 .name = "Virtualize x2APIC mode, no APIC reg virt", 6421 .virt_x2apic_mode_config = { 6422 .virtual_interrupt_delivery = true, 6423 .use_msr_bitmaps = true, 6424 .disable_x2apic_msr_intercepts = true, 6425 .disable_x2apic = false, 6426 .apic_reg_virt_config = { 6427 .apic_register_virtualization = false, 6428 .use_tpr_shadow = true, 6429 .virtualize_apic_accesses = false, 6430 .virtualize_x2apic_mode = true, 6431 .activate_secondary_controls = true, 6432 }, 6433 }, 6434 }, 6435 { 6436 .name = "Virtualize x2APIC mode, no APIC reg virt, x2APIC off", 6437 .virt_x2apic_mode_config = { 6438 .virtual_interrupt_delivery = true, 6439 .use_msr_bitmaps = true, 6440 .disable_x2apic_msr_intercepts = true, 6441 .disable_x2apic = true, 6442 .apic_reg_virt_config = { 6443 .apic_register_virtualization = false, 6444 .use_tpr_shadow = true, 6445 .virtualize_apic_accesses = false, 6446 .virtualize_x2apic_mode = true, 6447 .activate_secondary_controls = true, 6448 }, 6449 }, 6450 }, 6451 6452 /* 6453 * Enable "virtualize x2APIC mode" and "APIC-register virtualization", 6454 * and disable intercepts for the x2APIC MSRs, but fail to enable 6455 * "activate secondary controls" (i.e. L2 gets access to L1's x2APIC 6456 * MSRs). 6457 */ 6458 { 6459 .name = "Fail to enable activate secondary controls", 6460 .virt_x2apic_mode_config = { 6461 .virtual_interrupt_delivery = true, 6462 .use_msr_bitmaps = true, 6463 .disable_x2apic_msr_intercepts = true, 6464 .disable_x2apic = false, 6465 .apic_reg_virt_config = { 6466 .apic_register_virtualization = true, 6467 .use_tpr_shadow = true, 6468 .virtualize_apic_accesses = false, 6469 .virtualize_x2apic_mode = true, 6470 .activate_secondary_controls = false, 6471 }, 6472 }, 6473 }, 6474 6475 /* 6476 * Enable "APIC-register virtualization" and enable "activate secondary 6477 * controls" and disable intercepts for the x2APIC MSRs, but do not 6478 * enable the "virtualize x2APIC mode" VM-execution control (i.e. L2 6479 * gets access to L1's x2APIC MSRs). 6480 */ 6481 { 6482 .name = "Fail to enable virtualize x2APIC mode", 6483 .virt_x2apic_mode_config = { 6484 .virtual_interrupt_delivery = true, 6485 .use_msr_bitmaps = true, 6486 .disable_x2apic_msr_intercepts = true, 6487 .disable_x2apic = false, 6488 .apic_reg_virt_config = { 6489 .apic_register_virtualization = true, 6490 .use_tpr_shadow = true, 6491 .virtualize_apic_accesses = false, 6492 .virtualize_x2apic_mode = false, 6493 .activate_secondary_controls = true, 6494 }, 6495 }, 6496 }, 6497 6498 /* 6499 * Disable "Virtualize x2APIC mode", disable x2APIC MSR intercepts, and 6500 * enable "APIC-register virtualization" --> L2 gets L1's x2APIC MSRs. 6501 */ 6502 { 6503 .name = "Baseline", 6504 .virt_x2apic_mode_config = { 6505 .virtual_interrupt_delivery = true, 6506 .use_msr_bitmaps = true, 6507 .disable_x2apic_msr_intercepts = true, 6508 .disable_x2apic = false, 6509 .apic_reg_virt_config = { 6510 .apic_register_virtualization = true, 6511 .use_tpr_shadow = true, 6512 .virtualize_apic_accesses = false, 6513 .virtualize_x2apic_mode = false, 6514 .activate_secondary_controls = true, 6515 }, 6516 }, 6517 }, 6518 }; 6519 6520 enum X2apic_op { 6521 X2APIC_OP_RD, 6522 X2APIC_OP_WR, 6523 X2APIC_TERMINATE, 6524 }; 6525 6526 static u64 vmx_x2apic_read(u32 reg) 6527 { 6528 u32 msr_addr = x2apic_msr(reg); 6529 u64 val; 6530 6531 val = rdmsr(msr_addr); 6532 6533 return val; 6534 } 6535 6536 static void vmx_x2apic_write(u32 reg, u64 val) 6537 { 6538 u32 msr_addr = x2apic_msr(reg); 6539 6540 wrmsr(msr_addr, val); 6541 } 6542 6543 struct virt_x2apic_mode_guest_args { 6544 enum X2apic_op op; 6545 u32 reg; 6546 u64 val; 6547 bool should_gp; 6548 u64 (*virt_fn)(u64); 6549 } virt_x2apic_mode_guest_args; 6550 6551 static volatile bool handle_x2apic_gp_ran; 6552 static volatile u32 handle_x2apic_gp_insn_len; 6553 static void handle_x2apic_gp(struct ex_regs *regs) 6554 { 6555 handle_x2apic_gp_ran = true; 6556 regs->rip += handle_x2apic_gp_insn_len; 6557 } 6558 6559 static handler setup_x2apic_gp_handler(void) 6560 { 6561 handler old_handler; 6562 6563 old_handler = handle_exception(GP_VECTOR, handle_x2apic_gp); 6564 /* RDMSR and WRMSR are both 2 bytes, assuming no prefixes. */ 6565 handle_x2apic_gp_insn_len = 2; 6566 6567 return old_handler; 6568 } 6569 6570 static void teardown_x2apic_gp_handler(handler old_handler) 6571 { 6572 handle_exception(GP_VECTOR, old_handler); 6573 6574 /* 6575 * Defensively reset instruction length, so that if the handler is 6576 * incorrectly used, it will loop infinitely, rather than run off into 6577 * la la land. 6578 */ 6579 handle_x2apic_gp_insn_len = 0; 6580 handle_x2apic_gp_ran = false; 6581 } 6582 6583 static void virt_x2apic_mode_guest(void) 6584 { 6585 volatile struct virt_x2apic_mode_guest_args *args = 6586 &virt_x2apic_mode_guest_args; 6587 6588 for (;;) { 6589 enum X2apic_op op = args->op; 6590 u32 reg = args->reg; 6591 u64 val = args->val; 6592 bool should_gp = args->should_gp; 6593 u64 (*virt_fn)(u64) = args->virt_fn; 6594 handler old_handler; 6595 6596 if (op == X2APIC_TERMINATE) 6597 break; 6598 6599 if (should_gp) { 6600 TEST_ASSERT(!handle_x2apic_gp_ran); 6601 old_handler = setup_x2apic_gp_handler(); 6602 } 6603 6604 if (op == X2APIC_OP_RD) { 6605 u64 ret = vmx_x2apic_read(reg); 6606 6607 if (!should_gp) { 6608 u64 want = virt_fn(val); 6609 u64 got = virt_fn(ret); 6610 6611 report(got == want, 6612 "APIC read; got 0x%lx, want 0x%lx.", 6613 got, want); 6614 } 6615 } else if (op == X2APIC_OP_WR) { 6616 vmx_x2apic_write(reg, val); 6617 } 6618 6619 if (should_gp) { 6620 report(handle_x2apic_gp_ran, 6621 "x2APIC op triggered GP."); 6622 teardown_x2apic_gp_handler(old_handler); 6623 } 6624 6625 /* 6626 * The L1 should always execute a vmcall after it's done testing 6627 * an individual APIC operation. This helps to validate that the 6628 * L1 and L2 are in sync with each other, as expected. 6629 */ 6630 vmcall(); 6631 } 6632 } 6633 6634 static void test_x2apic_rd( 6635 u32 reg, struct virt_x2apic_mode_expectation *expectation, 6636 u32 *virtual_apic_page) 6637 { 6638 u64 val = expectation->rd_val; 6639 u32 exit_reason_want = expectation->rd_exit_reason; 6640 struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; 6641 6642 report_prefix_pushf("x2apic - reading 0x%03x", reg); 6643 6644 /* Configure guest to do an x2apic read */ 6645 args->op = X2APIC_OP_RD; 6646 args->reg = reg; 6647 args->val = val; 6648 args->should_gp = expectation->rd_behavior == X2APIC_ACCESS_TRIGGERS_GP; 6649 args->virt_fn = expectation->virt_fn; 6650 6651 /* Setup virtual APIC page */ 6652 if (expectation->rd_behavior == X2APIC_ACCESS_VIRTUALIZED) 6653 virtual_apic_page[apic_reg_index(reg)] = (u32)val; 6654 6655 /* Enter guest */ 6656 enter_guest(); 6657 6658 if (exit_reason_want != VMX_VMCALL) { 6659 report_fail("Oops, bad exit expectation: %u.", exit_reason_want); 6660 } 6661 6662 skip_exit_vmcall(); 6663 report_prefix_pop(); 6664 } 6665 6666 static volatile bool handle_x2apic_ipi_ran; 6667 static void handle_x2apic_ipi(isr_regs_t *regs) 6668 { 6669 handle_x2apic_ipi_ran = true; 6670 eoi(); 6671 } 6672 6673 static void test_x2apic_wr( 6674 u32 reg, struct virt_x2apic_mode_expectation *expectation, 6675 u32 *virtual_apic_page) 6676 { 6677 u64 val = expectation->wr_val; 6678 u32 exit_reason_want = expectation->wr_exit_reason; 6679 struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; 6680 int ipi_vector = 0xf1; 6681 u32 restore_val = 0; 6682 6683 report_prefix_pushf("x2apic - writing 0x%lx to 0x%03x", val, reg); 6684 6685 /* Configure guest to do an x2apic read */ 6686 args->op = X2APIC_OP_WR; 6687 args->reg = reg; 6688 args->val = val; 6689 args->should_gp = expectation->wr_behavior == X2APIC_ACCESS_TRIGGERS_GP; 6690 6691 /* Setup virtual APIC page */ 6692 if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) 6693 virtual_apic_page[apic_reg_index(reg)] = 0; 6694 if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH && !expectation->wr_only) 6695 restore_val = apic_read(reg); 6696 6697 /* Setup IPI handler */ 6698 handle_x2apic_ipi_ran = false; 6699 handle_irq(ipi_vector, handle_x2apic_ipi); 6700 6701 /* Enter guest */ 6702 enter_guest(); 6703 6704 /* 6705 * Validate the behavior and 6706 * pass a magic value back to the guest. 6707 */ 6708 if (exit_reason_want == VMX_EXTINT) { 6709 assert_exit_reason(exit_reason_want); 6710 6711 /* Clear the external interrupt. */ 6712 sti_nop_cli(); 6713 report(handle_x2apic_ipi_ran, 6714 "Got pending interrupt after IRQ enabled."); 6715 6716 enter_guest(); 6717 } else if (exit_reason_want == VMX_APIC_WRITE) { 6718 assert_exit_reason(exit_reason_want); 6719 report(virtual_apic_page[apic_reg_index(reg)] == val, 6720 "got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%lx", 6721 apic_reg_index(reg), 6722 virtual_apic_page[apic_reg_index(reg)], val); 6723 6724 /* Reenter guest so it can consume/check rcx and exit again. */ 6725 enter_guest(); 6726 } else if (exit_reason_want != VMX_VMCALL) { 6727 report_fail("Oops, bad exit expectation: %u.", exit_reason_want); 6728 } 6729 6730 assert_exit_reason(VMX_VMCALL); 6731 if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) { 6732 u64 want = val; 6733 u32 got = virtual_apic_page[apic_reg_index(reg)]; 6734 6735 report(got == want, "x2APIC write; got 0x%x, want 0x%lx", got, 6736 want); 6737 } else if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH) { 6738 if (!expectation->wr_only) { 6739 u32 got = apic_read(reg); 6740 bool ok; 6741 6742 /* 6743 * When L1's TPR is passed through to L2, the lower 6744 * nibble can be lost. For example, if L2 executes 6745 * WRMSR(0x808, 0x78), then, L1 might read 0x70. 6746 * 6747 * Here's how the lower nibble can get lost: 6748 * 1. L2 executes WRMSR(0x808, 0x78). 6749 * 2. L2 exits to L0 with a WRMSR exit. 6750 * 3. L0 emulates WRMSR, by writing L1's TPR. 6751 * 4. L0 re-enters L2. 6752 * 5. L2 exits to L0 (reason doesn't matter). 6753 * 6. L0 reflects L2's exit to L1. 6754 * 7. Before entering L1, L0 exits to user-space 6755 * (e.g., to satisfy TPR access reporting). 6756 * 8. User-space executes KVM_SET_REGS ioctl, which 6757 * clears the lower nibble of L1's TPR. 6758 */ 6759 if (reg == APIC_TASKPRI) { 6760 got = apic_virt_nibble1(got); 6761 val = apic_virt_nibble1(val); 6762 } 6763 6764 ok = got == val; 6765 report(ok, 6766 "non-virtualized write; val is 0x%x, want 0x%lx", 6767 got, val); 6768 apic_write(reg, restore_val); 6769 } else { 6770 report_pass("non-virtualized and write-only OK"); 6771 } 6772 } 6773 skip_exit_insn(); 6774 6775 report_prefix_pop(); 6776 } 6777 6778 static enum Config_type configure_virt_x2apic_mode_test( 6779 struct virt_x2apic_mode_config *virt_x2apic_mode_config, 6780 u8 *msr_bitmap_page) 6781 { 6782 int msr; 6783 u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 6784 u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); 6785 6786 /* x2apic-specific VMCS config */ 6787 if (virt_x2apic_mode_config->use_msr_bitmaps) { 6788 /* virt_x2apic_mode_test() checks for MSR bitmaps support */ 6789 cpu_exec_ctrl0 |= CPU_MSR_BITMAP; 6790 } else { 6791 cpu_exec_ctrl0 &= ~CPU_MSR_BITMAP; 6792 } 6793 6794 if (virt_x2apic_mode_config->virtual_interrupt_delivery) { 6795 if (!(ctrl_cpu_rev[1].clr & CPU_VINTD)) { 6796 report_skip("%s : \"virtual-interrupt delivery\" exec control not supported", __func__); 6797 return CONFIG_TYPE_UNSUPPORTED; 6798 } 6799 cpu_exec_ctrl1 |= CPU_VINTD; 6800 } else { 6801 cpu_exec_ctrl1 &= ~CPU_VINTD; 6802 } 6803 6804 vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); 6805 vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); 6806 6807 /* x2APIC MSR intercepts are usually off for "Virtualize x2APIC mode" */ 6808 for (msr = 0x800; msr <= 0x8ff; msr++) { 6809 if (virt_x2apic_mode_config->disable_x2apic_msr_intercepts) { 6810 clear_bit(msr, msr_bitmap_page + 0x000); 6811 clear_bit(msr, msr_bitmap_page + 0x800); 6812 } else { 6813 set_bit(msr, msr_bitmap_page + 0x000); 6814 set_bit(msr, msr_bitmap_page + 0x800); 6815 } 6816 } 6817 6818 /* x2APIC mode can impact virtualization */ 6819 reset_apic(); 6820 if (!virt_x2apic_mode_config->disable_x2apic) 6821 enable_x2apic(); 6822 6823 return configure_apic_reg_virt_test( 6824 &virt_x2apic_mode_config->apic_reg_virt_config); 6825 } 6826 6827 static void virt_x2apic_mode_test(void) 6828 { 6829 u32 *virtual_apic_page; 6830 u8 *msr_bitmap_page; 6831 u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 6832 u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); 6833 int i; 6834 struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; 6835 6836 if (!cpu_has_apicv()) { 6837 report_skip("%s : Not all required APICv bits supported", __func__); 6838 return; 6839 } 6840 6841 /* 6842 * This is to exercise an issue in KVM's logic to merge L0's and L1's 6843 * MSR bitmaps. Previously, an L1 could get at L0's x2APIC MSRs by 6844 * writing the IA32_SPEC_CTRL MSR or the IA32_PRED_CMD MSRs. KVM would 6845 * then proceed to manipulate the MSR bitmaps, as if VMCS12 had the 6846 * "Virtualize x2APIC mod" control set, even when it didn't. 6847 */ 6848 if (this_cpu_has(X86_FEATURE_SPEC_CTRL)) 6849 wrmsr(MSR_IA32_SPEC_CTRL, 1); 6850 6851 /* 6852 * Check that VMCS12 supports: 6853 * - "Virtual-APIC address", indicated by "use TPR shadow" 6854 * - "MSR-bitmap address", indicated by "use MSR bitmaps" 6855 */ 6856 if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) { 6857 report_skip("%s : \"Use TPR shadow\" exec control not supported", __func__); 6858 return; 6859 } else if (!(ctrl_cpu_rev[0].clr & CPU_MSR_BITMAP)) { 6860 report_skip("%s : \"Use MSR bitmaps\" exec control not supported", __func__); 6861 return; 6862 } 6863 6864 test_set_guest(virt_x2apic_mode_guest); 6865 6866 virtual_apic_page = alloc_page(); 6867 vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); 6868 6869 msr_bitmap_page = alloc_page(); 6870 memset(msr_bitmap_page, 0xff, PAGE_SIZE); 6871 vmcs_write(MSR_BITMAP, virt_to_phys(msr_bitmap_page)); 6872 6873 for (i = 0; i < ARRAY_SIZE(virt_x2apic_mode_tests); i++) { 6874 struct virt_x2apic_mode_test_case *virt_x2apic_mode_test_case = 6875 &virt_x2apic_mode_tests[i]; 6876 struct virt_x2apic_mode_config *virt_x2apic_mode_config = 6877 &virt_x2apic_mode_test_case->virt_x2apic_mode_config; 6878 enum Config_type config_type; 6879 u32 reg; 6880 6881 printf("--- %s test ---\n", virt_x2apic_mode_test_case->name); 6882 config_type = 6883 configure_virt_x2apic_mode_test(virt_x2apic_mode_config, 6884 msr_bitmap_page); 6885 if (config_type == CONFIG_TYPE_UNSUPPORTED) { 6886 report_skip("Skip because of missing features."); 6887 continue; 6888 } else if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) { 6889 enter_guest_with_bad_controls(); 6890 continue; 6891 } 6892 6893 for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) { 6894 struct virt_x2apic_mode_expectation expectation; 6895 6896 virt_x2apic_mode_exit_expectation( 6897 reg, virt_x2apic_mode_config, &expectation); 6898 6899 test_x2apic_rd(reg, &expectation, virtual_apic_page); 6900 test_x2apic_wr(reg, &expectation, virtual_apic_page); 6901 } 6902 } 6903 6904 6905 /* Terminate the guest */ 6906 vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); 6907 vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); 6908 args->op = X2APIC_TERMINATE; 6909 enter_guest(); 6910 assert_exit_reason(VMX_VMCALL); 6911 } 6912 6913 static void test_ctl_reg(const char *cr_name, u64 cr, u64 fixed0, u64 fixed1) 6914 { 6915 u64 val; 6916 u64 cr_saved = vmcs_read(cr); 6917 int i; 6918 6919 val = fixed0 & fixed1; 6920 if (cr == HOST_CR4) 6921 vmcs_write(cr, val | X86_CR4_PAE); 6922 else 6923 vmcs_write(cr, val); 6924 report_prefix_pushf("%s %lx", cr_name, val); 6925 if (val == fixed0) 6926 test_vmx_vmlaunch(0); 6927 else 6928 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 6929 report_prefix_pop(); 6930 6931 for (i = 0; i < 64; i++) { 6932 6933 /* Set a bit when the corresponding bit in fixed1 is 0 */ 6934 if ((fixed1 & (1ull << i)) == 0) { 6935 if (cr == HOST_CR4 && ((1ull << i) & X86_CR4_SMEP || 6936 (1ull << i) & X86_CR4_SMAP)) 6937 continue; 6938 6939 vmcs_write(cr, cr_saved | (1ull << i)); 6940 report_prefix_pushf("%s %llx", cr_name, 6941 cr_saved | (1ull << i)); 6942 test_vmx_vmlaunch( 6943 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 6944 report_prefix_pop(); 6945 } 6946 6947 /* Unset a bit when the corresponding bit in fixed0 is 1 */ 6948 if (fixed0 & (1ull << i)) { 6949 vmcs_write(cr, cr_saved & ~(1ull << i)); 6950 report_prefix_pushf("%s %llx", cr_name, 6951 cr_saved & ~(1ull << i)); 6952 test_vmx_vmlaunch( 6953 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 6954 report_prefix_pop(); 6955 } 6956 } 6957 6958 vmcs_write(cr, cr_saved); 6959 } 6960 6961 /* 6962 * 1. The CR0 field must not set any bit to a value not supported in VMX 6963 * operation. 6964 * 2. The CR4 field must not set any bit to a value not supported in VMX 6965 * operation. 6966 * 3. On processors that support Intel 64 architecture, the CR3 field must 6967 * be such that bits 63:52 and bits in the range 51:32 beyond the 6968 * processor's physical-address width must be 0. 6969 * 6970 * [Intel SDM] 6971 */ 6972 static void test_host_ctl_regs(void) 6973 { 6974 u64 fixed0, fixed1, cr3, cr3_saved; 6975 int i; 6976 6977 /* Test CR0 */ 6978 fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0); 6979 fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1); 6980 test_ctl_reg("HOST_CR0", HOST_CR0, fixed0, fixed1); 6981 6982 /* Test CR4 */ 6983 fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0); 6984 fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1) & 6985 ~(X86_CR4_SMEP | X86_CR4_SMAP); 6986 test_ctl_reg("HOST_CR4", HOST_CR4, fixed0, fixed1); 6987 6988 /* Test CR3 */ 6989 cr3_saved = vmcs_read(HOST_CR3); 6990 for (i = cpuid_maxphyaddr(); i < 64; i++) { 6991 cr3 = cr3_saved | (1ul << i); 6992 vmcs_write(HOST_CR3, cr3); 6993 report_prefix_pushf("HOST_CR3 %lx", cr3); 6994 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 6995 report_prefix_pop(); 6996 } 6997 6998 vmcs_write(HOST_CR3, cr3_saved); 6999 } 7000 7001 static void test_efer_vmlaunch(u32 fld, bool ok) 7002 { 7003 if (fld == HOST_EFER) { 7004 if (ok) 7005 test_vmx_vmlaunch(0); 7006 else 7007 test_vmx_vmlaunch2(VMXERR_ENTRY_INVALID_CONTROL_FIELD, 7008 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7009 } else { 7010 test_guest_state("EFER test", !ok, GUEST_EFER, "GUEST_EFER"); 7011 } 7012 } 7013 7014 static void test_efer_one(u32 fld, const char * fld_name, u64 efer, 7015 u32 ctrl_fld, u64 ctrl, 7016 int i, const char *efer_bit_name) 7017 { 7018 bool ok; 7019 7020 ok = true; 7021 if (ctrl_fld == EXI_CONTROLS && (ctrl & EXI_LOAD_EFER)) { 7022 if (!!(efer & EFER_LMA) != !!(ctrl & EXI_HOST_64)) 7023 ok = false; 7024 if (!!(efer & EFER_LME) != !!(ctrl & EXI_HOST_64)) 7025 ok = false; 7026 } 7027 if (ctrl_fld == ENT_CONTROLS && (ctrl & ENT_LOAD_EFER)) { 7028 /* Check LMA too since CR0.PG is set. */ 7029 if (!!(efer & EFER_LMA) != !!(ctrl & ENT_GUEST_64)) 7030 ok = false; 7031 if (!!(efer & EFER_LME) != !!(ctrl & ENT_GUEST_64)) 7032 ok = false; 7033 } 7034 7035 /* 7036 * Skip the test if it would enter the guest in 32-bit mode. 7037 * Perhaps write the test in assembly and make sure it 7038 * can be run in either mode? 7039 */ 7040 if (fld == GUEST_EFER && ok && !(ctrl & ENT_GUEST_64)) 7041 return; 7042 7043 vmcs_write(ctrl_fld, ctrl); 7044 vmcs_write(fld, efer); 7045 report_prefix_pushf("%s %s bit turned %s, controls %s", 7046 fld_name, efer_bit_name, 7047 (i & 1) ? "on" : "off", 7048 (i & 2) ? "on" : "off"); 7049 7050 test_efer_vmlaunch(fld, ok); 7051 report_prefix_pop(); 7052 } 7053 7054 static void test_efer_bit(u32 fld, const char * fld_name, 7055 u32 ctrl_fld, u64 ctrl_bit, u64 efer_bit, 7056 const char *efer_bit_name) 7057 { 7058 u64 efer_saved = vmcs_read(fld); 7059 u32 ctrl_saved = vmcs_read(ctrl_fld); 7060 int i; 7061 7062 for (i = 0; i < 4; i++) { 7063 u64 efer = efer_saved & ~efer_bit; 7064 u64 ctrl = ctrl_saved & ~ctrl_bit; 7065 7066 if (i & 1) 7067 efer |= efer_bit; 7068 if (i & 2) 7069 ctrl |= ctrl_bit; 7070 7071 test_efer_one(fld, fld_name, efer, ctrl_fld, ctrl, 7072 i, efer_bit_name); 7073 } 7074 7075 vmcs_write(ctrl_fld, ctrl_saved); 7076 vmcs_write(fld, efer_saved); 7077 } 7078 7079 static void test_efer(u32 fld, const char * fld_name, u32 ctrl_fld, 7080 u64 ctrl_bit1, u64 ctrl_bit2) 7081 { 7082 u64 efer_saved = vmcs_read(fld); 7083 u32 ctrl_saved = vmcs_read(ctrl_fld); 7084 u64 efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 7085 u64 i; 7086 u64 efer; 7087 7088 if (this_cpu_has(X86_FEATURE_NX)) 7089 efer_reserved_bits &= ~EFER_NX; 7090 7091 if (!ctrl_bit1) { 7092 report_skip("%s : \"Load-IA32-EFER\" exit control not supported", __func__); 7093 goto test_entry_exit_mode; 7094 } 7095 7096 report_prefix_pushf("%s %lx", fld_name, efer_saved); 7097 test_efer_vmlaunch(fld, true); 7098 report_prefix_pop(); 7099 7100 /* 7101 * Check reserved bits 7102 */ 7103 vmcs_write(ctrl_fld, ctrl_saved & ~ctrl_bit1); 7104 for (i = 0; i < 64; i++) { 7105 if ((1ull << i) & efer_reserved_bits) { 7106 efer = efer_saved | (1ull << i); 7107 vmcs_write(fld, efer); 7108 report_prefix_pushf("%s %lx", fld_name, efer); 7109 test_efer_vmlaunch(fld, true); 7110 report_prefix_pop(); 7111 } 7112 } 7113 7114 vmcs_write(ctrl_fld, ctrl_saved | ctrl_bit1); 7115 for (i = 0; i < 64; i++) { 7116 if ((1ull << i) & efer_reserved_bits) { 7117 efer = efer_saved | (1ull << i); 7118 vmcs_write(fld, efer); 7119 report_prefix_pushf("%s %lx", fld_name, efer); 7120 test_efer_vmlaunch(fld, false); 7121 report_prefix_pop(); 7122 } 7123 } 7124 7125 vmcs_write(ctrl_fld, ctrl_saved); 7126 vmcs_write(fld, efer_saved); 7127 7128 /* 7129 * Check LMA and LME bits 7130 */ 7131 test_efer_bit(fld, fld_name, 7132 ctrl_fld, ctrl_bit1, 7133 EFER_LMA, 7134 "EFER_LMA"); 7135 test_efer_bit(fld, fld_name, 7136 ctrl_fld, ctrl_bit1, 7137 EFER_LME, 7138 "EFER_LME"); 7139 7140 test_entry_exit_mode: 7141 test_efer_bit(fld, fld_name, 7142 ctrl_fld, ctrl_bit2, 7143 EFER_LMA, 7144 "EFER_LMA"); 7145 test_efer_bit(fld, fld_name, 7146 ctrl_fld, ctrl_bit2, 7147 EFER_LME, 7148 "EFER_LME"); 7149 } 7150 7151 /* 7152 * If the 'load IA32_EFER' VM-exit control is 1, bits reserved in the 7153 * IA32_EFER MSR must be 0 in the field for that register. In addition, 7154 * the values of the LMA and LME bits in the field must each be that of 7155 * the 'host address-space size' VM-exit control. 7156 * 7157 * [Intel SDM] 7158 */ 7159 static void test_host_efer(void) 7160 { 7161 test_efer(HOST_EFER, "HOST_EFER", EXI_CONTROLS, 7162 ctrl_exit_rev.clr & EXI_LOAD_EFER, 7163 EXI_HOST_64); 7164 } 7165 7166 /* 7167 * If the 'load IA32_EFER' VM-enter control is 1, bits reserved in the 7168 * IA32_EFER MSR must be 0 in the field for that register. In addition, 7169 * the values of the LMA and LME bits in the field must each be that of 7170 * the 'IA32e-mode guest' VM-exit control. 7171 */ 7172 static void test_guest_efer(void) 7173 { 7174 if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) { 7175 report_skip("%s : \"Load-IA32-EFER\" entry control not supported", __func__); 7176 return; 7177 } 7178 7179 vmcs_write(GUEST_EFER, rdmsr(MSR_EFER)); 7180 test_efer(GUEST_EFER, "GUEST_EFER", ENT_CONTROLS, 7181 ctrl_enter_rev.clr & ENT_LOAD_EFER, 7182 ENT_GUEST_64); 7183 } 7184 7185 /* 7186 * PAT values higher than 8 are uninteresting since they're likely lumped 7187 * in with "8". We only test values above 8 one bit at a time, 7188 * in order to reduce the number of VM-Entries and keep the runtime reasonable. 7189 */ 7190 #define PAT_VAL_LIMIT 8 7191 7192 static void test_pat(u32 field, const char * field_name, u32 ctrl_field, 7193 u64 ctrl_bit) 7194 { 7195 u32 ctrl_saved = vmcs_read(ctrl_field); 7196 u64 pat_saved = vmcs_read(field); 7197 u64 i, val; 7198 u32 j; 7199 int error; 7200 7201 vmcs_clear_bits(ctrl_field, ctrl_bit); 7202 7203 for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) { 7204 /* Test PAT0..PAT7 fields */ 7205 for (j = 0; j < (i ? 8 : 1); j++) { 7206 val = i << j * 8; 7207 vmcs_write(field, val); 7208 if (field == HOST_PAT) { 7209 report_prefix_pushf("%s %lx", field_name, val); 7210 test_vmx_vmlaunch(0); 7211 report_prefix_pop(); 7212 7213 } else { // GUEST_PAT 7214 test_guest_state("ENT_LOAD_PAT enabled", false, 7215 val, "GUEST_PAT"); 7216 } 7217 } 7218 } 7219 7220 vmcs_set_bits(ctrl_field, ctrl_bit); 7221 for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) { 7222 /* Test PAT0..PAT7 fields */ 7223 for (j = 0; j < (i ? 8 : 1); j++) { 7224 val = i << j * 8; 7225 vmcs_write(field, val); 7226 7227 if (field == HOST_PAT) { 7228 report_prefix_pushf("%s %lx", field_name, val); 7229 if (i == 0x2 || i == 0x3 || i >= 0x8) 7230 error = 7231 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; 7232 else 7233 error = 0; 7234 7235 test_vmx_vmlaunch(error); 7236 report_prefix_pop(); 7237 7238 } else { // GUEST_PAT 7239 error = (i == 0x2 || i == 0x3 || i >= 0x8); 7240 test_guest_state("ENT_LOAD_PAT enabled", !!error, 7241 val, "GUEST_PAT"); 7242 } 7243 7244 } 7245 } 7246 7247 vmcs_write(ctrl_field, ctrl_saved); 7248 vmcs_write(field, pat_saved); 7249 } 7250 7251 /* 7252 * If the "load IA32_PAT" VM-exit control is 1, the value of the field 7253 * for the IA32_PAT MSR must be one that could be written by WRMSR 7254 * without fault at CPL 0. Specifically, each of the 8 bytes in the 7255 * field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 7256 * 6 (WB), or 7 (UC-). 7257 * 7258 * [Intel SDM] 7259 */ 7260 static void test_load_host_pat(void) 7261 { 7262 /* 7263 * "load IA32_PAT" VM-exit control 7264 */ 7265 if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) { 7266 report_skip("%s : \"Load-IA32-PAT\" exit control not supported", __func__); 7267 return; 7268 } 7269 7270 test_pat(HOST_PAT, "HOST_PAT", EXI_CONTROLS, EXI_LOAD_PAT); 7271 } 7272 7273 union cpuidA_eax { 7274 struct { 7275 unsigned int version_id:8; 7276 unsigned int num_counters_gp:8; 7277 unsigned int bit_width:8; 7278 unsigned int mask_length:8; 7279 } split; 7280 unsigned int full; 7281 }; 7282 7283 union cpuidA_edx { 7284 struct { 7285 unsigned int num_counters_fixed:5; 7286 unsigned int bit_width_fixed:8; 7287 unsigned int reserved:9; 7288 } split; 7289 unsigned int full; 7290 }; 7291 7292 static bool valid_pgc(u64 val) 7293 { 7294 struct cpuid id; 7295 union cpuidA_eax eax; 7296 union cpuidA_edx edx; 7297 u64 mask; 7298 7299 id = cpuid(0xA); 7300 eax.full = id.a; 7301 edx.full = id.d; 7302 mask = ~(((1ull << eax.split.num_counters_gp) - 1) | 7303 (((1ull << edx.split.num_counters_fixed) - 1) << 32)); 7304 7305 return !(val & mask); 7306 } 7307 7308 static void test_pgc_vmlaunch(u32 xerror, u32 xreason, bool xfail, bool host) 7309 { 7310 u32 inst_err; 7311 u64 obs; 7312 bool success; 7313 struct vmx_state_area_test_data *data = &vmx_state_area_test_data; 7314 7315 if (host) { 7316 success = vmlaunch(); 7317 obs = rdmsr(data->msr); 7318 if (!success) { 7319 inst_err = vmcs_read(VMX_INST_ERROR); 7320 report(xerror == inst_err, "vmlaunch failed, " 7321 "VMX Inst Error is %d (expected %d)", 7322 inst_err, xerror); 7323 } else { 7324 report(!data->enabled || data->exp == obs, 7325 "Host state is 0x%lx (expected 0x%lx)", 7326 obs, data->exp); 7327 report(success != xfail, "vmlaunch succeeded"); 7328 } 7329 } else { 7330 test_guest_state("load GUEST_PERF_GLOBAL_CTRL", xfail, 7331 GUEST_PERF_GLOBAL_CTRL, 7332 "GUEST_PERF_GLOBAL_CTRL"); 7333 } 7334 } 7335 7336 /* 7337 * test_load_perf_global_ctrl is a generic function for testing the 7338 * "load IA32_PERF_GLOBAL_CTRL" VM-{Entry,Exit} controls. This test function 7339 * tests the provided ctrl_val when disabled and enabled. 7340 * 7341 * @nr: VMCS field number corresponding to the host/guest state field 7342 * @name: Name of the above VMCS field for printing in test report 7343 * @ctrl_nr: VMCS field number corresponding to the VM-{Entry,Exit} control 7344 * @ctrl_val: Bit to set on the ctrl_field 7345 */ 7346 static void test_perf_global_ctrl(u32 nr, const char *name, u32 ctrl_nr, 7347 const char *ctrl_name, u64 ctrl_val) 7348 { 7349 u64 ctrl_saved = vmcs_read(ctrl_nr); 7350 u64 pgc_saved = vmcs_read(nr); 7351 u64 i, val; 7352 bool host = nr == HOST_PERF_GLOBAL_CTRL; 7353 struct vmx_state_area_test_data *data = &vmx_state_area_test_data; 7354 7355 data->msr = MSR_CORE_PERF_GLOBAL_CTRL; 7356 msr_bmp_init(); 7357 vmcs_write(ctrl_nr, ctrl_saved & ~ctrl_val); 7358 data->enabled = false; 7359 report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=0 on %s", 7360 ctrl_name); 7361 7362 for (i = 0; i < 64; i++) { 7363 val = 1ull << i; 7364 vmcs_write(nr, val); 7365 report_prefix_pushf("%s = 0x%lx", name, val); 7366 test_pgc_vmlaunch(0, VMX_VMCALL, false, host); 7367 report_prefix_pop(); 7368 } 7369 report_prefix_pop(); 7370 7371 vmcs_write(ctrl_nr, ctrl_saved | ctrl_val); 7372 data->enabled = true; 7373 report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=1 on %s", 7374 ctrl_name); 7375 for (i = 0; i < 64; i++) { 7376 val = 1ull << i; 7377 data->exp = val; 7378 vmcs_write(nr, val); 7379 report_prefix_pushf("%s = 0x%lx", name, val); 7380 if (valid_pgc(val)) { 7381 test_pgc_vmlaunch(0, VMX_VMCALL, false, host); 7382 } else { 7383 if (host) 7384 test_pgc_vmlaunch( 7385 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD, 7386 0, 7387 true, 7388 host); 7389 else 7390 test_pgc_vmlaunch( 7391 0, 7392 VMX_ENTRY_FAILURE | VMX_FAIL_STATE, 7393 true, 7394 host); 7395 } 7396 report_prefix_pop(); 7397 } 7398 7399 data->enabled = false; 7400 report_prefix_pop(); 7401 vmcs_write(ctrl_nr, ctrl_saved); 7402 vmcs_write(nr, pgc_saved); 7403 } 7404 7405 static void test_load_host_perf_global_ctrl(void) 7406 { 7407 if (!this_cpu_has_perf_global_ctrl()) { 7408 report_skip("%s : \"IA32_PERF_GLOBAL_CTRL\" MSR not supported", __func__); 7409 return; 7410 } 7411 7412 if (!(ctrl_exit_rev.clr & EXI_LOAD_PERF)) { 7413 report_skip("%s : \"Load IA32_PERF_GLOBAL_CTRL\" exit control not supported", __func__); 7414 return; 7415 } 7416 7417 test_perf_global_ctrl(HOST_PERF_GLOBAL_CTRL, "HOST_PERF_GLOBAL_CTRL", 7418 EXI_CONTROLS, "EXI_CONTROLS", EXI_LOAD_PERF); 7419 } 7420 7421 7422 static void test_load_guest_perf_global_ctrl(void) 7423 { 7424 if (!this_cpu_has_perf_global_ctrl()) { 7425 report_skip("%s : \"IA32_PERF_GLOBAL_CTRL\" MSR not supported", __func__); 7426 return; 7427 } 7428 7429 if (!(ctrl_enter_rev.clr & ENT_LOAD_PERF)) { 7430 report_skip("%s : \"Load IA32_PERF_GLOBAL_CTRL\" entry control not supported", __func__); 7431 return; 7432 } 7433 7434 test_perf_global_ctrl(GUEST_PERF_GLOBAL_CTRL, "GUEST_PERF_GLOBAL_CTRL", 7435 ENT_CONTROLS, "ENT_CONTROLS", ENT_LOAD_PERF); 7436 } 7437 7438 7439 /* 7440 * test_vmcs_field - test a value for the given VMCS field 7441 * @field: VMCS field 7442 * @field_name: string name of VMCS field 7443 * @bit_start: starting bit 7444 * @bit_end: ending bit 7445 * @val: value that the bit range must or must not contain 7446 * @valid_val: whether value given in 'val' must be valid or not 7447 * @error: expected VMCS error when vmentry fails for an invalid value 7448 */ 7449 static void test_vmcs_field(u64 field, const char *field_name, u32 bit_start, 7450 u32 bit_end, u64 val, bool valid_val, u32 error) 7451 { 7452 u64 field_saved = vmcs_read(field); 7453 u32 i; 7454 u64 tmp; 7455 u32 bit_on; 7456 u64 mask = ~0ull; 7457 7458 mask = (mask >> bit_end) << bit_end; 7459 mask = mask | ((1 << bit_start) - 1); 7460 tmp = (field_saved & mask) | (val << bit_start); 7461 7462 vmcs_write(field, tmp); 7463 report_prefix_pushf("%s %lx", field_name, tmp); 7464 if (valid_val) 7465 test_vmx_vmlaunch(0); 7466 else 7467 test_vmx_vmlaunch(error); 7468 report_prefix_pop(); 7469 7470 for (i = bit_start; i <= bit_end; i = i + 2) { 7471 bit_on = ((1ull < i) & (val << bit_start)) ? 0 : 1; 7472 if (bit_on) 7473 tmp = field_saved | (1ull << i); 7474 else 7475 tmp = field_saved & ~(1ull << i); 7476 vmcs_write(field, tmp); 7477 report_prefix_pushf("%s %lx", field_name, tmp); 7478 if (valid_val) 7479 test_vmx_vmlaunch(error); 7480 else 7481 test_vmx_vmlaunch(0); 7482 report_prefix_pop(); 7483 } 7484 7485 vmcs_write(field, field_saved); 7486 } 7487 7488 static void test_canonical(u64 field, const char * field_name, bool host) 7489 { 7490 u64 addr_saved = vmcs_read(field); 7491 7492 /* 7493 * Use the existing value if possible. Writing a random canonical 7494 * value is not an option as doing so would corrupt the field being 7495 * tested and likely hose the test. 7496 */ 7497 if (is_canonical(addr_saved)) { 7498 if (host) { 7499 report_prefix_pushf("%s %lx", field_name, addr_saved); 7500 test_vmx_vmlaunch(0); 7501 report_prefix_pop(); 7502 } else { 7503 test_guest_state("Test canonical address", false, 7504 addr_saved, field_name); 7505 } 7506 } 7507 7508 vmcs_write(field, NONCANONICAL); 7509 7510 if (host) { 7511 report_prefix_pushf("%s %llx", field_name, NONCANONICAL); 7512 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7513 report_prefix_pop(); 7514 } else { 7515 test_guest_state("Test non-canonical address", true, 7516 NONCANONICAL, field_name); 7517 } 7518 7519 vmcs_write(field, addr_saved); 7520 } 7521 7522 #define TEST_RPL_TI_FLAGS(reg, name) \ 7523 test_vmcs_field(reg, name, 0, 2, 0x0, true, \ 7524 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7525 7526 #define TEST_CS_TR_FLAGS(reg, name) \ 7527 test_vmcs_field(reg, name, 3, 15, 0x0000, false, \ 7528 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7529 7530 /* 7531 * 1. In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the 7532 * RPL (bits 1:0) and the TI flag (bit 2) must be 0. 7533 * 2. The selector fields for CS and TR cannot be 0000H. 7534 * 3. The selector field for SS cannot be 0000H if the "host address-space 7535 * size" VM-exit control is 0. 7536 * 4. On processors that support Intel 64 architecture, the base-address 7537 * fields for FS, GS and TR must contain canonical addresses. 7538 */ 7539 static void test_host_segment_regs(void) 7540 { 7541 u16 selector_saved; 7542 7543 /* 7544 * Test RPL and TI flags 7545 */ 7546 TEST_RPL_TI_FLAGS(HOST_SEL_CS, "HOST_SEL_CS"); 7547 TEST_RPL_TI_FLAGS(HOST_SEL_SS, "HOST_SEL_SS"); 7548 TEST_RPL_TI_FLAGS(HOST_SEL_DS, "HOST_SEL_DS"); 7549 TEST_RPL_TI_FLAGS(HOST_SEL_ES, "HOST_SEL_ES"); 7550 TEST_RPL_TI_FLAGS(HOST_SEL_FS, "HOST_SEL_FS"); 7551 TEST_RPL_TI_FLAGS(HOST_SEL_GS, "HOST_SEL_GS"); 7552 TEST_RPL_TI_FLAGS(HOST_SEL_TR, "HOST_SEL_TR"); 7553 7554 /* 7555 * Test that CS and TR fields can not be 0x0000 7556 */ 7557 TEST_CS_TR_FLAGS(HOST_SEL_CS, "HOST_SEL_CS"); 7558 TEST_CS_TR_FLAGS(HOST_SEL_TR, "HOST_SEL_TR"); 7559 7560 /* 7561 * SS field can not be 0x0000 if "host address-space size" VM-exit 7562 * control is 0 7563 */ 7564 selector_saved = vmcs_read(HOST_SEL_SS); 7565 vmcs_write(HOST_SEL_SS, 0); 7566 report_prefix_pushf("HOST_SEL_SS 0"); 7567 if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) { 7568 test_vmx_vmlaunch(0); 7569 } else { 7570 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7571 } 7572 report_prefix_pop(); 7573 7574 vmcs_write(HOST_SEL_SS, selector_saved); 7575 7576 /* 7577 * Base address for FS, GS and TR must be canonical 7578 */ 7579 test_canonical(HOST_BASE_FS, "HOST_BASE_FS", true); 7580 test_canonical(HOST_BASE_GS, "HOST_BASE_GS", true); 7581 test_canonical(HOST_BASE_TR, "HOST_BASE_TR", true); 7582 } 7583 7584 /* 7585 * On processors that support Intel 64 architecture, the base-address 7586 * fields for GDTR and IDTR must contain canonical addresses. 7587 */ 7588 static void test_host_desc_tables(void) 7589 { 7590 test_canonical(HOST_BASE_GDTR, "HOST_BASE_GDTR", true); 7591 test_canonical(HOST_BASE_IDTR, "HOST_BASE_IDTR", true); 7592 } 7593 7594 /* 7595 * If the "host address-space size" VM-exit control is 0, the following must 7596 * hold: 7597 * - The "IA-32e mode guest" VM-entry control is 0. 7598 * - Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0. 7599 * - Bits 63:32 in the RIP field are 0. 7600 * 7601 * If the "host address-space size" VM-exit control is 1, the following must 7602 * hold: 7603 * - Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1. 7604 * - The RIP field contains a canonical address. 7605 * 7606 */ 7607 static void test_host_addr_size(void) 7608 { 7609 u64 cr4_saved = vmcs_read(HOST_CR4); 7610 u64 rip_saved = vmcs_read(HOST_RIP); 7611 u64 entry_ctrl_saved = vmcs_read(ENT_CONTROLS); 7612 int i; 7613 u64 tmp; 7614 7615 assert(vmcs_read(EXI_CONTROLS) & EXI_HOST_64); 7616 assert(cr4_saved & X86_CR4_PAE); 7617 7618 vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64); 7619 report_prefix_pushf("\"IA-32e mode guest\" enabled"); 7620 test_vmx_vmlaunch(0); 7621 report_prefix_pop(); 7622 7623 if (this_cpu_has(X86_FEATURE_PCID)) { 7624 vmcs_write(HOST_CR4, cr4_saved | X86_CR4_PCIDE); 7625 report_prefix_pushf("\"CR4.PCIDE\" set"); 7626 test_vmx_vmlaunch(0); 7627 report_prefix_pop(); 7628 } 7629 7630 vmcs_write(HOST_CR4, cr4_saved & ~X86_CR4_PAE); 7631 report_prefix_pushf("\"CR4.PAE\" unset"); 7632 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7633 vmcs_write(HOST_CR4, cr4_saved); 7634 report_prefix_pop(); 7635 7636 for (i = 32; i <= 63; i = i + 4) { 7637 tmp = rip_saved | 1ull << i; 7638 vmcs_write(HOST_RIP, tmp); 7639 report_prefix_pushf("HOST_RIP %lx", tmp); 7640 test_vmx_vmlaunch(0); 7641 report_prefix_pop(); 7642 } 7643 7644 vmcs_write(HOST_RIP, NONCANONICAL); 7645 report_prefix_pushf("HOST_RIP %llx", NONCANONICAL); 7646 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7647 report_prefix_pop(); 7648 7649 vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64); 7650 vmcs_write(HOST_RIP, rip_saved); 7651 vmcs_write(HOST_CR4, cr4_saved); 7652 7653 /* 7654 * Restore host's active CR4 and RIP values by triggering a VM-Exit. 7655 * The original CR4 and RIP values in the VMCS are restored between 7656 * testcases as needed, but don't guarantee a VM-Exit and so the active 7657 * CR4 and RIP may still hold a test value. Running with the test CR4 7658 * and RIP values at some point is unavoidable, and the active values 7659 * are unlikely to affect VM-Enter, so the above doen't force a VM-Exit 7660 * between testcases. Note, if VM-Enter is surrounded by CALL+RET then 7661 * the active RIP will already be restored, but that's also not 7662 * guaranteed, and CR4 needs to be restored regardless. 7663 */ 7664 report_prefix_pushf("restore host state"); 7665 test_vmx_vmlaunch(0); 7666 report_prefix_pop(); 7667 } 7668 7669 /* 7670 * Check that the virtual CPU checks the VMX Host State Area as 7671 * documented in the Intel SDM. 7672 */ 7673 static void vmx_host_state_area_test(void) 7674 { 7675 /* 7676 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will 7677 * fail due to invalid guest state, should we make it that 7678 * far. 7679 */ 7680 vmcs_write(GUEST_RFLAGS, 0); 7681 7682 test_host_ctl_regs(); 7683 7684 test_canonical(HOST_SYSENTER_ESP, "HOST_SYSENTER_ESP", true); 7685 test_canonical(HOST_SYSENTER_EIP, "HOST_SYSENTER_EIP", true); 7686 7687 test_host_efer(); 7688 test_load_host_pat(); 7689 test_host_segment_regs(); 7690 test_host_desc_tables(); 7691 test_host_addr_size(); 7692 test_load_host_perf_global_ctrl(); 7693 } 7694 7695 /* 7696 * If the "load debug controls" VM-entry control is 1, bits 63:32 in 7697 * the DR7 field must be 0. 7698 * 7699 * [Intel SDM] 7700 */ 7701 static void test_guest_dr7(void) 7702 { 7703 u32 ent_saved = vmcs_read(ENT_CONTROLS); 7704 u64 dr7_saved = vmcs_read(GUEST_DR7); 7705 u64 val; 7706 int i; 7707 7708 if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS) { 7709 vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS); 7710 for (i = 0; i < 64; i++) { 7711 val = 1ull << i; 7712 vmcs_write(GUEST_DR7, val); 7713 test_guest_state("ENT_LOAD_DBGCTLS disabled", false, 7714 val, "GUEST_DR7"); 7715 } 7716 } 7717 if (ctrl_enter_rev.clr & ENT_LOAD_DBGCTLS) { 7718 vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS); 7719 for (i = 0; i < 64; i++) { 7720 val = 1ull << i; 7721 vmcs_write(GUEST_DR7, val); 7722 test_guest_state("ENT_LOAD_DBGCTLS enabled", i >= 32, 7723 val, "GUEST_DR7"); 7724 } 7725 } 7726 vmcs_write(GUEST_DR7, dr7_saved); 7727 vmcs_write(ENT_CONTROLS, ent_saved); 7728 } 7729 7730 /* 7731 * If the "load IA32_PAT" VM-entry control is 1, the value of the field 7732 * for the IA32_PAT MSR must be one that could be written by WRMSR 7733 * without fault at CPL 0. Specifically, each of the 8 bytes in the 7734 * field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 7735 * 6 (WB), or 7 (UC-). 7736 * 7737 * [Intel SDM] 7738 */ 7739 static void test_load_guest_pat(void) 7740 { 7741 /* 7742 * "load IA32_PAT" VM-entry control 7743 */ 7744 if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) { 7745 report_skip("%s : \"Load-IA32-PAT\" entry control not supported", __func__); 7746 return; 7747 } 7748 7749 test_pat(GUEST_PAT, "GUEST_PAT", ENT_CONTROLS, ENT_LOAD_PAT); 7750 } 7751 7752 #define MSR_IA32_BNDCFGS_RSVD_MASK 0x00000ffc 7753 7754 /* 7755 * If the "load IA32_BNDCFGS" VM-entry control is 1, the following 7756 * checks are performed on the field for the IA32_BNDCFGS MSR: 7757 * 7758 * - Bits reserved in the IA32_BNDCFGS MSR must be 0. 7759 * - The linear address in bits 63:12 must be canonical. 7760 * 7761 * [Intel SDM] 7762 */ 7763 static void test_load_guest_bndcfgs(void) 7764 { 7765 u64 bndcfgs_saved = vmcs_read(GUEST_BNDCFGS); 7766 u64 bndcfgs; 7767 7768 if (!(ctrl_enter_rev.clr & ENT_LOAD_BNDCFGS)) { 7769 report_skip("%s : \"Load-IA32-BNDCFGS\" entry control not supported", __func__); 7770 return; 7771 } 7772 7773 vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS); 7774 7775 vmcs_write(GUEST_BNDCFGS, NONCANONICAL); 7776 test_guest_state("ENT_LOAD_BNDCFGS disabled", false, 7777 GUEST_BNDCFGS, "GUEST_BNDCFGS"); 7778 bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK; 7779 vmcs_write(GUEST_BNDCFGS, bndcfgs); 7780 test_guest_state("ENT_LOAD_BNDCFGS disabled", false, 7781 GUEST_BNDCFGS, "GUEST_BNDCFGS"); 7782 7783 vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS); 7784 7785 vmcs_write(GUEST_BNDCFGS, NONCANONICAL); 7786 test_guest_state("ENT_LOAD_BNDCFGS enabled", true, 7787 GUEST_BNDCFGS, "GUEST_BNDCFGS"); 7788 bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK; 7789 vmcs_write(GUEST_BNDCFGS, bndcfgs); 7790 test_guest_state("ENT_LOAD_BNDCFGS enabled", true, 7791 GUEST_BNDCFGS, "GUEST_BNDCFGS"); 7792 7793 vmcs_write(GUEST_BNDCFGS, bndcfgs_saved); 7794 } 7795 7796 #define GUEST_SEG_UNUSABLE_MASK (1u << 16) 7797 #define GUEST_SEG_SEL_TI_MASK (1u << 2) 7798 7799 7800 #define TEST_SEGMENT_SEL(test, xfail, sel, val) \ 7801 do { \ 7802 vmcs_write(sel, val); \ 7803 test_guest_state(test " segment", xfail, val, xstr(sel)); \ 7804 } while (0) 7805 7806 #define TEST_INVALID_SEG_SEL(sel, val) \ 7807 TEST_SEGMENT_SEL("Invalid: " xstr(val), true, sel, val); 7808 7809 #define TEST_VALID_SEG_SEL(sel, val) \ 7810 TEST_SEGMENT_SEL("Valid: " xstr(val), false, sel, val); 7811 7812 /* 7813 * The following checks are done on the Selector field of the Guest Segment 7814 * Registers: 7815 * - TR. The TI flag (bit 2) must be 0. 7816 * - LDTR. If LDTR is usable, the TI flag (bit 2) must be 0. 7817 * - SS. If the guest will not be virtual-8086 and the "unrestricted 7818 * guest" VM-execution control is 0, the RPL (bits 1:0) must equal 7819 * the RPL of the selector field for CS. 7820 * 7821 * [Intel SDM] 7822 */ 7823 static void test_guest_segment_sel_fields(void) 7824 { 7825 u16 sel_saved; 7826 u32 ar_saved; 7827 u32 cpu_ctrl0_saved; 7828 u32 cpu_ctrl1_saved; 7829 u16 cs_rpl_bits; 7830 7831 /* 7832 * Test for GUEST_SEL_TR 7833 */ 7834 sel_saved = vmcs_read(GUEST_SEL_TR); 7835 TEST_INVALID_SEG_SEL(GUEST_SEL_TR, sel_saved | GUEST_SEG_SEL_TI_MASK); 7836 vmcs_write(GUEST_SEL_TR, sel_saved); 7837 7838 /* 7839 * Test for GUEST_SEL_LDTR 7840 */ 7841 sel_saved = vmcs_read(GUEST_SEL_LDTR); 7842 ar_saved = vmcs_read(GUEST_AR_LDTR); 7843 /* LDTR is set unusable */ 7844 vmcs_write(GUEST_AR_LDTR, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7845 TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved | GUEST_SEG_SEL_TI_MASK); 7846 TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved & ~GUEST_SEG_SEL_TI_MASK); 7847 /* LDTR is set usable */ 7848 vmcs_write(GUEST_AR_LDTR, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7849 TEST_INVALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved | GUEST_SEG_SEL_TI_MASK); 7850 7851 TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved & ~GUEST_SEG_SEL_TI_MASK); 7852 7853 vmcs_write(GUEST_AR_LDTR, ar_saved); 7854 vmcs_write(GUEST_SEL_LDTR, sel_saved); 7855 7856 /* 7857 * Test for GUEST_SEL_SS 7858 */ 7859 cpu_ctrl0_saved = vmcs_read(CPU_EXEC_CTRL0); 7860 cpu_ctrl1_saved = vmcs_read(CPU_EXEC_CTRL1); 7861 ar_saved = vmcs_read(GUEST_AR_SS); 7862 /* Turn off "unrestricted guest" vm-execution control */ 7863 vmcs_write(CPU_EXEC_CTRL1, cpu_ctrl1_saved & ~CPU_URG); 7864 cs_rpl_bits = vmcs_read(GUEST_SEL_CS) & 0x3; 7865 sel_saved = vmcs_read(GUEST_SEL_SS); 7866 TEST_INVALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3))); 7867 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3))); 7868 /* Make SS usable if it's unusable or vice-versa */ 7869 if (ar_saved & GUEST_SEG_UNUSABLE_MASK) 7870 vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7871 else 7872 vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7873 TEST_INVALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3))); 7874 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3))); 7875 7876 /* Need a valid EPTP as the passing case fully enters the guest. */ 7877 if (enable_unrestricted_guest(true)) 7878 goto skip_ss_tests; 7879 7880 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3))); 7881 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3))); 7882 7883 /* Make SS usable if it's unusable or vice-versa */ 7884 if (vmcs_read(GUEST_AR_SS) & GUEST_SEG_UNUSABLE_MASK) 7885 vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7886 else 7887 vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7888 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3))); 7889 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3))); 7890 skip_ss_tests: 7891 7892 vmcs_write(GUEST_AR_SS, ar_saved); 7893 vmcs_write(GUEST_SEL_SS, sel_saved); 7894 vmcs_write(CPU_EXEC_CTRL0, cpu_ctrl0_saved); 7895 vmcs_write(CPU_EXEC_CTRL1, cpu_ctrl1_saved); 7896 } 7897 7898 #define TEST_SEGMENT_BASE_ADDR_UPPER_BITS(xfail, seg_base) \ 7899 do { \ 7900 addr_saved = vmcs_read(seg_base); \ 7901 for (i = 32; i < 63; i = i + 4) { \ 7902 addr = addr_saved | 1ull << i; \ 7903 vmcs_write(seg_base, addr); \ 7904 test_guest_state("seg.BASE[63:32] != 0, usable = " xstr(xfail), \ 7905 xfail, addr, xstr(seg_base)); \ 7906 } \ 7907 vmcs_write(seg_base, addr_saved); \ 7908 } while (0) 7909 7910 #define TEST_SEGMENT_BASE_ADDR_CANONICAL(xfail, seg_base) \ 7911 do { \ 7912 addr_saved = vmcs_read(seg_base); \ 7913 vmcs_write(seg_base, NONCANONICAL); \ 7914 test_guest_state("seg.BASE non-canonical, usable = " xstr(xfail), \ 7915 xfail, NONCANONICAL, xstr(seg_base)); \ 7916 vmcs_write(seg_base, addr_saved); \ 7917 } while (0) 7918 7919 /* 7920 * The following checks are done on the Base Address field of the Guest 7921 * Segment Registers on processors that support Intel 64 architecture: 7922 * - TR, FS, GS : The address must be canonical. 7923 * - LDTR : If LDTR is usable, the address must be canonical. 7924 * - CS : Bits 63:32 of the address must be zero. 7925 * - SS, DS, ES : If the register is usable, bits 63:32 of the address 7926 * must be zero. 7927 * 7928 * [Intel SDM] 7929 */ 7930 static void test_guest_segment_base_addr_fields(void) 7931 { 7932 u64 addr_saved; 7933 u64 addr; 7934 u32 ar_saved; 7935 int i; 7936 7937 /* 7938 * The address of TR, FS, GS and LDTR must be canonical. 7939 */ 7940 TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_TR); 7941 TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_FS); 7942 TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_GS); 7943 ar_saved = vmcs_read(GUEST_AR_LDTR); 7944 /* Make LDTR unusable */ 7945 vmcs_write(GUEST_AR_LDTR, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7946 TEST_SEGMENT_BASE_ADDR_CANONICAL(false, GUEST_BASE_LDTR); 7947 /* Make LDTR usable */ 7948 vmcs_write(GUEST_AR_LDTR, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7949 TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_LDTR); 7950 7951 vmcs_write(GUEST_AR_LDTR, ar_saved); 7952 7953 /* 7954 * Bits 63:32 in CS, SS, DS and ES base address must be zero 7955 */ 7956 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_CS); 7957 ar_saved = vmcs_read(GUEST_AR_SS); 7958 /* Make SS unusable */ 7959 vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7960 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_SS); 7961 /* Make SS usable */ 7962 vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7963 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_SS); 7964 vmcs_write(GUEST_AR_SS, ar_saved); 7965 7966 ar_saved = vmcs_read(GUEST_AR_DS); 7967 /* Make DS unusable */ 7968 vmcs_write(GUEST_AR_DS, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7969 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_DS); 7970 /* Make DS usable */ 7971 vmcs_write(GUEST_AR_DS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7972 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_DS); 7973 vmcs_write(GUEST_AR_DS, ar_saved); 7974 7975 ar_saved = vmcs_read(GUEST_AR_ES); 7976 /* Make ES unusable */ 7977 vmcs_write(GUEST_AR_ES, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7978 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_ES); 7979 /* Make ES usable */ 7980 vmcs_write(GUEST_AR_ES, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7981 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_ES); 7982 vmcs_write(GUEST_AR_ES, ar_saved); 7983 } 7984 7985 /* 7986 * Check that the virtual CPU checks the VMX Guest State Area as 7987 * documented in the Intel SDM. 7988 */ 7989 static void vmx_guest_state_area_test(void) 7990 { 7991 vmx_set_test_stage(1); 7992 test_set_guest(guest_state_test_main); 7993 7994 /* 7995 * The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field 7996 * must each contain a canonical address. 7997 */ 7998 test_canonical(GUEST_SYSENTER_ESP, "GUEST_SYSENTER_ESP", false); 7999 test_canonical(GUEST_SYSENTER_EIP, "GUEST_SYSENTER_EIP", false); 8000 8001 test_guest_dr7(); 8002 test_load_guest_pat(); 8003 test_guest_efer(); 8004 test_load_guest_perf_global_ctrl(); 8005 test_load_guest_bndcfgs(); 8006 8007 test_guest_segment_sel_fields(); 8008 test_guest_segment_base_addr_fields(); 8009 8010 test_canonical(GUEST_BASE_GDTR, "GUEST_BASE_GDTR", false); 8011 test_canonical(GUEST_BASE_IDTR, "GUEST_BASE_IDTR", false); 8012 8013 u32 guest_desc_limit_saved = vmcs_read(GUEST_LIMIT_GDTR); 8014 int i; 8015 for (i = 16; i <= 31; i++) { 8016 u32 tmp = guest_desc_limit_saved | (1ull << i); 8017 vmcs_write(GUEST_LIMIT_GDTR, tmp); 8018 test_guest_state("GDT.limit > 0xffff", true, tmp, "GUEST_LIMIT_GDTR"); 8019 } 8020 vmcs_write(GUEST_LIMIT_GDTR, guest_desc_limit_saved); 8021 8022 guest_desc_limit_saved = vmcs_read(GUEST_LIMIT_IDTR); 8023 for (i = 16; i <= 31; i++) { 8024 u32 tmp = guest_desc_limit_saved | (1ull << i); 8025 vmcs_write(GUEST_LIMIT_IDTR, tmp); 8026 test_guest_state("IDT.limit > 0xffff", true, tmp, "GUEST_LIMIT_IDTR"); 8027 } 8028 vmcs_write(GUEST_LIMIT_IDTR, guest_desc_limit_saved); 8029 8030 /* 8031 * Let the guest finish execution 8032 */ 8033 vmx_set_test_stage(2); 8034 enter_guest(); 8035 } 8036 8037 extern void unrestricted_guest_main(void); 8038 asm (".code32\n" 8039 "unrestricted_guest_main:\n" 8040 "vmcall\n" 8041 "nop\n" 8042 "mov $1, %edi\n" 8043 "call hypercall\n" 8044 ".code64\n"); 8045 8046 static void setup_unrestricted_guest(void) 8047 { 8048 vmcs_write(GUEST_CR0, vmcs_read(GUEST_CR0) & ~(X86_CR0_PG)); 8049 vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) & ~ENT_GUEST_64); 8050 vmcs_write(GUEST_EFER, vmcs_read(GUEST_EFER) & ~EFER_LMA); 8051 vmcs_write(GUEST_RIP, virt_to_phys(unrestricted_guest_main)); 8052 } 8053 8054 static void unsetup_unrestricted_guest(void) 8055 { 8056 vmcs_write(GUEST_CR0, vmcs_read(GUEST_CR0) | X86_CR0_PG); 8057 vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_GUEST_64); 8058 vmcs_write(GUEST_EFER, vmcs_read(GUEST_EFER) | EFER_LMA); 8059 vmcs_write(GUEST_RIP, (u64) phys_to_virt(vmcs_read(GUEST_RIP))); 8060 vmcs_write(GUEST_RSP, (u64) phys_to_virt(vmcs_read(GUEST_RSP))); 8061 } 8062 8063 /* 8064 * If "unrestricted guest" secondary VM-execution control is set, guests 8065 * can run in unpaged protected mode. 8066 */ 8067 static void vmentry_unrestricted_guest_test(void) 8068 { 8069 if (enable_unrestricted_guest(true)) { 8070 report_skip("%s: \"Unrestricted guest\" exec control not supported", __func__); 8071 return; 8072 } 8073 8074 test_set_guest(unrestricted_guest_main); 8075 setup_unrestricted_guest(); 8076 test_guest_state("Unrestricted guest test", false, CPU_URG, "CPU_URG"); 8077 8078 /* 8079 * Let the guest finish execution as a regular guest 8080 */ 8081 unsetup_unrestricted_guest(); 8082 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) & ~CPU_URG); 8083 enter_guest(); 8084 } 8085 8086 static bool valid_vmcs_for_vmentry(void) 8087 { 8088 struct vmcs *current_vmcs = NULL; 8089 8090 if (vmcs_save(¤t_vmcs)) 8091 return false; 8092 8093 return current_vmcs && !current_vmcs->hdr.shadow_vmcs; 8094 } 8095 8096 static void try_vmentry_in_movss_shadow(void) 8097 { 8098 u32 vm_inst_err; 8099 u32 flags; 8100 bool early_failure = false; 8101 u32 expected_flags = X86_EFLAGS_FIXED; 8102 bool valid_vmcs = valid_vmcs_for_vmentry(); 8103 8104 expected_flags |= valid_vmcs ? X86_EFLAGS_ZF : X86_EFLAGS_CF; 8105 8106 /* 8107 * Indirectly set VM_INST_ERR to 12 ("VMREAD/VMWRITE from/to 8108 * unsupported VMCS component"). 8109 */ 8110 vmcs_write(~0u, 0); 8111 8112 __asm__ __volatile__ ("mov %[host_rsp], %%edx;" 8113 "vmwrite %%rsp, %%rdx;" 8114 "mov 0f, %%rax;" 8115 "mov %[host_rip], %%edx;" 8116 "vmwrite %%rax, %%rdx;" 8117 "mov $-1, %%ah;" 8118 "sahf;" 8119 "mov %%ss, %%ax;" 8120 "mov %%ax, %%ss;" 8121 "vmlaunch;" 8122 "mov $1, %[early_failure];" 8123 "0: lahf;" 8124 "movzbl %%ah, %[flags]" 8125 : [early_failure] "+r" (early_failure), 8126 [flags] "=&a" (flags) 8127 : [host_rsp] "i" (HOST_RSP), 8128 [host_rip] "i" (HOST_RIP) 8129 : "rdx", "cc", "memory"); 8130 vm_inst_err = vmcs_read(VMX_INST_ERROR); 8131 8132 report(early_failure, "Early VM-entry failure"); 8133 report(flags == expected_flags, "RFLAGS[8:0] is %x (actual %x)", 8134 expected_flags, flags); 8135 if (valid_vmcs) 8136 report(vm_inst_err == VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, 8137 "VM-instruction error is %d (actual %d)", 8138 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, vm_inst_err); 8139 } 8140 8141 static void vmentry_movss_shadow_test(void) 8142 { 8143 struct vmcs *orig_vmcs; 8144 8145 TEST_ASSERT(!vmcs_save(&orig_vmcs)); 8146 8147 /* 8148 * Set the launched flag on the current VMCS to verify the correct 8149 * error priority, below. 8150 */ 8151 test_set_guest(v2_null_test_guest); 8152 enter_guest(); 8153 8154 /* 8155 * With bit 1 of the guest's RFLAGS clear, VM-entry should 8156 * fail due to invalid guest state (if we make it that far). 8157 */ 8158 vmcs_write(GUEST_RFLAGS, 0); 8159 8160 /* 8161 * "VM entry with events blocked by MOV SS" takes precedence over 8162 * "VMLAUNCH with non-clear VMCS." 8163 */ 8164 report_prefix_push("valid current-VMCS"); 8165 try_vmentry_in_movss_shadow(); 8166 report_prefix_pop(); 8167 8168 /* 8169 * VMfailInvalid takes precedence over "VM entry with events 8170 * blocked by MOV SS." 8171 */ 8172 TEST_ASSERT(!vmcs_clear(orig_vmcs)); 8173 report_prefix_push("no current-VMCS"); 8174 try_vmentry_in_movss_shadow(); 8175 report_prefix_pop(); 8176 8177 TEST_ASSERT(!make_vmcs_current(orig_vmcs)); 8178 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); 8179 } 8180 8181 static void vmx_ldtr_test_guest(void) 8182 { 8183 u16 ldtr = sldt(); 8184 8185 report(ldtr == NP_SEL, "Expected %x for L2 LDTR selector (got %x)", 8186 NP_SEL, ldtr); 8187 } 8188 8189 /* 8190 * Ensure that the L1 LDTR is set to 0 on VM-exit. 8191 */ 8192 static void vmx_ldtr_test(void) 8193 { 8194 const u8 ldt_ar = 0x82; /* Present LDT */ 8195 u16 sel = FIRST_SPARE_SEL; 8196 8197 /* Set up a non-zero L1 LDTR prior to VM-entry. */ 8198 set_gdt_entry(sel, 0, 0, ldt_ar, 0); 8199 lldt(sel); 8200 8201 test_set_guest(vmx_ldtr_test_guest); 8202 /* 8203 * Set up a different LDTR for L2. The actual GDT contents are 8204 * irrelevant, since we stuff the hidden descriptor state 8205 * straight into the VMCS rather than reading it from the GDT. 8206 */ 8207 vmcs_write(GUEST_SEL_LDTR, NP_SEL); 8208 vmcs_write(GUEST_AR_LDTR, ldt_ar); 8209 enter_guest(); 8210 8211 /* 8212 * VM-exit should clear LDTR (and make it unusable, but we 8213 * won't verify that here). 8214 */ 8215 sel = sldt(); 8216 report(!sel, "Expected 0 for L1 LDTR selector (got %x)", sel); 8217 } 8218 8219 static void vmx_single_vmcall_guest(void) 8220 { 8221 vmcall(); 8222 } 8223 8224 static void vmx_cr_load_test(void) 8225 { 8226 unsigned long cr3, cr4, orig_cr3, orig_cr4; 8227 u32 ctrls[2] = {0}; 8228 pgd_t *pml5; 8229 8230 orig_cr4 = read_cr4(); 8231 orig_cr3 = read_cr3(); 8232 8233 if (!this_cpu_has(X86_FEATURE_PCID)) { 8234 report_skip("%s : PCID not detected", __func__); 8235 return; 8236 } 8237 if (!this_cpu_has(X86_FEATURE_MCE)) { 8238 report_skip("%s : MCE not detected", __func__); 8239 return; 8240 } 8241 8242 TEST_ASSERT(!(orig_cr3 & X86_CR3_PCID_MASK)); 8243 8244 /* Enable PCID for L1. */ 8245 cr4 = orig_cr4 | X86_CR4_PCIDE; 8246 cr3 = orig_cr3 | 0x1; 8247 TEST_ASSERT(!write_cr4_safe(cr4)); 8248 write_cr3(cr3); 8249 8250 test_set_guest(vmx_single_vmcall_guest); 8251 vmcs_write(HOST_CR4, cr4); 8252 vmcs_write(HOST_CR3, cr3); 8253 enter_guest(); 8254 8255 /* 8256 * No exception is expected. 8257 * 8258 * NB. KVM loads the last guest write to CR4 into CR4 read 8259 * shadow. In order to trigger an exit to KVM, we can toggle a 8260 * bit that is owned by KVM. We use CR4.MCE, which shall 8261 * have no side effect because normally no guest MCE (e.g., as the 8262 * result of bad memory) would happen during this test. 8263 */ 8264 TEST_ASSERT(!write_cr4_safe(cr4 ^ X86_CR4_MCE)); 8265 8266 /* Cleanup L1 state. */ 8267 write_cr3(orig_cr3); 8268 TEST_ASSERT(!write_cr4_safe(orig_cr4)); 8269 8270 if (!this_cpu_has(X86_FEATURE_LA57)) 8271 goto done; 8272 8273 /* 8274 * Allocate a full page for PML5 to guarantee alignment, though only 8275 * the first entry needs to be filled (the test's virtual addresses 8276 * most definitely do not have any of bits 56:48 set). 8277 */ 8278 pml5 = alloc_page(); 8279 *pml5 = orig_cr3 | PT_PRESENT_MASK | PT_WRITABLE_MASK; 8280 8281 /* 8282 * Transition to/from 5-level paging in the host via VM-Exit. CR4.LA57 8283 * can't be toggled while long is active via MOV CR4, but there are no 8284 * such restrictions on VM-Exit. 8285 */ 8286 lol_5level: 8287 vmcs_write(HOST_CR4, orig_cr4 | X86_CR4_LA57); 8288 vmcs_write(HOST_CR3, virt_to_phys(pml5)); 8289 enter_guest(); 8290 8291 /* 8292 * VMREAD with a memory operand to verify KVM detects the LA57 change, 8293 * e.g. uses the correct guest root level in gva_to_gpa(). 8294 */ 8295 TEST_ASSERT(vmcs_readm(HOST_CR3) == virt_to_phys(pml5)); 8296 TEST_ASSERT(vmcs_readm(HOST_CR4) == (orig_cr4 | X86_CR4_LA57)); 8297 8298 vmcs_write(HOST_CR4, orig_cr4); 8299 vmcs_write(HOST_CR3, orig_cr3); 8300 enter_guest(); 8301 8302 TEST_ASSERT(vmcs_readm(HOST_CR3) == orig_cr3); 8303 TEST_ASSERT(vmcs_readm(HOST_CR4) == orig_cr4); 8304 8305 /* 8306 * And now do the same LA57 shenanigans with EPT enabled. KVM uses 8307 * two separate MMUs when L1 uses TDP, whereas the above shadow paging 8308 * version shares an MMU between L1 and L2. 8309 * 8310 * If the saved execution controls are non-zero then the EPT version 8311 * has already run. In that case, restore the old controls. If EPT 8312 * setup fails, e.g. EPT isn't supported, fall through and finish up. 8313 */ 8314 if (ctrls[0]) { 8315 vmcs_write(CPU_EXEC_CTRL0, ctrls[0]); 8316 vmcs_write(CPU_EXEC_CTRL1, ctrls[1]); 8317 } else if (!setup_ept(false)) { 8318 ctrls[0] = vmcs_read(CPU_EXEC_CTRL0); 8319 ctrls[1] = vmcs_read(CPU_EXEC_CTRL1); 8320 goto lol_5level; 8321 } 8322 8323 free_page(pml5); 8324 8325 done: 8326 skip_exit_vmcall(); 8327 enter_guest(); 8328 } 8329 8330 static void vmx_cr4_osxsave_test_guest(void) 8331 { 8332 write_cr4(read_cr4() & ~X86_CR4_OSXSAVE); 8333 } 8334 8335 /* 8336 * Ensure that kvm recalculates the L1 guest's CPUID.01H:ECX.OSXSAVE 8337 * after VM-exit from an L2 guest that sets CR4.OSXSAVE to a different 8338 * value than in L1. 8339 */ 8340 static void vmx_cr4_osxsave_test(void) 8341 { 8342 if (!this_cpu_has(X86_FEATURE_XSAVE)) { 8343 report_skip("%s : XSAVE not detected", __func__); 8344 return; 8345 } 8346 8347 if (!(read_cr4() & X86_CR4_OSXSAVE)) { 8348 unsigned long cr4 = read_cr4() | X86_CR4_OSXSAVE; 8349 8350 write_cr4(cr4); 8351 vmcs_write(GUEST_CR4, cr4); 8352 vmcs_write(HOST_CR4, cr4); 8353 } 8354 8355 TEST_ASSERT(this_cpu_has(X86_FEATURE_OSXSAVE)); 8356 8357 test_set_guest(vmx_cr4_osxsave_test_guest); 8358 enter_guest(); 8359 8360 TEST_ASSERT(this_cpu_has(X86_FEATURE_OSXSAVE)); 8361 } 8362 8363 /* 8364 * FNOP with both CR0.TS and CR0.EM clear should not generate #NM, and the L2 8365 * guest should exit normally. 8366 */ 8367 static void vmx_no_nm_test(void) 8368 { 8369 test_set_guest(fnop); 8370 vmcs_write(GUEST_CR0, read_cr0() & ~(X86_CR0_TS | X86_CR0_EM)); 8371 enter_guest(); 8372 } 8373 8374 bool vmx_pending_event_ipi_fired; 8375 static void vmx_pending_event_ipi_isr(isr_regs_t *regs) 8376 { 8377 vmx_pending_event_ipi_fired = true; 8378 eoi(); 8379 } 8380 8381 bool vmx_pending_event_guest_run; 8382 static void vmx_pending_event_guest(void) 8383 { 8384 vmcall(); 8385 vmx_pending_event_guest_run = true; 8386 } 8387 8388 static void vmx_pending_event_test_core(bool guest_hlt) 8389 { 8390 int ipi_vector = 0xf1; 8391 8392 vmx_pending_event_ipi_fired = false; 8393 handle_irq(ipi_vector, vmx_pending_event_ipi_isr); 8394 8395 vmx_pending_event_guest_run = false; 8396 test_set_guest(vmx_pending_event_guest); 8397 8398 vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT); 8399 8400 enter_guest(); 8401 skip_exit_vmcall(); 8402 8403 if (guest_hlt) 8404 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 8405 8406 cli(); 8407 apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | 8408 APIC_DM_FIXED | ipi_vector, 8409 0); 8410 8411 enter_guest(); 8412 8413 assert_exit_reason(VMX_EXTINT); 8414 report(!vmx_pending_event_guest_run, 8415 "Guest did not run before host received IPI"); 8416 8417 sti_nop_cli(); 8418 report(vmx_pending_event_ipi_fired, 8419 "Got pending interrupt after IRQ enabled"); 8420 8421 if (guest_hlt) 8422 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 8423 8424 enter_guest(); 8425 report(vmx_pending_event_guest_run, 8426 "Guest finished running when no interrupt"); 8427 } 8428 8429 static void vmx_pending_event_test(void) 8430 { 8431 vmx_pending_event_test_core(false); 8432 } 8433 8434 static void vmx_pending_event_hlt_test(void) 8435 { 8436 vmx_pending_event_test_core(true); 8437 } 8438 8439 static int vmx_window_test_db_count; 8440 8441 static void vmx_window_test_db_handler(struct ex_regs *regs) 8442 { 8443 vmx_window_test_db_count++; 8444 } 8445 8446 static void vmx_nmi_window_test_guest(void) 8447 { 8448 handle_exception(DB_VECTOR, vmx_window_test_db_handler); 8449 8450 asm volatile("vmcall\n\t" 8451 "nop\n\t"); 8452 8453 handle_exception(DB_VECTOR, NULL); 8454 } 8455 8456 static void verify_nmi_window_exit(u64 rip) 8457 { 8458 u32 exit_reason = vmcs_read(EXI_REASON); 8459 8460 report(exit_reason == VMX_NMI_WINDOW, 8461 "Exit reason (%d) is 'NMI window'", exit_reason); 8462 report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx", 8463 vmcs_read(GUEST_RIP), rip); 8464 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 8465 } 8466 8467 static void vmx_nmi_window_test(void) 8468 { 8469 u64 nop_addr; 8470 void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]); 8471 8472 if (!(ctrl_pin_rev.clr & PIN_VIRT_NMI)) { 8473 report_skip("%s : \"Virtual NMIs\" exec control not supported", __func__); 8474 return; 8475 } 8476 8477 if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) { 8478 report_skip("%s : \"NMI-window exiting\" exec control not supported", __func__); 8479 return; 8480 } 8481 8482 vmx_window_test_db_count = 0; 8483 8484 report_prefix_push("NMI-window"); 8485 test_set_guest(vmx_nmi_window_test_guest); 8486 vmcs_set_bits(PIN_CONTROLS, PIN_VIRT_NMI); 8487 enter_guest(); 8488 skip_exit_vmcall(); 8489 nop_addr = vmcs_read(GUEST_RIP); 8490 8491 /* 8492 * Ask for "NMI-window exiting," and expect an immediate VM-exit. 8493 * RIP will not advance. 8494 */ 8495 report_prefix_push("active, no blocking"); 8496 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW); 8497 enter_guest(); 8498 verify_nmi_window_exit(nop_addr); 8499 report_prefix_pop(); 8500 8501 /* 8502 * Ask for "NMI-window exiting" in a MOV-SS shadow, and expect 8503 * a VM-exit on the next instruction after the nop. (The nop 8504 * is one byte.) 8505 */ 8506 report_prefix_push("active, blocking by MOV-SS"); 8507 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); 8508 enter_guest(); 8509 verify_nmi_window_exit(nop_addr + 1); 8510 report_prefix_pop(); 8511 8512 /* 8513 * Ask for "NMI-window exiting" (with event injection), and 8514 * expect a VM-exit after the event is injected. (RIP should 8515 * be at the address specified in the IDT entry for #DB.) 8516 */ 8517 report_prefix_push("active, no blocking, injecting #DB"); 8518 vmcs_write(ENT_INTR_INFO, 8519 INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); 8520 enter_guest(); 8521 verify_nmi_window_exit((u64)db_fault_addr); 8522 report_prefix_pop(); 8523 8524 /* 8525 * Ask for "NMI-window exiting" with NMI blocking, and expect 8526 * a VM-exit after the next IRET (i.e. after the #DB handler 8527 * returns). So, RIP should be back at one byte past the nop. 8528 */ 8529 report_prefix_push("active, blocking by NMI"); 8530 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_NMI); 8531 enter_guest(); 8532 verify_nmi_window_exit(nop_addr + 1); 8533 report(vmx_window_test_db_count == 1, 8534 "#DB handler executed once (actual %d times)", 8535 vmx_window_test_db_count); 8536 report_prefix_pop(); 8537 8538 if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) { 8539 report_skip("CPU does not support activity state HLT."); 8540 } else { 8541 /* 8542 * Ask for "NMI-window exiting" when entering activity 8543 * state HLT, and expect an immediate VM-exit. RIP is 8544 * still one byte past the nop. 8545 */ 8546 report_prefix_push("halted, no blocking"); 8547 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 8548 enter_guest(); 8549 verify_nmi_window_exit(nop_addr + 1); 8550 report_prefix_pop(); 8551 8552 /* 8553 * Ask for "NMI-window exiting" when entering activity 8554 * state HLT (with event injection), and expect a 8555 * VM-exit after the event is injected. (RIP should be 8556 * at the address specified in the IDT entry for #DB.) 8557 */ 8558 report_prefix_push("halted, no blocking, injecting #DB"); 8559 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 8560 vmcs_write(ENT_INTR_INFO, 8561 INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | 8562 DB_VECTOR); 8563 enter_guest(); 8564 verify_nmi_window_exit((u64)db_fault_addr); 8565 report_prefix_pop(); 8566 } 8567 8568 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW); 8569 enter_guest(); 8570 report_prefix_pop(); 8571 } 8572 8573 static void vmx_intr_window_test_guest(void) 8574 { 8575 handle_exception(DB_VECTOR, vmx_window_test_db_handler); 8576 8577 /* 8578 * The two consecutive STIs are to ensure that only the first 8579 * one has a shadow. Note that NOP and STI are one byte 8580 * instructions. 8581 */ 8582 asm volatile("vmcall\n\t" 8583 "nop\n\t" 8584 "sti\n\t" 8585 "sti\n\t"); 8586 8587 handle_exception(DB_VECTOR, NULL); 8588 } 8589 8590 static void verify_intr_window_exit(u64 rip) 8591 { 8592 u32 exit_reason = vmcs_read(EXI_REASON); 8593 8594 report(exit_reason == VMX_INTR_WINDOW, 8595 "Exit reason (%d) is 'interrupt window'", exit_reason); 8596 report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx", 8597 vmcs_read(GUEST_RIP), rip); 8598 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 8599 } 8600 8601 static void vmx_intr_window_test(void) 8602 { 8603 u64 vmcall_addr; 8604 u64 nop_addr; 8605 unsigned int orig_db_gate_type; 8606 void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]); 8607 8608 if (!(ctrl_cpu_rev[0].clr & CPU_INTR_WINDOW)) { 8609 report_skip("%s : \"Interrupt-window exiting\" exec control not supported", __func__); 8610 return; 8611 } 8612 8613 /* 8614 * Change the IDT entry for #DB from interrupt gate to trap gate, 8615 * so that it won't clear RFLAGS.IF. We don't want interrupts to 8616 * be disabled after vectoring a #DB. 8617 */ 8618 orig_db_gate_type = boot_idt[DB_VECTOR].type; 8619 boot_idt[DB_VECTOR].type = 15; 8620 8621 report_prefix_push("interrupt-window"); 8622 test_set_guest(vmx_intr_window_test_guest); 8623 enter_guest(); 8624 assert_exit_reason(VMX_VMCALL); 8625 vmcall_addr = vmcs_read(GUEST_RIP); 8626 8627 /* 8628 * Ask for "interrupt-window exiting" with RFLAGS.IF set and 8629 * no blocking; expect an immediate VM-exit. Note that we have 8630 * not advanced past the vmcall instruction yet, so RIP should 8631 * point to the vmcall instruction. 8632 */ 8633 report_prefix_push("active, no blocking, RFLAGS.IF=1"); 8634 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); 8635 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_IF); 8636 enter_guest(); 8637 verify_intr_window_exit(vmcall_addr); 8638 report_prefix_pop(); 8639 8640 /* 8641 * Ask for "interrupt-window exiting" (with event injection) 8642 * with RFLAGS.IF set and no blocking; expect a VM-exit after 8643 * the event is injected. That is, RIP should should be at the 8644 * address specified in the IDT entry for #DB. 8645 */ 8646 report_prefix_push("active, no blocking, RFLAGS.IF=1, injecting #DB"); 8647 vmcs_write(ENT_INTR_INFO, 8648 INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); 8649 vmcall_addr = vmcs_read(GUEST_RIP); 8650 enter_guest(); 8651 verify_intr_window_exit((u64)db_fault_addr); 8652 report_prefix_pop(); 8653 8654 /* 8655 * Let the L2 guest run through the IRET, back to the VMCALL. 8656 * We have to clear the "interrupt-window exiting" 8657 * VM-execution control, or it would just keep causing 8658 * VM-exits. Then, advance past the VMCALL and set the 8659 * "interrupt-window exiting" VM-execution control again. 8660 */ 8661 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); 8662 enter_guest(); 8663 skip_exit_vmcall(); 8664 nop_addr = vmcs_read(GUEST_RIP); 8665 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); 8666 8667 /* 8668 * Ask for "interrupt-window exiting" in a MOV-SS shadow with 8669 * RFLAGS.IF set, and expect a VM-exit on the next 8670 * instruction. (NOP is one byte.) 8671 */ 8672 report_prefix_push("active, blocking by MOV-SS, RFLAGS.IF=1"); 8673 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); 8674 enter_guest(); 8675 verify_intr_window_exit(nop_addr + 1); 8676 report_prefix_pop(); 8677 8678 /* 8679 * Back up to the NOP and ask for "interrupt-window exiting" 8680 * in an STI shadow with RFLAGS.IF set, and expect a VM-exit 8681 * on the next instruction. (NOP is one byte.) 8682 */ 8683 report_prefix_push("active, blocking by STI, RFLAGS.IF=1"); 8684 vmcs_write(GUEST_RIP, nop_addr); 8685 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_STI); 8686 enter_guest(); 8687 verify_intr_window_exit(nop_addr + 1); 8688 report_prefix_pop(); 8689 8690 /* 8691 * Ask for "interrupt-window exiting" with RFLAGS.IF clear, 8692 * and expect a VM-exit on the instruction following the STI 8693 * shadow. Only the first STI (which is one byte past the NOP) 8694 * should have a shadow. The second STI (which is two bytes 8695 * past the NOP) has no shadow. Therefore, the interrupt 8696 * window opens at three bytes past the NOP. 8697 */ 8698 report_prefix_push("active, RFLAGS.IF = 0"); 8699 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); 8700 enter_guest(); 8701 verify_intr_window_exit(nop_addr + 3); 8702 report_prefix_pop(); 8703 8704 if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) { 8705 report_skip("CPU does not support activity state HLT."); 8706 } else { 8707 /* 8708 * Ask for "interrupt-window exiting" when entering 8709 * activity state HLT, and expect an immediate 8710 * VM-exit. RIP is still three bytes past the nop. 8711 */ 8712 report_prefix_push("halted, no blocking"); 8713 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 8714 enter_guest(); 8715 verify_intr_window_exit(nop_addr + 3); 8716 report_prefix_pop(); 8717 8718 /* 8719 * Ask for "interrupt-window exiting" when entering 8720 * activity state HLT (with event injection), and 8721 * expect a VM-exit after the event is injected. That 8722 * is, RIP should should be at the address specified 8723 * in the IDT entry for #DB. 8724 */ 8725 report_prefix_push("halted, no blocking, injecting #DB"); 8726 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 8727 vmcs_write(ENT_INTR_INFO, 8728 INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | 8729 DB_VECTOR); 8730 enter_guest(); 8731 verify_intr_window_exit((u64)db_fault_addr); 8732 report_prefix_pop(); 8733 } 8734 8735 boot_idt[DB_VECTOR].type = orig_db_gate_type; 8736 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); 8737 enter_guest(); 8738 report_prefix_pop(); 8739 } 8740 8741 #define GUEST_TSC_OFFSET (1u << 30) 8742 8743 static u64 guest_tsc; 8744 8745 static void vmx_store_tsc_test_guest(void) 8746 { 8747 guest_tsc = rdtsc(); 8748 } 8749 8750 /* 8751 * This test ensures that when IA32_TSC is in the VM-exit MSR-store 8752 * list, the value saved is not subject to the TSC offset that is 8753 * applied to RDTSC/RDTSCP/RDMSR(IA32_TSC) in guest execution. 8754 */ 8755 static void vmx_store_tsc_test(void) 8756 { 8757 struct vmx_msr_entry msr_entry = { .index = MSR_IA32_TSC }; 8758 u64 low, high; 8759 8760 if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) { 8761 report_skip("%s : \"Use TSC offsetting\" exec control not supported", __func__); 8762 return; 8763 } 8764 8765 test_set_guest(vmx_store_tsc_test_guest); 8766 8767 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET); 8768 vmcs_write(EXI_MSR_ST_CNT, 1); 8769 vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(&msr_entry)); 8770 vmcs_write(TSC_OFFSET, GUEST_TSC_OFFSET); 8771 8772 low = rdtsc(); 8773 enter_guest(); 8774 high = rdtsc(); 8775 8776 report(low + GUEST_TSC_OFFSET <= guest_tsc && 8777 guest_tsc <= high + GUEST_TSC_OFFSET, 8778 "RDTSC value in the guest (%lu) is in range [%lu, %lu]", 8779 guest_tsc, low + GUEST_TSC_OFFSET, high + GUEST_TSC_OFFSET); 8780 report(low <= msr_entry.value && msr_entry.value <= high, 8781 "IA32_TSC value saved in the VM-exit MSR-store list (%lu) is in range [%lu, %lu]", 8782 msr_entry.value, low, high); 8783 } 8784 8785 static void vmx_preemption_timer_zero_test_db_handler(struct ex_regs *regs) 8786 { 8787 } 8788 8789 static void vmx_preemption_timer_zero_test_guest(void) 8790 { 8791 while (vmx_get_test_stage() < 3) 8792 vmcall(); 8793 } 8794 8795 static void vmx_preemption_timer_zero_activate_preemption_timer(void) 8796 { 8797 vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT); 8798 vmcs_write(PREEMPT_TIMER_VALUE, 0); 8799 } 8800 8801 static void vmx_preemption_timer_zero_advance_past_vmcall(void) 8802 { 8803 vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT); 8804 enter_guest(); 8805 skip_exit_vmcall(); 8806 } 8807 8808 static void vmx_preemption_timer_zero_inject_db(bool intercept_db) 8809 { 8810 vmx_preemption_timer_zero_activate_preemption_timer(); 8811 vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | 8812 INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); 8813 vmcs_write(EXC_BITMAP, intercept_db ? 1 << DB_VECTOR : 0); 8814 enter_guest(); 8815 } 8816 8817 static void vmx_preemption_timer_zero_set_pending_dbg(u32 exception_bitmap) 8818 { 8819 vmx_preemption_timer_zero_activate_preemption_timer(); 8820 vmcs_write(GUEST_PENDING_DEBUG, PENDING_DBG_TRAP | DR6_TRAP1); 8821 vmcs_write(EXC_BITMAP, exception_bitmap); 8822 enter_guest(); 8823 } 8824 8825 static void vmx_preemption_timer_zero_expect_preempt_at_rip(u64 expected_rip) 8826 { 8827 u32 reason = (u32)vmcs_read(EXI_REASON); 8828 u64 guest_rip = vmcs_read(GUEST_RIP); 8829 8830 report(reason == VMX_PREEMPT && guest_rip == expected_rip, 8831 "Exit reason is 0x%x (expected 0x%x) and guest RIP is %lx (0x%lx expected).", 8832 reason, VMX_PREEMPT, guest_rip, expected_rip); 8833 } 8834 8835 /* 8836 * This test ensures that when the VMX preemption timer is zero at 8837 * VM-entry, a VM-exit occurs after any event injection and after any 8838 * pending debug exceptions are raised, but before execution of any 8839 * guest instructions. 8840 */ 8841 static void vmx_preemption_timer_zero_test(void) 8842 { 8843 u64 db_fault_address = (u64)get_idt_addr(&boot_idt[DB_VECTOR]); 8844 handler old_db; 8845 u32 reason; 8846 8847 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 8848 report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__); 8849 return; 8850 } 8851 8852 /* 8853 * Install a custom #DB handler that doesn't abort. 8854 */ 8855 old_db = handle_exception(DB_VECTOR, 8856 vmx_preemption_timer_zero_test_db_handler); 8857 8858 test_set_guest(vmx_preemption_timer_zero_test_guest); 8859 8860 /* 8861 * VMX-preemption timer should fire after event injection. 8862 */ 8863 vmx_set_test_stage(0); 8864 vmx_preemption_timer_zero_inject_db(0); 8865 vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address); 8866 vmx_preemption_timer_zero_advance_past_vmcall(); 8867 8868 /* 8869 * VMX-preemption timer should fire after event injection. 8870 * Exception bitmap is irrelevant, since you can't intercept 8871 * an event that you injected. 8872 */ 8873 vmx_set_test_stage(1); 8874 vmx_preemption_timer_zero_inject_db(true); 8875 vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address); 8876 vmx_preemption_timer_zero_advance_past_vmcall(); 8877 8878 /* 8879 * VMX-preemption timer should fire after pending debug exceptions 8880 * have delivered a #DB trap. 8881 */ 8882 vmx_set_test_stage(2); 8883 vmx_preemption_timer_zero_set_pending_dbg(0); 8884 vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address); 8885 vmx_preemption_timer_zero_advance_past_vmcall(); 8886 8887 /* 8888 * VMX-preemption timer would fire after pending debug exceptions 8889 * have delivered a #DB trap, but in this case, the #DB trap is 8890 * intercepted. 8891 */ 8892 vmx_set_test_stage(3); 8893 vmx_preemption_timer_zero_set_pending_dbg(1 << DB_VECTOR); 8894 reason = (u32)vmcs_read(EXI_REASON); 8895 report(reason == VMX_EXC_NMI, "Exit reason is 0x%x (expected 0x%x)", 8896 reason, VMX_EXC_NMI); 8897 8898 vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT); 8899 enter_guest(); 8900 8901 handle_exception(DB_VECTOR, old_db); 8902 } 8903 8904 static u64 vmx_preemption_timer_tf_test_prev_rip; 8905 8906 static void vmx_preemption_timer_tf_test_db_handler(struct ex_regs *regs) 8907 { 8908 extern char vmx_preemption_timer_tf_test_endloop; 8909 8910 if (vmx_get_test_stage() == 2) { 8911 /* 8912 * Stage 2 means that we're done, one way or another. 8913 * Arrange for the iret to drop us out of the wbinvd 8914 * loop and stop single-stepping. 8915 */ 8916 regs->rip = (u64)&vmx_preemption_timer_tf_test_endloop; 8917 regs->rflags &= ~X86_EFLAGS_TF; 8918 } else if (regs->rip == vmx_preemption_timer_tf_test_prev_rip) { 8919 /* 8920 * The RIP should alternate between the wbinvd and the 8921 * jmp instruction in the code below. If we ever see 8922 * the same instruction twice in a row, that means a 8923 * single-step trap has been dropped. Let the 8924 * hypervisor know about the failure by executing a 8925 * VMCALL. 8926 */ 8927 vmcall(); 8928 } 8929 vmx_preemption_timer_tf_test_prev_rip = regs->rip; 8930 } 8931 8932 static void vmx_preemption_timer_tf_test_guest(void) 8933 { 8934 /* 8935 * The hypervisor doesn't intercept WBINVD, so the loop below 8936 * shouldn't be a problem--it's just two instructions 8937 * executing in VMX non-root mode. However, when the 8938 * hypervisor is running in a virtual environment, the parent 8939 * hypervisor might intercept WBINVD and emulate it. If the 8940 * parent hypervisor is broken, the single-step trap after the 8941 * WBINVD might be lost. 8942 */ 8943 asm volatile("vmcall\n\t" 8944 "0: wbinvd\n\t" 8945 "1: jmp 0b\n\t" 8946 "vmx_preemption_timer_tf_test_endloop:"); 8947 } 8948 8949 /* 8950 * Ensure that the delivery of a "VMX-preemption timer expired" 8951 * VM-exit doesn't disrupt single-stepping in the guest. Note that 8952 * passing this test doesn't ensure correctness, because the test will 8953 * only fail if the VMX-preemtion timer fires at the right time (or 8954 * the wrong time, as it were). 8955 */ 8956 static void vmx_preemption_timer_tf_test(void) 8957 { 8958 handler old_db; 8959 u32 reason; 8960 int i; 8961 8962 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 8963 report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__); 8964 return; 8965 } 8966 8967 old_db = handle_exception(DB_VECTOR, 8968 vmx_preemption_timer_tf_test_db_handler); 8969 8970 test_set_guest(vmx_preemption_timer_tf_test_guest); 8971 8972 enter_guest(); 8973 skip_exit_vmcall(); 8974 8975 vmx_set_test_stage(1); 8976 vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT); 8977 vmcs_write(PREEMPT_TIMER_VALUE, 50000); 8978 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF); 8979 8980 /* 8981 * The only exit we should see is "VMX-preemption timer 8982 * expired." If we get a VMCALL exit, that means the #DB 8983 * handler has detected a missing single-step trap. It doesn't 8984 * matter where the guest RIP is when the VMX-preemption timer 8985 * expires (whether it's in the WBINVD loop or in the #DB 8986 * handler)--a single-step trap should never be discarded. 8987 */ 8988 for (i = 0; i < 10000; i++) { 8989 enter_guest(); 8990 reason = (u32)vmcs_read(EXI_REASON); 8991 if (reason == VMX_PREEMPT) 8992 continue; 8993 TEST_ASSERT(reason == VMX_VMCALL); 8994 skip_exit_insn(); 8995 break; 8996 } 8997 8998 report(reason == VMX_PREEMPT, "No single-step traps skipped"); 8999 9000 vmx_set_test_stage(2); 9001 vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT); 9002 enter_guest(); 9003 9004 handle_exception(DB_VECTOR, old_db); 9005 } 9006 9007 #define VMX_PREEMPTION_TIMER_EXPIRY_CYCLES 1000000 9008 9009 static u64 vmx_preemption_timer_expiry_start; 9010 static u64 vmx_preemption_timer_expiry_finish; 9011 9012 static void vmx_preemption_timer_expiry_test_guest(void) 9013 { 9014 vmcall(); 9015 vmx_preemption_timer_expiry_start = fenced_rdtsc(); 9016 9017 while (vmx_get_test_stage() == 0) 9018 vmx_preemption_timer_expiry_finish = fenced_rdtsc(); 9019 } 9020 9021 /* 9022 * Test that the VMX-preemption timer is not excessively delayed. 9023 * 9024 * Per the SDM, volume 3, VM-entry starts the VMX-preemption timer 9025 * with the unsigned value in the VMX-preemption timer-value field, 9026 * and the VMX-preemption timer counts down by 1 every time bit X in 9027 * the TSC changes due to a TSC increment (where X is 9028 * IA32_VMX_MISC[4:0]). If the timer counts down to zero in any state 9029 * other than the wait-for-SIPI state, the logical processor 9030 * transitions to the C0 C-state and causes a VM-exit. 9031 * 9032 * The guest code above reads the starting TSC after VM-entry. At this 9033 * point, the VMX-preemption timer has already been activated. Next, 9034 * the guest code reads the current TSC in a loop, storing the value 9035 * read to memory. 9036 * 9037 * If the RDTSC in the loop reads a value past the VMX-preemption 9038 * timer deadline, then the VMX-preemption timer VM-exit must be 9039 * delivered before the next instruction retires. Even if a higher 9040 * priority SMI is delivered first, the VMX-preemption timer VM-exit 9041 * must be delivered before the next instruction retires. Hence, a TSC 9042 * value past the VMX-preemption timer deadline might be read, but it 9043 * cannot be stored. If a TSC value past the deadline *is* stored, 9044 * then the architectural specification has been violated. 9045 */ 9046 static void vmx_preemption_timer_expiry_test(void) 9047 { 9048 u32 preemption_timer_value; 9049 union vmx_misc misc; 9050 u64 tsc_deadline; 9051 u32 reason; 9052 9053 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 9054 report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__); 9055 return; 9056 } 9057 9058 test_set_guest(vmx_preemption_timer_expiry_test_guest); 9059 9060 enter_guest(); 9061 skip_exit_vmcall(); 9062 9063 misc.val = rdmsr(MSR_IA32_VMX_MISC); 9064 preemption_timer_value = 9065 VMX_PREEMPTION_TIMER_EXPIRY_CYCLES >> misc.pt_bit; 9066 9067 vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT); 9068 vmcs_write(PREEMPT_TIMER_VALUE, preemption_timer_value); 9069 vmx_set_test_stage(0); 9070 9071 enter_guest(); 9072 reason = (u32)vmcs_read(EXI_REASON); 9073 TEST_ASSERT(reason == VMX_PREEMPT); 9074 9075 tsc_deadline = ((vmx_preemption_timer_expiry_start >> misc.pt_bit) << 9076 misc.pt_bit) + (preemption_timer_value << misc.pt_bit); 9077 9078 report(vmx_preemption_timer_expiry_finish < tsc_deadline, 9079 "Last stored guest TSC (%lu) < TSC deadline (%lu)", 9080 vmx_preemption_timer_expiry_finish, tsc_deadline); 9081 9082 vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT); 9083 vmx_set_test_stage(1); 9084 enter_guest(); 9085 } 9086 9087 static void vmx_db_test_guest(void) 9088 { 9089 /* 9090 * For a hardware generated single-step #DB. 9091 */ 9092 asm volatile("vmcall;" 9093 "nop;" 9094 ".Lpost_nop:"); 9095 /* 9096 * ...in a MOVSS shadow, with pending debug exceptions. 9097 */ 9098 asm volatile("vmcall;" 9099 "nop;" 9100 ".Lpost_movss_nop:"); 9101 /* 9102 * For an L0 synthesized single-step #DB. (L0 intercepts WBINVD and 9103 * emulates it in software.) 9104 */ 9105 asm volatile("vmcall;" 9106 "wbinvd;" 9107 ".Lpost_wbinvd:"); 9108 /* 9109 * ...in a MOVSS shadow, with pending debug exceptions. 9110 */ 9111 asm volatile("vmcall;" 9112 "wbinvd;" 9113 ".Lpost_movss_wbinvd:"); 9114 /* 9115 * For a hardware generated single-step #DB in a transactional region. 9116 */ 9117 asm volatile("vmcall;" 9118 ".Lxbegin: xbegin .Lskip_rtm;" 9119 "xend;" 9120 ".Lskip_rtm:"); 9121 } 9122 9123 /* 9124 * Clear the pending debug exceptions and RFLAGS.TF and re-enter 9125 * L2. No #DB is delivered and L2 continues to the next point of 9126 * interest. 9127 */ 9128 static void dismiss_db(void) 9129 { 9130 vmcs_write(GUEST_PENDING_DEBUG, 0); 9131 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); 9132 enter_guest(); 9133 } 9134 9135 /* 9136 * Check a variety of VMCS fields relevant to an intercepted #DB exception. 9137 * Then throw away the #DB exception and resume L2. 9138 */ 9139 static void check_db_exit(bool xfail_qual, bool xfail_dr6, bool xfail_pdbg, 9140 void *expected_rip, u64 expected_exit_qual, 9141 u64 expected_dr6) 9142 { 9143 u32 reason = vmcs_read(EXI_REASON); 9144 u32 intr_info = vmcs_read(EXI_INTR_INFO); 9145 u64 exit_qual = vmcs_read(EXI_QUALIFICATION); 9146 u64 guest_rip = vmcs_read(GUEST_RIP); 9147 u64 guest_pending_dbg = vmcs_read(GUEST_PENDING_DEBUG); 9148 u64 dr6 = read_dr6(); 9149 const u32 expected_intr_info = INTR_INFO_VALID_MASK | 9150 INTR_TYPE_HARD_EXCEPTION | DB_VECTOR; 9151 9152 report(reason == VMX_EXC_NMI && intr_info == expected_intr_info, 9153 "Expected #DB VM-exit"); 9154 report((u64)expected_rip == guest_rip, "Expected RIP %p (actual %lx)", 9155 expected_rip, guest_rip); 9156 report_xfail(xfail_pdbg, 0 == guest_pending_dbg, 9157 "Expected pending debug exceptions 0 (actual %lx)", 9158 guest_pending_dbg); 9159 report_xfail(xfail_qual, expected_exit_qual == exit_qual, 9160 "Expected exit qualification %lx (actual %lx)", 9161 expected_exit_qual, exit_qual); 9162 report_xfail(xfail_dr6, expected_dr6 == dr6, 9163 "Expected DR6 %lx (actual %lx)", expected_dr6, dr6); 9164 dismiss_db(); 9165 } 9166 9167 /* 9168 * Assuming the guest has just exited on a VMCALL instruction, skip 9169 * over the vmcall, and set the guest's RFLAGS.TF in the VMCS. If 9170 * pending debug exceptions are non-zero, set the VMCS up as if the 9171 * previous instruction was a MOVSS that generated the indicated 9172 * pending debug exceptions. Then enter L2. 9173 */ 9174 static void single_step_guest(const char *test_name, u64 starting_dr6, 9175 u64 pending_debug_exceptions) 9176 { 9177 printf("\n%s\n", test_name); 9178 skip_exit_vmcall(); 9179 write_dr6(starting_dr6); 9180 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF); 9181 if (pending_debug_exceptions) { 9182 vmcs_write(GUEST_PENDING_DEBUG, pending_debug_exceptions); 9183 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); 9184 } 9185 enter_guest(); 9186 } 9187 9188 /* 9189 * When L1 intercepts #DB, verify that a single-step trap clears 9190 * pending debug exceptions, populates the exit qualification field 9191 * properly, and that DR6 is not prematurely clobbered. In a 9192 * (simulated) MOVSS shadow, make sure that the pending debug 9193 * exception bits are properly accumulated into the exit qualification 9194 * field. 9195 */ 9196 static void vmx_db_test(void) 9197 { 9198 /* 9199 * We are going to set a few arbitrary bits in DR6 to verify that 9200 * (a) DR6 is not modified by an intercepted #DB, and 9201 * (b) stale bits in DR6 (DR6.BD, in particular) don't leak into 9202 * the exit qualification field for a subsequent #DB exception. 9203 */ 9204 const u64 starting_dr6 = DR6_ACTIVE_LOW | DR6_BS | DR6_TRAP3 | DR6_TRAP1; 9205 extern char post_nop asm(".Lpost_nop"); 9206 extern char post_movss_nop asm(".Lpost_movss_nop"); 9207 extern char post_wbinvd asm(".Lpost_wbinvd"); 9208 extern char post_movss_wbinvd asm(".Lpost_movss_wbinvd"); 9209 extern char xbegin asm(".Lxbegin"); 9210 extern char skip_rtm asm(".Lskip_rtm"); 9211 9212 /* 9213 * L1 wants to intercept #DB exceptions encountered in L2. 9214 */ 9215 vmcs_write(EXC_BITMAP, BIT(DB_VECTOR)); 9216 9217 /* 9218 * Start L2 and run it up to the first point of interest. 9219 */ 9220 test_set_guest(vmx_db_test_guest); 9221 enter_guest(); 9222 9223 /* 9224 * Hardware-delivered #DB trap for single-step sets the 9225 * standard that L0 has to follow for emulated instructions. 9226 */ 9227 single_step_guest("Hardware delivered single-step", starting_dr6, 0); 9228 check_db_exit(false, false, false, &post_nop, DR6_BS, starting_dr6); 9229 9230 /* 9231 * Hardware-delivered #DB trap for single-step in MOVSS shadow 9232 * also sets the standard that L0 has to follow for emulated 9233 * instructions. Here, we establish the VMCS pending debug 9234 * exceptions to indicate that the simulated MOVSS triggered a 9235 * data breakpoint as well as the single-step trap. 9236 */ 9237 single_step_guest("Hardware delivered single-step in MOVSS shadow", 9238 starting_dr6, DR6_BS | PENDING_DBG_TRAP | DR6_TRAP0); 9239 check_db_exit(false, false, false, &post_movss_nop, DR6_BS | DR6_TRAP0, 9240 starting_dr6); 9241 9242 /* 9243 * L0 synthesized #DB trap for single-step is buggy, because 9244 * kvm (a) clobbers DR6 too early, and (b) tries its best to 9245 * reconstitute the exit qualification from the prematurely 9246 * modified DR6, but fails miserably. 9247 */ 9248 single_step_guest("Software synthesized single-step", starting_dr6, 0); 9249 check_db_exit(false, false, false, &post_wbinvd, DR6_BS, starting_dr6); 9250 9251 /* 9252 * L0 synthesized #DB trap for single-step in MOVSS shadow is 9253 * even worse, because L0 also leaves the pending debug 9254 * exceptions in the VMCS instead of accumulating them into 9255 * the exit qualification field for the #DB exception. 9256 */ 9257 single_step_guest("Software synthesized single-step in MOVSS shadow", 9258 starting_dr6, DR6_BS | PENDING_DBG_TRAP | DR6_TRAP0); 9259 check_db_exit(true, false, true, &post_movss_wbinvd, DR6_BS | DR6_TRAP0, 9260 starting_dr6); 9261 9262 /* 9263 * Optional RTM test for hardware that supports RTM, to 9264 * demonstrate that the current volume 3 of the SDM 9265 * (325384-067US), table 27-1 is incorrect. Bit 16 of the exit 9266 * qualification for debug exceptions is not reserved. It is 9267 * set to 1 if a debug exception (#DB) or a breakpoint 9268 * exception (#BP) occurs inside an RTM region while advanced 9269 * debugging of RTM transactional regions is enabled. 9270 */ 9271 if (this_cpu_has(X86_FEATURE_RTM)) { 9272 vmcs_write(ENT_CONTROLS, 9273 vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS); 9274 /* 9275 * Set DR7.RTM[bit 11] and IA32_DEBUGCTL.RTM[bit 15] 9276 * in the guest to enable advanced debugging of RTM 9277 * transactional regions. 9278 */ 9279 vmcs_write(GUEST_DR7, BIT(11)); 9280 vmcs_write(GUEST_DEBUGCTL, BIT(15)); 9281 single_step_guest("Hardware delivered single-step in " 9282 "transactional region", starting_dr6, 0); 9283 check_db_exit(false, false, false, &xbegin, BIT(16), 9284 starting_dr6); 9285 } else { 9286 vmcs_write(GUEST_RIP, (u64)&skip_rtm); 9287 enter_guest(); 9288 } 9289 } 9290 9291 static void enable_vid(void) 9292 { 9293 void *virtual_apic_page; 9294 9295 assert(cpu_has_apicv()); 9296 9297 disable_intercept_for_x2apic_msrs(); 9298 9299 virtual_apic_page = alloc_page(); 9300 vmcs_write(APIC_VIRT_ADDR, (u64)virtual_apic_page); 9301 9302 vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT); 9303 9304 vmcs_write(EOI_EXIT_BITMAP0, 0x0); 9305 vmcs_write(EOI_EXIT_BITMAP1, 0x0); 9306 vmcs_write(EOI_EXIT_BITMAP2, 0x0); 9307 vmcs_write(EOI_EXIT_BITMAP3, 0x0); 9308 9309 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY | CPU_TPR_SHADOW); 9310 vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VINTD | CPU_VIRT_X2APIC); 9311 } 9312 9313 static void trigger_ioapic_scan_thread(void *data) 9314 { 9315 /* Wait until other CPU entered L2 */ 9316 while (vmx_get_test_stage() != 1) 9317 ; 9318 9319 /* Trigger ioapic scan */ 9320 ioapic_set_redir(0xf, 0x79, TRIGGER_LEVEL); 9321 vmx_set_test_stage(2); 9322 } 9323 9324 static void irq_79_handler_guest(isr_regs_t *regs) 9325 { 9326 eoi(); 9327 9328 /* L1 expects vmexit on VMX_VMCALL and not VMX_EOI_INDUCED */ 9329 vmcall(); 9330 } 9331 9332 /* 9333 * Constant for num of busy-loop iterations after which 9334 * a timer interrupt should have happened in host 9335 */ 9336 #define TIMER_INTERRUPT_DELAY 100000000 9337 9338 static void vmx_eoi_bitmap_ioapic_scan_test_guest(void) 9339 { 9340 handle_irq(0x79, irq_79_handler_guest); 9341 sti(); 9342 9343 /* Signal to L1 CPU to trigger ioapic scan */ 9344 vmx_set_test_stage(1); 9345 /* Wait until L1 CPU to trigger ioapic scan */ 9346 while (vmx_get_test_stage() != 2) 9347 ; 9348 9349 /* 9350 * Wait for L0 timer interrupt to be raised while we run in L2 9351 * such that L0 will process the IOAPIC scan request before 9352 * resuming L2 9353 */ 9354 delay(TIMER_INTERRUPT_DELAY); 9355 9356 asm volatile ("int $0x79"); 9357 } 9358 9359 static void vmx_eoi_bitmap_ioapic_scan_test(void) 9360 { 9361 if (!cpu_has_apicv() || (cpu_count() < 2)) { 9362 report_skip("%s : Not all required APICv bits supported or CPU count < 2", __func__); 9363 return; 9364 } 9365 9366 enable_vid(); 9367 9368 on_cpu_async(1, trigger_ioapic_scan_thread, NULL); 9369 test_set_guest(vmx_eoi_bitmap_ioapic_scan_test_guest); 9370 9371 /* 9372 * Launch L2. 9373 * We expect the exit reason to be VMX_VMCALL (and not EOI INDUCED). 9374 * In case the reason isn't VMX_VMCALL, the asserion inside 9375 * skip_exit_vmcall() will fail. 9376 */ 9377 enter_guest(); 9378 skip_exit_vmcall(); 9379 9380 /* Let L2 finish */ 9381 enter_guest(); 9382 report_pass(__func__); 9383 } 9384 9385 #define HLT_WITH_RVI_VECTOR (0xf1) 9386 9387 bool vmx_hlt_with_rvi_guest_isr_fired; 9388 static void vmx_hlt_with_rvi_guest_isr(isr_regs_t *regs) 9389 { 9390 vmx_hlt_with_rvi_guest_isr_fired = true; 9391 eoi(); 9392 } 9393 9394 static void vmx_hlt_with_rvi_guest(void) 9395 { 9396 handle_irq(HLT_WITH_RVI_VECTOR, vmx_hlt_with_rvi_guest_isr); 9397 9398 sti_nop(); 9399 asm volatile ("nop"); 9400 9401 vmcall(); 9402 } 9403 9404 static void vmx_hlt_with_rvi_test(void) 9405 { 9406 if (!cpu_has_apicv()) { 9407 report_skip("%s : Not all required APICv bits supported", __func__); 9408 return; 9409 } 9410 9411 enable_vid(); 9412 9413 vmx_hlt_with_rvi_guest_isr_fired = false; 9414 test_set_guest(vmx_hlt_with_rvi_guest); 9415 9416 enter_guest(); 9417 skip_exit_vmcall(); 9418 9419 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 9420 vmcs_write(GUEST_INT_STATUS, HLT_WITH_RVI_VECTOR); 9421 enter_guest(); 9422 9423 report(vmx_hlt_with_rvi_guest_isr_fired, "Interrupt raised in guest"); 9424 } 9425 9426 static void set_irq_line_thread(void *data) 9427 { 9428 /* Wait until other CPU entered L2 */ 9429 while (vmx_get_test_stage() != 1) 9430 ; 9431 9432 /* Set irq-line 0xf to raise vector 0x78 for vCPU 0 */ 9433 ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL); 9434 vmx_set_test_stage(2); 9435 } 9436 9437 static bool irq_78_handler_vmcall_before_eoi; 9438 static void irq_78_handler_guest(isr_regs_t *regs) 9439 { 9440 set_irq_line(0xf, 0); 9441 if (irq_78_handler_vmcall_before_eoi) 9442 vmcall(); 9443 eoi(); 9444 vmcall(); 9445 } 9446 9447 static void vmx_apic_passthrough_guest(void) 9448 { 9449 handle_irq(0x78, irq_78_handler_guest); 9450 sti(); 9451 9452 /* If requested, wait for other CPU to trigger ioapic scan */ 9453 if (vmx_get_test_stage() < 1) { 9454 vmx_set_test_stage(1); 9455 while (vmx_get_test_stage() != 2) 9456 ; 9457 } 9458 9459 set_irq_line(0xf, 1); 9460 } 9461 9462 static void vmx_apic_passthrough(bool set_irq_line_from_thread) 9463 { 9464 if (set_irq_line_from_thread && (cpu_count() < 2)) { 9465 report_skip("%s : CPU count < 2", __func__); 9466 return; 9467 } 9468 9469 /* Test device is required for generating IRQs */ 9470 if (!test_device_enabled()) { 9471 report_skip("%s : No test device enabled", __func__); 9472 return; 9473 } 9474 u64 cpu_ctrl_0 = CPU_SECONDARY; 9475 u64 cpu_ctrl_1 = 0; 9476 9477 disable_intercept_for_x2apic_msrs(); 9478 9479 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 9480 9481 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0); 9482 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1); 9483 9484 if (set_irq_line_from_thread) { 9485 irq_78_handler_vmcall_before_eoi = false; 9486 on_cpu_async(1, set_irq_line_thread, NULL); 9487 } else { 9488 irq_78_handler_vmcall_before_eoi = true; 9489 ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL); 9490 vmx_set_test_stage(2); 9491 } 9492 test_set_guest(vmx_apic_passthrough_guest); 9493 9494 if (irq_78_handler_vmcall_before_eoi) { 9495 /* Before EOI remote_irr should still be set */ 9496 enter_guest(); 9497 skip_exit_vmcall(); 9498 TEST_ASSERT_EQ_MSG(1, (int)ioapic_read_redir(0xf).remote_irr, 9499 "IOAPIC pass-through: remote_irr=1 before EOI"); 9500 } 9501 9502 /* After EOI remote_irr should be cleared */ 9503 enter_guest(); 9504 skip_exit_vmcall(); 9505 TEST_ASSERT_EQ_MSG(0, (int)ioapic_read_redir(0xf).remote_irr, 9506 "IOAPIC pass-through: remote_irr=0 after EOI"); 9507 9508 /* Let L2 finish */ 9509 enter_guest(); 9510 report_pass(__func__); 9511 } 9512 9513 static void vmx_apic_passthrough_test(void) 9514 { 9515 vmx_apic_passthrough(false); 9516 } 9517 9518 static void vmx_apic_passthrough_thread_test(void) 9519 { 9520 vmx_apic_passthrough(true); 9521 } 9522 9523 static void vmx_apic_passthrough_tpr_threshold_guest(void) 9524 { 9525 cli(); 9526 apic_set_tpr(0); 9527 } 9528 9529 static bool vmx_apic_passthrough_tpr_threshold_ipi_isr_fired; 9530 static void vmx_apic_passthrough_tpr_threshold_ipi_isr(isr_regs_t *regs) 9531 { 9532 vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = true; 9533 eoi(); 9534 } 9535 9536 static void vmx_apic_passthrough_tpr_threshold_test(void) 9537 { 9538 int ipi_vector = 0xe1; 9539 9540 disable_intercept_for_x2apic_msrs(); 9541 vmcs_clear_bits(PIN_CONTROLS, PIN_EXTINT); 9542 9543 /* Raise L0 TPR-threshold by queueing vector in LAPIC IRR */ 9544 cli(); 9545 apic_set_tpr((ipi_vector >> 4) + 1); 9546 apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | 9547 APIC_DM_FIXED | ipi_vector, 9548 0); 9549 9550 test_set_guest(vmx_apic_passthrough_tpr_threshold_guest); 9551 enter_guest(); 9552 9553 report(apic_get_tpr() == 0, "TPR was zero by guest"); 9554 9555 /* Clean pending self-IPI */ 9556 vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = false; 9557 handle_irq(ipi_vector, vmx_apic_passthrough_tpr_threshold_ipi_isr); 9558 sti_nop(); 9559 report(vmx_apic_passthrough_tpr_threshold_ipi_isr_fired, "self-IPI fired"); 9560 9561 report_pass(__func__); 9562 } 9563 9564 static u64 init_signal_test_exit_reason; 9565 static bool init_signal_test_thread_continued; 9566 9567 static void init_signal_test_thread(void *data) 9568 { 9569 struct vmcs *test_vmcs = data; 9570 9571 /* Enter VMX operation (i.e. exec VMXON) */ 9572 u64 *ap_vmxon_region = alloc_page(); 9573 enable_vmx(); 9574 init_vmx(ap_vmxon_region); 9575 TEST_ASSERT(!__vmxon_safe(ap_vmxon_region)); 9576 9577 /* Signal CPU have entered VMX operation */ 9578 vmx_set_test_stage(1); 9579 9580 /* Wait for BSP CPU to send INIT signal */ 9581 while (vmx_get_test_stage() != 2) 9582 ; 9583 9584 /* 9585 * Signal that we continue as usual as INIT signal 9586 * should be blocked while CPU is in VMX operation 9587 */ 9588 vmx_set_test_stage(3); 9589 9590 /* Wait for signal to enter VMX non-root mode */ 9591 while (vmx_get_test_stage() != 4) 9592 ; 9593 9594 /* Enter VMX non-root mode */ 9595 test_set_guest(v2_null_test_guest); 9596 make_vmcs_current(test_vmcs); 9597 enter_guest(); 9598 /* Save exit reason for BSP CPU to compare to expected result */ 9599 init_signal_test_exit_reason = vmcs_read(EXI_REASON); 9600 /* VMCLEAR test-vmcs so it could be loaded by BSP CPU */ 9601 vmcs_clear(test_vmcs); 9602 launched = false; 9603 /* Signal that CPU exited to VMX root mode */ 9604 vmx_set_test_stage(5); 9605 9606 /* Wait for BSP CPU to signal to exit VMX operation */ 9607 while (vmx_get_test_stage() != 6) 9608 ; 9609 9610 /* Exit VMX operation (i.e. exec VMXOFF) */ 9611 vmx_off(); 9612 9613 /* 9614 * Signal to BSP CPU that we continue as usual as INIT signal 9615 * should have been consumed by VMX_INIT exit from guest 9616 */ 9617 vmx_set_test_stage(7); 9618 9619 /* Wait for BSP CPU to signal to enter VMX operation */ 9620 while (vmx_get_test_stage() != 8) 9621 ; 9622 /* Enter VMX operation (i.e. exec VMXON) */ 9623 TEST_ASSERT(!__vmxon_safe(ap_vmxon_region)); 9624 /* Signal to BSP we are in VMX operation */ 9625 vmx_set_test_stage(9); 9626 9627 /* Wait for BSP CPU to send INIT signal */ 9628 while (vmx_get_test_stage() != 10) 9629 ; 9630 9631 /* Exit VMX operation (i.e. exec VMXOFF) */ 9632 vmx_off(); 9633 9634 /* 9635 * Exiting VMX operation should result in latched 9636 * INIT signal being processed. Therefore, we should 9637 * never reach the below code. Thus, signal to BSP 9638 * CPU if we have reached here so it is able to 9639 * report an issue if it happens. 9640 */ 9641 init_signal_test_thread_continued = true; 9642 } 9643 9644 #define INIT_SIGNAL_TEST_DELAY 100000000ULL 9645 9646 static void vmx_init_signal_test(void) 9647 { 9648 struct vmcs *test_vmcs; 9649 9650 if (cpu_count() < 2) { 9651 report_skip("%s : CPU count < 2", __func__); 9652 return; 9653 } 9654 9655 /* VMCLEAR test-vmcs so it could be loaded by other CPU */ 9656 vmcs_save(&test_vmcs); 9657 vmcs_clear(test_vmcs); 9658 9659 vmx_set_test_stage(0); 9660 on_cpu_async(1, init_signal_test_thread, test_vmcs); 9661 9662 /* Wait for other CPU to enter VMX operation */ 9663 while (vmx_get_test_stage() != 1) 9664 ; 9665 9666 /* Send INIT signal to other CPU */ 9667 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT, 9668 id_map[1]); 9669 /* Signal other CPU we have sent INIT signal */ 9670 vmx_set_test_stage(2); 9671 9672 /* 9673 * Wait reasonable amount of time for INIT signal to 9674 * be received on other CPU and verify that other CPU 9675 * have proceed as usual to next test stage as INIT 9676 * signal should be blocked while other CPU in 9677 * VMX operation 9678 */ 9679 delay(INIT_SIGNAL_TEST_DELAY); 9680 report(vmx_get_test_stage() == 3, 9681 "INIT signal blocked when CPU in VMX operation"); 9682 /* No point to continue if we failed at this point */ 9683 if (vmx_get_test_stage() != 3) 9684 return; 9685 9686 /* Signal other CPU to enter VMX non-root mode */ 9687 init_signal_test_exit_reason = -1ull; 9688 vmx_set_test_stage(4); 9689 /* 9690 * Wait reasonable amont of time for other CPU 9691 * to exit to VMX root mode 9692 */ 9693 delay(INIT_SIGNAL_TEST_DELAY); 9694 if (vmx_get_test_stage() != 5) { 9695 report_fail("Pending INIT signal didn't result in VMX exit"); 9696 return; 9697 } 9698 report(init_signal_test_exit_reason == VMX_INIT, 9699 "INIT signal during VMX non-root mode result in exit-reason %s (%lu)", 9700 exit_reason_description(init_signal_test_exit_reason), 9701 init_signal_test_exit_reason); 9702 9703 /* Run guest to completion */ 9704 make_vmcs_current(test_vmcs); 9705 enter_guest(); 9706 9707 /* Signal other CPU to exit VMX operation */ 9708 init_signal_test_thread_continued = false; 9709 vmx_set_test_stage(6); 9710 9711 /* Wait reasonable amount of time for other CPU to exit VMX operation */ 9712 delay(INIT_SIGNAL_TEST_DELAY); 9713 report(vmx_get_test_stage() == 7, 9714 "INIT signal consumed on VMX_INIT exit"); 9715 /* No point to continue if we failed at this point */ 9716 if (vmx_get_test_stage() != 7) 9717 return; 9718 9719 /* Signal other CPU to enter VMX operation */ 9720 vmx_set_test_stage(8); 9721 /* Wait for other CPU to enter VMX operation */ 9722 while (vmx_get_test_stage() != 9) 9723 ; 9724 9725 /* Send INIT signal to other CPU */ 9726 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT, 9727 id_map[1]); 9728 /* Signal other CPU we have sent INIT signal */ 9729 vmx_set_test_stage(10); 9730 9731 /* 9732 * Wait reasonable amount of time for other CPU 9733 * to exit VMX operation and process INIT signal 9734 */ 9735 delay(INIT_SIGNAL_TEST_DELAY); 9736 report(!init_signal_test_thread_continued, 9737 "INIT signal processed after exit VMX operation"); 9738 9739 /* 9740 * TODO: Send SIPI to other CPU to sipi_entry (See x86/cstart64.S) 9741 * to re-init it to kvm-unit-tests standard environment. 9742 * Somehow (?) verify that SIPI was indeed received. 9743 */ 9744 } 9745 9746 #define SIPI_SIGNAL_TEST_DELAY 100000000ULL 9747 9748 static void vmx_sipi_test_guest(void) 9749 { 9750 if (apic_id() == 0) { 9751 /* wait AP enter guest with activity=WAIT_SIPI */ 9752 while (vmx_get_test_stage() != 1) 9753 ; 9754 delay(SIPI_SIGNAL_TEST_DELAY); 9755 9756 /* First SIPI signal */ 9757 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP | APIC_INT_ASSERT, id_map[1]); 9758 report_pass("BSP(L2): Send first SIPI to cpu[%d]", id_map[1]); 9759 9760 /* wait AP enter guest */ 9761 while (vmx_get_test_stage() != 2) 9762 ; 9763 delay(SIPI_SIGNAL_TEST_DELAY); 9764 9765 /* Second SIPI signal should be ignored since AP is not in WAIT_SIPI state */ 9766 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP | APIC_INT_ASSERT, id_map[1]); 9767 report_pass("BSP(L2): Send second SIPI to cpu[%d]", id_map[1]); 9768 9769 /* Delay a while to check whether second SIPI would cause VMExit */ 9770 delay(SIPI_SIGNAL_TEST_DELAY); 9771 9772 /* Test is done, notify AP to exit test */ 9773 vmx_set_test_stage(3); 9774 9775 /* wait AP exit non-root mode */ 9776 while (vmx_get_test_stage() != 5) 9777 ; 9778 } else { 9779 /* wait BSP notify test is done */ 9780 while (vmx_get_test_stage() != 3) 9781 ; 9782 9783 /* AP exit guest */ 9784 vmx_set_test_stage(4); 9785 } 9786 } 9787 9788 static void sipi_test_ap_thread(void *data) 9789 { 9790 struct vmcs *ap_vmcs; 9791 u64 *ap_vmxon_region; 9792 void *ap_stack, *ap_syscall_stack; 9793 u64 cpu_ctrl_0 = CPU_SECONDARY; 9794 u64 cpu_ctrl_1 = 0; 9795 9796 /* Enter VMX operation (i.e. exec VMXON) */ 9797 ap_vmxon_region = alloc_page(); 9798 enable_vmx(); 9799 init_vmx(ap_vmxon_region); 9800 TEST_ASSERT(!__vmxon_safe(ap_vmxon_region)); 9801 init_vmcs(&ap_vmcs); 9802 make_vmcs_current(ap_vmcs); 9803 9804 /* Set stack for AP */ 9805 ap_stack = alloc_page(); 9806 ap_syscall_stack = alloc_page(); 9807 vmcs_write(GUEST_RSP, (u64)(ap_stack + PAGE_SIZE - 1)); 9808 vmcs_write(GUEST_SYSENTER_ESP, (u64)(ap_syscall_stack + PAGE_SIZE - 1)); 9809 9810 /* passthrough lapic to L2 */ 9811 disable_intercept_for_x2apic_msrs(); 9812 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 9813 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0); 9814 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1); 9815 9816 /* Set guest activity state to wait-for-SIPI state */ 9817 vmcs_write(GUEST_ACTV_STATE, ACTV_WAIT_SIPI); 9818 9819 vmx_set_test_stage(1); 9820 9821 /* AP enter guest */ 9822 enter_guest(); 9823 9824 if (vmcs_read(EXI_REASON) == VMX_SIPI) { 9825 report_pass("AP: Handle SIPI VMExit"); 9826 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 9827 vmx_set_test_stage(2); 9828 } else { 9829 report_fail("AP: Unexpected VMExit, reason=%ld", vmcs_read(EXI_REASON)); 9830 vmx_off(); 9831 return; 9832 } 9833 9834 /* AP enter guest */ 9835 enter_guest(); 9836 9837 report(vmcs_read(EXI_REASON) != VMX_SIPI, 9838 "AP: should no SIPI VMExit since activity is not in WAIT_SIPI state"); 9839 9840 /* notify BSP that AP is already exit from non-root mode */ 9841 vmx_set_test_stage(5); 9842 9843 /* Leave VMX operation */ 9844 vmx_off(); 9845 } 9846 9847 static void vmx_sipi_signal_test(void) 9848 { 9849 if (!(rdmsr(MSR_IA32_VMX_MISC) & MSR_IA32_VMX_MISC_ACTIVITY_WAIT_SIPI)) { 9850 report_skip("%s : \"ACTIVITY_WAIT_SIPI state\" not supported", __func__); 9851 return; 9852 } 9853 9854 if (cpu_count() < 2) { 9855 report_skip("%s : CPU count < 2", __func__); 9856 return; 9857 } 9858 9859 u64 cpu_ctrl_0 = CPU_SECONDARY; 9860 u64 cpu_ctrl_1 = 0; 9861 9862 /* passthrough lapic to L2 */ 9863 disable_intercept_for_x2apic_msrs(); 9864 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 9865 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0); 9866 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1); 9867 9868 test_set_guest(vmx_sipi_test_guest); 9869 9870 /* update CR3 on AP */ 9871 on_cpu(1, update_cr3, (void *)read_cr3()); 9872 9873 /* start AP */ 9874 on_cpu_async(1, sipi_test_ap_thread, NULL); 9875 9876 vmx_set_test_stage(0); 9877 9878 /* BSP enter guest */ 9879 enter_guest(); 9880 } 9881 9882 9883 enum vmcs_access { 9884 ACCESS_VMREAD, 9885 ACCESS_VMWRITE, 9886 ACCESS_NONE, 9887 }; 9888 9889 struct vmcs_shadow_test_common { 9890 enum vmcs_access op; 9891 enum Reason reason; 9892 u64 field; 9893 u64 value; 9894 u64 flags; 9895 u64 time; 9896 } l1_l2_common; 9897 9898 static inline u64 vmread_flags(u64 field, u64 *val) 9899 { 9900 u64 flags; 9901 9902 asm volatile ("vmread %2, %1; pushf; pop %0" 9903 : "=r" (flags), "=rm" (*val) : "r" (field) : "cc"); 9904 return flags & X86_EFLAGS_ALU; 9905 } 9906 9907 static inline u64 vmwrite_flags(u64 field, u64 val) 9908 { 9909 u64 flags; 9910 9911 asm volatile ("vmwrite %1, %2; pushf; pop %0" 9912 : "=r"(flags) : "rm" (val), "r" (field) : "cc"); 9913 return flags & X86_EFLAGS_ALU; 9914 } 9915 9916 static void vmx_vmcs_shadow_test_guest(void) 9917 { 9918 struct vmcs_shadow_test_common *c = &l1_l2_common; 9919 u64 start; 9920 9921 while (c->op != ACCESS_NONE) { 9922 start = rdtsc(); 9923 switch (c->op) { 9924 default: 9925 c->flags = -1ull; 9926 break; 9927 case ACCESS_VMREAD: 9928 c->flags = vmread_flags(c->field, &c->value); 9929 break; 9930 case ACCESS_VMWRITE: 9931 c->flags = vmwrite_flags(c->field, 0); 9932 break; 9933 } 9934 c->time = rdtsc() - start; 9935 vmcall(); 9936 } 9937 } 9938 9939 static u64 vmread_from_shadow(u64 field) 9940 { 9941 struct vmcs *primary; 9942 struct vmcs *shadow; 9943 u64 value; 9944 9945 TEST_ASSERT(!vmcs_save(&primary)); 9946 shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); 9947 TEST_ASSERT(!make_vmcs_current(shadow)); 9948 value = vmcs_read(field); 9949 TEST_ASSERT(!make_vmcs_current(primary)); 9950 return value; 9951 } 9952 9953 static u64 vmwrite_to_shadow(u64 field, u64 value) 9954 { 9955 struct vmcs *primary; 9956 struct vmcs *shadow; 9957 9958 TEST_ASSERT(!vmcs_save(&primary)); 9959 shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); 9960 TEST_ASSERT(!make_vmcs_current(shadow)); 9961 vmcs_write(field, value); 9962 value = vmcs_read(field); 9963 TEST_ASSERT(!make_vmcs_current(primary)); 9964 return value; 9965 } 9966 9967 static void vmcs_shadow_test_access(u8 *bitmap[2], enum vmcs_access access) 9968 { 9969 struct vmcs_shadow_test_common *c = &l1_l2_common; 9970 9971 c->op = access; 9972 vmcs_write(VMX_INST_ERROR, 0); 9973 enter_guest(); 9974 c->reason = vmcs_read(EXI_REASON) & 0xffff; 9975 if (c->reason != VMX_VMCALL) { 9976 skip_exit_insn(); 9977 enter_guest(); 9978 } 9979 skip_exit_vmcall(); 9980 } 9981 9982 static void vmcs_shadow_test_field(u8 *bitmap[2], u64 field) 9983 { 9984 struct vmcs_shadow_test_common *c = &l1_l2_common; 9985 struct vmcs *shadow; 9986 u64 value; 9987 uintptr_t flags[2]; 9988 bool good_shadow; 9989 u32 vmx_inst_error; 9990 9991 report_prefix_pushf("field %lx", field); 9992 c->field = field; 9993 9994 shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); 9995 if (shadow != (struct vmcs *)-1ull) { 9996 flags[ACCESS_VMREAD] = vmread_flags(field, &value); 9997 flags[ACCESS_VMWRITE] = vmwrite_flags(field, value); 9998 good_shadow = !flags[ACCESS_VMREAD] && !flags[ACCESS_VMWRITE]; 9999 } else { 10000 /* 10001 * When VMCS link pointer is -1ull, VMWRITE/VMREAD on 10002 * shadowed-fields should fail with setting RFLAGS.CF. 10003 */ 10004 flags[ACCESS_VMREAD] = X86_EFLAGS_CF; 10005 flags[ACCESS_VMWRITE] = X86_EFLAGS_CF; 10006 good_shadow = false; 10007 } 10008 10009 /* Intercept both VMREAD and VMWRITE. */ 10010 report_prefix_push("no VMREAD/VMWRITE permission"); 10011 /* VMWRITE/VMREAD done on reserved-bit should always intercept */ 10012 if (!(field >> VMCS_FIELD_RESERVED_SHIFT)) { 10013 set_bit(field, bitmap[ACCESS_VMREAD]); 10014 set_bit(field, bitmap[ACCESS_VMWRITE]); 10015 } 10016 vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); 10017 report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE"); 10018 vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); 10019 report(c->reason == VMX_VMREAD, "not shadowed for VMREAD"); 10020 report_prefix_pop(); 10021 10022 if (field >> VMCS_FIELD_RESERVED_SHIFT) 10023 goto out; 10024 10025 /* Permit shadowed VMREAD. */ 10026 report_prefix_push("VMREAD permission only"); 10027 clear_bit(field, bitmap[ACCESS_VMREAD]); 10028 set_bit(field, bitmap[ACCESS_VMWRITE]); 10029 if (good_shadow) 10030 value = vmwrite_to_shadow(field, MAGIC_VAL_1 + field); 10031 vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); 10032 report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE"); 10033 vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); 10034 vmx_inst_error = vmcs_read(VMX_INST_ERROR); 10035 report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)", 10036 c->time); 10037 report(c->flags == flags[ACCESS_VMREAD], 10038 "ALU flags after VMREAD (%lx) are as expected (%lx)", 10039 c->flags, flags[ACCESS_VMREAD]); 10040 if (good_shadow) 10041 report(c->value == value, 10042 "value read from shadow (%lx) is as expected (%lx)", 10043 c->value, value); 10044 else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD]) 10045 report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, 10046 "VMX_INST_ERROR (%d) is as expected (%d)", 10047 vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 10048 report_prefix_pop(); 10049 10050 /* Permit shadowed VMWRITE. */ 10051 report_prefix_push("VMWRITE permission only"); 10052 set_bit(field, bitmap[ACCESS_VMREAD]); 10053 clear_bit(field, bitmap[ACCESS_VMWRITE]); 10054 if (good_shadow) 10055 vmwrite_to_shadow(field, MAGIC_VAL_1 + field); 10056 vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); 10057 vmx_inst_error = vmcs_read(VMX_INST_ERROR); 10058 report(c->reason == VMX_VMCALL, 10059 "shadowed for VMWRITE (in %ld cycles)", 10060 c->time); 10061 report(c->flags == flags[ACCESS_VMREAD], 10062 "ALU flags after VMWRITE (%lx) are as expected (%lx)", 10063 c->flags, flags[ACCESS_VMREAD]); 10064 if (good_shadow) { 10065 value = vmread_from_shadow(field); 10066 report(value == 0, 10067 "shadow VMCS value (%lx) is as expected (%lx)", value, 10068 0ul); 10069 } else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) { 10070 report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, 10071 "VMX_INST_ERROR (%d) is as expected (%d)", 10072 vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 10073 } 10074 vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); 10075 report(c->reason == VMX_VMREAD, "not shadowed for VMREAD"); 10076 report_prefix_pop(); 10077 10078 /* Permit shadowed VMREAD and VMWRITE. */ 10079 report_prefix_push("VMREAD and VMWRITE permission"); 10080 clear_bit(field, bitmap[ACCESS_VMREAD]); 10081 clear_bit(field, bitmap[ACCESS_VMWRITE]); 10082 if (good_shadow) 10083 vmwrite_to_shadow(field, MAGIC_VAL_1 + field); 10084 vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); 10085 vmx_inst_error = vmcs_read(VMX_INST_ERROR); 10086 report(c->reason == VMX_VMCALL, 10087 "shadowed for VMWRITE (in %ld cycles)", 10088 c->time); 10089 report(c->flags == flags[ACCESS_VMREAD], 10090 "ALU flags after VMWRITE (%lx) are as expected (%lx)", 10091 c->flags, flags[ACCESS_VMREAD]); 10092 if (good_shadow) { 10093 value = vmread_from_shadow(field); 10094 report(value == 0, 10095 "shadow VMCS value (%lx) is as expected (%lx)", value, 10096 0ul); 10097 } else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) { 10098 report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, 10099 "VMX_INST_ERROR (%d) is as expected (%d)", 10100 vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 10101 } 10102 vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); 10103 vmx_inst_error = vmcs_read(VMX_INST_ERROR); 10104 report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)", 10105 c->time); 10106 report(c->flags == flags[ACCESS_VMREAD], 10107 "ALU flags after VMREAD (%lx) are as expected (%lx)", 10108 c->flags, flags[ACCESS_VMREAD]); 10109 if (good_shadow) 10110 report(c->value == 0, 10111 "value read from shadow (%lx) is as expected (%lx)", 10112 c->value, 0ul); 10113 else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD]) 10114 report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, 10115 "VMX_INST_ERROR (%d) is as expected (%d)", 10116 vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 10117 report_prefix_pop(); 10118 10119 out: 10120 report_prefix_pop(); 10121 } 10122 10123 static void vmx_vmcs_shadow_test_body(u8 *bitmap[2]) 10124 { 10125 unsigned base; 10126 unsigned index; 10127 unsigned bit; 10128 unsigned highest_index = rdmsr(MSR_IA32_VMX_VMCS_ENUM); 10129 10130 /* Run test on all possible valid VMCS fields */ 10131 for (base = 0; 10132 base < (1 << VMCS_FIELD_RESERVED_SHIFT); 10133 base += (1 << VMCS_FIELD_TYPE_SHIFT)) 10134 for (index = 0; index <= highest_index; index++) 10135 vmcs_shadow_test_field(bitmap, base + index); 10136 10137 /* 10138 * Run tests on some invalid VMCS fields 10139 * (Have reserved bit set). 10140 */ 10141 for (bit = VMCS_FIELD_RESERVED_SHIFT; bit < VMCS_FIELD_BIT_SIZE; bit++) 10142 vmcs_shadow_test_field(bitmap, (1ull << bit)); 10143 } 10144 10145 static void vmx_vmcs_shadow_test(void) 10146 { 10147 u8 *bitmap[2]; 10148 struct vmcs *shadow; 10149 10150 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) { 10151 report_skip("%s : \"Activate secondary controls\" not supported", __func__); 10152 return; 10153 } 10154 10155 if (!(ctrl_cpu_rev[1].clr & CPU_SHADOW_VMCS)) { 10156 report_skip("%s : \"VMCS shadowing\" not supported", __func__); 10157 return; 10158 } 10159 10160 if (!(rdmsr(MSR_IA32_VMX_MISC) & 10161 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) { 10162 report_skip("%s : VMWRITE can't modify VM-exit information fields.", __func__); 10163 return; 10164 } 10165 10166 test_set_guest(vmx_vmcs_shadow_test_guest); 10167 10168 bitmap[ACCESS_VMREAD] = alloc_page(); 10169 bitmap[ACCESS_VMWRITE] = alloc_page(); 10170 10171 vmcs_write(VMREAD_BITMAP, virt_to_phys(bitmap[ACCESS_VMREAD])); 10172 vmcs_write(VMWRITE_BITMAP, virt_to_phys(bitmap[ACCESS_VMWRITE])); 10173 10174 shadow = alloc_page(); 10175 shadow->hdr.revision_id = basic.revision; 10176 shadow->hdr.shadow_vmcs = 1; 10177 TEST_ASSERT(!vmcs_clear(shadow)); 10178 10179 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_RDTSC); 10180 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY); 10181 vmcs_set_bits(CPU_EXEC_CTRL1, CPU_SHADOW_VMCS); 10182 10183 vmcs_write(VMCS_LINK_PTR, virt_to_phys(shadow)); 10184 report_prefix_push("valid link pointer"); 10185 vmx_vmcs_shadow_test_body(bitmap); 10186 report_prefix_pop(); 10187 10188 vmcs_write(VMCS_LINK_PTR, -1ull); 10189 report_prefix_push("invalid link pointer"); 10190 vmx_vmcs_shadow_test_body(bitmap); 10191 report_prefix_pop(); 10192 10193 l1_l2_common.op = ACCESS_NONE; 10194 enter_guest(); 10195 } 10196 10197 /* 10198 * This test monitors the difference between a guest RDTSC instruction 10199 * and the IA32_TIME_STAMP_COUNTER MSR value stored in the VMCS12 10200 * VM-exit MSR-store list when taking a VM-exit on the instruction 10201 * following RDTSC. 10202 */ 10203 #define RDTSC_DIFF_ITERS 100000 10204 #define RDTSC_DIFF_FAILS 100 10205 #define HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD 750 10206 10207 /* 10208 * Set 'use TSC offsetting' and set the guest offset to the 10209 * inverse of the host's current TSC value, so that the guest starts running 10210 * with an effective TSC value of 0. 10211 */ 10212 static void reset_guest_tsc_to_zero(void) 10213 { 10214 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET); 10215 vmcs_write(TSC_OFFSET, -rdtsc()); 10216 } 10217 10218 static void rdtsc_vmexit_diff_test_guest(void) 10219 { 10220 int i; 10221 10222 for (i = 0; i < RDTSC_DIFF_ITERS; i++) 10223 /* Ensure rdtsc is the last instruction before the vmcall. */ 10224 asm volatile("rdtsc; vmcall" : : : "eax", "edx"); 10225 } 10226 10227 /* 10228 * This function only considers the "use TSC offsetting" VM-execution 10229 * control. It does not handle "use TSC scaling" (because the latter 10230 * isn't available to the host today.) 10231 */ 10232 static unsigned long long host_time_to_guest_time(unsigned long long t) 10233 { 10234 TEST_ASSERT(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 10235 !(vmcs_read(CPU_EXEC_CTRL1) & CPU_USE_TSC_SCALING)); 10236 10237 if (vmcs_read(CPU_EXEC_CTRL0) & CPU_USE_TSC_OFFSET) 10238 t += vmcs_read(TSC_OFFSET); 10239 10240 return t; 10241 } 10242 10243 static unsigned long long rdtsc_vmexit_diff_test_iteration(void) 10244 { 10245 unsigned long long guest_tsc, host_to_guest_tsc; 10246 10247 enter_guest(); 10248 skip_exit_vmcall(); 10249 guest_tsc = (u32) regs.rax + (regs.rdx << 32); 10250 host_to_guest_tsc = host_time_to_guest_time(exit_msr_store[0].value); 10251 10252 return host_to_guest_tsc - guest_tsc; 10253 } 10254 10255 static void rdtsc_vmexit_diff_test(void) 10256 { 10257 unsigned long long delta; 10258 int fail = 0; 10259 int i; 10260 10261 if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) 10262 test_skip("CPU doesn't support the 'use TSC offsetting' processor-based VM-execution control.\n"); 10263 10264 test_set_guest(rdtsc_vmexit_diff_test_guest); 10265 10266 reset_guest_tsc_to_zero(); 10267 10268 /* 10269 * Set up the VMCS12 VM-exit MSR-store list to store just one 10270 * MSR: IA32_TIME_STAMP_COUNTER. Note that the value stored is 10271 * in the host time domain (i.e., it is not adjusted according 10272 * to the TSC multiplier and TSC offset fields in the VMCS12, 10273 * as a guest RDTSC would be.) 10274 */ 10275 exit_msr_store = alloc_page(); 10276 exit_msr_store[0].index = MSR_IA32_TSC; 10277 vmcs_write(EXI_MSR_ST_CNT, 1); 10278 vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(exit_msr_store)); 10279 10280 for (i = 0; i < RDTSC_DIFF_ITERS && fail < RDTSC_DIFF_FAILS; i++) { 10281 delta = rdtsc_vmexit_diff_test_iteration(); 10282 if (delta >= HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD) 10283 fail++; 10284 } 10285 10286 enter_guest(); 10287 10288 report(fail < RDTSC_DIFF_FAILS, 10289 "RDTSC to VM-exit delta too high in %d of %d iterations, last = %llu", 10290 fail, i, delta); 10291 } 10292 10293 static int invalid_msr_init(struct vmcs *vmcs) 10294 { 10295 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 10296 printf("\tPreemption timer is not supported\n"); 10297 return VMX_TEST_EXIT; 10298 } 10299 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); 10300 preempt_val = 10000000; 10301 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 10302 preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F; 10303 10304 if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT)) 10305 printf("\tSave preemption value is not supported\n"); 10306 10307 vmcs_write(ENT_MSR_LD_CNT, 1); 10308 vmcs_write(ENTER_MSR_LD_ADDR, (u64)0x13370000); 10309 10310 return VMX_TEST_START; 10311 } 10312 10313 10314 static void invalid_msr_main(void) 10315 { 10316 report_fail("Invalid MSR load"); 10317 } 10318 10319 static int invalid_msr_exit_handler(union exit_reason exit_reason) 10320 { 10321 report_fail("Invalid MSR load"); 10322 print_vmexit_info(exit_reason); 10323 return VMX_TEST_EXIT; 10324 } 10325 10326 static int invalid_msr_entry_failure(struct vmentry_result *result) 10327 { 10328 report(result->exit_reason.failed_vmentry && 10329 result->exit_reason.basic == VMX_FAIL_MSR, "Invalid MSR load"); 10330 return VMX_TEST_VMEXIT; 10331 } 10332 10333 /* 10334 * The max number of MSRs in an atomic switch MSR list is: 10335 * (111B + 1) * 512 = 4096 10336 * 10337 * Each list entry consumes: 10338 * 4-byte MSR index + 4 bytes reserved + 8-byte data = 16 bytes 10339 * 10340 * Allocate 128 kB to cover max_msr_list_size (i.e., 64 kB) and then some. 10341 */ 10342 static const u32 msr_list_page_order = 5; 10343 10344 static void atomic_switch_msr_limit_test_guest(void) 10345 { 10346 vmcall(); 10347 } 10348 10349 static void populate_msr_list(struct vmx_msr_entry *msr_list, 10350 size_t byte_capacity, int count) 10351 { 10352 int i; 10353 10354 for (i = 0; i < count; i++) { 10355 msr_list[i].index = MSR_IA32_TSC; 10356 msr_list[i].reserved = 0; 10357 msr_list[i].value = 0x1234567890abcdef; 10358 } 10359 10360 memset(msr_list + count, 0xff, 10361 byte_capacity - count * sizeof(*msr_list)); 10362 } 10363 10364 static int max_msr_list_size(void) 10365 { 10366 u32 vmx_misc = rdmsr(MSR_IA32_VMX_MISC); 10367 u32 factor = ((vmx_misc & GENMASK(27, 25)) >> 25) + 1; 10368 10369 return factor * 512; 10370 } 10371 10372 static void atomic_switch_msrs_test(int count) 10373 { 10374 struct vmx_msr_entry *vm_enter_load; 10375 struct vmx_msr_entry *vm_exit_load; 10376 struct vmx_msr_entry *vm_exit_store; 10377 int max_allowed = max_msr_list_size(); 10378 int byte_capacity = 1ul << (msr_list_page_order + PAGE_SHIFT); 10379 /* Exceeding the max MSR list size at exit triggers KVM to abort. */ 10380 int exit_count = count > max_allowed ? max_allowed : count; 10381 int cleanup_count = count > max_allowed ? 2 : 1; 10382 int i; 10383 10384 /* 10385 * Check for the IA32_TSC MSR, 10386 * available with the "TSC flag" and used to populate the MSR lists. 10387 */ 10388 if (!(cpuid(1).d & (1 << 4))) { 10389 report_skip("%s : \"Time Stamp Counter\" not supported", __func__); 10390 return; 10391 } 10392 10393 /* Set L2 guest. */ 10394 test_set_guest(atomic_switch_msr_limit_test_guest); 10395 10396 /* Setup atomic MSR switch lists. */ 10397 vm_enter_load = alloc_pages(msr_list_page_order); 10398 vm_exit_load = alloc_pages(msr_list_page_order); 10399 vm_exit_store = alloc_pages(msr_list_page_order); 10400 10401 vmcs_write(ENTER_MSR_LD_ADDR, (u64)vm_enter_load); 10402 vmcs_write(EXIT_MSR_LD_ADDR, (u64)vm_exit_load); 10403 vmcs_write(EXIT_MSR_ST_ADDR, (u64)vm_exit_store); 10404 10405 /* 10406 * VM-Enter should succeed up to the max number of MSRs per list, and 10407 * should not consume junk beyond the last entry. 10408 */ 10409 populate_msr_list(vm_enter_load, byte_capacity, count); 10410 populate_msr_list(vm_exit_load, byte_capacity, exit_count); 10411 populate_msr_list(vm_exit_store, byte_capacity, exit_count); 10412 10413 vmcs_write(ENT_MSR_LD_CNT, count); 10414 vmcs_write(EXI_MSR_LD_CNT, exit_count); 10415 vmcs_write(EXI_MSR_ST_CNT, exit_count); 10416 10417 if (count <= max_allowed) { 10418 enter_guest(); 10419 assert_exit_reason(VMX_VMCALL); 10420 skip_exit_vmcall(); 10421 } else { 10422 u32 exit_qual; 10423 10424 test_guest_state("Invalid MSR Load Count", true, count, 10425 "ENT_MSR_LD_CNT"); 10426 10427 exit_qual = vmcs_read(EXI_QUALIFICATION); 10428 report(exit_qual == max_allowed + 1, "exit_qual, %u, is %u.", 10429 exit_qual, max_allowed + 1); 10430 } 10431 10432 /* Cleanup. */ 10433 vmcs_write(ENT_MSR_LD_CNT, 0); 10434 vmcs_write(EXI_MSR_LD_CNT, 0); 10435 vmcs_write(EXI_MSR_ST_CNT, 0); 10436 for (i = 0; i < cleanup_count; i++) { 10437 enter_guest(); 10438 skip_exit_vmcall(); 10439 } 10440 free_pages_by_order(vm_enter_load, msr_list_page_order); 10441 free_pages_by_order(vm_exit_load, msr_list_page_order); 10442 free_pages_by_order(vm_exit_store, msr_list_page_order); 10443 } 10444 10445 static void atomic_switch_max_msrs_test(void) 10446 { 10447 atomic_switch_msrs_test(max_msr_list_size()); 10448 } 10449 10450 static void atomic_switch_overflow_msrs_test(void) 10451 { 10452 if (test_device_enabled()) 10453 atomic_switch_msrs_test(max_msr_list_size() + 1); 10454 else 10455 test_skip("Test is only supported on KVM"); 10456 } 10457 10458 static void vmx_pf_exception_test_guest(void) 10459 { 10460 ac_test_run(PT_LEVEL_PML4, false); 10461 } 10462 10463 static void vmx_pf_exception_forced_emulation_test_guest(void) 10464 { 10465 ac_test_run(PT_LEVEL_PML4, true); 10466 } 10467 10468 typedef void (*invalidate_tlb_t)(void *data); 10469 typedef void (*pf_exception_test_guest_t)(void); 10470 10471 10472 static void __vmx_pf_exception_test(invalidate_tlb_t inv_fn, void *data, 10473 pf_exception_test_guest_t guest_fn) 10474 { 10475 u64 efer; 10476 struct cpuid cpuid; 10477 10478 test_set_guest(guest_fn); 10479 10480 /* Intercept INVLPG when to perform TLB invalidation from L1 (this). */ 10481 if (inv_fn) 10482 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INVLPG); 10483 else 10484 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INVLPG); 10485 10486 enter_guest(); 10487 10488 while (vmcs_read(EXI_REASON) != VMX_VMCALL) { 10489 switch (vmcs_read(EXI_REASON)) { 10490 case VMX_RDMSR: 10491 assert(regs.rcx == MSR_EFER); 10492 efer = vmcs_read(GUEST_EFER); 10493 regs.rdx = efer >> 32; 10494 regs.rax = efer & 0xffffffff; 10495 break; 10496 case VMX_WRMSR: 10497 assert(regs.rcx == MSR_EFER); 10498 efer = regs.rdx << 32 | (regs.rax & 0xffffffff); 10499 vmcs_write(GUEST_EFER, efer); 10500 break; 10501 case VMX_CPUID: 10502 cpuid = (struct cpuid) {0, 0, 0, 0}; 10503 cpuid = raw_cpuid(regs.rax, regs.rcx); 10504 regs.rax = cpuid.a; 10505 regs.rbx = cpuid.b; 10506 regs.rcx = cpuid.c; 10507 regs.rdx = cpuid.d; 10508 break; 10509 case VMX_INVLPG: 10510 inv_fn(data); 10511 break; 10512 default: 10513 assert_msg(false, 10514 "Unexpected exit to L1, exit_reason: %s (0x%lx)", 10515 exit_reason_description(vmcs_read(EXI_REASON)), 10516 vmcs_read(EXI_REASON)); 10517 } 10518 skip_exit_insn(); 10519 enter_guest(); 10520 } 10521 10522 assert_exit_reason(VMX_VMCALL); 10523 } 10524 10525 static void vmx_pf_exception_test(void) 10526 { 10527 __vmx_pf_exception_test(NULL, NULL, vmx_pf_exception_test_guest); 10528 } 10529 10530 static void vmx_pf_exception_forced_emulation_test(void) 10531 { 10532 __vmx_pf_exception_test(NULL, NULL, vmx_pf_exception_forced_emulation_test_guest); 10533 } 10534 10535 static void invalidate_tlb_no_vpid(void *data) 10536 { 10537 /* If VPID is disabled, the TLB is flushed on VM-Enter and VM-Exit. */ 10538 } 10539 10540 static void vmx_pf_no_vpid_test(void) 10541 { 10542 if (is_vpid_supported()) 10543 vmcs_clear_bits(CPU_EXEC_CTRL1, CPU_VPID); 10544 10545 __vmx_pf_exception_test(invalidate_tlb_no_vpid, NULL, 10546 vmx_pf_exception_test_guest); 10547 } 10548 10549 static void invalidate_tlb_invvpid_addr(void *data) 10550 { 10551 invvpid(INVVPID_ALL, *(u16 *)data, vmcs_read(EXI_QUALIFICATION)); 10552 } 10553 10554 static void invalidate_tlb_new_vpid(void *data) 10555 { 10556 u16 *vpid = data; 10557 10558 /* 10559 * Bump VPID to effectively flush L2's TLB from L0's perspective. 10560 * Invalidate all VPIDs when the VPID wraps to zero as hardware/KVM is 10561 * architecturally allowed to keep TLB entries indefinitely. 10562 */ 10563 ++(*vpid); 10564 if (*vpid == 0) { 10565 ++(*vpid); 10566 invvpid(INVVPID_ALL, 0, 0); 10567 } 10568 vmcs_write(VPID, *vpid); 10569 } 10570 10571 static void __vmx_pf_vpid_test(invalidate_tlb_t inv_fn, u16 vpid) 10572 { 10573 if (!is_vpid_supported()) 10574 test_skip("VPID unsupported"); 10575 10576 if (!is_invvpid_supported()) 10577 test_skip("INVVPID unsupported"); 10578 10579 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY); 10580 vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VPID); 10581 vmcs_write(VPID, vpid); 10582 10583 __vmx_pf_exception_test(inv_fn, &vpid, vmx_pf_exception_test_guest); 10584 } 10585 10586 static void vmx_pf_invvpid_test(void) 10587 { 10588 if (!is_invvpid_type_supported(INVVPID_ADDR)) 10589 test_skip("INVVPID ADDR unsupported"); 10590 10591 __vmx_pf_vpid_test(invalidate_tlb_invvpid_addr, 0xaaaa); 10592 } 10593 10594 static void vmx_pf_vpid_test(void) 10595 { 10596 /* Need INVVPID(ALL) to flush VPIDs upon wrap/reuse. */ 10597 if (!is_invvpid_type_supported(INVVPID_ALL)) 10598 test_skip("INVVPID ALL unsupported"); 10599 10600 __vmx_pf_vpid_test(invalidate_tlb_new_vpid, 1); 10601 } 10602 10603 static void vmx_l2_ac_test(void) 10604 { 10605 bool hit_ac = false; 10606 10607 write_cr0(read_cr0() | X86_CR0_AM); 10608 write_rflags(read_rflags() | X86_EFLAGS_AC); 10609 10610 run_in_user(generate_usermode_ac, AC_VECTOR, 0, 0, 0, 0, &hit_ac); 10611 report(hit_ac, "Usermode #AC handled in L2"); 10612 vmcall(); 10613 } 10614 10615 struct vmx_exception_test { 10616 u8 vector; 10617 void (*guest_code)(void); 10618 }; 10619 10620 struct vmx_exception_test vmx_exception_tests[] = { 10621 { GP_VECTOR, generate_non_canonical_gp }, 10622 { UD_VECTOR, generate_ud }, 10623 { DE_VECTOR, generate_de }, 10624 { DB_VECTOR, generate_single_step_db }, 10625 { BP_VECTOR, generate_bp }, 10626 { AC_VECTOR, vmx_l2_ac_test }, 10627 { OF_VECTOR, generate_of }, 10628 { NM_VECTOR, generate_cr0_ts_nm }, 10629 { NM_VECTOR, generate_cr0_em_nm }, 10630 }; 10631 10632 static u8 vmx_exception_test_vector; 10633 10634 static void vmx_exception_handler(struct ex_regs *regs) 10635 { 10636 report(regs->vector == vmx_exception_test_vector, 10637 "Handling %s in L2's exception handler", 10638 exception_mnemonic(vmx_exception_test_vector)); 10639 vmcall(); 10640 } 10641 10642 static void handle_exception_in_l2(u8 vector) 10643 { 10644 handler old_handler = handle_exception(vector, vmx_exception_handler); 10645 10646 vmx_exception_test_vector = vector; 10647 10648 enter_guest(); 10649 report(vmcs_read(EXI_REASON) == VMX_VMCALL, 10650 "%s handled by L2", exception_mnemonic(vector)); 10651 10652 handle_exception(vector, old_handler); 10653 } 10654 10655 static void handle_exception_in_l1(u32 vector) 10656 { 10657 u32 old_eb = vmcs_read(EXC_BITMAP); 10658 u32 intr_type; 10659 u32 intr_info; 10660 10661 vmcs_write(EXC_BITMAP, old_eb | (1u << vector)); 10662 10663 enter_guest(); 10664 10665 if (vector == BP_VECTOR || vector == OF_VECTOR) 10666 intr_type = VMX_INTR_TYPE_SOFT_EXCEPTION; 10667 else 10668 intr_type = VMX_INTR_TYPE_HARD_EXCEPTION; 10669 10670 intr_info = vmcs_read(EXI_INTR_INFO); 10671 report((vmcs_read(EXI_REASON) == VMX_EXC_NMI) && 10672 (intr_info & INTR_INFO_VALID_MASK) && 10673 (intr_info & INTR_INFO_VECTOR_MASK) == vector && 10674 ((intr_info & INTR_INFO_INTR_TYPE_MASK) >> INTR_INFO_INTR_TYPE_SHIFT) == intr_type, 10675 "%s correctly routed to L1", exception_mnemonic(vector)); 10676 10677 vmcs_write(EXC_BITMAP, old_eb); 10678 } 10679 10680 static void vmx_exception_test(void) 10681 { 10682 struct vmx_exception_test *t; 10683 int i; 10684 10685 for (i = 0; i < ARRAY_SIZE(vmx_exception_tests); i++) { 10686 t = &vmx_exception_tests[i]; 10687 10688 /* 10689 * Override the guest code before each run even though it's the 10690 * same code, the VMCS guest state needs to be reinitialized. 10691 */ 10692 test_override_guest(t->guest_code); 10693 handle_exception_in_l2(t->vector); 10694 10695 test_override_guest(t->guest_code); 10696 handle_exception_in_l1(t->vector); 10697 } 10698 10699 test_set_guest_finished(); 10700 } 10701 10702 #define TEST(name) { #name, .v2 = name } 10703 10704 /* name/init/guest_main/exit_handler/syscall_handler/guest_regs */ 10705 struct vmx_test vmx_tests[] = { 10706 { "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} }, 10707 { "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} }, 10708 { "preemption timer", preemption_timer_init, preemption_timer_main, 10709 preemption_timer_exit_handler, NULL, {0} }, 10710 { "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main, 10711 test_ctrl_pat_exit_handler, NULL, {0} }, 10712 { "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main, 10713 test_ctrl_efer_exit_handler, NULL, {0} }, 10714 { "CR shadowing", NULL, cr_shadowing_main, 10715 cr_shadowing_exit_handler, NULL, {0} }, 10716 { "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler, 10717 NULL, {0} }, 10718 { "instruction intercept", insn_intercept_init, insn_intercept_main, 10719 insn_intercept_exit_handler, NULL, {0} }, 10720 { "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} }, 10721 { "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} }, 10722 { "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} }, 10723 { "interrupt", interrupt_init, interrupt_main, 10724 interrupt_exit_handler, NULL, {0} }, 10725 { "nmi_hlt", nmi_hlt_init, nmi_hlt_main, 10726 nmi_hlt_exit_handler, NULL, {0} }, 10727 { "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler, 10728 NULL, {0} }, 10729 { "MSR switch", msr_switch_init, msr_switch_main, 10730 msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure }, 10731 { "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} }, 10732 { "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main, 10733 disable_rdtscp_exit_handler, NULL, {0} }, 10734 { "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main, 10735 exit_monitor_from_l2_handler, NULL, {0} }, 10736 { "invalid_msr", invalid_msr_init, invalid_msr_main, 10737 invalid_msr_exit_handler, NULL, {0}, invalid_msr_entry_failure}, 10738 /* Basic V2 tests. */ 10739 TEST(v2_null_test), 10740 TEST(v2_multiple_entries_test), 10741 TEST(fixture_test_case1), 10742 TEST(fixture_test_case2), 10743 /* Opcode tests. */ 10744 TEST(invvpid_test), 10745 /* VM-entry tests */ 10746 TEST(vmx_controls_test), 10747 TEST(vmx_host_state_area_test), 10748 TEST(vmx_guest_state_area_test), 10749 TEST(vmentry_movss_shadow_test), 10750 TEST(vmentry_unrestricted_guest_test), 10751 /* APICv tests */ 10752 TEST(vmx_eoi_bitmap_ioapic_scan_test), 10753 TEST(vmx_hlt_with_rvi_test), 10754 TEST(apic_reg_virt_test), 10755 TEST(virt_x2apic_mode_test), 10756 /* APIC pass-through tests */ 10757 TEST(vmx_apic_passthrough_test), 10758 TEST(vmx_apic_passthrough_thread_test), 10759 TEST(vmx_apic_passthrough_tpr_threshold_test), 10760 TEST(vmx_init_signal_test), 10761 TEST(vmx_sipi_signal_test), 10762 /* VMCS Shadowing tests */ 10763 TEST(vmx_vmcs_shadow_test), 10764 /* Regression tests */ 10765 TEST(vmx_ldtr_test), 10766 TEST(vmx_cr_load_test), 10767 TEST(vmx_cr4_osxsave_test), 10768 TEST(vmx_no_nm_test), 10769 TEST(vmx_db_test), 10770 TEST(vmx_nmi_window_test), 10771 TEST(vmx_intr_window_test), 10772 TEST(vmx_pending_event_test), 10773 TEST(vmx_pending_event_hlt_test), 10774 TEST(vmx_store_tsc_test), 10775 TEST(vmx_preemption_timer_zero_test), 10776 TEST(vmx_preemption_timer_tf_test), 10777 TEST(vmx_preemption_timer_expiry_test), 10778 /* EPT access tests. */ 10779 TEST(ept_access_test_not_present), 10780 TEST(ept_access_test_read_only), 10781 TEST(ept_access_test_write_only), 10782 TEST(ept_access_test_read_write), 10783 TEST(ept_access_test_execute_only), 10784 TEST(ept_access_test_read_execute), 10785 TEST(ept_access_test_write_execute), 10786 TEST(ept_access_test_read_write_execute), 10787 TEST(ept_access_test_reserved_bits), 10788 TEST(ept_access_test_ignored_bits), 10789 TEST(ept_access_test_paddr_not_present_ad_disabled), 10790 TEST(ept_access_test_paddr_not_present_ad_enabled), 10791 TEST(ept_access_test_paddr_read_only_ad_disabled), 10792 TEST(ept_access_test_paddr_read_only_ad_enabled), 10793 TEST(ept_access_test_paddr_read_write), 10794 TEST(ept_access_test_paddr_read_write_execute), 10795 TEST(ept_access_test_paddr_read_execute_ad_disabled), 10796 TEST(ept_access_test_paddr_read_execute_ad_enabled), 10797 TEST(ept_access_test_paddr_not_present_page_fault), 10798 TEST(ept_access_test_force_2m_page), 10799 /* Atomic MSR switch tests. */ 10800 TEST(atomic_switch_max_msrs_test), 10801 TEST(atomic_switch_overflow_msrs_test), 10802 TEST(rdtsc_vmexit_diff_test), 10803 TEST(vmx_mtf_test), 10804 TEST(vmx_mtf_pdpte_test), 10805 TEST(vmx_pf_exception_test), 10806 TEST(vmx_pf_exception_forced_emulation_test), 10807 TEST(vmx_pf_no_vpid_test), 10808 TEST(vmx_pf_invvpid_test), 10809 TEST(vmx_pf_vpid_test), 10810 TEST(vmx_exception_test), 10811 { NULL, NULL, NULL, NULL, NULL, {0} }, 10812 }; 10813