1 /* 2 * All test cases of nested virtualization should be in this file 3 * 4 * Author : Arthur Chunqi Li <yzt356@gmail.com> 5 */ 6 7 #include <asm/debugreg.h> 8 9 #include "vmx.h" 10 #include "msr.h" 11 #include "processor.h" 12 #include "pmu.h" 13 #include "vm.h" 14 #include "pci.h" 15 #include "fwcfg.h" 16 #include "isr.h" 17 #include "desc.h" 18 #include "apic.h" 19 #include "vmalloc.h" 20 #include "alloc_page.h" 21 #include "smp.h" 22 #include "delay.h" 23 #include "access.h" 24 #include "x86/usermode.h" 25 26 /* 27 * vmcs.GUEST_PENDING_DEBUG has the same format as DR6, although some bits that 28 * are legal in DR6 are reserved in vmcs.GUEST_PENDING_DEBUG. And if any data 29 * or I/O breakpoint matches *and* was enabled, bit 12 is also set. 30 */ 31 #define PENDING_DBG_TRAP BIT(12) 32 33 #define VPID_CAP_INVVPID_TYPES_SHIFT 40 34 35 u64 ia32_pat; 36 u64 ia32_efer; 37 void *io_bitmap_a, *io_bitmap_b; 38 u16 ioport; 39 40 unsigned long *pml4; 41 u64 eptp; 42 void *data_page1, *data_page2; 43 44 phys_addr_t pci_physaddr; 45 46 void *pml_log; 47 #define PML_INDEX 512 48 49 static inline unsigned ffs(unsigned x) 50 { 51 int pos = -1; 52 53 __asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0" 54 : "+r"(pos) : "rm"(x) : "eax"); 55 return pos + 1; 56 } 57 58 static inline void vmcall(void) 59 { 60 asm volatile("vmcall"); 61 } 62 63 static void basic_guest_main(void) 64 { 65 report_pass("Basic VMX test"); 66 } 67 68 static int basic_exit_handler(union exit_reason exit_reason) 69 { 70 report_fail("Basic VMX test"); 71 print_vmexit_info(exit_reason); 72 return VMX_TEST_EXIT; 73 } 74 75 static void vmenter_main(void) 76 { 77 u64 rax; 78 u64 rsp, resume_rsp; 79 80 report_pass("test vmlaunch"); 81 82 asm volatile( 83 "mov %%rsp, %0\n\t" 84 "mov %3, %%rax\n\t" 85 "vmcall\n\t" 86 "mov %%rax, %1\n\t" 87 "mov %%rsp, %2\n\t" 88 : "=r"(rsp), "=r"(rax), "=r"(resume_rsp) 89 : "g"(0xABCD)); 90 report((rax == 0xFFFF) && (rsp == resume_rsp), "test vmresume"); 91 } 92 93 static int vmenter_exit_handler(union exit_reason exit_reason) 94 { 95 u64 guest_rip = vmcs_read(GUEST_RIP); 96 97 switch (exit_reason.basic) { 98 case VMX_VMCALL: 99 if (regs.rax != 0xABCD) { 100 report_fail("test vmresume"); 101 return VMX_TEST_VMEXIT; 102 } 103 regs.rax = 0xFFFF; 104 vmcs_write(GUEST_RIP, guest_rip + 3); 105 return VMX_TEST_RESUME; 106 default: 107 report_fail("test vmresume"); 108 print_vmexit_info(exit_reason); 109 } 110 return VMX_TEST_VMEXIT; 111 } 112 113 u32 preempt_scale; 114 volatile unsigned long long tsc_val; 115 volatile u32 preempt_val; 116 u64 saved_rip; 117 118 static int preemption_timer_init(struct vmcs *vmcs) 119 { 120 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 121 printf("\tPreemption timer is not supported\n"); 122 return VMX_TEST_EXIT; 123 } 124 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); 125 preempt_val = 10000000; 126 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 127 preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F; 128 129 if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT)) 130 printf("\tSave preemption value is not supported\n"); 131 132 return VMX_TEST_START; 133 } 134 135 static void preemption_timer_main(void) 136 { 137 tsc_val = rdtsc(); 138 if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) { 139 vmx_set_test_stage(0); 140 vmcall(); 141 if (vmx_get_test_stage() == 1) 142 vmcall(); 143 } 144 vmx_set_test_stage(1); 145 while (vmx_get_test_stage() == 1) { 146 if (((rdtsc() - tsc_val) >> preempt_scale) 147 > 10 * preempt_val) { 148 vmx_set_test_stage(2); 149 vmcall(); 150 } 151 } 152 tsc_val = rdtsc(); 153 asm volatile ("hlt"); 154 vmcall(); 155 vmx_set_test_stage(5); 156 vmcall(); 157 } 158 159 static int preemption_timer_exit_handler(union exit_reason exit_reason) 160 { 161 bool guest_halted; 162 u64 guest_rip; 163 u32 insn_len; 164 u32 ctrl_exit; 165 166 guest_rip = vmcs_read(GUEST_RIP); 167 insn_len = vmcs_read(EXI_INST_LEN); 168 switch (exit_reason.basic) { 169 case VMX_PREEMPT: 170 switch (vmx_get_test_stage()) { 171 case 1: 172 case 2: 173 report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val, 174 "busy-wait for preemption timer"); 175 vmx_set_test_stage(3); 176 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 177 return VMX_TEST_RESUME; 178 case 3: 179 guest_halted = 180 (vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT); 181 report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val 182 && guest_halted, 183 "preemption timer during hlt"); 184 vmx_set_test_stage(4); 185 vmcs_write(PIN_CONTROLS, 186 vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT); 187 vmcs_write(EXI_CONTROLS, 188 vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_PREEMPT); 189 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 190 return VMX_TEST_RESUME; 191 case 4: 192 report(saved_rip == guest_rip, 193 "preemption timer with 0 value"); 194 break; 195 default: 196 report_fail("Invalid stage."); 197 print_vmexit_info(exit_reason); 198 break; 199 } 200 break; 201 case VMX_VMCALL: 202 vmcs_write(GUEST_RIP, guest_rip + insn_len); 203 switch (vmx_get_test_stage()) { 204 case 0: 205 report(vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val, 206 "Keep preemption value"); 207 vmx_set_test_stage(1); 208 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 209 ctrl_exit = (vmcs_read(EXI_CONTROLS) | 210 EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr; 211 vmcs_write(EXI_CONTROLS, ctrl_exit); 212 return VMX_TEST_RESUME; 213 case 1: 214 report(vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val, 215 "Save preemption value"); 216 return VMX_TEST_RESUME; 217 case 2: 218 report_fail("busy-wait for preemption timer"); 219 vmx_set_test_stage(3); 220 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 221 return VMX_TEST_RESUME; 222 case 3: 223 report_fail("preemption timer during hlt"); 224 vmx_set_test_stage(4); 225 /* fall through */ 226 case 4: 227 vmcs_write(PIN_CONTROLS, 228 vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); 229 vmcs_write(PREEMPT_TIMER_VALUE, 0); 230 saved_rip = guest_rip + insn_len; 231 return VMX_TEST_RESUME; 232 case 5: 233 report_fail("preemption timer with 0 value (vmcall stage 5)"); 234 break; 235 default: 236 // Should not reach here 237 report_fail("unexpected stage, %d", 238 vmx_get_test_stage()); 239 print_vmexit_info(exit_reason); 240 return VMX_TEST_VMEXIT; 241 } 242 break; 243 default: 244 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 245 print_vmexit_info(exit_reason); 246 } 247 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT); 248 return VMX_TEST_VMEXIT; 249 } 250 251 static void msr_bmp_init(void) 252 { 253 void *msr_bitmap; 254 u32 ctrl_cpu0; 255 256 msr_bitmap = alloc_page(); 257 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 258 ctrl_cpu0 |= CPU_MSR_BITMAP; 259 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); 260 vmcs_write(MSR_BITMAP, (u64)msr_bitmap); 261 } 262 263 static void *get_msr_bitmap(void) 264 { 265 void *msr_bitmap; 266 267 if (vmcs_read(CPU_EXEC_CTRL0) & CPU_MSR_BITMAP) { 268 msr_bitmap = (void *)vmcs_read(MSR_BITMAP); 269 } else { 270 msr_bitmap = alloc_page(); 271 memset(msr_bitmap, 0xff, PAGE_SIZE); 272 vmcs_write(MSR_BITMAP, (u64)msr_bitmap); 273 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_MSR_BITMAP); 274 } 275 276 return msr_bitmap; 277 } 278 279 static void disable_intercept_for_x2apic_msrs(void) 280 { 281 unsigned long *msr_bitmap = (unsigned long *)get_msr_bitmap(); 282 u32 msr; 283 284 for (msr = APIC_BASE_MSR; 285 msr < (APIC_BASE_MSR+0xff); 286 msr += BITS_PER_LONG) { 287 unsigned int word = msr / BITS_PER_LONG; 288 289 msr_bitmap[word] = 0; 290 msr_bitmap[word + (0x800 / sizeof(long))] = 0; 291 } 292 } 293 294 static int test_ctrl_pat_init(struct vmcs *vmcs) 295 { 296 u64 ctrl_ent; 297 u64 ctrl_exi; 298 299 msr_bmp_init(); 300 if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) && 301 !(ctrl_exit_rev.clr & EXI_LOAD_PAT) && 302 !(ctrl_enter_rev.clr & ENT_LOAD_PAT)) { 303 printf("\tSave/load PAT is not supported\n"); 304 return 1; 305 } 306 307 ctrl_ent = vmcs_read(ENT_CONTROLS); 308 ctrl_exi = vmcs_read(EXI_CONTROLS); 309 ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT; 310 ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT); 311 vmcs_write(ENT_CONTROLS, ctrl_ent); 312 vmcs_write(EXI_CONTROLS, ctrl_exi); 313 ia32_pat = rdmsr(MSR_IA32_CR_PAT); 314 vmcs_write(GUEST_PAT, 0x0); 315 vmcs_write(HOST_PAT, ia32_pat); 316 return VMX_TEST_START; 317 } 318 319 static void test_ctrl_pat_main(void) 320 { 321 u64 guest_ia32_pat; 322 323 guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT); 324 if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) 325 printf("\tENT_LOAD_PAT is not supported.\n"); 326 else { 327 if (guest_ia32_pat != 0) { 328 report_fail("Entry load PAT"); 329 return; 330 } 331 } 332 wrmsr(MSR_IA32_CR_PAT, 0x6); 333 vmcall(); 334 guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT); 335 if (ctrl_enter_rev.clr & ENT_LOAD_PAT) 336 report(guest_ia32_pat == ia32_pat, "Entry load PAT"); 337 } 338 339 static int test_ctrl_pat_exit_handler(union exit_reason exit_reason) 340 { 341 u64 guest_rip; 342 u64 guest_pat; 343 344 guest_rip = vmcs_read(GUEST_RIP); 345 switch (exit_reason.basic) { 346 case VMX_VMCALL: 347 guest_pat = vmcs_read(GUEST_PAT); 348 if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) { 349 printf("\tEXI_SAVE_PAT is not supported\n"); 350 vmcs_write(GUEST_PAT, 0x6); 351 } else { 352 report(guest_pat == 0x6, "Exit save PAT"); 353 } 354 if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) 355 printf("\tEXI_LOAD_PAT is not supported\n"); 356 else 357 report(rdmsr(MSR_IA32_CR_PAT) == ia32_pat, 358 "Exit load PAT"); 359 vmcs_write(GUEST_PAT, ia32_pat); 360 vmcs_write(GUEST_RIP, guest_rip + 3); 361 return VMX_TEST_RESUME; 362 default: 363 printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full); 364 break; 365 } 366 return VMX_TEST_VMEXIT; 367 } 368 369 static int test_ctrl_efer_init(struct vmcs *vmcs) 370 { 371 u64 ctrl_ent; 372 u64 ctrl_exi; 373 374 msr_bmp_init(); 375 ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER; 376 ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER; 377 vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr); 378 vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr); 379 ia32_efer = rdmsr(MSR_EFER); 380 vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX); 381 vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX); 382 return VMX_TEST_START; 383 } 384 385 static void test_ctrl_efer_main(void) 386 { 387 u64 guest_ia32_efer; 388 389 guest_ia32_efer = rdmsr(MSR_EFER); 390 if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) 391 printf("\tENT_LOAD_EFER is not supported.\n"); 392 else { 393 if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) { 394 report_fail("Entry load EFER"); 395 return; 396 } 397 } 398 wrmsr(MSR_EFER, ia32_efer); 399 vmcall(); 400 guest_ia32_efer = rdmsr(MSR_EFER); 401 if (ctrl_enter_rev.clr & ENT_LOAD_EFER) 402 report(guest_ia32_efer == ia32_efer, "Entry load EFER"); 403 } 404 405 static int test_ctrl_efer_exit_handler(union exit_reason exit_reason) 406 { 407 u64 guest_rip; 408 u64 guest_efer; 409 410 guest_rip = vmcs_read(GUEST_RIP); 411 switch (exit_reason.basic) { 412 case VMX_VMCALL: 413 guest_efer = vmcs_read(GUEST_EFER); 414 if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) { 415 printf("\tEXI_SAVE_EFER is not supported\n"); 416 vmcs_write(GUEST_EFER, ia32_efer); 417 } else { 418 report(guest_efer == ia32_efer, "Exit save EFER"); 419 } 420 if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) { 421 printf("\tEXI_LOAD_EFER is not supported\n"); 422 wrmsr(MSR_EFER, ia32_efer ^ EFER_NX); 423 } else { 424 report(rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX), 425 "Exit load EFER"); 426 } 427 vmcs_write(GUEST_PAT, ia32_efer); 428 vmcs_write(GUEST_RIP, guest_rip + 3); 429 return VMX_TEST_RESUME; 430 default: 431 printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full); 432 break; 433 } 434 return VMX_TEST_VMEXIT; 435 } 436 437 u32 guest_cr0, guest_cr4; 438 439 static void cr_shadowing_main(void) 440 { 441 u32 cr0, cr4, tmp; 442 443 // Test read through 444 vmx_set_test_stage(0); 445 guest_cr0 = read_cr0(); 446 if (vmx_get_test_stage() == 1) 447 report_fail("Read through CR0"); 448 else 449 vmcall(); 450 vmx_set_test_stage(1); 451 guest_cr4 = read_cr4(); 452 if (vmx_get_test_stage() == 2) 453 report_fail("Read through CR4"); 454 else 455 vmcall(); 456 // Test write through 457 guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP); 458 guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE); 459 vmx_set_test_stage(2); 460 write_cr0(guest_cr0); 461 if (vmx_get_test_stage() == 3) 462 report_fail("Write through CR0"); 463 else 464 vmcall(); 465 vmx_set_test_stage(3); 466 write_cr4(guest_cr4); 467 if (vmx_get_test_stage() == 4) 468 report_fail("Write through CR4"); 469 else 470 vmcall(); 471 // Test read shadow 472 vmx_set_test_stage(4); 473 vmcall(); 474 cr0 = read_cr0(); 475 if (vmx_get_test_stage() != 5) 476 report(cr0 == guest_cr0, "Read shadowing CR0"); 477 vmx_set_test_stage(5); 478 cr4 = read_cr4(); 479 if (vmx_get_test_stage() != 6) 480 report(cr4 == guest_cr4, "Read shadowing CR4"); 481 // Test write shadow (same value with shadow) 482 vmx_set_test_stage(6); 483 write_cr0(guest_cr0); 484 if (vmx_get_test_stage() == 7) 485 report_fail("Write shadowing CR0 (same value with shadow)"); 486 else 487 vmcall(); 488 vmx_set_test_stage(7); 489 write_cr4(guest_cr4); 490 if (vmx_get_test_stage() == 8) 491 report_fail("Write shadowing CR4 (same value with shadow)"); 492 else 493 vmcall(); 494 // Test write shadow (different value) 495 vmx_set_test_stage(8); 496 tmp = guest_cr0 ^ X86_CR0_TS; 497 asm volatile("mov %0, %%rsi\n\t" 498 "mov %%rsi, %%cr0\n\t" 499 ::"m"(tmp) 500 :"rsi", "memory", "cc"); 501 report(vmx_get_test_stage() == 9, 502 "Write shadowing different X86_CR0_TS"); 503 vmx_set_test_stage(9); 504 tmp = guest_cr0 ^ X86_CR0_MP; 505 asm volatile("mov %0, %%rsi\n\t" 506 "mov %%rsi, %%cr0\n\t" 507 ::"m"(tmp) 508 :"rsi", "memory", "cc"); 509 report(vmx_get_test_stage() == 10, 510 "Write shadowing different X86_CR0_MP"); 511 vmx_set_test_stage(10); 512 tmp = guest_cr4 ^ X86_CR4_TSD; 513 asm volatile("mov %0, %%rsi\n\t" 514 "mov %%rsi, %%cr4\n\t" 515 ::"m"(tmp) 516 :"rsi", "memory", "cc"); 517 report(vmx_get_test_stage() == 11, 518 "Write shadowing different X86_CR4_TSD"); 519 vmx_set_test_stage(11); 520 tmp = guest_cr4 ^ X86_CR4_DE; 521 asm volatile("mov %0, %%rsi\n\t" 522 "mov %%rsi, %%cr4\n\t" 523 ::"m"(tmp) 524 :"rsi", "memory", "cc"); 525 report(vmx_get_test_stage() == 12, 526 "Write shadowing different X86_CR4_DE"); 527 } 528 529 static int cr_shadowing_exit_handler(union exit_reason exit_reason) 530 { 531 u64 guest_rip; 532 u32 insn_len; 533 u32 exit_qual; 534 535 guest_rip = vmcs_read(GUEST_RIP); 536 insn_len = vmcs_read(EXI_INST_LEN); 537 exit_qual = vmcs_read(EXI_QUALIFICATION); 538 switch (exit_reason.basic) { 539 case VMX_VMCALL: 540 switch (vmx_get_test_stage()) { 541 case 0: 542 report(guest_cr0 == vmcs_read(GUEST_CR0), 543 "Read through CR0"); 544 break; 545 case 1: 546 report(guest_cr4 == vmcs_read(GUEST_CR4), 547 "Read through CR4"); 548 break; 549 case 2: 550 report(guest_cr0 == vmcs_read(GUEST_CR0), 551 "Write through CR0"); 552 break; 553 case 3: 554 report(guest_cr4 == vmcs_read(GUEST_CR4), 555 "Write through CR4"); 556 break; 557 case 4: 558 guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP); 559 guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE); 560 vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP); 561 vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP)); 562 vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE); 563 vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE)); 564 break; 565 case 6: 566 report(guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP)), 567 "Write shadowing CR0 (same value)"); 568 break; 569 case 7: 570 report(guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE)), 571 "Write shadowing CR4 (same value)"); 572 break; 573 default: 574 // Should not reach here 575 report_fail("unexpected stage, %d", 576 vmx_get_test_stage()); 577 print_vmexit_info(exit_reason); 578 return VMX_TEST_VMEXIT; 579 } 580 vmcs_write(GUEST_RIP, guest_rip + insn_len); 581 return VMX_TEST_RESUME; 582 case VMX_CR: 583 switch (vmx_get_test_stage()) { 584 case 4: 585 report_fail("Read shadowing CR0"); 586 vmx_inc_test_stage(); 587 break; 588 case 5: 589 report_fail("Read shadowing CR4"); 590 vmx_inc_test_stage(); 591 break; 592 case 6: 593 report_fail("Write shadowing CR0 (same value)"); 594 vmx_inc_test_stage(); 595 break; 596 case 7: 597 report_fail("Write shadowing CR4 (same value)"); 598 vmx_inc_test_stage(); 599 break; 600 case 8: 601 case 9: 602 // 0x600 encodes "mov %esi, %cr0" 603 if (exit_qual == 0x600) 604 vmx_inc_test_stage(); 605 break; 606 case 10: 607 case 11: 608 // 0x604 encodes "mov %esi, %cr4" 609 if (exit_qual == 0x604) 610 vmx_inc_test_stage(); 611 break; 612 default: 613 // Should not reach here 614 report_fail("unexpected stage, %d", 615 vmx_get_test_stage()); 616 print_vmexit_info(exit_reason); 617 return VMX_TEST_VMEXIT; 618 } 619 vmcs_write(GUEST_RIP, guest_rip + insn_len); 620 return VMX_TEST_RESUME; 621 default: 622 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 623 print_vmexit_info(exit_reason); 624 } 625 return VMX_TEST_VMEXIT; 626 } 627 628 static int iobmp_init(struct vmcs *vmcs) 629 { 630 u32 ctrl_cpu0; 631 632 io_bitmap_a = alloc_page(); 633 io_bitmap_b = alloc_page(); 634 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 635 ctrl_cpu0 |= CPU_IO_BITMAP; 636 ctrl_cpu0 &= (~CPU_IO); 637 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); 638 vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a); 639 vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b); 640 return VMX_TEST_START; 641 } 642 643 static void iobmp_main(void) 644 { 645 // stage 0, test IO pass 646 vmx_set_test_stage(0); 647 inb(0x5000); 648 outb(0x0, 0x5000); 649 report(vmx_get_test_stage() == 0, "I/O bitmap - I/O pass"); 650 // test IO width, in/out 651 ((u8 *)io_bitmap_a)[0] = 0xFF; 652 vmx_set_test_stage(2); 653 inb(0x0); 654 report(vmx_get_test_stage() == 3, "I/O bitmap - trap in"); 655 vmx_set_test_stage(3); 656 outw(0x0, 0x0); 657 report(vmx_get_test_stage() == 4, "I/O bitmap - trap out"); 658 vmx_set_test_stage(4); 659 inl(0x0); 660 report(vmx_get_test_stage() == 5, "I/O bitmap - I/O width, long"); 661 // test low/high IO port 662 vmx_set_test_stage(5); 663 ((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8)); 664 inb(0x5000); 665 report(vmx_get_test_stage() == 6, "I/O bitmap - I/O port, low part"); 666 vmx_set_test_stage(6); 667 ((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8)); 668 inb(0x9000); 669 report(vmx_get_test_stage() == 7, "I/O bitmap - I/O port, high part"); 670 // test partial pass 671 vmx_set_test_stage(7); 672 inl(0x4FFF); 673 report(vmx_get_test_stage() == 8, "I/O bitmap - partial pass"); 674 // test overrun 675 vmx_set_test_stage(8); 676 memset(io_bitmap_a, 0x0, PAGE_SIZE); 677 memset(io_bitmap_b, 0x0, PAGE_SIZE); 678 inl(0xFFFF); 679 report(vmx_get_test_stage() == 9, "I/O bitmap - overrun"); 680 vmx_set_test_stage(9); 681 vmcall(); 682 outb(0x0, 0x0); 683 report(vmx_get_test_stage() == 9, 684 "I/O bitmap - ignore unconditional exiting"); 685 vmx_set_test_stage(10); 686 vmcall(); 687 outb(0x0, 0x0); 688 report(vmx_get_test_stage() == 11, 689 "I/O bitmap - unconditional exiting"); 690 } 691 692 static int iobmp_exit_handler(union exit_reason exit_reason) 693 { 694 u64 guest_rip; 695 ulong exit_qual; 696 u32 insn_len, ctrl_cpu0; 697 698 guest_rip = vmcs_read(GUEST_RIP); 699 exit_qual = vmcs_read(EXI_QUALIFICATION); 700 insn_len = vmcs_read(EXI_INST_LEN); 701 switch (exit_reason.basic) { 702 case VMX_IO: 703 switch (vmx_get_test_stage()) { 704 case 0: 705 case 1: 706 vmx_inc_test_stage(); 707 break; 708 case 2: 709 report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE, 710 "I/O bitmap - I/O width, byte"); 711 report(exit_qual & VMX_IO_IN, 712 "I/O bitmap - I/O direction, in"); 713 vmx_inc_test_stage(); 714 break; 715 case 3: 716 report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD, 717 "I/O bitmap - I/O width, word"); 718 report(!(exit_qual & VMX_IO_IN), 719 "I/O bitmap - I/O direction, out"); 720 vmx_inc_test_stage(); 721 break; 722 case 4: 723 report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG, 724 "I/O bitmap - I/O width, long"); 725 vmx_inc_test_stage(); 726 break; 727 case 5: 728 if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000) 729 vmx_inc_test_stage(); 730 break; 731 case 6: 732 if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000) 733 vmx_inc_test_stage(); 734 break; 735 case 7: 736 if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF) 737 vmx_inc_test_stage(); 738 break; 739 case 8: 740 if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF) 741 vmx_inc_test_stage(); 742 break; 743 case 9: 744 case 10: 745 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 746 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO); 747 vmx_inc_test_stage(); 748 break; 749 default: 750 // Should not reach here 751 report_fail("unexpected stage, %d", 752 vmx_get_test_stage()); 753 print_vmexit_info(exit_reason); 754 return VMX_TEST_VMEXIT; 755 } 756 vmcs_write(GUEST_RIP, guest_rip + insn_len); 757 return VMX_TEST_RESUME; 758 case VMX_VMCALL: 759 switch (vmx_get_test_stage()) { 760 case 9: 761 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 762 ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP; 763 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); 764 break; 765 case 10: 766 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 767 ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO; 768 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); 769 break; 770 default: 771 // Should not reach here 772 report_fail("unexpected stage, %d", 773 vmx_get_test_stage()); 774 print_vmexit_info(exit_reason); 775 return VMX_TEST_VMEXIT; 776 } 777 vmcs_write(GUEST_RIP, guest_rip + insn_len); 778 return VMX_TEST_RESUME; 779 default: 780 printf("guest_rip = %#lx\n", guest_rip); 781 printf("\tERROR : Unknown exit reason, 0x%x\n", exit_reason.full); 782 break; 783 } 784 return VMX_TEST_VMEXIT; 785 } 786 787 #define INSN_CPU0 0 788 #define INSN_CPU1 1 789 #define INSN_ALWAYS_TRAP 2 790 791 #define FIELD_EXIT_QUAL (1 << 0) 792 #define FIELD_INSN_INFO (1 << 1) 793 794 asm( 795 "insn_hlt: hlt;ret\n\t" 796 "insn_invlpg: invlpg 0x12345678;ret\n\t" 797 "insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t" 798 "insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t" 799 "insn_rdtsc: rdtsc;ret\n\t" 800 "insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t" 801 "insn_cr3_store: mov %cr3,%rax;ret\n\t" 802 "insn_cr8_load: xor %eax, %eax; mov %rax,%cr8;ret\n\t" 803 "insn_cr8_store: mov %cr8,%rax;ret\n\t" 804 "insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t" 805 "insn_pause: pause;ret\n\t" 806 "insn_wbinvd: wbinvd;ret\n\t" 807 "insn_cpuid: mov $10, %eax; cpuid;ret\n\t" 808 "insn_invd: invd;ret\n\t" 809 "insn_sgdt: sgdt gdt_descr;ret\n\t" 810 "insn_lgdt: lgdt gdt_descr;ret\n\t" 811 "insn_sidt: sidt idt_descr;ret\n\t" 812 "insn_lidt: lidt idt_descr;ret\n\t" 813 "insn_sldt: sldt %ax;ret\n\t" 814 "insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t" 815 "insn_str: str %ax;ret\n\t" 816 "insn_rdrand: rdrand %rax;ret\n\t" 817 "insn_rdseed: rdseed %rax;ret\n\t" 818 ); 819 extern void insn_hlt(void); 820 extern void insn_invlpg(void); 821 extern void insn_mwait(void); 822 extern void insn_rdpmc(void); 823 extern void insn_rdtsc(void); 824 extern void insn_cr3_load(void); 825 extern void insn_cr3_store(void); 826 extern void insn_cr8_load(void); 827 extern void insn_cr8_store(void); 828 extern void insn_monitor(void); 829 extern void insn_pause(void); 830 extern void insn_wbinvd(void); 831 extern void insn_sgdt(void); 832 extern void insn_lgdt(void); 833 extern void insn_sidt(void); 834 extern void insn_lidt(void); 835 extern void insn_sldt(void); 836 extern void insn_lldt(void); 837 extern void insn_str(void); 838 extern void insn_cpuid(void); 839 extern void insn_invd(void); 840 extern void insn_rdrand(void); 841 extern void insn_rdseed(void); 842 843 u32 cur_insn; 844 u64 cr3; 845 846 typedef bool (*supported_fn)(void); 847 848 static bool this_cpu_has_mwait(void) 849 { 850 return this_cpu_has(X86_FEATURE_MWAIT); 851 } 852 853 struct insn_table { 854 const char *name; 855 u32 flag; 856 void (*insn_func)(void); 857 u32 type; 858 u32 reason; 859 ulong exit_qual; 860 u32 insn_info; 861 // Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define 862 // which field need to be tested, reason is always tested 863 u32 test_field; 864 const supported_fn supported_fn; 865 u8 disabled; 866 }; 867 868 /* 869 * Add more test cases of instruction intercept here. Elements in this 870 * table is: 871 * name/control flag/insn function/type/exit reason/exit qulification/ 872 * instruction info/field to test 873 * The last field defines which fields (exit_qual and insn_info) need to be 874 * tested in exit handler. If set to 0, only "reason" is checked. 875 */ 876 static struct insn_table insn_table[] = { 877 // Flags for Primary Processor-Based VM-Execution Controls 878 {"HLT", CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0}, 879 {"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14, 880 0x12345678, 0, FIELD_EXIT_QUAL}, 881 {"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0, this_cpu_has_mwait}, 882 {"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0, this_cpu_has_pmu}, 883 {"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0}, 884 {"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0, 885 FIELD_EXIT_QUAL}, 886 {"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0, 887 FIELD_EXIT_QUAL}, 888 {"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0, 889 FIELD_EXIT_QUAL}, 890 {"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0, 891 FIELD_EXIT_QUAL}, 892 {"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0, this_cpu_has_mwait}, 893 {"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0}, 894 // Flags for Secondary Processor-Based VM-Execution Controls 895 {"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0}, 896 {"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0}, 897 {"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0}, 898 {"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0}, 899 {"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0}, 900 {"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0}, 901 {"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0}, 902 {"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0}, 903 /* LTR causes a #GP if done with a busy selector, so it is not tested. */ 904 {"RDRAND", CPU_RDRAND, insn_rdrand, INSN_CPU1, VMX_RDRAND, 0, 0, 0}, 905 {"RDSEED", CPU_RDSEED, insn_rdseed, INSN_CPU1, VMX_RDSEED, 0, 0, 0}, 906 // Instructions always trap 907 {"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0}, 908 {"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0}, 909 // Instructions never trap 910 {NULL}, 911 }; 912 913 static int insn_intercept_init(struct vmcs *vmcs) 914 { 915 u32 ctrl_cpu, cur_insn; 916 917 ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY; 918 ctrl_cpu &= ctrl_cpu_rev[0].clr; 919 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu); 920 vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set); 921 cr3 = read_cr3(); 922 923 for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) { 924 if (insn_table[cur_insn].supported_fn == NULL) 925 continue; 926 insn_table[cur_insn].disabled = !insn_table[cur_insn].supported_fn(); 927 } 928 return VMX_TEST_START; 929 } 930 931 static void insn_intercept_main(void) 932 { 933 for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) { 934 vmx_set_test_stage(cur_insn * 2); 935 if ((insn_table[cur_insn].type == INSN_CPU0 && 936 !(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) || 937 (insn_table[cur_insn].type == INSN_CPU1 && 938 !(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) { 939 printf("\tCPU_CTRL%d.CPU_%s is not supported.\n", 940 insn_table[cur_insn].type - INSN_CPU0, 941 insn_table[cur_insn].name); 942 continue; 943 } 944 945 if (insn_table[cur_insn].disabled) { 946 printf("\tFeature required for %s is not supported.\n", 947 insn_table[cur_insn].name); 948 continue; 949 } 950 951 if ((insn_table[cur_insn].type == INSN_CPU0 && 952 !(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) || 953 (insn_table[cur_insn].type == INSN_CPU1 && 954 !(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) { 955 /* skip hlt, it stalls the guest and is tested below */ 956 if (insn_table[cur_insn].insn_func != insn_hlt) 957 insn_table[cur_insn].insn_func(); 958 report(vmx_get_test_stage() == cur_insn * 2, 959 "execute %s", 960 insn_table[cur_insn].name); 961 } else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP) 962 printf("\tCPU_CTRL%d.CPU_%s always traps.\n", 963 insn_table[cur_insn].type - INSN_CPU0, 964 insn_table[cur_insn].name); 965 966 vmcall(); 967 968 insn_table[cur_insn].insn_func(); 969 report(vmx_get_test_stage() == cur_insn * 2 + 1, 970 "intercept %s", 971 insn_table[cur_insn].name); 972 973 vmx_set_test_stage(cur_insn * 2 + 1); 974 vmcall(); 975 } 976 } 977 978 static int insn_intercept_exit_handler(union exit_reason exit_reason) 979 { 980 u64 guest_rip; 981 ulong exit_qual; 982 u32 insn_len; 983 u32 insn_info; 984 bool pass; 985 986 guest_rip = vmcs_read(GUEST_RIP); 987 exit_qual = vmcs_read(EXI_QUALIFICATION); 988 insn_len = vmcs_read(EXI_INST_LEN); 989 insn_info = vmcs_read(EXI_INST_INFO); 990 991 if (exit_reason.basic == VMX_VMCALL) { 992 u32 val = 0; 993 994 if (insn_table[cur_insn].type == INSN_CPU0) 995 val = vmcs_read(CPU_EXEC_CTRL0); 996 else if (insn_table[cur_insn].type == INSN_CPU1) 997 val = vmcs_read(CPU_EXEC_CTRL1); 998 999 if (vmx_get_test_stage() & 1) 1000 val &= ~insn_table[cur_insn].flag; 1001 else 1002 val |= insn_table[cur_insn].flag; 1003 1004 if (insn_table[cur_insn].type == INSN_CPU0) 1005 vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set); 1006 else if (insn_table[cur_insn].type == INSN_CPU1) 1007 vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set); 1008 } else { 1009 pass = (cur_insn * 2 == vmx_get_test_stage()) && 1010 insn_table[cur_insn].reason == exit_reason.full; 1011 if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL && 1012 insn_table[cur_insn].exit_qual != exit_qual) 1013 pass = false; 1014 if (insn_table[cur_insn].test_field & FIELD_INSN_INFO && 1015 insn_table[cur_insn].insn_info != insn_info) 1016 pass = false; 1017 if (pass) 1018 vmx_inc_test_stage(); 1019 } 1020 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1021 return VMX_TEST_RESUME; 1022 } 1023 1024 /** 1025 * __setup_ept - Setup the VMCS fields to enable Extended Page Tables (EPT) 1026 * @hpa: Host physical address of the top-level, a.k.a. root, EPT table 1027 * @enable_ad: Whether or not to enable Access/Dirty bits for EPT entries 1028 * 1029 * Returns 0 on success, 1 on failure. 1030 * 1031 * Note that @hpa doesn't need to point at actual memory if VM-Launch is 1032 * expected to fail, e.g. setup_dummy_ept() arbitrarily passes '0' to satisfy 1033 * the various EPTP consistency checks, but doesn't ensure backing for HPA '0'. 1034 */ 1035 static int __setup_ept(u64 hpa, bool enable_ad) 1036 { 1037 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 1038 !(ctrl_cpu_rev[1].clr & CPU_EPT)) { 1039 printf("\tEPT is not supported\n"); 1040 return 1; 1041 } 1042 if (!is_ept_memtype_supported(EPT_MEM_TYPE_WB)) { 1043 printf("\tWB memtype for EPT walks not supported\n"); 1044 return 1; 1045 } 1046 1047 if (!is_4_level_ept_supported()) { 1048 /* Support for 4-level EPT is mandatory. */ 1049 report(false, "4-level EPT support check"); 1050 printf("\tPWL4 is not supported\n"); 1051 return 1; 1052 } 1053 1054 eptp = EPT_MEM_TYPE_WB; 1055 eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT); 1056 eptp |= hpa; 1057 if (enable_ad) 1058 eptp |= EPTP_AD_FLAG; 1059 1060 vmcs_write(EPTP, eptp); 1061 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0)| CPU_SECONDARY); 1062 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1)| CPU_EPT); 1063 1064 return 0; 1065 } 1066 1067 /** 1068 * setup_ept - Enable Extended Page Tables (EPT) and setup an identity map 1069 * @enable_ad: Whether or not to enable Access/Dirty bits for EPT entries 1070 * 1071 * Returns 0 on success, 1 on failure. 1072 * 1073 * This is the "real" function for setting up EPT tables, i.e. use this for 1074 * tests that need to run code in the guest with EPT enabled. 1075 */ 1076 static int setup_ept(bool enable_ad) 1077 { 1078 unsigned long end_of_memory; 1079 1080 pml4 = alloc_page(); 1081 1082 if (__setup_ept(virt_to_phys(pml4), enable_ad)) 1083 return 1; 1084 1085 end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE); 1086 if (end_of_memory < (1ul << 32)) 1087 end_of_memory = (1ul << 32); 1088 /* Cannot use large EPT pages if we need to track EPT 1089 * accessed/dirty bits at 4K granularity. 1090 */ 1091 setup_ept_range(pml4, 0, end_of_memory, 0, 1092 !enable_ad && ept_2m_supported(), 1093 EPT_WA | EPT_RA | EPT_EA); 1094 return 0; 1095 } 1096 1097 /** 1098 * setup_dummy_ept - Enable Extended Page Tables (EPT) with a dummy root HPA 1099 * 1100 * Setup EPT using a semi-arbitrary dummy root HPA. This function is intended 1101 * for use by tests that need EPT enabled to verify dependent VMCS controls 1102 * but never expect to fully enter the guest, i.e. don't need setup the actual 1103 * EPT tables. 1104 */ 1105 static void setup_dummy_ept(void) 1106 { 1107 if (__setup_ept(0, false)) 1108 report_abort("EPT setup unexpectedly failed"); 1109 } 1110 1111 static int enable_unrestricted_guest(bool need_valid_ept) 1112 { 1113 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 1114 !(ctrl_cpu_rev[1].clr & CPU_URG) || 1115 !(ctrl_cpu_rev[1].clr & CPU_EPT)) 1116 return 1; 1117 1118 if (need_valid_ept) 1119 setup_ept(false); 1120 else 1121 setup_dummy_ept(); 1122 1123 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); 1124 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG); 1125 1126 return 0; 1127 } 1128 1129 static void ept_enable_ad_bits(void) 1130 { 1131 eptp |= EPTP_AD_FLAG; 1132 vmcs_write(EPTP, eptp); 1133 } 1134 1135 static void ept_disable_ad_bits(void) 1136 { 1137 eptp &= ~EPTP_AD_FLAG; 1138 vmcs_write(EPTP, eptp); 1139 } 1140 1141 static int ept_ad_enabled(void) 1142 { 1143 return eptp & EPTP_AD_FLAG; 1144 } 1145 1146 static void ept_enable_ad_bits_or_skip_test(void) 1147 { 1148 if (!ept_ad_bits_supported()) 1149 test_skip("EPT AD bits not supported."); 1150 ept_enable_ad_bits(); 1151 } 1152 1153 static int apic_version; 1154 1155 static int ept_init_common(bool have_ad) 1156 { 1157 int ret; 1158 struct pci_dev pcidev; 1159 1160 /* INVEPT is required by the EPT violation handler. */ 1161 if (!is_invept_type_supported(INVEPT_SINGLE)) 1162 return VMX_TEST_EXIT; 1163 1164 if (setup_ept(have_ad)) 1165 return VMX_TEST_EXIT; 1166 1167 data_page1 = alloc_page(); 1168 data_page2 = alloc_page(); 1169 *((u32 *)data_page1) = MAGIC_VAL_1; 1170 *((u32 *)data_page2) = MAGIC_VAL_2; 1171 install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2, 1172 EPT_RA | EPT_WA | EPT_EA); 1173 1174 apic_version = apic_read(APIC_LVR); 1175 1176 ret = pci_find_dev(PCI_VENDOR_ID_REDHAT, PCI_DEVICE_ID_REDHAT_TEST); 1177 if (ret != PCIDEVADDR_INVALID) { 1178 pci_dev_init(&pcidev, ret); 1179 pci_physaddr = pcidev.resource[PCI_TESTDEV_BAR_MEM]; 1180 } 1181 1182 return VMX_TEST_START; 1183 } 1184 1185 static int ept_init(struct vmcs *vmcs) 1186 { 1187 return ept_init_common(false); 1188 } 1189 1190 static void ept_common(void) 1191 { 1192 vmx_set_test_stage(0); 1193 if (*((u32 *)data_page2) != MAGIC_VAL_1 || 1194 *((u32 *)data_page1) != MAGIC_VAL_1) 1195 report_fail("EPT basic framework - read"); 1196 else { 1197 *((u32 *)data_page2) = MAGIC_VAL_3; 1198 vmcall(); 1199 if (vmx_get_test_stage() == 1) { 1200 if (*((u32 *)data_page1) == MAGIC_VAL_3 && 1201 *((u32 *)data_page2) == MAGIC_VAL_2) 1202 report_pass("EPT basic framework"); 1203 else 1204 report_pass("EPT basic framework - remap"); 1205 } 1206 } 1207 // Test EPT Misconfigurations 1208 vmx_set_test_stage(1); 1209 vmcall(); 1210 *((u32 *)data_page1) = MAGIC_VAL_1; 1211 if (vmx_get_test_stage() != 2) { 1212 report_fail("EPT misconfigurations"); 1213 goto t1; 1214 } 1215 vmx_set_test_stage(2); 1216 vmcall(); 1217 *((u32 *)data_page1) = MAGIC_VAL_1; 1218 report(vmx_get_test_stage() == 3, "EPT misconfigurations"); 1219 t1: 1220 // Test EPT violation 1221 vmx_set_test_stage(3); 1222 vmcall(); 1223 *((u32 *)data_page1) = MAGIC_VAL_1; 1224 report(vmx_get_test_stage() == 4, "EPT violation - page permission"); 1225 // Violation caused by EPT paging structure 1226 vmx_set_test_stage(4); 1227 vmcall(); 1228 *((u32 *)data_page1) = MAGIC_VAL_2; 1229 report(vmx_get_test_stage() == 5, "EPT violation - paging structure"); 1230 1231 // MMIO Read/Write 1232 vmx_set_test_stage(5); 1233 vmcall(); 1234 1235 *(u32 volatile *)pci_physaddr; 1236 report(vmx_get_test_stage() == 6, "MMIO EPT violation - read"); 1237 1238 *(u32 volatile *)pci_physaddr = MAGIC_VAL_1; 1239 report(vmx_get_test_stage() == 7, "MMIO EPT violation - write"); 1240 } 1241 1242 static void ept_main(void) 1243 { 1244 ept_common(); 1245 1246 // Test EPT access to L1 MMIO 1247 vmx_set_test_stage(7); 1248 report(*((u32 *)0xfee00030UL) == apic_version, "EPT - MMIO access"); 1249 1250 // Test invalid operand for INVEPT 1251 vmcall(); 1252 report(vmx_get_test_stage() == 8, "EPT - unsupported INVEPT"); 1253 } 1254 1255 static bool invept_test(int type, u64 eptp) 1256 { 1257 bool ret, supported; 1258 1259 supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type); 1260 ret = __invept(type, eptp); 1261 1262 if (ret == !supported) 1263 return false; 1264 1265 if (!supported) 1266 printf("WARNING: unsupported invept passed!\n"); 1267 else 1268 printf("WARNING: invept failed!\n"); 1269 1270 return true; 1271 } 1272 1273 static int pml_exit_handler(union exit_reason exit_reason) 1274 { 1275 u16 index, count; 1276 u64 *pmlbuf = pml_log; 1277 u64 guest_rip = vmcs_read(GUEST_RIP);; 1278 u64 guest_cr3 = vmcs_read(GUEST_CR3); 1279 u32 insn_len = vmcs_read(EXI_INST_LEN); 1280 1281 switch (exit_reason.basic) { 1282 case VMX_VMCALL: 1283 switch (vmx_get_test_stage()) { 1284 case 0: 1285 index = vmcs_read(GUEST_PML_INDEX); 1286 for (count = index + 1; count < PML_INDEX; count++) { 1287 if (pmlbuf[count] == (u64)data_page2) { 1288 vmx_inc_test_stage(); 1289 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); 1290 break; 1291 } 1292 } 1293 break; 1294 case 1: 1295 index = vmcs_read(GUEST_PML_INDEX); 1296 /* Keep clearing the dirty bit till a overflow */ 1297 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); 1298 break; 1299 default: 1300 report_fail("unexpected stage, %d.", 1301 vmx_get_test_stage()); 1302 print_vmexit_info(exit_reason); 1303 return VMX_TEST_VMEXIT; 1304 } 1305 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1306 return VMX_TEST_RESUME; 1307 case VMX_PML_FULL: 1308 vmx_inc_test_stage(); 1309 vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1); 1310 return VMX_TEST_RESUME; 1311 default: 1312 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 1313 print_vmexit_info(exit_reason); 1314 } 1315 return VMX_TEST_VMEXIT; 1316 } 1317 1318 static int ept_exit_handler_common(union exit_reason exit_reason, bool have_ad) 1319 { 1320 u64 guest_rip; 1321 u64 guest_cr3; 1322 u32 insn_len; 1323 u32 exit_qual; 1324 static unsigned long data_page1_pte, data_page1_pte_pte, memaddr_pte, 1325 guest_pte_addr; 1326 1327 guest_rip = vmcs_read(GUEST_RIP); 1328 guest_cr3 = vmcs_read(GUEST_CR3); 1329 insn_len = vmcs_read(EXI_INST_LEN); 1330 exit_qual = vmcs_read(EXI_QUALIFICATION); 1331 pteval_t *ptep; 1332 switch (exit_reason.basic) { 1333 case VMX_VMCALL: 1334 switch (vmx_get_test_stage()) { 1335 case 0: 1336 check_ept_ad(pml4, guest_cr3, 1337 (unsigned long)data_page1, 1338 have_ad ? EPT_ACCESS_FLAG : 0, 1339 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); 1340 check_ept_ad(pml4, guest_cr3, 1341 (unsigned long)data_page2, 1342 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0, 1343 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); 1344 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); 1345 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); 1346 if (have_ad) 1347 invept(INVEPT_SINGLE, eptp); 1348 if (*((u32 *)data_page1) == MAGIC_VAL_3 && 1349 *((u32 *)data_page2) == MAGIC_VAL_2) { 1350 vmx_inc_test_stage(); 1351 install_ept(pml4, (unsigned long)data_page2, 1352 (unsigned long)data_page2, 1353 EPT_RA | EPT_WA | EPT_EA); 1354 } else 1355 report_fail("EPT basic framework - write"); 1356 break; 1357 case 1: 1358 install_ept(pml4, (unsigned long)data_page1, 1359 (unsigned long)data_page1, EPT_WA); 1360 invept(INVEPT_SINGLE, eptp); 1361 break; 1362 case 2: 1363 install_ept(pml4, (unsigned long)data_page1, 1364 (unsigned long)data_page1, 1365 EPT_RA | EPT_WA | EPT_EA | 1366 (2 << EPT_MEM_TYPE_SHIFT)); 1367 invept(INVEPT_SINGLE, eptp); 1368 break; 1369 case 3: 1370 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); 1371 TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1, 1372 1, &data_page1_pte)); 1373 set_ept_pte(pml4, (unsigned long)data_page1, 1374 1, data_page1_pte & ~EPT_PRESENT); 1375 invept(INVEPT_SINGLE, eptp); 1376 break; 1377 case 4: 1378 ptep = get_pte_level((pgd_t *)guest_cr3, data_page1, /*level=*/2); 1379 guest_pte_addr = virt_to_phys(ptep) & PAGE_MASK; 1380 1381 TEST_ASSERT(get_ept_pte(pml4, guest_pte_addr, 2, &data_page1_pte_pte)); 1382 set_ept_pte(pml4, guest_pte_addr, 2, 1383 data_page1_pte_pte & ~EPT_PRESENT); 1384 invept(INVEPT_SINGLE, eptp); 1385 break; 1386 case 5: 1387 install_ept(pml4, (unsigned long)pci_physaddr, 1388 (unsigned long)pci_physaddr, 0); 1389 invept(INVEPT_SINGLE, eptp); 1390 break; 1391 case 7: 1392 if (!invept_test(0, eptp)) 1393 vmx_inc_test_stage(); 1394 break; 1395 // Should not reach here 1396 default: 1397 report_fail("ERROR - unexpected stage, %d.", 1398 vmx_get_test_stage()); 1399 print_vmexit_info(exit_reason); 1400 return VMX_TEST_VMEXIT; 1401 } 1402 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1403 return VMX_TEST_RESUME; 1404 case VMX_EPT_MISCONFIG: 1405 switch (vmx_get_test_stage()) { 1406 case 1: 1407 case 2: 1408 vmx_inc_test_stage(); 1409 install_ept(pml4, (unsigned long)data_page1, 1410 (unsigned long)data_page1, 1411 EPT_RA | EPT_WA | EPT_EA); 1412 invept(INVEPT_SINGLE, eptp); 1413 break; 1414 // Should not reach here 1415 default: 1416 report_fail("ERROR - unexpected stage, %d.", 1417 vmx_get_test_stage()); 1418 print_vmexit_info(exit_reason); 1419 return VMX_TEST_VMEXIT; 1420 } 1421 return VMX_TEST_RESUME; 1422 case VMX_EPT_VIOLATION: 1423 /* 1424 * Exit-qualifications are masked not to account for advanced 1425 * VM-exit information. Once KVM supports this feature, this 1426 * masking should be removed. 1427 */ 1428 exit_qual &= ~EPT_VLT_GUEST_MASK; 1429 1430 switch(vmx_get_test_stage()) { 1431 case 3: 1432 check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0, 1433 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); 1434 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); 1435 if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD | 1436 EPT_VLT_PADDR)) 1437 vmx_inc_test_stage(); 1438 set_ept_pte(pml4, (unsigned long)data_page1, 1439 1, data_page1_pte | (EPT_PRESENT)); 1440 invept(INVEPT_SINGLE, eptp); 1441 break; 1442 case 4: 1443 check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0, 1444 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); 1445 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); 1446 if (exit_qual == (EPT_VLT_RD | 1447 (have_ad ? EPT_VLT_WR : 0) | 1448 EPT_VLT_LADDR_VLD)) 1449 vmx_inc_test_stage(); 1450 set_ept_pte(pml4, guest_pte_addr, 2, 1451 data_page1_pte_pte | (EPT_PRESENT)); 1452 invept(INVEPT_SINGLE, eptp); 1453 break; 1454 case 5: 1455 if (exit_qual & EPT_VLT_RD) 1456 vmx_inc_test_stage(); 1457 TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr, 1458 1, &memaddr_pte)); 1459 set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA); 1460 invept(INVEPT_SINGLE, eptp); 1461 break; 1462 case 6: 1463 if (exit_qual & EPT_VLT_WR) 1464 vmx_inc_test_stage(); 1465 TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr, 1466 1, &memaddr_pte)); 1467 set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA | EPT_WA); 1468 invept(INVEPT_SINGLE, eptp); 1469 break; 1470 default: 1471 // Should not reach here 1472 report_fail("ERROR : unexpected stage, %d", 1473 vmx_get_test_stage()); 1474 print_vmexit_info(exit_reason); 1475 return VMX_TEST_VMEXIT; 1476 } 1477 return VMX_TEST_RESUME; 1478 default: 1479 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 1480 print_vmexit_info(exit_reason); 1481 } 1482 return VMX_TEST_VMEXIT; 1483 } 1484 1485 static int ept_exit_handler(union exit_reason exit_reason) 1486 { 1487 return ept_exit_handler_common(exit_reason, false); 1488 } 1489 1490 static int eptad_init(struct vmcs *vmcs) 1491 { 1492 int r = ept_init_common(true); 1493 1494 if (r == VMX_TEST_EXIT) 1495 return r; 1496 1497 if (!ept_ad_bits_supported()) { 1498 printf("\tEPT A/D bits are not supported"); 1499 return VMX_TEST_EXIT; 1500 } 1501 1502 return r; 1503 } 1504 1505 static int pml_init(struct vmcs *vmcs) 1506 { 1507 u32 ctrl_cpu; 1508 int r = eptad_init(vmcs); 1509 1510 if (r == VMX_TEST_EXIT) 1511 return r; 1512 1513 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 1514 !(ctrl_cpu_rev[1].clr & CPU_PML)) { 1515 printf("\tPML is not supported"); 1516 return VMX_TEST_EXIT; 1517 } 1518 1519 pml_log = alloc_page(); 1520 vmcs_write(PMLADDR, (u64)pml_log); 1521 vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1); 1522 1523 ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML; 1524 vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu); 1525 1526 return VMX_TEST_START; 1527 } 1528 1529 static void pml_main(void) 1530 { 1531 int count = 0; 1532 1533 vmx_set_test_stage(0); 1534 *((u32 *)data_page2) = 0x1; 1535 vmcall(); 1536 report(vmx_get_test_stage() == 1, "PML - Dirty GPA Logging"); 1537 1538 while (vmx_get_test_stage() == 1) { 1539 vmcall(); 1540 *((u32 *)data_page2) = 0x1; 1541 if (count++ > PML_INDEX) 1542 break; 1543 } 1544 report(vmx_get_test_stage() == 2, "PML Full Event"); 1545 } 1546 1547 static void eptad_main(void) 1548 { 1549 ept_common(); 1550 } 1551 1552 static int eptad_exit_handler(union exit_reason exit_reason) 1553 { 1554 return ept_exit_handler_common(exit_reason, true); 1555 } 1556 1557 #define TIMER_VECTOR 222 1558 1559 static volatile bool timer_fired; 1560 1561 static void timer_isr(isr_regs_t *regs) 1562 { 1563 timer_fired = true; 1564 apic_write(APIC_EOI, 0); 1565 } 1566 1567 static int interrupt_init(struct vmcs *vmcs) 1568 { 1569 msr_bmp_init(); 1570 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 1571 handle_irq(TIMER_VECTOR, timer_isr); 1572 return VMX_TEST_START; 1573 } 1574 1575 static void interrupt_main(void) 1576 { 1577 long long start, loops; 1578 1579 vmx_set_test_stage(0); 1580 1581 apic_write(APIC_LVTT, TIMER_VECTOR); 1582 sti(); 1583 1584 apic_write(APIC_TMICT, 1); 1585 for (loops = 0; loops < 10000000 && !timer_fired; loops++) 1586 asm volatile ("nop"); 1587 report(timer_fired, "direct interrupt while running guest"); 1588 1589 apic_write(APIC_TMICT, 0); 1590 cli(); 1591 vmcall(); 1592 timer_fired = false; 1593 apic_write(APIC_TMICT, 1); 1594 for (loops = 0; loops < 10000000 && !timer_fired; loops++) 1595 asm volatile ("nop"); 1596 report(timer_fired, "intercepted interrupt while running guest"); 1597 1598 sti(); 1599 apic_write(APIC_TMICT, 0); 1600 cli(); 1601 vmcall(); 1602 timer_fired = false; 1603 start = rdtsc(); 1604 apic_write(APIC_TMICT, 1000000); 1605 1606 safe_halt(); 1607 1608 report(rdtsc() - start > 1000000 && timer_fired, 1609 "direct interrupt + hlt"); 1610 1611 apic_write(APIC_TMICT, 0); 1612 cli(); 1613 vmcall(); 1614 timer_fired = false; 1615 start = rdtsc(); 1616 apic_write(APIC_TMICT, 1000000); 1617 1618 safe_halt(); 1619 1620 report(rdtsc() - start > 10000 && timer_fired, 1621 "intercepted interrupt + hlt"); 1622 1623 apic_write(APIC_TMICT, 0); 1624 cli(); 1625 vmcall(); 1626 timer_fired = false; 1627 start = rdtsc(); 1628 apic_write(APIC_TMICT, 1000000); 1629 1630 sti_nop(); 1631 vmcall(); 1632 1633 report(rdtsc() - start > 10000 && timer_fired, 1634 "direct interrupt + activity state hlt"); 1635 1636 apic_write(APIC_TMICT, 0); 1637 cli(); 1638 vmcall(); 1639 timer_fired = false; 1640 start = rdtsc(); 1641 apic_write(APIC_TMICT, 1000000); 1642 1643 sti_nop(); 1644 vmcall(); 1645 1646 report(rdtsc() - start > 10000 && timer_fired, 1647 "intercepted interrupt + activity state hlt"); 1648 1649 apic_write(APIC_TMICT, 0); 1650 cli(); 1651 vmx_set_test_stage(7); 1652 vmcall(); 1653 timer_fired = false; 1654 apic_write(APIC_TMICT, 1); 1655 for (loops = 0; loops < 10000000 && !timer_fired; loops++) 1656 asm volatile ("nop"); 1657 report(timer_fired, 1658 "running a guest with interrupt acknowledgement set"); 1659 1660 apic_write(APIC_TMICT, 0); 1661 sti(); 1662 timer_fired = false; 1663 vmcall(); 1664 report(timer_fired, "Inject an event to a halted guest"); 1665 } 1666 1667 static int interrupt_exit_handler(union exit_reason exit_reason) 1668 { 1669 u64 guest_rip = vmcs_read(GUEST_RIP); 1670 u32 insn_len = vmcs_read(EXI_INST_LEN); 1671 1672 switch (exit_reason.basic) { 1673 case VMX_VMCALL: 1674 switch (vmx_get_test_stage()) { 1675 case 0: 1676 case 2: 1677 case 5: 1678 vmcs_write(PIN_CONTROLS, 1679 vmcs_read(PIN_CONTROLS) | PIN_EXTINT); 1680 break; 1681 case 7: 1682 vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA); 1683 vmcs_write(PIN_CONTROLS, 1684 vmcs_read(PIN_CONTROLS) | PIN_EXTINT); 1685 break; 1686 case 1: 1687 case 3: 1688 vmcs_write(PIN_CONTROLS, 1689 vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 1690 break; 1691 case 4: 1692 case 6: 1693 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 1694 break; 1695 1696 case 8: 1697 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 1698 vmcs_write(ENT_INTR_INFO, 1699 TIMER_VECTOR | 1700 (VMX_INTR_TYPE_EXT_INTR << INTR_INFO_INTR_TYPE_SHIFT) | 1701 INTR_INFO_VALID_MASK); 1702 break; 1703 } 1704 vmx_inc_test_stage(); 1705 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1706 return VMX_TEST_RESUME; 1707 case VMX_EXTINT: 1708 if (vmcs_read(EXI_CONTROLS) & EXI_INTA) { 1709 int vector = vmcs_read(EXI_INTR_INFO) & 0xff; 1710 handle_external_interrupt(vector); 1711 } else { 1712 sti_nop_cli(); 1713 } 1714 if (vmx_get_test_stage() >= 2) 1715 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 1716 return VMX_TEST_RESUME; 1717 default: 1718 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 1719 print_vmexit_info(exit_reason); 1720 } 1721 1722 return VMX_TEST_VMEXIT; 1723 } 1724 1725 1726 static volatile int nmi_fired; 1727 1728 #define NMI_DELAY 100000000ULL 1729 1730 static void nmi_isr(isr_regs_t *regs) 1731 { 1732 nmi_fired = true; 1733 } 1734 1735 static int nmi_hlt_init(struct vmcs *vmcs) 1736 { 1737 msr_bmp_init(); 1738 handle_irq(NMI_VECTOR, nmi_isr); 1739 vmcs_write(PIN_CONTROLS, 1740 vmcs_read(PIN_CONTROLS) & ~PIN_NMI); 1741 vmcs_write(PIN_CONTROLS, 1742 vmcs_read(PIN_CONTROLS) & ~PIN_VIRT_NMI); 1743 return VMX_TEST_START; 1744 } 1745 1746 static void nmi_message_thread(void *data) 1747 { 1748 while (vmx_get_test_stage() != 1) 1749 pause(); 1750 1751 delay(NMI_DELAY); 1752 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]); 1753 1754 while (vmx_get_test_stage() != 2) 1755 pause(); 1756 1757 delay(NMI_DELAY); 1758 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]); 1759 } 1760 1761 static void nmi_hlt_main(void) 1762 { 1763 long long start; 1764 1765 if (cpu_count() < 2) { 1766 report_skip("%s : CPU count < 2", __func__); 1767 vmx_set_test_stage(-1); 1768 return; 1769 } 1770 1771 vmx_set_test_stage(0); 1772 on_cpu_async(1, nmi_message_thread, NULL); 1773 start = rdtsc(); 1774 vmx_set_test_stage(1); 1775 asm volatile ("hlt"); 1776 report((rdtsc() - start > NMI_DELAY) && nmi_fired, 1777 "direct NMI + hlt"); 1778 if (!nmi_fired) 1779 vmx_set_test_stage(-1); 1780 nmi_fired = false; 1781 1782 vmcall(); 1783 1784 start = rdtsc(); 1785 vmx_set_test_stage(2); 1786 asm volatile ("hlt"); 1787 report((rdtsc() - start > NMI_DELAY) && !nmi_fired, 1788 "intercepted NMI + hlt"); 1789 if (nmi_fired) { 1790 report(!nmi_fired, "intercepted NMI was dispatched"); 1791 vmx_set_test_stage(-1); 1792 return; 1793 } 1794 vmx_set_test_stage(3); 1795 } 1796 1797 static int nmi_hlt_exit_handler(union exit_reason exit_reason) 1798 { 1799 u64 guest_rip = vmcs_read(GUEST_RIP); 1800 u32 insn_len = vmcs_read(EXI_INST_LEN); 1801 1802 switch (vmx_get_test_stage()) { 1803 case 1: 1804 if (exit_reason.basic != VMX_VMCALL) { 1805 report_fail("VMEXIT not due to vmcall. Exit reason 0x%x", 1806 exit_reason.full); 1807 print_vmexit_info(exit_reason); 1808 return VMX_TEST_VMEXIT; 1809 } 1810 1811 vmcs_write(PIN_CONTROLS, 1812 vmcs_read(PIN_CONTROLS) | PIN_NMI); 1813 vmcs_write(PIN_CONTROLS, 1814 vmcs_read(PIN_CONTROLS) | PIN_VIRT_NMI); 1815 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1816 break; 1817 1818 case 2: 1819 if (exit_reason.basic != VMX_EXC_NMI) { 1820 report_fail("VMEXIT not due to NMI intercept. Exit reason 0x%x", 1821 exit_reason.full); 1822 print_vmexit_info(exit_reason); 1823 return VMX_TEST_VMEXIT; 1824 } 1825 report_pass("NMI intercept while running guest"); 1826 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 1827 break; 1828 1829 case 3: 1830 break; 1831 1832 default: 1833 return VMX_TEST_VMEXIT; 1834 } 1835 1836 if (vmx_get_test_stage() == 3) 1837 return VMX_TEST_VMEXIT; 1838 1839 return VMX_TEST_RESUME; 1840 } 1841 1842 1843 static int dbgctls_init(struct vmcs *vmcs) 1844 { 1845 u64 dr7 = 0x402; 1846 u64 zero = 0; 1847 1848 msr_bmp_init(); 1849 asm volatile( 1850 "mov %0,%%dr0\n\t" 1851 "mov %0,%%dr1\n\t" 1852 "mov %0,%%dr2\n\t" 1853 "mov %1,%%dr7\n\t" 1854 : : "r" (zero), "r" (dr7)); 1855 wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1); 1856 vmcs_write(GUEST_DR7, 0x404); 1857 vmcs_write(GUEST_DEBUGCTL, 0x2); 1858 1859 vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS); 1860 vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS); 1861 1862 return VMX_TEST_START; 1863 } 1864 1865 static void dbgctls_main(void) 1866 { 1867 u64 dr7, debugctl; 1868 1869 asm volatile("mov %%dr7,%0" : "=r" (dr7)); 1870 debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); 1871 /* Commented out: KVM does not support DEBUGCTL so far */ 1872 (void)debugctl; 1873 report(dr7 == 0x404, "Load debug controls" /* && debugctl == 0x2 */); 1874 1875 dr7 = 0x408; 1876 asm volatile("mov %0,%%dr7" : : "r" (dr7)); 1877 wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3); 1878 1879 vmx_set_test_stage(0); 1880 vmcall(); 1881 report(vmx_get_test_stage() == 1, "Save debug controls"); 1882 1883 if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS || 1884 ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) { 1885 printf("\tDebug controls are always loaded/saved\n"); 1886 return; 1887 } 1888 vmx_set_test_stage(2); 1889 vmcall(); 1890 1891 asm volatile("mov %%dr7,%0" : "=r" (dr7)); 1892 debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); 1893 /* Commented out: KVM does not support DEBUGCTL so far */ 1894 (void)debugctl; 1895 report(dr7 == 0x402, 1896 "Guest=host debug controls" /* && debugctl == 0x1 */); 1897 1898 dr7 = 0x408; 1899 asm volatile("mov %0,%%dr7" : : "r" (dr7)); 1900 wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3); 1901 1902 vmx_set_test_stage(3); 1903 vmcall(); 1904 report(vmx_get_test_stage() == 4, "Don't save debug controls"); 1905 } 1906 1907 static int dbgctls_exit_handler(union exit_reason exit_reason) 1908 { 1909 u32 insn_len = vmcs_read(EXI_INST_LEN); 1910 u64 guest_rip = vmcs_read(GUEST_RIP); 1911 u64 dr7, debugctl; 1912 1913 asm volatile("mov %%dr7,%0" : "=r" (dr7)); 1914 debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); 1915 1916 switch (exit_reason.basic) { 1917 case VMX_VMCALL: 1918 switch (vmx_get_test_stage()) { 1919 case 0: 1920 if (dr7 == 0x400 && debugctl == 0 && 1921 vmcs_read(GUEST_DR7) == 0x408 /* && 1922 Commented out: KVM does not support DEBUGCTL so far 1923 vmcs_read(GUEST_DEBUGCTL) == 0x3 */) 1924 vmx_inc_test_stage(); 1925 break; 1926 case 2: 1927 dr7 = 0x402; 1928 asm volatile("mov %0,%%dr7" : : "r" (dr7)); 1929 wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1); 1930 vmcs_write(GUEST_DR7, 0x404); 1931 vmcs_write(GUEST_DEBUGCTL, 0x2); 1932 1933 vmcs_write(ENT_CONTROLS, 1934 vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS); 1935 vmcs_write(EXI_CONTROLS, 1936 vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS); 1937 break; 1938 case 3: 1939 if (dr7 == 0x400 && debugctl == 0 && 1940 vmcs_read(GUEST_DR7) == 0x404 /* && 1941 Commented out: KVM does not support DEBUGCTL so far 1942 vmcs_read(GUEST_DEBUGCTL) == 0x2 */) 1943 vmx_inc_test_stage(); 1944 break; 1945 } 1946 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1947 return VMX_TEST_RESUME; 1948 default: 1949 report_fail("Unknown exit reason, %d", exit_reason.full); 1950 print_vmexit_info(exit_reason); 1951 } 1952 return VMX_TEST_VMEXIT; 1953 } 1954 1955 struct vmx_msr_entry { 1956 u32 index; 1957 u32 reserved; 1958 u64 value; 1959 } __attribute__((packed)); 1960 1961 #define MSR_MAGIC 0x31415926 1962 struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load; 1963 1964 static int msr_switch_init(struct vmcs *vmcs) 1965 { 1966 msr_bmp_init(); 1967 exit_msr_store = alloc_page(); 1968 exit_msr_load = alloc_page(); 1969 entry_msr_load = alloc_page(); 1970 entry_msr_load[0].index = MSR_KERNEL_GS_BASE; 1971 entry_msr_load[0].value = MSR_MAGIC; 1972 1973 vmx_set_test_stage(1); 1974 vmcs_write(ENT_MSR_LD_CNT, 1); 1975 vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load); 1976 vmcs_write(EXI_MSR_ST_CNT, 1); 1977 vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store); 1978 vmcs_write(EXI_MSR_LD_CNT, 1); 1979 vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load); 1980 return VMX_TEST_START; 1981 } 1982 1983 static void msr_switch_main(void) 1984 { 1985 if (vmx_get_test_stage() == 1) { 1986 report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC, 1987 "VM entry MSR load"); 1988 vmx_set_test_stage(2); 1989 wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1); 1990 exit_msr_store[0].index = MSR_KERNEL_GS_BASE; 1991 exit_msr_load[0].index = MSR_KERNEL_GS_BASE; 1992 exit_msr_load[0].value = MSR_MAGIC + 2; 1993 } 1994 vmcall(); 1995 } 1996 1997 static int msr_switch_exit_handler(union exit_reason exit_reason) 1998 { 1999 if (exit_reason.basic == VMX_VMCALL && vmx_get_test_stage() == 2) { 2000 report(exit_msr_store[0].value == MSR_MAGIC + 1, 2001 "VM exit MSR store"); 2002 report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2, 2003 "VM exit MSR load"); 2004 vmx_set_test_stage(3); 2005 entry_msr_load[0].index = MSR_FS_BASE; 2006 return VMX_TEST_RESUME; 2007 } 2008 printf("ERROR %s: unexpected stage=%u or reason=0x%x\n", 2009 __func__, vmx_get_test_stage(), exit_reason.full); 2010 return VMX_TEST_EXIT; 2011 } 2012 2013 static int msr_switch_entry_failure(struct vmentry_result *result) 2014 { 2015 if (result->vm_fail) { 2016 printf("ERROR %s: VM-Fail on %s\n", __func__, result->instr); 2017 return VMX_TEST_EXIT; 2018 } 2019 2020 if (result->exit_reason.failed_vmentry && 2021 result->exit_reason.basic == VMX_FAIL_MSR && 2022 vmx_get_test_stage() == 3) { 2023 report(vmcs_read(EXI_QUALIFICATION) == 1, 2024 "VM entry MSR load: try to load FS_BASE"); 2025 return VMX_TEST_VMEXIT; 2026 } 2027 printf("ERROR %s: unexpected stage=%u or reason=%x\n", 2028 __func__, vmx_get_test_stage(), result->exit_reason.full); 2029 return VMX_TEST_EXIT; 2030 } 2031 2032 static int vmmcall_init(struct vmcs *vmcs) 2033 { 2034 vmcs_write(EXC_BITMAP, 1 << UD_VECTOR); 2035 return VMX_TEST_START; 2036 } 2037 2038 static void vmmcall_main(void) 2039 { 2040 asm volatile( 2041 "mov $0xABCD, %%rax\n\t" 2042 "vmmcall\n\t" 2043 ::: "rax"); 2044 2045 report_fail("VMMCALL"); 2046 } 2047 2048 static int vmmcall_exit_handler(union exit_reason exit_reason) 2049 { 2050 switch (exit_reason.basic) { 2051 case VMX_VMCALL: 2052 printf("here\n"); 2053 report_fail("VMMCALL triggers #UD"); 2054 break; 2055 case VMX_EXC_NMI: 2056 report((vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR, 2057 "VMMCALL triggers #UD"); 2058 break; 2059 default: 2060 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 2061 print_vmexit_info(exit_reason); 2062 } 2063 2064 return VMX_TEST_VMEXIT; 2065 } 2066 2067 static int disable_rdtscp_init(struct vmcs *vmcs) 2068 { 2069 u32 ctrl_cpu1; 2070 2071 if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) { 2072 ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1); 2073 ctrl_cpu1 &= ~CPU_RDTSCP; 2074 vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1); 2075 } 2076 2077 return VMX_TEST_START; 2078 } 2079 2080 static void disable_rdtscp_ud_handler(struct ex_regs *regs) 2081 { 2082 switch (vmx_get_test_stage()) { 2083 case 0: 2084 report_pass("RDTSCP triggers #UD"); 2085 vmx_inc_test_stage(); 2086 regs->rip += 3; 2087 break; 2088 case 2: 2089 report_pass("RDPID triggers #UD"); 2090 vmx_inc_test_stage(); 2091 regs->rip += 4; 2092 break; 2093 } 2094 return; 2095 2096 } 2097 2098 static void disable_rdtscp_main(void) 2099 { 2100 /* Test that #UD is properly injected in L2. */ 2101 handle_exception(UD_VECTOR, disable_rdtscp_ud_handler); 2102 2103 vmx_set_test_stage(0); 2104 asm volatile("rdtscp" : : : "eax", "ecx", "edx"); 2105 vmcall(); 2106 asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax"); 2107 2108 handle_exception(UD_VECTOR, 0); 2109 vmcall(); 2110 } 2111 2112 static int disable_rdtscp_exit_handler(union exit_reason exit_reason) 2113 { 2114 switch (exit_reason.basic) { 2115 case VMX_VMCALL: 2116 switch (vmx_get_test_stage()) { 2117 case 0: 2118 report_fail("RDTSCP triggers #UD"); 2119 vmx_inc_test_stage(); 2120 /* fallthrough */ 2121 case 1: 2122 vmx_inc_test_stage(); 2123 vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3); 2124 return VMX_TEST_RESUME; 2125 case 2: 2126 report_fail("RDPID triggers #UD"); 2127 break; 2128 } 2129 break; 2130 2131 default: 2132 report_fail("Unknown exit reason, 0x%x", exit_reason.full); 2133 print_vmexit_info(exit_reason); 2134 } 2135 return VMX_TEST_VMEXIT; 2136 } 2137 2138 static void exit_monitor_from_l2_main(void) 2139 { 2140 printf("Calling exit(0) from l2...\n"); 2141 exit(0); 2142 } 2143 2144 static int exit_monitor_from_l2_handler(union exit_reason exit_reason) 2145 { 2146 report_fail("The guest should have killed the VMM"); 2147 return VMX_TEST_EXIT; 2148 } 2149 2150 static void assert_exit_reason(u64 expected) 2151 { 2152 u64 actual = vmcs_read(EXI_REASON); 2153 2154 TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.", 2155 exit_reason_description(expected), 2156 exit_reason_description(actual)); 2157 } 2158 2159 static void skip_exit_insn(void) 2160 { 2161 u64 guest_rip = vmcs_read(GUEST_RIP); 2162 u32 insn_len = vmcs_read(EXI_INST_LEN); 2163 vmcs_write(GUEST_RIP, guest_rip + insn_len); 2164 } 2165 2166 static void skip_exit_vmcall(void) 2167 { 2168 assert_exit_reason(VMX_VMCALL); 2169 skip_exit_insn(); 2170 } 2171 2172 static void v2_null_test_guest(void) 2173 { 2174 } 2175 2176 static void v2_null_test(void) 2177 { 2178 test_set_guest(v2_null_test_guest); 2179 enter_guest(); 2180 report_pass(__func__); 2181 } 2182 2183 static void v2_multiple_entries_test_guest(void) 2184 { 2185 vmx_set_test_stage(1); 2186 vmcall(); 2187 vmx_set_test_stage(2); 2188 } 2189 2190 static void v2_multiple_entries_test(void) 2191 { 2192 test_set_guest(v2_multiple_entries_test_guest); 2193 enter_guest(); 2194 TEST_ASSERT_EQ(vmx_get_test_stage(), 1); 2195 skip_exit_vmcall(); 2196 enter_guest(); 2197 TEST_ASSERT_EQ(vmx_get_test_stage(), 2); 2198 report_pass(__func__); 2199 } 2200 2201 static int fixture_test_data = 1; 2202 2203 static void fixture_test_teardown(void *data) 2204 { 2205 *((int *) data) = 1; 2206 } 2207 2208 static void fixture_test_guest(void) 2209 { 2210 fixture_test_data++; 2211 } 2212 2213 2214 static void fixture_test_setup(void) 2215 { 2216 TEST_ASSERT_EQ_MSG(1, fixture_test_data, 2217 "fixture_test_teardown didn't run?!"); 2218 fixture_test_data = 2; 2219 test_add_teardown(fixture_test_teardown, &fixture_test_data); 2220 test_set_guest(fixture_test_guest); 2221 } 2222 2223 static void fixture_test_case1(void) 2224 { 2225 fixture_test_setup(); 2226 TEST_ASSERT_EQ(2, fixture_test_data); 2227 enter_guest(); 2228 TEST_ASSERT_EQ(3, fixture_test_data); 2229 report_pass(__func__); 2230 } 2231 2232 static void fixture_test_case2(void) 2233 { 2234 fixture_test_setup(); 2235 TEST_ASSERT_EQ(2, fixture_test_data); 2236 enter_guest(); 2237 TEST_ASSERT_EQ(3, fixture_test_data); 2238 report_pass(__func__); 2239 } 2240 2241 enum ept_access_op { 2242 OP_READ, 2243 OP_WRITE, 2244 OP_EXEC, 2245 OP_FLUSH_TLB, 2246 OP_EXIT, 2247 }; 2248 2249 static struct ept_access_test_data { 2250 unsigned long gpa; 2251 unsigned long *gva; 2252 unsigned long hpa; 2253 unsigned long *hva; 2254 enum ept_access_op op; 2255 } ept_access_test_data; 2256 2257 extern unsigned char ret42_start; 2258 extern unsigned char ret42_end; 2259 2260 /* Returns 42. */ 2261 asm( 2262 ".align 64\n" 2263 "ret42_start:\n" 2264 "mov $42, %eax\n" 2265 "ret\n" 2266 "ret42_end:\n" 2267 ); 2268 2269 static void 2270 diagnose_ept_violation_qual(u64 expected, u64 actual) 2271 { 2272 2273 #define DIAGNOSE(flag) \ 2274 do { \ 2275 if ((expected & flag) != (actual & flag)) \ 2276 printf(#flag " %sexpected\n", \ 2277 (expected & flag) ? "" : "un"); \ 2278 } while (0) 2279 2280 DIAGNOSE(EPT_VLT_RD); 2281 DIAGNOSE(EPT_VLT_WR); 2282 DIAGNOSE(EPT_VLT_FETCH); 2283 DIAGNOSE(EPT_VLT_PERM_RD); 2284 DIAGNOSE(EPT_VLT_PERM_WR); 2285 DIAGNOSE(EPT_VLT_PERM_EX); 2286 DIAGNOSE(EPT_VLT_LADDR_VLD); 2287 DIAGNOSE(EPT_VLT_PADDR); 2288 2289 #undef DIAGNOSE 2290 } 2291 2292 static void do_ept_access_op(enum ept_access_op op) 2293 { 2294 ept_access_test_data.op = op; 2295 enter_guest(); 2296 } 2297 2298 /* 2299 * Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only 2300 * needed by tests that modify guest PTEs. 2301 */ 2302 static void ept_access_test_guest_flush_tlb(void) 2303 { 2304 do_ept_access_op(OP_FLUSH_TLB); 2305 skip_exit_vmcall(); 2306 } 2307 2308 /* 2309 * Modifies the EPT entry at @level in the mapping of @gpa. First clears the 2310 * bits in @clear then sets the bits in @set. @mkhuge transforms the entry into 2311 * a huge page. 2312 */ 2313 static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level, 2314 unsigned long clear, unsigned long set) 2315 { 2316 struct ept_access_test_data *data = &ept_access_test_data; 2317 unsigned long orig_pte; 2318 unsigned long pte; 2319 2320 /* Screw with the mapping at the requested level. */ 2321 TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte)); 2322 pte = orig_pte; 2323 if (mkhuge) 2324 pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE; 2325 else 2326 pte = orig_pte; 2327 pte = (pte & ~clear) | set; 2328 set_ept_pte(pml4, gpa, level, pte); 2329 invept(INVEPT_SINGLE, eptp); 2330 2331 return orig_pte; 2332 } 2333 2334 static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte) 2335 { 2336 set_ept_pte(pml4, gpa, level, orig_pte); 2337 invept(INVEPT_SINGLE, eptp); 2338 } 2339 2340 static void do_ept_violation(bool leaf, enum ept_access_op op, 2341 u64 expected_qual, u64 expected_paddr) 2342 { 2343 u64 qual; 2344 2345 /* Try the access and observe the violation. */ 2346 do_ept_access_op(op); 2347 2348 assert_exit_reason(VMX_EPT_VIOLATION); 2349 2350 qual = vmcs_read(EXI_QUALIFICATION); 2351 2352 /* Mask undefined bits (which may later be defined in certain cases). */ 2353 qual &= ~(EPT_VLT_GUEST_USER | EPT_VLT_GUEST_RW | EPT_VLT_GUEST_EX | 2354 EPT_VLT_PERM_USER_EX); 2355 2356 diagnose_ept_violation_qual(expected_qual, qual); 2357 TEST_EXPECT_EQ(expected_qual, qual); 2358 2359 #if 0 2360 /* Disable for now otherwise every test will fail */ 2361 TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS), 2362 (unsigned long) ( 2363 op == OP_EXEC ? data->gva + 1 : data->gva)); 2364 #endif 2365 /* 2366 * TODO: tests that probe expected_paddr in pages other than the one at 2367 * the beginning of the 1g region. 2368 */ 2369 TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr); 2370 } 2371 2372 static void 2373 ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear, 2374 unsigned long set, enum ept_access_op op, 2375 u64 expected_qual) 2376 { 2377 struct ept_access_test_data *data = &ept_access_test_data; 2378 unsigned long orig_pte; 2379 2380 orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); 2381 2382 do_ept_violation(level == 1 || mkhuge, op, expected_qual, 2383 op == OP_EXEC ? data->gpa + sizeof(unsigned long) : 2384 data->gpa); 2385 2386 /* Fix the violation and resume the op loop. */ 2387 ept_untwiddle(data->gpa, level, orig_pte); 2388 enter_guest(); 2389 skip_exit_vmcall(); 2390 } 2391 2392 static void 2393 ept_violation_at_level(int level, unsigned long clear, unsigned long set, 2394 enum ept_access_op op, u64 expected_qual) 2395 { 2396 ept_violation_at_level_mkhuge(false, level, clear, set, op, 2397 expected_qual); 2398 if (ept_huge_pages_supported(level)) 2399 ept_violation_at_level_mkhuge(true, level, clear, set, op, 2400 expected_qual); 2401 } 2402 2403 static void ept_violation(unsigned long clear, unsigned long set, 2404 enum ept_access_op op, u64 expected_qual) 2405 { 2406 ept_violation_at_level(1, clear, set, op, expected_qual); 2407 ept_violation_at_level(2, clear, set, op, expected_qual); 2408 ept_violation_at_level(3, clear, set, op, expected_qual); 2409 ept_violation_at_level(4, clear, set, op, expected_qual); 2410 } 2411 2412 static void ept_access_violation(unsigned long access, enum ept_access_op op, 2413 u64 expected_qual) 2414 { 2415 ept_violation(EPT_PRESENT, access, op, 2416 expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 2417 } 2418 2419 /* 2420 * For translations that don't involve a GVA, that is physical address (paddr) 2421 * accesses, EPT violations don't set the flag EPT_VLT_PADDR. For a typical 2422 * guest memory access, the hardware does GVA -> GPA -> HPA. However, certain 2423 * translations don't involve GVAs, such as when the hardware does the guest 2424 * page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU 2425 * might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides 2426 * on isn't present in the EPT, then the EPT violation will be for GPA_2 and 2427 * the EPT_VLT_PADDR bit will be clear in the exit qualification. 2428 * 2429 * Note that paddr violations can also be triggered by loading PAE page tables 2430 * with wonky addresses. We don't test that yet. 2431 * 2432 * This function modifies the EPT entry that maps the GPA that the guest page 2433 * table entry mapping ept_access_test_data.gva resides on. 2434 * 2435 * @ept_access EPT permissions to set. Other permissions are cleared. 2436 * 2437 * @pte_ad Set the A/D bits on the guest PTE accordingly. 2438 * 2439 * @op Guest operation to perform with 2440 * ept_access_test_data.gva. 2441 * 2442 * @expect_violation 2443 * Is a violation expected during the paddr access? 2444 * 2445 * @expected_qual Expected qualification for the EPT violation. 2446 * EPT_VLT_PADDR should be clear. 2447 */ 2448 static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad, 2449 enum ept_access_op op, bool expect_violation, 2450 u64 expected_qual) 2451 { 2452 struct ept_access_test_data *data = &ept_access_test_data; 2453 unsigned long *ptep; 2454 unsigned long gpa; 2455 unsigned long orig_epte; 2456 unsigned long epte; 2457 int i; 2458 2459 /* Modify the guest PTE mapping data->gva according to @pte_ad. */ 2460 ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1); 2461 TEST_ASSERT(ptep); 2462 TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa); 2463 *ptep = (*ptep & ~PT_AD_MASK) | pte_ad; 2464 ept_access_test_guest_flush_tlb(); 2465 2466 /* 2467 * Now modify the access bits on the EPT entry for the GPA that the 2468 * guest PTE resides on. Note that by modifying a single EPT entry, 2469 * we're potentially affecting 512 guest PTEs. However, we've carefully 2470 * constructed our test such that those other 511 PTEs aren't used by 2471 * the guest: data->gva is at the beginning of a 1G huge page, thus the 2472 * PTE we're modifying is at the beginning of a 4K page and the 2473 * following 511 entries are also under our control (and not touched by 2474 * the guest). 2475 */ 2476 gpa = virt_to_phys(ptep); 2477 TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0); 2478 /* 2479 * Make sure the guest page table page is mapped with a 4K EPT entry, 2480 * otherwise our level=1 twiddling below will fail. We use the 2481 * identity map (gpa = gpa) since page tables are shared with the host. 2482 */ 2483 install_ept(pml4, gpa, gpa, EPT_PRESENT); 2484 orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1, 2485 /*clear=*/EPT_PRESENT, /*set=*/ept_access); 2486 2487 if (expect_violation) { 2488 do_ept_violation(/*leaf=*/true, op, 2489 expected_qual | EPT_VLT_LADDR_VLD, gpa); 2490 ept_untwiddle(gpa, /*level=*/1, orig_epte); 2491 do_ept_access_op(op); 2492 } else { 2493 do_ept_access_op(op); 2494 if (ept_ad_enabled()) { 2495 for (i = EPT_PAGE_LEVEL; i > 0; i--) { 2496 TEST_ASSERT(get_ept_pte(pml4, gpa, i, &epte)); 2497 TEST_ASSERT(epte & EPT_ACCESS_FLAG); 2498 if (i == 1) 2499 TEST_ASSERT(epte & EPT_DIRTY_FLAG); 2500 else 2501 TEST_ASSERT_EQ(epte & EPT_DIRTY_FLAG, 0); 2502 } 2503 } 2504 2505 ept_untwiddle(gpa, /*level=*/1, orig_epte); 2506 } 2507 2508 TEST_ASSERT(*ptep & PT_ACCESSED_MASK); 2509 if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE) 2510 TEST_ASSERT(*ptep & PT_DIRTY_MASK); 2511 2512 skip_exit_vmcall(); 2513 } 2514 2515 static void ept_access_allowed_paddr(unsigned long ept_access, 2516 unsigned long pte_ad, 2517 enum ept_access_op op) 2518 { 2519 ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false, 2520 /*expected_qual=*/-1); 2521 } 2522 2523 static void ept_access_violation_paddr(unsigned long ept_access, 2524 unsigned long pte_ad, 2525 enum ept_access_op op, 2526 u64 expected_qual) 2527 { 2528 ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true, 2529 expected_qual); 2530 } 2531 2532 2533 static void ept_allowed_at_level_mkhuge(bool mkhuge, int level, 2534 unsigned long clear, 2535 unsigned long set, 2536 enum ept_access_op op) 2537 { 2538 struct ept_access_test_data *data = &ept_access_test_data; 2539 unsigned long orig_pte; 2540 2541 orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); 2542 2543 /* No violation. Should proceed to vmcall. */ 2544 do_ept_access_op(op); 2545 skip_exit_vmcall(); 2546 2547 ept_untwiddle(data->gpa, level, orig_pte); 2548 } 2549 2550 static void ept_allowed_at_level(int level, unsigned long clear, 2551 unsigned long set, enum ept_access_op op) 2552 { 2553 ept_allowed_at_level_mkhuge(false, level, clear, set, op); 2554 if (ept_huge_pages_supported(level)) 2555 ept_allowed_at_level_mkhuge(true, level, clear, set, op); 2556 } 2557 2558 static void ept_allowed(unsigned long clear, unsigned long set, 2559 enum ept_access_op op) 2560 { 2561 ept_allowed_at_level(1, clear, set, op); 2562 ept_allowed_at_level(2, clear, set, op); 2563 ept_allowed_at_level(3, clear, set, op); 2564 ept_allowed_at_level(4, clear, set, op); 2565 } 2566 2567 static void ept_ignored_bit(int bit) 2568 { 2569 /* Set the bit. */ 2570 ept_allowed(0, 1ul << bit, OP_READ); 2571 ept_allowed(0, 1ul << bit, OP_WRITE); 2572 ept_allowed(0, 1ul << bit, OP_EXEC); 2573 2574 /* Clear the bit. */ 2575 ept_allowed(1ul << bit, 0, OP_READ); 2576 ept_allowed(1ul << bit, 0, OP_WRITE); 2577 ept_allowed(1ul << bit, 0, OP_EXEC); 2578 } 2579 2580 static void ept_access_allowed(unsigned long access, enum ept_access_op op) 2581 { 2582 ept_allowed(EPT_PRESENT, access, op); 2583 } 2584 2585 2586 static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level, 2587 unsigned long clear, 2588 unsigned long set, 2589 enum ept_access_op op) 2590 { 2591 struct ept_access_test_data *data = &ept_access_test_data; 2592 unsigned long orig_pte; 2593 2594 orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); 2595 2596 do_ept_access_op(op); 2597 assert_exit_reason(VMX_EPT_MISCONFIG); 2598 2599 /* Intel 27.2.1, "For all other VM exits, this field is cleared." */ 2600 #if 0 2601 /* broken: */ 2602 TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0); 2603 #endif 2604 #if 0 2605 /* 2606 * broken: 2607 * According to description of exit qual for EPT violation, 2608 * EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid. 2609 * However, I can't find anything that says GUEST_LINEAR_ADDRESS ought 2610 * to be set for msiconfig. 2611 */ 2612 TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS), 2613 (unsigned long) ( 2614 op == OP_EXEC ? data->gva + 1 : data->gva)); 2615 #endif 2616 2617 /* Fix the violation and resume the op loop. */ 2618 ept_untwiddle(data->gpa, level, orig_pte); 2619 enter_guest(); 2620 skip_exit_vmcall(); 2621 } 2622 2623 static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level, 2624 unsigned long clear, 2625 unsigned long set) 2626 { 2627 /* The op shouldn't matter (read, write, exec), so try them all! */ 2628 ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ); 2629 ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE); 2630 ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC); 2631 } 2632 2633 static void ept_misconfig_at_level(int level, unsigned long clear, 2634 unsigned long set) 2635 { 2636 ept_misconfig_at_level_mkhuge(false, level, clear, set); 2637 if (ept_huge_pages_supported(level)) 2638 ept_misconfig_at_level_mkhuge(true, level, clear, set); 2639 } 2640 2641 static void ept_misconfig(unsigned long clear, unsigned long set) 2642 { 2643 ept_misconfig_at_level(1, clear, set); 2644 ept_misconfig_at_level(2, clear, set); 2645 ept_misconfig_at_level(3, clear, set); 2646 ept_misconfig_at_level(4, clear, set); 2647 } 2648 2649 static void ept_access_misconfig(unsigned long access) 2650 { 2651 ept_misconfig(EPT_PRESENT, access); 2652 } 2653 2654 static void ept_reserved_bit_at_level_nohuge(int level, int bit) 2655 { 2656 /* Setting the bit causes a misconfig. */ 2657 ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit); 2658 2659 /* Making the entry non-present turns reserved bits into ignored. */ 2660 ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, 2661 EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 2662 } 2663 2664 static void ept_reserved_bit_at_level_huge(int level, int bit) 2665 { 2666 /* Setting the bit causes a misconfig. */ 2667 ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit); 2668 2669 /* Making the entry non-present turns reserved bits into ignored. */ 2670 ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, 2671 EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 2672 } 2673 2674 static void ept_reserved_bit_at_level(int level, int bit) 2675 { 2676 /* Setting the bit causes a misconfig. */ 2677 ept_misconfig_at_level(level, 0, 1ul << bit); 2678 2679 /* Making the entry non-present turns reserved bits into ignored. */ 2680 ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, 2681 EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 2682 } 2683 2684 static void ept_reserved_bit(int bit) 2685 { 2686 ept_reserved_bit_at_level(1, bit); 2687 ept_reserved_bit_at_level(2, bit); 2688 ept_reserved_bit_at_level(3, bit); 2689 ept_reserved_bit_at_level(4, bit); 2690 } 2691 2692 #define PAGE_2M_ORDER 9 2693 #define PAGE_1G_ORDER 18 2694 2695 static void *get_1g_page(void) 2696 { 2697 static void *alloc; 2698 2699 if (!alloc) 2700 alloc = alloc_pages(PAGE_1G_ORDER); 2701 return alloc; 2702 } 2703 2704 static void ept_access_test_teardown(void *unused) 2705 { 2706 /* Exit the guest cleanly. */ 2707 do_ept_access_op(OP_EXIT); 2708 } 2709 2710 static void ept_access_test_guest(void) 2711 { 2712 struct ept_access_test_data *data = &ept_access_test_data; 2713 int (*code)(void) = (int (*)(void)) &data->gva[1]; 2714 2715 while (true) { 2716 switch (data->op) { 2717 case OP_READ: 2718 TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1); 2719 break; 2720 case OP_WRITE: 2721 *data->gva = MAGIC_VAL_2; 2722 TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2); 2723 *data->gva = MAGIC_VAL_1; 2724 break; 2725 case OP_EXEC: 2726 TEST_ASSERT_EQ(42, code()); 2727 break; 2728 case OP_FLUSH_TLB: 2729 write_cr3(read_cr3()); 2730 break; 2731 case OP_EXIT: 2732 return; 2733 default: 2734 TEST_ASSERT_MSG(false, "Unknown op %d", data->op); 2735 } 2736 vmcall(); 2737 } 2738 } 2739 2740 static void ept_access_test_setup(void) 2741 { 2742 struct ept_access_test_data *data = &ept_access_test_data; 2743 unsigned long npages = 1ul << PAGE_1G_ORDER; 2744 unsigned long size = npages * PAGE_SIZE; 2745 unsigned long *page_table = current_page_table(); 2746 unsigned long pte; 2747 2748 if (setup_ept(false)) 2749 test_skip("EPT not supported"); 2750 2751 /* We use data->gpa = 1 << 39 so that test data has a separate pml4 entry */ 2752 if (cpuid_maxphyaddr() < 40) 2753 test_skip("Test needs MAXPHYADDR >= 40"); 2754 2755 test_set_guest(ept_access_test_guest); 2756 test_add_teardown(ept_access_test_teardown, NULL); 2757 2758 data->hva = get_1g_page(); 2759 TEST_ASSERT(data->hva); 2760 data->hpa = virt_to_phys(data->hva); 2761 2762 data->gpa = 1ul << 39; 2763 data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2), 2764 size); 2765 TEST_ASSERT(!any_present_pages(page_table, data->gva, size)); 2766 install_pages(page_table, data->gpa, size, data->gva); 2767 2768 /* 2769 * Make sure nothing's mapped here so the tests that screw with the 2770 * pml4 entry don't inadvertently break something. 2771 */ 2772 TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0); 2773 TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0); 2774 install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT); 2775 2776 data->hva[0] = MAGIC_VAL_1; 2777 memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start); 2778 } 2779 2780 static void ept_access_test_not_present(void) 2781 { 2782 ept_access_test_setup(); 2783 /* --- */ 2784 ept_access_violation(0, OP_READ, EPT_VLT_RD); 2785 ept_access_violation(0, OP_WRITE, EPT_VLT_WR); 2786 ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH); 2787 } 2788 2789 static void ept_access_test_read_only(void) 2790 { 2791 ept_access_test_setup(); 2792 2793 /* r-- */ 2794 ept_access_allowed(EPT_RA, OP_READ); 2795 ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD); 2796 ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD); 2797 } 2798 2799 static void ept_access_test_write_only(void) 2800 { 2801 ept_access_test_setup(); 2802 /* -w- */ 2803 ept_access_misconfig(EPT_WA); 2804 } 2805 2806 static void ept_access_test_read_write(void) 2807 { 2808 ept_access_test_setup(); 2809 /* rw- */ 2810 ept_access_allowed(EPT_RA | EPT_WA, OP_READ); 2811 ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE); 2812 ept_access_violation(EPT_RA | EPT_WA, OP_EXEC, 2813 EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR); 2814 } 2815 2816 2817 static void ept_access_test_execute_only(void) 2818 { 2819 ept_access_test_setup(); 2820 /* --x */ 2821 if (ept_execute_only_supported()) { 2822 ept_access_violation(EPT_EA, OP_READ, 2823 EPT_VLT_RD | EPT_VLT_PERM_EX); 2824 ept_access_violation(EPT_EA, OP_WRITE, 2825 EPT_VLT_WR | EPT_VLT_PERM_EX); 2826 ept_access_allowed(EPT_EA, OP_EXEC); 2827 } else { 2828 ept_access_misconfig(EPT_EA); 2829 } 2830 } 2831 2832 static void ept_access_test_read_execute(void) 2833 { 2834 ept_access_test_setup(); 2835 /* r-x */ 2836 ept_access_allowed(EPT_RA | EPT_EA, OP_READ); 2837 ept_access_violation(EPT_RA | EPT_EA, OP_WRITE, 2838 EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX); 2839 ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC); 2840 } 2841 2842 static void ept_access_test_write_execute(void) 2843 { 2844 ept_access_test_setup(); 2845 /* -wx */ 2846 ept_access_misconfig(EPT_WA | EPT_EA); 2847 } 2848 2849 static void ept_access_test_read_write_execute(void) 2850 { 2851 ept_access_test_setup(); 2852 /* rwx */ 2853 ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ); 2854 ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE); 2855 ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC); 2856 } 2857 2858 static void ept_access_test_reserved_bits(void) 2859 { 2860 int i; 2861 int maxphyaddr; 2862 2863 ept_access_test_setup(); 2864 2865 /* Reserved bits above maxphyaddr. */ 2866 maxphyaddr = cpuid_maxphyaddr(); 2867 for (i = maxphyaddr; i <= 51; i++) { 2868 report_prefix_pushf("reserved_bit=%d", i); 2869 ept_reserved_bit(i); 2870 report_prefix_pop(); 2871 } 2872 2873 /* Level-specific reserved bits. */ 2874 ept_reserved_bit_at_level_nohuge(2, 3); 2875 ept_reserved_bit_at_level_nohuge(2, 4); 2876 ept_reserved_bit_at_level_nohuge(2, 5); 2877 ept_reserved_bit_at_level_nohuge(2, 6); 2878 /* 2M alignment. */ 2879 for (i = 12; i < 20; i++) { 2880 report_prefix_pushf("reserved_bit=%d", i); 2881 ept_reserved_bit_at_level_huge(2, i); 2882 report_prefix_pop(); 2883 } 2884 ept_reserved_bit_at_level_nohuge(3, 3); 2885 ept_reserved_bit_at_level_nohuge(3, 4); 2886 ept_reserved_bit_at_level_nohuge(3, 5); 2887 ept_reserved_bit_at_level_nohuge(3, 6); 2888 /* 1G alignment. */ 2889 for (i = 12; i < 29; i++) { 2890 report_prefix_pushf("reserved_bit=%d", i); 2891 ept_reserved_bit_at_level_huge(3, i); 2892 report_prefix_pop(); 2893 } 2894 ept_reserved_bit_at_level(4, 3); 2895 ept_reserved_bit_at_level(4, 4); 2896 ept_reserved_bit_at_level(4, 5); 2897 ept_reserved_bit_at_level(4, 6); 2898 ept_reserved_bit_at_level(4, 7); 2899 } 2900 2901 static void ept_access_test_ignored_bits(void) 2902 { 2903 ept_access_test_setup(); 2904 /* 2905 * Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as 2906 * far as translation is concerned even if AD bits are enabled in the 2907 * EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution 2908 * control is 0. 2909 */ 2910 ept_ignored_bit(8); 2911 ept_ignored_bit(9); 2912 ept_ignored_bit(10); 2913 ept_ignored_bit(11); 2914 ept_ignored_bit(52); 2915 ept_ignored_bit(53); 2916 ept_ignored_bit(54); 2917 ept_ignored_bit(55); 2918 ept_ignored_bit(56); 2919 ept_ignored_bit(57); 2920 ept_ignored_bit(58); 2921 ept_ignored_bit(59); 2922 ept_ignored_bit(60); 2923 ept_ignored_bit(61); 2924 ept_ignored_bit(62); 2925 ept_ignored_bit(63); 2926 } 2927 2928 static void ept_access_test_paddr_not_present_ad_disabled(void) 2929 { 2930 ept_access_test_setup(); 2931 ept_disable_ad_bits(); 2932 2933 ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD); 2934 ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD); 2935 ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD); 2936 } 2937 2938 static void ept_access_test_paddr_not_present_ad_enabled(void) 2939 { 2940 u64 qual = EPT_VLT_RD | EPT_VLT_WR; 2941 2942 ept_access_test_setup(); 2943 ept_enable_ad_bits_or_skip_test(); 2944 2945 ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual); 2946 ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual); 2947 ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual); 2948 } 2949 2950 static void ept_access_test_paddr_read_only_ad_disabled(void) 2951 { 2952 /* 2953 * When EPT AD bits are disabled, all accesses to guest paging 2954 * structures are reported separately as a read and (after 2955 * translation of the GPA to host physical address) a read+write 2956 * if the A/D bits have to be set. 2957 */ 2958 u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD; 2959 2960 ept_access_test_setup(); 2961 ept_disable_ad_bits(); 2962 2963 /* Can't update A bit, so all accesses fail. */ 2964 ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual); 2965 ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual); 2966 ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual); 2967 /* AD bits disabled, so only writes try to update the D bit. */ 2968 ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ); 2969 ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual); 2970 ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC); 2971 /* Both A and D already set, so read-only is OK. */ 2972 ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ); 2973 ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE); 2974 ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC); 2975 } 2976 2977 static void ept_access_test_paddr_read_only_ad_enabled(void) 2978 { 2979 /* 2980 * When EPT AD bits are enabled, all accesses to guest paging 2981 * structures are considered writes as far as EPT translation 2982 * is concerned. 2983 */ 2984 u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD; 2985 2986 ept_access_test_setup(); 2987 ept_enable_ad_bits_or_skip_test(); 2988 2989 ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual); 2990 ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual); 2991 ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual); 2992 ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual); 2993 ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual); 2994 ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual); 2995 ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual); 2996 ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual); 2997 ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual); 2998 } 2999 3000 static void ept_access_test_paddr_read_write(void) 3001 { 3002 ept_access_test_setup(); 3003 /* Read-write access to paging structure. */ 3004 ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ); 3005 ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE); 3006 ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC); 3007 } 3008 3009 static void ept_access_test_paddr_read_write_execute(void) 3010 { 3011 ept_access_test_setup(); 3012 /* RWX access to paging structure. */ 3013 ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ); 3014 ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE); 3015 ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC); 3016 } 3017 3018 static void ept_access_test_paddr_read_execute_ad_disabled(void) 3019 { 3020 /* 3021 * When EPT AD bits are disabled, all accesses to guest paging 3022 * structures are reported separately as a read and (after 3023 * translation of the GPA to host physical address) a read+write 3024 * if the A/D bits have to be set. 3025 */ 3026 u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX; 3027 3028 ept_access_test_setup(); 3029 ept_disable_ad_bits(); 3030 3031 /* Can't update A bit, so all accesses fail. */ 3032 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual); 3033 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual); 3034 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual); 3035 /* AD bits disabled, so only writes try to update the D bit. */ 3036 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ); 3037 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual); 3038 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC); 3039 /* Both A and D already set, so read-only is OK. */ 3040 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ); 3041 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE); 3042 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC); 3043 } 3044 3045 static void ept_access_test_paddr_read_execute_ad_enabled(void) 3046 { 3047 /* 3048 * When EPT AD bits are enabled, all accesses to guest paging 3049 * structures are considered writes as far as EPT translation 3050 * is concerned. 3051 */ 3052 u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX; 3053 3054 ept_access_test_setup(); 3055 ept_enable_ad_bits_or_skip_test(); 3056 3057 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual); 3058 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual); 3059 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual); 3060 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual); 3061 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual); 3062 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual); 3063 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual); 3064 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual); 3065 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual); 3066 } 3067 3068 static void ept_access_test_paddr_not_present_page_fault(void) 3069 { 3070 ept_access_test_setup(); 3071 /* 3072 * TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is 3073 * page is read-only in EPT but GVA is also mapped read only in PT. 3074 * Thus guest page fault before host takes EPT violation for trying to 3075 * update A bit. 3076 */ 3077 } 3078 3079 static void ept_access_test_force_2m_page(void) 3080 { 3081 ept_access_test_setup(); 3082 3083 TEST_ASSERT_EQ(ept_2m_supported(), true); 3084 ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ); 3085 ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE, 3086 EPT_VLT_WR | EPT_VLT_PERM_RD | 3087 EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 3088 ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA); 3089 } 3090 3091 static bool invvpid_valid(u64 type, u64 vpid, u64 gla) 3092 { 3093 if (!is_invvpid_type_supported(type)) 3094 return false; 3095 3096 if (vpid >> 16) 3097 return false; 3098 3099 if (type != INVVPID_ALL && !vpid) 3100 return false; 3101 3102 if (type == INVVPID_ADDR && !is_canonical(gla)) 3103 return false; 3104 3105 return true; 3106 } 3107 3108 static void try_invvpid(u64 type, u64 vpid, u64 gla) 3109 { 3110 int rc; 3111 bool valid = invvpid_valid(type, vpid, gla); 3112 u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT 3113 : VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID; 3114 /* 3115 * Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so 3116 * that we can tell if it is updated by INVVPID. 3117 */ 3118 vmcs_read(~0); 3119 rc = __invvpid(type, vpid, gla); 3120 report(!rc == valid, "INVVPID type %ld VPID %lx GLA %lx %s", type, 3121 vpid, gla, 3122 valid ? "passes" : "fails"); 3123 report(vmcs_read(VMX_INST_ERROR) == expected, 3124 "After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)", 3125 rc ? "failed" : "successful", 3126 expected, vmcs_read(VMX_INST_ERROR)); 3127 } 3128 3129 static inline unsigned long get_first_supported_invvpid_type(void) 3130 { 3131 u64 type = ffs(ept_vpid.val >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1; 3132 3133 __TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL); 3134 return type; 3135 } 3136 3137 static void ds_invvpid(void *data) 3138 { 3139 asm volatile("invvpid %0, %1" 3140 : 3141 : "m"(*(struct invvpid_operand *)data), 3142 "r"(get_first_supported_invvpid_type())); 3143 } 3144 3145 /* 3146 * The SS override is ignored in 64-bit mode, so we use an addressing 3147 * mode with %rsp as the base register to generate an implicit SS 3148 * reference. 3149 */ 3150 static void ss_invvpid(void *data) 3151 { 3152 asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1" 3153 : "+r"(data) 3154 : "r"(get_first_supported_invvpid_type())); 3155 } 3156 3157 static void invvpid_test_gp(void) 3158 { 3159 bool fault; 3160 3161 fault = test_for_exception(GP_VECTOR, &ds_invvpid, 3162 (void *)NONCANONICAL); 3163 report(fault, "INVVPID with non-canonical DS operand raises #GP"); 3164 } 3165 3166 static void invvpid_test_ss(void) 3167 { 3168 bool fault; 3169 3170 fault = test_for_exception(SS_VECTOR, &ss_invvpid, 3171 (void *)NONCANONICAL); 3172 report(fault, "INVVPID with non-canonical SS operand raises #SS"); 3173 } 3174 3175 static void invvpid_test_pf(void) 3176 { 3177 void *vpage = alloc_vpage(); 3178 bool fault; 3179 3180 fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage); 3181 report(fault, "INVVPID with unmapped operand raises #PF"); 3182 } 3183 3184 static void try_compat_invvpid(void *unused) 3185 { 3186 struct far_pointer32 fp = { 3187 .offset = (uintptr_t)&&invvpid, 3188 .selector = KERNEL_CS32, 3189 }; 3190 uintptr_t rsp; 3191 3192 asm volatile ("mov %%rsp, %0" : "=r"(rsp)); 3193 3194 TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid, 3195 "Code address too high."); 3196 TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high."); 3197 3198 asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid); 3199 return; 3200 invvpid: 3201 asm volatile (".code32;" 3202 "invvpid (%eax), %eax;" 3203 "lret;" 3204 ".code64"); 3205 __builtin_unreachable(); 3206 } 3207 3208 static void invvpid_test_compatibility_mode(void) 3209 { 3210 bool fault; 3211 3212 fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL); 3213 report(fault, "Compatibility mode INVVPID raises #UD"); 3214 } 3215 3216 static void invvpid_test_not_in_vmx_operation(void) 3217 { 3218 bool fault; 3219 3220 TEST_ASSERT(!vmx_off()); 3221 fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL); 3222 report(fault, "INVVPID outside of VMX operation raises #UD"); 3223 TEST_ASSERT(!vmx_on()); 3224 } 3225 3226 /* 3227 * This does not test real-address mode, virtual-8086 mode, protected mode, 3228 * or CPL > 0. 3229 */ 3230 static void invvpid_test(void) 3231 { 3232 int i; 3233 unsigned types = 0; 3234 unsigned type; 3235 3236 if (!is_vpid_supported()) 3237 test_skip("VPID not supported"); 3238 3239 if (!is_invvpid_supported()) 3240 test_skip("INVVPID not supported.\n"); 3241 3242 if (is_invvpid_type_supported(INVVPID_ADDR)) 3243 types |= 1u << INVVPID_ADDR; 3244 if (is_invvpid_type_supported(INVVPID_CONTEXT_GLOBAL)) 3245 types |= 1u << INVVPID_CONTEXT_GLOBAL; 3246 if (is_invvpid_type_supported(INVVPID_ALL)) 3247 types |= 1u << INVVPID_ALL; 3248 if (is_invvpid_type_supported(INVVPID_CONTEXT_LOCAL)) 3249 types |= 1u << INVVPID_CONTEXT_LOCAL; 3250 3251 if (!types) 3252 test_skip("No INVVPID types supported.\n"); 3253 3254 for (i = -127; i < 128; i++) 3255 try_invvpid(i, 0xffff, 0); 3256 3257 /* 3258 * VPID must not be more than 16 bits. 3259 */ 3260 for (i = 0; i < 64; i++) 3261 for (type = 0; type < 4; type++) 3262 if (types & (1u << type)) 3263 try_invvpid(type, 1ul << i, 0); 3264 3265 /* 3266 * VPID must not be zero, except for "all contexts." 3267 */ 3268 for (type = 0; type < 4; type++) 3269 if (types & (1u << type)) 3270 try_invvpid(type, 0, 0); 3271 3272 /* 3273 * The gla operand is only validated for single-address INVVPID. 3274 */ 3275 if (types & (1u << INVVPID_ADDR)) 3276 try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL); 3277 3278 invvpid_test_gp(); 3279 invvpid_test_ss(); 3280 invvpid_test_pf(); 3281 invvpid_test_compatibility_mode(); 3282 invvpid_test_not_in_vmx_operation(); 3283 } 3284 3285 static void test_assert_vmlaunch_inst_error(u32 expected_error) 3286 { 3287 u32 vmx_inst_err = vmcs_read(VMX_INST_ERROR); 3288 3289 report(vmx_inst_err == expected_error, 3290 "VMX inst error is %d (actual %d)", expected_error, vmx_inst_err); 3291 } 3292 3293 /* 3294 * This version is wildly unsafe and should _only_ be used to test VM-Fail 3295 * scenarios involving HOST_RIP. 3296 */ 3297 static void test_vmx_vmlaunch_must_fail(u32 expected_error) 3298 { 3299 /* Read the function name. */ 3300 TEST_ASSERT(expected_error); 3301 3302 /* 3303 * Don't bother with any prep work, if VMLAUNCH passes the VM-Fail 3304 * consistency checks and generates a VM-Exit, then the test is doomed 3305 * no matter what as it will jump to a garbage RIP. 3306 */ 3307 __asm__ __volatile__ ("vmlaunch"); 3308 test_assert_vmlaunch_inst_error(expected_error); 3309 } 3310 3311 /* 3312 * Test for early VMLAUNCH failure. Returns true if VMLAUNCH makes it 3313 * at least as far as the guest-state checks. Returns false if the 3314 * VMLAUNCH fails early and execution falls through to the next 3315 * instruction. 3316 */ 3317 static bool vmlaunch(void) 3318 { 3319 u32 exit_reason; 3320 3321 /* 3322 * Indirectly set VMX_INST_ERR to 12 ("VMREAD/VMWRITE from/to 3323 * unsupported VMCS component"). The caller can then check 3324 * to see if a failed VM-entry sets VMX_INST_ERR as expected. 3325 */ 3326 vmcs_write(~0u, 0); 3327 3328 vmcs_write(HOST_RIP, (uintptr_t)&&success); 3329 __asm__ __volatile__ goto ("vmwrite %%rsp, %0; vmlaunch" 3330 : 3331 : "r" ((u64)HOST_RSP) 3332 : "cc", "memory" 3333 : success); 3334 return false; 3335 success: 3336 exit_reason = vmcs_read(EXI_REASON); 3337 TEST_ASSERT(exit_reason == (VMX_FAIL_STATE | VMX_ENTRY_FAILURE) || 3338 exit_reason == (VMX_FAIL_MSR | VMX_ENTRY_FAILURE)); 3339 return true; 3340 } 3341 3342 /* 3343 * Try to launch the current VMCS. 3344 */ 3345 static void test_vmx_vmlaunch(u32 xerror) 3346 { 3347 bool success = vmlaunch(); 3348 3349 report(success == !xerror, "vmlaunch %s", 3350 !xerror ? "succeeds" : "fails"); 3351 if (!success && xerror) 3352 test_assert_vmlaunch_inst_error(xerror); 3353 } 3354 3355 /* 3356 * Try to launch the current VMCS, and expect one of two possible 3357 * errors (or success) codes. 3358 */ 3359 static void test_vmx_vmlaunch2(u32 xerror1, u32 xerror2) 3360 { 3361 bool success = vmlaunch(); 3362 u32 vmx_inst_err; 3363 3364 if (!xerror1 == !xerror2) 3365 report(success == !xerror1, "vmlaunch %s", 3366 !xerror1 ? "succeeds" : "fails"); 3367 3368 if (!success && (xerror1 || xerror2)) { 3369 vmx_inst_err = vmcs_read(VMX_INST_ERROR); 3370 report(vmx_inst_err == xerror1 || vmx_inst_err == xerror2, 3371 "VMX inst error is %d or %d (actual %d)", xerror1, 3372 xerror2, vmx_inst_err); 3373 } 3374 } 3375 3376 static void test_vmx_invalid_controls(void) 3377 { 3378 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_CONTROL_FIELD); 3379 } 3380 3381 static void test_vmx_valid_controls(void) 3382 { 3383 test_vmx_vmlaunch(0); 3384 } 3385 3386 /* 3387 * Test a particular value of a VM-execution control bit, if the value 3388 * is required or if the value is zero. 3389 */ 3390 static void test_rsvd_ctl_bit_value(const char *name, union vmx_ctrl_msr msr, 3391 enum Encoding encoding, unsigned bit, 3392 unsigned val) 3393 { 3394 u32 mask = 1u << bit; 3395 bool expected; 3396 u32 controls; 3397 3398 if (msr.set & mask) 3399 TEST_ASSERT(msr.clr & mask); 3400 3401 /* 3402 * We can't arbitrarily turn on a control bit, because it may 3403 * introduce dependencies on other VMCS fields. So, we only 3404 * test turning on bits that have a required setting. 3405 */ 3406 if (val && (msr.clr & mask) && !(msr.set & mask)) 3407 return; 3408 3409 report_prefix_pushf("%s %s bit %d", 3410 val ? "Set" : "Clear", name, bit); 3411 3412 controls = vmcs_read(encoding); 3413 if (val) { 3414 vmcs_write(encoding, msr.set | mask); 3415 expected = (msr.clr & mask); 3416 } else { 3417 vmcs_write(encoding, msr.set & ~mask); 3418 expected = !(msr.set & mask); 3419 } 3420 if (expected) 3421 test_vmx_valid_controls(); 3422 else 3423 test_vmx_invalid_controls(); 3424 vmcs_write(encoding, controls); 3425 report_prefix_pop(); 3426 } 3427 3428 /* 3429 * Test reserved values of a VM-execution control bit, based on the 3430 * allowed bit settings from the corresponding VMX capability MSR. 3431 */ 3432 static void test_rsvd_ctl_bit(const char *name, union vmx_ctrl_msr msr, 3433 enum Encoding encoding, unsigned bit) 3434 { 3435 test_rsvd_ctl_bit_value(name, msr, encoding, bit, 0); 3436 test_rsvd_ctl_bit_value(name, msr, encoding, bit, 1); 3437 } 3438 3439 /* 3440 * Reserved bits in the pin-based VM-execution controls must be set 3441 * properly. Software may consult the VMX capability MSRs to determine 3442 * the proper settings. 3443 * [Intel SDM] 3444 */ 3445 static void test_pin_based_ctls(void) 3446 { 3447 unsigned bit; 3448 3449 printf("%s: %lx\n", basic_msr.ctrl ? "MSR_IA32_VMX_TRUE_PIN" : 3450 "MSR_IA32_VMX_PINBASED_CTLS", ctrl_pin_rev.val); 3451 for (bit = 0; bit < 32; bit++) 3452 test_rsvd_ctl_bit("pin-based controls", 3453 ctrl_pin_rev, PIN_CONTROLS, bit); 3454 } 3455 3456 /* 3457 * Reserved bits in the primary processor-based VM-execution controls 3458 * must be set properly. Software may consult the VMX capability MSRs 3459 * to determine the proper settings. 3460 * [Intel SDM] 3461 */ 3462 static void test_primary_processor_based_ctls(void) 3463 { 3464 unsigned bit; 3465 3466 printf("\n%s: %lx\n", basic_msr.ctrl ? "MSR_IA32_VMX_TRUE_PROC" : 3467 "MSR_IA32_VMX_PROCBASED_CTLS", ctrl_cpu_rev[0].val); 3468 for (bit = 0; bit < 32; bit++) 3469 test_rsvd_ctl_bit("primary processor-based controls", 3470 ctrl_cpu_rev[0], CPU_EXEC_CTRL0, bit); 3471 } 3472 3473 /* 3474 * If the "activate secondary controls" primary processor-based 3475 * VM-execution control is 1, reserved bits in the secondary 3476 * processor-based VM-execution controls must be cleared. Software may 3477 * consult the VMX capability MSRs to determine which bits are 3478 * reserved. 3479 * If the "activate secondary controls" primary processor-based 3480 * VM-execution control is 0 (or if the processor does not support the 3481 * 1-setting of that control), no checks are performed on the 3482 * secondary processor-based VM-execution controls. 3483 * [Intel SDM] 3484 */ 3485 static void test_secondary_processor_based_ctls(void) 3486 { 3487 u32 primary; 3488 u32 secondary; 3489 unsigned bit; 3490 3491 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) 3492 return; 3493 3494 primary = vmcs_read(CPU_EXEC_CTRL0); 3495 secondary = vmcs_read(CPU_EXEC_CTRL1); 3496 3497 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); 3498 printf("\nMSR_IA32_VMX_PROCBASED_CTLS2: %lx\n", ctrl_cpu_rev[1].val); 3499 for (bit = 0; bit < 32; bit++) 3500 test_rsvd_ctl_bit("secondary processor-based controls", 3501 ctrl_cpu_rev[1], CPU_EXEC_CTRL1, bit); 3502 3503 /* 3504 * When the "activate secondary controls" VM-execution control 3505 * is clear, there are no checks on the secondary controls. 3506 */ 3507 vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY); 3508 vmcs_write(CPU_EXEC_CTRL1, ~0); 3509 report(vmlaunch(), 3510 "Secondary processor-based controls ignored"); 3511 vmcs_write(CPU_EXEC_CTRL1, secondary); 3512 vmcs_write(CPU_EXEC_CTRL0, primary); 3513 } 3514 3515 static void try_cr3_target_count(unsigned i, unsigned max) 3516 { 3517 report_prefix_pushf("CR3 target count 0x%x", i); 3518 vmcs_write(CR3_TARGET_COUNT, i); 3519 if (i <= max) 3520 test_vmx_valid_controls(); 3521 else 3522 test_vmx_invalid_controls(); 3523 report_prefix_pop(); 3524 } 3525 3526 /* 3527 * The CR3-target count must not be greater than 4. Future processors 3528 * may support a different number of CR3-target values. Software 3529 * should read the VMX capability MSR IA32_VMX_MISC to determine the 3530 * number of values supported. 3531 * [Intel SDM] 3532 */ 3533 static void test_cr3_targets(void) 3534 { 3535 unsigned supported_targets = (rdmsr(MSR_IA32_VMX_MISC) >> 16) & 0x1ff; 3536 u32 cr3_targets = vmcs_read(CR3_TARGET_COUNT); 3537 unsigned i; 3538 3539 printf("\nSupported CR3 targets: %d\n", supported_targets); 3540 TEST_ASSERT(supported_targets <= 256); 3541 3542 try_cr3_target_count(-1u, supported_targets); 3543 try_cr3_target_count(0x80000000, supported_targets); 3544 try_cr3_target_count(0x7fffffff, supported_targets); 3545 for (i = 0; i <= supported_targets + 1; i++) 3546 try_cr3_target_count(i, supported_targets); 3547 vmcs_write(CR3_TARGET_COUNT, cr3_targets); 3548 3549 /* VMWRITE to nonexistent target fields should fail. */ 3550 for (i = supported_targets; i < 256; i++) 3551 TEST_ASSERT(vmcs_write(CR3_TARGET_0 + i*2, 0)); 3552 } 3553 3554 /* 3555 * Test a particular address setting in the VMCS 3556 */ 3557 static void test_vmcs_addr(const char *name, 3558 enum Encoding encoding, 3559 u64 align, 3560 bool ignored, 3561 bool skip_beyond_mapped_ram, 3562 u64 addr) 3563 { 3564 report_prefix_pushf("%s = %lx", name, addr); 3565 vmcs_write(encoding, addr); 3566 if (skip_beyond_mapped_ram && 3567 addr > fwcfg_get_u64(FW_CFG_RAM_SIZE) - align && 3568 addr < (1ul << cpuid_maxphyaddr())) 3569 printf("Skipping physical address beyond mapped RAM\n"); 3570 else if (ignored || (IS_ALIGNED(addr, align) && 3571 addr < (1ul << cpuid_maxphyaddr()))) 3572 test_vmx_valid_controls(); 3573 else 3574 test_vmx_invalid_controls(); 3575 report_prefix_pop(); 3576 } 3577 3578 /* 3579 * Test interesting values for a VMCS address 3580 */ 3581 static void test_vmcs_addr_values(const char *name, 3582 enum Encoding encoding, 3583 u64 align, 3584 bool ignored, 3585 bool skip_beyond_mapped_ram, 3586 u32 bit_start, u32 bit_end) 3587 { 3588 unsigned i; 3589 u64 orig_val = vmcs_read(encoding); 3590 3591 for (i = bit_start; i <= bit_end; i++) 3592 test_vmcs_addr(name, encoding, align, ignored, 3593 skip_beyond_mapped_ram, 1ul << i); 3594 3595 test_vmcs_addr(name, encoding, align, ignored, 3596 skip_beyond_mapped_ram, PAGE_SIZE - 1); 3597 test_vmcs_addr(name, encoding, align, ignored, 3598 skip_beyond_mapped_ram, PAGE_SIZE); 3599 test_vmcs_addr(name, encoding, align, ignored, 3600 skip_beyond_mapped_ram, 3601 (1ul << cpuid_maxphyaddr()) - PAGE_SIZE); 3602 test_vmcs_addr(name, encoding, align, ignored, 3603 skip_beyond_mapped_ram, -1ul); 3604 3605 vmcs_write(encoding, orig_val); 3606 } 3607 3608 /* 3609 * Test a physical address reference in the VMCS, when the corresponding 3610 * feature is enabled and when the corresponding feature is disabled. 3611 */ 3612 static void test_vmcs_addr_reference(u32 control_bit, enum Encoding field, 3613 const char *field_name, 3614 const char *control_name, u64 align, 3615 bool skip_beyond_mapped_ram, 3616 bool control_primary) 3617 { 3618 u32 primary = vmcs_read(CPU_EXEC_CTRL0); 3619 u32 secondary = vmcs_read(CPU_EXEC_CTRL1); 3620 u64 page_addr; 3621 3622 if (control_primary) { 3623 if (!(ctrl_cpu_rev[0].clr & control_bit)) 3624 return; 3625 } else { 3626 if (!(ctrl_cpu_rev[1].clr & control_bit)) 3627 return; 3628 } 3629 3630 page_addr = vmcs_read(field); 3631 3632 report_prefix_pushf("%s enabled", control_name); 3633 if (control_primary) { 3634 vmcs_write(CPU_EXEC_CTRL0, primary | control_bit); 3635 } else { 3636 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); 3637 vmcs_write(CPU_EXEC_CTRL1, secondary | control_bit); 3638 } 3639 3640 test_vmcs_addr_values(field_name, field, align, false, 3641 skip_beyond_mapped_ram, 0, 63); 3642 report_prefix_pop(); 3643 3644 report_prefix_pushf("%s disabled", control_name); 3645 if (control_primary) { 3646 vmcs_write(CPU_EXEC_CTRL0, primary & ~control_bit); 3647 } else { 3648 vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY); 3649 vmcs_write(CPU_EXEC_CTRL1, secondary & ~control_bit); 3650 } 3651 3652 test_vmcs_addr_values(field_name, field, align, true, false, 0, 63); 3653 report_prefix_pop(); 3654 3655 vmcs_write(field, page_addr); 3656 vmcs_write(CPU_EXEC_CTRL0, primary); 3657 vmcs_write(CPU_EXEC_CTRL1, secondary); 3658 } 3659 3660 /* 3661 * If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of 3662 * each I/O-bitmap address must be 0. Neither address should set any 3663 * bits beyond the processor's physical-address width. 3664 * [Intel SDM] 3665 */ 3666 static void test_io_bitmaps(void) 3667 { 3668 test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_A, 3669 "I/O bitmap A", "Use I/O bitmaps", 3670 PAGE_SIZE, false, true); 3671 test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_B, 3672 "I/O bitmap B", "Use I/O bitmaps", 3673 PAGE_SIZE, false, true); 3674 } 3675 3676 /* 3677 * If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of 3678 * the MSR-bitmap address must be 0. The address should not set any 3679 * bits beyond the processor's physical-address width. 3680 * [Intel SDM] 3681 */ 3682 static void test_msr_bitmap(void) 3683 { 3684 test_vmcs_addr_reference(CPU_MSR_BITMAP, MSR_BITMAP, 3685 "MSR bitmap", "Use MSR bitmaps", 3686 PAGE_SIZE, false, true); 3687 } 3688 3689 /* 3690 * If the "use TPR shadow" VM-execution control is 1, the virtual-APIC 3691 * address must satisfy the following checks: 3692 * - Bits 11:0 of the address must be 0. 3693 * - The address should not set any bits beyond the processor's 3694 * physical-address width. 3695 * [Intel SDM] 3696 */ 3697 static void test_apic_virt_addr(void) 3698 { 3699 /* 3700 * Ensure the processor will never use the virtual-APIC page, since 3701 * we will point it to invalid RAM. Otherwise KVM is puzzled about 3702 * what we're trying to achieve and fails vmentry. 3703 */ 3704 u32 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0); 3705 vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0 | CPU_CR8_LOAD | CPU_CR8_STORE); 3706 test_vmcs_addr_reference(CPU_TPR_SHADOW, APIC_VIRT_ADDR, 3707 "virtual-APIC address", "Use TPR shadow", 3708 PAGE_SIZE, false, true); 3709 vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0); 3710 } 3711 3712 /* 3713 * If the "virtualize APIC-accesses" VM-execution control is 1, the 3714 * APIC-access address must satisfy the following checks: 3715 * - Bits 11:0 of the address must be 0. 3716 * - The address should not set any bits beyond the processor's 3717 * physical-address width. 3718 * [Intel SDM] 3719 */ 3720 static void test_apic_access_addr(void) 3721 { 3722 void *apic_access_page = alloc_page(); 3723 3724 vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_page)); 3725 3726 test_vmcs_addr_reference(CPU_VIRT_APIC_ACCESSES, APIC_ACCS_ADDR, 3727 "APIC-access address", 3728 "virtualize APIC-accesses", PAGE_SIZE, 3729 true, false); 3730 } 3731 3732 static bool set_bit_pattern(u8 mask, u32 *secondary) 3733 { 3734 u8 i; 3735 bool flag = false; 3736 u32 test_bits[3] = { 3737 CPU_VIRT_X2APIC, 3738 CPU_APIC_REG_VIRT, 3739 CPU_VINTD 3740 }; 3741 3742 for (i = 0; i < ARRAY_SIZE(test_bits); i++) { 3743 if ((mask & (1u << i)) && 3744 (ctrl_cpu_rev[1].clr & test_bits[i])) { 3745 *secondary |= test_bits[i]; 3746 flag = true; 3747 } 3748 } 3749 3750 return (flag); 3751 } 3752 3753 /* 3754 * If the "use TPR shadow" VM-execution control is 0, the following 3755 * VM-execution controls must also be 0: 3756 * - virtualize x2APIC mode 3757 * - APIC-register virtualization 3758 * - virtual-interrupt delivery 3759 * [Intel SDM] 3760 * 3761 * 2. If the "virtualize x2APIC mode" VM-execution control is 1, the 3762 * "virtualize APIC accesses" VM-execution control must be 0. 3763 * [Intel SDM] 3764 */ 3765 static void test_apic_virtual_ctls(void) 3766 { 3767 u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); 3768 u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); 3769 u32 primary = saved_primary; 3770 u32 secondary = saved_secondary; 3771 bool is_ctrl_valid = false; 3772 char str[10] = "disabled"; 3773 u8 i = 0, j; 3774 3775 /* 3776 * First test 3777 */ 3778 if (!((ctrl_cpu_rev[0].clr & (CPU_SECONDARY | CPU_TPR_SHADOW)) == 3779 (CPU_SECONDARY | CPU_TPR_SHADOW))) 3780 return; 3781 3782 primary |= CPU_SECONDARY; 3783 primary &= ~CPU_TPR_SHADOW; 3784 vmcs_write(CPU_EXEC_CTRL0, primary); 3785 3786 while (1) { 3787 for (j = 1; j < 8; j++) { 3788 secondary &= ~(CPU_VIRT_X2APIC | CPU_APIC_REG_VIRT | CPU_VINTD); 3789 if (primary & CPU_TPR_SHADOW) { 3790 is_ctrl_valid = true; 3791 } else { 3792 if (! set_bit_pattern(j, &secondary)) 3793 is_ctrl_valid = true; 3794 else 3795 is_ctrl_valid = false; 3796 } 3797 3798 vmcs_write(CPU_EXEC_CTRL1, secondary); 3799 report_prefix_pushf("Use TPR shadow %s, virtualize x2APIC mode %s, APIC-register virtualization %s, virtual-interrupt delivery %s", 3800 str, (secondary & CPU_VIRT_X2APIC) ? "enabled" : "disabled", (secondary & CPU_APIC_REG_VIRT) ? "enabled" : "disabled", (secondary & CPU_VINTD) ? "enabled" : "disabled"); 3801 if (is_ctrl_valid) 3802 test_vmx_valid_controls(); 3803 else 3804 test_vmx_invalid_controls(); 3805 report_prefix_pop(); 3806 } 3807 3808 if (i == 1) 3809 break; 3810 i++; 3811 3812 primary |= CPU_TPR_SHADOW; 3813 vmcs_write(CPU_EXEC_CTRL0, primary); 3814 strcpy(str, "enabled"); 3815 } 3816 3817 /* 3818 * Second test 3819 */ 3820 u32 apic_virt_ctls = (CPU_VIRT_X2APIC | CPU_VIRT_APIC_ACCESSES); 3821 3822 primary = saved_primary; 3823 secondary = saved_secondary; 3824 if (!((ctrl_cpu_rev[1].clr & apic_virt_ctls) == apic_virt_ctls)) 3825 return; 3826 3827 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); 3828 secondary &= ~CPU_VIRT_APIC_ACCESSES; 3829 vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_X2APIC); 3830 report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access disabled"); 3831 test_vmx_valid_controls(); 3832 report_prefix_pop(); 3833 3834 vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_APIC_ACCESSES); 3835 report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access enabled"); 3836 test_vmx_valid_controls(); 3837 report_prefix_pop(); 3838 3839 vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_X2APIC); 3840 report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access enabled"); 3841 test_vmx_invalid_controls(); 3842 report_prefix_pop(); 3843 3844 vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_APIC_ACCESSES); 3845 report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access disabled"); 3846 test_vmx_valid_controls(); 3847 report_prefix_pop(); 3848 3849 vmcs_write(CPU_EXEC_CTRL0, saved_primary); 3850 vmcs_write(CPU_EXEC_CTRL1, saved_secondary); 3851 } 3852 3853 /* 3854 * If the "virtual-interrupt delivery" VM-execution control is 1, the 3855 * "external-interrupt exiting" VM-execution control must be 1. 3856 * [Intel SDM] 3857 */ 3858 static void test_virtual_intr_ctls(void) 3859 { 3860 u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); 3861 u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); 3862 u32 saved_pin = vmcs_read(PIN_CONTROLS); 3863 u32 primary = saved_primary; 3864 u32 secondary = saved_secondary; 3865 u32 pin = saved_pin; 3866 3867 if (!((ctrl_cpu_rev[1].clr & CPU_VINTD) && 3868 (ctrl_pin_rev.clr & PIN_EXTINT))) 3869 return; 3870 3871 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW); 3872 vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VINTD); 3873 vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT); 3874 report_prefix_pushf("Virtualize interrupt-delivery disabled; external-interrupt exiting disabled"); 3875 test_vmx_valid_controls(); 3876 report_prefix_pop(); 3877 3878 vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VINTD); 3879 report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled"); 3880 test_vmx_invalid_controls(); 3881 report_prefix_pop(); 3882 3883 vmcs_write(PIN_CONTROLS, pin | PIN_EXTINT); 3884 report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting enabled"); 3885 test_vmx_valid_controls(); 3886 report_prefix_pop(); 3887 3888 vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT); 3889 report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled"); 3890 test_vmx_invalid_controls(); 3891 report_prefix_pop(); 3892 3893 vmcs_write(CPU_EXEC_CTRL0, saved_primary); 3894 vmcs_write(CPU_EXEC_CTRL1, saved_secondary); 3895 vmcs_write(PIN_CONTROLS, saved_pin); 3896 } 3897 3898 static void test_pi_desc_addr(u64 addr, bool is_ctrl_valid) 3899 { 3900 vmcs_write(POSTED_INTR_DESC_ADDR, addr); 3901 report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-descriptor-address 0x%lx", addr); 3902 if (is_ctrl_valid) 3903 test_vmx_valid_controls(); 3904 else 3905 test_vmx_invalid_controls(); 3906 report_prefix_pop(); 3907 } 3908 3909 /* 3910 * If the "process posted interrupts" VM-execution control is 1, the 3911 * following must be true: 3912 * 3913 * - The "virtual-interrupt delivery" VM-execution control is 1. 3914 * - The "acknowledge interrupt on exit" VM-exit control is 1. 3915 * - The posted-interrupt notification vector has a value in the 3916 * - range 0 - 255 (bits 15:8 are all 0). 3917 * - Bits 5:0 of the posted-interrupt descriptor address are all 0. 3918 * - The posted-interrupt descriptor address does not set any bits 3919 * beyond the processor's physical-address width. 3920 * [Intel SDM] 3921 */ 3922 static void test_posted_intr(void) 3923 { 3924 u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); 3925 u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); 3926 u32 saved_pin = vmcs_read(PIN_CONTROLS); 3927 u32 exit_ctl_saved = vmcs_read(EXI_CONTROLS); 3928 u32 primary = saved_primary; 3929 u32 secondary = saved_secondary; 3930 u32 pin = saved_pin; 3931 u32 exit_ctl = exit_ctl_saved; 3932 u16 vec; 3933 int i; 3934 3935 if (!((ctrl_pin_rev.clr & PIN_POST_INTR) && 3936 (ctrl_cpu_rev[1].clr & CPU_VINTD) && 3937 (ctrl_exit_rev.clr & EXI_INTA))) 3938 return; 3939 3940 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW); 3941 3942 /* 3943 * Test virtual-interrupt-delivery and acknowledge-interrupt-on-exit 3944 */ 3945 pin |= PIN_POST_INTR; 3946 vmcs_write(PIN_CONTROLS, pin); 3947 secondary &= ~CPU_VINTD; 3948 vmcs_write(CPU_EXEC_CTRL1, secondary); 3949 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled"); 3950 test_vmx_invalid_controls(); 3951 report_prefix_pop(); 3952 3953 secondary |= CPU_VINTD; 3954 vmcs_write(CPU_EXEC_CTRL1, secondary); 3955 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled"); 3956 test_vmx_invalid_controls(); 3957 report_prefix_pop(); 3958 3959 exit_ctl &= ~EXI_INTA; 3960 vmcs_write(EXI_CONTROLS, exit_ctl); 3961 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit disabled"); 3962 test_vmx_invalid_controls(); 3963 report_prefix_pop(); 3964 3965 exit_ctl |= EXI_INTA; 3966 vmcs_write(EXI_CONTROLS, exit_ctl); 3967 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled"); 3968 test_vmx_valid_controls(); 3969 report_prefix_pop(); 3970 3971 secondary &= ~CPU_VINTD; 3972 vmcs_write(CPU_EXEC_CTRL1, secondary); 3973 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled; acknowledge-interrupt-on-exit enabled"); 3974 test_vmx_invalid_controls(); 3975 report_prefix_pop(); 3976 3977 secondary |= CPU_VINTD; 3978 vmcs_write(CPU_EXEC_CTRL1, secondary); 3979 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled"); 3980 test_vmx_valid_controls(); 3981 report_prefix_pop(); 3982 3983 /* 3984 * Test posted-interrupt notification vector 3985 */ 3986 for (i = 0; i < 8; i++) { 3987 vec = (1ul << i); 3988 vmcs_write(PINV, vec); 3989 report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); 3990 test_vmx_valid_controls(); 3991 report_prefix_pop(); 3992 } 3993 for (i = 8; i < 16; i++) { 3994 vec = (1ul << i); 3995 vmcs_write(PINV, vec); 3996 report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); 3997 test_vmx_invalid_controls(); 3998 report_prefix_pop(); 3999 } 4000 4001 vec &= ~(0xff << 8); 4002 vmcs_write(PINV, vec); 4003 report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); 4004 test_vmx_valid_controls(); 4005 report_prefix_pop(); 4006 4007 /* 4008 * Test posted-interrupt descriptor address 4009 */ 4010 for (i = 0; i < 6; i++) { 4011 test_pi_desc_addr(1ul << i, false); 4012 } 4013 4014 test_pi_desc_addr(0xf0, false); 4015 test_pi_desc_addr(0xff, false); 4016 test_pi_desc_addr(0x0f, false); 4017 test_pi_desc_addr(0x8000, true); 4018 test_pi_desc_addr(0x00, true); 4019 test_pi_desc_addr(0xc000, true); 4020 4021 test_vmcs_addr_values("process-posted interrupts", 4022 POSTED_INTR_DESC_ADDR, 64, 4023 false, false, 0, 63); 4024 4025 vmcs_write(CPU_EXEC_CTRL0, saved_primary); 4026 vmcs_write(CPU_EXEC_CTRL1, saved_secondary); 4027 vmcs_write(PIN_CONTROLS, saved_pin); 4028 } 4029 4030 static void test_apic_ctls(void) 4031 { 4032 test_apic_virt_addr(); 4033 test_apic_access_addr(); 4034 test_apic_virtual_ctls(); 4035 test_virtual_intr_ctls(); 4036 test_posted_intr(); 4037 } 4038 4039 /* 4040 * If the "enable VPID" VM-execution control is 1, the value of the 4041 * of the VPID VM-execution control field must not be 0000H. 4042 * [Intel SDM] 4043 */ 4044 static void test_vpid(void) 4045 { 4046 u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); 4047 u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); 4048 u16 vpid = 0x0000; 4049 int i; 4050 4051 if (!is_vpid_supported()) { 4052 report_skip("%s : Secondary controls and/or VPID not supported", __func__); 4053 return; 4054 } 4055 4056 vmcs_write(CPU_EXEC_CTRL0, saved_primary | CPU_SECONDARY); 4057 vmcs_write(CPU_EXEC_CTRL1, saved_secondary & ~CPU_VPID); 4058 vmcs_write(VPID, vpid); 4059 report_prefix_pushf("VPID disabled; VPID value %x", vpid); 4060 test_vmx_valid_controls(); 4061 report_prefix_pop(); 4062 4063 vmcs_write(CPU_EXEC_CTRL1, saved_secondary | CPU_VPID); 4064 report_prefix_pushf("VPID enabled; VPID value %x", vpid); 4065 test_vmx_invalid_controls(); 4066 report_prefix_pop(); 4067 4068 for (i = 0; i < 16; i++) { 4069 vpid = (short)1 << i;; 4070 vmcs_write(VPID, vpid); 4071 report_prefix_pushf("VPID enabled; VPID value %x", vpid); 4072 test_vmx_valid_controls(); 4073 report_prefix_pop(); 4074 } 4075 4076 vmcs_write(CPU_EXEC_CTRL0, saved_primary); 4077 vmcs_write(CPU_EXEC_CTRL1, saved_secondary); 4078 } 4079 4080 static void set_vtpr(unsigned vtpr) 4081 { 4082 *(u32 *)phys_to_virt(vmcs_read(APIC_VIRT_ADDR) + APIC_TASKPRI) = vtpr; 4083 } 4084 4085 static void try_tpr_threshold_and_vtpr(unsigned threshold, unsigned vtpr) 4086 { 4087 bool valid = true; 4088 u32 primary = vmcs_read(CPU_EXEC_CTRL0); 4089 u32 secondary = vmcs_read(CPU_EXEC_CTRL1); 4090 4091 if ((primary & CPU_TPR_SHADOW) && 4092 (!(primary & CPU_SECONDARY) || 4093 !(secondary & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)))) 4094 valid = (threshold & 0xf) <= ((vtpr >> 4) & 0xf); 4095 4096 set_vtpr(vtpr); 4097 report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0x%x", 4098 threshold, (vtpr >> 4) & 0xf); 4099 if (valid) 4100 test_vmx_valid_controls(); 4101 else 4102 test_vmx_invalid_controls(); 4103 report_prefix_pop(); 4104 } 4105 4106 static void test_invalid_event_injection(void) 4107 { 4108 u32 ent_intr_info_save = vmcs_read(ENT_INTR_INFO); 4109 u32 ent_intr_error_save = vmcs_read(ENT_INTR_ERROR); 4110 u32 ent_inst_len_save = vmcs_read(ENT_INST_LEN); 4111 u32 primary_save = vmcs_read(CPU_EXEC_CTRL0); 4112 u32 secondary_save = vmcs_read(CPU_EXEC_CTRL1); 4113 u64 guest_cr0_save = vmcs_read(GUEST_CR0); 4114 u32 ent_intr_info_base = INTR_INFO_VALID_MASK; 4115 u32 ent_intr_info, ent_intr_err, ent_intr_len; 4116 u32 cnt; 4117 4118 /* Setup */ 4119 report_prefix_push("invalid event injection"); 4120 vmcs_write(ENT_INTR_ERROR, 0x00000000); 4121 vmcs_write(ENT_INST_LEN, 0x00000001); 4122 4123 /* The field's interruption type is not set to a reserved value. */ 4124 ent_intr_info = ent_intr_info_base | INTR_TYPE_RESERVED | DE_VECTOR; 4125 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4126 "RESERVED interruption type invalid [-]", 4127 ent_intr_info); 4128 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4129 test_vmx_invalid_controls(); 4130 report_prefix_pop(); 4131 4132 ent_intr_info = ent_intr_info_base | INTR_TYPE_EXT_INTR | 4133 DE_VECTOR; 4134 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4135 "RESERVED interruption type invalid [+]", 4136 ent_intr_info); 4137 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4138 test_vmx_valid_controls(); 4139 report_prefix_pop(); 4140 4141 /* If the interruption type is other event, the vector is 0. */ 4142 ent_intr_info = ent_intr_info_base | INTR_TYPE_OTHER_EVENT | DB_VECTOR; 4143 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4144 "(OTHER EVENT && vector != 0) invalid [-]", 4145 ent_intr_info); 4146 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4147 test_vmx_invalid_controls(); 4148 report_prefix_pop(); 4149 4150 /* If the interruption type is NMI, the vector is 2 (negative case). */ 4151 ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | DE_VECTOR; 4152 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4153 "(NMI && vector != 2) invalid [-]", ent_intr_info); 4154 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4155 test_vmx_invalid_controls(); 4156 report_prefix_pop(); 4157 4158 /* If the interruption type is NMI, the vector is 2 (positive case). */ 4159 ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | NMI_VECTOR; 4160 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4161 "(NMI && vector == 2) valid [+]", ent_intr_info); 4162 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4163 test_vmx_valid_controls(); 4164 report_prefix_pop(); 4165 4166 /* 4167 * If the interruption type 4168 * is HW exception, the vector is at most 31. 4169 */ 4170 ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 0x20; 4171 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4172 "(HW exception && vector > 31) invalid [-]", 4173 ent_intr_info); 4174 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4175 test_vmx_invalid_controls(); 4176 report_prefix_pop(); 4177 4178 /* 4179 * deliver-error-code is 1 iff either 4180 * (a) the "unrestricted guest" VM-execution control is 0 4181 * (b) CR0.PE is set. 4182 */ 4183 4184 /* Assert that unrestricted guest is disabled or unsupported */ 4185 assert(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 4186 !(secondary_save & CPU_URG)); 4187 4188 ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 4189 GP_VECTOR; 4190 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4191 "error code <-> (!URG || prot_mode) [-]", 4192 ent_intr_info); 4193 vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); 4194 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4195 if (basic_msr.no_hw_errcode_cc) 4196 test_vmx_valid_controls(); 4197 else 4198 test_vmx_invalid_controls(); 4199 report_prefix_pop(); 4200 4201 ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | 4202 INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; 4203 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4204 "error code <-> (!URG || prot_mode) [+]", 4205 ent_intr_info); 4206 vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); 4207 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4208 test_vmx_valid_controls(); 4209 report_prefix_pop(); 4210 4211 if (enable_unrestricted_guest(false)) 4212 goto skip_unrestricted_guest; 4213 4214 ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | 4215 INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; 4216 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4217 "error code <-> (!URG || prot_mode) [-]", 4218 ent_intr_info); 4219 vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); 4220 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4221 test_vmx_invalid_controls(); 4222 report_prefix_pop(); 4223 4224 ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 4225 GP_VECTOR; 4226 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4227 "error code <-> (!URG || prot_mode) [-]", 4228 ent_intr_info); 4229 vmcs_write(GUEST_CR0, guest_cr0_save | X86_CR0_PE); 4230 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4231 if (basic_msr.no_hw_errcode_cc) 4232 test_vmx_valid_controls(); 4233 else 4234 test_vmx_invalid_controls(); 4235 report_prefix_pop(); 4236 4237 vmcs_write(CPU_EXEC_CTRL1, secondary_save); 4238 vmcs_write(CPU_EXEC_CTRL0, primary_save); 4239 4240 skip_unrestricted_guest: 4241 vmcs_write(GUEST_CR0, guest_cr0_save); 4242 4243 /* deliver-error-code is 1 iff the interruption type is HW exception */ 4244 report_prefix_push("error code <-> HW exception"); 4245 for (cnt = 0; cnt < 8; cnt++) { 4246 u32 exception_type_mask = cnt << 8; 4247 u32 deliver_error_code_mask = 4248 exception_type_mask != INTR_TYPE_HARD_EXCEPTION ? 4249 INTR_INFO_DELIVER_CODE_MASK : 0; 4250 4251 ent_intr_info = ent_intr_info_base | deliver_error_code_mask | 4252 exception_type_mask | GP_VECTOR; 4253 report_prefix_pushf("VM-entry intr info=0x%x [-]", 4254 ent_intr_info); 4255 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4256 if (exception_type_mask == INTR_TYPE_HARD_EXCEPTION && 4257 basic_msr.no_hw_errcode_cc) 4258 test_vmx_valid_controls(); 4259 else 4260 test_vmx_invalid_controls(); 4261 report_prefix_pop(); 4262 } 4263 report_prefix_pop(); 4264 4265 /* 4266 * deliver-error-code is 1 iff the the vector 4267 * indicates an exception that would normally deliver an error code 4268 */ 4269 report_prefix_push("error code <-> vector delivers error code"); 4270 for (cnt = 0; cnt < 32; cnt++) { 4271 bool has_error_code = false; 4272 u32 deliver_error_code_mask; 4273 4274 switch (cnt) { 4275 case DF_VECTOR: 4276 case TS_VECTOR: 4277 case NP_VECTOR: 4278 case SS_VECTOR: 4279 case GP_VECTOR: 4280 case PF_VECTOR: 4281 case AC_VECTOR: 4282 has_error_code = true; 4283 case CP_VECTOR: 4284 /* Some CPUs have error code and some do not, skip */ 4285 continue; 4286 } 4287 4288 /* Negative case */ 4289 deliver_error_code_mask = has_error_code ? 4290 0 : 4291 INTR_INFO_DELIVER_CODE_MASK; 4292 ent_intr_info = ent_intr_info_base | deliver_error_code_mask | 4293 INTR_TYPE_HARD_EXCEPTION | cnt; 4294 report_prefix_pushf("VM-entry intr info=0x%x [-]", 4295 ent_intr_info); 4296 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4297 if (basic_msr.no_hw_errcode_cc) 4298 test_vmx_valid_controls(); 4299 else 4300 test_vmx_invalid_controls(); 4301 report_prefix_pop(); 4302 4303 /* Positive case */ 4304 deliver_error_code_mask = has_error_code ? 4305 INTR_INFO_DELIVER_CODE_MASK : 4306 0; 4307 ent_intr_info = ent_intr_info_base | deliver_error_code_mask | 4308 INTR_TYPE_HARD_EXCEPTION | cnt; 4309 report_prefix_pushf("VM-entry intr info=0x%x [+]", 4310 ent_intr_info); 4311 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4312 test_vmx_valid_controls(); 4313 report_prefix_pop(); 4314 } 4315 report_prefix_pop(); 4316 4317 /* Reserved bits in the field (30:12) are 0. */ 4318 report_prefix_push("reserved bits clear"); 4319 for (cnt = 12; cnt <= 30; cnt++) { 4320 ent_intr_info = ent_intr_info_base | 4321 INTR_INFO_DELIVER_CODE_MASK | 4322 INTR_TYPE_HARD_EXCEPTION | GP_VECTOR | 4323 (1U << cnt); 4324 report_prefix_pushf("VM-entry intr info=0x%x [-]", 4325 ent_intr_info); 4326 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4327 test_vmx_invalid_controls(); 4328 report_prefix_pop(); 4329 } 4330 report_prefix_pop(); 4331 4332 /* 4333 * If deliver-error-code is 1 4334 * bits 31:16 of the VM-entry exception error-code field are 0. 4335 */ 4336 ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | 4337 INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; 4338 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4339 "VM-entry exception error code[31:16] clear", 4340 ent_intr_info); 4341 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4342 for (cnt = 16; cnt <= 31; cnt++) { 4343 ent_intr_err = 1U << cnt; 4344 report_prefix_pushf("VM-entry intr error=0x%x [-]", 4345 ent_intr_err); 4346 vmcs_write(ENT_INTR_ERROR, ent_intr_err); 4347 test_vmx_invalid_controls(); 4348 report_prefix_pop(); 4349 } 4350 vmcs_write(ENT_INTR_ERROR, 0x00000000); 4351 report_prefix_pop(); 4352 4353 /* 4354 * If the interruption type is software interrupt, software exception, 4355 * or privileged software exception, the VM-entry instruction-length 4356 * field is in the range 0 - 15. 4357 */ 4358 4359 for (cnt = 0; cnt < 3; cnt++) { 4360 switch (cnt) { 4361 case 0: 4362 ent_intr_info = ent_intr_info_base | 4363 INTR_TYPE_SOFT_INTR; 4364 break; 4365 case 1: 4366 ent_intr_info = ent_intr_info_base | 4367 INTR_TYPE_SOFT_EXCEPTION; 4368 break; 4369 case 2: 4370 ent_intr_info = ent_intr_info_base | 4371 INTR_TYPE_PRIV_SW_EXCEPTION; 4372 break; 4373 } 4374 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4375 "VM-entry instruction-length check", 4376 ent_intr_info); 4377 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4378 4379 /* Instruction length set to -1 (0xFFFFFFFF) should fail */ 4380 ent_intr_len = -1; 4381 report_prefix_pushf("VM-entry intr length = 0x%x [-]", 4382 ent_intr_len); 4383 vmcs_write(ENT_INST_LEN, ent_intr_len); 4384 test_vmx_invalid_controls(); 4385 report_prefix_pop(); 4386 4387 /* Instruction length set to 16 should fail */ 4388 ent_intr_len = 0x00000010; 4389 report_prefix_pushf("VM-entry intr length = 0x%x [-]", 4390 ent_intr_len); 4391 vmcs_write(ENT_INST_LEN, 0x00000010); 4392 test_vmx_invalid_controls(); 4393 report_prefix_pop(); 4394 4395 report_prefix_pop(); 4396 } 4397 4398 /* Cleanup */ 4399 vmcs_write(ENT_INTR_INFO, ent_intr_info_save); 4400 vmcs_write(ENT_INTR_ERROR, ent_intr_error_save); 4401 vmcs_write(ENT_INST_LEN, ent_inst_len_save); 4402 vmcs_write(CPU_EXEC_CTRL0, primary_save); 4403 vmcs_write(CPU_EXEC_CTRL1, secondary_save); 4404 vmcs_write(GUEST_CR0, guest_cr0_save); 4405 report_prefix_pop(); 4406 } 4407 4408 /* 4409 * Test interesting vTPR values for a given TPR threshold. 4410 */ 4411 static void test_vtpr_values(unsigned threshold) 4412 { 4413 try_tpr_threshold_and_vtpr(threshold, (threshold - 1) << 4); 4414 try_tpr_threshold_and_vtpr(threshold, threshold << 4); 4415 try_tpr_threshold_and_vtpr(threshold, (threshold + 1) << 4); 4416 } 4417 4418 static void try_tpr_threshold(unsigned threshold) 4419 { 4420 bool valid = true; 4421 4422 u32 primary = vmcs_read(CPU_EXEC_CTRL0); 4423 u32 secondary = vmcs_read(CPU_EXEC_CTRL1); 4424 4425 if ((primary & CPU_TPR_SHADOW) && !((primary & CPU_SECONDARY) && 4426 (secondary & CPU_VINTD))) 4427 valid = !(threshold >> 4); 4428 4429 set_vtpr(-1); 4430 vmcs_write(TPR_THRESHOLD, threshold); 4431 report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0xf", threshold); 4432 if (valid) 4433 test_vmx_valid_controls(); 4434 else 4435 test_vmx_invalid_controls(); 4436 report_prefix_pop(); 4437 4438 if (valid) 4439 test_vtpr_values(threshold); 4440 } 4441 4442 /* 4443 * Test interesting TPR threshold values. 4444 */ 4445 static void test_tpr_threshold_values(void) 4446 { 4447 unsigned i; 4448 4449 for (i = 0; i < 0x10; i++) 4450 try_tpr_threshold(i); 4451 for (i = 4; i < 32; i++) 4452 try_tpr_threshold(1u << i); 4453 try_tpr_threshold(-1u); 4454 try_tpr_threshold(0x7fffffff); 4455 } 4456 4457 /* 4458 * This test covers the following two VM entry checks: 4459 * 4460 * i) If the "use TPR shadow" VM-execution control is 1 and the 4461 * "virtual-interrupt delivery" VM-execution control is 0, bits 4462 * 31:4 of the TPR threshold VM-execution control field must 4463 be 0. 4464 * [Intel SDM] 4465 * 4466 * ii) If the "use TPR shadow" VM-execution control is 1, the 4467 * "virtual-interrupt delivery" VM-execution control is 0 4468 * and the "virtualize APIC accesses" VM-execution control 4469 * is 0, the value of bits 3:0 of the TPR threshold VM-execution 4470 * control field must not be greater than the value of bits 4471 * 7:4 of VTPR. 4472 * [Intel SDM] 4473 */ 4474 static void test_tpr_threshold(void) 4475 { 4476 u32 primary = vmcs_read(CPU_EXEC_CTRL0); 4477 u64 apic_virt_addr = vmcs_read(APIC_VIRT_ADDR); 4478 u64 threshold = vmcs_read(TPR_THRESHOLD); 4479 void *virtual_apic_page; 4480 4481 if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) 4482 return; 4483 4484 virtual_apic_page = alloc_page(); 4485 memset(virtual_apic_page, 0xff, PAGE_SIZE); 4486 vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); 4487 4488 vmcs_write(CPU_EXEC_CTRL0, primary & ~(CPU_TPR_SHADOW | CPU_SECONDARY)); 4489 report_prefix_pushf("Use TPR shadow disabled, secondary controls disabled"); 4490 test_tpr_threshold_values(); 4491 report_prefix_pop(); 4492 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_TPR_SHADOW); 4493 report_prefix_pushf("Use TPR shadow enabled, secondary controls disabled"); 4494 test_tpr_threshold_values(); 4495 report_prefix_pop(); 4496 4497 if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && 4498 (ctrl_cpu_rev[1].clr & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)))) 4499 goto out; 4500 u32 secondary = vmcs_read(CPU_EXEC_CTRL1); 4501 4502 if (ctrl_cpu_rev[1].clr & CPU_VINTD) { 4503 vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD); 4504 report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled"); 4505 test_tpr_threshold_values(); 4506 report_prefix_pop(); 4507 4508 vmcs_write(CPU_EXEC_CTRL0, 4509 vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); 4510 report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled"); 4511 test_tpr_threshold_values(); 4512 report_prefix_pop(); 4513 } 4514 4515 if (ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES) { 4516 vmcs_write(CPU_EXEC_CTRL0, 4517 vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY); 4518 vmcs_write(CPU_EXEC_CTRL1, CPU_VIRT_APIC_ACCESSES); 4519 report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); 4520 test_tpr_threshold_values(); 4521 report_prefix_pop(); 4522 4523 vmcs_write(CPU_EXEC_CTRL0, 4524 vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); 4525 report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); 4526 test_tpr_threshold_values(); 4527 report_prefix_pop(); 4528 } 4529 4530 if ((ctrl_cpu_rev[1].clr & 4531 (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) == 4532 (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) { 4533 vmcs_write(CPU_EXEC_CTRL0, 4534 vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY); 4535 vmcs_write(CPU_EXEC_CTRL1, 4536 CPU_VINTD | CPU_VIRT_APIC_ACCESSES); 4537 report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); 4538 test_tpr_threshold_values(); 4539 report_prefix_pop(); 4540 4541 vmcs_write(CPU_EXEC_CTRL0, 4542 vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); 4543 report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); 4544 test_tpr_threshold_values(); 4545 report_prefix_pop(); 4546 } 4547 4548 vmcs_write(CPU_EXEC_CTRL1, secondary); 4549 out: 4550 vmcs_write(TPR_THRESHOLD, threshold); 4551 vmcs_write(APIC_VIRT_ADDR, apic_virt_addr); 4552 vmcs_write(CPU_EXEC_CTRL0, primary); 4553 } 4554 4555 /* 4556 * This test verifies the following two vmentry checks: 4557 * 4558 * If the "NMI exiting" VM-execution control is 0, "Virtual NMIs" 4559 * VM-execution control must be 0. 4560 * [Intel SDM] 4561 * 4562 * If the "virtual NMIs" VM-execution control is 0, the "NMI-window 4563 * exiting" VM-execution control must be 0. 4564 * [Intel SDM] 4565 */ 4566 static void test_nmi_ctrls(void) 4567 { 4568 u32 pin_ctrls, cpu_ctrls0, test_pin_ctrls, test_cpu_ctrls0; 4569 4570 if ((ctrl_pin_rev.clr & (PIN_NMI | PIN_VIRT_NMI)) != 4571 (PIN_NMI | PIN_VIRT_NMI)) { 4572 report_skip("%s : NMI exiting and/or Virtual NMIs not supported", __func__); 4573 return; 4574 } 4575 4576 /* Save the controls so that we can restore them after our tests */ 4577 pin_ctrls = vmcs_read(PIN_CONTROLS); 4578 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0); 4579 4580 test_pin_ctrls = pin_ctrls & ~(PIN_NMI | PIN_VIRT_NMI); 4581 test_cpu_ctrls0 = cpu_ctrls0 & ~CPU_NMI_WINDOW; 4582 4583 vmcs_write(PIN_CONTROLS, test_pin_ctrls); 4584 report_prefix_pushf("NMI-exiting disabled, virtual-NMIs disabled"); 4585 test_vmx_valid_controls(); 4586 report_prefix_pop(); 4587 4588 vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_VIRT_NMI); 4589 report_prefix_pushf("NMI-exiting disabled, virtual-NMIs enabled"); 4590 test_vmx_invalid_controls(); 4591 report_prefix_pop(); 4592 4593 vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); 4594 report_prefix_pushf("NMI-exiting enabled, virtual-NMIs enabled"); 4595 test_vmx_valid_controls(); 4596 report_prefix_pop(); 4597 4598 vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_NMI); 4599 report_prefix_pushf("NMI-exiting enabled, virtual-NMIs disabled"); 4600 test_vmx_valid_controls(); 4601 report_prefix_pop(); 4602 4603 if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) { 4604 report_info("NMI-window exiting is not supported, skipping..."); 4605 goto done; 4606 } 4607 4608 vmcs_write(PIN_CONTROLS, test_pin_ctrls); 4609 vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW); 4610 report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting enabled"); 4611 test_vmx_invalid_controls(); 4612 report_prefix_pop(); 4613 4614 vmcs_write(PIN_CONTROLS, test_pin_ctrls); 4615 vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0); 4616 report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting disabled"); 4617 test_vmx_valid_controls(); 4618 report_prefix_pop(); 4619 4620 vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); 4621 vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW); 4622 report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting enabled"); 4623 test_vmx_valid_controls(); 4624 report_prefix_pop(); 4625 4626 vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); 4627 vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0); 4628 report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting disabled"); 4629 test_vmx_valid_controls(); 4630 report_prefix_pop(); 4631 4632 /* Restore the controls to their original values */ 4633 vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0); 4634 done: 4635 vmcs_write(PIN_CONTROLS, pin_ctrls); 4636 } 4637 4638 static void test_eptp_ad_bit(u64 eptp, bool is_ctrl_valid) 4639 { 4640 vmcs_write(EPTP, eptp); 4641 report_prefix_pushf("Enable-EPT enabled; EPT accessed and dirty flag %s", 4642 (eptp & EPTP_AD_FLAG) ? "1": "0"); 4643 if (is_ctrl_valid) 4644 test_vmx_valid_controls(); 4645 else 4646 test_vmx_invalid_controls(); 4647 report_prefix_pop(); 4648 4649 } 4650 4651 /* 4652 * 1. If the "enable EPT" VM-execution control is 1, the "EPTP VM-execution" 4653 * control field must satisfy the following checks: 4654 * 4655 * - The EPT memory type (bits 2:0) must be a value supported by the 4656 * processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR. 4657 * - Bits 5:3 (1 less than the EPT page-walk length) must indicate a 4658 * supported EPT page-walk length. 4659 * - Bit 6 (enable bit for accessed and dirty flags for EPT) must be 4660 * 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP MSR is read as 0, 4661 * indicating that the processor does not support accessed and dirty 4662 * dirty flags for EPT. 4663 * - Reserved bits 11:7 and 63:N (where N is the processor's 4664 * physical-address width) must all be 0. 4665 * 4666 * 2. If the "unrestricted guest" VM-execution control is 1, the 4667 * "enable EPT" VM-execution control must also be 1. 4668 */ 4669 static void test_ept_eptp(void) 4670 { 4671 u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0); 4672 u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1); 4673 u64 eptp_saved = vmcs_read(EPTP); 4674 u32 secondary; 4675 u64 eptp; 4676 u32 i, maxphysaddr; 4677 u64 j, resv_bits_mask = 0; 4678 4679 if (__setup_ept(0xfed40000, false)) { 4680 report_skip("%s : EPT not supported", __func__); 4681 return; 4682 } 4683 4684 test_vmx_valid_controls(); 4685 4686 setup_dummy_ept(); 4687 4688 secondary = vmcs_read(CPU_EXEC_CTRL1); 4689 eptp = vmcs_read(EPTP); 4690 4691 for (i = 0; i < 8; i++) { 4692 eptp = (eptp & ~EPT_MEM_TYPE_MASK) | i; 4693 vmcs_write(EPTP, eptp); 4694 report_prefix_pushf("Enable-EPT enabled; EPT memory type %lu", 4695 eptp & EPT_MEM_TYPE_MASK); 4696 if (is_ept_memtype_supported(i)) 4697 test_vmx_valid_controls(); 4698 else 4699 test_vmx_invalid_controls(); 4700 report_prefix_pop(); 4701 } 4702 4703 eptp = (eptp & ~EPT_MEM_TYPE_MASK) | 6ul; 4704 4705 /* 4706 * Page walk length (bits 5:3). Note, the value in VMCS.EPTP "is 1 4707 * less than the EPT page-walk length". 4708 */ 4709 for (i = 0; i < 8; i++) { 4710 eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) | 4711 (i << EPTP_PG_WALK_LEN_SHIFT); 4712 4713 vmcs_write(EPTP, eptp); 4714 report_prefix_pushf("Enable-EPT enabled; EPT page walk length %lu", 4715 eptp & EPTP_PG_WALK_LEN_MASK); 4716 if (i == 3 || (i == 4 && is_5_level_ept_supported())) 4717 test_vmx_valid_controls(); 4718 else 4719 test_vmx_invalid_controls(); 4720 report_prefix_pop(); 4721 } 4722 4723 eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) | 4724 3ul << EPTP_PG_WALK_LEN_SHIFT; 4725 4726 /* 4727 * Accessed and dirty flag (bit 6) 4728 */ 4729 if (ept_ad_bits_supported()) { 4730 report_info("Processor supports accessed and dirty flag"); 4731 eptp &= ~EPTP_AD_FLAG; 4732 test_eptp_ad_bit(eptp, true); 4733 4734 eptp |= EPTP_AD_FLAG; 4735 test_eptp_ad_bit(eptp, true); 4736 } else { 4737 report_info("Processor does not supports accessed and dirty flag"); 4738 eptp &= ~EPTP_AD_FLAG; 4739 test_eptp_ad_bit(eptp, true); 4740 4741 eptp |= EPTP_AD_FLAG; 4742 test_eptp_ad_bit(eptp, false); 4743 } 4744 4745 /* 4746 * Reserved bits [11:7] and [63:N] 4747 */ 4748 for (i = 0; i < 32; i++) { 4749 eptp = (eptp & 4750 ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)) | 4751 (i << EPTP_RESERV_BITS_SHIFT); 4752 vmcs_write(EPTP, eptp); 4753 report_prefix_pushf("Enable-EPT enabled; reserved bits [11:7] %lu", 4754 (eptp >> EPTP_RESERV_BITS_SHIFT) & 4755 EPTP_RESERV_BITS_MASK); 4756 if (i == 0) 4757 test_vmx_valid_controls(); 4758 else 4759 test_vmx_invalid_controls(); 4760 report_prefix_pop(); 4761 } 4762 4763 eptp = (eptp & ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)); 4764 4765 maxphysaddr = cpuid_maxphyaddr(); 4766 for (i = 0; i < (63 - maxphysaddr + 1); i++) { 4767 resv_bits_mask |= 1ul << i; 4768 } 4769 4770 for (j = maxphysaddr - 1; j <= 63; j++) { 4771 eptp = (eptp & ~(resv_bits_mask << maxphysaddr)) | 4772 (j < maxphysaddr ? 0 : 1ul << j); 4773 vmcs_write(EPTP, eptp); 4774 report_prefix_pushf("Enable-EPT enabled; reserved bits [63:N] %lu", 4775 (eptp >> maxphysaddr) & resv_bits_mask); 4776 if (j < maxphysaddr) 4777 test_vmx_valid_controls(); 4778 else 4779 test_vmx_invalid_controls(); 4780 report_prefix_pop(); 4781 } 4782 4783 secondary &= ~(CPU_EPT | CPU_URG); 4784 vmcs_write(CPU_EXEC_CTRL1, secondary); 4785 report_prefix_pushf("Enable-EPT disabled, unrestricted-guest disabled"); 4786 test_vmx_valid_controls(); 4787 report_prefix_pop(); 4788 4789 if (!(ctrl_cpu_rev[1].clr & CPU_URG)) 4790 goto skip_unrestricted_guest; 4791 4792 secondary |= CPU_URG; 4793 vmcs_write(CPU_EXEC_CTRL1, secondary); 4794 report_prefix_pushf("Enable-EPT disabled, unrestricted-guest enabled"); 4795 test_vmx_invalid_controls(); 4796 report_prefix_pop(); 4797 4798 secondary |= CPU_EPT; 4799 setup_dummy_ept(); 4800 report_prefix_pushf("Enable-EPT enabled, unrestricted-guest enabled"); 4801 test_vmx_valid_controls(); 4802 report_prefix_pop(); 4803 4804 skip_unrestricted_guest: 4805 secondary &= ~CPU_URG; 4806 vmcs_write(CPU_EXEC_CTRL1, secondary); 4807 report_prefix_pushf("Enable-EPT enabled, unrestricted-guest disabled"); 4808 test_vmx_valid_controls(); 4809 report_prefix_pop(); 4810 4811 vmcs_write(CPU_EXEC_CTRL0, primary_saved); 4812 vmcs_write(CPU_EXEC_CTRL1, secondary_saved); 4813 vmcs_write(EPTP, eptp_saved); 4814 } 4815 4816 /* 4817 * If the 'enable PML' VM-execution control is 1, the 'enable EPT' 4818 * VM-execution control must also be 1. In addition, the PML address 4819 * must satisfy the following checks: 4820 * 4821 * * Bits 11:0 of the address must be 0. 4822 * * The address should not set any bits beyond the processor's 4823 * physical-address width. 4824 * 4825 * [Intel SDM] 4826 */ 4827 static void test_pml(void) 4828 { 4829 u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0); 4830 u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1); 4831 u32 primary = primary_saved; 4832 u32 secondary = secondary_saved; 4833 4834 if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && 4835 (ctrl_cpu_rev[1].clr & CPU_EPT) && (ctrl_cpu_rev[1].clr & CPU_PML))) { 4836 report_skip("%s : \"Secondary execution\" or \"enable EPT\" or \"enable PML\" control not supported", __func__); 4837 return; 4838 } 4839 4840 primary |= CPU_SECONDARY; 4841 vmcs_write(CPU_EXEC_CTRL0, primary); 4842 secondary &= ~(CPU_PML | CPU_EPT); 4843 vmcs_write(CPU_EXEC_CTRL1, secondary); 4844 report_prefix_pushf("enable-PML disabled, enable-EPT disabled"); 4845 test_vmx_valid_controls(); 4846 report_prefix_pop(); 4847 4848 secondary |= CPU_PML; 4849 vmcs_write(CPU_EXEC_CTRL1, secondary); 4850 report_prefix_pushf("enable-PML enabled, enable-EPT disabled"); 4851 test_vmx_invalid_controls(); 4852 report_prefix_pop(); 4853 4854 secondary |= CPU_EPT; 4855 setup_dummy_ept(); 4856 report_prefix_pushf("enable-PML enabled, enable-EPT enabled"); 4857 test_vmx_valid_controls(); 4858 report_prefix_pop(); 4859 4860 secondary &= ~CPU_PML; 4861 vmcs_write(CPU_EXEC_CTRL1, secondary); 4862 report_prefix_pushf("enable-PML disabled, enable EPT enabled"); 4863 test_vmx_valid_controls(); 4864 report_prefix_pop(); 4865 4866 test_vmcs_addr_reference(CPU_PML, PMLADDR, "PML address", "PML", 4867 PAGE_SIZE, false, false); 4868 4869 vmcs_write(CPU_EXEC_CTRL0, primary_saved); 4870 vmcs_write(CPU_EXEC_CTRL1, secondary_saved); 4871 } 4872 4873 /* 4874 * If the "activate VMX-preemption timer" VM-execution control is 0, the 4875 * the "save VMX-preemption timer value" VM-exit control must also be 0. 4876 * 4877 * [Intel SDM] 4878 */ 4879 static void test_vmx_preemption_timer(void) 4880 { 4881 u32 saved_pin = vmcs_read(PIN_CONTROLS); 4882 u32 saved_exit = vmcs_read(EXI_CONTROLS); 4883 u32 pin = saved_pin; 4884 u32 exit = saved_exit; 4885 4886 if (!((ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) || 4887 (ctrl_pin_rev.clr & PIN_PREEMPT))) { 4888 report_skip("%s : \"Save-VMX-preemption-timer\" and/or \"Enable-VMX-preemption-timer\" control not supported", __func__); 4889 return; 4890 } 4891 4892 pin |= PIN_PREEMPT; 4893 vmcs_write(PIN_CONTROLS, pin); 4894 exit &= ~EXI_SAVE_PREEMPT; 4895 vmcs_write(EXI_CONTROLS, exit); 4896 report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer disabled"); 4897 test_vmx_valid_controls(); 4898 report_prefix_pop(); 4899 4900 exit |= EXI_SAVE_PREEMPT; 4901 vmcs_write(EXI_CONTROLS, exit); 4902 report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer enabled"); 4903 test_vmx_valid_controls(); 4904 report_prefix_pop(); 4905 4906 pin &= ~PIN_PREEMPT; 4907 vmcs_write(PIN_CONTROLS, pin); 4908 report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer enabled"); 4909 test_vmx_invalid_controls(); 4910 report_prefix_pop(); 4911 4912 exit &= ~EXI_SAVE_PREEMPT; 4913 vmcs_write(EXI_CONTROLS, exit); 4914 report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer disabled"); 4915 test_vmx_valid_controls(); 4916 report_prefix_pop(); 4917 4918 vmcs_write(PIN_CONTROLS, saved_pin); 4919 vmcs_write(EXI_CONTROLS, saved_exit); 4920 } 4921 4922 extern unsigned char test_mtf1; 4923 extern unsigned char test_mtf2; 4924 extern unsigned char test_mtf3; 4925 extern unsigned char test_mtf4; 4926 4927 static void test_mtf_guest(void) 4928 { 4929 asm ("vmcall;\n\t" 4930 "out %al, $0x80;\n\t" 4931 "test_mtf1:\n\t" 4932 "vmcall;\n\t" 4933 "out %al, $0x80;\n\t" 4934 "test_mtf2:\n\t" 4935 /* 4936 * Prepare for the 'MOV CR3' test. Attempt to induce a 4937 * general-protection fault by moving a non-canonical address into 4938 * CR3. The 'MOV CR3' instruction does not take an imm64 operand, 4939 * so we must MOV the desired value into a register first. 4940 * 4941 * MOV RAX is done before the VMCALL such that MTF is only enabled 4942 * for the instruction under test. 4943 */ 4944 "mov $0xaaaaaaaaaaaaaaaa, %rax;\n\t" 4945 "vmcall;\n\t" 4946 "mov %rax, %cr3;\n\t" 4947 "test_mtf3:\n\t" 4948 "vmcall;\n\t" 4949 /* 4950 * ICEBP/INT1 instruction. Though the instruction is now 4951 * documented, don't rely on assemblers enumerating the 4952 * instruction. Resort to hand assembly. 4953 */ 4954 ".byte 0xf1;\n\t" 4955 "vmcall;\n\t" 4956 "test_mtf4:\n\t" 4957 "mov $0, %eax;\n\t"); 4958 } 4959 4960 static void test_mtf_gp_handler(struct ex_regs *regs) 4961 { 4962 regs->rip = (unsigned long) &test_mtf3; 4963 } 4964 4965 static void test_mtf_db_handler(struct ex_regs *regs) 4966 { 4967 } 4968 4969 static void enable_mtf(void) 4970 { 4971 u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 4972 4973 vmcs_write(CPU_EXEC_CTRL0, ctrl0 | CPU_MTF); 4974 } 4975 4976 static void disable_mtf(void) 4977 { 4978 u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 4979 4980 vmcs_write(CPU_EXEC_CTRL0, ctrl0 & ~CPU_MTF); 4981 } 4982 4983 static void enable_tf(void) 4984 { 4985 unsigned long rflags = vmcs_read(GUEST_RFLAGS); 4986 4987 vmcs_write(GUEST_RFLAGS, rflags | X86_EFLAGS_TF); 4988 } 4989 4990 static void disable_tf(void) 4991 { 4992 unsigned long rflags = vmcs_read(GUEST_RFLAGS); 4993 4994 vmcs_write(GUEST_RFLAGS, rflags & ~X86_EFLAGS_TF); 4995 } 4996 4997 static void report_mtf(const char *insn_name, unsigned long exp_rip) 4998 { 4999 unsigned long rip = vmcs_read(GUEST_RIP); 5000 5001 assert_exit_reason(VMX_MTF); 5002 report(rip == exp_rip, "MTF VM-exit after %s. RIP: 0x%lx (expected 0x%lx)", 5003 insn_name, rip, exp_rip); 5004 } 5005 5006 static void vmx_mtf_test(void) 5007 { 5008 unsigned long pending_dbg; 5009 handler old_gp, old_db; 5010 5011 if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) { 5012 report_skip("%s : \"Monitor trap flag\" exec control not supported", __func__); 5013 return; 5014 } 5015 5016 test_set_guest(test_mtf_guest); 5017 5018 /* Expect an MTF VM-exit after OUT instruction */ 5019 enter_guest(); 5020 skip_exit_vmcall(); 5021 5022 enable_mtf(); 5023 enter_guest(); 5024 report_mtf("OUT", (unsigned long) &test_mtf1); 5025 disable_mtf(); 5026 5027 /* 5028 * Concurrent #DB trap and MTF on instruction boundary. Expect MTF 5029 * VM-exit with populated 'pending debug exceptions' VMCS field. 5030 */ 5031 enter_guest(); 5032 skip_exit_vmcall(); 5033 5034 enable_mtf(); 5035 enable_tf(); 5036 5037 enter_guest(); 5038 report_mtf("OUT", (unsigned long) &test_mtf2); 5039 pending_dbg = vmcs_read(GUEST_PENDING_DEBUG); 5040 report(pending_dbg & DR6_BS, 5041 "'pending debug exceptions' field after MTF VM-exit: 0x%lx (expected 0x%lx)", 5042 pending_dbg, (unsigned long) DR6_BS); 5043 5044 disable_mtf(); 5045 disable_tf(); 5046 vmcs_write(GUEST_PENDING_DEBUG, 0); 5047 5048 /* 5049 * #GP exception takes priority over MTF. Expect MTF VM-exit with RIP 5050 * advanced to first instruction of #GP handler. 5051 */ 5052 enter_guest(); 5053 skip_exit_vmcall(); 5054 5055 old_gp = handle_exception(GP_VECTOR, test_mtf_gp_handler); 5056 5057 enable_mtf(); 5058 enter_guest(); 5059 report_mtf("MOV CR3", (unsigned long) get_idt_addr(&boot_idt[GP_VECTOR])); 5060 disable_mtf(); 5061 5062 /* 5063 * Concurrent MTF and privileged software exception (i.e. ICEBP/INT1). 5064 * MTF should follow the delivery of #DB trap, though the SDM doesn't 5065 * provide clear indication of the relative priority. 5066 */ 5067 enter_guest(); 5068 skip_exit_vmcall(); 5069 5070 handle_exception(GP_VECTOR, old_gp); 5071 old_db = handle_exception(DB_VECTOR, test_mtf_db_handler); 5072 5073 enable_mtf(); 5074 enter_guest(); 5075 report_mtf("INT1", (unsigned long) get_idt_addr(&boot_idt[DB_VECTOR])); 5076 disable_mtf(); 5077 5078 enter_guest(); 5079 skip_exit_vmcall(); 5080 handle_exception(DB_VECTOR, old_db); 5081 vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | INTR_TYPE_OTHER_EVENT); 5082 enter_guest(); 5083 report_mtf("injected MTF", (unsigned long) &test_mtf4); 5084 enter_guest(); 5085 } 5086 5087 extern char vmx_mtf_pdpte_guest_begin; 5088 extern char vmx_mtf_pdpte_guest_end; 5089 5090 asm("vmx_mtf_pdpte_guest_begin:\n\t" 5091 "mov %cr0, %rax\n\t" /* save CR0 with PG=1 */ 5092 "vmcall\n\t" /* on return from this CR0.PG=0 */ 5093 "mov %rax, %cr0\n\t" /* restore CR0.PG=1 to enter PAE mode */ 5094 "vmcall\n\t" 5095 "retq\n\t" 5096 "vmx_mtf_pdpte_guest_end:"); 5097 5098 static void vmx_mtf_pdpte_test(void) 5099 { 5100 void *test_mtf_pdpte_guest; 5101 pteval_t *pdpt; 5102 u32 guest_ar_cs; 5103 u64 guest_efer; 5104 pteval_t *pte; 5105 u64 guest_cr0; 5106 u64 guest_cr3; 5107 u64 guest_cr4; 5108 u64 ent_ctls; 5109 int i; 5110 5111 if (setup_ept(false)) 5112 return; 5113 5114 if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) { 5115 report_skip("%s : \"Monitor trap flag\" exec control not supported", __func__); 5116 return; 5117 } 5118 5119 if (!(ctrl_cpu_rev[1].clr & CPU_URG)) { 5120 report_skip("%s : \"Unrestricted guest\" exec control not supported", __func__); 5121 return; 5122 } 5123 5124 vmcs_write(EXC_BITMAP, ~0); 5125 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG); 5126 5127 /* 5128 * Copy the guest code to an identity-mapped page. 5129 */ 5130 test_mtf_pdpte_guest = alloc_page(); 5131 memcpy(test_mtf_pdpte_guest, &vmx_mtf_pdpte_guest_begin, 5132 &vmx_mtf_pdpte_guest_end - &vmx_mtf_pdpte_guest_begin); 5133 5134 test_set_guest(test_mtf_pdpte_guest); 5135 5136 enter_guest(); 5137 skip_exit_vmcall(); 5138 5139 /* 5140 * Put the guest in non-paged 32-bit protected mode, ready to enter 5141 * PAE mode when CR0.PG is set. CR4.PAE will already have been set 5142 * when the guest started out in long mode. 5143 */ 5144 ent_ctls = vmcs_read(ENT_CONTROLS); 5145 vmcs_write(ENT_CONTROLS, ent_ctls & ~ENT_GUEST_64); 5146 5147 guest_efer = vmcs_read(GUEST_EFER); 5148 vmcs_write(GUEST_EFER, guest_efer & ~(EFER_LMA | EFER_LME)); 5149 5150 /* 5151 * Set CS access rights bits for 32-bit protected mode: 5152 * 3:0 B execute/read/accessed 5153 * 4 1 code or data 5154 * 6:5 0 descriptor privilege level 5155 * 7 1 present 5156 * 11:8 0 reserved 5157 * 12 0 available for use by system software 5158 * 13 0 64 bit mode not active 5159 * 14 1 default operation size 32-bit segment 5160 * 15 1 page granularity: segment limit in 4K units 5161 * 16 0 segment usable 5162 * 31:17 0 reserved 5163 */ 5164 guest_ar_cs = vmcs_read(GUEST_AR_CS); 5165 vmcs_write(GUEST_AR_CS, 0xc09b); 5166 5167 guest_cr0 = vmcs_read(GUEST_CR0); 5168 vmcs_write(GUEST_CR0, guest_cr0 & ~X86_CR0_PG); 5169 5170 guest_cr4 = vmcs_read(GUEST_CR4); 5171 vmcs_write(GUEST_CR4, guest_cr4 & ~X86_CR4_PCIDE); 5172 5173 guest_cr3 = vmcs_read(GUEST_CR3); 5174 5175 /* 5176 * Turn the 4-level page table into a PAE page table by following the 0th 5177 * PML4 entry to a PDPT page, and grab the first four PDPTEs from that 5178 * page. 5179 * 5180 * Why does this work? 5181 * 5182 * PAE uses 32-bit addressing which implies: 5183 * Bits 11:0 page offset 5184 * Bits 20:12 entry into 512-entry page table 5185 * Bits 29:21 entry into a 512-entry directory table 5186 * Bits 31:30 entry into the page directory pointer table. 5187 * Bits 63:32 zero 5188 * 5189 * As only 2 bits are needed to select the PDPTEs for the entire 5190 * 32-bit address space, take the first 4 PDPTEs in the level 3 page 5191 * directory pointer table. It doesn't matter which of these PDPTEs 5192 * are present because they must cover the guest code given that it 5193 * has already run successfully. 5194 * 5195 * Get a pointer to PTE for GVA=0 in the page directory pointer table 5196 */ 5197 pte = get_pte_level( 5198 (pgd_t *)phys_to_virt(guest_cr3 & ~X86_CR3_PCID_MASK), 0, 5199 PDPT_LEVEL); 5200 5201 /* 5202 * Need some memory for the 4-entry PAE page directory pointer 5203 * table. Use the end of the identity-mapped page where the guest code 5204 * is stored. There is definitely space as the guest code is only a 5205 * few bytes. 5206 */ 5207 pdpt = test_mtf_pdpte_guest + PAGE_SIZE - 4 * sizeof(pteval_t); 5208 5209 /* 5210 * Copy the first four PDPTEs into the PAE page table with reserved 5211 * bits cleared. Note that permission bits from the PML4E and PDPTE 5212 * are not propagated. 5213 */ 5214 for (i = 0; i < 4; i++) { 5215 TEST_ASSERT_EQ_MSG(0, (pte[i] & PDPTE64_RSVD_MASK), 5216 "PDPTE has invalid reserved bits"); 5217 TEST_ASSERT_EQ_MSG(0, (pte[i] & PDPTE64_PAGE_SIZE_MASK), 5218 "Cannot use 1GB super pages for PAE"); 5219 pdpt[i] = pte[i] & ~(PAE_PDPTE_RSVD_MASK); 5220 } 5221 vmcs_write(GUEST_CR3, virt_to_phys(pdpt)); 5222 5223 enable_mtf(); 5224 enter_guest(); 5225 assert_exit_reason(VMX_MTF); 5226 disable_mtf(); 5227 5228 /* 5229 * The four PDPTEs should have been loaded into the VMCS when 5230 * the guest set CR0.PG to enter PAE mode. 5231 */ 5232 for (i = 0; i < 4; i++) { 5233 u64 pdpte = vmcs_read(GUEST_PDPTE + 2 * i); 5234 5235 report(pdpte == pdpt[i], "PDPTE%d is 0x%lx (expected 0x%lx)", 5236 i, pdpte, pdpt[i]); 5237 } 5238 5239 /* 5240 * Now, try to enter the guest in PAE mode. If the PDPTEs in the 5241 * vmcs are wrong, this will fail. 5242 */ 5243 enter_guest(); 5244 skip_exit_vmcall(); 5245 5246 /* 5247 * Return guest to 64-bit mode and wrap up. 5248 */ 5249 vmcs_write(ENT_CONTROLS, ent_ctls); 5250 vmcs_write(GUEST_EFER, guest_efer); 5251 vmcs_write(GUEST_AR_CS, guest_ar_cs); 5252 vmcs_write(GUEST_CR0, guest_cr0); 5253 vmcs_write(GUEST_CR4, guest_cr4); 5254 vmcs_write(GUEST_CR3, guest_cr3); 5255 5256 enter_guest(); 5257 } 5258 5259 /* 5260 * Tests for VM-execution control fields 5261 */ 5262 static void test_vm_execution_ctls(void) 5263 { 5264 test_pin_based_ctls(); 5265 test_primary_processor_based_ctls(); 5266 test_secondary_processor_based_ctls(); 5267 test_cr3_targets(); 5268 test_io_bitmaps(); 5269 test_msr_bitmap(); 5270 test_apic_ctls(); 5271 test_tpr_threshold(); 5272 test_nmi_ctrls(); 5273 test_pml(); 5274 test_vpid(); 5275 test_ept_eptp(); 5276 test_vmx_preemption_timer(); 5277 } 5278 5279 /* 5280 * The following checks are performed for the VM-entry MSR-load address if 5281 * the VM-entry MSR-load count field is non-zero: 5282 * 5283 * - The lower 4 bits of the VM-entry MSR-load address must be 0. 5284 * The address should not set any bits beyond the processor's 5285 * physical-address width. 5286 * 5287 * - The address of the last byte in the VM-entry MSR-load area 5288 * should not set any bits beyond the processor's physical-address 5289 * width. The address of this last byte is VM-entry MSR-load address 5290 * + (MSR count * 16) - 1. (The arithmetic used for the computation 5291 * uses more bits than the processor's physical-address width.) 5292 * 5293 * 5294 * [Intel SDM] 5295 */ 5296 static void test_entry_msr_load(void) 5297 { 5298 entry_msr_load = alloc_page(); 5299 u64 tmp; 5300 u32 entry_msr_ld_cnt = 1; 5301 int i; 5302 u32 addr_len = 64; 5303 5304 vmcs_write(ENT_MSR_LD_CNT, entry_msr_ld_cnt); 5305 5306 /* Check first 4 bits of VM-entry MSR-load address */ 5307 for (i = 0; i < 4; i++) { 5308 tmp = (u64)entry_msr_load | 1ull << i; 5309 vmcs_write(ENTER_MSR_LD_ADDR, tmp); 5310 report_prefix_pushf("VM-entry MSR-load addr [4:0] %lx", 5311 tmp & 0xf); 5312 test_vmx_invalid_controls(); 5313 report_prefix_pop(); 5314 } 5315 5316 if (basic_msr.val & (1ul << 48)) 5317 addr_len = 32; 5318 5319 test_vmcs_addr_values("VM-entry-MSR-load address", 5320 ENTER_MSR_LD_ADDR, 16, false, false, 5321 4, addr_len - 1); 5322 5323 /* 5324 * Check last byte of VM-entry MSR-load address 5325 */ 5326 entry_msr_load = (struct vmx_msr_entry *)((u64)entry_msr_load & ~0xf); 5327 5328 for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len); 5329 i < 64; i++) { 5330 tmp = ((u64)entry_msr_load + entry_msr_ld_cnt * 16 - 1) | 5331 1ul << i; 5332 vmcs_write(ENTER_MSR_LD_ADDR, 5333 tmp - (entry_msr_ld_cnt * 16 - 1)); 5334 test_vmx_invalid_controls(); 5335 } 5336 5337 vmcs_write(ENT_MSR_LD_CNT, 2); 5338 vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 16); 5339 test_vmx_invalid_controls(); 5340 vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 32); 5341 test_vmx_valid_controls(); 5342 vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 48); 5343 test_vmx_valid_controls(); 5344 } 5345 5346 static struct vmx_state_area_test_data { 5347 u32 msr; 5348 u64 exp; 5349 bool enabled; 5350 } vmx_state_area_test_data; 5351 5352 static void guest_state_test_main(void) 5353 { 5354 u64 obs; 5355 struct vmx_state_area_test_data *data = &vmx_state_area_test_data; 5356 5357 while (1) { 5358 if (vmx_get_test_stage() == 2) 5359 break; 5360 5361 if (data->enabled) { 5362 obs = rdmsr(data->msr); 5363 report(data->exp == obs, 5364 "Guest state is 0x%lx (expected 0x%lx)", 5365 obs, data->exp); 5366 } 5367 5368 vmcall(); 5369 } 5370 5371 asm volatile("fnop"); 5372 } 5373 5374 static void test_guest_state(const char *test, bool xfail, u64 field, 5375 const char * field_name) 5376 { 5377 struct vmentry_result result; 5378 u8 abort_flags; 5379 5380 abort_flags = ABORT_ON_EARLY_VMENTRY_FAIL; 5381 if (!xfail) 5382 abort_flags = ABORT_ON_INVALID_GUEST_STATE; 5383 5384 __enter_guest(abort_flags, &result); 5385 5386 report(result.exit_reason.failed_vmentry == xfail && 5387 ((xfail && result.exit_reason.basic == VMX_FAIL_STATE) || 5388 (!xfail && result.exit_reason.basic == VMX_VMCALL)) && 5389 (!xfail || vmcs_read(EXI_QUALIFICATION) == ENTRY_FAIL_DEFAULT), 5390 "%s, %s = %lx", test, field_name, field); 5391 5392 if (!result.exit_reason.failed_vmentry) 5393 skip_exit_insn(); 5394 } 5395 5396 /* 5397 * Tests for VM-entry control fields 5398 */ 5399 static void test_vm_entry_ctls(void) 5400 { 5401 test_invalid_event_injection(); 5402 test_entry_msr_load(); 5403 } 5404 5405 /* 5406 * The following checks are performed for the VM-exit MSR-store address if 5407 * the VM-exit MSR-store count field is non-zero: 5408 * 5409 * - The lower 4 bits of the VM-exit MSR-store address must be 0. 5410 * The address should not set any bits beyond the processor's 5411 * physical-address width. 5412 * 5413 * - The address of the last byte in the VM-exit MSR-store area 5414 * should not set any bits beyond the processor's physical-address 5415 * width. The address of this last byte is VM-exit MSR-store address 5416 * + (MSR count * 16) - 1. (The arithmetic used for the computation 5417 * uses more bits than the processor's physical-address width.) 5418 * 5419 * If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits 5420 * in the range 63:32. 5421 * 5422 * [Intel SDM] 5423 */ 5424 static void test_exit_msr_store(void) 5425 { 5426 exit_msr_store = alloc_page(); 5427 u64 tmp; 5428 u32 exit_msr_st_cnt = 1; 5429 int i; 5430 u32 addr_len = 64; 5431 5432 vmcs_write(EXI_MSR_ST_CNT, exit_msr_st_cnt); 5433 5434 /* Check first 4 bits of VM-exit MSR-store address */ 5435 for (i = 0; i < 4; i++) { 5436 tmp = (u64)exit_msr_store | 1ull << i; 5437 vmcs_write(EXIT_MSR_ST_ADDR, tmp); 5438 report_prefix_pushf("VM-exit MSR-store addr [4:0] %lx", 5439 tmp & 0xf); 5440 test_vmx_invalid_controls(); 5441 report_prefix_pop(); 5442 } 5443 5444 if (basic_msr.val & (1ul << 48)) 5445 addr_len = 32; 5446 5447 test_vmcs_addr_values("VM-exit-MSR-store address", 5448 EXIT_MSR_ST_ADDR, 16, false, false, 5449 4, addr_len - 1); 5450 5451 /* 5452 * Check last byte of VM-exit MSR-store address 5453 */ 5454 exit_msr_store = (struct vmx_msr_entry *)((u64)exit_msr_store & ~0xf); 5455 5456 for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len); 5457 i < 64; i++) { 5458 tmp = ((u64)exit_msr_store + exit_msr_st_cnt * 16 - 1) | 5459 1ul << i; 5460 vmcs_write(EXIT_MSR_ST_ADDR, 5461 tmp - (exit_msr_st_cnt * 16 - 1)); 5462 test_vmx_invalid_controls(); 5463 } 5464 5465 vmcs_write(EXI_MSR_ST_CNT, 2); 5466 vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 16); 5467 test_vmx_invalid_controls(); 5468 vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 32); 5469 test_vmx_valid_controls(); 5470 vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 48); 5471 test_vmx_valid_controls(); 5472 } 5473 5474 /* 5475 * Tests for VM-exit controls 5476 */ 5477 static void test_vm_exit_ctls(void) 5478 { 5479 test_exit_msr_store(); 5480 } 5481 5482 /* 5483 * Check that the virtual CPU checks all of the VMX controls as 5484 * documented in the Intel SDM. 5485 */ 5486 static void vmx_controls_test(void) 5487 { 5488 /* 5489 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will 5490 * fail due to invalid guest state, should we make it that 5491 * far. 5492 */ 5493 vmcs_write(GUEST_RFLAGS, 0); 5494 5495 test_vm_execution_ctls(); 5496 test_vm_exit_ctls(); 5497 test_vm_entry_ctls(); 5498 } 5499 5500 struct apic_reg_virt_config { 5501 bool apic_register_virtualization; 5502 bool use_tpr_shadow; 5503 bool virtualize_apic_accesses; 5504 bool virtualize_x2apic_mode; 5505 bool activate_secondary_controls; 5506 }; 5507 5508 struct apic_reg_test { 5509 const char *name; 5510 struct apic_reg_virt_config apic_reg_virt_config; 5511 }; 5512 5513 struct apic_reg_virt_expectation { 5514 enum Reason rd_exit_reason; 5515 enum Reason wr_exit_reason; 5516 u32 val; 5517 u32 (*virt_fn)(u32); 5518 5519 /* 5520 * If false, accessing the APIC access address from L2 is treated as a 5521 * normal memory operation, rather than triggering virtualization. 5522 */ 5523 bool virtualize_apic_accesses; 5524 }; 5525 5526 static u32 apic_virt_identity(u32 val) 5527 { 5528 return val; 5529 } 5530 5531 static u32 apic_virt_nibble1(u32 val) 5532 { 5533 return val & 0xf0; 5534 } 5535 5536 static u32 apic_virt_byte3(u32 val) 5537 { 5538 return val & (0xff << 24); 5539 } 5540 5541 static bool apic_reg_virt_exit_expectation( 5542 u32 reg, struct apic_reg_virt_config *config, 5543 struct apic_reg_virt_expectation *expectation) 5544 { 5545 /* Good configs, where some L2 APIC accesses are virtualized. */ 5546 bool virtualize_apic_accesses_only = 5547 config->virtualize_apic_accesses && 5548 !config->use_tpr_shadow && 5549 !config->apic_register_virtualization && 5550 !config->virtualize_x2apic_mode && 5551 config->activate_secondary_controls; 5552 bool virtualize_apic_accesses_and_use_tpr_shadow = 5553 config->virtualize_apic_accesses && 5554 config->use_tpr_shadow && 5555 !config->apic_register_virtualization && 5556 !config->virtualize_x2apic_mode && 5557 config->activate_secondary_controls; 5558 bool apic_register_virtualization = 5559 config->virtualize_apic_accesses && 5560 config->use_tpr_shadow && 5561 config->apic_register_virtualization && 5562 !config->virtualize_x2apic_mode && 5563 config->activate_secondary_controls; 5564 5565 expectation->val = MAGIC_VAL_1; 5566 expectation->virt_fn = apic_virt_identity; 5567 expectation->virtualize_apic_accesses = 5568 config->virtualize_apic_accesses && 5569 config->activate_secondary_controls; 5570 if (virtualize_apic_accesses_only) { 5571 expectation->rd_exit_reason = VMX_APIC_ACCESS; 5572 expectation->wr_exit_reason = VMX_APIC_ACCESS; 5573 } else if (virtualize_apic_accesses_and_use_tpr_shadow) { 5574 switch (reg) { 5575 case APIC_TASKPRI: 5576 expectation->rd_exit_reason = VMX_VMCALL; 5577 expectation->wr_exit_reason = VMX_VMCALL; 5578 expectation->virt_fn = apic_virt_nibble1; 5579 break; 5580 default: 5581 expectation->rd_exit_reason = VMX_APIC_ACCESS; 5582 expectation->wr_exit_reason = VMX_APIC_ACCESS; 5583 } 5584 } else if (apic_register_virtualization) { 5585 expectation->rd_exit_reason = VMX_VMCALL; 5586 5587 switch (reg) { 5588 case APIC_ID: 5589 case APIC_EOI: 5590 case APIC_LDR: 5591 case APIC_DFR: 5592 case APIC_SPIV: 5593 case APIC_ESR: 5594 case APIC_ICR: 5595 case APIC_LVTT: 5596 case APIC_LVTTHMR: 5597 case APIC_LVTPC: 5598 case APIC_LVT0: 5599 case APIC_LVT1: 5600 case APIC_LVTERR: 5601 case APIC_TMICT: 5602 case APIC_TDCR: 5603 expectation->wr_exit_reason = VMX_APIC_WRITE; 5604 break; 5605 case APIC_LVR: 5606 case APIC_ISR ... APIC_ISR + 0x70: 5607 case APIC_TMR ... APIC_TMR + 0x70: 5608 case APIC_IRR ... APIC_IRR + 0x70: 5609 expectation->wr_exit_reason = VMX_APIC_ACCESS; 5610 break; 5611 case APIC_TASKPRI: 5612 expectation->wr_exit_reason = VMX_VMCALL; 5613 expectation->virt_fn = apic_virt_nibble1; 5614 break; 5615 case APIC_ICR2: 5616 expectation->wr_exit_reason = VMX_VMCALL; 5617 expectation->virt_fn = apic_virt_byte3; 5618 break; 5619 default: 5620 expectation->rd_exit_reason = VMX_APIC_ACCESS; 5621 expectation->wr_exit_reason = VMX_APIC_ACCESS; 5622 } 5623 } else if (!expectation->virtualize_apic_accesses) { 5624 /* 5625 * No APIC registers are directly virtualized. This includes 5626 * VTPR, which can be virtualized through MOV to/from CR8 via 5627 * the use TPR shadow control, but not through directly 5628 * accessing VTPR. 5629 */ 5630 expectation->rd_exit_reason = VMX_VMCALL; 5631 expectation->wr_exit_reason = VMX_VMCALL; 5632 } else { 5633 printf("Cannot parse APIC register virtualization config:\n" 5634 "\tvirtualize_apic_accesses: %d\n" 5635 "\tuse_tpr_shadow: %d\n" 5636 "\tapic_register_virtualization: %d\n" 5637 "\tvirtualize_x2apic_mode: %d\n" 5638 "\tactivate_secondary_controls: %d\n", 5639 config->virtualize_apic_accesses, 5640 config->use_tpr_shadow, 5641 config->apic_register_virtualization, 5642 config->virtualize_x2apic_mode, 5643 config->activate_secondary_controls); 5644 5645 return false; 5646 } 5647 5648 return true; 5649 } 5650 5651 struct apic_reg_test apic_reg_tests[] = { 5652 /* Good configs, where some L2 APIC accesses are virtualized. */ 5653 { 5654 .name = "Virtualize APIC accesses", 5655 .apic_reg_virt_config = { 5656 .virtualize_apic_accesses = true, 5657 .use_tpr_shadow = false, 5658 .apic_register_virtualization = false, 5659 .virtualize_x2apic_mode = false, 5660 .activate_secondary_controls = true, 5661 }, 5662 }, 5663 { 5664 .name = "Virtualize APIC accesses + Use TPR shadow", 5665 .apic_reg_virt_config = { 5666 .virtualize_apic_accesses = true, 5667 .use_tpr_shadow = true, 5668 .apic_register_virtualization = false, 5669 .virtualize_x2apic_mode = false, 5670 .activate_secondary_controls = true, 5671 }, 5672 }, 5673 { 5674 .name = "APIC-register virtualization", 5675 .apic_reg_virt_config = { 5676 .virtualize_apic_accesses = true, 5677 .use_tpr_shadow = true, 5678 .apic_register_virtualization = true, 5679 .virtualize_x2apic_mode = false, 5680 .activate_secondary_controls = true, 5681 }, 5682 }, 5683 5684 /* 5685 * Test that the secondary processor-based VM-execution controls are 5686 * correctly ignored when "activate secondary controls" is disabled. 5687 */ 5688 { 5689 .name = "Activate secondary controls off", 5690 .apic_reg_virt_config = { 5691 .virtualize_apic_accesses = true, 5692 .use_tpr_shadow = false, 5693 .apic_register_virtualization = true, 5694 .virtualize_x2apic_mode = true, 5695 .activate_secondary_controls = false, 5696 }, 5697 }, 5698 { 5699 .name = "Activate secondary controls off + Use TPR shadow", 5700 .apic_reg_virt_config = { 5701 .virtualize_apic_accesses = true, 5702 .use_tpr_shadow = true, 5703 .apic_register_virtualization = true, 5704 .virtualize_x2apic_mode = true, 5705 .activate_secondary_controls = false, 5706 }, 5707 }, 5708 5709 /* 5710 * Test that the APIC access address is treated like an arbitrary memory 5711 * address when "virtualize APIC accesses" is disabled. 5712 */ 5713 { 5714 .name = "Virtualize APIC accesses off + Use TPR shadow", 5715 .apic_reg_virt_config = { 5716 .virtualize_apic_accesses = false, 5717 .use_tpr_shadow = true, 5718 .apic_register_virtualization = true, 5719 .virtualize_x2apic_mode = true, 5720 .activate_secondary_controls = true, 5721 }, 5722 }, 5723 5724 /* 5725 * Test that VM entry fails due to invalid controls when 5726 * "APIC-register virtualization" is enabled while "use TPR shadow" is 5727 * disabled. 5728 */ 5729 { 5730 .name = "APIC-register virtualization + Use TPR shadow off", 5731 .apic_reg_virt_config = { 5732 .virtualize_apic_accesses = true, 5733 .use_tpr_shadow = false, 5734 .apic_register_virtualization = true, 5735 .virtualize_x2apic_mode = false, 5736 .activate_secondary_controls = true, 5737 }, 5738 }, 5739 5740 /* 5741 * Test that VM entry fails due to invalid controls when 5742 * "Virtualize x2APIC mode" is enabled while "use TPR shadow" is 5743 * disabled. 5744 */ 5745 { 5746 .name = "Virtualize x2APIC mode + Use TPR shadow off", 5747 .apic_reg_virt_config = { 5748 .virtualize_apic_accesses = false, 5749 .use_tpr_shadow = false, 5750 .apic_register_virtualization = false, 5751 .virtualize_x2apic_mode = true, 5752 .activate_secondary_controls = true, 5753 }, 5754 }, 5755 { 5756 .name = "Virtualize x2APIC mode + Use TPR shadow off v2", 5757 .apic_reg_virt_config = { 5758 .virtualize_apic_accesses = false, 5759 .use_tpr_shadow = false, 5760 .apic_register_virtualization = true, 5761 .virtualize_x2apic_mode = true, 5762 .activate_secondary_controls = true, 5763 }, 5764 }, 5765 5766 /* 5767 * Test that VM entry fails due to invalid controls when 5768 * "virtualize x2APIC mode" is enabled while "virtualize APIC accesses" 5769 * is enabled. 5770 */ 5771 { 5772 .name = "Virtualize x2APIC mode + Virtualize APIC accesses", 5773 .apic_reg_virt_config = { 5774 .virtualize_apic_accesses = true, 5775 .use_tpr_shadow = true, 5776 .apic_register_virtualization = false, 5777 .virtualize_x2apic_mode = true, 5778 .activate_secondary_controls = true, 5779 }, 5780 }, 5781 { 5782 .name = "Virtualize x2APIC mode + Virtualize APIC accesses v2", 5783 .apic_reg_virt_config = { 5784 .virtualize_apic_accesses = true, 5785 .use_tpr_shadow = true, 5786 .apic_register_virtualization = true, 5787 .virtualize_x2apic_mode = true, 5788 .activate_secondary_controls = true, 5789 }, 5790 }, 5791 }; 5792 5793 enum Apic_op { 5794 APIC_OP_XAPIC_RD, 5795 APIC_OP_XAPIC_WR, 5796 TERMINATE, 5797 }; 5798 5799 static u32 vmx_xapic_read(u32 *apic_access_address, u32 reg) 5800 { 5801 return *(volatile u32 *)((uintptr_t)apic_access_address + reg); 5802 } 5803 5804 static void vmx_xapic_write(u32 *apic_access_address, u32 reg, u32 val) 5805 { 5806 *(volatile u32 *)((uintptr_t)apic_access_address + reg) = val; 5807 } 5808 5809 struct apic_reg_virt_guest_args { 5810 enum Apic_op op; 5811 u32 *apic_access_address; 5812 u32 reg; 5813 u32 val; 5814 bool check_rd; 5815 u32 (*virt_fn)(u32); 5816 } apic_reg_virt_guest_args; 5817 5818 static void apic_reg_virt_guest(void) 5819 { 5820 volatile struct apic_reg_virt_guest_args *args = 5821 &apic_reg_virt_guest_args; 5822 5823 for (;;) { 5824 enum Apic_op op = args->op; 5825 u32 *apic_access_address = args->apic_access_address; 5826 u32 reg = args->reg; 5827 u32 val = args->val; 5828 bool check_rd = args->check_rd; 5829 u32 (*virt_fn)(u32) = args->virt_fn; 5830 5831 if (op == TERMINATE) 5832 break; 5833 5834 if (op == APIC_OP_XAPIC_RD) { 5835 u32 ret = vmx_xapic_read(apic_access_address, reg); 5836 5837 if (check_rd) { 5838 u32 want = virt_fn(val); 5839 u32 got = virt_fn(ret); 5840 5841 report(got == want, 5842 "read 0x%x, expected 0x%x.", got, want); 5843 } 5844 } else if (op == APIC_OP_XAPIC_WR) { 5845 vmx_xapic_write(apic_access_address, reg, val); 5846 } 5847 5848 /* 5849 * The L1 should always execute a vmcall after it's done testing 5850 * an individual APIC operation. This helps to validate that the 5851 * L1 and L2 are in sync with each other, as expected. 5852 */ 5853 vmcall(); 5854 } 5855 } 5856 5857 static void test_xapic_rd( 5858 u32 reg, struct apic_reg_virt_expectation *expectation, 5859 u32 *apic_access_address, u32 *virtual_apic_page) 5860 { 5861 u32 val = expectation->val; 5862 u32 exit_reason_want = expectation->rd_exit_reason; 5863 struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; 5864 5865 report_prefix_pushf("xapic - reading 0x%03x", reg); 5866 5867 /* Configure guest to do an xapic read */ 5868 args->op = APIC_OP_XAPIC_RD; 5869 args->apic_access_address = apic_access_address; 5870 args->reg = reg; 5871 args->val = val; 5872 args->check_rd = exit_reason_want == VMX_VMCALL; 5873 args->virt_fn = expectation->virt_fn; 5874 5875 /* Setup virtual APIC page */ 5876 if (!expectation->virtualize_apic_accesses) { 5877 apic_access_address[apic_reg_index(reg)] = val; 5878 virtual_apic_page[apic_reg_index(reg)] = 0; 5879 } else if (exit_reason_want == VMX_VMCALL) { 5880 apic_access_address[apic_reg_index(reg)] = 0; 5881 virtual_apic_page[apic_reg_index(reg)] = val; 5882 } 5883 5884 /* Enter guest */ 5885 enter_guest(); 5886 5887 /* 5888 * Validate the behavior and 5889 * pass a magic value back to the guest. 5890 */ 5891 if (exit_reason_want == VMX_APIC_ACCESS) { 5892 u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff; 5893 5894 assert_exit_reason(exit_reason_want); 5895 report(apic_page_offset == reg, 5896 "got APIC access exit @ page offset 0x%03x, want 0x%03x", 5897 apic_page_offset, reg); 5898 skip_exit_insn(); 5899 5900 /* Reenter guest so it can consume/check rcx and exit again. */ 5901 enter_guest(); 5902 } else if (exit_reason_want != VMX_VMCALL) { 5903 report_fail("Oops, bad exit expectation: %u.", exit_reason_want); 5904 } 5905 5906 skip_exit_vmcall(); 5907 report_prefix_pop(); 5908 } 5909 5910 static void test_xapic_wr( 5911 u32 reg, struct apic_reg_virt_expectation *expectation, 5912 u32 *apic_access_address, u32 *virtual_apic_page) 5913 { 5914 u32 val = expectation->val; 5915 u32 exit_reason_want = expectation->wr_exit_reason; 5916 struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; 5917 bool virtualized = 5918 expectation->virtualize_apic_accesses && 5919 (exit_reason_want == VMX_APIC_WRITE || 5920 exit_reason_want == VMX_VMCALL); 5921 bool checked = false; 5922 5923 report_prefix_pushf("xapic - writing 0x%x to 0x%03x", val, reg); 5924 5925 /* Configure guest to do an xapic read */ 5926 args->op = APIC_OP_XAPIC_WR; 5927 args->apic_access_address = apic_access_address; 5928 args->reg = reg; 5929 args->val = val; 5930 5931 /* Setup virtual APIC page */ 5932 if (virtualized || !expectation->virtualize_apic_accesses) { 5933 apic_access_address[apic_reg_index(reg)] = 0; 5934 virtual_apic_page[apic_reg_index(reg)] = 0; 5935 } 5936 5937 /* Enter guest */ 5938 enter_guest(); 5939 5940 /* 5941 * Validate the behavior and 5942 * pass a magic value back to the guest. 5943 */ 5944 if (exit_reason_want == VMX_APIC_ACCESS) { 5945 u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff; 5946 5947 assert_exit_reason(exit_reason_want); 5948 report(apic_page_offset == reg, 5949 "got APIC access exit @ page offset 0x%03x, want 0x%03x", 5950 apic_page_offset, reg); 5951 skip_exit_insn(); 5952 5953 /* Reenter guest so it can consume/check rcx and exit again. */ 5954 enter_guest(); 5955 } else if (exit_reason_want == VMX_APIC_WRITE) { 5956 assert_exit_reason(exit_reason_want); 5957 report(virtual_apic_page[apic_reg_index(reg)] == val, 5958 "got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%x", 5959 apic_reg_index(reg), 5960 virtual_apic_page[apic_reg_index(reg)], val); 5961 checked = true; 5962 5963 /* Reenter guest so it can consume/check rcx and exit again. */ 5964 enter_guest(); 5965 } else if (exit_reason_want != VMX_VMCALL) { 5966 report_fail("Oops, bad exit expectation: %u.", exit_reason_want); 5967 } 5968 5969 assert_exit_reason(VMX_VMCALL); 5970 if (virtualized && !checked) { 5971 u32 want = expectation->virt_fn(val); 5972 u32 got = virtual_apic_page[apic_reg_index(reg)]; 5973 got = expectation->virt_fn(got); 5974 5975 report(got == want, "exitless write; val is 0x%x, want 0x%x", 5976 got, want); 5977 } else if (!expectation->virtualize_apic_accesses && !checked) { 5978 u32 got = apic_access_address[apic_reg_index(reg)]; 5979 5980 report(got == val, 5981 "non-virtualized write; val is 0x%x, want 0x%x", got, 5982 val); 5983 } else if (!expectation->virtualize_apic_accesses && checked) { 5984 report_fail("Non-virtualized write was prematurely checked!"); 5985 } 5986 5987 skip_exit_vmcall(); 5988 report_prefix_pop(); 5989 } 5990 5991 enum Config_type { 5992 CONFIG_TYPE_GOOD, 5993 CONFIG_TYPE_UNSUPPORTED, 5994 CONFIG_TYPE_VMENTRY_FAILS_EARLY, 5995 }; 5996 5997 static enum Config_type configure_apic_reg_virt_test( 5998 struct apic_reg_virt_config *apic_reg_virt_config) 5999 { 6000 u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 6001 u32 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); 6002 /* Configs where L2 entry fails early, due to invalid controls. */ 6003 bool use_tpr_shadow_incorrectly_off = 6004 !apic_reg_virt_config->use_tpr_shadow && 6005 (apic_reg_virt_config->apic_register_virtualization || 6006 apic_reg_virt_config->virtualize_x2apic_mode) && 6007 apic_reg_virt_config->activate_secondary_controls; 6008 bool virtualize_apic_accesses_incorrectly_on = 6009 apic_reg_virt_config->virtualize_apic_accesses && 6010 apic_reg_virt_config->virtualize_x2apic_mode && 6011 apic_reg_virt_config->activate_secondary_controls; 6012 bool vmentry_fails_early = 6013 use_tpr_shadow_incorrectly_off || 6014 virtualize_apic_accesses_incorrectly_on; 6015 6016 if (apic_reg_virt_config->activate_secondary_controls) { 6017 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) { 6018 printf("VM-execution control \"activate secondary controls\" NOT supported.\n"); 6019 return CONFIG_TYPE_UNSUPPORTED; 6020 } 6021 cpu_exec_ctrl0 |= CPU_SECONDARY; 6022 } else { 6023 cpu_exec_ctrl0 &= ~CPU_SECONDARY; 6024 } 6025 6026 if (apic_reg_virt_config->virtualize_apic_accesses) { 6027 if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES)) { 6028 printf("VM-execution control \"virtualize APIC accesses\" NOT supported.\n"); 6029 return CONFIG_TYPE_UNSUPPORTED; 6030 } 6031 cpu_exec_ctrl1 |= CPU_VIRT_APIC_ACCESSES; 6032 } else { 6033 cpu_exec_ctrl1 &= ~CPU_VIRT_APIC_ACCESSES; 6034 } 6035 6036 if (apic_reg_virt_config->use_tpr_shadow) { 6037 if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) { 6038 printf("VM-execution control \"use TPR shadow\" NOT supported.\n"); 6039 return CONFIG_TYPE_UNSUPPORTED; 6040 } 6041 cpu_exec_ctrl0 |= CPU_TPR_SHADOW; 6042 } else { 6043 cpu_exec_ctrl0 &= ~CPU_TPR_SHADOW; 6044 } 6045 6046 if (apic_reg_virt_config->apic_register_virtualization) { 6047 if (!(ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT)) { 6048 printf("VM-execution control \"APIC-register virtualization\" NOT supported.\n"); 6049 return CONFIG_TYPE_UNSUPPORTED; 6050 } 6051 cpu_exec_ctrl1 |= CPU_APIC_REG_VIRT; 6052 } else { 6053 cpu_exec_ctrl1 &= ~CPU_APIC_REG_VIRT; 6054 } 6055 6056 if (apic_reg_virt_config->virtualize_x2apic_mode) { 6057 if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_X2APIC)) { 6058 printf("VM-execution control \"virtualize x2APIC mode\" NOT supported.\n"); 6059 return CONFIG_TYPE_UNSUPPORTED; 6060 } 6061 cpu_exec_ctrl1 |= CPU_VIRT_X2APIC; 6062 } else { 6063 cpu_exec_ctrl1 &= ~CPU_VIRT_X2APIC; 6064 } 6065 6066 vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); 6067 vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); 6068 6069 if (vmentry_fails_early) 6070 return CONFIG_TYPE_VMENTRY_FAILS_EARLY; 6071 6072 return CONFIG_TYPE_GOOD; 6073 } 6074 6075 static bool cpu_has_apicv(void) 6076 { 6077 return ((ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT) && 6078 (ctrl_cpu_rev[1].clr & CPU_VINTD) && 6079 (ctrl_pin_rev.clr & PIN_POST_INTR)); 6080 } 6081 6082 /* Validates APIC register access across valid virtualization configurations. */ 6083 static void apic_reg_virt_test(void) 6084 { 6085 u32 *apic_access_address; 6086 u32 *virtual_apic_page; 6087 u64 control; 6088 u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 6089 u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); 6090 int i; 6091 struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; 6092 6093 if (!cpu_has_apicv()) { 6094 report_skip("%s : Not all required APICv bits supported", __func__); 6095 return; 6096 } 6097 6098 control = cpu_exec_ctrl1; 6099 control &= ~CPU_VINTD; 6100 vmcs_write(CPU_EXEC_CTRL1, control); 6101 6102 test_set_guest(apic_reg_virt_guest); 6103 6104 /* 6105 * From the SDM: The 1-setting of the "virtualize APIC accesses" 6106 * VM-execution is guaranteed to apply only if translations to the 6107 * APIC-access address use a 4-KByte page. 6108 */ 6109 apic_access_address = alloc_page(); 6110 force_4k_page(apic_access_address); 6111 vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_address)); 6112 6113 virtual_apic_page = alloc_page(); 6114 vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); 6115 6116 for (i = 0; i < ARRAY_SIZE(apic_reg_tests); i++) { 6117 struct apic_reg_test *apic_reg_test = &apic_reg_tests[i]; 6118 struct apic_reg_virt_config *apic_reg_virt_config = 6119 &apic_reg_test->apic_reg_virt_config; 6120 enum Config_type config_type; 6121 u32 reg; 6122 6123 printf("--- %s test ---\n", apic_reg_test->name); 6124 config_type = 6125 configure_apic_reg_virt_test(apic_reg_virt_config); 6126 if (config_type == CONFIG_TYPE_UNSUPPORTED) { 6127 printf("Skip because of missing features.\n"); 6128 continue; 6129 } 6130 6131 if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) { 6132 enter_guest_with_bad_controls(); 6133 continue; 6134 } 6135 6136 for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) { 6137 struct apic_reg_virt_expectation expectation = {}; 6138 bool ok; 6139 6140 ok = apic_reg_virt_exit_expectation( 6141 reg, apic_reg_virt_config, &expectation); 6142 if (!ok) { 6143 report_fail("Malformed test."); 6144 break; 6145 } 6146 6147 test_xapic_rd(reg, &expectation, apic_access_address, 6148 virtual_apic_page); 6149 test_xapic_wr(reg, &expectation, apic_access_address, 6150 virtual_apic_page); 6151 } 6152 } 6153 6154 /* Terminate the guest */ 6155 vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); 6156 vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); 6157 args->op = TERMINATE; 6158 enter_guest(); 6159 assert_exit_reason(VMX_VMCALL); 6160 } 6161 6162 struct virt_x2apic_mode_config { 6163 struct apic_reg_virt_config apic_reg_virt_config; 6164 bool virtual_interrupt_delivery; 6165 bool use_msr_bitmaps; 6166 bool disable_x2apic_msr_intercepts; 6167 bool disable_x2apic; 6168 }; 6169 6170 struct virt_x2apic_mode_test_case { 6171 const char *name; 6172 struct virt_x2apic_mode_config virt_x2apic_mode_config; 6173 }; 6174 6175 enum Virt_x2apic_mode_behavior_type { 6176 X2APIC_ACCESS_VIRTUALIZED, 6177 X2APIC_ACCESS_PASSED_THROUGH, 6178 X2APIC_ACCESS_TRIGGERS_GP, 6179 }; 6180 6181 struct virt_x2apic_mode_expectation { 6182 enum Reason rd_exit_reason; 6183 enum Reason wr_exit_reason; 6184 6185 /* 6186 * RDMSR and WRMSR handle 64-bit values. However, except for ICR, all of 6187 * the x2APIC registers are 32 bits. Notice: 6188 * 1. vmx_x2apic_read() clears the upper 32 bits for 32-bit registers. 6189 * 2. vmx_x2apic_write() expects the val arg to be well-formed. 6190 */ 6191 u64 rd_val; 6192 u64 wr_val; 6193 6194 /* 6195 * Compares input to virtualized output; 6196 * 1st arg is pointer to return expected virtualization output. 6197 */ 6198 u64 (*virt_fn)(u64); 6199 6200 enum Virt_x2apic_mode_behavior_type rd_behavior; 6201 enum Virt_x2apic_mode_behavior_type wr_behavior; 6202 bool wr_only; 6203 }; 6204 6205 static u64 virt_x2apic_mode_identity(u64 val) 6206 { 6207 return val; 6208 } 6209 6210 static u64 virt_x2apic_mode_nibble1(u64 val) 6211 { 6212 return val & 0xf0; 6213 } 6214 6215 static void virt_x2apic_mode_rd_expectation( 6216 u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic, 6217 bool apic_register_virtualization, bool virtual_interrupt_delivery, 6218 struct virt_x2apic_mode_expectation *expectation) 6219 { 6220 enum x2apic_reg_semantics semantics = get_x2apic_reg_semantics(reg); 6221 6222 expectation->rd_exit_reason = VMX_VMCALL; 6223 expectation->virt_fn = virt_x2apic_mode_identity; 6224 if (virt_x2apic_mode_on && apic_register_virtualization) { 6225 expectation->rd_val = MAGIC_VAL_1; 6226 if (reg == APIC_PROCPRI && virtual_interrupt_delivery) 6227 expectation->virt_fn = virt_x2apic_mode_nibble1; 6228 else if (reg == APIC_TASKPRI) 6229 expectation->virt_fn = virt_x2apic_mode_nibble1; 6230 expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED; 6231 } else if (virt_x2apic_mode_on && !apic_register_virtualization && 6232 reg == APIC_TASKPRI) { 6233 expectation->rd_val = MAGIC_VAL_1; 6234 expectation->virt_fn = virt_x2apic_mode_nibble1; 6235 expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED; 6236 } else if (!disable_x2apic && (semantics & X2APIC_READABLE)) { 6237 expectation->rd_val = apic_read(reg); 6238 expectation->rd_behavior = X2APIC_ACCESS_PASSED_THROUGH; 6239 } else { 6240 expectation->rd_behavior = X2APIC_ACCESS_TRIGGERS_GP; 6241 } 6242 } 6243 6244 /* 6245 * get_x2apic_wr_val() creates an innocuous write value for an x2APIC register. 6246 * 6247 * For writable registers, get_x2apic_wr_val() deposits the write value into the 6248 * val pointer arg and returns true. For non-writable registers, val is not 6249 * modified and get_x2apic_wr_val() returns false. 6250 */ 6251 static bool get_x2apic_wr_val(u32 reg, u64 *val) 6252 { 6253 switch (reg) { 6254 case APIC_TASKPRI: 6255 /* Bits 31:8 are reserved. */ 6256 *val &= 0xff; 6257 break; 6258 case APIC_EOI: 6259 case APIC_ESR: 6260 case APIC_TMICT: 6261 /* 6262 * EOI, ESR: WRMSR of a non-zero value causes #GP(0). 6263 * TMICT: A write of 0 to the initial-count register effectively 6264 * stops the local APIC timer, in both one-shot and 6265 * periodic mode. 6266 */ 6267 *val = 0; 6268 break; 6269 case APIC_SPIV: 6270 case APIC_LVTT: 6271 case APIC_LVTTHMR: 6272 case APIC_LVTPC: 6273 case APIC_LVT0: 6274 case APIC_LVT1: 6275 case APIC_LVTERR: 6276 case APIC_TDCR: 6277 /* 6278 * To avoid writing a 1 to a reserved bit or causing some other 6279 * unintended side effect, read the current value and use it as 6280 * the write value. 6281 */ 6282 *val = apic_read(reg); 6283 break; 6284 case APIC_CMCI: 6285 if (!apic_lvt_entry_supported(6)) 6286 return false; 6287 *val = apic_read(reg); 6288 break; 6289 case APIC_ICR: 6290 *val = 0x40000 | 0xf1; 6291 break; 6292 case APIC_SELF_IPI: 6293 /* 6294 * With special processing (i.e., virtualize x2APIC mode + 6295 * virtual interrupt delivery), writing zero causes an 6296 * APIC-write VM exit. We plan to add a test for enabling 6297 * "virtual-interrupt delivery" in VMCS12, and that's where we 6298 * will test a self IPI with special processing. 6299 */ 6300 *val = 0x0; 6301 break; 6302 default: 6303 return false; 6304 } 6305 6306 return true; 6307 } 6308 6309 static bool special_processing_applies(u32 reg, u64 *val, 6310 bool virt_int_delivery) 6311 { 6312 bool special_processing = 6313 (reg == APIC_TASKPRI) || 6314 (virt_int_delivery && 6315 (reg == APIC_EOI || reg == APIC_SELF_IPI)); 6316 6317 if (special_processing) { 6318 TEST_ASSERT(get_x2apic_wr_val(reg, val)); 6319 return true; 6320 } 6321 6322 return false; 6323 } 6324 6325 static void virt_x2apic_mode_wr_expectation( 6326 u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic, 6327 bool virt_int_delivery, 6328 struct virt_x2apic_mode_expectation *expectation) 6329 { 6330 expectation->wr_exit_reason = VMX_VMCALL; 6331 expectation->wr_val = MAGIC_VAL_1; 6332 expectation->wr_only = false; 6333 6334 if (virt_x2apic_mode_on && 6335 special_processing_applies(reg, &expectation->wr_val, 6336 virt_int_delivery)) { 6337 expectation->wr_behavior = X2APIC_ACCESS_VIRTUALIZED; 6338 if (reg == APIC_SELF_IPI) 6339 expectation->wr_exit_reason = VMX_APIC_WRITE; 6340 } else if (!disable_x2apic && 6341 get_x2apic_wr_val(reg, &expectation->wr_val)) { 6342 expectation->wr_behavior = X2APIC_ACCESS_PASSED_THROUGH; 6343 if (reg == APIC_EOI || reg == APIC_SELF_IPI) 6344 expectation->wr_only = true; 6345 if (reg == APIC_ICR) 6346 expectation->wr_exit_reason = VMX_EXTINT; 6347 } else { 6348 expectation->wr_behavior = X2APIC_ACCESS_TRIGGERS_GP; 6349 /* 6350 * Writing 1 to a reserved bit triggers a #GP. 6351 * Thus, set the write value to 0, which seems 6352 * the most likely to detect a missed #GP. 6353 */ 6354 expectation->wr_val = 0; 6355 } 6356 } 6357 6358 static void virt_x2apic_mode_exit_expectation( 6359 u32 reg, struct virt_x2apic_mode_config *config, 6360 struct virt_x2apic_mode_expectation *expectation) 6361 { 6362 struct apic_reg_virt_config *base_config = 6363 &config->apic_reg_virt_config; 6364 bool virt_x2apic_mode_on = 6365 base_config->virtualize_x2apic_mode && 6366 config->use_msr_bitmaps && 6367 config->disable_x2apic_msr_intercepts && 6368 base_config->activate_secondary_controls; 6369 6370 virt_x2apic_mode_wr_expectation( 6371 reg, virt_x2apic_mode_on, config->disable_x2apic, 6372 config->virtual_interrupt_delivery, expectation); 6373 virt_x2apic_mode_rd_expectation( 6374 reg, virt_x2apic_mode_on, config->disable_x2apic, 6375 base_config->apic_register_virtualization, 6376 config->virtual_interrupt_delivery, expectation); 6377 } 6378 6379 struct virt_x2apic_mode_test_case virt_x2apic_mode_tests[] = { 6380 /* 6381 * Baseline "virtualize x2APIC mode" configuration: 6382 * - virtualize x2APIC mode 6383 * - virtual-interrupt delivery 6384 * - APIC-register virtualization 6385 * - x2APIC MSR intercepts disabled 6386 * 6387 * Reads come from virtual APIC page, special processing applies to 6388 * VTPR, EOI, and SELF IPI, and all other writes pass through to L1 6389 * APIC. 6390 */ 6391 { 6392 .name = "Baseline", 6393 .virt_x2apic_mode_config = { 6394 .virtual_interrupt_delivery = true, 6395 .use_msr_bitmaps = true, 6396 .disable_x2apic_msr_intercepts = true, 6397 .disable_x2apic = false, 6398 .apic_reg_virt_config = { 6399 .apic_register_virtualization = true, 6400 .use_tpr_shadow = true, 6401 .virtualize_apic_accesses = false, 6402 .virtualize_x2apic_mode = true, 6403 .activate_secondary_controls = true, 6404 }, 6405 }, 6406 }, 6407 { 6408 .name = "Baseline w/ x2apic disabled", 6409 .virt_x2apic_mode_config = { 6410 .virtual_interrupt_delivery = true, 6411 .use_msr_bitmaps = true, 6412 .disable_x2apic_msr_intercepts = true, 6413 .disable_x2apic = true, 6414 .apic_reg_virt_config = { 6415 .apic_register_virtualization = true, 6416 .use_tpr_shadow = true, 6417 .virtualize_apic_accesses = false, 6418 .virtualize_x2apic_mode = true, 6419 .activate_secondary_controls = true, 6420 }, 6421 }, 6422 }, 6423 6424 /* 6425 * Baseline, minus virtual-interrupt delivery. Reads come from virtual 6426 * APIC page, special processing applies to VTPR, and all other writes 6427 * pass through to L1 APIC. 6428 */ 6429 { 6430 .name = "Baseline - virtual interrupt delivery", 6431 .virt_x2apic_mode_config = { 6432 .virtual_interrupt_delivery = false, 6433 .use_msr_bitmaps = true, 6434 .disable_x2apic_msr_intercepts = true, 6435 .disable_x2apic = false, 6436 .apic_reg_virt_config = { 6437 .apic_register_virtualization = true, 6438 .use_tpr_shadow = true, 6439 .virtualize_apic_accesses = false, 6440 .virtualize_x2apic_mode = true, 6441 .activate_secondary_controls = true, 6442 }, 6443 }, 6444 }, 6445 6446 /* 6447 * Baseline, minus APIC-register virtualization. x2APIC reads pass 6448 * through to L1's APIC, unless reading VTPR 6449 */ 6450 { 6451 .name = "Virtualize x2APIC mode, no APIC reg virt", 6452 .virt_x2apic_mode_config = { 6453 .virtual_interrupt_delivery = true, 6454 .use_msr_bitmaps = true, 6455 .disable_x2apic_msr_intercepts = true, 6456 .disable_x2apic = false, 6457 .apic_reg_virt_config = { 6458 .apic_register_virtualization = false, 6459 .use_tpr_shadow = true, 6460 .virtualize_apic_accesses = false, 6461 .virtualize_x2apic_mode = true, 6462 .activate_secondary_controls = true, 6463 }, 6464 }, 6465 }, 6466 { 6467 .name = "Virtualize x2APIC mode, no APIC reg virt, x2APIC off", 6468 .virt_x2apic_mode_config = { 6469 .virtual_interrupt_delivery = true, 6470 .use_msr_bitmaps = true, 6471 .disable_x2apic_msr_intercepts = true, 6472 .disable_x2apic = true, 6473 .apic_reg_virt_config = { 6474 .apic_register_virtualization = false, 6475 .use_tpr_shadow = true, 6476 .virtualize_apic_accesses = false, 6477 .virtualize_x2apic_mode = true, 6478 .activate_secondary_controls = true, 6479 }, 6480 }, 6481 }, 6482 6483 /* 6484 * Enable "virtualize x2APIC mode" and "APIC-register virtualization", 6485 * and disable intercepts for the x2APIC MSRs, but fail to enable 6486 * "activate secondary controls" (i.e. L2 gets access to L1's x2APIC 6487 * MSRs). 6488 */ 6489 { 6490 .name = "Fail to enable activate secondary controls", 6491 .virt_x2apic_mode_config = { 6492 .virtual_interrupt_delivery = true, 6493 .use_msr_bitmaps = true, 6494 .disable_x2apic_msr_intercepts = true, 6495 .disable_x2apic = false, 6496 .apic_reg_virt_config = { 6497 .apic_register_virtualization = true, 6498 .use_tpr_shadow = true, 6499 .virtualize_apic_accesses = false, 6500 .virtualize_x2apic_mode = true, 6501 .activate_secondary_controls = false, 6502 }, 6503 }, 6504 }, 6505 6506 /* 6507 * Enable "APIC-register virtualization" and enable "activate secondary 6508 * controls" and disable intercepts for the x2APIC MSRs, but do not 6509 * enable the "virtualize x2APIC mode" VM-execution control (i.e. L2 6510 * gets access to L1's x2APIC MSRs). 6511 */ 6512 { 6513 .name = "Fail to enable virtualize x2APIC mode", 6514 .virt_x2apic_mode_config = { 6515 .virtual_interrupt_delivery = true, 6516 .use_msr_bitmaps = true, 6517 .disable_x2apic_msr_intercepts = true, 6518 .disable_x2apic = false, 6519 .apic_reg_virt_config = { 6520 .apic_register_virtualization = true, 6521 .use_tpr_shadow = true, 6522 .virtualize_apic_accesses = false, 6523 .virtualize_x2apic_mode = false, 6524 .activate_secondary_controls = true, 6525 }, 6526 }, 6527 }, 6528 6529 /* 6530 * Disable "Virtualize x2APIC mode", disable x2APIC MSR intercepts, and 6531 * enable "APIC-register virtualization" --> L2 gets L1's x2APIC MSRs. 6532 */ 6533 { 6534 .name = "Baseline", 6535 .virt_x2apic_mode_config = { 6536 .virtual_interrupt_delivery = true, 6537 .use_msr_bitmaps = true, 6538 .disable_x2apic_msr_intercepts = true, 6539 .disable_x2apic = false, 6540 .apic_reg_virt_config = { 6541 .apic_register_virtualization = true, 6542 .use_tpr_shadow = true, 6543 .virtualize_apic_accesses = false, 6544 .virtualize_x2apic_mode = false, 6545 .activate_secondary_controls = true, 6546 }, 6547 }, 6548 }, 6549 }; 6550 6551 enum X2apic_op { 6552 X2APIC_OP_RD, 6553 X2APIC_OP_WR, 6554 X2APIC_TERMINATE, 6555 }; 6556 6557 static u64 vmx_x2apic_read(u32 reg) 6558 { 6559 u32 msr_addr = x2apic_msr(reg); 6560 u64 val; 6561 6562 val = rdmsr(msr_addr); 6563 6564 return val; 6565 } 6566 6567 static void vmx_x2apic_write(u32 reg, u64 val) 6568 { 6569 u32 msr_addr = x2apic_msr(reg); 6570 6571 wrmsr(msr_addr, val); 6572 } 6573 6574 struct virt_x2apic_mode_guest_args { 6575 enum X2apic_op op; 6576 u32 reg; 6577 u64 val; 6578 bool should_gp; 6579 u64 (*virt_fn)(u64); 6580 } virt_x2apic_mode_guest_args; 6581 6582 static volatile bool handle_x2apic_gp_ran; 6583 static volatile u32 handle_x2apic_gp_insn_len; 6584 static void handle_x2apic_gp(struct ex_regs *regs) 6585 { 6586 handle_x2apic_gp_ran = true; 6587 regs->rip += handle_x2apic_gp_insn_len; 6588 } 6589 6590 static handler setup_x2apic_gp_handler(void) 6591 { 6592 handler old_handler; 6593 6594 old_handler = handle_exception(GP_VECTOR, handle_x2apic_gp); 6595 /* RDMSR and WRMSR are both 2 bytes, assuming no prefixes. */ 6596 handle_x2apic_gp_insn_len = 2; 6597 6598 return old_handler; 6599 } 6600 6601 static void teardown_x2apic_gp_handler(handler old_handler) 6602 { 6603 handle_exception(GP_VECTOR, old_handler); 6604 6605 /* 6606 * Defensively reset instruction length, so that if the handler is 6607 * incorrectly used, it will loop infinitely, rather than run off into 6608 * la la land. 6609 */ 6610 handle_x2apic_gp_insn_len = 0; 6611 handle_x2apic_gp_ran = false; 6612 } 6613 6614 static void virt_x2apic_mode_guest(void) 6615 { 6616 volatile struct virt_x2apic_mode_guest_args *args = 6617 &virt_x2apic_mode_guest_args; 6618 6619 for (;;) { 6620 enum X2apic_op op = args->op; 6621 u32 reg = args->reg; 6622 u64 val = args->val; 6623 bool should_gp = args->should_gp; 6624 u64 (*virt_fn)(u64) = args->virt_fn; 6625 handler old_handler; 6626 6627 if (op == X2APIC_TERMINATE) 6628 break; 6629 6630 if (should_gp) { 6631 TEST_ASSERT(!handle_x2apic_gp_ran); 6632 old_handler = setup_x2apic_gp_handler(); 6633 } 6634 6635 if (op == X2APIC_OP_RD) { 6636 u64 ret = vmx_x2apic_read(reg); 6637 6638 if (!should_gp) { 6639 u64 want = virt_fn(val); 6640 u64 got = virt_fn(ret); 6641 6642 report(got == want, 6643 "APIC read; got 0x%lx, want 0x%lx.", 6644 got, want); 6645 } 6646 } else if (op == X2APIC_OP_WR) { 6647 vmx_x2apic_write(reg, val); 6648 } 6649 6650 if (should_gp) { 6651 report(handle_x2apic_gp_ran, 6652 "x2APIC op triggered GP."); 6653 teardown_x2apic_gp_handler(old_handler); 6654 } 6655 6656 /* 6657 * The L1 should always execute a vmcall after it's done testing 6658 * an individual APIC operation. This helps to validate that the 6659 * L1 and L2 are in sync with each other, as expected. 6660 */ 6661 vmcall(); 6662 } 6663 } 6664 6665 static void test_x2apic_rd( 6666 u32 reg, struct virt_x2apic_mode_expectation *expectation, 6667 u32 *virtual_apic_page) 6668 { 6669 u64 val = expectation->rd_val; 6670 u32 exit_reason_want = expectation->rd_exit_reason; 6671 struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; 6672 6673 report_prefix_pushf("x2apic - reading 0x%03x", reg); 6674 6675 /* Configure guest to do an x2apic read */ 6676 args->op = X2APIC_OP_RD; 6677 args->reg = reg; 6678 args->val = val; 6679 args->should_gp = expectation->rd_behavior == X2APIC_ACCESS_TRIGGERS_GP; 6680 args->virt_fn = expectation->virt_fn; 6681 6682 /* Setup virtual APIC page */ 6683 if (expectation->rd_behavior == X2APIC_ACCESS_VIRTUALIZED) 6684 virtual_apic_page[apic_reg_index(reg)] = (u32)val; 6685 6686 /* Enter guest */ 6687 enter_guest(); 6688 6689 if (exit_reason_want != VMX_VMCALL) { 6690 report_fail("Oops, bad exit expectation: %u.", exit_reason_want); 6691 } 6692 6693 skip_exit_vmcall(); 6694 report_prefix_pop(); 6695 } 6696 6697 static volatile bool handle_x2apic_ipi_ran; 6698 static void handle_x2apic_ipi(isr_regs_t *regs) 6699 { 6700 handle_x2apic_ipi_ran = true; 6701 eoi(); 6702 } 6703 6704 static void test_x2apic_wr( 6705 u32 reg, struct virt_x2apic_mode_expectation *expectation, 6706 u32 *virtual_apic_page) 6707 { 6708 u64 val = expectation->wr_val; 6709 u32 exit_reason_want = expectation->wr_exit_reason; 6710 struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; 6711 int ipi_vector = 0xf1; 6712 u32 restore_val = 0; 6713 6714 report_prefix_pushf("x2apic - writing 0x%lx to 0x%03x", val, reg); 6715 6716 /* Configure guest to do an x2apic read */ 6717 args->op = X2APIC_OP_WR; 6718 args->reg = reg; 6719 args->val = val; 6720 args->should_gp = expectation->wr_behavior == X2APIC_ACCESS_TRIGGERS_GP; 6721 6722 /* Setup virtual APIC page */ 6723 if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) 6724 virtual_apic_page[apic_reg_index(reg)] = 0; 6725 if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH && !expectation->wr_only) 6726 restore_val = apic_read(reg); 6727 6728 /* Setup IPI handler */ 6729 handle_x2apic_ipi_ran = false; 6730 handle_irq(ipi_vector, handle_x2apic_ipi); 6731 6732 /* Enter guest */ 6733 enter_guest(); 6734 6735 /* 6736 * Validate the behavior and 6737 * pass a magic value back to the guest. 6738 */ 6739 if (exit_reason_want == VMX_EXTINT) { 6740 assert_exit_reason(exit_reason_want); 6741 6742 /* Clear the external interrupt. */ 6743 sti_nop_cli(); 6744 report(handle_x2apic_ipi_ran, 6745 "Got pending interrupt after IRQ enabled."); 6746 6747 enter_guest(); 6748 } else if (exit_reason_want == VMX_APIC_WRITE) { 6749 assert_exit_reason(exit_reason_want); 6750 report(virtual_apic_page[apic_reg_index(reg)] == val, 6751 "got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%lx", 6752 apic_reg_index(reg), 6753 virtual_apic_page[apic_reg_index(reg)], val); 6754 6755 /* Reenter guest so it can consume/check rcx and exit again. */ 6756 enter_guest(); 6757 } else if (exit_reason_want != VMX_VMCALL) { 6758 report_fail("Oops, bad exit expectation: %u.", exit_reason_want); 6759 } 6760 6761 assert_exit_reason(VMX_VMCALL); 6762 if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) { 6763 u64 want = val; 6764 u32 got = virtual_apic_page[apic_reg_index(reg)]; 6765 6766 report(got == want, "x2APIC write; got 0x%x, want 0x%lx", got, 6767 want); 6768 } else if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH) { 6769 if (!expectation->wr_only) { 6770 u32 got = apic_read(reg); 6771 bool ok; 6772 6773 /* 6774 * When L1's TPR is passed through to L2, the lower 6775 * nibble can be lost. For example, if L2 executes 6776 * WRMSR(0x808, 0x78), then, L1 might read 0x70. 6777 * 6778 * Here's how the lower nibble can get lost: 6779 * 1. L2 executes WRMSR(0x808, 0x78). 6780 * 2. L2 exits to L0 with a WRMSR exit. 6781 * 3. L0 emulates WRMSR, by writing L1's TPR. 6782 * 4. L0 re-enters L2. 6783 * 5. L2 exits to L0 (reason doesn't matter). 6784 * 6. L0 reflects L2's exit to L1. 6785 * 7. Before entering L1, L0 exits to user-space 6786 * (e.g., to satisfy TPR access reporting). 6787 * 8. User-space executes KVM_SET_REGS ioctl, which 6788 * clears the lower nibble of L1's TPR. 6789 */ 6790 if (reg == APIC_TASKPRI) { 6791 got = apic_virt_nibble1(got); 6792 val = apic_virt_nibble1(val); 6793 } 6794 6795 ok = got == val; 6796 report(ok, 6797 "non-virtualized write; val is 0x%x, want 0x%lx", 6798 got, val); 6799 apic_write(reg, restore_val); 6800 } else { 6801 report_pass("non-virtualized and write-only OK"); 6802 } 6803 } 6804 skip_exit_insn(); 6805 6806 report_prefix_pop(); 6807 } 6808 6809 static enum Config_type configure_virt_x2apic_mode_test( 6810 struct virt_x2apic_mode_config *virt_x2apic_mode_config, 6811 u8 *msr_bitmap_page) 6812 { 6813 int msr; 6814 u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 6815 u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); 6816 6817 /* x2apic-specific VMCS config */ 6818 if (virt_x2apic_mode_config->use_msr_bitmaps) { 6819 /* virt_x2apic_mode_test() checks for MSR bitmaps support */ 6820 cpu_exec_ctrl0 |= CPU_MSR_BITMAP; 6821 } else { 6822 cpu_exec_ctrl0 &= ~CPU_MSR_BITMAP; 6823 } 6824 6825 if (virt_x2apic_mode_config->virtual_interrupt_delivery) { 6826 if (!(ctrl_cpu_rev[1].clr & CPU_VINTD)) { 6827 report_skip("%s : \"virtual-interrupt delivery\" exec control not supported", __func__); 6828 return CONFIG_TYPE_UNSUPPORTED; 6829 } 6830 cpu_exec_ctrl1 |= CPU_VINTD; 6831 } else { 6832 cpu_exec_ctrl1 &= ~CPU_VINTD; 6833 } 6834 6835 vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); 6836 vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); 6837 6838 /* x2APIC MSR intercepts are usually off for "Virtualize x2APIC mode" */ 6839 for (msr = 0x800; msr <= 0x8ff; msr++) { 6840 if (virt_x2apic_mode_config->disable_x2apic_msr_intercepts) { 6841 clear_bit(msr, msr_bitmap_page + 0x000); 6842 clear_bit(msr, msr_bitmap_page + 0x800); 6843 } else { 6844 set_bit(msr, msr_bitmap_page + 0x000); 6845 set_bit(msr, msr_bitmap_page + 0x800); 6846 } 6847 } 6848 6849 /* x2APIC mode can impact virtualization */ 6850 reset_apic(); 6851 if (!virt_x2apic_mode_config->disable_x2apic) 6852 enable_x2apic(); 6853 6854 return configure_apic_reg_virt_test( 6855 &virt_x2apic_mode_config->apic_reg_virt_config); 6856 } 6857 6858 static void virt_x2apic_mode_test(void) 6859 { 6860 u32 *virtual_apic_page; 6861 u8 *msr_bitmap_page; 6862 u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 6863 u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); 6864 int i; 6865 struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; 6866 6867 if (!cpu_has_apicv()) { 6868 report_skip("%s : Not all required APICv bits supported", __func__); 6869 return; 6870 } 6871 6872 /* 6873 * This is to exercise an issue in KVM's logic to merge L0's and L1's 6874 * MSR bitmaps. Previously, an L1 could get at L0's x2APIC MSRs by 6875 * writing the IA32_SPEC_CTRL MSR or the IA32_PRED_CMD MSRs. KVM would 6876 * then proceed to manipulate the MSR bitmaps, as if VMCS12 had the 6877 * "Virtualize x2APIC mod" control set, even when it didn't. 6878 */ 6879 if (this_cpu_has(X86_FEATURE_SPEC_CTRL)) 6880 wrmsr(MSR_IA32_SPEC_CTRL, 1); 6881 6882 /* 6883 * Check that VMCS12 supports: 6884 * - "Virtual-APIC address", indicated by "use TPR shadow" 6885 * - "MSR-bitmap address", indicated by "use MSR bitmaps" 6886 */ 6887 if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) { 6888 report_skip("%s : \"Use TPR shadow\" exec control not supported", __func__); 6889 return; 6890 } else if (!(ctrl_cpu_rev[0].clr & CPU_MSR_BITMAP)) { 6891 report_skip("%s : \"Use MSR bitmaps\" exec control not supported", __func__); 6892 return; 6893 } 6894 6895 test_set_guest(virt_x2apic_mode_guest); 6896 6897 virtual_apic_page = alloc_page(); 6898 vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); 6899 6900 msr_bitmap_page = alloc_page(); 6901 memset(msr_bitmap_page, 0xff, PAGE_SIZE); 6902 vmcs_write(MSR_BITMAP, virt_to_phys(msr_bitmap_page)); 6903 6904 for (i = 0; i < ARRAY_SIZE(virt_x2apic_mode_tests); i++) { 6905 struct virt_x2apic_mode_test_case *virt_x2apic_mode_test_case = 6906 &virt_x2apic_mode_tests[i]; 6907 struct virt_x2apic_mode_config *virt_x2apic_mode_config = 6908 &virt_x2apic_mode_test_case->virt_x2apic_mode_config; 6909 enum Config_type config_type; 6910 u32 reg; 6911 6912 printf("--- %s test ---\n", virt_x2apic_mode_test_case->name); 6913 config_type = 6914 configure_virt_x2apic_mode_test(virt_x2apic_mode_config, 6915 msr_bitmap_page); 6916 if (config_type == CONFIG_TYPE_UNSUPPORTED) { 6917 report_skip("Skip because of missing features."); 6918 continue; 6919 } else if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) { 6920 enter_guest_with_bad_controls(); 6921 continue; 6922 } 6923 6924 for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) { 6925 struct virt_x2apic_mode_expectation expectation; 6926 6927 virt_x2apic_mode_exit_expectation( 6928 reg, virt_x2apic_mode_config, &expectation); 6929 6930 test_x2apic_rd(reg, &expectation, virtual_apic_page); 6931 test_x2apic_wr(reg, &expectation, virtual_apic_page); 6932 } 6933 } 6934 6935 6936 /* Terminate the guest */ 6937 vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); 6938 vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); 6939 args->op = X2APIC_TERMINATE; 6940 enter_guest(); 6941 assert_exit_reason(VMX_VMCALL); 6942 } 6943 6944 static void test_ctl_reg(const char *cr_name, u64 cr, u64 fixed0, u64 fixed1) 6945 { 6946 u64 val; 6947 u64 cr_saved = vmcs_read(cr); 6948 int i; 6949 6950 val = fixed0 & fixed1; 6951 if (cr == HOST_CR4) 6952 vmcs_write(cr, val | X86_CR4_PAE); 6953 else 6954 vmcs_write(cr, val); 6955 report_prefix_pushf("%s %lx", cr_name, val); 6956 if (val == fixed0) 6957 test_vmx_vmlaunch(0); 6958 else 6959 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 6960 report_prefix_pop(); 6961 6962 for (i = 0; i < 64; i++) { 6963 6964 /* Set a bit when the corresponding bit in fixed1 is 0 */ 6965 if ((fixed1 & (1ull << i)) == 0) { 6966 if (cr == HOST_CR4 && ((1ull << i) & X86_CR4_SMEP || 6967 (1ull << i) & X86_CR4_SMAP)) 6968 continue; 6969 6970 vmcs_write(cr, cr_saved | (1ull << i)); 6971 report_prefix_pushf("%s %llx", cr_name, 6972 cr_saved | (1ull << i)); 6973 test_vmx_vmlaunch( 6974 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 6975 report_prefix_pop(); 6976 } 6977 6978 /* Unset a bit when the corresponding bit in fixed0 is 1 */ 6979 if (fixed0 & (1ull << i)) { 6980 vmcs_write(cr, cr_saved & ~(1ull << i)); 6981 report_prefix_pushf("%s %llx", cr_name, 6982 cr_saved & ~(1ull << i)); 6983 test_vmx_vmlaunch( 6984 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 6985 report_prefix_pop(); 6986 } 6987 } 6988 6989 vmcs_write(cr, cr_saved); 6990 } 6991 6992 /* 6993 * 1. The CR0 field must not set any bit to a value not supported in VMX 6994 * operation. 6995 * 2. The CR4 field must not set any bit to a value not supported in VMX 6996 * operation. 6997 * 3. On processors that support Intel 64 architecture, the CR3 field must 6998 * be such that bits 63:52 and bits in the range 51:32 beyond the 6999 * processor's physical-address width must be 0. 7000 * 7001 * [Intel SDM] 7002 */ 7003 static void test_host_ctl_regs(void) 7004 { 7005 u64 fixed0, fixed1, cr3, cr3_saved; 7006 int i; 7007 7008 /* Test CR0 */ 7009 fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0); 7010 fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1); 7011 test_ctl_reg("HOST_CR0", HOST_CR0, fixed0, fixed1); 7012 7013 /* Test CR4 */ 7014 fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0); 7015 fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1) & 7016 ~(X86_CR4_SMEP | X86_CR4_SMAP); 7017 test_ctl_reg("HOST_CR4", HOST_CR4, fixed0, fixed1); 7018 7019 /* Test CR3 */ 7020 cr3_saved = vmcs_read(HOST_CR3); 7021 for (i = cpuid_maxphyaddr(); i < 64; i++) { 7022 cr3 = cr3_saved | (1ul << i); 7023 vmcs_write(HOST_CR3, cr3); 7024 report_prefix_pushf("HOST_CR3 %lx", cr3); 7025 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7026 report_prefix_pop(); 7027 } 7028 7029 vmcs_write(HOST_CR3, cr3_saved); 7030 } 7031 7032 static void test_efer_vmlaunch(u32 fld, bool ok) 7033 { 7034 if (fld == HOST_EFER) { 7035 if (ok) 7036 test_vmx_vmlaunch(0); 7037 else 7038 test_vmx_vmlaunch2(VMXERR_ENTRY_INVALID_CONTROL_FIELD, 7039 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7040 } else { 7041 test_guest_state("EFER test", !ok, GUEST_EFER, "GUEST_EFER"); 7042 } 7043 } 7044 7045 static void test_efer_one(u32 fld, const char * fld_name, u64 efer, 7046 u32 ctrl_fld, u64 ctrl, 7047 int i, const char *efer_bit_name) 7048 { 7049 bool ok; 7050 7051 ok = true; 7052 if (ctrl_fld == EXI_CONTROLS && (ctrl & EXI_LOAD_EFER)) { 7053 if (!!(efer & EFER_LMA) != !!(ctrl & EXI_HOST_64)) 7054 ok = false; 7055 if (!!(efer & EFER_LME) != !!(ctrl & EXI_HOST_64)) 7056 ok = false; 7057 } 7058 if (ctrl_fld == ENT_CONTROLS && (ctrl & ENT_LOAD_EFER)) { 7059 /* Check LMA too since CR0.PG is set. */ 7060 if (!!(efer & EFER_LMA) != !!(ctrl & ENT_GUEST_64)) 7061 ok = false; 7062 if (!!(efer & EFER_LME) != !!(ctrl & ENT_GUEST_64)) 7063 ok = false; 7064 } 7065 7066 /* 7067 * Skip the test if it would enter the guest in 32-bit mode. 7068 * Perhaps write the test in assembly and make sure it 7069 * can be run in either mode? 7070 */ 7071 if (fld == GUEST_EFER && ok && !(ctrl & ENT_GUEST_64)) 7072 return; 7073 7074 vmcs_write(ctrl_fld, ctrl); 7075 vmcs_write(fld, efer); 7076 report_prefix_pushf("%s %s bit turned %s, controls %s", 7077 fld_name, efer_bit_name, 7078 (i & 1) ? "on" : "off", 7079 (i & 2) ? "on" : "off"); 7080 7081 test_efer_vmlaunch(fld, ok); 7082 report_prefix_pop(); 7083 } 7084 7085 static void test_efer_bit(u32 fld, const char * fld_name, 7086 u32 ctrl_fld, u64 ctrl_bit, u64 efer_bit, 7087 const char *efer_bit_name) 7088 { 7089 u64 efer_saved = vmcs_read(fld); 7090 u32 ctrl_saved = vmcs_read(ctrl_fld); 7091 int i; 7092 7093 for (i = 0; i < 4; i++) { 7094 u64 efer = efer_saved & ~efer_bit; 7095 u64 ctrl = ctrl_saved & ~ctrl_bit; 7096 7097 if (i & 1) 7098 efer |= efer_bit; 7099 if (i & 2) 7100 ctrl |= ctrl_bit; 7101 7102 test_efer_one(fld, fld_name, efer, ctrl_fld, ctrl, 7103 i, efer_bit_name); 7104 } 7105 7106 vmcs_write(ctrl_fld, ctrl_saved); 7107 vmcs_write(fld, efer_saved); 7108 } 7109 7110 static void test_efer(u32 fld, const char * fld_name, u32 ctrl_fld, 7111 u64 ctrl_bit1, u64 ctrl_bit2) 7112 { 7113 u64 efer_saved = vmcs_read(fld); 7114 u32 ctrl_saved = vmcs_read(ctrl_fld); 7115 u64 efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 7116 u64 i; 7117 u64 efer; 7118 7119 if (this_cpu_has(X86_FEATURE_NX)) 7120 efer_reserved_bits &= ~EFER_NX; 7121 7122 if (!ctrl_bit1) { 7123 report_skip("%s : \"Load-IA32-EFER\" exit control not supported", __func__); 7124 goto test_entry_exit_mode; 7125 } 7126 7127 report_prefix_pushf("%s %lx", fld_name, efer_saved); 7128 test_efer_vmlaunch(fld, true); 7129 report_prefix_pop(); 7130 7131 /* 7132 * Check reserved bits 7133 */ 7134 vmcs_write(ctrl_fld, ctrl_saved & ~ctrl_bit1); 7135 for (i = 0; i < 64; i++) { 7136 if ((1ull << i) & efer_reserved_bits) { 7137 efer = efer_saved | (1ull << i); 7138 vmcs_write(fld, efer); 7139 report_prefix_pushf("%s %lx", fld_name, efer); 7140 test_efer_vmlaunch(fld, true); 7141 report_prefix_pop(); 7142 } 7143 } 7144 7145 vmcs_write(ctrl_fld, ctrl_saved | ctrl_bit1); 7146 for (i = 0; i < 64; i++) { 7147 if ((1ull << i) & efer_reserved_bits) { 7148 efer = efer_saved | (1ull << i); 7149 vmcs_write(fld, efer); 7150 report_prefix_pushf("%s %lx", fld_name, efer); 7151 test_efer_vmlaunch(fld, false); 7152 report_prefix_pop(); 7153 } 7154 } 7155 7156 vmcs_write(ctrl_fld, ctrl_saved); 7157 vmcs_write(fld, efer_saved); 7158 7159 /* 7160 * Check LMA and LME bits 7161 */ 7162 test_efer_bit(fld, fld_name, 7163 ctrl_fld, ctrl_bit1, 7164 EFER_LMA, 7165 "EFER_LMA"); 7166 test_efer_bit(fld, fld_name, 7167 ctrl_fld, ctrl_bit1, 7168 EFER_LME, 7169 "EFER_LME"); 7170 7171 test_entry_exit_mode: 7172 test_efer_bit(fld, fld_name, 7173 ctrl_fld, ctrl_bit2, 7174 EFER_LMA, 7175 "EFER_LMA"); 7176 test_efer_bit(fld, fld_name, 7177 ctrl_fld, ctrl_bit2, 7178 EFER_LME, 7179 "EFER_LME"); 7180 } 7181 7182 /* 7183 * If the 'load IA32_EFER' VM-exit control is 1, bits reserved in the 7184 * IA32_EFER MSR must be 0 in the field for that register. In addition, 7185 * the values of the LMA and LME bits in the field must each be that of 7186 * the 'host address-space size' VM-exit control. 7187 * 7188 * [Intel SDM] 7189 */ 7190 static void test_host_efer(void) 7191 { 7192 test_efer(HOST_EFER, "HOST_EFER", EXI_CONTROLS, 7193 ctrl_exit_rev.clr & EXI_LOAD_EFER, 7194 EXI_HOST_64); 7195 } 7196 7197 /* 7198 * If the 'load IA32_EFER' VM-enter control is 1, bits reserved in the 7199 * IA32_EFER MSR must be 0 in the field for that register. In addition, 7200 * the values of the LMA and LME bits in the field must each be that of 7201 * the 'IA32e-mode guest' VM-exit control. 7202 */ 7203 static void test_guest_efer(void) 7204 { 7205 if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) { 7206 report_skip("%s : \"Load-IA32-EFER\" entry control not supported", __func__); 7207 return; 7208 } 7209 7210 vmcs_write(GUEST_EFER, rdmsr(MSR_EFER)); 7211 test_efer(GUEST_EFER, "GUEST_EFER", ENT_CONTROLS, 7212 ctrl_enter_rev.clr & ENT_LOAD_EFER, 7213 ENT_GUEST_64); 7214 } 7215 7216 /* 7217 * PAT values higher than 8 are uninteresting since they're likely lumped 7218 * in with "8". We only test values above 8 one bit at a time, 7219 * in order to reduce the number of VM-Entries and keep the runtime reasonable. 7220 */ 7221 #define PAT_VAL_LIMIT 8 7222 7223 static void test_pat(u32 field, const char * field_name, u32 ctrl_field, 7224 u64 ctrl_bit) 7225 { 7226 u32 ctrl_saved = vmcs_read(ctrl_field); 7227 u64 pat_saved = vmcs_read(field); 7228 u64 i, val; 7229 u32 j; 7230 int error; 7231 7232 vmcs_clear_bits(ctrl_field, ctrl_bit); 7233 7234 for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) { 7235 /* Test PAT0..PAT7 fields */ 7236 for (j = 0; j < (i ? 8 : 1); j++) { 7237 val = i << j * 8; 7238 vmcs_write(field, val); 7239 if (field == HOST_PAT) { 7240 report_prefix_pushf("%s %lx", field_name, val); 7241 test_vmx_vmlaunch(0); 7242 report_prefix_pop(); 7243 7244 } else { // GUEST_PAT 7245 test_guest_state("ENT_LOAD_PAT enabled", false, 7246 val, "GUEST_PAT"); 7247 } 7248 } 7249 } 7250 7251 vmcs_set_bits(ctrl_field, ctrl_bit); 7252 for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) { 7253 /* Test PAT0..PAT7 fields */ 7254 for (j = 0; j < (i ? 8 : 1); j++) { 7255 val = i << j * 8; 7256 vmcs_write(field, val); 7257 7258 if (field == HOST_PAT) { 7259 report_prefix_pushf("%s %lx", field_name, val); 7260 if (i == 0x2 || i == 0x3 || i >= 0x8) 7261 error = 7262 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; 7263 else 7264 error = 0; 7265 7266 test_vmx_vmlaunch(error); 7267 report_prefix_pop(); 7268 7269 } else { // GUEST_PAT 7270 error = (i == 0x2 || i == 0x3 || i >= 0x8); 7271 test_guest_state("ENT_LOAD_PAT enabled", !!error, 7272 val, "GUEST_PAT"); 7273 } 7274 7275 } 7276 } 7277 7278 vmcs_write(ctrl_field, ctrl_saved); 7279 vmcs_write(field, pat_saved); 7280 } 7281 7282 /* 7283 * If the "load IA32_PAT" VM-exit control is 1, the value of the field 7284 * for the IA32_PAT MSR must be one that could be written by WRMSR 7285 * without fault at CPL 0. Specifically, each of the 8 bytes in the 7286 * field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 7287 * 6 (WB), or 7 (UC-). 7288 * 7289 * [Intel SDM] 7290 */ 7291 static void test_load_host_pat(void) 7292 { 7293 /* 7294 * "load IA32_PAT" VM-exit control 7295 */ 7296 if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) { 7297 report_skip("%s : \"Load-IA32-PAT\" exit control not supported", __func__); 7298 return; 7299 } 7300 7301 test_pat(HOST_PAT, "HOST_PAT", EXI_CONTROLS, EXI_LOAD_PAT); 7302 } 7303 7304 union cpuidA_eax { 7305 struct { 7306 unsigned int version_id:8; 7307 unsigned int num_counters_gp:8; 7308 unsigned int bit_width:8; 7309 unsigned int mask_length:8; 7310 } split; 7311 unsigned int full; 7312 }; 7313 7314 union cpuidA_edx { 7315 struct { 7316 unsigned int num_counters_fixed:5; 7317 unsigned int bit_width_fixed:8; 7318 unsigned int reserved:9; 7319 } split; 7320 unsigned int full; 7321 }; 7322 7323 static bool valid_pgc(u64 val) 7324 { 7325 struct cpuid id; 7326 union cpuidA_eax eax; 7327 union cpuidA_edx edx; 7328 u64 mask; 7329 7330 id = cpuid(0xA); 7331 eax.full = id.a; 7332 edx.full = id.d; 7333 mask = ~(((1ull << eax.split.num_counters_gp) - 1) | 7334 (((1ull << edx.split.num_counters_fixed) - 1) << 32)); 7335 7336 return !(val & mask); 7337 } 7338 7339 static void test_pgc_vmlaunch(u32 xerror, u32 xreason, bool xfail, bool host) 7340 { 7341 u32 inst_err; 7342 u64 obs; 7343 bool success; 7344 struct vmx_state_area_test_data *data = &vmx_state_area_test_data; 7345 7346 if (host) { 7347 success = vmlaunch(); 7348 obs = rdmsr(data->msr); 7349 if (!success) { 7350 inst_err = vmcs_read(VMX_INST_ERROR); 7351 report(xerror == inst_err, "vmlaunch failed, " 7352 "VMX Inst Error is %d (expected %d)", 7353 inst_err, xerror); 7354 } else { 7355 report(!data->enabled || data->exp == obs, 7356 "Host state is 0x%lx (expected 0x%lx)", 7357 obs, data->exp); 7358 report(success != xfail, "vmlaunch succeeded"); 7359 } 7360 } else { 7361 test_guest_state("load GUEST_PERF_GLOBAL_CTRL", xfail, 7362 GUEST_PERF_GLOBAL_CTRL, 7363 "GUEST_PERF_GLOBAL_CTRL"); 7364 } 7365 } 7366 7367 /* 7368 * test_load_perf_global_ctrl is a generic function for testing the 7369 * "load IA32_PERF_GLOBAL_CTRL" VM-{Entry,Exit} controls. This test function 7370 * tests the provided ctrl_val when disabled and enabled. 7371 * 7372 * @nr: VMCS field number corresponding to the host/guest state field 7373 * @name: Name of the above VMCS field for printing in test report 7374 * @ctrl_nr: VMCS field number corresponding to the VM-{Entry,Exit} control 7375 * @ctrl_val: Bit to set on the ctrl_field 7376 */ 7377 static void test_perf_global_ctrl(u32 nr, const char *name, u32 ctrl_nr, 7378 const char *ctrl_name, u64 ctrl_val) 7379 { 7380 u64 ctrl_saved = vmcs_read(ctrl_nr); 7381 u64 pgc_saved = vmcs_read(nr); 7382 u64 i, val; 7383 bool host = nr == HOST_PERF_GLOBAL_CTRL; 7384 struct vmx_state_area_test_data *data = &vmx_state_area_test_data; 7385 7386 data->msr = MSR_CORE_PERF_GLOBAL_CTRL; 7387 msr_bmp_init(); 7388 vmcs_write(ctrl_nr, ctrl_saved & ~ctrl_val); 7389 data->enabled = false; 7390 report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=0 on %s", 7391 ctrl_name); 7392 7393 for (i = 0; i < 64; i++) { 7394 val = 1ull << i; 7395 vmcs_write(nr, val); 7396 report_prefix_pushf("%s = 0x%lx", name, val); 7397 test_pgc_vmlaunch(0, VMX_VMCALL, false, host); 7398 report_prefix_pop(); 7399 } 7400 report_prefix_pop(); 7401 7402 vmcs_write(ctrl_nr, ctrl_saved | ctrl_val); 7403 data->enabled = true; 7404 report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=1 on %s", 7405 ctrl_name); 7406 for (i = 0; i < 64; i++) { 7407 val = 1ull << i; 7408 data->exp = val; 7409 vmcs_write(nr, val); 7410 report_prefix_pushf("%s = 0x%lx", name, val); 7411 if (valid_pgc(val)) { 7412 test_pgc_vmlaunch(0, VMX_VMCALL, false, host); 7413 } else { 7414 if (host) 7415 test_pgc_vmlaunch( 7416 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD, 7417 0, 7418 true, 7419 host); 7420 else 7421 test_pgc_vmlaunch( 7422 0, 7423 VMX_ENTRY_FAILURE | VMX_FAIL_STATE, 7424 true, 7425 host); 7426 } 7427 report_prefix_pop(); 7428 } 7429 7430 data->enabled = false; 7431 report_prefix_pop(); 7432 vmcs_write(ctrl_nr, ctrl_saved); 7433 vmcs_write(nr, pgc_saved); 7434 } 7435 7436 static void test_load_host_perf_global_ctrl(void) 7437 { 7438 if (!this_cpu_has_perf_global_ctrl()) { 7439 report_skip("%s : \"IA32_PERF_GLOBAL_CTRL\" MSR not supported", __func__); 7440 return; 7441 } 7442 7443 if (!(ctrl_exit_rev.clr & EXI_LOAD_PERF)) { 7444 report_skip("%s : \"Load IA32_PERF_GLOBAL_CTRL\" exit control not supported", __func__); 7445 return; 7446 } 7447 7448 test_perf_global_ctrl(HOST_PERF_GLOBAL_CTRL, "HOST_PERF_GLOBAL_CTRL", 7449 EXI_CONTROLS, "EXI_CONTROLS", EXI_LOAD_PERF); 7450 } 7451 7452 7453 static void test_load_guest_perf_global_ctrl(void) 7454 { 7455 if (!this_cpu_has_perf_global_ctrl()) { 7456 report_skip("%s : \"IA32_PERF_GLOBAL_CTRL\" MSR not supported", __func__); 7457 return; 7458 } 7459 7460 if (!(ctrl_enter_rev.clr & ENT_LOAD_PERF)) { 7461 report_skip("%s : \"Load IA32_PERF_GLOBAL_CTRL\" entry control not supported", __func__); 7462 return; 7463 } 7464 7465 test_perf_global_ctrl(GUEST_PERF_GLOBAL_CTRL, "GUEST_PERF_GLOBAL_CTRL", 7466 ENT_CONTROLS, "ENT_CONTROLS", ENT_LOAD_PERF); 7467 } 7468 7469 7470 /* 7471 * test_vmcs_field - test a value for the given VMCS field 7472 * @field: VMCS field 7473 * @field_name: string name of VMCS field 7474 * @bit_start: starting bit 7475 * @bit_end: ending bit 7476 * @val: value that the bit range must or must not contain 7477 * @valid_val: whether value given in 'val' must be valid or not 7478 * @error: expected VMCS error when vmentry fails for an invalid value 7479 */ 7480 static void test_vmcs_field(u64 field, const char *field_name, u32 bit_start, 7481 u32 bit_end, u64 val, bool valid_val, u32 error) 7482 { 7483 u64 field_saved = vmcs_read(field); 7484 u32 i; 7485 u64 tmp; 7486 u32 bit_on; 7487 u64 mask = ~0ull; 7488 7489 mask = (mask >> bit_end) << bit_end; 7490 mask = mask | ((1 << bit_start) - 1); 7491 tmp = (field_saved & mask) | (val << bit_start); 7492 7493 vmcs_write(field, tmp); 7494 report_prefix_pushf("%s %lx", field_name, tmp); 7495 if (valid_val) 7496 test_vmx_vmlaunch(0); 7497 else 7498 test_vmx_vmlaunch(error); 7499 report_prefix_pop(); 7500 7501 for (i = bit_start; i <= bit_end; i = i + 2) { 7502 bit_on = ((1ull < i) & (val << bit_start)) ? 0 : 1; 7503 if (bit_on) 7504 tmp = field_saved | (1ull << i); 7505 else 7506 tmp = field_saved & ~(1ull << i); 7507 vmcs_write(field, tmp); 7508 report_prefix_pushf("%s %lx", field_name, tmp); 7509 if (valid_val) 7510 test_vmx_vmlaunch(error); 7511 else 7512 test_vmx_vmlaunch(0); 7513 report_prefix_pop(); 7514 } 7515 7516 vmcs_write(field, field_saved); 7517 } 7518 7519 static void test_canonical(u64 field, const char * field_name, bool host) 7520 { 7521 u64 addr_saved = vmcs_read(field); 7522 7523 /* 7524 * Use the existing value if possible. Writing a random canonical 7525 * value is not an option as doing so would corrupt the field being 7526 * tested and likely hose the test. 7527 */ 7528 if (is_canonical(addr_saved)) { 7529 if (host) { 7530 report_prefix_pushf("%s %lx", field_name, addr_saved); 7531 test_vmx_vmlaunch(0); 7532 report_prefix_pop(); 7533 } else { 7534 test_guest_state("Test canonical address", false, 7535 addr_saved, field_name); 7536 } 7537 } 7538 7539 vmcs_write(field, NONCANONICAL); 7540 7541 if (host) { 7542 report_prefix_pushf("%s %llx", field_name, NONCANONICAL); 7543 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7544 report_prefix_pop(); 7545 } else { 7546 test_guest_state("Test non-canonical address", true, 7547 NONCANONICAL, field_name); 7548 } 7549 7550 vmcs_write(field, addr_saved); 7551 } 7552 7553 #define TEST_RPL_TI_FLAGS(reg, name) \ 7554 test_vmcs_field(reg, name, 0, 2, 0x0, true, \ 7555 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7556 7557 #define TEST_CS_TR_FLAGS(reg, name) \ 7558 test_vmcs_field(reg, name, 3, 15, 0x0000, false, \ 7559 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7560 7561 /* 7562 * 1. In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the 7563 * RPL (bits 1:0) and the TI flag (bit 2) must be 0. 7564 * 2. The selector fields for CS and TR cannot be 0000H. 7565 * 3. The selector field for SS cannot be 0000H if the "host address-space 7566 * size" VM-exit control is 0. 7567 * 4. On processors that support Intel 64 architecture, the base-address 7568 * fields for FS, GS and TR must contain canonical addresses. 7569 */ 7570 static void test_host_segment_regs(void) 7571 { 7572 u16 selector_saved; 7573 7574 /* 7575 * Test RPL and TI flags 7576 */ 7577 TEST_RPL_TI_FLAGS(HOST_SEL_CS, "HOST_SEL_CS"); 7578 TEST_RPL_TI_FLAGS(HOST_SEL_SS, "HOST_SEL_SS"); 7579 TEST_RPL_TI_FLAGS(HOST_SEL_DS, "HOST_SEL_DS"); 7580 TEST_RPL_TI_FLAGS(HOST_SEL_ES, "HOST_SEL_ES"); 7581 TEST_RPL_TI_FLAGS(HOST_SEL_FS, "HOST_SEL_FS"); 7582 TEST_RPL_TI_FLAGS(HOST_SEL_GS, "HOST_SEL_GS"); 7583 TEST_RPL_TI_FLAGS(HOST_SEL_TR, "HOST_SEL_TR"); 7584 7585 /* 7586 * Test that CS and TR fields can not be 0x0000 7587 */ 7588 TEST_CS_TR_FLAGS(HOST_SEL_CS, "HOST_SEL_CS"); 7589 TEST_CS_TR_FLAGS(HOST_SEL_TR, "HOST_SEL_TR"); 7590 7591 /* 7592 * SS field can not be 0x0000 if "host address-space size" VM-exit 7593 * control is 0 7594 */ 7595 selector_saved = vmcs_read(HOST_SEL_SS); 7596 vmcs_write(HOST_SEL_SS, 0); 7597 report_prefix_pushf("HOST_SEL_SS 0"); 7598 if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) { 7599 test_vmx_vmlaunch(0); 7600 } else { 7601 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7602 } 7603 report_prefix_pop(); 7604 7605 vmcs_write(HOST_SEL_SS, selector_saved); 7606 7607 /* 7608 * Base address for FS, GS and TR must be canonical 7609 */ 7610 test_canonical(HOST_BASE_FS, "HOST_BASE_FS", true); 7611 test_canonical(HOST_BASE_GS, "HOST_BASE_GS", true); 7612 test_canonical(HOST_BASE_TR, "HOST_BASE_TR", true); 7613 } 7614 7615 /* 7616 * On processors that support Intel 64 architecture, the base-address 7617 * fields for GDTR and IDTR must contain canonical addresses. 7618 */ 7619 static void test_host_desc_tables(void) 7620 { 7621 test_canonical(HOST_BASE_GDTR, "HOST_BASE_GDTR", true); 7622 test_canonical(HOST_BASE_IDTR, "HOST_BASE_IDTR", true); 7623 } 7624 7625 /* 7626 * If the "host address-space size" VM-exit control is 0, the following must 7627 * hold: 7628 * - The "IA-32e mode guest" VM-entry control is 0. 7629 * - Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0. 7630 * - Bits 63:32 in the RIP field are 0. 7631 * 7632 * If the "host address-space size" VM-exit control is 1, the following must 7633 * hold: 7634 * - Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1. 7635 * - The RIP field contains a canonical address. 7636 * 7637 */ 7638 static void test_host_addr_size(void) 7639 { 7640 u64 cr4_saved = vmcs_read(HOST_CR4); 7641 u64 rip_saved = vmcs_read(HOST_RIP); 7642 u64 entry_ctrl_saved = vmcs_read(ENT_CONTROLS); 7643 7644 assert(vmcs_read(EXI_CONTROLS) & EXI_HOST_64); 7645 assert(cr4_saved & X86_CR4_PAE); 7646 7647 vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64); 7648 report_prefix_pushf("\"IA-32e mode guest\" enabled"); 7649 test_vmx_vmlaunch(0); 7650 report_prefix_pop(); 7651 7652 if (this_cpu_has(X86_FEATURE_PCID)) { 7653 vmcs_write(HOST_CR4, cr4_saved | X86_CR4_PCIDE); 7654 report_prefix_pushf("\"CR4.PCIDE\" set"); 7655 test_vmx_vmlaunch(0); 7656 report_prefix_pop(); 7657 } 7658 7659 vmcs_write(HOST_CR4, cr4_saved & ~X86_CR4_PAE); 7660 report_prefix_pushf("\"CR4.PAE\" unset"); 7661 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7662 vmcs_write(HOST_CR4, cr4_saved); 7663 report_prefix_pop(); 7664 7665 vmcs_write(HOST_RIP, NONCANONICAL); 7666 report_prefix_pushf("HOST_RIP %llx", NONCANONICAL); 7667 test_vmx_vmlaunch_must_fail(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 7668 report_prefix_pop(); 7669 7670 vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64); 7671 vmcs_write(HOST_RIP, rip_saved); 7672 vmcs_write(HOST_CR4, cr4_saved); 7673 7674 /* 7675 * Restore host's active CR4 and RIP values by triggering a VM-Exit. 7676 * The original CR4 and RIP values in the VMCS are restored between 7677 * testcases as needed, but don't guarantee a VM-Exit and so the active 7678 * CR4 and RIP may still hold a test value. Running with the test CR4 7679 * and RIP values at some point is unavoidable, and the active values 7680 * are unlikely to affect VM-Enter, so the above doesn't force a VM-exit 7681 * between testcases. Note, if VM-Enter is surrounded by CALL+RET then 7682 * the active RIP will already be restored, but that's also not 7683 * guaranteed, and CR4 needs to be restored regardless. 7684 */ 7685 report_prefix_pushf("restore host state"); 7686 test_vmx_vmlaunch(0); 7687 report_prefix_pop(); 7688 } 7689 7690 /* 7691 * Check that the virtual CPU checks the VMX Host State Area as 7692 * documented in the Intel SDM. 7693 */ 7694 static void vmx_host_state_area_test(void) 7695 { 7696 /* 7697 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will 7698 * fail due to invalid guest state, should we make it that 7699 * far. 7700 */ 7701 vmcs_write(GUEST_RFLAGS, 0); 7702 7703 test_host_ctl_regs(); 7704 7705 test_canonical(HOST_SYSENTER_ESP, "HOST_SYSENTER_ESP", true); 7706 test_canonical(HOST_SYSENTER_EIP, "HOST_SYSENTER_EIP", true); 7707 7708 test_host_efer(); 7709 test_load_host_pat(); 7710 test_host_segment_regs(); 7711 test_host_desc_tables(); 7712 test_host_addr_size(); 7713 test_load_host_perf_global_ctrl(); 7714 } 7715 7716 /* 7717 * If the "load debug controls" VM-entry control is 1, bits 63:32 in 7718 * the DR7 field must be 0. 7719 * 7720 * [Intel SDM] 7721 */ 7722 static void test_guest_dr7(void) 7723 { 7724 u32 ent_saved = vmcs_read(ENT_CONTROLS); 7725 u64 dr7_saved = vmcs_read(GUEST_DR7); 7726 u64 val; 7727 int i; 7728 7729 if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS) { 7730 vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS); 7731 for (i = 0; i < 64; i++) { 7732 val = 1ull << i; 7733 vmcs_write(GUEST_DR7, val); 7734 test_guest_state("ENT_LOAD_DBGCTLS disabled", false, 7735 val, "GUEST_DR7"); 7736 } 7737 } 7738 if (ctrl_enter_rev.clr & ENT_LOAD_DBGCTLS) { 7739 vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS); 7740 for (i = 0; i < 64; i++) { 7741 val = 1ull << i; 7742 vmcs_write(GUEST_DR7, val); 7743 test_guest_state("ENT_LOAD_DBGCTLS enabled", i >= 32, 7744 val, "GUEST_DR7"); 7745 } 7746 } 7747 vmcs_write(GUEST_DR7, dr7_saved); 7748 vmcs_write(ENT_CONTROLS, ent_saved); 7749 } 7750 7751 /* 7752 * If the "load IA32_PAT" VM-entry control is 1, the value of the field 7753 * for the IA32_PAT MSR must be one that could be written by WRMSR 7754 * without fault at CPL 0. Specifically, each of the 8 bytes in the 7755 * field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 7756 * 6 (WB), or 7 (UC-). 7757 * 7758 * [Intel SDM] 7759 */ 7760 static void test_load_guest_pat(void) 7761 { 7762 /* 7763 * "load IA32_PAT" VM-entry control 7764 */ 7765 if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) { 7766 report_skip("%s : \"Load-IA32-PAT\" entry control not supported", __func__); 7767 return; 7768 } 7769 7770 test_pat(GUEST_PAT, "GUEST_PAT", ENT_CONTROLS, ENT_LOAD_PAT); 7771 } 7772 7773 #define MSR_IA32_BNDCFGS_RSVD_MASK 0x00000ffc 7774 7775 /* 7776 * If the "load IA32_BNDCFGS" VM-entry control is 1, the following 7777 * checks are performed on the field for the IA32_BNDCFGS MSR: 7778 * 7779 * - Bits reserved in the IA32_BNDCFGS MSR must be 0. 7780 * - The linear address in bits 63:12 must be canonical. 7781 * 7782 * [Intel SDM] 7783 */ 7784 static void test_load_guest_bndcfgs(void) 7785 { 7786 u64 bndcfgs_saved = vmcs_read(GUEST_BNDCFGS); 7787 u64 bndcfgs; 7788 7789 if (!(ctrl_enter_rev.clr & ENT_LOAD_BNDCFGS)) { 7790 report_skip("%s : \"Load-IA32-BNDCFGS\" entry control not supported", __func__); 7791 return; 7792 } 7793 7794 vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS); 7795 7796 vmcs_write(GUEST_BNDCFGS, NONCANONICAL); 7797 test_guest_state("ENT_LOAD_BNDCFGS disabled", false, 7798 GUEST_BNDCFGS, "GUEST_BNDCFGS"); 7799 bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK; 7800 vmcs_write(GUEST_BNDCFGS, bndcfgs); 7801 test_guest_state("ENT_LOAD_BNDCFGS disabled", false, 7802 GUEST_BNDCFGS, "GUEST_BNDCFGS"); 7803 7804 vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS); 7805 7806 vmcs_write(GUEST_BNDCFGS, NONCANONICAL); 7807 test_guest_state("ENT_LOAD_BNDCFGS enabled", true, 7808 GUEST_BNDCFGS, "GUEST_BNDCFGS"); 7809 bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK; 7810 vmcs_write(GUEST_BNDCFGS, bndcfgs); 7811 test_guest_state("ENT_LOAD_BNDCFGS enabled", true, 7812 GUEST_BNDCFGS, "GUEST_BNDCFGS"); 7813 7814 vmcs_write(GUEST_BNDCFGS, bndcfgs_saved); 7815 } 7816 7817 #define GUEST_SEG_UNUSABLE_MASK (1u << 16) 7818 #define GUEST_SEG_SEL_TI_MASK (1u << 2) 7819 7820 7821 #define TEST_SEGMENT_SEL(test, xfail, sel, val) \ 7822 do { \ 7823 vmcs_write(sel, val); \ 7824 test_guest_state(test " segment", xfail, val, xstr(sel)); \ 7825 } while (0) 7826 7827 #define TEST_INVALID_SEG_SEL(sel, val) \ 7828 TEST_SEGMENT_SEL("Invalid: " xstr(val), true, sel, val); 7829 7830 #define TEST_VALID_SEG_SEL(sel, val) \ 7831 TEST_SEGMENT_SEL("Valid: " xstr(val), false, sel, val); 7832 7833 /* 7834 * The following checks are done on the Selector field of the Guest Segment 7835 * Registers: 7836 * - TR. The TI flag (bit 2) must be 0. 7837 * - LDTR. If LDTR is usable, the TI flag (bit 2) must be 0. 7838 * - SS. If the guest will not be virtual-8086 and the "unrestricted 7839 * guest" VM-execution control is 0, the RPL (bits 1:0) must equal 7840 * the RPL of the selector field for CS. 7841 * 7842 * [Intel SDM] 7843 */ 7844 static void test_guest_segment_sel_fields(void) 7845 { 7846 u16 sel_saved; 7847 u32 ar_saved; 7848 u32 cpu_ctrl0_saved; 7849 u32 cpu_ctrl1_saved; 7850 u16 cs_rpl_bits; 7851 7852 /* 7853 * Test for GUEST_SEL_TR 7854 */ 7855 sel_saved = vmcs_read(GUEST_SEL_TR); 7856 TEST_INVALID_SEG_SEL(GUEST_SEL_TR, sel_saved | GUEST_SEG_SEL_TI_MASK); 7857 vmcs_write(GUEST_SEL_TR, sel_saved); 7858 7859 /* 7860 * Test for GUEST_SEL_LDTR 7861 */ 7862 sel_saved = vmcs_read(GUEST_SEL_LDTR); 7863 ar_saved = vmcs_read(GUEST_AR_LDTR); 7864 /* LDTR is set unusable */ 7865 vmcs_write(GUEST_AR_LDTR, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7866 TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved | GUEST_SEG_SEL_TI_MASK); 7867 TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved & ~GUEST_SEG_SEL_TI_MASK); 7868 /* LDTR is set usable */ 7869 vmcs_write(GUEST_AR_LDTR, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7870 TEST_INVALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved | GUEST_SEG_SEL_TI_MASK); 7871 7872 TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved & ~GUEST_SEG_SEL_TI_MASK); 7873 7874 vmcs_write(GUEST_AR_LDTR, ar_saved); 7875 vmcs_write(GUEST_SEL_LDTR, sel_saved); 7876 7877 /* 7878 * Test for GUEST_SEL_SS 7879 */ 7880 cpu_ctrl0_saved = vmcs_read(CPU_EXEC_CTRL0); 7881 cpu_ctrl1_saved = vmcs_read(CPU_EXEC_CTRL1); 7882 ar_saved = vmcs_read(GUEST_AR_SS); 7883 /* Turn off "unrestricted guest" vm-execution control */ 7884 vmcs_write(CPU_EXEC_CTRL1, cpu_ctrl1_saved & ~CPU_URG); 7885 cs_rpl_bits = vmcs_read(GUEST_SEL_CS) & 0x3; 7886 sel_saved = vmcs_read(GUEST_SEL_SS); 7887 TEST_INVALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3))); 7888 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3))); 7889 /* Make SS usable if it's unusable or vice-versa */ 7890 if (ar_saved & GUEST_SEG_UNUSABLE_MASK) 7891 vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7892 else 7893 vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7894 TEST_INVALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3))); 7895 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3))); 7896 7897 /* Need a valid EPTP as the passing case fully enters the guest. */ 7898 if (enable_unrestricted_guest(true)) 7899 goto skip_ss_tests; 7900 7901 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3))); 7902 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3))); 7903 7904 /* Make SS usable if it's unusable or vice-versa */ 7905 if (vmcs_read(GUEST_AR_SS) & GUEST_SEG_UNUSABLE_MASK) 7906 vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7907 else 7908 vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7909 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3))); 7910 TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3))); 7911 skip_ss_tests: 7912 7913 vmcs_write(GUEST_AR_SS, ar_saved); 7914 vmcs_write(GUEST_SEL_SS, sel_saved); 7915 vmcs_write(CPU_EXEC_CTRL0, cpu_ctrl0_saved); 7916 vmcs_write(CPU_EXEC_CTRL1, cpu_ctrl1_saved); 7917 } 7918 7919 #define TEST_SEGMENT_BASE_ADDR_UPPER_BITS(xfail, seg_base) \ 7920 do { \ 7921 addr_saved = vmcs_read(seg_base); \ 7922 for (i = 32; i < 63; i = i + 4) { \ 7923 addr = addr_saved | 1ull << i; \ 7924 vmcs_write(seg_base, addr); \ 7925 test_guest_state("seg.BASE[63:32] != 0, usable = " xstr(xfail), \ 7926 xfail, addr, xstr(seg_base)); \ 7927 } \ 7928 vmcs_write(seg_base, addr_saved); \ 7929 } while (0) 7930 7931 #define TEST_SEGMENT_BASE_ADDR_CANONICAL(xfail, seg_base) \ 7932 do { \ 7933 addr_saved = vmcs_read(seg_base); \ 7934 vmcs_write(seg_base, NONCANONICAL); \ 7935 test_guest_state("seg.BASE non-canonical, usable = " xstr(xfail), \ 7936 xfail, NONCANONICAL, xstr(seg_base)); \ 7937 vmcs_write(seg_base, addr_saved); \ 7938 } while (0) 7939 7940 /* 7941 * The following checks are done on the Base Address field of the Guest 7942 * Segment Registers on processors that support Intel 64 architecture: 7943 * - TR, FS, GS : The address must be canonical. 7944 * - LDTR : If LDTR is usable, the address must be canonical. 7945 * - CS : Bits 63:32 of the address must be zero. 7946 * - SS, DS, ES : If the register is usable, bits 63:32 of the address 7947 * must be zero. 7948 * 7949 * [Intel SDM] 7950 */ 7951 static void test_guest_segment_base_addr_fields(void) 7952 { 7953 u64 addr_saved; 7954 u64 addr; 7955 u32 ar_saved; 7956 int i; 7957 7958 /* 7959 * The address of TR, FS, GS and LDTR must be canonical. 7960 */ 7961 TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_TR); 7962 TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_FS); 7963 TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_GS); 7964 ar_saved = vmcs_read(GUEST_AR_LDTR); 7965 /* Make LDTR unusable */ 7966 vmcs_write(GUEST_AR_LDTR, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7967 TEST_SEGMENT_BASE_ADDR_CANONICAL(false, GUEST_BASE_LDTR); 7968 /* Make LDTR usable */ 7969 vmcs_write(GUEST_AR_LDTR, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7970 TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_LDTR); 7971 7972 vmcs_write(GUEST_AR_LDTR, ar_saved); 7973 7974 /* 7975 * Bits 63:32 in CS, SS, DS and ES base address must be zero 7976 */ 7977 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_CS); 7978 ar_saved = vmcs_read(GUEST_AR_SS); 7979 /* Make SS unusable */ 7980 vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7981 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_SS); 7982 /* Make SS usable */ 7983 vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7984 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_SS); 7985 vmcs_write(GUEST_AR_SS, ar_saved); 7986 7987 ar_saved = vmcs_read(GUEST_AR_DS); 7988 /* Make DS unusable */ 7989 vmcs_write(GUEST_AR_DS, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7990 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_DS); 7991 /* Make DS usable */ 7992 vmcs_write(GUEST_AR_DS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 7993 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_DS); 7994 vmcs_write(GUEST_AR_DS, ar_saved); 7995 7996 ar_saved = vmcs_read(GUEST_AR_ES); 7997 /* Make ES unusable */ 7998 vmcs_write(GUEST_AR_ES, ar_saved | GUEST_SEG_UNUSABLE_MASK); 7999 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_ES); 8000 /* Make ES usable */ 8001 vmcs_write(GUEST_AR_ES, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); 8002 TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_ES); 8003 vmcs_write(GUEST_AR_ES, ar_saved); 8004 } 8005 8006 /* 8007 * Check that the virtual CPU checks the VMX Guest State Area as 8008 * documented in the Intel SDM. 8009 */ 8010 static void vmx_guest_state_area_test(void) 8011 { 8012 vmx_set_test_stage(1); 8013 test_set_guest(guest_state_test_main); 8014 8015 /* 8016 * The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field 8017 * must each contain a canonical address. 8018 */ 8019 test_canonical(GUEST_SYSENTER_ESP, "GUEST_SYSENTER_ESP", false); 8020 test_canonical(GUEST_SYSENTER_EIP, "GUEST_SYSENTER_EIP", false); 8021 8022 test_guest_dr7(); 8023 test_load_guest_pat(); 8024 test_guest_efer(); 8025 test_load_guest_perf_global_ctrl(); 8026 test_load_guest_bndcfgs(); 8027 8028 test_guest_segment_sel_fields(); 8029 test_guest_segment_base_addr_fields(); 8030 8031 test_canonical(GUEST_BASE_GDTR, "GUEST_BASE_GDTR", false); 8032 test_canonical(GUEST_BASE_IDTR, "GUEST_BASE_IDTR", false); 8033 8034 u32 guest_desc_limit_saved = vmcs_read(GUEST_LIMIT_GDTR); 8035 int i; 8036 for (i = 16; i <= 31; i++) { 8037 u32 tmp = guest_desc_limit_saved | (1ull << i); 8038 vmcs_write(GUEST_LIMIT_GDTR, tmp); 8039 test_guest_state("GDT.limit > 0xffff", true, tmp, "GUEST_LIMIT_GDTR"); 8040 } 8041 vmcs_write(GUEST_LIMIT_GDTR, guest_desc_limit_saved); 8042 8043 guest_desc_limit_saved = vmcs_read(GUEST_LIMIT_IDTR); 8044 for (i = 16; i <= 31; i++) { 8045 u32 tmp = guest_desc_limit_saved | (1ull << i); 8046 vmcs_write(GUEST_LIMIT_IDTR, tmp); 8047 test_guest_state("IDT.limit > 0xffff", true, tmp, "GUEST_LIMIT_IDTR"); 8048 } 8049 vmcs_write(GUEST_LIMIT_IDTR, guest_desc_limit_saved); 8050 8051 /* 8052 * Let the guest finish execution 8053 */ 8054 vmx_set_test_stage(2); 8055 enter_guest(); 8056 } 8057 8058 extern void unrestricted_guest_main(void); 8059 asm (".code32\n" 8060 "unrestricted_guest_main:\n" 8061 "vmcall\n" 8062 "nop\n" 8063 "mov $1, %edi\n" 8064 "call hypercall\n" 8065 ".code64\n"); 8066 8067 static void setup_unrestricted_guest(void) 8068 { 8069 vmcs_write(GUEST_CR0, vmcs_read(GUEST_CR0) & ~(X86_CR0_PG)); 8070 vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) & ~ENT_GUEST_64); 8071 vmcs_write(GUEST_EFER, vmcs_read(GUEST_EFER) & ~EFER_LMA); 8072 vmcs_write(GUEST_RIP, virt_to_phys(unrestricted_guest_main)); 8073 } 8074 8075 static void unsetup_unrestricted_guest(void) 8076 { 8077 vmcs_write(GUEST_CR0, vmcs_read(GUEST_CR0) | X86_CR0_PG); 8078 vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_GUEST_64); 8079 vmcs_write(GUEST_EFER, vmcs_read(GUEST_EFER) | EFER_LMA); 8080 vmcs_write(GUEST_RIP, (u64) phys_to_virt(vmcs_read(GUEST_RIP))); 8081 vmcs_write(GUEST_RSP, (u64) phys_to_virt(vmcs_read(GUEST_RSP))); 8082 } 8083 8084 /* 8085 * If "unrestricted guest" secondary VM-execution control is set, guests 8086 * can run in unpaged protected mode. 8087 */ 8088 static void vmentry_unrestricted_guest_test(void) 8089 { 8090 if (enable_unrestricted_guest(true)) { 8091 report_skip("%s: \"Unrestricted guest\" exec control not supported", __func__); 8092 return; 8093 } 8094 8095 test_set_guest(unrestricted_guest_main); 8096 setup_unrestricted_guest(); 8097 test_guest_state("Unrestricted guest test", false, CPU_URG, "CPU_URG"); 8098 8099 /* 8100 * Let the guest finish execution as a regular guest 8101 */ 8102 unsetup_unrestricted_guest(); 8103 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) & ~CPU_URG); 8104 enter_guest(); 8105 } 8106 8107 static bool valid_vmcs_for_vmentry(void) 8108 { 8109 struct vmcs *current_vmcs = NULL; 8110 8111 if (vmcs_save(¤t_vmcs)) 8112 return false; 8113 8114 return current_vmcs && !current_vmcs->hdr.shadow_vmcs; 8115 } 8116 8117 static void try_vmentry_in_movss_shadow(void) 8118 { 8119 u32 vm_inst_err; 8120 u32 flags; 8121 bool early_failure = false; 8122 u32 expected_flags = X86_EFLAGS_FIXED; 8123 bool valid_vmcs = valid_vmcs_for_vmentry(); 8124 8125 expected_flags |= valid_vmcs ? X86_EFLAGS_ZF : X86_EFLAGS_CF; 8126 8127 /* 8128 * Indirectly set VM_INST_ERR to 12 ("VMREAD/VMWRITE from/to 8129 * unsupported VMCS component"). 8130 */ 8131 vmcs_write(~0u, 0); 8132 8133 __asm__ __volatile__ ("mov %[host_rsp], %%edx;" 8134 "vmwrite %%rsp, %%rdx;" 8135 "mov 0f, %%rax;" 8136 "mov %[host_rip], %%edx;" 8137 "vmwrite %%rax, %%rdx;" 8138 "mov $-1, %%ah;" 8139 "sahf;" 8140 "mov %%ss, %%ax;" 8141 "mov %%ax, %%ss;" 8142 "vmlaunch;" 8143 "mov $1, %[early_failure];" 8144 "0: lahf;" 8145 "movzbl %%ah, %[flags]" 8146 : [early_failure] "+r" (early_failure), 8147 [flags] "=&a" (flags) 8148 : [host_rsp] "i" (HOST_RSP), 8149 [host_rip] "i" (HOST_RIP) 8150 : "rdx", "cc", "memory"); 8151 vm_inst_err = vmcs_read(VMX_INST_ERROR); 8152 8153 report(early_failure, "Early VM-entry failure"); 8154 report(flags == expected_flags, "RFLAGS[8:0] is %x (actual %x)", 8155 expected_flags, flags); 8156 if (valid_vmcs) 8157 report(vm_inst_err == VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, 8158 "VM-instruction error is %d (actual %d)", 8159 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, vm_inst_err); 8160 } 8161 8162 static void vmentry_movss_shadow_test(void) 8163 { 8164 struct vmcs *orig_vmcs; 8165 8166 TEST_ASSERT(!vmcs_save(&orig_vmcs)); 8167 8168 /* 8169 * Set the launched flag on the current VMCS to verify the correct 8170 * error priority, below. 8171 */ 8172 test_set_guest(v2_null_test_guest); 8173 enter_guest(); 8174 8175 /* 8176 * With bit 1 of the guest's RFLAGS clear, VM-entry should 8177 * fail due to invalid guest state (if we make it that far). 8178 */ 8179 vmcs_write(GUEST_RFLAGS, 0); 8180 8181 /* 8182 * "VM entry with events blocked by MOV SS" takes precedence over 8183 * "VMLAUNCH with non-clear VMCS." 8184 */ 8185 report_prefix_push("valid current-VMCS"); 8186 try_vmentry_in_movss_shadow(); 8187 report_prefix_pop(); 8188 8189 /* 8190 * VMfailInvalid takes precedence over "VM entry with events 8191 * blocked by MOV SS." 8192 */ 8193 TEST_ASSERT(!vmcs_clear(orig_vmcs)); 8194 report_prefix_push("no current-VMCS"); 8195 try_vmentry_in_movss_shadow(); 8196 report_prefix_pop(); 8197 8198 TEST_ASSERT(!make_vmcs_current(orig_vmcs)); 8199 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); 8200 } 8201 8202 static void vmx_ldtr_test_guest(void) 8203 { 8204 u16 ldtr = sldt(); 8205 8206 report(ldtr == NP_SEL, "Expected %x for L2 LDTR selector (got %x)", 8207 NP_SEL, ldtr); 8208 } 8209 8210 /* 8211 * Ensure that the L1 LDTR is set to 0 on VM-exit. 8212 */ 8213 static void vmx_ldtr_test(void) 8214 { 8215 const u8 ldt_ar = 0x82; /* Present LDT */ 8216 u16 sel = FIRST_SPARE_SEL; 8217 8218 /* Set up a non-zero L1 LDTR prior to VM-entry. */ 8219 set_gdt_entry(sel, 0, 0, ldt_ar, 0); 8220 lldt(sel); 8221 8222 test_set_guest(vmx_ldtr_test_guest); 8223 /* 8224 * Set up a different LDTR for L2. The actual GDT contents are 8225 * irrelevant, since we stuff the hidden descriptor state 8226 * straight into the VMCS rather than reading it from the GDT. 8227 */ 8228 vmcs_write(GUEST_SEL_LDTR, NP_SEL); 8229 vmcs_write(GUEST_AR_LDTR, ldt_ar); 8230 enter_guest(); 8231 8232 /* 8233 * VM-exit should clear LDTR (and make it unusable, but we 8234 * won't verify that here). 8235 */ 8236 sel = sldt(); 8237 report(!sel, "Expected 0 for L1 LDTR selector (got %x)", sel); 8238 } 8239 8240 static void vmx_single_vmcall_guest(void) 8241 { 8242 vmcall(); 8243 } 8244 8245 static void vmx_cr_load_test(void) 8246 { 8247 unsigned long cr3, cr4, orig_cr3, orig_cr4; 8248 u32 ctrls[2] = {0}; 8249 pgd_t *pml5; 8250 8251 orig_cr4 = read_cr4(); 8252 orig_cr3 = read_cr3(); 8253 8254 if (!this_cpu_has(X86_FEATURE_PCID)) { 8255 report_skip("%s : PCID not detected", __func__); 8256 return; 8257 } 8258 if (!this_cpu_has(X86_FEATURE_MCE)) { 8259 report_skip("%s : MCE not detected", __func__); 8260 return; 8261 } 8262 8263 TEST_ASSERT(!(orig_cr3 & X86_CR3_PCID_MASK)); 8264 8265 /* Enable PCID for L1. */ 8266 cr4 = orig_cr4 | X86_CR4_PCIDE; 8267 cr3 = orig_cr3 | 0x1; 8268 TEST_ASSERT(!write_cr4_safe(cr4)); 8269 write_cr3(cr3); 8270 8271 test_set_guest(vmx_single_vmcall_guest); 8272 vmcs_write(HOST_CR4, cr4); 8273 vmcs_write(HOST_CR3, cr3); 8274 enter_guest(); 8275 8276 /* 8277 * No exception is expected. 8278 * 8279 * NB. KVM loads the last guest write to CR4 into CR4 read 8280 * shadow. In order to trigger an exit to KVM, we can toggle a 8281 * bit that is owned by KVM. We use CR4.MCE, which shall 8282 * have no side effect because normally no guest MCE (e.g., as the 8283 * result of bad memory) would happen during this test. 8284 */ 8285 TEST_ASSERT(!write_cr4_safe(cr4 ^ X86_CR4_MCE)); 8286 8287 /* Cleanup L1 state. */ 8288 write_cr3(orig_cr3); 8289 TEST_ASSERT(!write_cr4_safe(orig_cr4)); 8290 8291 if (!this_cpu_has(X86_FEATURE_LA57)) 8292 goto done; 8293 8294 /* 8295 * Allocate a full page for PML5 to guarantee alignment, though only 8296 * the first entry needs to be filled (the test's virtual addresses 8297 * most definitely do not have any of bits 56:48 set). 8298 */ 8299 pml5 = alloc_page(); 8300 *pml5 = orig_cr3 | PT_PRESENT_MASK | PT_WRITABLE_MASK; 8301 8302 /* 8303 * Transition to/from 5-level paging in the host via VM-Exit. CR4.LA57 8304 * can't be toggled while long is active via MOV CR4, but there are no 8305 * such restrictions on VM-Exit. 8306 */ 8307 lol_5level: 8308 vmcs_write(HOST_CR4, orig_cr4 | X86_CR4_LA57); 8309 vmcs_write(HOST_CR3, virt_to_phys(pml5)); 8310 enter_guest(); 8311 8312 /* 8313 * VMREAD with a memory operand to verify KVM detects the LA57 change, 8314 * e.g. uses the correct guest root level in gva_to_gpa(). 8315 */ 8316 TEST_ASSERT(vmcs_readm(HOST_CR3) == virt_to_phys(pml5)); 8317 TEST_ASSERT(vmcs_readm(HOST_CR4) == (orig_cr4 | X86_CR4_LA57)); 8318 8319 vmcs_write(HOST_CR4, orig_cr4); 8320 vmcs_write(HOST_CR3, orig_cr3); 8321 enter_guest(); 8322 8323 TEST_ASSERT(vmcs_readm(HOST_CR3) == orig_cr3); 8324 TEST_ASSERT(vmcs_readm(HOST_CR4) == orig_cr4); 8325 8326 /* 8327 * And now do the same LA57 shenanigans with EPT enabled. KVM uses 8328 * two separate MMUs when L1 uses TDP, whereas the above shadow paging 8329 * version shares an MMU between L1 and L2. 8330 * 8331 * If the saved execution controls are non-zero then the EPT version 8332 * has already run. In that case, restore the old controls. If EPT 8333 * setup fails, e.g. EPT isn't supported, fall through and finish up. 8334 */ 8335 if (ctrls[0]) { 8336 vmcs_write(CPU_EXEC_CTRL0, ctrls[0]); 8337 vmcs_write(CPU_EXEC_CTRL1, ctrls[1]); 8338 } else if (!setup_ept(false)) { 8339 ctrls[0] = vmcs_read(CPU_EXEC_CTRL0); 8340 ctrls[1] = vmcs_read(CPU_EXEC_CTRL1); 8341 goto lol_5level; 8342 } 8343 8344 free_page(pml5); 8345 8346 done: 8347 skip_exit_vmcall(); 8348 enter_guest(); 8349 } 8350 8351 static void vmx_cr4_osxsave_test_guest(void) 8352 { 8353 write_cr4(read_cr4() & ~X86_CR4_OSXSAVE); 8354 } 8355 8356 /* 8357 * Ensure that kvm recalculates the L1 guest's CPUID.01H:ECX.OSXSAVE 8358 * after VM-exit from an L2 guest that sets CR4.OSXSAVE to a different 8359 * value than in L1. 8360 */ 8361 static void vmx_cr4_osxsave_test(void) 8362 { 8363 if (!this_cpu_has(X86_FEATURE_XSAVE)) { 8364 report_skip("%s : XSAVE not detected", __func__); 8365 return; 8366 } 8367 8368 if (!(read_cr4() & X86_CR4_OSXSAVE)) { 8369 unsigned long cr4 = read_cr4() | X86_CR4_OSXSAVE; 8370 8371 write_cr4(cr4); 8372 vmcs_write(GUEST_CR4, cr4); 8373 vmcs_write(HOST_CR4, cr4); 8374 } 8375 8376 TEST_ASSERT(this_cpu_has(X86_FEATURE_OSXSAVE)); 8377 8378 test_set_guest(vmx_cr4_osxsave_test_guest); 8379 enter_guest(); 8380 8381 TEST_ASSERT(this_cpu_has(X86_FEATURE_OSXSAVE)); 8382 } 8383 8384 /* 8385 * FNOP with both CR0.TS and CR0.EM clear should not generate #NM, and the L2 8386 * guest should exit normally. 8387 */ 8388 static void vmx_no_nm_test(void) 8389 { 8390 test_set_guest(fnop); 8391 vmcs_write(GUEST_CR0, read_cr0() & ~(X86_CR0_TS | X86_CR0_EM)); 8392 enter_guest(); 8393 } 8394 8395 bool vmx_pending_event_ipi_fired; 8396 static void vmx_pending_event_ipi_isr(isr_regs_t *regs) 8397 { 8398 vmx_pending_event_ipi_fired = true; 8399 eoi(); 8400 } 8401 8402 bool vmx_pending_event_guest_run; 8403 static void vmx_pending_event_guest(void) 8404 { 8405 vmcall(); 8406 vmx_pending_event_guest_run = true; 8407 } 8408 8409 static void vmx_pending_event_test_core(bool guest_hlt) 8410 { 8411 int ipi_vector = 0xf1; 8412 8413 vmx_pending_event_ipi_fired = false; 8414 handle_irq(ipi_vector, vmx_pending_event_ipi_isr); 8415 8416 vmx_pending_event_guest_run = false; 8417 test_set_guest(vmx_pending_event_guest); 8418 8419 vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT); 8420 8421 enter_guest(); 8422 skip_exit_vmcall(); 8423 8424 if (guest_hlt) 8425 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 8426 8427 cli(); 8428 apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | 8429 APIC_DM_FIXED | ipi_vector, 8430 0); 8431 8432 enter_guest(); 8433 8434 assert_exit_reason(VMX_EXTINT); 8435 report(!vmx_pending_event_guest_run, 8436 "Guest did not run before host received IPI"); 8437 8438 sti_nop_cli(); 8439 report(vmx_pending_event_ipi_fired, 8440 "Got pending interrupt after IRQ enabled"); 8441 8442 if (guest_hlt) 8443 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 8444 8445 enter_guest(); 8446 report(vmx_pending_event_guest_run, 8447 "Guest finished running when no interrupt"); 8448 } 8449 8450 static void vmx_pending_event_test(void) 8451 { 8452 vmx_pending_event_test_core(false); 8453 } 8454 8455 static void vmx_pending_event_hlt_test(void) 8456 { 8457 vmx_pending_event_test_core(true); 8458 } 8459 8460 static int vmx_window_test_db_count; 8461 8462 static void vmx_window_test_db_handler(struct ex_regs *regs) 8463 { 8464 vmx_window_test_db_count++; 8465 } 8466 8467 static void vmx_nmi_window_test_guest(void) 8468 { 8469 handle_exception(DB_VECTOR, vmx_window_test_db_handler); 8470 8471 asm volatile("vmcall\n\t" 8472 "nop\n\t"); 8473 8474 handle_exception(DB_VECTOR, NULL); 8475 } 8476 8477 static void verify_nmi_window_exit(u64 rip) 8478 { 8479 u32 exit_reason = vmcs_read(EXI_REASON); 8480 8481 report(exit_reason == VMX_NMI_WINDOW, 8482 "Exit reason (%d) is 'NMI window'", exit_reason); 8483 report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx", 8484 vmcs_read(GUEST_RIP), rip); 8485 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 8486 } 8487 8488 static void vmx_nmi_window_test(void) 8489 { 8490 u64 nop_addr; 8491 void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]); 8492 8493 if (!(ctrl_pin_rev.clr & PIN_VIRT_NMI)) { 8494 report_skip("%s : \"Virtual NMIs\" exec control not supported", __func__); 8495 return; 8496 } 8497 8498 if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) { 8499 report_skip("%s : \"NMI-window exiting\" exec control not supported", __func__); 8500 return; 8501 } 8502 8503 vmx_window_test_db_count = 0; 8504 8505 report_prefix_push("NMI-window"); 8506 test_set_guest(vmx_nmi_window_test_guest); 8507 vmcs_set_bits(PIN_CONTROLS, PIN_VIRT_NMI); 8508 enter_guest(); 8509 skip_exit_vmcall(); 8510 nop_addr = vmcs_read(GUEST_RIP); 8511 8512 /* 8513 * Ask for "NMI-window exiting," and expect an immediate VM-exit. 8514 * RIP will not advance. 8515 */ 8516 report_prefix_push("active, no blocking"); 8517 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW); 8518 enter_guest(); 8519 verify_nmi_window_exit(nop_addr); 8520 report_prefix_pop(); 8521 8522 /* 8523 * Ask for "NMI-window exiting" in a MOV-SS shadow, and expect 8524 * a VM-exit on the next instruction after the nop. (The nop 8525 * is one byte.) 8526 */ 8527 report_prefix_push("active, blocking by MOV-SS"); 8528 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); 8529 enter_guest(); 8530 verify_nmi_window_exit(nop_addr + 1); 8531 report_prefix_pop(); 8532 8533 /* 8534 * Ask for "NMI-window exiting" (with event injection), and 8535 * expect a VM-exit after the event is injected. (RIP should 8536 * be at the address specified in the IDT entry for #DB.) 8537 */ 8538 report_prefix_push("active, no blocking, injecting #DB"); 8539 vmcs_write(ENT_INTR_INFO, 8540 INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); 8541 enter_guest(); 8542 verify_nmi_window_exit((u64)db_fault_addr); 8543 report_prefix_pop(); 8544 8545 /* 8546 * Ask for "NMI-window exiting" with NMI blocking, and expect 8547 * a VM-exit after the next IRET (i.e. after the #DB handler 8548 * returns). So, RIP should be back at one byte past the nop. 8549 */ 8550 report_prefix_push("active, blocking by NMI"); 8551 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_NMI); 8552 enter_guest(); 8553 verify_nmi_window_exit(nop_addr + 1); 8554 report(vmx_window_test_db_count == 1, 8555 "#DB handler executed once (actual %d times)", 8556 vmx_window_test_db_count); 8557 report_prefix_pop(); 8558 8559 if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) { 8560 report_skip("CPU does not support activity state HLT."); 8561 } else { 8562 /* 8563 * Ask for "NMI-window exiting" when entering activity 8564 * state HLT, and expect an immediate VM-exit. RIP is 8565 * still one byte past the nop. 8566 */ 8567 report_prefix_push("halted, no blocking"); 8568 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 8569 enter_guest(); 8570 verify_nmi_window_exit(nop_addr + 1); 8571 report_prefix_pop(); 8572 8573 /* 8574 * Ask for "NMI-window exiting" when entering activity 8575 * state HLT (with event injection), and expect a 8576 * VM-exit after the event is injected. (RIP should be 8577 * at the address specified in the IDT entry for #DB.) 8578 */ 8579 report_prefix_push("halted, no blocking, injecting #DB"); 8580 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 8581 vmcs_write(ENT_INTR_INFO, 8582 INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | 8583 DB_VECTOR); 8584 enter_guest(); 8585 verify_nmi_window_exit((u64)db_fault_addr); 8586 report_prefix_pop(); 8587 } 8588 8589 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW); 8590 enter_guest(); 8591 report_prefix_pop(); 8592 } 8593 8594 static void vmx_intr_window_test_guest(void) 8595 { 8596 handle_exception(DB_VECTOR, vmx_window_test_db_handler); 8597 8598 /* 8599 * The two consecutive STIs are to ensure that only the first 8600 * one has a shadow. Note that NOP and STI are one byte 8601 * instructions. 8602 */ 8603 asm volatile("vmcall\n\t" 8604 "nop\n\t" 8605 "sti\n\t" 8606 "sti\n\t"); 8607 8608 handle_exception(DB_VECTOR, NULL); 8609 } 8610 8611 static void verify_intr_window_exit(u64 rip) 8612 { 8613 u32 exit_reason = vmcs_read(EXI_REASON); 8614 8615 report(exit_reason == VMX_INTR_WINDOW, 8616 "Exit reason (%d) is 'interrupt window'", exit_reason); 8617 report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx", 8618 vmcs_read(GUEST_RIP), rip); 8619 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 8620 } 8621 8622 static void vmx_intr_window_test(void) 8623 { 8624 u64 vmcall_addr; 8625 u64 nop_addr; 8626 unsigned int orig_db_gate_type; 8627 void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]); 8628 8629 if (!(ctrl_cpu_rev[0].clr & CPU_INTR_WINDOW)) { 8630 report_skip("%s : \"Interrupt-window exiting\" exec control not supported", __func__); 8631 return; 8632 } 8633 8634 /* 8635 * Change the IDT entry for #DB from interrupt gate to trap gate, 8636 * so that it won't clear RFLAGS.IF. We don't want interrupts to 8637 * be disabled after vectoring a #DB. 8638 */ 8639 orig_db_gate_type = boot_idt[DB_VECTOR].type; 8640 boot_idt[DB_VECTOR].type = 15; 8641 8642 report_prefix_push("interrupt-window"); 8643 test_set_guest(vmx_intr_window_test_guest); 8644 enter_guest(); 8645 assert_exit_reason(VMX_VMCALL); 8646 vmcall_addr = vmcs_read(GUEST_RIP); 8647 8648 /* 8649 * Ask for "interrupt-window exiting" with RFLAGS.IF set and 8650 * no blocking; expect an immediate VM-exit. Note that we have 8651 * not advanced past the vmcall instruction yet, so RIP should 8652 * point to the vmcall instruction. 8653 */ 8654 report_prefix_push("active, no blocking, RFLAGS.IF=1"); 8655 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); 8656 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_IF); 8657 enter_guest(); 8658 verify_intr_window_exit(vmcall_addr); 8659 report_prefix_pop(); 8660 8661 /* 8662 * Ask for "interrupt-window exiting" (with event injection) 8663 * with RFLAGS.IF set and no blocking; expect a VM-exit after 8664 * the event is injected. That is, RIP should should be at the 8665 * address specified in the IDT entry for #DB. 8666 */ 8667 report_prefix_push("active, no blocking, RFLAGS.IF=1, injecting #DB"); 8668 vmcs_write(ENT_INTR_INFO, 8669 INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); 8670 vmcall_addr = vmcs_read(GUEST_RIP); 8671 enter_guest(); 8672 verify_intr_window_exit((u64)db_fault_addr); 8673 report_prefix_pop(); 8674 8675 /* 8676 * Let the L2 guest run through the IRET, back to the VMCALL. 8677 * We have to clear the "interrupt-window exiting" 8678 * VM-execution control, or it would just keep causing 8679 * VM-exits. Then, advance past the VMCALL and set the 8680 * "interrupt-window exiting" VM-execution control again. 8681 */ 8682 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); 8683 enter_guest(); 8684 skip_exit_vmcall(); 8685 nop_addr = vmcs_read(GUEST_RIP); 8686 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); 8687 8688 /* 8689 * Ask for "interrupt-window exiting" in a MOV-SS shadow with 8690 * RFLAGS.IF set, and expect a VM-exit on the next 8691 * instruction. (NOP is one byte.) 8692 */ 8693 report_prefix_push("active, blocking by MOV-SS, RFLAGS.IF=1"); 8694 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); 8695 enter_guest(); 8696 verify_intr_window_exit(nop_addr + 1); 8697 report_prefix_pop(); 8698 8699 /* 8700 * Back up to the NOP and ask for "interrupt-window exiting" 8701 * in an STI shadow with RFLAGS.IF set, and expect a VM-exit 8702 * on the next instruction. (NOP is one byte.) 8703 */ 8704 report_prefix_push("active, blocking by STI, RFLAGS.IF=1"); 8705 vmcs_write(GUEST_RIP, nop_addr); 8706 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_STI); 8707 enter_guest(); 8708 verify_intr_window_exit(nop_addr + 1); 8709 report_prefix_pop(); 8710 8711 /* 8712 * Ask for "interrupt-window exiting" with RFLAGS.IF clear, 8713 * and expect a VM-exit on the instruction following the STI 8714 * shadow. Only the first STI (which is one byte past the NOP) 8715 * should have a shadow. The second STI (which is two bytes 8716 * past the NOP) has no shadow. Therefore, the interrupt 8717 * window opens at three bytes past the NOP. 8718 */ 8719 report_prefix_push("active, RFLAGS.IF = 0"); 8720 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); 8721 enter_guest(); 8722 verify_intr_window_exit(nop_addr + 3); 8723 report_prefix_pop(); 8724 8725 if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) { 8726 report_skip("CPU does not support activity state HLT."); 8727 } else { 8728 /* 8729 * Ask for "interrupt-window exiting" when entering 8730 * activity state HLT, and expect an immediate 8731 * VM-exit. RIP is still three bytes past the nop. 8732 */ 8733 report_prefix_push("halted, no blocking"); 8734 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 8735 enter_guest(); 8736 verify_intr_window_exit(nop_addr + 3); 8737 report_prefix_pop(); 8738 8739 /* 8740 * Ask for "interrupt-window exiting" when entering 8741 * activity state HLT (with event injection), and 8742 * expect a VM-exit after the event is injected. That 8743 * is, RIP should should be at the address specified 8744 * in the IDT entry for #DB. 8745 */ 8746 report_prefix_push("halted, no blocking, injecting #DB"); 8747 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 8748 vmcs_write(ENT_INTR_INFO, 8749 INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | 8750 DB_VECTOR); 8751 enter_guest(); 8752 verify_intr_window_exit((u64)db_fault_addr); 8753 report_prefix_pop(); 8754 } 8755 8756 boot_idt[DB_VECTOR].type = orig_db_gate_type; 8757 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); 8758 enter_guest(); 8759 report_prefix_pop(); 8760 } 8761 8762 #define GUEST_TSC_OFFSET (1u << 30) 8763 8764 static u64 guest_tsc; 8765 8766 static void vmx_store_tsc_test_guest(void) 8767 { 8768 guest_tsc = rdtsc(); 8769 } 8770 8771 /* 8772 * This test ensures that when IA32_TSC is in the VM-exit MSR-store 8773 * list, the value saved is not subject to the TSC offset that is 8774 * applied to RDTSC/RDTSCP/RDMSR(IA32_TSC) in guest execution. 8775 */ 8776 static void vmx_store_tsc_test(void) 8777 { 8778 struct vmx_msr_entry msr_entry = { .index = MSR_IA32_TSC }; 8779 u64 low, high; 8780 8781 if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) { 8782 report_skip("%s : \"Use TSC offsetting\" exec control not supported", __func__); 8783 return; 8784 } 8785 8786 test_set_guest(vmx_store_tsc_test_guest); 8787 8788 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET); 8789 vmcs_write(EXI_MSR_ST_CNT, 1); 8790 vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(&msr_entry)); 8791 vmcs_write(TSC_OFFSET, GUEST_TSC_OFFSET); 8792 8793 low = rdtsc(); 8794 enter_guest(); 8795 high = rdtsc(); 8796 8797 report(low + GUEST_TSC_OFFSET <= guest_tsc && 8798 guest_tsc <= high + GUEST_TSC_OFFSET, 8799 "RDTSC value in the guest (%lu) is in range [%lu, %lu]", 8800 guest_tsc, low + GUEST_TSC_OFFSET, high + GUEST_TSC_OFFSET); 8801 report(low <= msr_entry.value && msr_entry.value <= high, 8802 "IA32_TSC value saved in the VM-exit MSR-store list (%lu) is in range [%lu, %lu]", 8803 msr_entry.value, low, high); 8804 } 8805 8806 static void vmx_preemption_timer_zero_test_db_handler(struct ex_regs *regs) 8807 { 8808 } 8809 8810 static void vmx_preemption_timer_zero_test_guest(void) 8811 { 8812 while (vmx_get_test_stage() < 3) 8813 vmcall(); 8814 } 8815 8816 static void vmx_preemption_timer_zero_activate_preemption_timer(void) 8817 { 8818 vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT); 8819 vmcs_write(PREEMPT_TIMER_VALUE, 0); 8820 } 8821 8822 static void vmx_preemption_timer_zero_advance_past_vmcall(void) 8823 { 8824 vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT); 8825 enter_guest(); 8826 skip_exit_vmcall(); 8827 } 8828 8829 static void vmx_preemption_timer_zero_inject_db(bool intercept_db) 8830 { 8831 vmx_preemption_timer_zero_activate_preemption_timer(); 8832 vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | 8833 INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); 8834 vmcs_write(EXC_BITMAP, intercept_db ? 1 << DB_VECTOR : 0); 8835 enter_guest(); 8836 } 8837 8838 static void vmx_preemption_timer_zero_set_pending_dbg(u32 exception_bitmap) 8839 { 8840 vmx_preemption_timer_zero_activate_preemption_timer(); 8841 vmcs_write(GUEST_PENDING_DEBUG, PENDING_DBG_TRAP | DR6_TRAP1); 8842 vmcs_write(EXC_BITMAP, exception_bitmap); 8843 enter_guest(); 8844 } 8845 8846 static void vmx_preemption_timer_zero_expect_preempt_at_rip(u64 expected_rip) 8847 { 8848 u32 reason = (u32)vmcs_read(EXI_REASON); 8849 u64 guest_rip = vmcs_read(GUEST_RIP); 8850 8851 report(reason == VMX_PREEMPT && guest_rip == expected_rip, 8852 "Exit reason is 0x%x (expected 0x%x) and guest RIP is %lx (0x%lx expected).", 8853 reason, VMX_PREEMPT, guest_rip, expected_rip); 8854 } 8855 8856 /* 8857 * This test ensures that when the VMX preemption timer is zero at 8858 * VM-entry, a VM-exit occurs after any event injection and after any 8859 * pending debug exceptions are raised, but before execution of any 8860 * guest instructions. 8861 */ 8862 static void vmx_preemption_timer_zero_test(void) 8863 { 8864 u64 db_fault_address = (u64)get_idt_addr(&boot_idt[DB_VECTOR]); 8865 handler old_db; 8866 u32 reason; 8867 8868 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 8869 report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__); 8870 return; 8871 } 8872 8873 /* 8874 * Install a custom #DB handler that doesn't abort. 8875 */ 8876 old_db = handle_exception(DB_VECTOR, 8877 vmx_preemption_timer_zero_test_db_handler); 8878 8879 test_set_guest(vmx_preemption_timer_zero_test_guest); 8880 8881 /* 8882 * VMX-preemption timer should fire after event injection. 8883 */ 8884 vmx_set_test_stage(0); 8885 vmx_preemption_timer_zero_inject_db(0); 8886 vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address); 8887 vmx_preemption_timer_zero_advance_past_vmcall(); 8888 8889 /* 8890 * VMX-preemption timer should fire after event injection. 8891 * Exception bitmap is irrelevant, since you can't intercept 8892 * an event that you injected. 8893 */ 8894 vmx_set_test_stage(1); 8895 vmx_preemption_timer_zero_inject_db(true); 8896 vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address); 8897 vmx_preemption_timer_zero_advance_past_vmcall(); 8898 8899 /* 8900 * VMX-preemption timer should fire after pending debug exceptions 8901 * have delivered a #DB trap. 8902 */ 8903 vmx_set_test_stage(2); 8904 vmx_preemption_timer_zero_set_pending_dbg(0); 8905 vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address); 8906 vmx_preemption_timer_zero_advance_past_vmcall(); 8907 8908 /* 8909 * VMX-preemption timer would fire after pending debug exceptions 8910 * have delivered a #DB trap, but in this case, the #DB trap is 8911 * intercepted. 8912 */ 8913 vmx_set_test_stage(3); 8914 vmx_preemption_timer_zero_set_pending_dbg(1 << DB_VECTOR); 8915 reason = (u32)vmcs_read(EXI_REASON); 8916 report(reason == VMX_EXC_NMI, "Exit reason is 0x%x (expected 0x%x)", 8917 reason, VMX_EXC_NMI); 8918 8919 vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT); 8920 enter_guest(); 8921 8922 handle_exception(DB_VECTOR, old_db); 8923 } 8924 8925 static u64 vmx_preemption_timer_tf_test_prev_rip; 8926 8927 static void vmx_preemption_timer_tf_test_db_handler(struct ex_regs *regs) 8928 { 8929 extern char vmx_preemption_timer_tf_test_endloop; 8930 8931 if (vmx_get_test_stage() == 2) { 8932 /* 8933 * Stage 2 means that we're done, one way or another. 8934 * Arrange for the iret to drop us out of the wbinvd 8935 * loop and stop single-stepping. 8936 */ 8937 regs->rip = (u64)&vmx_preemption_timer_tf_test_endloop; 8938 regs->rflags &= ~X86_EFLAGS_TF; 8939 } else if (regs->rip == vmx_preemption_timer_tf_test_prev_rip) { 8940 /* 8941 * The RIP should alternate between the wbinvd and the 8942 * jmp instruction in the code below. If we ever see 8943 * the same instruction twice in a row, that means a 8944 * single-step trap has been dropped. Let the 8945 * hypervisor know about the failure by executing a 8946 * VMCALL. 8947 */ 8948 vmcall(); 8949 } 8950 vmx_preemption_timer_tf_test_prev_rip = regs->rip; 8951 } 8952 8953 static void vmx_preemption_timer_tf_test_guest(void) 8954 { 8955 /* 8956 * The hypervisor doesn't intercept WBINVD, so the loop below 8957 * shouldn't be a problem--it's just two instructions 8958 * executing in VMX non-root mode. However, when the 8959 * hypervisor is running in a virtual environment, the parent 8960 * hypervisor might intercept WBINVD and emulate it. If the 8961 * parent hypervisor is broken, the single-step trap after the 8962 * WBINVD might be lost. 8963 */ 8964 asm volatile("vmcall\n\t" 8965 "0: wbinvd\n\t" 8966 "1: jmp 0b\n\t" 8967 "vmx_preemption_timer_tf_test_endloop:"); 8968 } 8969 8970 /* 8971 * Ensure that the delivery of a "VMX-preemption timer expired" 8972 * VM-exit doesn't disrupt single-stepping in the guest. Note that 8973 * passing this test doesn't ensure correctness, because the test will 8974 * only fail if the VMX-preemtion timer fires at the right time (or 8975 * the wrong time, as it were). 8976 */ 8977 static void vmx_preemption_timer_tf_test(void) 8978 { 8979 handler old_db; 8980 u32 reason; 8981 int i; 8982 8983 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 8984 report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__); 8985 return; 8986 } 8987 8988 old_db = handle_exception(DB_VECTOR, 8989 vmx_preemption_timer_tf_test_db_handler); 8990 8991 test_set_guest(vmx_preemption_timer_tf_test_guest); 8992 8993 enter_guest(); 8994 skip_exit_vmcall(); 8995 8996 vmx_set_test_stage(1); 8997 vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT); 8998 vmcs_write(PREEMPT_TIMER_VALUE, 50000); 8999 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF); 9000 9001 /* 9002 * The only exit we should see is "VMX-preemption timer 9003 * expired." If we get a VMCALL exit, that means the #DB 9004 * handler has detected a missing single-step trap. It doesn't 9005 * matter where the guest RIP is when the VMX-preemption timer 9006 * expires (whether it's in the WBINVD loop or in the #DB 9007 * handler)--a single-step trap should never be discarded. 9008 */ 9009 for (i = 0; i < 10000; i++) { 9010 enter_guest(); 9011 reason = (u32)vmcs_read(EXI_REASON); 9012 if (reason == VMX_PREEMPT) 9013 continue; 9014 TEST_ASSERT(reason == VMX_VMCALL); 9015 skip_exit_insn(); 9016 break; 9017 } 9018 9019 report(reason == VMX_PREEMPT, "No single-step traps skipped"); 9020 9021 vmx_set_test_stage(2); 9022 vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT); 9023 enter_guest(); 9024 9025 handle_exception(DB_VECTOR, old_db); 9026 } 9027 9028 #define VMX_PREEMPTION_TIMER_EXPIRY_CYCLES 1000000 9029 9030 static u64 vmx_preemption_timer_expiry_start; 9031 static u64 vmx_preemption_timer_expiry_finish; 9032 9033 static void vmx_preemption_timer_expiry_test_guest(void) 9034 { 9035 vmcall(); 9036 vmx_preemption_timer_expiry_start = fenced_rdtsc(); 9037 9038 while (vmx_get_test_stage() == 0) 9039 vmx_preemption_timer_expiry_finish = fenced_rdtsc(); 9040 } 9041 9042 /* 9043 * Test that the VMX-preemption timer is not excessively delayed. 9044 * 9045 * Per the SDM, volume 3, VM-entry starts the VMX-preemption timer 9046 * with the unsigned value in the VMX-preemption timer-value field, 9047 * and the VMX-preemption timer counts down by 1 every time bit X in 9048 * the TSC changes due to a TSC increment (where X is 9049 * IA32_VMX_MISC[4:0]). If the timer counts down to zero in any state 9050 * other than the wait-for-SIPI state, the logical processor 9051 * transitions to the C0 C-state and causes a VM-exit. 9052 * 9053 * The guest code above reads the starting TSC after VM-entry. At this 9054 * point, the VMX-preemption timer has already been activated. Next, 9055 * the guest code reads the current TSC in a loop, storing the value 9056 * read to memory. 9057 * 9058 * If the RDTSC in the loop reads a value past the VMX-preemption 9059 * timer deadline, then the VMX-preemption timer VM-exit must be 9060 * delivered before the next instruction retires. Even if a higher 9061 * priority SMI is delivered first, the VMX-preemption timer VM-exit 9062 * must be delivered before the next instruction retires. Hence, a TSC 9063 * value past the VMX-preemption timer deadline might be read, but it 9064 * cannot be stored. If a TSC value past the deadline *is* stored, 9065 * then the architectural specification has been violated. 9066 */ 9067 static void vmx_preemption_timer_expiry_test(void) 9068 { 9069 u32 preemption_timer_value; 9070 union vmx_misc misc; 9071 u64 tsc_deadline; 9072 u32 reason; 9073 9074 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 9075 report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__); 9076 return; 9077 } 9078 9079 test_set_guest(vmx_preemption_timer_expiry_test_guest); 9080 9081 enter_guest(); 9082 skip_exit_vmcall(); 9083 9084 misc.val = rdmsr(MSR_IA32_VMX_MISC); 9085 preemption_timer_value = 9086 VMX_PREEMPTION_TIMER_EXPIRY_CYCLES >> misc.pt_bit; 9087 9088 vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT); 9089 vmcs_write(PREEMPT_TIMER_VALUE, preemption_timer_value); 9090 vmx_set_test_stage(0); 9091 9092 enter_guest(); 9093 reason = (u32)vmcs_read(EXI_REASON); 9094 TEST_ASSERT(reason == VMX_PREEMPT); 9095 9096 tsc_deadline = ((vmx_preemption_timer_expiry_start >> misc.pt_bit) << 9097 misc.pt_bit) + (preemption_timer_value << misc.pt_bit); 9098 9099 report(vmx_preemption_timer_expiry_finish < tsc_deadline, 9100 "Last stored guest TSC (%lu) < TSC deadline (%lu)", 9101 vmx_preemption_timer_expiry_finish, tsc_deadline); 9102 9103 vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT); 9104 vmx_set_test_stage(1); 9105 enter_guest(); 9106 } 9107 9108 static void vmx_db_test_guest(void) 9109 { 9110 /* 9111 * For a hardware generated single-step #DB. 9112 */ 9113 asm volatile("vmcall;" 9114 "nop;" 9115 ".Lpost_nop:"); 9116 /* 9117 * ...in a MOVSS shadow, with pending debug exceptions. 9118 */ 9119 asm volatile("vmcall;" 9120 "nop;" 9121 ".Lpost_movss_nop:"); 9122 /* 9123 * For an L0 synthesized single-step #DB. (L0 intercepts WBINVD and 9124 * emulates it in software.) 9125 */ 9126 asm volatile("vmcall;" 9127 "wbinvd;" 9128 ".Lpost_wbinvd:"); 9129 /* 9130 * ...in a MOVSS shadow, with pending debug exceptions. 9131 */ 9132 asm volatile("vmcall;" 9133 "wbinvd;" 9134 ".Lpost_movss_wbinvd:"); 9135 /* 9136 * For a hardware generated single-step #DB in a transactional region. 9137 */ 9138 asm volatile("vmcall;" 9139 ".Lxbegin: xbegin .Lskip_rtm;" 9140 "xend;" 9141 ".Lskip_rtm:"); 9142 } 9143 9144 /* 9145 * Clear the pending debug exceptions and RFLAGS.TF and re-enter 9146 * L2. No #DB is delivered and L2 continues to the next point of 9147 * interest. 9148 */ 9149 static void dismiss_db(void) 9150 { 9151 vmcs_write(GUEST_PENDING_DEBUG, 0); 9152 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); 9153 enter_guest(); 9154 } 9155 9156 /* 9157 * Check a variety of VMCS fields relevant to an intercepted #DB exception. 9158 * Then throw away the #DB exception and resume L2. 9159 */ 9160 static void check_db_exit(bool xfail_qual, bool xfail_dr6, bool xfail_pdbg, 9161 void *expected_rip, u64 expected_exit_qual, 9162 u64 expected_dr6) 9163 { 9164 u32 reason = vmcs_read(EXI_REASON); 9165 u32 intr_info = vmcs_read(EXI_INTR_INFO); 9166 u64 exit_qual = vmcs_read(EXI_QUALIFICATION); 9167 u64 guest_rip = vmcs_read(GUEST_RIP); 9168 u64 guest_pending_dbg = vmcs_read(GUEST_PENDING_DEBUG); 9169 u64 dr6 = read_dr6(); 9170 const u32 expected_intr_info = INTR_INFO_VALID_MASK | 9171 INTR_TYPE_HARD_EXCEPTION | DB_VECTOR; 9172 9173 report(reason == VMX_EXC_NMI && intr_info == expected_intr_info, 9174 "Expected #DB VM-exit"); 9175 report((u64)expected_rip == guest_rip, "Expected RIP %p (actual %lx)", 9176 expected_rip, guest_rip); 9177 report_xfail(xfail_pdbg, 0 == guest_pending_dbg, 9178 "Expected pending debug exceptions 0 (actual %lx)", 9179 guest_pending_dbg); 9180 report_xfail(xfail_qual, expected_exit_qual == exit_qual, 9181 "Expected exit qualification %lx (actual %lx)", 9182 expected_exit_qual, exit_qual); 9183 report_xfail(xfail_dr6, expected_dr6 == dr6, 9184 "Expected DR6 %lx (actual %lx)", expected_dr6, dr6); 9185 dismiss_db(); 9186 } 9187 9188 /* 9189 * Assuming the guest has just exited on a VMCALL instruction, skip 9190 * over the vmcall, and set the guest's RFLAGS.TF in the VMCS. If 9191 * pending debug exceptions are non-zero, set the VMCS up as if the 9192 * previous instruction was a MOVSS that generated the indicated 9193 * pending debug exceptions. Then enter L2. 9194 */ 9195 static void single_step_guest(const char *test_name, u64 starting_dr6, 9196 u64 pending_debug_exceptions) 9197 { 9198 printf("\n%s\n", test_name); 9199 skip_exit_vmcall(); 9200 write_dr6(starting_dr6); 9201 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF); 9202 if (pending_debug_exceptions) { 9203 vmcs_write(GUEST_PENDING_DEBUG, pending_debug_exceptions); 9204 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); 9205 } 9206 enter_guest(); 9207 } 9208 9209 /* 9210 * When L1 intercepts #DB, verify that a single-step trap clears 9211 * pending debug exceptions, populates the exit qualification field 9212 * properly, and that DR6 is not prematurely clobbered. In a 9213 * (simulated) MOVSS shadow, make sure that the pending debug 9214 * exception bits are properly accumulated into the exit qualification 9215 * field. 9216 */ 9217 static void vmx_db_test(void) 9218 { 9219 /* 9220 * We are going to set a few arbitrary bits in DR6 to verify that 9221 * (a) DR6 is not modified by an intercepted #DB, and 9222 * (b) stale bits in DR6 (DR6.BD, in particular) don't leak into 9223 * the exit qualification field for a subsequent #DB exception. 9224 */ 9225 const u64 starting_dr6 = DR6_ACTIVE_LOW | DR6_BS | DR6_TRAP3 | DR6_TRAP1; 9226 extern char post_nop asm(".Lpost_nop"); 9227 extern char post_movss_nop asm(".Lpost_movss_nop"); 9228 extern char post_wbinvd asm(".Lpost_wbinvd"); 9229 extern char post_movss_wbinvd asm(".Lpost_movss_wbinvd"); 9230 extern char xbegin asm(".Lxbegin"); 9231 extern char skip_rtm asm(".Lskip_rtm"); 9232 9233 /* 9234 * L1 wants to intercept #DB exceptions encountered in L2. 9235 */ 9236 vmcs_write(EXC_BITMAP, BIT(DB_VECTOR)); 9237 9238 /* 9239 * Start L2 and run it up to the first point of interest. 9240 */ 9241 test_set_guest(vmx_db_test_guest); 9242 enter_guest(); 9243 9244 /* 9245 * Hardware-delivered #DB trap for single-step sets the 9246 * standard that L0 has to follow for emulated instructions. 9247 */ 9248 single_step_guest("Hardware delivered single-step", starting_dr6, 0); 9249 check_db_exit(false, false, false, &post_nop, DR6_BS, starting_dr6); 9250 9251 /* 9252 * Hardware-delivered #DB trap for single-step in MOVSS shadow 9253 * also sets the standard that L0 has to follow for emulated 9254 * instructions. Here, we establish the VMCS pending debug 9255 * exceptions to indicate that the simulated MOVSS triggered a 9256 * data breakpoint as well as the single-step trap. 9257 */ 9258 single_step_guest("Hardware delivered single-step in MOVSS shadow", 9259 starting_dr6, DR6_BS | PENDING_DBG_TRAP | DR6_TRAP0); 9260 check_db_exit(false, false, false, &post_movss_nop, DR6_BS | DR6_TRAP0, 9261 starting_dr6); 9262 9263 /* 9264 * L0 synthesized #DB trap for single-step is buggy, because 9265 * kvm (a) clobbers DR6 too early, and (b) tries its best to 9266 * reconstitute the exit qualification from the prematurely 9267 * modified DR6, but fails miserably. 9268 */ 9269 single_step_guest("Software synthesized single-step", starting_dr6, 0); 9270 check_db_exit(false, false, false, &post_wbinvd, DR6_BS, starting_dr6); 9271 9272 /* 9273 * L0 synthesized #DB trap for single-step in MOVSS shadow is 9274 * even worse, because L0 also leaves the pending debug 9275 * exceptions in the VMCS instead of accumulating them into 9276 * the exit qualification field for the #DB exception. 9277 */ 9278 single_step_guest("Software synthesized single-step in MOVSS shadow", 9279 starting_dr6, DR6_BS | PENDING_DBG_TRAP | DR6_TRAP0); 9280 check_db_exit(true, false, true, &post_movss_wbinvd, DR6_BS | DR6_TRAP0, 9281 starting_dr6); 9282 9283 /* 9284 * Optional RTM test for hardware that supports RTM, to 9285 * demonstrate that the current volume 3 of the SDM 9286 * (325384-067US), table 27-1 is incorrect. Bit 16 of the exit 9287 * qualification for debug exceptions is not reserved. It is 9288 * set to 1 if a debug exception (#DB) or a breakpoint 9289 * exception (#BP) occurs inside an RTM region while advanced 9290 * debugging of RTM transactional regions is enabled. 9291 */ 9292 if (this_cpu_has(X86_FEATURE_RTM)) { 9293 vmcs_write(ENT_CONTROLS, 9294 vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS); 9295 /* 9296 * Set DR7.RTM[bit 11] and IA32_DEBUGCTL.RTM[bit 15] 9297 * in the guest to enable advanced debugging of RTM 9298 * transactional regions. 9299 */ 9300 vmcs_write(GUEST_DR7, BIT(11)); 9301 vmcs_write(GUEST_DEBUGCTL, BIT(15)); 9302 single_step_guest("Hardware delivered single-step in " 9303 "transactional region", starting_dr6, 0); 9304 check_db_exit(false, false, false, &xbegin, BIT(16), 9305 starting_dr6); 9306 } else { 9307 vmcs_write(GUEST_RIP, (u64)&skip_rtm); 9308 enter_guest(); 9309 } 9310 } 9311 9312 static void enable_vid(void) 9313 { 9314 void *virtual_apic_page; 9315 9316 assert(cpu_has_apicv()); 9317 9318 enable_x2apic(); 9319 disable_intercept_for_x2apic_msrs(); 9320 9321 virtual_apic_page = alloc_page(); 9322 vmcs_write(APIC_VIRT_ADDR, (u64)virtual_apic_page); 9323 9324 vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT); 9325 9326 vmcs_write(EOI_EXIT_BITMAP0, 0x0); 9327 vmcs_write(EOI_EXIT_BITMAP1, 0x0); 9328 vmcs_write(EOI_EXIT_BITMAP2, 0x0); 9329 vmcs_write(EOI_EXIT_BITMAP3, 0x0); 9330 9331 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY | CPU_TPR_SHADOW); 9332 vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VINTD | CPU_VIRT_X2APIC); 9333 } 9334 9335 static void trigger_ioapic_scan_thread(void *data) 9336 { 9337 /* Wait until other CPU entered L2 */ 9338 while (vmx_get_test_stage() != 1) 9339 ; 9340 9341 /* Trigger ioapic scan */ 9342 ioapic_set_redir(0xf, 0x79, TRIGGER_LEVEL); 9343 vmx_set_test_stage(2); 9344 } 9345 9346 static void irq_79_handler_guest(isr_regs_t *regs) 9347 { 9348 eoi(); 9349 9350 /* L1 expects vmexit on VMX_VMCALL and not VMX_EOI_INDUCED */ 9351 vmcall(); 9352 } 9353 9354 /* 9355 * Constant for num of busy-loop iterations after which 9356 * a timer interrupt should have happened in host 9357 */ 9358 #define TIMER_INTERRUPT_DELAY 100000000 9359 9360 static void vmx_eoi_bitmap_ioapic_scan_test_guest(void) 9361 { 9362 handle_irq(0x79, irq_79_handler_guest); 9363 sti(); 9364 9365 /* Signal to L1 CPU to trigger ioapic scan */ 9366 vmx_set_test_stage(1); 9367 /* Wait until L1 CPU to trigger ioapic scan */ 9368 while (vmx_get_test_stage() != 2) 9369 ; 9370 9371 /* 9372 * Wait for L0 timer interrupt to be raised while we run in L2 9373 * such that L0 will process the IOAPIC scan request before 9374 * resuming L2 9375 */ 9376 delay(TIMER_INTERRUPT_DELAY); 9377 9378 asm volatile ("int $0x79"); 9379 } 9380 9381 static void vmx_eoi_bitmap_ioapic_scan_test(void) 9382 { 9383 if (!cpu_has_apicv() || (cpu_count() < 2)) { 9384 report_skip("%s : Not all required APICv bits supported or CPU count < 2", __func__); 9385 return; 9386 } 9387 9388 enable_vid(); 9389 9390 on_cpu_async(1, trigger_ioapic_scan_thread, NULL); 9391 test_set_guest(vmx_eoi_bitmap_ioapic_scan_test_guest); 9392 9393 /* 9394 * Launch L2. 9395 * We expect the exit reason to be VMX_VMCALL (and not EOI INDUCED). 9396 * In case the reason isn't VMX_VMCALL, the assertion inside 9397 * skip_exit_vmcall() will fail. 9398 */ 9399 enter_guest(); 9400 skip_exit_vmcall(); 9401 9402 /* Let L2 finish */ 9403 enter_guest(); 9404 report_pass(__func__); 9405 } 9406 9407 #define HLT_WITH_RVI_VECTOR (0xf1) 9408 9409 bool vmx_hlt_with_rvi_guest_isr_fired; 9410 static void vmx_hlt_with_rvi_guest_isr(isr_regs_t *regs) 9411 { 9412 vmx_hlt_with_rvi_guest_isr_fired = true; 9413 eoi(); 9414 } 9415 9416 static void vmx_hlt_with_rvi_guest(void) 9417 { 9418 handle_irq(HLT_WITH_RVI_VECTOR, vmx_hlt_with_rvi_guest_isr); 9419 9420 sti_nop(); 9421 asm volatile ("nop"); 9422 9423 vmcall(); 9424 } 9425 9426 static void vmx_hlt_with_rvi_test(void) 9427 { 9428 if (!cpu_has_apicv()) { 9429 report_skip("%s : Not all required APICv bits supported", __func__); 9430 return; 9431 } 9432 9433 enable_vid(); 9434 9435 vmx_hlt_with_rvi_guest_isr_fired = false; 9436 test_set_guest(vmx_hlt_with_rvi_guest); 9437 9438 enter_guest(); 9439 skip_exit_vmcall(); 9440 9441 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 9442 vmcs_write(GUEST_INT_STATUS, HLT_WITH_RVI_VECTOR); 9443 enter_guest(); 9444 9445 report(vmx_hlt_with_rvi_guest_isr_fired, "Interrupt raised in guest"); 9446 } 9447 9448 static void set_irq_line_thread(void *data) 9449 { 9450 /* Wait until other CPU entered L2 */ 9451 while (vmx_get_test_stage() != 1) 9452 ; 9453 9454 /* Set irq-line 0xf to raise vector 0x78 for vCPU 0 */ 9455 ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL); 9456 vmx_set_test_stage(2); 9457 } 9458 9459 static bool irq_78_handler_vmcall_before_eoi; 9460 static void irq_78_handler_guest(isr_regs_t *regs) 9461 { 9462 set_irq_line(0xf, 0); 9463 if (irq_78_handler_vmcall_before_eoi) 9464 vmcall(); 9465 eoi(); 9466 vmcall(); 9467 } 9468 9469 static void vmx_apic_passthrough_guest(void) 9470 { 9471 handle_irq(0x78, irq_78_handler_guest); 9472 sti(); 9473 9474 /* If requested, wait for other CPU to trigger ioapic scan */ 9475 if (vmx_get_test_stage() < 1) { 9476 vmx_set_test_stage(1); 9477 while (vmx_get_test_stage() != 2) 9478 ; 9479 } 9480 9481 set_irq_line(0xf, 1); 9482 } 9483 9484 static void vmx_apic_passthrough(bool set_irq_line_from_thread) 9485 { 9486 if (set_irq_line_from_thread && (cpu_count() < 2)) { 9487 report_skip("%s : CPU count < 2", __func__); 9488 return; 9489 } 9490 9491 /* Test device is required for generating IRQs */ 9492 if (!test_device_enabled()) { 9493 report_skip("%s : No test device enabled", __func__); 9494 return; 9495 } 9496 u64 cpu_ctrl_0 = CPU_SECONDARY; 9497 u64 cpu_ctrl_1 = 0; 9498 9499 disable_intercept_for_x2apic_msrs(); 9500 9501 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 9502 9503 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0); 9504 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1); 9505 9506 if (set_irq_line_from_thread) { 9507 irq_78_handler_vmcall_before_eoi = false; 9508 on_cpu_async(1, set_irq_line_thread, NULL); 9509 } else { 9510 irq_78_handler_vmcall_before_eoi = true; 9511 ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL); 9512 vmx_set_test_stage(2); 9513 } 9514 test_set_guest(vmx_apic_passthrough_guest); 9515 9516 if (irq_78_handler_vmcall_before_eoi) { 9517 /* Before EOI remote_irr should still be set */ 9518 enter_guest(); 9519 skip_exit_vmcall(); 9520 TEST_ASSERT_EQ_MSG(1, (int)ioapic_read_redir(0xf).remote_irr, 9521 "IOAPIC pass-through: remote_irr=1 before EOI"); 9522 } 9523 9524 /* After EOI remote_irr should be cleared */ 9525 enter_guest(); 9526 skip_exit_vmcall(); 9527 TEST_ASSERT_EQ_MSG(0, (int)ioapic_read_redir(0xf).remote_irr, 9528 "IOAPIC pass-through: remote_irr=0 after EOI"); 9529 9530 /* Let L2 finish */ 9531 enter_guest(); 9532 report_pass(__func__); 9533 } 9534 9535 static void vmx_apic_passthrough_test(void) 9536 { 9537 vmx_apic_passthrough(false); 9538 } 9539 9540 static void vmx_apic_passthrough_thread_test(void) 9541 { 9542 vmx_apic_passthrough(true); 9543 } 9544 9545 static void vmx_apic_passthrough_tpr_threshold_guest(void) 9546 { 9547 cli(); 9548 apic_set_tpr(0); 9549 } 9550 9551 static bool vmx_apic_passthrough_tpr_threshold_ipi_isr_fired; 9552 static void vmx_apic_passthrough_tpr_threshold_ipi_isr(isr_regs_t *regs) 9553 { 9554 vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = true; 9555 eoi(); 9556 } 9557 9558 static void vmx_apic_passthrough_tpr_threshold_test(void) 9559 { 9560 int ipi_vector = 0xe1; 9561 9562 disable_intercept_for_x2apic_msrs(); 9563 vmcs_clear_bits(PIN_CONTROLS, PIN_EXTINT); 9564 9565 /* Raise L0 TPR-threshold by queueing vector in LAPIC IRR */ 9566 cli(); 9567 apic_set_tpr((ipi_vector >> 4) + 1); 9568 apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | 9569 APIC_DM_FIXED | ipi_vector, 9570 0); 9571 9572 test_set_guest(vmx_apic_passthrough_tpr_threshold_guest); 9573 enter_guest(); 9574 9575 report(apic_get_tpr() == 0, "TPR was zero by guest"); 9576 9577 /* Clean pending self-IPI */ 9578 vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = false; 9579 handle_irq(ipi_vector, vmx_apic_passthrough_tpr_threshold_ipi_isr); 9580 sti_nop(); 9581 report(vmx_apic_passthrough_tpr_threshold_ipi_isr_fired, "self-IPI fired"); 9582 9583 report_pass(__func__); 9584 } 9585 9586 static u64 init_signal_test_exit_reason; 9587 static bool init_signal_test_thread_continued; 9588 9589 static void init_signal_test_thread(void *data) 9590 { 9591 struct vmcs *test_vmcs = data; 9592 9593 /* Enter VMX operation (i.e. exec VMXON) */ 9594 u64 *ap_vmxon_region = alloc_page(); 9595 enable_vmx(); 9596 init_vmx(ap_vmxon_region); 9597 TEST_ASSERT(!__vmxon_safe(ap_vmxon_region)); 9598 9599 /* Signal CPU have entered VMX operation */ 9600 vmx_set_test_stage(1); 9601 9602 /* Wait for BSP CPU to send INIT signal */ 9603 while (vmx_get_test_stage() != 2) 9604 ; 9605 9606 /* 9607 * Signal that we continue as usual as INIT signal 9608 * should be blocked while CPU is in VMX operation 9609 */ 9610 vmx_set_test_stage(3); 9611 9612 /* Wait for signal to enter VMX non-root mode */ 9613 while (vmx_get_test_stage() != 4) 9614 ; 9615 9616 /* Enter VMX non-root mode */ 9617 test_set_guest(v2_null_test_guest); 9618 make_vmcs_current(test_vmcs); 9619 enter_guest(); 9620 /* Save exit reason for BSP CPU to compare to expected result */ 9621 init_signal_test_exit_reason = vmcs_read(EXI_REASON); 9622 /* VMCLEAR test-vmcs so it could be loaded by BSP CPU */ 9623 vmcs_clear(test_vmcs); 9624 launched = false; 9625 /* Signal that CPU exited to VMX root mode */ 9626 vmx_set_test_stage(5); 9627 9628 /* Wait for BSP CPU to signal to exit VMX operation */ 9629 while (vmx_get_test_stage() != 6) 9630 ; 9631 9632 /* Exit VMX operation (i.e. exec VMXOFF) */ 9633 vmx_off(); 9634 9635 /* 9636 * Signal to BSP CPU that we continue as usual as INIT signal 9637 * should have been consumed by VMX_INIT exit from guest 9638 */ 9639 vmx_set_test_stage(7); 9640 9641 /* Wait for BSP CPU to signal to enter VMX operation */ 9642 while (vmx_get_test_stage() != 8) 9643 ; 9644 /* Enter VMX operation (i.e. exec VMXON) */ 9645 TEST_ASSERT(!__vmxon_safe(ap_vmxon_region)); 9646 /* Signal to BSP we are in VMX operation */ 9647 vmx_set_test_stage(9); 9648 9649 /* Wait for BSP CPU to send INIT signal */ 9650 while (vmx_get_test_stage() != 10) 9651 ; 9652 9653 /* Exit VMX operation (i.e. exec VMXOFF) */ 9654 vmx_off(); 9655 9656 /* 9657 * Exiting VMX operation should result in latched 9658 * INIT signal being processed. Therefore, we should 9659 * never reach the below code. Thus, signal to BSP 9660 * CPU if we have reached here so it is able to 9661 * report an issue if it happens. 9662 */ 9663 init_signal_test_thread_continued = true; 9664 } 9665 9666 #define INIT_SIGNAL_TEST_DELAY 100000000ULL 9667 9668 static void vmx_init_signal_test(void) 9669 { 9670 struct vmcs *test_vmcs; 9671 9672 if (cpu_count() < 2) { 9673 report_skip("%s : CPU count < 2", __func__); 9674 return; 9675 } 9676 9677 /* VMCLEAR test-vmcs so it could be loaded by other CPU */ 9678 vmcs_save(&test_vmcs); 9679 vmcs_clear(test_vmcs); 9680 9681 vmx_set_test_stage(0); 9682 on_cpu_async(1, init_signal_test_thread, test_vmcs); 9683 9684 /* Wait for other CPU to enter VMX operation */ 9685 while (vmx_get_test_stage() != 1) 9686 ; 9687 9688 /* Send INIT signal to other CPU */ 9689 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT, 9690 id_map[1]); 9691 /* Signal other CPU we have sent INIT signal */ 9692 vmx_set_test_stage(2); 9693 9694 /* 9695 * Wait reasonable amount of time for INIT signal to 9696 * be received on other CPU and verify that other CPU 9697 * have proceed as usual to next test stage as INIT 9698 * signal should be blocked while other CPU in 9699 * VMX operation 9700 */ 9701 delay(INIT_SIGNAL_TEST_DELAY); 9702 report(vmx_get_test_stage() == 3, 9703 "INIT signal blocked when CPU in VMX operation"); 9704 /* No point to continue if we failed at this point */ 9705 if (vmx_get_test_stage() != 3) 9706 return; 9707 9708 /* Signal other CPU to enter VMX non-root mode */ 9709 init_signal_test_exit_reason = -1ull; 9710 vmx_set_test_stage(4); 9711 /* 9712 * Wait reasonable amount of time for other CPU 9713 * to exit to VMX root mode 9714 */ 9715 delay(INIT_SIGNAL_TEST_DELAY); 9716 if (vmx_get_test_stage() != 5) { 9717 report_fail("Pending INIT signal didn't result in VMX exit"); 9718 return; 9719 } 9720 report(init_signal_test_exit_reason == VMX_INIT, 9721 "INIT signal during VMX non-root mode result in exit-reason %s (%lu)", 9722 exit_reason_description(init_signal_test_exit_reason), 9723 init_signal_test_exit_reason); 9724 9725 /* Run guest to completion */ 9726 make_vmcs_current(test_vmcs); 9727 enter_guest(); 9728 9729 /* Signal other CPU to exit VMX operation */ 9730 init_signal_test_thread_continued = false; 9731 vmx_set_test_stage(6); 9732 9733 /* Wait reasonable amount of time for other CPU to exit VMX operation */ 9734 delay(INIT_SIGNAL_TEST_DELAY); 9735 report(vmx_get_test_stage() == 7, 9736 "INIT signal consumed on VMX_INIT exit"); 9737 /* No point to continue if we failed at this point */ 9738 if (vmx_get_test_stage() != 7) 9739 return; 9740 9741 /* Signal other CPU to enter VMX operation */ 9742 vmx_set_test_stage(8); 9743 /* Wait for other CPU to enter VMX operation */ 9744 while (vmx_get_test_stage() != 9) 9745 ; 9746 9747 /* Send INIT signal to other CPU */ 9748 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT, 9749 id_map[1]); 9750 /* Signal other CPU we have sent INIT signal */ 9751 vmx_set_test_stage(10); 9752 9753 /* 9754 * Wait reasonable amount of time for other CPU 9755 * to exit VMX operation and process INIT signal 9756 */ 9757 delay(INIT_SIGNAL_TEST_DELAY); 9758 report(!init_signal_test_thread_continued, 9759 "INIT signal processed after exit VMX operation"); 9760 9761 /* 9762 * TODO: Send SIPI to other CPU to sipi_entry (See x86/cstart64.S) 9763 * to re-init it to kvm-unit-tests standard environment. 9764 * Somehow (?) verify that SIPI was indeed received. 9765 */ 9766 } 9767 9768 #define SIPI_SIGNAL_TEST_DELAY 100000000ULL 9769 9770 static void vmx_sipi_test_guest(void) 9771 { 9772 if (apic_id() == 0) { 9773 /* wait AP enter guest with activity=WAIT_SIPI */ 9774 while (vmx_get_test_stage() != 1) 9775 ; 9776 delay(SIPI_SIGNAL_TEST_DELAY); 9777 9778 /* First SIPI signal */ 9779 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP | APIC_INT_ASSERT, id_map[1]); 9780 report_pass("BSP(L2): Send first SIPI to cpu[%d]", id_map[1]); 9781 9782 /* wait AP enter guest */ 9783 while (vmx_get_test_stage() != 2) 9784 ; 9785 delay(SIPI_SIGNAL_TEST_DELAY); 9786 9787 /* Second SIPI signal should be ignored since AP is not in WAIT_SIPI state */ 9788 apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP | APIC_INT_ASSERT, id_map[1]); 9789 report_pass("BSP(L2): Send second SIPI to cpu[%d]", id_map[1]); 9790 9791 /* Delay a while to check whether second SIPI would cause VMExit */ 9792 delay(SIPI_SIGNAL_TEST_DELAY); 9793 9794 /* Test is done, notify AP to exit test */ 9795 vmx_set_test_stage(3); 9796 9797 /* wait AP exit non-root mode */ 9798 while (vmx_get_test_stage() != 5) 9799 ; 9800 } else { 9801 /* wait BSP notify test is done */ 9802 while (vmx_get_test_stage() != 3) 9803 ; 9804 9805 /* AP exit guest */ 9806 vmx_set_test_stage(4); 9807 } 9808 } 9809 9810 static void sipi_test_ap_thread(void *data) 9811 { 9812 struct vmcs *ap_vmcs; 9813 u64 *ap_vmxon_region; 9814 void *ap_stack, *ap_syscall_stack; 9815 u64 cpu_ctrl_0 = CPU_SECONDARY; 9816 u64 cpu_ctrl_1 = 0; 9817 9818 /* Enter VMX operation (i.e. exec VMXON) */ 9819 ap_vmxon_region = alloc_page(); 9820 enable_vmx(); 9821 init_vmx(ap_vmxon_region); 9822 TEST_ASSERT(!__vmxon_safe(ap_vmxon_region)); 9823 init_vmcs(&ap_vmcs); 9824 make_vmcs_current(ap_vmcs); 9825 9826 /* Set stack for AP */ 9827 ap_stack = alloc_page(); 9828 ap_syscall_stack = alloc_page(); 9829 vmcs_write(GUEST_RSP, (u64)(ap_stack + PAGE_SIZE - 1)); 9830 vmcs_write(GUEST_SYSENTER_ESP, (u64)(ap_syscall_stack + PAGE_SIZE - 1)); 9831 9832 /* passthrough lapic to L2 */ 9833 disable_intercept_for_x2apic_msrs(); 9834 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 9835 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0); 9836 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1); 9837 9838 /* Set guest activity state to wait-for-SIPI state */ 9839 vmcs_write(GUEST_ACTV_STATE, ACTV_WAIT_SIPI); 9840 9841 vmx_set_test_stage(1); 9842 9843 /* AP enter guest */ 9844 enter_guest(); 9845 9846 if (vmcs_read(EXI_REASON) == VMX_SIPI) { 9847 report_pass("AP: Handle SIPI VMExit"); 9848 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 9849 vmx_set_test_stage(2); 9850 } else { 9851 report_fail("AP: Unexpected VMExit, reason=%ld", vmcs_read(EXI_REASON)); 9852 vmx_off(); 9853 return; 9854 } 9855 9856 /* AP enter guest */ 9857 enter_guest(); 9858 9859 report(vmcs_read(EXI_REASON) != VMX_SIPI, 9860 "AP: should no SIPI VMExit since activity is not in WAIT_SIPI state"); 9861 9862 /* notify BSP that AP is already exit from non-root mode */ 9863 vmx_set_test_stage(5); 9864 9865 /* Leave VMX operation */ 9866 vmx_off(); 9867 } 9868 9869 static void vmx_sipi_signal_test(void) 9870 { 9871 if (!(rdmsr(MSR_IA32_VMX_MISC) & MSR_IA32_VMX_MISC_ACTIVITY_WAIT_SIPI)) { 9872 report_skip("%s : \"ACTIVITY_WAIT_SIPI state\" not supported", __func__); 9873 return; 9874 } 9875 9876 if (cpu_count() < 2) { 9877 report_skip("%s : CPU count < 2", __func__); 9878 return; 9879 } 9880 9881 u64 cpu_ctrl_0 = CPU_SECONDARY; 9882 u64 cpu_ctrl_1 = 0; 9883 9884 /* passthrough lapic to L2 */ 9885 disable_intercept_for_x2apic_msrs(); 9886 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 9887 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0); 9888 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1); 9889 9890 test_set_guest(vmx_sipi_test_guest); 9891 9892 /* update CR3 on AP */ 9893 on_cpu(1, update_cr3, (void *)read_cr3()); 9894 9895 /* start AP */ 9896 on_cpu_async(1, sipi_test_ap_thread, NULL); 9897 9898 vmx_set_test_stage(0); 9899 9900 /* BSP enter guest */ 9901 enter_guest(); 9902 } 9903 9904 9905 enum vmcs_access { 9906 ACCESS_VMREAD, 9907 ACCESS_VMWRITE, 9908 ACCESS_NONE, 9909 }; 9910 9911 struct vmcs_shadow_test_common { 9912 enum vmcs_access op; 9913 enum Reason reason; 9914 u64 field; 9915 u64 value; 9916 u64 flags; 9917 u64 time; 9918 } l1_l2_common; 9919 9920 static inline u64 vmread_flags(u64 field, u64 *val) 9921 { 9922 u64 flags; 9923 9924 asm volatile ("vmread %2, %1; pushf; pop %0" 9925 : "=r" (flags), "=rm" (*val) : "r" (field) : "cc"); 9926 return flags & X86_EFLAGS_ALU; 9927 } 9928 9929 static inline u64 vmwrite_flags(u64 field, u64 val) 9930 { 9931 u64 flags; 9932 9933 asm volatile ("vmwrite %1, %2; pushf; pop %0" 9934 : "=r"(flags) : "rm" (val), "r" (field) : "cc"); 9935 return flags & X86_EFLAGS_ALU; 9936 } 9937 9938 static void vmx_vmcs_shadow_test_guest(void) 9939 { 9940 struct vmcs_shadow_test_common *c = &l1_l2_common; 9941 u64 start; 9942 9943 while (c->op != ACCESS_NONE) { 9944 start = rdtsc(); 9945 switch (c->op) { 9946 default: 9947 c->flags = -1ull; 9948 break; 9949 case ACCESS_VMREAD: 9950 c->flags = vmread_flags(c->field, &c->value); 9951 break; 9952 case ACCESS_VMWRITE: 9953 c->flags = vmwrite_flags(c->field, 0); 9954 break; 9955 } 9956 c->time = rdtsc() - start; 9957 vmcall(); 9958 } 9959 } 9960 9961 static u64 vmread_from_shadow(u64 field) 9962 { 9963 struct vmcs *primary; 9964 struct vmcs *shadow; 9965 u64 value; 9966 9967 TEST_ASSERT(!vmcs_save(&primary)); 9968 shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); 9969 TEST_ASSERT(!make_vmcs_current(shadow)); 9970 value = vmcs_read(field); 9971 TEST_ASSERT(!make_vmcs_current(primary)); 9972 return value; 9973 } 9974 9975 static u64 vmwrite_to_shadow(u64 field, u64 value) 9976 { 9977 struct vmcs *primary; 9978 struct vmcs *shadow; 9979 9980 TEST_ASSERT(!vmcs_save(&primary)); 9981 shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); 9982 TEST_ASSERT(!make_vmcs_current(shadow)); 9983 vmcs_write(field, value); 9984 value = vmcs_read(field); 9985 TEST_ASSERT(!make_vmcs_current(primary)); 9986 return value; 9987 } 9988 9989 static void vmcs_shadow_test_access(u8 *bitmap[2], enum vmcs_access access) 9990 { 9991 struct vmcs_shadow_test_common *c = &l1_l2_common; 9992 9993 c->op = access; 9994 vmcs_write(VMX_INST_ERROR, 0); 9995 enter_guest(); 9996 c->reason = vmcs_read(EXI_REASON) & 0xffff; 9997 if (c->reason != VMX_VMCALL) { 9998 skip_exit_insn(); 9999 enter_guest(); 10000 } 10001 skip_exit_vmcall(); 10002 } 10003 10004 static void vmcs_shadow_test_field(u8 *bitmap[2], u64 field) 10005 { 10006 struct vmcs_shadow_test_common *c = &l1_l2_common; 10007 struct vmcs *shadow; 10008 u64 value; 10009 uintptr_t flags[2]; 10010 bool good_shadow; 10011 u32 vmx_inst_error; 10012 10013 report_prefix_pushf("field %lx", field); 10014 c->field = field; 10015 10016 shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); 10017 if (shadow != (struct vmcs *)-1ull) { 10018 flags[ACCESS_VMREAD] = vmread_flags(field, &value); 10019 flags[ACCESS_VMWRITE] = vmwrite_flags(field, value); 10020 good_shadow = !flags[ACCESS_VMREAD] && !flags[ACCESS_VMWRITE]; 10021 } else { 10022 /* 10023 * When VMCS link pointer is -1ull, VMWRITE/VMREAD on 10024 * shadowed-fields should fail with setting RFLAGS.CF. 10025 */ 10026 flags[ACCESS_VMREAD] = X86_EFLAGS_CF; 10027 flags[ACCESS_VMWRITE] = X86_EFLAGS_CF; 10028 good_shadow = false; 10029 } 10030 10031 /* Intercept both VMREAD and VMWRITE. */ 10032 report_prefix_push("no VMREAD/VMWRITE permission"); 10033 /* VMWRITE/VMREAD done on reserved-bit should always intercept */ 10034 if (!(field >> VMCS_FIELD_RESERVED_SHIFT)) { 10035 set_bit(field, bitmap[ACCESS_VMREAD]); 10036 set_bit(field, bitmap[ACCESS_VMWRITE]); 10037 } 10038 vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); 10039 report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE"); 10040 vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); 10041 report(c->reason == VMX_VMREAD, "not shadowed for VMREAD"); 10042 report_prefix_pop(); 10043 10044 if (field >> VMCS_FIELD_RESERVED_SHIFT) 10045 goto out; 10046 10047 /* Permit shadowed VMREAD. */ 10048 report_prefix_push("VMREAD permission only"); 10049 clear_bit(field, bitmap[ACCESS_VMREAD]); 10050 set_bit(field, bitmap[ACCESS_VMWRITE]); 10051 if (good_shadow) 10052 value = vmwrite_to_shadow(field, MAGIC_VAL_1 + field); 10053 vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); 10054 report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE"); 10055 vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); 10056 vmx_inst_error = vmcs_read(VMX_INST_ERROR); 10057 report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)", 10058 c->time); 10059 report(c->flags == flags[ACCESS_VMREAD], 10060 "ALU flags after VMREAD (%lx) are as expected (%lx)", 10061 c->flags, flags[ACCESS_VMREAD]); 10062 if (good_shadow) 10063 report(c->value == value, 10064 "value read from shadow (%lx) is as expected (%lx)", 10065 c->value, value); 10066 else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD]) 10067 report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, 10068 "VMX_INST_ERROR (%d) is as expected (%d)", 10069 vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 10070 report_prefix_pop(); 10071 10072 /* Permit shadowed VMWRITE. */ 10073 report_prefix_push("VMWRITE permission only"); 10074 set_bit(field, bitmap[ACCESS_VMREAD]); 10075 clear_bit(field, bitmap[ACCESS_VMWRITE]); 10076 if (good_shadow) 10077 vmwrite_to_shadow(field, MAGIC_VAL_1 + field); 10078 vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); 10079 vmx_inst_error = vmcs_read(VMX_INST_ERROR); 10080 report(c->reason == VMX_VMCALL, 10081 "shadowed for VMWRITE (in %ld cycles)", 10082 c->time); 10083 report(c->flags == flags[ACCESS_VMREAD], 10084 "ALU flags after VMWRITE (%lx) are as expected (%lx)", 10085 c->flags, flags[ACCESS_VMREAD]); 10086 if (good_shadow) { 10087 value = vmread_from_shadow(field); 10088 report(value == 0, 10089 "shadow VMCS value (%lx) is as expected (%lx)", value, 10090 0ul); 10091 } else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) { 10092 report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, 10093 "VMX_INST_ERROR (%d) is as expected (%d)", 10094 vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 10095 } 10096 vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); 10097 report(c->reason == VMX_VMREAD, "not shadowed for VMREAD"); 10098 report_prefix_pop(); 10099 10100 /* Permit shadowed VMREAD and VMWRITE. */ 10101 report_prefix_push("VMREAD and VMWRITE permission"); 10102 clear_bit(field, bitmap[ACCESS_VMREAD]); 10103 clear_bit(field, bitmap[ACCESS_VMWRITE]); 10104 if (good_shadow) 10105 vmwrite_to_shadow(field, MAGIC_VAL_1 + field); 10106 vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); 10107 vmx_inst_error = vmcs_read(VMX_INST_ERROR); 10108 report(c->reason == VMX_VMCALL, 10109 "shadowed for VMWRITE (in %ld cycles)", 10110 c->time); 10111 report(c->flags == flags[ACCESS_VMREAD], 10112 "ALU flags after VMWRITE (%lx) are as expected (%lx)", 10113 c->flags, flags[ACCESS_VMREAD]); 10114 if (good_shadow) { 10115 value = vmread_from_shadow(field); 10116 report(value == 0, 10117 "shadow VMCS value (%lx) is as expected (%lx)", value, 10118 0ul); 10119 } else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) { 10120 report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, 10121 "VMX_INST_ERROR (%d) is as expected (%d)", 10122 vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 10123 } 10124 vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); 10125 vmx_inst_error = vmcs_read(VMX_INST_ERROR); 10126 report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)", 10127 c->time); 10128 report(c->flags == flags[ACCESS_VMREAD], 10129 "ALU flags after VMREAD (%lx) are as expected (%lx)", 10130 c->flags, flags[ACCESS_VMREAD]); 10131 if (good_shadow) 10132 report(c->value == 0, 10133 "value read from shadow (%lx) is as expected (%lx)", 10134 c->value, 0ul); 10135 else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD]) 10136 report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, 10137 "VMX_INST_ERROR (%d) is as expected (%d)", 10138 vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 10139 report_prefix_pop(); 10140 10141 out: 10142 report_prefix_pop(); 10143 } 10144 10145 static void vmx_vmcs_shadow_test_body(u8 *bitmap[2]) 10146 { 10147 unsigned base; 10148 unsigned index; 10149 unsigned bit; 10150 unsigned highest_index = rdmsr(MSR_IA32_VMX_VMCS_ENUM); 10151 10152 /* Run test on all possible valid VMCS fields */ 10153 for (base = 0; 10154 base < (1 << VMCS_FIELD_RESERVED_SHIFT); 10155 base += (1 << VMCS_FIELD_TYPE_SHIFT)) 10156 for (index = 0; index <= highest_index; index++) 10157 vmcs_shadow_test_field(bitmap, base + index); 10158 10159 /* 10160 * Run tests on some invalid VMCS fields 10161 * (Have reserved bit set). 10162 */ 10163 for (bit = VMCS_FIELD_RESERVED_SHIFT; bit < VMCS_FIELD_BIT_SIZE; bit++) 10164 vmcs_shadow_test_field(bitmap, (1ull << bit)); 10165 } 10166 10167 static void vmx_vmcs_shadow_test(void) 10168 { 10169 u8 *bitmap[2]; 10170 struct vmcs *shadow; 10171 10172 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) { 10173 report_skip("%s : \"Activate secondary controls\" not supported", __func__); 10174 return; 10175 } 10176 10177 if (!(ctrl_cpu_rev[1].clr & CPU_SHADOW_VMCS)) { 10178 report_skip("%s : \"VMCS shadowing\" not supported", __func__); 10179 return; 10180 } 10181 10182 if (!(rdmsr(MSR_IA32_VMX_MISC) & 10183 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) { 10184 report_skip("%s : VMWRITE can't modify VM-exit information fields.", __func__); 10185 return; 10186 } 10187 10188 test_set_guest(vmx_vmcs_shadow_test_guest); 10189 10190 bitmap[ACCESS_VMREAD] = alloc_page(); 10191 bitmap[ACCESS_VMWRITE] = alloc_page(); 10192 10193 vmcs_write(VMREAD_BITMAP, virt_to_phys(bitmap[ACCESS_VMREAD])); 10194 vmcs_write(VMWRITE_BITMAP, virt_to_phys(bitmap[ACCESS_VMWRITE])); 10195 10196 shadow = alloc_page(); 10197 shadow->hdr.revision_id = basic_msr.revision; 10198 shadow->hdr.shadow_vmcs = 1; 10199 TEST_ASSERT(!vmcs_clear(shadow)); 10200 10201 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_RDTSC); 10202 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY); 10203 vmcs_set_bits(CPU_EXEC_CTRL1, CPU_SHADOW_VMCS); 10204 10205 vmcs_write(VMCS_LINK_PTR, virt_to_phys(shadow)); 10206 report_prefix_push("valid link pointer"); 10207 vmx_vmcs_shadow_test_body(bitmap); 10208 report_prefix_pop(); 10209 10210 vmcs_write(VMCS_LINK_PTR, -1ull); 10211 report_prefix_push("invalid link pointer"); 10212 vmx_vmcs_shadow_test_body(bitmap); 10213 report_prefix_pop(); 10214 10215 l1_l2_common.op = ACCESS_NONE; 10216 enter_guest(); 10217 } 10218 10219 /* 10220 * This test monitors the difference between a guest RDTSC instruction 10221 * and the IA32_TIME_STAMP_COUNTER MSR value stored in the VMCS12 10222 * VM-exit MSR-store list when taking a VM-exit on the instruction 10223 * following RDTSC. 10224 */ 10225 #define RDTSC_DIFF_ITERS 100000 10226 #define RDTSC_DIFF_FAILS 100 10227 #define HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD 750 10228 10229 /* 10230 * Set 'use TSC offsetting' and set the guest offset to the 10231 * inverse of the host's current TSC value, so that the guest starts running 10232 * with an effective TSC value of 0. 10233 */ 10234 static void reset_guest_tsc_to_zero(void) 10235 { 10236 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET); 10237 vmcs_write(TSC_OFFSET, -rdtsc()); 10238 } 10239 10240 static void rdtsc_vmexit_diff_test_guest(void) 10241 { 10242 int i; 10243 10244 for (i = 0; i < RDTSC_DIFF_ITERS; i++) 10245 /* Ensure rdtsc is the last instruction before the vmcall. */ 10246 asm volatile("rdtsc; vmcall" : : : "eax", "edx"); 10247 } 10248 10249 /* 10250 * This function only considers the "use TSC offsetting" VM-execution 10251 * control. It does not handle "use TSC scaling" (because the latter 10252 * isn't available to the host today.) 10253 */ 10254 static unsigned long long host_time_to_guest_time(unsigned long long t) 10255 { 10256 TEST_ASSERT(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 10257 !(vmcs_read(CPU_EXEC_CTRL1) & CPU_USE_TSC_SCALING)); 10258 10259 if (vmcs_read(CPU_EXEC_CTRL0) & CPU_USE_TSC_OFFSET) 10260 t += vmcs_read(TSC_OFFSET); 10261 10262 return t; 10263 } 10264 10265 static unsigned long long rdtsc_vmexit_diff_test_iteration(void) 10266 { 10267 unsigned long long guest_tsc, host_to_guest_tsc; 10268 10269 enter_guest(); 10270 skip_exit_vmcall(); 10271 guest_tsc = (u32) regs.rax + (regs.rdx << 32); 10272 host_to_guest_tsc = host_time_to_guest_time(exit_msr_store[0].value); 10273 10274 return host_to_guest_tsc - guest_tsc; 10275 } 10276 10277 static void rdtsc_vmexit_diff_test(void) 10278 { 10279 unsigned long long delta; 10280 int fail = 0; 10281 int i; 10282 10283 if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) 10284 test_skip("CPU doesn't support the 'use TSC offsetting' processor-based VM-execution control.\n"); 10285 10286 test_set_guest(rdtsc_vmexit_diff_test_guest); 10287 10288 reset_guest_tsc_to_zero(); 10289 10290 /* 10291 * Set up the VMCS12 VM-exit MSR-store list to store just one 10292 * MSR: IA32_TIME_STAMP_COUNTER. Note that the value stored is 10293 * in the host time domain (i.e., it is not adjusted according 10294 * to the TSC multiplier and TSC offset fields in the VMCS12, 10295 * as a guest RDTSC would be.) 10296 */ 10297 exit_msr_store = alloc_page(); 10298 exit_msr_store[0].index = MSR_IA32_TSC; 10299 vmcs_write(EXI_MSR_ST_CNT, 1); 10300 vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(exit_msr_store)); 10301 10302 for (i = 0; i < RDTSC_DIFF_ITERS && fail < RDTSC_DIFF_FAILS; i++) { 10303 delta = rdtsc_vmexit_diff_test_iteration(); 10304 if (delta >= HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD) 10305 fail++; 10306 } 10307 10308 enter_guest(); 10309 10310 report(fail < RDTSC_DIFF_FAILS, 10311 "RDTSC to VM-exit delta too high in %d of %d iterations, last = %llu", 10312 fail, i, delta); 10313 } 10314 10315 static int invalid_msr_init(struct vmcs *vmcs) 10316 { 10317 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 10318 printf("\tPreemption timer is not supported\n"); 10319 return VMX_TEST_EXIT; 10320 } 10321 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); 10322 preempt_val = 10000000; 10323 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 10324 preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F; 10325 10326 if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT)) 10327 printf("\tSave preemption value is not supported\n"); 10328 10329 vmcs_write(ENT_MSR_LD_CNT, 1); 10330 vmcs_write(ENTER_MSR_LD_ADDR, (u64)0x13370000); 10331 10332 return VMX_TEST_START; 10333 } 10334 10335 10336 static void invalid_msr_main(void) 10337 { 10338 report_fail("Invalid MSR load"); 10339 } 10340 10341 static int invalid_msr_exit_handler(union exit_reason exit_reason) 10342 { 10343 report_fail("Invalid MSR load"); 10344 print_vmexit_info(exit_reason); 10345 return VMX_TEST_EXIT; 10346 } 10347 10348 static int invalid_msr_entry_failure(struct vmentry_result *result) 10349 { 10350 report(result->exit_reason.failed_vmentry && 10351 result->exit_reason.basic == VMX_FAIL_MSR, "Invalid MSR load"); 10352 return VMX_TEST_VMEXIT; 10353 } 10354 10355 /* 10356 * The max number of MSRs in an atomic switch MSR list is: 10357 * (111B + 1) * 512 = 4096 10358 * 10359 * Each list entry consumes: 10360 * 4-byte MSR index + 4 bytes reserved + 8-byte data = 16 bytes 10361 * 10362 * Allocate 128 kB to cover max_msr_list_size (i.e., 64 kB) and then some. 10363 */ 10364 static const u32 msr_list_page_order = 5; 10365 10366 static void atomic_switch_msr_limit_test_guest(void) 10367 { 10368 vmcall(); 10369 } 10370 10371 static void populate_msr_list(struct vmx_msr_entry *msr_list, 10372 size_t byte_capacity, int count) 10373 { 10374 int i; 10375 10376 for (i = 0; i < count; i++) { 10377 msr_list[i].index = MSR_IA32_TSC; 10378 msr_list[i].reserved = 0; 10379 msr_list[i].value = 0x1234567890abcdef; 10380 } 10381 10382 memset(msr_list + count, 0xff, 10383 byte_capacity - count * sizeof(*msr_list)); 10384 } 10385 10386 static int max_msr_list_size(void) 10387 { 10388 u32 vmx_misc = rdmsr(MSR_IA32_VMX_MISC); 10389 u32 factor = ((vmx_misc & GENMASK(27, 25)) >> 25) + 1; 10390 10391 return factor * 512; 10392 } 10393 10394 static void atomic_switch_msrs_test(int count) 10395 { 10396 struct vmx_msr_entry *vm_enter_load; 10397 struct vmx_msr_entry *vm_exit_load; 10398 struct vmx_msr_entry *vm_exit_store; 10399 int max_allowed = max_msr_list_size(); 10400 int byte_capacity = 1ul << (msr_list_page_order + PAGE_SHIFT); 10401 /* Exceeding the max MSR list size at exit triggers KVM to abort. */ 10402 int exit_count = count > max_allowed ? max_allowed : count; 10403 int cleanup_count = count > max_allowed ? 2 : 1; 10404 int i; 10405 10406 /* 10407 * Check for the IA32_TSC MSR, 10408 * available with the "TSC flag" and used to populate the MSR lists. 10409 */ 10410 if (!(cpuid(1).d & (1 << 4))) { 10411 report_skip("%s : \"Time Stamp Counter\" not supported", __func__); 10412 return; 10413 } 10414 10415 /* Set L2 guest. */ 10416 test_set_guest(atomic_switch_msr_limit_test_guest); 10417 10418 /* Setup atomic MSR switch lists. */ 10419 vm_enter_load = alloc_pages(msr_list_page_order); 10420 vm_exit_load = alloc_pages(msr_list_page_order); 10421 vm_exit_store = alloc_pages(msr_list_page_order); 10422 10423 vmcs_write(ENTER_MSR_LD_ADDR, (u64)vm_enter_load); 10424 vmcs_write(EXIT_MSR_LD_ADDR, (u64)vm_exit_load); 10425 vmcs_write(EXIT_MSR_ST_ADDR, (u64)vm_exit_store); 10426 10427 /* 10428 * VM-Enter should succeed up to the max number of MSRs per list, and 10429 * should not consume junk beyond the last entry. 10430 */ 10431 populate_msr_list(vm_enter_load, byte_capacity, count); 10432 populate_msr_list(vm_exit_load, byte_capacity, exit_count); 10433 populate_msr_list(vm_exit_store, byte_capacity, exit_count); 10434 10435 vmcs_write(ENT_MSR_LD_CNT, count); 10436 vmcs_write(EXI_MSR_LD_CNT, exit_count); 10437 vmcs_write(EXI_MSR_ST_CNT, exit_count); 10438 10439 if (count <= max_allowed) { 10440 enter_guest(); 10441 assert_exit_reason(VMX_VMCALL); 10442 skip_exit_vmcall(); 10443 } else { 10444 u32 exit_qual; 10445 10446 test_guest_state("Invalid MSR Load Count", true, count, 10447 "ENT_MSR_LD_CNT"); 10448 10449 exit_qual = vmcs_read(EXI_QUALIFICATION); 10450 report(exit_qual == max_allowed + 1, "exit_qual, %u, is %u.", 10451 exit_qual, max_allowed + 1); 10452 } 10453 10454 /* Cleanup. */ 10455 vmcs_write(ENT_MSR_LD_CNT, 0); 10456 vmcs_write(EXI_MSR_LD_CNT, 0); 10457 vmcs_write(EXI_MSR_ST_CNT, 0); 10458 for (i = 0; i < cleanup_count; i++) { 10459 enter_guest(); 10460 skip_exit_vmcall(); 10461 } 10462 free_pages_by_order(vm_enter_load, msr_list_page_order); 10463 free_pages_by_order(vm_exit_load, msr_list_page_order); 10464 free_pages_by_order(vm_exit_store, msr_list_page_order); 10465 } 10466 10467 static void atomic_switch_max_msrs_test(void) 10468 { 10469 atomic_switch_msrs_test(max_msr_list_size()); 10470 } 10471 10472 static void atomic_switch_overflow_msrs_test(void) 10473 { 10474 if (test_device_enabled()) 10475 atomic_switch_msrs_test(max_msr_list_size() + 1); 10476 else 10477 test_skip("Test is only supported on KVM"); 10478 } 10479 10480 static void vmx_pf_exception_test_guest(void) 10481 { 10482 ac_test_run(PT_LEVEL_PML4, false); 10483 } 10484 10485 static void vmx_pf_exception_forced_emulation_test_guest(void) 10486 { 10487 ac_test_run(PT_LEVEL_PML4, true); 10488 } 10489 10490 typedef void (*invalidate_tlb_t)(void *data); 10491 typedef void (*pf_exception_test_guest_t)(void); 10492 10493 10494 static void __vmx_pf_exception_test(invalidate_tlb_t inv_fn, void *data, 10495 pf_exception_test_guest_t guest_fn) 10496 { 10497 u64 efer; 10498 struct cpuid cpuid; 10499 10500 test_set_guest(guest_fn); 10501 10502 /* Intercept INVLPG when to perform TLB invalidation from L1 (this). */ 10503 if (inv_fn) 10504 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INVLPG); 10505 else 10506 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INVLPG); 10507 10508 enter_guest(); 10509 10510 while (vmcs_read(EXI_REASON) != VMX_VMCALL) { 10511 switch (vmcs_read(EXI_REASON)) { 10512 case VMX_RDMSR: 10513 assert(regs.rcx == MSR_EFER); 10514 efer = vmcs_read(GUEST_EFER); 10515 regs.rdx = efer >> 32; 10516 regs.rax = efer & 0xffffffff; 10517 break; 10518 case VMX_WRMSR: 10519 assert(regs.rcx == MSR_EFER); 10520 efer = regs.rdx << 32 | (regs.rax & 0xffffffff); 10521 vmcs_write(GUEST_EFER, efer); 10522 break; 10523 case VMX_CPUID: 10524 cpuid = (struct cpuid) {0, 0, 0, 0}; 10525 cpuid = raw_cpuid(regs.rax, regs.rcx); 10526 regs.rax = cpuid.a; 10527 regs.rbx = cpuid.b; 10528 regs.rcx = cpuid.c; 10529 regs.rdx = cpuid.d; 10530 break; 10531 case VMX_INVLPG: 10532 inv_fn(data); 10533 break; 10534 default: 10535 assert_msg(false, 10536 "Unexpected exit to L1, exit_reason: %s (0x%lx)", 10537 exit_reason_description(vmcs_read(EXI_REASON)), 10538 vmcs_read(EXI_REASON)); 10539 } 10540 skip_exit_insn(); 10541 enter_guest(); 10542 } 10543 10544 assert_exit_reason(VMX_VMCALL); 10545 } 10546 10547 static void vmx_pf_exception_test(void) 10548 { 10549 __vmx_pf_exception_test(NULL, NULL, vmx_pf_exception_test_guest); 10550 } 10551 10552 static void vmx_pf_exception_forced_emulation_test(void) 10553 { 10554 __vmx_pf_exception_test(NULL, NULL, vmx_pf_exception_forced_emulation_test_guest); 10555 } 10556 10557 static void invalidate_tlb_no_vpid(void *data) 10558 { 10559 /* If VPID is disabled, the TLB is flushed on VM-Enter and VM-Exit. */ 10560 } 10561 10562 static void vmx_pf_no_vpid_test(void) 10563 { 10564 if (is_vpid_supported()) 10565 vmcs_clear_bits(CPU_EXEC_CTRL1, CPU_VPID); 10566 10567 __vmx_pf_exception_test(invalidate_tlb_no_vpid, NULL, 10568 vmx_pf_exception_test_guest); 10569 } 10570 10571 static void invalidate_tlb_invvpid_addr(void *data) 10572 { 10573 invvpid(INVVPID_ALL, *(u16 *)data, vmcs_read(EXI_QUALIFICATION)); 10574 } 10575 10576 static void invalidate_tlb_new_vpid(void *data) 10577 { 10578 u16 *vpid = data; 10579 10580 /* 10581 * Bump VPID to effectively flush L2's TLB from L0's perspective. 10582 * Invalidate all VPIDs when the VPID wraps to zero as hardware/KVM is 10583 * architecturally allowed to keep TLB entries indefinitely. 10584 */ 10585 ++(*vpid); 10586 if (*vpid == 0) { 10587 ++(*vpid); 10588 invvpid(INVVPID_ALL, 0, 0); 10589 } 10590 vmcs_write(VPID, *vpid); 10591 } 10592 10593 static void __vmx_pf_vpid_test(invalidate_tlb_t inv_fn, u16 vpid) 10594 { 10595 if (!is_vpid_supported()) 10596 test_skip("VPID unsupported"); 10597 10598 if (!is_invvpid_supported()) 10599 test_skip("INVVPID unsupported"); 10600 10601 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY); 10602 vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VPID); 10603 vmcs_write(VPID, vpid); 10604 10605 __vmx_pf_exception_test(inv_fn, &vpid, vmx_pf_exception_test_guest); 10606 } 10607 10608 static void vmx_pf_invvpid_test(void) 10609 { 10610 if (!is_invvpid_type_supported(INVVPID_ADDR)) 10611 test_skip("INVVPID ADDR unsupported"); 10612 10613 __vmx_pf_vpid_test(invalidate_tlb_invvpid_addr, 0xaaaa); 10614 } 10615 10616 static void vmx_pf_vpid_test(void) 10617 { 10618 /* Need INVVPID(ALL) to flush VPIDs upon wrap/reuse. */ 10619 if (!is_invvpid_type_supported(INVVPID_ALL)) 10620 test_skip("INVVPID ALL unsupported"); 10621 10622 __vmx_pf_vpid_test(invalidate_tlb_new_vpid, 1); 10623 } 10624 10625 static void vmx_l2_ac_test(void) 10626 { 10627 bool hit_ac = false; 10628 10629 write_cr0(read_cr0() | X86_CR0_AM); 10630 write_rflags(read_rflags() | X86_EFLAGS_AC); 10631 10632 run_in_user(generate_usermode_ac, AC_VECTOR, 0, 0, 0, 0, &hit_ac); 10633 report(hit_ac, "Usermode #AC handled in L2"); 10634 vmcall(); 10635 } 10636 10637 struct vmx_exception_test { 10638 u8 vector; 10639 void (*guest_code)(void); 10640 }; 10641 10642 struct vmx_exception_test vmx_exception_tests[] = { 10643 { GP_VECTOR, generate_non_canonical_gp }, 10644 { UD_VECTOR, generate_ud }, 10645 { DE_VECTOR, generate_de }, 10646 { DB_VECTOR, generate_single_step_db }, 10647 { BP_VECTOR, generate_bp }, 10648 { AC_VECTOR, vmx_l2_ac_test }, 10649 { OF_VECTOR, generate_of }, 10650 { NM_VECTOR, generate_cr0_ts_nm }, 10651 { NM_VECTOR, generate_cr0_em_nm }, 10652 }; 10653 10654 static u8 vmx_exception_test_vector; 10655 10656 static void vmx_exception_handler(struct ex_regs *regs) 10657 { 10658 report(regs->vector == vmx_exception_test_vector, 10659 "Handling %s in L2's exception handler", 10660 exception_mnemonic(vmx_exception_test_vector)); 10661 vmcall(); 10662 } 10663 10664 static void handle_exception_in_l2(u8 vector) 10665 { 10666 handler old_handler = handle_exception(vector, vmx_exception_handler); 10667 10668 vmx_exception_test_vector = vector; 10669 10670 enter_guest(); 10671 report(vmcs_read(EXI_REASON) == VMX_VMCALL, 10672 "%s handled by L2", exception_mnemonic(vector)); 10673 10674 handle_exception(vector, old_handler); 10675 } 10676 10677 static void handle_exception_in_l1(u32 vector) 10678 { 10679 u32 old_eb = vmcs_read(EXC_BITMAP); 10680 u32 intr_type; 10681 u32 intr_info; 10682 10683 vmcs_write(EXC_BITMAP, old_eb | (1u << vector)); 10684 10685 enter_guest(); 10686 10687 if (vector == BP_VECTOR || vector == OF_VECTOR) 10688 intr_type = VMX_INTR_TYPE_SOFT_EXCEPTION; 10689 else 10690 intr_type = VMX_INTR_TYPE_HARD_EXCEPTION; 10691 10692 intr_info = vmcs_read(EXI_INTR_INFO); 10693 report((vmcs_read(EXI_REASON) == VMX_EXC_NMI) && 10694 (intr_info & INTR_INFO_VALID_MASK) && 10695 (intr_info & INTR_INFO_VECTOR_MASK) == vector && 10696 ((intr_info & INTR_INFO_INTR_TYPE_MASK) >> INTR_INFO_INTR_TYPE_SHIFT) == intr_type, 10697 "%s correctly routed to L1", exception_mnemonic(vector)); 10698 10699 vmcs_write(EXC_BITMAP, old_eb); 10700 } 10701 10702 static void vmx_exception_test(void) 10703 { 10704 struct vmx_exception_test *t; 10705 int i; 10706 10707 for (i = 0; i < ARRAY_SIZE(vmx_exception_tests); i++) { 10708 t = &vmx_exception_tests[i]; 10709 10710 /* 10711 * Override the guest code before each run even though it's the 10712 * same code, the VMCS guest state needs to be reinitialized. 10713 */ 10714 test_override_guest(t->guest_code); 10715 handle_exception_in_l2(t->vector); 10716 10717 test_override_guest(t->guest_code); 10718 handle_exception_in_l1(t->vector); 10719 } 10720 10721 test_set_guest_finished(); 10722 } 10723 10724 enum Vid_op { 10725 VID_OP_SET_ISR, 10726 VID_OP_NOP, 10727 VID_OP_SET_CR8, 10728 VID_OP_TERMINATE, 10729 }; 10730 10731 struct vmx_basic_vid_test_guest_args { 10732 enum Vid_op op; 10733 u8 nr; 10734 bool isr_fired; 10735 } vmx_basic_vid_test_guest_args; 10736 10737 static void vmx_vid_test_isr(isr_regs_t *regs) 10738 { 10739 volatile struct vmx_basic_vid_test_guest_args *args = 10740 &vmx_basic_vid_test_guest_args; 10741 10742 args->isr_fired = true; 10743 barrier(); 10744 eoi(); 10745 } 10746 10747 static void vmx_basic_vid_test_guest(void) 10748 { 10749 volatile struct vmx_basic_vid_test_guest_args *args = 10750 &vmx_basic_vid_test_guest_args; 10751 10752 sti_nop(); 10753 for (;;) { 10754 enum Vid_op op = args->op; 10755 u8 nr = args->nr; 10756 10757 switch (op) { 10758 case VID_OP_TERMINATE: 10759 return; 10760 case VID_OP_SET_ISR: 10761 handle_irq(nr, vmx_vid_test_isr); 10762 break; 10763 case VID_OP_SET_CR8: 10764 write_cr8(nr); 10765 break; 10766 default: 10767 break; 10768 } 10769 10770 vmcall(); 10771 } 10772 } 10773 10774 /* 10775 * Test virtual interrupt delivery (VID) at VM-entry or TPR virtualization 10776 * 10777 * Args: 10778 * nr: vector under test 10779 * tpr: task priority under test 10780 * tpr_virt: If true, then test VID during TPR virtualization. Otherwise, 10781 * test VID during VM-entry. 10782 */ 10783 static void test_basic_vid(u8 nr, u8 tpr, bool tpr_virt) 10784 { 10785 volatile struct vmx_basic_vid_test_guest_args *args = 10786 &vmx_basic_vid_test_guest_args; 10787 bool isr_fired_want = 10788 task_priority_class(nr) > task_priority_class(tpr); 10789 u16 rvi_want = isr_fired_want ? 0 : nr; 10790 u16 int_status; 10791 10792 /* 10793 * From the SDM: 10794 * IF "interrupt-window exiting" is 0 AND 10795 * RVI[7:4] > VPPR[7:4] (see Section 29.1.1 for definition of VPPR) 10796 * THEN recognize a pending virtual interrupt; 10797 * ELSE 10798 * do not recognize a pending virtual interrupt; 10799 * FI; 10800 * 10801 * Thus, VPPR dictates whether a virtual interrupt is recognized. 10802 * However, PPR virtualization, which occurs before virtual interrupt 10803 * delivery, sets VPPR to VTPR, when SVI is 0. 10804 */ 10805 vmcs_write(GUEST_INT_STATUS, nr); 10806 args->isr_fired = false; 10807 if (tpr_virt) { 10808 args->op = VID_OP_SET_CR8; 10809 args->nr = task_priority_class(tpr); 10810 set_vtpr(0xff); 10811 } else { 10812 args->op = VID_OP_NOP; 10813 set_vtpr(tpr); 10814 } 10815 10816 enter_guest(); 10817 skip_exit_vmcall(); 10818 TEST_ASSERT_EQ(args->isr_fired, isr_fired_want); 10819 int_status = vmcs_read(GUEST_INT_STATUS); 10820 TEST_ASSERT_EQ(int_status, rvi_want); 10821 } 10822 10823 /* 10824 * Test recognizing and delivering virtual interrupts via "Virtual-interrupt 10825 * delivery" for two scenarios: 10826 * 1. When there is a pending interrupt at VM-entry. 10827 * 2. When there is a pending interrupt during TPR virtualization. 10828 */ 10829 static void vmx_basic_vid_test(void) 10830 { 10831 volatile struct vmx_basic_vid_test_guest_args *args = 10832 &vmx_basic_vid_test_guest_args; 10833 u8 nr_class; 10834 u16 nr; 10835 10836 if (!cpu_has_apicv()) { 10837 report_skip("%s : Not all required APICv bits supported", __func__); 10838 return; 10839 } 10840 10841 enable_vid(); 10842 test_set_guest(vmx_basic_vid_test_guest); 10843 10844 /* 10845 * kvm-unit-tests uses vector 32 for IPIs, so don't install a test ISR 10846 * for that vector. 10847 */ 10848 for (nr = 0x21; nr < 0x100; nr++) { 10849 vmcs_write(GUEST_INT_STATUS, 0); 10850 args->op = VID_OP_SET_ISR; 10851 args->nr = nr; 10852 args->isr_fired = false; 10853 enter_guest(); 10854 skip_exit_vmcall(); 10855 TEST_ASSERT(!args->isr_fired); 10856 } 10857 report(true, "Set ISR for vectors 33-255."); 10858 10859 for (nr_class = 2; nr_class < 16; nr_class++) { 10860 u8 nr_sub_class; 10861 10862 for (nr_sub_class = 0; nr_sub_class < 16; nr_sub_class++) { 10863 u16 tpr; 10864 10865 nr = (nr_class << 4) | nr_sub_class; 10866 10867 /* 10868 * Don't test the reserved IPI vector, as the test ISR 10869 * was not installed. 10870 */ 10871 if (nr == 0x20) 10872 continue; 10873 10874 for (tpr = 0; tpr < 256; tpr++) { 10875 test_basic_vid(nr, tpr, /*tpr_virt=*/false); 10876 test_basic_vid(nr, tpr, /*tpr_virt=*/true); 10877 } 10878 report(true, "TPR 0-255 for vector 0x%x.", nr); 10879 } 10880 } 10881 10882 /* Terminate the guest */ 10883 args->op = VID_OP_TERMINATE; 10884 enter_guest(); 10885 assert_exit_reason(VMX_VMCALL); 10886 } 10887 10888 #define TEST(name) { #name, .v2 = name } 10889 10890 /* name/init/guest_main/exit_handler/syscall_handler/guest_regs */ 10891 struct vmx_test vmx_tests[] = { 10892 { "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} }, 10893 { "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} }, 10894 { "preemption timer", preemption_timer_init, preemption_timer_main, 10895 preemption_timer_exit_handler, NULL, {0} }, 10896 { "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main, 10897 test_ctrl_pat_exit_handler, NULL, {0} }, 10898 { "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main, 10899 test_ctrl_efer_exit_handler, NULL, {0} }, 10900 { "CR shadowing", NULL, cr_shadowing_main, 10901 cr_shadowing_exit_handler, NULL, {0} }, 10902 { "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler, 10903 NULL, {0} }, 10904 { "instruction intercept", insn_intercept_init, insn_intercept_main, 10905 insn_intercept_exit_handler, NULL, {0} }, 10906 { "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} }, 10907 { "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} }, 10908 { "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} }, 10909 { "interrupt", interrupt_init, interrupt_main, 10910 interrupt_exit_handler, NULL, {0} }, 10911 { "nmi_hlt", nmi_hlt_init, nmi_hlt_main, 10912 nmi_hlt_exit_handler, NULL, {0} }, 10913 { "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler, 10914 NULL, {0} }, 10915 { "MSR switch", msr_switch_init, msr_switch_main, 10916 msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure }, 10917 { "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} }, 10918 { "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main, 10919 disable_rdtscp_exit_handler, NULL, {0} }, 10920 { "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main, 10921 exit_monitor_from_l2_handler, NULL, {0} }, 10922 { "invalid_msr", invalid_msr_init, invalid_msr_main, 10923 invalid_msr_exit_handler, NULL, {0}, invalid_msr_entry_failure}, 10924 /* Basic V2 tests. */ 10925 TEST(v2_null_test), 10926 TEST(v2_multiple_entries_test), 10927 TEST(fixture_test_case1), 10928 TEST(fixture_test_case2), 10929 /* Opcode tests. */ 10930 TEST(invvpid_test), 10931 /* VM-entry tests */ 10932 TEST(vmx_controls_test), 10933 TEST(vmx_host_state_area_test), 10934 TEST(vmx_guest_state_area_test), 10935 TEST(vmentry_movss_shadow_test), 10936 TEST(vmentry_unrestricted_guest_test), 10937 /* APICv tests */ 10938 TEST(vmx_eoi_bitmap_ioapic_scan_test), 10939 TEST(vmx_hlt_with_rvi_test), 10940 TEST(apic_reg_virt_test), 10941 TEST(virt_x2apic_mode_test), 10942 TEST(vmx_basic_vid_test), 10943 /* APIC pass-through tests */ 10944 TEST(vmx_apic_passthrough_test), 10945 TEST(vmx_apic_passthrough_thread_test), 10946 TEST(vmx_apic_passthrough_tpr_threshold_test), 10947 TEST(vmx_init_signal_test), 10948 TEST(vmx_sipi_signal_test), 10949 /* VMCS Shadowing tests */ 10950 TEST(vmx_vmcs_shadow_test), 10951 /* Regression tests */ 10952 TEST(vmx_ldtr_test), 10953 TEST(vmx_cr_load_test), 10954 TEST(vmx_cr4_osxsave_test), 10955 TEST(vmx_no_nm_test), 10956 TEST(vmx_db_test), 10957 TEST(vmx_nmi_window_test), 10958 TEST(vmx_intr_window_test), 10959 TEST(vmx_pending_event_test), 10960 TEST(vmx_pending_event_hlt_test), 10961 TEST(vmx_store_tsc_test), 10962 TEST(vmx_preemption_timer_zero_test), 10963 TEST(vmx_preemption_timer_tf_test), 10964 TEST(vmx_preemption_timer_expiry_test), 10965 /* EPT access tests. */ 10966 TEST(ept_access_test_not_present), 10967 TEST(ept_access_test_read_only), 10968 TEST(ept_access_test_write_only), 10969 TEST(ept_access_test_read_write), 10970 TEST(ept_access_test_execute_only), 10971 TEST(ept_access_test_read_execute), 10972 TEST(ept_access_test_write_execute), 10973 TEST(ept_access_test_read_write_execute), 10974 TEST(ept_access_test_reserved_bits), 10975 TEST(ept_access_test_ignored_bits), 10976 TEST(ept_access_test_paddr_not_present_ad_disabled), 10977 TEST(ept_access_test_paddr_not_present_ad_enabled), 10978 TEST(ept_access_test_paddr_read_only_ad_disabled), 10979 TEST(ept_access_test_paddr_read_only_ad_enabled), 10980 TEST(ept_access_test_paddr_read_write), 10981 TEST(ept_access_test_paddr_read_write_execute), 10982 TEST(ept_access_test_paddr_read_execute_ad_disabled), 10983 TEST(ept_access_test_paddr_read_execute_ad_enabled), 10984 TEST(ept_access_test_paddr_not_present_page_fault), 10985 TEST(ept_access_test_force_2m_page), 10986 /* Atomic MSR switch tests. */ 10987 TEST(atomic_switch_max_msrs_test), 10988 TEST(atomic_switch_overflow_msrs_test), 10989 TEST(rdtsc_vmexit_diff_test), 10990 TEST(vmx_mtf_test), 10991 TEST(vmx_mtf_pdpte_test), 10992 TEST(vmx_pf_exception_test), 10993 TEST(vmx_pf_exception_forced_emulation_test), 10994 TEST(vmx_pf_no_vpid_test), 10995 TEST(vmx_pf_invvpid_test), 10996 TEST(vmx_pf_vpid_test), 10997 TEST(vmx_exception_test), 10998 { NULL, NULL, NULL, NULL, NULL, {0} }, 10999 }; 11000