xref: /kvm-unit-tests/x86/vmx_tests.c (revision 8922f1fb76df5d1734e986a02e2eab8f96e5a704)
1 /*
2  * All test cases of nested virtualization should be in this file
3  *
4  * Author : Arthur Chunqi Li <yzt356@gmail.com>
5  */
6 #include "vmx.h"
7 #include "msr.h"
8 #include "processor.h"
9 #include "vm.h"
10 #include "fwcfg.h"
11 #include "isr.h"
12 #include "desc.h"
13 #include "apic.h"
14 #include "types.h"
15 
16 #define NONCANONICAL            0xaaaaaaaaaaaaaaaaull
17 
18 #define VPID_CAP_INVVPID_TYPES_SHIFT 40
19 
20 u64 ia32_pat;
21 u64 ia32_efer;
22 void *io_bitmap_a, *io_bitmap_b;
23 u16 ioport;
24 
25 unsigned long *pml4;
26 u64 eptp;
27 void *data_page1, *data_page2;
28 
29 void *pml_log;
30 #define PML_INDEX 512
31 
32 static inline unsigned ffs(unsigned x)
33 {
34 	int pos = -1;
35 
36 	__asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0"
37 			     : "+r"(pos) : "rm"(x) : "eax");
38 	return pos + 1;
39 }
40 
41 static inline void vmcall()
42 {
43 	asm volatile("vmcall");
44 }
45 
46 void basic_guest_main()
47 {
48 	report("Basic VMX test", 1);
49 }
50 
51 int basic_exit_handler()
52 {
53 	report("Basic VMX test", 0);
54 	print_vmexit_info();
55 	return VMX_TEST_EXIT;
56 }
57 
58 void vmenter_main()
59 {
60 	u64 rax;
61 	u64 rsp, resume_rsp;
62 
63 	report("test vmlaunch", 1);
64 
65 	asm volatile(
66 		"mov %%rsp, %0\n\t"
67 		"mov %3, %%rax\n\t"
68 		"vmcall\n\t"
69 		"mov %%rax, %1\n\t"
70 		"mov %%rsp, %2\n\t"
71 		: "=r"(rsp), "=r"(rax), "=r"(resume_rsp)
72 		: "g"(0xABCD));
73 	report("test vmresume", (rax == 0xFFFF) && (rsp == resume_rsp));
74 }
75 
76 int vmenter_exit_handler()
77 {
78 	u64 guest_rip;
79 	ulong reason;
80 
81 	guest_rip = vmcs_read(GUEST_RIP);
82 	reason = vmcs_read(EXI_REASON) & 0xff;
83 	switch (reason) {
84 	case VMX_VMCALL:
85 		if (regs.rax != 0xABCD) {
86 			report("test vmresume", 0);
87 			return VMX_TEST_VMEXIT;
88 		}
89 		regs.rax = 0xFFFF;
90 		vmcs_write(GUEST_RIP, guest_rip + 3);
91 		return VMX_TEST_RESUME;
92 	default:
93 		report("test vmresume", 0);
94 		print_vmexit_info();
95 	}
96 	return VMX_TEST_VMEXIT;
97 }
98 
99 u32 preempt_scale;
100 volatile unsigned long long tsc_val;
101 volatile u32 preempt_val;
102 u64 saved_rip;
103 
104 int preemption_timer_init()
105 {
106 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
107 		printf("\tPreemption timer is not supported\n");
108 		return VMX_TEST_EXIT;
109 	}
110 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
111 	preempt_val = 10000000;
112 	vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
113 	preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
114 
115 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
116 		printf("\tSave preemption value is not supported\n");
117 
118 	return VMX_TEST_START;
119 }
120 
121 void preemption_timer_main()
122 {
123 	tsc_val = rdtsc();
124 	if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) {
125 		vmx_set_test_stage(0);
126 		vmcall();
127 		if (vmx_get_test_stage() == 1)
128 			vmcall();
129 	}
130 	vmx_set_test_stage(1);
131 	while (vmx_get_test_stage() == 1) {
132 		if (((rdtsc() - tsc_val) >> preempt_scale)
133 				> 10 * preempt_val) {
134 			vmx_set_test_stage(2);
135 			vmcall();
136 		}
137 	}
138 	tsc_val = rdtsc();
139 	asm volatile ("hlt");
140 	vmcall();
141 	vmx_set_test_stage(5);
142 	vmcall();
143 }
144 
145 int preemption_timer_exit_handler()
146 {
147 	bool guest_halted;
148 	u64 guest_rip;
149 	ulong reason;
150 	u32 insn_len;
151 	u32 ctrl_exit;
152 
153 	guest_rip = vmcs_read(GUEST_RIP);
154 	reason = vmcs_read(EXI_REASON) & 0xff;
155 	insn_len = vmcs_read(EXI_INST_LEN);
156 	switch (reason) {
157 	case VMX_PREEMPT:
158 		switch (vmx_get_test_stage()) {
159 		case 1:
160 		case 2:
161 			report("busy-wait for preemption timer",
162 			       ((rdtsc() - tsc_val) >> preempt_scale) >=
163 			       preempt_val);
164 			vmx_set_test_stage(3);
165 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
166 			return VMX_TEST_RESUME;
167 		case 3:
168 			guest_halted =
169 				(vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT);
170 			report("preemption timer during hlt",
171 			       ((rdtsc() - tsc_val) >> preempt_scale) >=
172 			       preempt_val && guest_halted);
173 			vmx_set_test_stage(4);
174 			vmcs_write(PIN_CONTROLS,
175 				   vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
176 			vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
177 			return VMX_TEST_RESUME;
178 		case 4:
179 			report("preemption timer with 0 value",
180 			       saved_rip == guest_rip);
181 			break;
182 		default:
183 			printf("Invalid stage.\n");
184 			print_vmexit_info();
185 			break;
186 		}
187 		break;
188 	case VMX_VMCALL:
189 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
190 		switch (vmx_get_test_stage()) {
191 		case 0:
192 			report("Keep preemption value",
193 			       vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val);
194 			vmx_set_test_stage(1);
195 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
196 			ctrl_exit = (vmcs_read(EXI_CONTROLS) |
197 				EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr;
198 			vmcs_write(EXI_CONTROLS, ctrl_exit);
199 			return VMX_TEST_RESUME;
200 		case 1:
201 			report("Save preemption value",
202 			       vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val);
203 			return VMX_TEST_RESUME;
204 		case 2:
205 			report("busy-wait for preemption timer", 0);
206 			vmx_set_test_stage(3);
207 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
208 			return VMX_TEST_RESUME;
209 		case 3:
210 			report("preemption timer during hlt", 0);
211 			vmx_set_test_stage(4);
212 			/* fall through */
213 		case 4:
214 			vmcs_write(PIN_CONTROLS,
215 				   vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
216 			vmcs_write(PREEMPT_TIMER_VALUE, 0);
217 			saved_rip = guest_rip + insn_len;
218 			return VMX_TEST_RESUME;
219 		case 5:
220 			report("preemption timer with 0 value (vmcall stage 5)", 0);
221 			break;
222 		default:
223 			// Should not reach here
224 			printf("ERROR : unexpected stage, %d\n",
225 			       vmx_get_test_stage());
226 			print_vmexit_info();
227 			return VMX_TEST_VMEXIT;
228 		}
229 		break;
230 	default:
231 		printf("Unknown exit reason, %ld\n", reason);
232 		print_vmexit_info();
233 	}
234 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
235 	return VMX_TEST_VMEXIT;
236 }
237 
238 void msr_bmp_init()
239 {
240 	void *msr_bitmap;
241 	u32 ctrl_cpu0;
242 
243 	msr_bitmap = alloc_page();
244 	memset(msr_bitmap, 0x0, PAGE_SIZE);
245 	ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
246 	ctrl_cpu0 |= CPU_MSR_BITMAP;
247 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
248 	vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
249 }
250 
251 static int test_ctrl_pat_init()
252 {
253 	u64 ctrl_ent;
254 	u64 ctrl_exi;
255 
256 	msr_bmp_init();
257 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) &&
258 	    !(ctrl_exit_rev.clr & EXI_LOAD_PAT) &&
259 	    !(ctrl_enter_rev.clr & ENT_LOAD_PAT)) {
260 		printf("\tSave/load PAT is not supported\n");
261 		return 1;
262 	}
263 
264 	ctrl_ent = vmcs_read(ENT_CONTROLS);
265 	ctrl_exi = vmcs_read(EXI_CONTROLS);
266 	ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT;
267 	ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT);
268 	vmcs_write(ENT_CONTROLS, ctrl_ent);
269 	vmcs_write(EXI_CONTROLS, ctrl_exi);
270 	ia32_pat = rdmsr(MSR_IA32_CR_PAT);
271 	vmcs_write(GUEST_PAT, 0x0);
272 	vmcs_write(HOST_PAT, ia32_pat);
273 	return VMX_TEST_START;
274 }
275 
276 static void test_ctrl_pat_main()
277 {
278 	u64 guest_ia32_pat;
279 
280 	guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
281 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT))
282 		printf("\tENT_LOAD_PAT is not supported.\n");
283 	else {
284 		if (guest_ia32_pat != 0) {
285 			report("Entry load PAT", 0);
286 			return;
287 		}
288 	}
289 	wrmsr(MSR_IA32_CR_PAT, 0x6);
290 	vmcall();
291 	guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
292 	if (ctrl_enter_rev.clr & ENT_LOAD_PAT)
293 		report("Entry load PAT", guest_ia32_pat == ia32_pat);
294 }
295 
296 static int test_ctrl_pat_exit_handler()
297 {
298 	u64 guest_rip;
299 	ulong reason;
300 	u64 guest_pat;
301 
302 	guest_rip = vmcs_read(GUEST_RIP);
303 	reason = vmcs_read(EXI_REASON) & 0xff;
304 	switch (reason) {
305 	case VMX_VMCALL:
306 		guest_pat = vmcs_read(GUEST_PAT);
307 		if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) {
308 			printf("\tEXI_SAVE_PAT is not supported\n");
309 			vmcs_write(GUEST_PAT, 0x6);
310 		} else {
311 			report("Exit save PAT", guest_pat == 0x6);
312 		}
313 		if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT))
314 			printf("\tEXI_LOAD_PAT is not supported\n");
315 		else
316 			report("Exit load PAT", rdmsr(MSR_IA32_CR_PAT) == ia32_pat);
317 		vmcs_write(GUEST_PAT, ia32_pat);
318 		vmcs_write(GUEST_RIP, guest_rip + 3);
319 		return VMX_TEST_RESUME;
320 	default:
321 		printf("ERROR : Undefined exit reason, reason = %ld.\n", reason);
322 		break;
323 	}
324 	return VMX_TEST_VMEXIT;
325 }
326 
327 static int test_ctrl_efer_init()
328 {
329 	u64 ctrl_ent;
330 	u64 ctrl_exi;
331 
332 	msr_bmp_init();
333 	ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER;
334 	ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER;
335 	vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr);
336 	vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr);
337 	ia32_efer = rdmsr(MSR_EFER);
338 	vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX);
339 	vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX);
340 	return VMX_TEST_START;
341 }
342 
343 static void test_ctrl_efer_main()
344 {
345 	u64 guest_ia32_efer;
346 
347 	guest_ia32_efer = rdmsr(MSR_EFER);
348 	if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER))
349 		printf("\tENT_LOAD_EFER is not supported.\n");
350 	else {
351 		if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) {
352 			report("Entry load EFER", 0);
353 			return;
354 		}
355 	}
356 	wrmsr(MSR_EFER, ia32_efer);
357 	vmcall();
358 	guest_ia32_efer = rdmsr(MSR_EFER);
359 	if (ctrl_enter_rev.clr & ENT_LOAD_EFER)
360 		report("Entry load EFER", guest_ia32_efer == ia32_efer);
361 }
362 
363 static int test_ctrl_efer_exit_handler()
364 {
365 	u64 guest_rip;
366 	ulong reason;
367 	u64 guest_efer;
368 
369 	guest_rip = vmcs_read(GUEST_RIP);
370 	reason = vmcs_read(EXI_REASON) & 0xff;
371 	switch (reason) {
372 	case VMX_VMCALL:
373 		guest_efer = vmcs_read(GUEST_EFER);
374 		if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) {
375 			printf("\tEXI_SAVE_EFER is not supported\n");
376 			vmcs_write(GUEST_EFER, ia32_efer);
377 		} else {
378 			report("Exit save EFER", guest_efer == ia32_efer);
379 		}
380 		if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) {
381 			printf("\tEXI_LOAD_EFER is not supported\n");
382 			wrmsr(MSR_EFER, ia32_efer ^ EFER_NX);
383 		} else {
384 			report("Exit load EFER", rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX));
385 		}
386 		vmcs_write(GUEST_PAT, ia32_efer);
387 		vmcs_write(GUEST_RIP, guest_rip + 3);
388 		return VMX_TEST_RESUME;
389 	default:
390 		printf("ERROR : Undefined exit reason, reason = %ld.\n", reason);
391 		break;
392 	}
393 	return VMX_TEST_VMEXIT;
394 }
395 
396 u32 guest_cr0, guest_cr4;
397 
398 static void cr_shadowing_main()
399 {
400 	u32 cr0, cr4, tmp;
401 
402 	// Test read through
403 	vmx_set_test_stage(0);
404 	guest_cr0 = read_cr0();
405 	if (vmx_get_test_stage() == 1)
406 		report("Read through CR0", 0);
407 	else
408 		vmcall();
409 	vmx_set_test_stage(1);
410 	guest_cr4 = read_cr4();
411 	if (vmx_get_test_stage() == 2)
412 		report("Read through CR4", 0);
413 	else
414 		vmcall();
415 	// Test write through
416 	guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP);
417 	guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE);
418 	vmx_set_test_stage(2);
419 	write_cr0(guest_cr0);
420 	if (vmx_get_test_stage() == 3)
421 		report("Write throuth CR0", 0);
422 	else
423 		vmcall();
424 	vmx_set_test_stage(3);
425 	write_cr4(guest_cr4);
426 	if (vmx_get_test_stage() == 4)
427 		report("Write through CR4", 0);
428 	else
429 		vmcall();
430 	// Test read shadow
431 	vmx_set_test_stage(4);
432 	vmcall();
433 	cr0 = read_cr0();
434 	if (vmx_get_test_stage() != 5)
435 		report("Read shadowing CR0", cr0 == guest_cr0);
436 	vmx_set_test_stage(5);
437 	cr4 = read_cr4();
438 	if (vmx_get_test_stage() != 6)
439 		report("Read shadowing CR4", cr4 == guest_cr4);
440 	// Test write shadow (same value with shadow)
441 	vmx_set_test_stage(6);
442 	write_cr0(guest_cr0);
443 	if (vmx_get_test_stage() == 7)
444 		report("Write shadowing CR0 (same value with shadow)", 0);
445 	else
446 		vmcall();
447 	vmx_set_test_stage(7);
448 	write_cr4(guest_cr4);
449 	if (vmx_get_test_stage() == 8)
450 		report("Write shadowing CR4 (same value with shadow)", 0);
451 	else
452 		vmcall();
453 	// Test write shadow (different value)
454 	vmx_set_test_stage(8);
455 	tmp = guest_cr0 ^ X86_CR0_TS;
456 	asm volatile("mov %0, %%rsi\n\t"
457 		"mov %%rsi, %%cr0\n\t"
458 		::"m"(tmp)
459 		:"rsi", "memory", "cc");
460 	report("Write shadowing different X86_CR0_TS", vmx_get_test_stage() == 9);
461 	vmx_set_test_stage(9);
462 	tmp = guest_cr0 ^ X86_CR0_MP;
463 	asm volatile("mov %0, %%rsi\n\t"
464 		"mov %%rsi, %%cr0\n\t"
465 		::"m"(tmp)
466 		:"rsi", "memory", "cc");
467 	report("Write shadowing different X86_CR0_MP", vmx_get_test_stage() == 10);
468 	vmx_set_test_stage(10);
469 	tmp = guest_cr4 ^ X86_CR4_TSD;
470 	asm volatile("mov %0, %%rsi\n\t"
471 		"mov %%rsi, %%cr4\n\t"
472 		::"m"(tmp)
473 		:"rsi", "memory", "cc");
474 	report("Write shadowing different X86_CR4_TSD", vmx_get_test_stage() == 11);
475 	vmx_set_test_stage(11);
476 	tmp = guest_cr4 ^ X86_CR4_DE;
477 	asm volatile("mov %0, %%rsi\n\t"
478 		"mov %%rsi, %%cr4\n\t"
479 		::"m"(tmp)
480 		:"rsi", "memory", "cc");
481 	report("Write shadowing different X86_CR4_DE", vmx_get_test_stage() == 12);
482 }
483 
484 static int cr_shadowing_exit_handler()
485 {
486 	u64 guest_rip;
487 	ulong reason;
488 	u32 insn_len;
489 	u32 exit_qual;
490 
491 	guest_rip = vmcs_read(GUEST_RIP);
492 	reason = vmcs_read(EXI_REASON) & 0xff;
493 	insn_len = vmcs_read(EXI_INST_LEN);
494 	exit_qual = vmcs_read(EXI_QUALIFICATION);
495 	switch (reason) {
496 	case VMX_VMCALL:
497 		switch (vmx_get_test_stage()) {
498 		case 0:
499 			report("Read through CR0", guest_cr0 == vmcs_read(GUEST_CR0));
500 			break;
501 		case 1:
502 			report("Read through CR4", guest_cr4 == vmcs_read(GUEST_CR4));
503 			break;
504 		case 2:
505 			report("Write through CR0", guest_cr0 == vmcs_read(GUEST_CR0));
506 			break;
507 		case 3:
508 			report("Write through CR4", guest_cr4 == vmcs_read(GUEST_CR4));
509 			break;
510 		case 4:
511 			guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP);
512 			guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE);
513 			vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP);
514 			vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP));
515 			vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE);
516 			vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE));
517 			break;
518 		case 6:
519 			report("Write shadowing CR0 (same value)",
520 					guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP)));
521 			break;
522 		case 7:
523 			report("Write shadowing CR4 (same value)",
524 					guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE)));
525 			break;
526 		default:
527 			// Should not reach here
528 			printf("ERROR : unexpected stage, %d\n",
529 			       vmx_get_test_stage());
530 			print_vmexit_info();
531 			return VMX_TEST_VMEXIT;
532 		}
533 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
534 		return VMX_TEST_RESUME;
535 	case VMX_CR:
536 		switch (vmx_get_test_stage()) {
537 		case 4:
538 			report("Read shadowing CR0", 0);
539 			vmx_inc_test_stage();
540 			break;
541 		case 5:
542 			report("Read shadowing CR4", 0);
543 			vmx_inc_test_stage();
544 			break;
545 		case 6:
546 			report("Write shadowing CR0 (same value)", 0);
547 			vmx_inc_test_stage();
548 			break;
549 		case 7:
550 			report("Write shadowing CR4 (same value)", 0);
551 			vmx_inc_test_stage();
552 			break;
553 		case 8:
554 		case 9:
555 			// 0x600 encodes "mov %esi, %cr0"
556 			if (exit_qual == 0x600)
557 				vmx_inc_test_stage();
558 			break;
559 		case 10:
560 		case 11:
561 			// 0x604 encodes "mov %esi, %cr4"
562 			if (exit_qual == 0x604)
563 				vmx_inc_test_stage();
564 			break;
565 		default:
566 			// Should not reach here
567 			printf("ERROR : unexpected stage, %d\n",
568 			       vmx_get_test_stage());
569 			print_vmexit_info();
570 			return VMX_TEST_VMEXIT;
571 		}
572 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
573 		return VMX_TEST_RESUME;
574 	default:
575 		printf("Unknown exit reason, %ld\n", reason);
576 		print_vmexit_info();
577 	}
578 	return VMX_TEST_VMEXIT;
579 }
580 
581 static int iobmp_init()
582 {
583 	u32 ctrl_cpu0;
584 
585 	io_bitmap_a = alloc_page();
586 	io_bitmap_b = alloc_page();
587 	memset(io_bitmap_a, 0x0, PAGE_SIZE);
588 	memset(io_bitmap_b, 0x0, PAGE_SIZE);
589 	ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
590 	ctrl_cpu0 |= CPU_IO_BITMAP;
591 	ctrl_cpu0 &= (~CPU_IO);
592 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
593 	vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a);
594 	vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b);
595 	return VMX_TEST_START;
596 }
597 
598 static void iobmp_main()
599 {
600 	// stage 0, test IO pass
601 	vmx_set_test_stage(0);
602 	inb(0x5000);
603 	outb(0x0, 0x5000);
604 	report("I/O bitmap - I/O pass", vmx_get_test_stage() == 0);
605 	// test IO width, in/out
606 	((u8 *)io_bitmap_a)[0] = 0xFF;
607 	vmx_set_test_stage(2);
608 	inb(0x0);
609 	report("I/O bitmap - trap in", vmx_get_test_stage() == 3);
610 	vmx_set_test_stage(3);
611 	outw(0x0, 0x0);
612 	report("I/O bitmap - trap out", vmx_get_test_stage() == 4);
613 	vmx_set_test_stage(4);
614 	inl(0x0);
615 	report("I/O bitmap - I/O width, long", vmx_get_test_stage() == 5);
616 	// test low/high IO port
617 	vmx_set_test_stage(5);
618 	((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8));
619 	inb(0x5000);
620 	report("I/O bitmap - I/O port, low part", vmx_get_test_stage() == 6);
621 	vmx_set_test_stage(6);
622 	((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8));
623 	inb(0x9000);
624 	report("I/O bitmap - I/O port, high part", vmx_get_test_stage() == 7);
625 	// test partial pass
626 	vmx_set_test_stage(7);
627 	inl(0x4FFF);
628 	report("I/O bitmap - partial pass", vmx_get_test_stage() == 8);
629 	// test overrun
630 	vmx_set_test_stage(8);
631 	memset(io_bitmap_a, 0x0, PAGE_SIZE);
632 	memset(io_bitmap_b, 0x0, PAGE_SIZE);
633 	inl(0xFFFF);
634 	report("I/O bitmap - overrun", vmx_get_test_stage() == 9);
635 	vmx_set_test_stage(9);
636 	vmcall();
637 	outb(0x0, 0x0);
638 	report("I/O bitmap - ignore unconditional exiting",
639 	       vmx_get_test_stage() == 9);
640 	vmx_set_test_stage(10);
641 	vmcall();
642 	outb(0x0, 0x0);
643 	report("I/O bitmap - unconditional exiting",
644 	       vmx_get_test_stage() == 11);
645 }
646 
647 static int iobmp_exit_handler()
648 {
649 	u64 guest_rip;
650 	ulong reason, exit_qual;
651 	u32 insn_len, ctrl_cpu0;
652 
653 	guest_rip = vmcs_read(GUEST_RIP);
654 	reason = vmcs_read(EXI_REASON) & 0xff;
655 	exit_qual = vmcs_read(EXI_QUALIFICATION);
656 	insn_len = vmcs_read(EXI_INST_LEN);
657 	switch (reason) {
658 	case VMX_IO:
659 		switch (vmx_get_test_stage()) {
660 		case 0:
661 		case 1:
662 			vmx_inc_test_stage();
663 			break;
664 		case 2:
665 			report("I/O bitmap - I/O width, byte",
666 					(exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE);
667 			report("I/O bitmap - I/O direction, in", exit_qual & VMX_IO_IN);
668 			vmx_inc_test_stage();
669 			break;
670 		case 3:
671 			report("I/O bitmap - I/O width, word",
672 					(exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD);
673 			report("I/O bitmap - I/O direction, out",
674 					!(exit_qual & VMX_IO_IN));
675 			vmx_inc_test_stage();
676 			break;
677 		case 4:
678 			report("I/O bitmap - I/O width, long",
679 					(exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG);
680 			vmx_inc_test_stage();
681 			break;
682 		case 5:
683 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000)
684 				vmx_inc_test_stage();
685 			break;
686 		case 6:
687 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000)
688 				vmx_inc_test_stage();
689 			break;
690 		case 7:
691 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF)
692 				vmx_inc_test_stage();
693 			break;
694 		case 8:
695 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF)
696 				vmx_inc_test_stage();
697 			break;
698 		case 9:
699 		case 10:
700 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
701 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO);
702 			vmx_inc_test_stage();
703 			break;
704 		default:
705 			// Should not reach here
706 			printf("ERROR : unexpected stage, %d\n",
707 			       vmx_get_test_stage());
708 			print_vmexit_info();
709 			return VMX_TEST_VMEXIT;
710 		}
711 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
712 		return VMX_TEST_RESUME;
713 	case VMX_VMCALL:
714 		switch (vmx_get_test_stage()) {
715 		case 9:
716 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
717 			ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP;
718 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
719 			break;
720 		case 10:
721 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
722 			ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO;
723 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
724 			break;
725 		default:
726 			// Should not reach here
727 			printf("ERROR : unexpected stage, %d\n",
728 			       vmx_get_test_stage());
729 			print_vmexit_info();
730 			return VMX_TEST_VMEXIT;
731 		}
732 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
733 		return VMX_TEST_RESUME;
734 	default:
735 		printf("guest_rip = %#lx\n", guest_rip);
736 		printf("\tERROR : Undefined exit reason, reason = %ld.\n", reason);
737 		break;
738 	}
739 	return VMX_TEST_VMEXIT;
740 }
741 
742 #define INSN_CPU0		0
743 #define INSN_CPU1		1
744 #define INSN_ALWAYS_TRAP	2
745 
746 #define FIELD_EXIT_QUAL		(1 << 0)
747 #define FIELD_INSN_INFO		(1 << 1)
748 
749 asm(
750 	"insn_hlt: hlt;ret\n\t"
751 	"insn_invlpg: invlpg 0x12345678;ret\n\t"
752 	"insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t"
753 	"insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t"
754 	"insn_rdtsc: rdtsc;ret\n\t"
755 	"insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t"
756 	"insn_cr3_store: mov %cr3,%rax;ret\n\t"
757 #ifdef __x86_64__
758 	"insn_cr8_load: mov %rax,%cr8;ret\n\t"
759 	"insn_cr8_store: mov %cr8,%rax;ret\n\t"
760 #endif
761 	"insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t"
762 	"insn_pause: pause;ret\n\t"
763 	"insn_wbinvd: wbinvd;ret\n\t"
764 	"insn_cpuid: mov $10, %eax; cpuid;ret\n\t"
765 	"insn_invd: invd;ret\n\t"
766 	"insn_sgdt: sgdt gdt64_desc;ret\n\t"
767 	"insn_lgdt: lgdt gdt64_desc;ret\n\t"
768 	"insn_sidt: sidt idt_descr;ret\n\t"
769 	"insn_lidt: lidt idt_descr;ret\n\t"
770 	"insn_sldt: sldt %ax;ret\n\t"
771 	"insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t"
772 	"insn_str: str %ax;ret\n\t"
773 );
774 extern void insn_hlt();
775 extern void insn_invlpg();
776 extern void insn_mwait();
777 extern void insn_rdpmc();
778 extern void insn_rdtsc();
779 extern void insn_cr3_load();
780 extern void insn_cr3_store();
781 #ifdef __x86_64__
782 extern void insn_cr8_load();
783 extern void insn_cr8_store();
784 #endif
785 extern void insn_monitor();
786 extern void insn_pause();
787 extern void insn_wbinvd();
788 extern void insn_sgdt();
789 extern void insn_lgdt();
790 extern void insn_sidt();
791 extern void insn_lidt();
792 extern void insn_sldt();
793 extern void insn_lldt();
794 extern void insn_str();
795 extern void insn_cpuid();
796 extern void insn_invd();
797 
798 u32 cur_insn;
799 u64 cr3;
800 
801 struct insn_table {
802 	const char *name;
803 	u32 flag;
804 	void (*insn_func)();
805 	u32 type;
806 	u32 reason;
807 	ulong exit_qual;
808 	u32 insn_info;
809 	// Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define
810 	// which field need to be tested, reason is always tested
811 	u32 test_field;
812 };
813 
814 /*
815  * Add more test cases of instruction intercept here. Elements in this
816  * table is:
817  *	name/control flag/insn function/type/exit reason/exit qulification/
818  *	instruction info/field to test
819  * The last field defines which fields (exit_qual and insn_info) need to be
820  * tested in exit handler. If set to 0, only "reason" is checked.
821  */
822 static struct insn_table insn_table[] = {
823 	// Flags for Primary Processor-Based VM-Execution Controls
824 	{"HLT",  CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0},
825 	{"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14,
826 		0x12345678, 0, FIELD_EXIT_QUAL},
827 	{"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0},
828 	{"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0},
829 	{"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0},
830 	{"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0,
831 		FIELD_EXIT_QUAL},
832 	{"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0,
833 		FIELD_EXIT_QUAL},
834 #ifdef __x86_64__
835 	{"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0,
836 		FIELD_EXIT_QUAL},
837 	{"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0,
838 		FIELD_EXIT_QUAL},
839 #endif
840 	{"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0},
841 	{"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0},
842 	// Flags for Secondary Processor-Based VM-Execution Controls
843 	{"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0},
844 	{"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0},
845 	{"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0},
846 	{"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0},
847 	{"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0},
848 	{"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0},
849 	{"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0},
850 	{"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0},
851 	/* LTR causes a #GP if done with a busy selector, so it is not tested.  */
852 	// Instructions always trap
853 	{"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0},
854 	{"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0},
855 	// Instructions never trap
856 	{NULL},
857 };
858 
859 static int insn_intercept_init()
860 {
861 	u32 ctrl_cpu;
862 
863 	ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY;
864 	ctrl_cpu &= ctrl_cpu_rev[0].clr;
865 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu);
866 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set);
867 	cr3 = read_cr3();
868 	return VMX_TEST_START;
869 }
870 
871 static void insn_intercept_main()
872 {
873 	for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
874 		vmx_set_test_stage(cur_insn * 2);
875 		if ((insn_table[cur_insn].type == INSN_CPU0 &&
876 		     !(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) ||
877 		    (insn_table[cur_insn].type == INSN_CPU1 &&
878 		     !(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) {
879 			printf("\tCPU_CTRL%d.CPU_%s is not supported.\n",
880 			       insn_table[cur_insn].type - INSN_CPU0,
881 			       insn_table[cur_insn].name);
882 			continue;
883 		}
884 
885 		if ((insn_table[cur_insn].type == INSN_CPU0 &&
886 		     !(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) ||
887 		    (insn_table[cur_insn].type == INSN_CPU1 &&
888 		     !(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) {
889 			/* skip hlt, it stalls the guest and is tested below */
890 			if (insn_table[cur_insn].insn_func != insn_hlt)
891 				insn_table[cur_insn].insn_func();
892 			report("execute %s", vmx_get_test_stage() == cur_insn * 2,
893 					insn_table[cur_insn].name);
894 		} else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP)
895 			printf("\tCPU_CTRL%d.CPU_%s always traps.\n",
896 			       insn_table[cur_insn].type - INSN_CPU0,
897 			       insn_table[cur_insn].name);
898 
899 		vmcall();
900 
901 		insn_table[cur_insn].insn_func();
902 		report("intercept %s", vmx_get_test_stage() == cur_insn * 2 + 1,
903 				insn_table[cur_insn].name);
904 
905 		vmx_set_test_stage(cur_insn * 2 + 1);
906 		vmcall();
907 	}
908 }
909 
910 static int insn_intercept_exit_handler()
911 {
912 	u64 guest_rip;
913 	u32 reason;
914 	ulong exit_qual;
915 	u32 insn_len;
916 	u32 insn_info;
917 	bool pass;
918 
919 	guest_rip = vmcs_read(GUEST_RIP);
920 	reason = vmcs_read(EXI_REASON) & 0xff;
921 	exit_qual = vmcs_read(EXI_QUALIFICATION);
922 	insn_len = vmcs_read(EXI_INST_LEN);
923 	insn_info = vmcs_read(EXI_INST_INFO);
924 
925 	if (reason == VMX_VMCALL) {
926 		u32 val = 0;
927 
928 		if (insn_table[cur_insn].type == INSN_CPU0)
929 			val = vmcs_read(CPU_EXEC_CTRL0);
930 		else if (insn_table[cur_insn].type == INSN_CPU1)
931 			val = vmcs_read(CPU_EXEC_CTRL1);
932 
933 		if (vmx_get_test_stage() & 1)
934 			val &= ~insn_table[cur_insn].flag;
935 		else
936 			val |= insn_table[cur_insn].flag;
937 
938 		if (insn_table[cur_insn].type == INSN_CPU0)
939 			vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set);
940 		else if (insn_table[cur_insn].type == INSN_CPU1)
941 			vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set);
942 	} else {
943 		pass = (cur_insn * 2 == vmx_get_test_stage()) &&
944 			insn_table[cur_insn].reason == reason;
945 		if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL &&
946 		    insn_table[cur_insn].exit_qual != exit_qual)
947 			pass = false;
948 		if (insn_table[cur_insn].test_field & FIELD_INSN_INFO &&
949 		    insn_table[cur_insn].insn_info != insn_info)
950 			pass = false;
951 		if (pass)
952 			vmx_inc_test_stage();
953 	}
954 	vmcs_write(GUEST_RIP, guest_rip + insn_len);
955 	return VMX_TEST_RESUME;
956 }
957 
958 
959 /* Enables EPT and sets up the identity map. */
960 static int setup_ept(bool enable_ad)
961 {
962 	unsigned long end_of_memory;
963 	u32 ctrl_cpu[2];
964 
965 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
966 	    !(ctrl_cpu_rev[1].clr & CPU_EPT)) {
967 		printf("\tEPT is not supported");
968 		return 1;
969 	}
970 
971 
972 	if (!(ept_vpid.val & EPT_CAP_UC) &&
973 			!(ept_vpid.val & EPT_CAP_WB)) {
974 		printf("\tEPT paging-structure memory type "
975 				"UC&WB are not supported\n");
976 		return 1;
977 	}
978 	if (ept_vpid.val & EPT_CAP_UC)
979 		eptp = EPT_MEM_TYPE_UC;
980 	else
981 		eptp = EPT_MEM_TYPE_WB;
982 	if (!(ept_vpid.val & EPT_CAP_PWL4)) {
983 		printf("\tPWL4 is not supported\n");
984 		return 1;
985 	}
986 	ctrl_cpu[0] = vmcs_read(CPU_EXEC_CTRL0);
987 	ctrl_cpu[1] = vmcs_read(CPU_EXEC_CTRL1);
988 	ctrl_cpu[0] = (ctrl_cpu[0] | CPU_SECONDARY)
989 		& ctrl_cpu_rev[0].clr;
990 	ctrl_cpu[1] = (ctrl_cpu[1] | CPU_EPT)
991 		& ctrl_cpu_rev[1].clr;
992 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu[0]);
993 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu[1]);
994 	eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT);
995 	pml4 = alloc_page();
996 	memset(pml4, 0, PAGE_SIZE);
997 	eptp |= virt_to_phys(pml4);
998 	if (enable_ad)
999 		eptp |= EPTP_AD_FLAG;
1000 	vmcs_write(EPTP, eptp);
1001 	end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE);
1002 	if (end_of_memory < (1ul << 32))
1003 		end_of_memory = (1ul << 32);
1004 	/* Cannot use large EPT pages if we need to track EPT
1005 	 * accessed/dirty bits at 4K granularity.
1006 	 */
1007 	setup_ept_range(pml4, 0, end_of_memory, 0,
1008 			!enable_ad && ept_2m_supported(),
1009 			EPT_WA | EPT_RA | EPT_EA);
1010 	return 0;
1011 }
1012 
1013 static void ept_enable_ad_bits(void)
1014 {
1015 	eptp |= EPTP_AD_FLAG;
1016 	vmcs_write(EPTP, eptp);
1017 }
1018 
1019 static void ept_disable_ad_bits(void)
1020 {
1021 	eptp &= ~EPTP_AD_FLAG;
1022 	vmcs_write(EPTP, eptp);
1023 }
1024 
1025 static void ept_enable_ad_bits_or_skip_test(void)
1026 {
1027 	if (!ept_ad_bits_supported())
1028 		test_skip("EPT AD bits not supported.");
1029 	ept_enable_ad_bits();
1030 }
1031 
1032 static int apic_version;
1033 
1034 static int ept_init_common(bool have_ad)
1035 {
1036 	if (setup_ept(have_ad))
1037 		return VMX_TEST_EXIT;
1038 	data_page1 = alloc_page();
1039 	data_page2 = alloc_page();
1040 	memset(data_page1, 0x0, PAGE_SIZE);
1041 	memset(data_page2, 0x0, PAGE_SIZE);
1042 	*((u32 *)data_page1) = MAGIC_VAL_1;
1043 	*((u32 *)data_page2) = MAGIC_VAL_2;
1044 	install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2,
1045 			EPT_RA | EPT_WA | EPT_EA);
1046 
1047 	apic_version = *((u32 *)0xfee00030UL);
1048 	return VMX_TEST_START;
1049 }
1050 
1051 static int ept_init()
1052 {
1053 	return ept_init_common(false);
1054 }
1055 
1056 static void ept_common()
1057 {
1058 	vmx_set_test_stage(0);
1059 	if (*((u32 *)data_page2) != MAGIC_VAL_1 ||
1060 			*((u32 *)data_page1) != MAGIC_VAL_1)
1061 		report("EPT basic framework - read", 0);
1062 	else {
1063 		*((u32 *)data_page2) = MAGIC_VAL_3;
1064 		vmcall();
1065 		if (vmx_get_test_stage() == 1) {
1066 			if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
1067 					*((u32 *)data_page2) == MAGIC_VAL_2)
1068 				report("EPT basic framework", 1);
1069 			else
1070 				report("EPT basic framework - remap", 1);
1071 		}
1072 	}
1073 	// Test EPT Misconfigurations
1074 	vmx_set_test_stage(1);
1075 	vmcall();
1076 	*((u32 *)data_page1) = MAGIC_VAL_1;
1077 	if (vmx_get_test_stage() != 2) {
1078 		report("EPT misconfigurations", 0);
1079 		goto t1;
1080 	}
1081 	vmx_set_test_stage(2);
1082 	vmcall();
1083 	*((u32 *)data_page1) = MAGIC_VAL_1;
1084 	report("EPT misconfigurations", vmx_get_test_stage() == 3);
1085 t1:
1086 	// Test EPT violation
1087 	vmx_set_test_stage(3);
1088 	vmcall();
1089 	*((u32 *)data_page1) = MAGIC_VAL_1;
1090 	report("EPT violation - page permission", vmx_get_test_stage() == 4);
1091 	// Violation caused by EPT paging structure
1092 	vmx_set_test_stage(4);
1093 	vmcall();
1094 	*((u32 *)data_page1) = MAGIC_VAL_2;
1095 	report("EPT violation - paging structure", vmx_get_test_stage() == 5);
1096 }
1097 
1098 static void ept_main()
1099 {
1100 	ept_common();
1101 
1102 	// Test EPT access to L1 MMIO
1103 	vmx_set_test_stage(6);
1104 	report("EPT - MMIO access", *((u32 *)0xfee00030UL) == apic_version);
1105 
1106 	// Test invalid operand for INVEPT
1107 	vmcall();
1108 	report("EPT - unsupported INVEPT", vmx_get_test_stage() == 7);
1109 }
1110 
1111 bool invept_test(int type, u64 eptp)
1112 {
1113 	bool ret, supported;
1114 
1115 	supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type);
1116 	ret = invept(type, eptp);
1117 
1118 	if (ret == !supported)
1119 		return false;
1120 
1121 	if (!supported)
1122 		printf("WARNING: unsupported invept passed!\n");
1123 	else
1124 		printf("WARNING: invept failed!\n");
1125 
1126 	return true;
1127 }
1128 
1129 static int pml_exit_handler(void)
1130 {
1131 	u16 index, count;
1132 	ulong reason = vmcs_read(EXI_REASON) & 0xff;
1133 	u64 *pmlbuf = pml_log;
1134 	u64 guest_rip = vmcs_read(GUEST_RIP);;
1135 	u64 guest_cr3 = vmcs_read(GUEST_CR3);
1136 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1137 
1138 	switch (reason) {
1139 	case VMX_VMCALL:
1140 		switch (vmx_get_test_stage()) {
1141 		case 0:
1142 			index = vmcs_read(GUEST_PML_INDEX);
1143 			for (count = index + 1; count < PML_INDEX; count++) {
1144 				if (pmlbuf[count] == (u64)data_page2) {
1145 					vmx_inc_test_stage();
1146 					clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1147 					break;
1148 				}
1149 			}
1150 			break;
1151 		case 1:
1152 			index = vmcs_read(GUEST_PML_INDEX);
1153 			/* Keep clearing the dirty bit till a overflow */
1154 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1155 			break;
1156 		default:
1157 			printf("ERROR - unexpected stage, %d.\n",
1158 			       vmx_get_test_stage());
1159 			print_vmexit_info();
1160 			return VMX_TEST_VMEXIT;
1161 		}
1162 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1163 		return VMX_TEST_RESUME;
1164 	case VMX_PML_FULL:
1165 		vmx_inc_test_stage();
1166 		vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
1167 		return VMX_TEST_RESUME;
1168 	default:
1169 		printf("Unknown exit reason, %ld\n", reason);
1170 		print_vmexit_info();
1171 	}
1172 	return VMX_TEST_VMEXIT;
1173 }
1174 
1175 static int ept_exit_handler_common(bool have_ad)
1176 {
1177 	u64 guest_rip;
1178 	u64 guest_cr3;
1179 	ulong reason;
1180 	u32 insn_len;
1181 	u32 exit_qual;
1182 	static unsigned long data_page1_pte, data_page1_pte_pte;
1183 
1184 	guest_rip = vmcs_read(GUEST_RIP);
1185 	guest_cr3 = vmcs_read(GUEST_CR3);
1186 	reason = vmcs_read(EXI_REASON) & 0xff;
1187 	insn_len = vmcs_read(EXI_INST_LEN);
1188 	exit_qual = vmcs_read(EXI_QUALIFICATION);
1189 	switch (reason) {
1190 	case VMX_VMCALL:
1191 		switch (vmx_get_test_stage()) {
1192 		case 0:
1193 			check_ept_ad(pml4, guest_cr3,
1194 				     (unsigned long)data_page1,
1195 				     have_ad ? EPT_ACCESS_FLAG : 0,
1196 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1197 			check_ept_ad(pml4, guest_cr3,
1198 				     (unsigned long)data_page2,
1199 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0,
1200 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1201 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1202 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1203 			if (have_ad)
1204 				ept_sync(INVEPT_SINGLE, eptp);;
1205 			if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
1206 					*((u32 *)data_page2) == MAGIC_VAL_2) {
1207 				vmx_inc_test_stage();
1208 				install_ept(pml4, (unsigned long)data_page2,
1209 						(unsigned long)data_page2,
1210 						EPT_RA | EPT_WA | EPT_EA);
1211 			} else
1212 				report("EPT basic framework - write", 0);
1213 			break;
1214 		case 1:
1215 			install_ept(pml4, (unsigned long)data_page1,
1216  				(unsigned long)data_page1, EPT_WA);
1217 			ept_sync(INVEPT_SINGLE, eptp);
1218 			break;
1219 		case 2:
1220 			install_ept(pml4, (unsigned long)data_page1,
1221  				(unsigned long)data_page1,
1222  				EPT_RA | EPT_WA | EPT_EA |
1223  				(2 << EPT_MEM_TYPE_SHIFT));
1224 			ept_sync(INVEPT_SINGLE, eptp);
1225 			break;
1226 		case 3:
1227 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1228 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1,
1229 						1, &data_page1_pte));
1230 			set_ept_pte(pml4, (unsigned long)data_page1,
1231 				1, data_page1_pte & ~EPT_PRESENT);
1232 			ept_sync(INVEPT_SINGLE, eptp);
1233 			break;
1234 		case 4:
1235 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1,
1236 						2, &data_page1_pte));
1237 			data_page1_pte &= PAGE_MASK;
1238 			TEST_ASSERT(get_ept_pte(pml4, data_page1_pte,
1239 						2, &data_page1_pte_pte));
1240 			set_ept_pte(pml4, data_page1_pte, 2,
1241 				data_page1_pte_pte & ~EPT_PRESENT);
1242 			ept_sync(INVEPT_SINGLE, eptp);
1243 			break;
1244 		case 6:
1245 			if (!invept_test(0, eptp))
1246 				vmx_inc_test_stage();
1247 			break;
1248 		// Should not reach here
1249 		default:
1250 			printf("ERROR - unexpected stage, %d.\n",
1251 			       vmx_get_test_stage());
1252 			print_vmexit_info();
1253 			return VMX_TEST_VMEXIT;
1254 		}
1255 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1256 		return VMX_TEST_RESUME;
1257 	case VMX_EPT_MISCONFIG:
1258 		switch (vmx_get_test_stage()) {
1259 		case 1:
1260 		case 2:
1261 			vmx_inc_test_stage();
1262 			install_ept(pml4, (unsigned long)data_page1,
1263  				(unsigned long)data_page1,
1264  				EPT_RA | EPT_WA | EPT_EA);
1265 			ept_sync(INVEPT_SINGLE, eptp);
1266 			break;
1267 		// Should not reach here
1268 		default:
1269 			printf("ERROR - unexpected stage, %d.\n",
1270 			       vmx_get_test_stage());
1271 			print_vmexit_info();
1272 			return VMX_TEST_VMEXIT;
1273 		}
1274 		return VMX_TEST_RESUME;
1275 	case VMX_EPT_VIOLATION:
1276 		switch(vmx_get_test_stage()) {
1277 		case 3:
1278 			check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
1279 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1280 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1281 			if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD |
1282 					EPT_VLT_PADDR))
1283 				vmx_inc_test_stage();
1284 			set_ept_pte(pml4, (unsigned long)data_page1,
1285 				1, data_page1_pte | (EPT_PRESENT));
1286 			ept_sync(INVEPT_SINGLE, eptp);
1287 			break;
1288 		case 4:
1289 			check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
1290 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1291 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1292 			if (exit_qual == (EPT_VLT_RD |
1293 					  (have_ad ? EPT_VLT_WR : 0) |
1294 					  EPT_VLT_LADDR_VLD))
1295 				vmx_inc_test_stage();
1296 			set_ept_pte(pml4, data_page1_pte, 2,
1297 				data_page1_pte_pte | (EPT_PRESENT));
1298 			ept_sync(INVEPT_SINGLE, eptp);
1299 			break;
1300 		default:
1301 			// Should not reach here
1302 			printf("ERROR : unexpected stage, %d\n",
1303 			       vmx_get_test_stage());
1304 			print_vmexit_info();
1305 			return VMX_TEST_VMEXIT;
1306 		}
1307 		return VMX_TEST_RESUME;
1308 	default:
1309 		printf("Unknown exit reason, %ld\n", reason);
1310 		print_vmexit_info();
1311 	}
1312 	return VMX_TEST_VMEXIT;
1313 }
1314 
1315 static int ept_exit_handler()
1316 {
1317 	return ept_exit_handler_common(false);
1318 }
1319 
1320 static int eptad_init()
1321 {
1322 	int r = ept_init_common(true);
1323 
1324 	if (r == VMX_TEST_EXIT)
1325 		return r;
1326 
1327 	if ((rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & EPT_CAP_AD_FLAG) == 0) {
1328 		printf("\tEPT A/D bits are not supported");
1329 		return VMX_TEST_EXIT;
1330 	}
1331 
1332 	return r;
1333 }
1334 
1335 static int pml_init()
1336 {
1337 	u32 ctrl_cpu;
1338 	int r = eptad_init();
1339 
1340 	if (r == VMX_TEST_EXIT)
1341 		return r;
1342 
1343 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1344 		!(ctrl_cpu_rev[1].clr & CPU_PML)) {
1345 		printf("\tPML is not supported");
1346 		return VMX_TEST_EXIT;
1347 	}
1348 
1349 	pml_log = alloc_page();
1350 	memset(pml_log, 0x0, PAGE_SIZE);
1351 	vmcs_write(PMLADDR, (u64)pml_log);
1352 	vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
1353 
1354 	ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML;
1355 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu);
1356 
1357 	return VMX_TEST_START;
1358 }
1359 
1360 static void pml_main()
1361 {
1362 	int count = 0;
1363 
1364 	vmx_set_test_stage(0);
1365 	*((u32 *)data_page2) = 0x1;
1366 	vmcall();
1367 	report("PML - Dirty GPA Logging", vmx_get_test_stage() == 1);
1368 
1369 	while (vmx_get_test_stage() == 1) {
1370 		*((u32 *)data_page2) = 0x1;
1371 		if (count++ > PML_INDEX)
1372 			break;
1373 		vmcall();
1374 	}
1375 	report("PML Full Event", vmx_get_test_stage() == 2);
1376 }
1377 
1378 static void eptad_main()
1379 {
1380 	ept_common();
1381 }
1382 
1383 static int eptad_exit_handler()
1384 {
1385 	return ept_exit_handler_common(true);
1386 }
1387 
1388 bool invvpid_test(int type, u16 vpid)
1389 {
1390 	bool ret, supported;
1391 
1392 	supported = ept_vpid.val &
1393 		(VPID_CAP_INVVPID_ADDR >> INVVPID_ADDR << type);
1394 	ret = invvpid(type, vpid, 0);
1395 
1396 	if (ret == !supported)
1397 		return false;
1398 
1399 	if (!supported)
1400 		printf("WARNING: unsupported invvpid passed!\n");
1401 	else
1402 		printf("WARNING: invvpid failed!\n");
1403 
1404 	return true;
1405 }
1406 
1407 static int vpid_init()
1408 {
1409 	u32 ctrl_cpu1;
1410 
1411 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1412 		!(ctrl_cpu_rev[1].clr & CPU_VPID)) {
1413 		printf("\tVPID is not supported");
1414 		return VMX_TEST_EXIT;
1415 	}
1416 
1417 	ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
1418 	ctrl_cpu1 |= CPU_VPID;
1419 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
1420 	return VMX_TEST_START;
1421 }
1422 
1423 static void vpid_main()
1424 {
1425 	vmx_set_test_stage(0);
1426 	vmcall();
1427 	report("INVVPID SINGLE ADDRESS", vmx_get_test_stage() == 1);
1428 	vmx_set_test_stage(2);
1429 	vmcall();
1430 	report("INVVPID SINGLE", vmx_get_test_stage() == 3);
1431 	vmx_set_test_stage(4);
1432 	vmcall();
1433 	report("INVVPID ALL", vmx_get_test_stage() == 5);
1434 }
1435 
1436 static int vpid_exit_handler()
1437 {
1438 	u64 guest_rip;
1439 	ulong reason;
1440 	u32 insn_len;
1441 
1442 	guest_rip = vmcs_read(GUEST_RIP);
1443 	reason = vmcs_read(EXI_REASON) & 0xff;
1444 	insn_len = vmcs_read(EXI_INST_LEN);
1445 
1446 	switch (reason) {
1447 	case VMX_VMCALL:
1448 		switch(vmx_get_test_stage()) {
1449 		case 0:
1450 			if (!invvpid_test(INVVPID_ADDR, 1))
1451 				vmx_inc_test_stage();
1452 			break;
1453 		case 2:
1454 			if (!invvpid_test(INVVPID_CONTEXT_GLOBAL, 1))
1455 				vmx_inc_test_stage();
1456 			break;
1457 		case 4:
1458 			if (!invvpid_test(INVVPID_ALL, 1))
1459 				vmx_inc_test_stage();
1460 			break;
1461 		default:
1462 			printf("ERROR: unexpected stage, %d\n",
1463 					vmx_get_test_stage());
1464 			print_vmexit_info();
1465 			return VMX_TEST_VMEXIT;
1466 		}
1467 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1468 		return VMX_TEST_RESUME;
1469 	default:
1470 		printf("Unknown exit reason, %ld\n", reason);
1471 		print_vmexit_info();
1472 	}
1473 	return VMX_TEST_VMEXIT;
1474 }
1475 
1476 #define TIMER_VECTOR	222
1477 
1478 static volatile bool timer_fired;
1479 
1480 static void timer_isr(isr_regs_t *regs)
1481 {
1482 	timer_fired = true;
1483 	apic_write(APIC_EOI, 0);
1484 }
1485 
1486 static int interrupt_init(struct vmcs *vmcs)
1487 {
1488 	msr_bmp_init();
1489 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
1490 	handle_irq(TIMER_VECTOR, timer_isr);
1491 	return VMX_TEST_START;
1492 }
1493 
1494 static void interrupt_main(void)
1495 {
1496 	long long start, loops;
1497 
1498 	vmx_set_test_stage(0);
1499 
1500 	apic_write(APIC_LVTT, TIMER_VECTOR);
1501 	irq_enable();
1502 
1503 	apic_write(APIC_TMICT, 1);
1504 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1505 		asm volatile ("nop");
1506 	report("direct interrupt while running guest", timer_fired);
1507 
1508 	apic_write(APIC_TMICT, 0);
1509 	irq_disable();
1510 	vmcall();
1511 	timer_fired = false;
1512 	apic_write(APIC_TMICT, 1);
1513 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1514 		asm volatile ("nop");
1515 	report("intercepted interrupt while running guest", timer_fired);
1516 
1517 	irq_enable();
1518 	apic_write(APIC_TMICT, 0);
1519 	irq_disable();
1520 	vmcall();
1521 	timer_fired = false;
1522 	start = rdtsc();
1523 	apic_write(APIC_TMICT, 1000000);
1524 
1525 	asm volatile ("sti; hlt");
1526 
1527 	report("direct interrupt + hlt",
1528 	       rdtsc() - start > 1000000 && timer_fired);
1529 
1530 	apic_write(APIC_TMICT, 0);
1531 	irq_disable();
1532 	vmcall();
1533 	timer_fired = false;
1534 	start = rdtsc();
1535 	apic_write(APIC_TMICT, 1000000);
1536 
1537 	asm volatile ("sti; hlt");
1538 
1539 	report("intercepted interrupt + hlt",
1540 	       rdtsc() - start > 10000 && timer_fired);
1541 
1542 	apic_write(APIC_TMICT, 0);
1543 	irq_disable();
1544 	vmcall();
1545 	timer_fired = false;
1546 	start = rdtsc();
1547 	apic_write(APIC_TMICT, 1000000);
1548 
1549 	irq_enable();
1550 	asm volatile ("nop");
1551 	vmcall();
1552 
1553 	report("direct interrupt + activity state hlt",
1554 	       rdtsc() - start > 10000 && timer_fired);
1555 
1556 	apic_write(APIC_TMICT, 0);
1557 	irq_disable();
1558 	vmcall();
1559 	timer_fired = false;
1560 	start = rdtsc();
1561 	apic_write(APIC_TMICT, 1000000);
1562 
1563 	irq_enable();
1564 	asm volatile ("nop");
1565 	vmcall();
1566 
1567 	report("intercepted interrupt + activity state hlt",
1568 	       rdtsc() - start > 10000 && timer_fired);
1569 
1570 	apic_write(APIC_TMICT, 0);
1571 	irq_disable();
1572 	vmx_set_test_stage(7);
1573 	vmcall();
1574 	timer_fired = false;
1575 	apic_write(APIC_TMICT, 1);
1576 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1577 		asm volatile ("nop");
1578 	report("running a guest with interrupt acknowledgement set", timer_fired);
1579 }
1580 
1581 static int interrupt_exit_handler(void)
1582 {
1583 	u64 guest_rip = vmcs_read(GUEST_RIP);
1584 	ulong reason = vmcs_read(EXI_REASON) & 0xff;
1585 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1586 
1587 	switch (reason) {
1588 	case VMX_VMCALL:
1589 		switch (vmx_get_test_stage()) {
1590 		case 0:
1591 		case 2:
1592 		case 5:
1593 			vmcs_write(PIN_CONTROLS,
1594 				   vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
1595 			break;
1596 		case 7:
1597 			vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA);
1598 			vmcs_write(PIN_CONTROLS,
1599 				   vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
1600 			break;
1601 		case 1:
1602 		case 3:
1603 			vmcs_write(PIN_CONTROLS,
1604 				   vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
1605 			break;
1606 		case 4:
1607 		case 6:
1608 			vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
1609 			break;
1610 		}
1611 		vmx_inc_test_stage();
1612 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1613 		return VMX_TEST_RESUME;
1614 	case VMX_EXTINT:
1615 		if (vmcs_read(EXI_CONTROLS) & EXI_INTA) {
1616 			int vector = vmcs_read(EXI_INTR_INFO) & 0xff;
1617 			handle_external_interrupt(vector);
1618 		} else {
1619 			irq_enable();
1620 			asm volatile ("nop");
1621 			irq_disable();
1622 		}
1623 		if (vmx_get_test_stage() >= 2)
1624 			vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
1625 		return VMX_TEST_RESUME;
1626 	default:
1627 		printf("Unknown exit reason, %ld\n", reason);
1628 		print_vmexit_info();
1629 	}
1630 
1631 	return VMX_TEST_VMEXIT;
1632 }
1633 
1634 static int dbgctls_init(struct vmcs *vmcs)
1635 {
1636 	u64 dr7 = 0x402;
1637 	u64 zero = 0;
1638 
1639 	msr_bmp_init();
1640 	asm volatile(
1641 		"mov %0,%%dr0\n\t"
1642 		"mov %0,%%dr1\n\t"
1643 		"mov %0,%%dr2\n\t"
1644 		"mov %1,%%dr7\n\t"
1645 		: : "r" (zero), "r" (dr7));
1646 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
1647 	vmcs_write(GUEST_DR7, 0x404);
1648 	vmcs_write(GUEST_DEBUGCTL, 0x2);
1649 
1650 	vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
1651 	vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS);
1652 
1653 	return VMX_TEST_START;
1654 }
1655 
1656 static void dbgctls_main(void)
1657 {
1658 	u64 dr7, debugctl;
1659 
1660 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1661 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1662 	/* Commented out: KVM does not support DEBUGCTL so far */
1663 	(void)debugctl;
1664 	report("Load debug controls", dr7 == 0x404 /* && debugctl == 0x2 */);
1665 
1666 	dr7 = 0x408;
1667 	asm volatile("mov %0,%%dr7" : : "r" (dr7));
1668 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
1669 
1670 	vmx_set_test_stage(0);
1671 	vmcall();
1672 	report("Save debug controls", vmx_get_test_stage() == 1);
1673 
1674 	if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS ||
1675 	    ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) {
1676 		printf("\tDebug controls are always loaded/saved\n");
1677 		return;
1678 	}
1679 	vmx_set_test_stage(2);
1680 	vmcall();
1681 
1682 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1683 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1684 	/* Commented out: KVM does not support DEBUGCTL so far */
1685 	(void)debugctl;
1686 	report("Guest=host debug controls", dr7 == 0x402 /* && debugctl == 0x1 */);
1687 
1688 	dr7 = 0x408;
1689 	asm volatile("mov %0,%%dr7" : : "r" (dr7));
1690 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
1691 
1692 	vmx_set_test_stage(3);
1693 	vmcall();
1694 	report("Don't save debug controls", vmx_get_test_stage() == 4);
1695 }
1696 
1697 static int dbgctls_exit_handler(void)
1698 {
1699 	unsigned int reason = vmcs_read(EXI_REASON) & 0xff;
1700 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1701 	u64 guest_rip = vmcs_read(GUEST_RIP);
1702 	u64 dr7, debugctl;
1703 
1704 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1705 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1706 
1707 	switch (reason) {
1708 	case VMX_VMCALL:
1709 		switch (vmx_get_test_stage()) {
1710 		case 0:
1711 			if (dr7 == 0x400 && debugctl == 0 &&
1712 			    vmcs_read(GUEST_DR7) == 0x408 /* &&
1713 			    Commented out: KVM does not support DEBUGCTL so far
1714 			    vmcs_read(GUEST_DEBUGCTL) == 0x3 */)
1715 				vmx_inc_test_stage();
1716 			break;
1717 		case 2:
1718 			dr7 = 0x402;
1719 			asm volatile("mov %0,%%dr7" : : "r" (dr7));
1720 			wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
1721 			vmcs_write(GUEST_DR7, 0x404);
1722 			vmcs_write(GUEST_DEBUGCTL, 0x2);
1723 
1724 			vmcs_write(ENT_CONTROLS,
1725 				vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS);
1726 			vmcs_write(EXI_CONTROLS,
1727 				vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS);
1728 			break;
1729 		case 3:
1730 			if (dr7 == 0x400 && debugctl == 0 &&
1731 			    vmcs_read(GUEST_DR7) == 0x404 /* &&
1732 			    Commented out: KVM does not support DEBUGCTL so far
1733 			    vmcs_read(GUEST_DEBUGCTL) == 0x2 */)
1734 				vmx_inc_test_stage();
1735 			break;
1736 		}
1737 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1738 		return VMX_TEST_RESUME;
1739 	default:
1740 		printf("Unknown exit reason, %d\n", reason);
1741 		print_vmexit_info();
1742 	}
1743 	return VMX_TEST_VMEXIT;
1744 }
1745 
1746 struct vmx_msr_entry {
1747 	u32 index;
1748 	u32 reserved;
1749 	u64 value;
1750 } __attribute__((packed));
1751 
1752 #define MSR_MAGIC 0x31415926
1753 struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load;
1754 
1755 static int msr_switch_init(struct vmcs *vmcs)
1756 {
1757 	msr_bmp_init();
1758 	exit_msr_store = alloc_page();
1759 	exit_msr_load = alloc_page();
1760 	entry_msr_load = alloc_page();
1761 	memset(exit_msr_store, 0, PAGE_SIZE);
1762 	memset(exit_msr_load, 0, PAGE_SIZE);
1763 	memset(entry_msr_load, 0, PAGE_SIZE);
1764 	entry_msr_load[0].index = MSR_KERNEL_GS_BASE;
1765 	entry_msr_load[0].value = MSR_MAGIC;
1766 
1767 	vmx_set_test_stage(1);
1768 	vmcs_write(ENT_MSR_LD_CNT, 1);
1769 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load);
1770 	vmcs_write(EXI_MSR_ST_CNT, 1);
1771 	vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store);
1772 	vmcs_write(EXI_MSR_LD_CNT, 1);
1773 	vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load);
1774 	return VMX_TEST_START;
1775 }
1776 
1777 static void msr_switch_main()
1778 {
1779 	if (vmx_get_test_stage() == 1) {
1780 		report("VM entry MSR load",
1781 			rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC);
1782 		vmx_set_test_stage(2);
1783 		wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1);
1784 		exit_msr_store[0].index = MSR_KERNEL_GS_BASE;
1785 		exit_msr_load[0].index = MSR_KERNEL_GS_BASE;
1786 		exit_msr_load[0].value = MSR_MAGIC + 2;
1787 	}
1788 	vmcall();
1789 }
1790 
1791 static int msr_switch_exit_handler()
1792 {
1793 	ulong reason;
1794 
1795 	reason = vmcs_read(EXI_REASON);
1796 	if (reason == VMX_VMCALL && vmx_get_test_stage() == 2) {
1797 		report("VM exit MSR store",
1798 			exit_msr_store[0].value == MSR_MAGIC + 1);
1799 		report("VM exit MSR load",
1800 			rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2);
1801 		vmx_set_test_stage(3);
1802 		entry_msr_load[0].index = MSR_FS_BASE;
1803 		return VMX_TEST_RESUME;
1804 	}
1805 	printf("ERROR %s: unexpected stage=%u or reason=%lu\n",
1806 		__func__, vmx_get_test_stage(), reason);
1807 	return VMX_TEST_EXIT;
1808 }
1809 
1810 static int msr_switch_entry_failure(struct vmentry_failure *failure)
1811 {
1812 	ulong reason;
1813 
1814 	if (failure->early) {
1815 		printf("ERROR %s: early exit\n", __func__);
1816 		return VMX_TEST_EXIT;
1817 	}
1818 
1819 	reason = vmcs_read(EXI_REASON);
1820 	if (reason == (VMX_ENTRY_FAILURE | VMX_FAIL_MSR) &&
1821 	    vmx_get_test_stage() == 3) {
1822 		report("VM entry MSR load: try to load FS_BASE",
1823 			vmcs_read(EXI_QUALIFICATION) == 1);
1824 		return VMX_TEST_VMEXIT;
1825 	}
1826 	printf("ERROR %s: unexpected stage=%u or reason=%lu\n",
1827 		__func__, vmx_get_test_stage(), reason);
1828 	return VMX_TEST_EXIT;
1829 }
1830 
1831 static int vmmcall_init(struct vmcs *vmcs	)
1832 {
1833 	vmcs_write(EXC_BITMAP, 1 << UD_VECTOR);
1834 	return VMX_TEST_START;
1835 }
1836 
1837 static void vmmcall_main(void)
1838 {
1839 	asm volatile(
1840 		"mov $0xABCD, %%rax\n\t"
1841 		"vmmcall\n\t"
1842 		::: "rax");
1843 
1844 	report("VMMCALL", 0);
1845 }
1846 
1847 static int vmmcall_exit_handler()
1848 {
1849 	ulong reason;
1850 
1851 	reason = vmcs_read(EXI_REASON);
1852 	switch (reason) {
1853 	case VMX_VMCALL:
1854 		printf("here\n");
1855 		report("VMMCALL triggers #UD", 0);
1856 		break;
1857 	case VMX_EXC_NMI:
1858 		report("VMMCALL triggers #UD",
1859 		       (vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR);
1860 		break;
1861 	default:
1862 		printf("Unknown exit reason, %ld\n", reason);
1863 		print_vmexit_info();
1864 	}
1865 
1866 	return VMX_TEST_VMEXIT;
1867 }
1868 
1869 static int disable_rdtscp_init(struct vmcs *vmcs)
1870 {
1871 	u32 ctrl_cpu1;
1872 
1873 	if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) {
1874 		ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
1875 		ctrl_cpu1 &= ~CPU_RDTSCP;
1876 		vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
1877 	}
1878 
1879 	return VMX_TEST_START;
1880 }
1881 
1882 static void disable_rdtscp_ud_handler(struct ex_regs *regs)
1883 {
1884 	switch (vmx_get_test_stage()) {
1885 	case 0:
1886 		report("RDTSCP triggers #UD", true);
1887 		vmx_inc_test_stage();
1888 		regs->rip += 3;
1889 		break;
1890 	case 2:
1891 		report("RDPID triggers #UD", true);
1892 		vmx_inc_test_stage();
1893 		regs->rip += 4;
1894 		break;
1895 	}
1896 	return;
1897 
1898 }
1899 
1900 static void disable_rdtscp_main(void)
1901 {
1902 	/* Test that #UD is properly injected in L2.  */
1903 	handle_exception(UD_VECTOR, disable_rdtscp_ud_handler);
1904 
1905 	vmx_set_test_stage(0);
1906 	asm volatile("rdtscp" : : : "eax", "ecx", "edx");
1907 	vmcall();
1908 	asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax");
1909 	vmcall();
1910 }
1911 
1912 static int disable_rdtscp_exit_handler(void)
1913 {
1914 	unsigned int reason = vmcs_read(EXI_REASON) & 0xff;
1915 
1916 	switch (reason) {
1917 	case VMX_VMCALL:
1918 		switch (vmx_get_test_stage()) {
1919 		case 0:
1920 			report("RDTSCP triggers #UD", false);
1921 			vmx_inc_test_stage();
1922 			/* fallthrough */
1923 		case 1:
1924 			vmx_inc_test_stage();
1925 			vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3);
1926 			return VMX_TEST_RESUME;
1927 		case 2:
1928 			report("RDPID triggers #UD", false);
1929 			break;
1930 		}
1931 		break;
1932 
1933 	default:
1934 		printf("Unknown exit reason, %d\n", reason);
1935 		print_vmexit_info();
1936 	}
1937 	return VMX_TEST_VMEXIT;
1938 }
1939 
1940 int int3_init()
1941 {
1942 	vmcs_write(EXC_BITMAP, ~0u);
1943 	return VMX_TEST_START;
1944 }
1945 
1946 void int3_guest_main()
1947 {
1948 	asm volatile ("int3");
1949 }
1950 
1951 int int3_exit_handler()
1952 {
1953 	u32 reason = vmcs_read(EXI_REASON);
1954 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
1955 
1956 	report("L1 intercepts #BP", reason == VMX_EXC_NMI &&
1957 	       (intr_info & INTR_INFO_VALID_MASK) &&
1958 	       (intr_info & INTR_INFO_VECTOR_MASK) == BP_VECTOR &&
1959 	       ((intr_info & INTR_INFO_INTR_TYPE_MASK) >>
1960 		INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION);
1961 
1962 	return VMX_TEST_VMEXIT;
1963 }
1964 
1965 int into_init()
1966 {
1967 	vmcs_write(EXC_BITMAP, ~0u);
1968 	return VMX_TEST_START;
1969 }
1970 
1971 void into_guest_main()
1972 {
1973 	struct far_pointer32 fp = {
1974 		.offset = (uintptr_t)&&into,
1975 		.selector = KERNEL_CS32,
1976 	};
1977 	register uintptr_t rsp asm("rsp");
1978 
1979 	if (fp.offset != (uintptr_t)&&into) {
1980 		printf("Code address too high.\n");
1981 		return;
1982 	}
1983 	if ((u32)rsp != rsp) {
1984 		printf("Stack address too high.\n");
1985 		return;
1986 	}
1987 
1988 	asm goto ("lcall *%0" : : "m" (fp) : "rax" : into);
1989 	return;
1990 into:
1991 	asm volatile (".code32;"
1992 		      "movl $0x7fffffff, %eax;"
1993 		      "addl %eax, %eax;"
1994 		      "into;"
1995 		      "lret;"
1996 		      ".code64");
1997 	__builtin_unreachable();
1998 }
1999 
2000 int into_exit_handler()
2001 {
2002 	u32 reason = vmcs_read(EXI_REASON);
2003 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
2004 
2005 	report("L1 intercepts #OF", reason == VMX_EXC_NMI &&
2006 	       (intr_info & INTR_INFO_VALID_MASK) &&
2007 	       (intr_info & INTR_INFO_VECTOR_MASK) == OF_VECTOR &&
2008 	       ((intr_info & INTR_INFO_INTR_TYPE_MASK) >>
2009 		INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION);
2010 
2011 	return VMX_TEST_VMEXIT;
2012 }
2013 
2014 static void exit_monitor_from_l2_main(void)
2015 {
2016 	printf("Calling exit(0) from l2...\n");
2017 	exit(0);
2018 }
2019 
2020 static int exit_monitor_from_l2_handler(void)
2021 {
2022 	report("The guest should have killed the VMM", false);
2023 	return VMX_TEST_EXIT;
2024 }
2025 
2026 static void assert_exit_reason(u64 expected)
2027 {
2028 	u64 actual = vmcs_read(EXI_REASON);
2029 
2030 	TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.",
2031 			   exit_reason_description(expected),
2032 			   exit_reason_description(actual));
2033 }
2034 
2035 static void skip_exit_vmcall()
2036 {
2037 	u64 guest_rip = vmcs_read(GUEST_RIP);
2038 	u32 insn_len = vmcs_read(EXI_INST_LEN);
2039 
2040 	assert_exit_reason(VMX_VMCALL);
2041 	vmcs_write(GUEST_RIP, guest_rip + insn_len);
2042 }
2043 
2044 static void v2_null_test_guest(void)
2045 {
2046 }
2047 
2048 static void v2_null_test(void)
2049 {
2050 	test_set_guest(v2_null_test_guest);
2051 	enter_guest();
2052 	report(__func__, 1);
2053 }
2054 
2055 static void v2_multiple_entries_test_guest(void)
2056 {
2057 	vmx_set_test_stage(1);
2058 	vmcall();
2059 	vmx_set_test_stage(2);
2060 }
2061 
2062 static void v2_multiple_entries_test(void)
2063 {
2064 	test_set_guest(v2_multiple_entries_test_guest);
2065 	enter_guest();
2066 	TEST_ASSERT_EQ(vmx_get_test_stage(), 1);
2067 	skip_exit_vmcall();
2068 	enter_guest();
2069 	TEST_ASSERT_EQ(vmx_get_test_stage(), 2);
2070 	report(__func__, 1);
2071 }
2072 
2073 static int fixture_test_data = 1;
2074 
2075 static void fixture_test_teardown(void *data)
2076 {
2077 	*((int *) data) = 1;
2078 }
2079 
2080 static void fixture_test_guest(void)
2081 {
2082 	fixture_test_data++;
2083 }
2084 
2085 
2086 static void fixture_test_setup(void)
2087 {
2088 	TEST_ASSERT_EQ_MSG(1, fixture_test_data,
2089 			   "fixture_test_teardown didn't run?!");
2090 	fixture_test_data = 2;
2091 	test_add_teardown(fixture_test_teardown, &fixture_test_data);
2092 	test_set_guest(fixture_test_guest);
2093 }
2094 
2095 static void fixture_test_case1(void)
2096 {
2097 	fixture_test_setup();
2098 	TEST_ASSERT_EQ(2, fixture_test_data);
2099 	enter_guest();
2100 	TEST_ASSERT_EQ(3, fixture_test_data);
2101 	report(__func__, 1);
2102 }
2103 
2104 static void fixture_test_case2(void)
2105 {
2106 	fixture_test_setup();
2107 	TEST_ASSERT_EQ(2, fixture_test_data);
2108 	enter_guest();
2109 	TEST_ASSERT_EQ(3, fixture_test_data);
2110 	report(__func__, 1);
2111 }
2112 
2113 enum ept_access_op {
2114 	OP_READ,
2115 	OP_WRITE,
2116 	OP_EXEC,
2117 	OP_FLUSH_TLB,
2118 	OP_EXIT,
2119 };
2120 
2121 static struct ept_access_test_data {
2122 	unsigned long gpa;
2123 	unsigned long *gva;
2124 	unsigned long hpa;
2125 	unsigned long *hva;
2126 	enum ept_access_op op;
2127 } ept_access_test_data;
2128 
2129 extern unsigned char ret42_start;
2130 extern unsigned char ret42_end;
2131 
2132 /* Returns 42. */
2133 asm(
2134 	".align 64\n"
2135 	"ret42_start:\n"
2136 	"mov $42, %eax\n"
2137 	"ret\n"
2138 	"ret42_end:\n"
2139 );
2140 
2141 static void
2142 diagnose_ept_violation_qual(u64 expected, u64 actual)
2143 {
2144 
2145 #define DIAGNOSE(flag)							\
2146 do {									\
2147 	if ((expected & flag) != (actual & flag))			\
2148 		printf(#flag " %sexpected\n",				\
2149 		       (expected & flag) ? "" : "un");			\
2150 } while (0)
2151 
2152 	DIAGNOSE(EPT_VLT_RD);
2153 	DIAGNOSE(EPT_VLT_WR);
2154 	DIAGNOSE(EPT_VLT_FETCH);
2155 	DIAGNOSE(EPT_VLT_PERM_RD);
2156 	DIAGNOSE(EPT_VLT_PERM_WR);
2157 	DIAGNOSE(EPT_VLT_PERM_EX);
2158 	DIAGNOSE(EPT_VLT_LADDR_VLD);
2159 	DIAGNOSE(EPT_VLT_PADDR);
2160 
2161 #undef DIAGNOSE
2162 }
2163 
2164 static void do_ept_access_op(enum ept_access_op op)
2165 {
2166 	ept_access_test_data.op = op;
2167 	enter_guest();
2168 }
2169 
2170 /*
2171  * Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only
2172  * needed by tests that modify guest PTEs.
2173  */
2174 static void ept_access_test_guest_flush_tlb(void)
2175 {
2176 	do_ept_access_op(OP_FLUSH_TLB);
2177 	skip_exit_vmcall();
2178 }
2179 
2180 /*
2181  * Modifies the EPT entry at @level in the mapping of @gpa. First clears the
2182  * bits in @clear then sets the bits in @set. @mkhuge transforms the entry into
2183  * a huge page.
2184  */
2185 static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level,
2186 				 unsigned long clear, unsigned long set)
2187 {
2188 	struct ept_access_test_data *data = &ept_access_test_data;
2189 	unsigned long orig_pte;
2190 	unsigned long pte;
2191 
2192 	/* Screw with the mapping at the requested level. */
2193 	TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte));
2194 	pte = orig_pte;
2195 	if (mkhuge)
2196 		pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE;
2197 	else
2198 		pte = orig_pte;
2199 	pte = (pte & ~clear) | set;
2200 	set_ept_pte(pml4, gpa, level, pte);
2201 	ept_sync(INVEPT_SINGLE, eptp);
2202 
2203 	return orig_pte;
2204 }
2205 
2206 static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte)
2207 {
2208 	set_ept_pte(pml4, gpa, level, orig_pte);
2209 }
2210 
2211 static void do_ept_violation(bool leaf, enum ept_access_op op,
2212 			     u64 expected_qual, u64 expected_paddr)
2213 {
2214 	u64 qual;
2215 
2216 	/* Try the access and observe the violation. */
2217 	do_ept_access_op(op);
2218 
2219 	assert_exit_reason(VMX_EPT_VIOLATION);
2220 
2221 	qual = vmcs_read(EXI_QUALIFICATION);
2222 
2223 	diagnose_ept_violation_qual(expected_qual, qual);
2224 	TEST_EXPECT_EQ(expected_qual, qual);
2225 
2226 	#if 0
2227 	/* Disable for now otherwise every test will fail */
2228 	TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
2229 		       (unsigned long) (
2230 			       op == OP_EXEC ? data->gva + 1 : data->gva));
2231 	#endif
2232 	/*
2233 	 * TODO: tests that probe expected_paddr in pages other than the one at
2234 	 * the beginning of the 1g region.
2235 	 */
2236 	TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr);
2237 }
2238 
2239 static void
2240 ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear,
2241 			      unsigned long set, enum ept_access_op op,
2242 			      u64 expected_qual)
2243 {
2244 	struct ept_access_test_data *data = &ept_access_test_data;
2245 	unsigned long orig_pte;
2246 
2247 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2248 
2249 	do_ept_violation(level == 1 || mkhuge, op, expected_qual,
2250 			 op == OP_EXEC ? data->gpa + sizeof(unsigned long) :
2251 					 data->gpa);
2252 
2253 	/* Fix the violation and resume the op loop. */
2254 	ept_untwiddle(data->gpa, level, orig_pte);
2255 	enter_guest();
2256 	skip_exit_vmcall();
2257 }
2258 
2259 static void
2260 ept_violation_at_level(int level, unsigned long clear, unsigned long set,
2261 		       enum ept_access_op op, u64 expected_qual)
2262 {
2263 	ept_violation_at_level_mkhuge(false, level, clear, set, op,
2264 				      expected_qual);
2265 	if (ept_huge_pages_supported(level))
2266 		ept_violation_at_level_mkhuge(true, level, clear, set, op,
2267 					      expected_qual);
2268 }
2269 
2270 static void ept_violation(unsigned long clear, unsigned long set,
2271 			  enum ept_access_op op, u64 expected_qual)
2272 {
2273 	ept_violation_at_level(1, clear, set, op, expected_qual);
2274 	ept_violation_at_level(2, clear, set, op, expected_qual);
2275 	ept_violation_at_level(3, clear, set, op, expected_qual);
2276 	ept_violation_at_level(4, clear, set, op, expected_qual);
2277 }
2278 
2279 static void ept_access_violation(unsigned long access, enum ept_access_op op,
2280 				       u64 expected_qual)
2281 {
2282 	ept_violation(EPT_PRESENT, access, op,
2283 		      expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2284 }
2285 
2286 /*
2287  * For translations that don't involve a GVA, that is physical address (paddr)
2288  * accesses, EPT violations don't set the flag EPT_VLT_PADDR.  For a typical
2289  * guest memory access, the hardware does GVA -> GPA -> HPA.  However, certain
2290  * translations don't involve GVAs, such as when the hardware does the guest
2291  * page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU
2292  * might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides
2293  * on isn't present in the EPT, then the EPT violation will be for GPA_2 and
2294  * the EPT_VLT_PADDR bit will be clear in the exit qualification.
2295  *
2296  * Note that paddr violations can also be triggered by loading PAE page tables
2297  * with wonky addresses. We don't test that yet.
2298  *
2299  * This function modifies the EPT entry that maps the GPA that the guest page
2300  * table entry mapping ept_access_data.gva resides on.
2301  *
2302  *	@ept_access	EPT permissions to set. Other permissions are cleared.
2303  *
2304  *	@pte_ad		Set the A/D bits on the guest PTE accordingly.
2305  *
2306  *	@op		Guest operation to perform with ept_access_data.gva.
2307  *
2308  *	@expect_violation
2309  *			Is a violation expected during the paddr access?
2310  *
2311  *	@expected_qual	Expected qualification for the EPT violation.
2312  *			EPT_VLT_PADDR should be clear.
2313  */
2314 static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad,
2315 			     enum ept_access_op op, bool expect_violation,
2316 			     u64 expected_qual)
2317 {
2318 	struct ept_access_test_data *data = &ept_access_test_data;
2319 	unsigned long *ptep;
2320 	unsigned long gpa;
2321 	unsigned long orig_epte;
2322 
2323 	/* Modify the guest PTE mapping data->gva according to @pte_ad.  */
2324 	ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1);
2325 	TEST_ASSERT(ptep);
2326 	TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa);
2327 	*ptep = (*ptep & ~PT_AD_MASK) | pte_ad;
2328 	ept_access_test_guest_flush_tlb();
2329 
2330 	/*
2331 	 * Now modify the access bits on the EPT entry for the GPA that the
2332 	 * guest PTE resides on. Note that by modifying a single EPT entry,
2333 	 * we're potentially affecting 512 guest PTEs. However, we've carefully
2334 	 * constructed our test such that those other 511 PTEs aren't used by
2335 	 * the guest: data->gva is at the beginning of a 1G huge page, thus the
2336 	 * PTE we're modifying is at the beginning of a 4K page and the
2337 	 * following 511 entires are also under our control (and not touched by
2338 	 * the guest).
2339 	 */
2340 	gpa = virt_to_phys(ptep);
2341 	TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0);
2342 	/*
2343 	 * Make sure the guest page table page is mapped with a 4K EPT entry,
2344 	 * otherwise our level=1 twiddling below will fail. We use the
2345 	 * identity map (gpa = gpa) since page tables are shared with the host.
2346 	 */
2347 	install_ept(pml4, gpa, gpa, EPT_PRESENT);
2348 	orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1,
2349 				/*clear=*/EPT_PRESENT, /*set=*/ept_access);
2350 
2351 	if (expect_violation) {
2352 		do_ept_violation(/*leaf=*/true, op,
2353 				 expected_qual | EPT_VLT_LADDR_VLD, gpa);
2354 		ept_untwiddle(gpa, /*level=*/1, orig_epte);
2355 		do_ept_access_op(op);
2356 	} else {
2357 		do_ept_access_op(op);
2358 		ept_untwiddle(gpa, /*level=*/1, orig_epte);
2359 	}
2360 
2361 	TEST_ASSERT(*ptep & PT_ACCESSED_MASK);
2362 	if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE)
2363 		TEST_ASSERT(*ptep & PT_DIRTY_MASK);
2364 
2365 	skip_exit_vmcall();
2366 }
2367 
2368 static void ept_access_allowed_paddr(unsigned long ept_access,
2369 				     unsigned long pte_ad,
2370 				     enum ept_access_op op)
2371 {
2372 	ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false,
2373 			 /*expected_qual=*/-1);
2374 }
2375 
2376 static void ept_access_violation_paddr(unsigned long ept_access,
2377 				       unsigned long pte_ad,
2378 				       enum ept_access_op op,
2379 				       u64 expected_qual)
2380 {
2381 	ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true,
2382 			 expected_qual);
2383 }
2384 
2385 
2386 static void ept_allowed_at_level_mkhuge(bool mkhuge, int level,
2387 					unsigned long clear,
2388 					unsigned long set,
2389 					enum ept_access_op op)
2390 {
2391 	struct ept_access_test_data *data = &ept_access_test_data;
2392 	unsigned long orig_pte;
2393 
2394 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2395 
2396 	/* No violation. Should proceed to vmcall. */
2397 	do_ept_access_op(op);
2398 	skip_exit_vmcall();
2399 
2400 	ept_untwiddle(data->gpa, level, orig_pte);
2401 }
2402 
2403 static void ept_allowed_at_level(int level, unsigned long clear,
2404 				 unsigned long set, enum ept_access_op op)
2405 {
2406 	ept_allowed_at_level_mkhuge(false, level, clear, set, op);
2407 	if (ept_huge_pages_supported(level))
2408 		ept_allowed_at_level_mkhuge(true, level, clear, set, op);
2409 }
2410 
2411 static void ept_allowed(unsigned long clear, unsigned long set,
2412 			enum ept_access_op op)
2413 {
2414 	ept_allowed_at_level(1, clear, set, op);
2415 	ept_allowed_at_level(2, clear, set, op);
2416 	ept_allowed_at_level(3, clear, set, op);
2417 	ept_allowed_at_level(4, clear, set, op);
2418 }
2419 
2420 static void ept_ignored_bit(int bit)
2421 {
2422 	/* Set the bit. */
2423 	ept_allowed(0, 1ul << bit, OP_READ);
2424 	ept_allowed(0, 1ul << bit, OP_WRITE);
2425 	ept_allowed(0, 1ul << bit, OP_EXEC);
2426 
2427 	/* Clear the bit. */
2428 	ept_allowed(1ul << bit, 0, OP_READ);
2429 	ept_allowed(1ul << bit, 0, OP_WRITE);
2430 	ept_allowed(1ul << bit, 0, OP_EXEC);
2431 }
2432 
2433 static void ept_access_allowed(unsigned long access, enum ept_access_op op)
2434 {
2435 	ept_allowed(EPT_PRESENT, access, op);
2436 }
2437 
2438 
2439 static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level,
2440 					     unsigned long clear,
2441 					     unsigned long set,
2442 					     enum ept_access_op op)
2443 {
2444 	struct ept_access_test_data *data = &ept_access_test_data;
2445 	unsigned long orig_pte;
2446 
2447 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2448 
2449 	do_ept_access_op(op);
2450 	assert_exit_reason(VMX_EPT_MISCONFIG);
2451 
2452 	/* Intel 27.2.1, "For all other VM exits, this field is cleared." */
2453 	#if 0
2454 	/* broken: */
2455 	TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0);
2456 	#endif
2457 	#if 0
2458 	/*
2459 	 * broken:
2460 	 * According to description of exit qual for EPT violation,
2461 	 * EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid.
2462 	 * However, I can't find anything that says GUEST_LINEAR_ADDRESS ought
2463 	 * to be set for msiconfig.
2464 	 */
2465 	TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
2466 		       (unsigned long) (
2467 			       op == OP_EXEC ? data->gva + 1 : data->gva));
2468 	#endif
2469 
2470 	/* Fix the violation and resume the op loop. */
2471 	ept_untwiddle(data->gpa, level, orig_pte);
2472 	enter_guest();
2473 	skip_exit_vmcall();
2474 }
2475 
2476 static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level,
2477 					  unsigned long clear,
2478 					  unsigned long set)
2479 {
2480 	/* The op shouldn't matter (read, write, exec), so try them all! */
2481 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ);
2482 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE);
2483 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC);
2484 }
2485 
2486 static void ept_misconfig_at_level(int level, unsigned long clear,
2487 				   unsigned long set)
2488 {
2489 	ept_misconfig_at_level_mkhuge(false, level, clear, set);
2490 	if (ept_huge_pages_supported(level))
2491 		ept_misconfig_at_level_mkhuge(true, level, clear, set);
2492 }
2493 
2494 static void ept_misconfig(unsigned long clear, unsigned long set)
2495 {
2496 	ept_misconfig_at_level(1, clear, set);
2497 	ept_misconfig_at_level(2, clear, set);
2498 	ept_misconfig_at_level(3, clear, set);
2499 	ept_misconfig_at_level(4, clear, set);
2500 }
2501 
2502 static void ept_access_misconfig(unsigned long access)
2503 {
2504 	ept_misconfig(EPT_PRESENT, access);
2505 }
2506 
2507 static void ept_reserved_bit_at_level_nohuge(int level, int bit)
2508 {
2509 	/* Setting the bit causes a misconfig. */
2510 	ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit);
2511 
2512 	/* Making the entry non-present turns reserved bits into ignored. */
2513 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2514 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2515 }
2516 
2517 static void ept_reserved_bit_at_level_huge(int level, int bit)
2518 {
2519 	/* Setting the bit causes a misconfig. */
2520 	ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit);
2521 
2522 	/* Making the entry non-present turns reserved bits into ignored. */
2523 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2524 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2525 }
2526 
2527 static void ept_reserved_bit_at_level(int level, int bit)
2528 {
2529 	/* Setting the bit causes a misconfig. */
2530 	ept_misconfig_at_level(level, 0, 1ul << bit);
2531 
2532 	/* Making the entry non-present turns reserved bits into ignored. */
2533 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2534 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2535 }
2536 
2537 static void ept_reserved_bit(int bit)
2538 {
2539 	ept_reserved_bit_at_level(1, bit);
2540 	ept_reserved_bit_at_level(2, bit);
2541 	ept_reserved_bit_at_level(3, bit);
2542 	ept_reserved_bit_at_level(4, bit);
2543 }
2544 
2545 #define PAGE_2M_ORDER 9
2546 #define PAGE_1G_ORDER 18
2547 
2548 static void *get_1g_page(void)
2549 {
2550 	static void *alloc;
2551 
2552 	if (!alloc)
2553 		alloc = alloc_pages(PAGE_1G_ORDER);
2554 	return alloc;
2555 }
2556 
2557 static void ept_access_test_teardown(void *unused)
2558 {
2559 	/* Exit the guest cleanly. */
2560 	do_ept_access_op(OP_EXIT);
2561 }
2562 
2563 static void ept_access_test_guest(void)
2564 {
2565 	struct ept_access_test_data *data = &ept_access_test_data;
2566 	int (*code)(void) = (int (*)(void)) &data->gva[1];
2567 
2568 	while (true) {
2569 		switch (data->op) {
2570 		case OP_READ:
2571 			TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1);
2572 			break;
2573 		case OP_WRITE:
2574 			*data->gva = MAGIC_VAL_2;
2575 			TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2);
2576 			*data->gva = MAGIC_VAL_1;
2577 			break;
2578 		case OP_EXEC:
2579 			TEST_ASSERT_EQ(42, code());
2580 			break;
2581 		case OP_FLUSH_TLB:
2582 			write_cr3(read_cr3());
2583 			break;
2584 		case OP_EXIT:
2585 			return;
2586 		default:
2587 			TEST_ASSERT_MSG(false, "Unknown op %d", data->op);
2588 		}
2589 		vmcall();
2590 	}
2591 }
2592 
2593 static void ept_access_test_setup(void)
2594 {
2595 	struct ept_access_test_data *data = &ept_access_test_data;
2596 	unsigned long npages = 1ul << PAGE_1G_ORDER;
2597 	unsigned long size = npages * PAGE_SIZE;
2598 	unsigned long *page_table = current_page_table();
2599 	unsigned long pte;
2600 
2601 	if (setup_ept(false))
2602 		test_skip("EPT not supported");
2603 
2604 	test_set_guest(ept_access_test_guest);
2605 	test_add_teardown(ept_access_test_teardown, NULL);
2606 
2607 	data->hva = get_1g_page();
2608 	TEST_ASSERT(data->hva);
2609 	data->hpa = virt_to_phys(data->hva);
2610 
2611 	data->gpa = 1ul << 40;
2612 	data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2),
2613 				   size);
2614 	TEST_ASSERT(!any_present_pages(page_table, data->gva, size));
2615 	install_pages(page_table, data->gpa, size, data->gva);
2616 
2617 	/*
2618 	 * Make sure nothing's mapped here so the tests that screw with the
2619 	 * pml4 entry don't inadvertently break something.
2620 	 */
2621 	TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0);
2622 	TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0);
2623 	install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT);
2624 
2625 	data->hva[0] = MAGIC_VAL_1;
2626 	memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start);
2627 }
2628 
2629 static void ept_access_test_not_present(void)
2630 {
2631 	ept_access_test_setup();
2632 	/* --- */
2633 	ept_access_violation(0, OP_READ, EPT_VLT_RD);
2634 	ept_access_violation(0, OP_WRITE, EPT_VLT_WR);
2635 	ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH);
2636 }
2637 
2638 static void ept_access_test_read_only(void)
2639 {
2640 	ept_access_test_setup();
2641 
2642 	/* r-- */
2643 	ept_access_allowed(EPT_RA, OP_READ);
2644 	ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD);
2645 	ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD);
2646 }
2647 
2648 static void ept_access_test_write_only(void)
2649 {
2650 	ept_access_test_setup();
2651 	/* -w- */
2652 	ept_access_misconfig(EPT_WA);
2653 }
2654 
2655 static void ept_access_test_read_write(void)
2656 {
2657 	ept_access_test_setup();
2658 	/* rw- */
2659 	ept_access_allowed(EPT_RA | EPT_WA, OP_READ);
2660 	ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE);
2661 	ept_access_violation(EPT_RA | EPT_WA, OP_EXEC,
2662 			   EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR);
2663 }
2664 
2665 
2666 static void ept_access_test_execute_only(void)
2667 {
2668 	ept_access_test_setup();
2669 	/* --x */
2670 	if (ept_execute_only_supported()) {
2671 		ept_access_violation(EPT_EA, OP_READ,
2672 				     EPT_VLT_RD | EPT_VLT_PERM_EX);
2673 		ept_access_violation(EPT_EA, OP_WRITE,
2674 				     EPT_VLT_WR | EPT_VLT_PERM_EX);
2675 		ept_access_allowed(EPT_EA, OP_EXEC);
2676 	} else {
2677 		ept_access_misconfig(EPT_EA);
2678 	}
2679 }
2680 
2681 static void ept_access_test_read_execute(void)
2682 {
2683 	ept_access_test_setup();
2684 	/* r-x */
2685 	ept_access_allowed(EPT_RA | EPT_EA, OP_READ);
2686 	ept_access_violation(EPT_RA | EPT_EA, OP_WRITE,
2687 			   EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX);
2688 	ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC);
2689 }
2690 
2691 static void ept_access_test_write_execute(void)
2692 {
2693 	ept_access_test_setup();
2694 	/* -wx */
2695 	ept_access_misconfig(EPT_WA | EPT_EA);
2696 }
2697 
2698 static void ept_access_test_read_write_execute(void)
2699 {
2700 	ept_access_test_setup();
2701 	/* rwx */
2702 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ);
2703 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE);
2704 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC);
2705 }
2706 
2707 static void ept_access_test_reserved_bits(void)
2708 {
2709 	int i;
2710 	int maxphyaddr;
2711 
2712 	ept_access_test_setup();
2713 
2714 	/* Reserved bits above maxphyaddr. */
2715 	maxphyaddr = cpuid_maxphyaddr();
2716 	for (i = maxphyaddr; i <= 51; i++) {
2717 		report_prefix_pushf("reserved_bit=%d", i);
2718 		ept_reserved_bit(i);
2719 		report_prefix_pop();
2720 	}
2721 
2722 	/* Level-specific reserved bits. */
2723 	ept_reserved_bit_at_level_nohuge(2, 3);
2724 	ept_reserved_bit_at_level_nohuge(2, 4);
2725 	ept_reserved_bit_at_level_nohuge(2, 5);
2726 	ept_reserved_bit_at_level_nohuge(2, 6);
2727 	/* 2M alignment. */
2728 	for (i = 12; i < 20; i++) {
2729 		report_prefix_pushf("reserved_bit=%d", i);
2730 		ept_reserved_bit_at_level_huge(2, i);
2731 		report_prefix_pop();
2732 	}
2733 	ept_reserved_bit_at_level_nohuge(3, 3);
2734 	ept_reserved_bit_at_level_nohuge(3, 4);
2735 	ept_reserved_bit_at_level_nohuge(3, 5);
2736 	ept_reserved_bit_at_level_nohuge(3, 6);
2737 	/* 1G alignment. */
2738 	for (i = 12; i < 29; i++) {
2739 		report_prefix_pushf("reserved_bit=%d", i);
2740 		ept_reserved_bit_at_level_huge(3, i);
2741 		report_prefix_pop();
2742 	}
2743 	ept_reserved_bit_at_level(4, 3);
2744 	ept_reserved_bit_at_level(4, 4);
2745 	ept_reserved_bit_at_level(4, 5);
2746 	ept_reserved_bit_at_level(4, 6);
2747 	ept_reserved_bit_at_level(4, 7);
2748 }
2749 
2750 static void ept_access_test_ignored_bits(void)
2751 {
2752 	ept_access_test_setup();
2753 	/*
2754 	 * Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as
2755 	 * far as translation is concerned even if AD bits are enabled in the
2756 	 * EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution
2757 	 * control is 0.
2758 	 */
2759 	ept_ignored_bit(8);
2760 	ept_ignored_bit(9);
2761 	ept_ignored_bit(10);
2762 	ept_ignored_bit(11);
2763 	ept_ignored_bit(52);
2764 	ept_ignored_bit(53);
2765 	ept_ignored_bit(54);
2766 	ept_ignored_bit(55);
2767 	ept_ignored_bit(56);
2768 	ept_ignored_bit(57);
2769 	ept_ignored_bit(58);
2770 	ept_ignored_bit(59);
2771 	ept_ignored_bit(60);
2772 	ept_ignored_bit(61);
2773 	ept_ignored_bit(62);
2774 	ept_ignored_bit(63);
2775 }
2776 
2777 static void ept_access_test_paddr_not_present_ad_disabled(void)
2778 {
2779 	ept_access_test_setup();
2780 	ept_disable_ad_bits();
2781 
2782 	ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD);
2783 	ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD);
2784 	ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD);
2785 }
2786 
2787 static void ept_access_test_paddr_not_present_ad_enabled(void)
2788 {
2789 	u64 qual = EPT_VLT_RD | EPT_VLT_WR;
2790 
2791 	ept_access_test_setup();
2792 	ept_enable_ad_bits_or_skip_test();
2793 
2794 	ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual);
2795 	ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual);
2796 	ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual);
2797 }
2798 
2799 static void ept_access_test_paddr_read_only_ad_disabled(void)
2800 {
2801 	/*
2802 	 * When EPT AD bits are disabled, all accesses to guest paging
2803 	 * structures are reported separately as a read and (after
2804 	 * translation of the GPA to host physical address) a read+write
2805 	 * if the A/D bits have to be set.
2806 	 */
2807 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
2808 
2809 	ept_access_test_setup();
2810 	ept_disable_ad_bits();
2811 
2812 	/* Can't update A bit, so all accesses fail. */
2813 	ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
2814 	ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
2815 	ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
2816 	/* AD bits disabled, so only writes try to update the D bit. */
2817 	ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ);
2818 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
2819 	ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC);
2820 	/* Both A and D already set, so read-only is OK. */
2821 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ);
2822 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE);
2823 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC);
2824 }
2825 
2826 static void ept_access_test_paddr_read_only_ad_enabled(void)
2827 {
2828 	/*
2829 	 * When EPT AD bits are enabled, all accesses to guest paging
2830 	 * structures are considered writes as far as EPT translation
2831 	 * is concerned.
2832 	 */
2833 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
2834 
2835 	ept_access_test_setup();
2836 	ept_enable_ad_bits_or_skip_test();
2837 
2838 	ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
2839 	ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
2840 	ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
2841 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual);
2842 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
2843 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual);
2844 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual);
2845 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual);
2846 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual);
2847 }
2848 
2849 static void ept_access_test_paddr_read_write(void)
2850 {
2851 	ept_access_test_setup();
2852 	/* Read-write access to paging structure. */
2853 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ);
2854 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE);
2855 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC);
2856 }
2857 
2858 static void ept_access_test_paddr_read_write_execute(void)
2859 {
2860 	ept_access_test_setup();
2861 	/* RWX access to paging structure. */
2862 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ);
2863 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE);
2864 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC);
2865 }
2866 
2867 static void ept_access_test_paddr_read_execute_ad_disabled(void)
2868 {
2869   	/*
2870 	 * When EPT AD bits are disabled, all accesses to guest paging
2871 	 * structures are reported separately as a read and (after
2872 	 * translation of the GPA to host physical address) a read+write
2873 	 * if the A/D bits have to be set.
2874 	 */
2875 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
2876 
2877 	ept_access_test_setup();
2878 	ept_disable_ad_bits();
2879 
2880 	/* Can't update A bit, so all accesses fail. */
2881 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
2882 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
2883 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
2884 	/* AD bits disabled, so only writes try to update the D bit. */
2885 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ);
2886 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
2887 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC);
2888 	/* Both A and D already set, so read-only is OK. */
2889 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ);
2890 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE);
2891 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC);
2892 }
2893 
2894 static void ept_access_test_paddr_read_execute_ad_enabled(void)
2895 {
2896 	/*
2897 	 * When EPT AD bits are enabled, all accesses to guest paging
2898 	 * structures are considered writes as far as EPT translation
2899 	 * is concerned.
2900 	 */
2901 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
2902 
2903 	ept_access_test_setup();
2904 	ept_enable_ad_bits_or_skip_test();
2905 
2906 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
2907 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
2908 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
2909 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual);
2910 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
2911 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual);
2912 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual);
2913 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual);
2914 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual);
2915 }
2916 
2917 static void ept_access_test_paddr_not_present_page_fault(void)
2918 {
2919 	ept_access_test_setup();
2920 	/*
2921 	 * TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is
2922 	 * page is read-only in EPT but GVA is also mapped read only in PT.
2923 	 * Thus guest page fault before host takes EPT violation for trying to
2924 	 * update A bit.
2925 	 */
2926 }
2927 
2928 static void ept_access_test_force_2m_page(void)
2929 {
2930 	ept_access_test_setup();
2931 
2932 	TEST_ASSERT_EQ(ept_2m_supported(), true);
2933 	ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ);
2934 	ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE,
2935 				      EPT_VLT_WR | EPT_VLT_PERM_RD |
2936 				      EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2937 	ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA);
2938 }
2939 
2940 static bool invvpid_valid(u64 type, u64 vpid, u64 gla)
2941 {
2942 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2943 
2944 	TEST_ASSERT(msr & VPID_CAP_INVVPID);
2945 
2946 	if (type < INVVPID_ADDR || type > INVVPID_CONTEXT_LOCAL)
2947 		return false;
2948 
2949 	if (!(msr & (1ull << (type + VPID_CAP_INVVPID_TYPES_SHIFT))))
2950 		return false;
2951 
2952 	if (vpid >> 16)
2953 		return false;
2954 
2955 	if (type != INVVPID_ALL && !vpid)
2956 		return false;
2957 
2958 	if (type == INVVPID_ADDR && !is_canonical(gla))
2959 		return false;
2960 
2961 	return true;
2962 }
2963 
2964 static void try_invvpid(u64 type, u64 vpid, u64 gla)
2965 {
2966 	int rc;
2967 	bool valid = invvpid_valid(type, vpid, gla);
2968 	u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT
2969 		: VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID;
2970 	/*
2971 	 * Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so
2972 	 * that we can tell if it is updated by INVVPID.
2973 	 */
2974 	vmcs_read(~0);
2975 	rc = invvpid(type, vpid, gla);
2976 	report("INVVPID type %ld VPID %lx GLA %lx %s",
2977 	       !rc == valid, type, vpid, gla,
2978 	       valid ? "passes" : "fails");
2979 	report("After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)",
2980 	       vmcs_read(VMX_INST_ERROR) == expected,
2981 	       rc ? "failed" : "successful",
2982 	       expected, vmcs_read(VMX_INST_ERROR));
2983 }
2984 
2985 static void ds_invvpid(void *data)
2986 {
2987 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2988 	u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
2989 
2990 	TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
2991 	asm volatile("invvpid %0, %1"
2992 		     :
2993 		     : "m"(*(struct invvpid_operand *)data),
2994 		       "r"(type));
2995 }
2996 
2997 /*
2998  * The SS override is ignored in 64-bit mode, so we use an addressing
2999  * mode with %rsp as the base register to generate an implicit SS
3000  * reference.
3001  */
3002 static void ss_invvpid(void *data)
3003 {
3004 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3005 	u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
3006 
3007 	TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
3008 	asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1"
3009 		     : "+r"(data)
3010 		     : "r"(type));
3011 }
3012 
3013 static void invvpid_test_gp(void)
3014 {
3015 	bool fault;
3016 
3017 	fault = test_for_exception(GP_VECTOR, &ds_invvpid,
3018 				   (void *)NONCANONICAL);
3019 	report("INVVPID with non-canonical DS operand raises #GP", fault);
3020 }
3021 
3022 static void invvpid_test_ss(void)
3023 {
3024 	bool fault;
3025 
3026 	fault = test_for_exception(SS_VECTOR, &ss_invvpid,
3027 				   (void *)NONCANONICAL);
3028 	report("INVVPID with non-canonical SS operand raises #SS", fault);
3029 }
3030 
3031 static void invvpid_test_pf(void)
3032 {
3033 	void *vpage = alloc_vpage();
3034 	bool fault;
3035 
3036 	fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage);
3037 	report("INVVPID with unmapped operand raises #PF", fault);
3038 }
3039 
3040 static void try_compat_invvpid(void *unused)
3041 {
3042 	struct far_pointer32 fp = {
3043 		.offset = (uintptr_t)&&invvpid,
3044 		.selector = KERNEL_CS32,
3045 	};
3046 	register uintptr_t rsp asm("rsp");
3047 
3048 	TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid,
3049 			"Code address too high.");
3050 	TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high.");
3051 
3052 	asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid);
3053 	return;
3054 invvpid:
3055 	asm volatile (".code32;"
3056 		      "invvpid (%eax), %eax;"
3057 		      "lret;"
3058 		      ".code64");
3059 	__builtin_unreachable();
3060 }
3061 
3062 static void invvpid_test_compatibility_mode(void)
3063 {
3064 	bool fault;
3065 
3066 	fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL);
3067 	report("Compatibility mode INVVPID raises #UD", fault);
3068 }
3069 
3070 static void invvpid_test_not_in_vmx_operation(void)
3071 {
3072 	bool fault;
3073 
3074 	TEST_ASSERT(!vmx_off());
3075 	fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL);
3076 	report("INVVPID outside of VMX operation raises #UD", fault);
3077 	TEST_ASSERT(!vmx_on());
3078 }
3079 
3080 /*
3081  * This does not test real-address mode, virtual-8086 mode, protected mode,
3082  * or CPL > 0.
3083  */
3084 static void invvpid_test_v2(void)
3085 {
3086 	u64 msr;
3087 	int i;
3088 	unsigned types = 0;
3089 	unsigned type;
3090 
3091 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
3092 	    !(ctrl_cpu_rev[1].clr & CPU_VPID))
3093 		test_skip("VPID not supported");
3094 
3095 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3096 
3097 	if (!(msr & VPID_CAP_INVVPID))
3098 		test_skip("INVVPID not supported.\n");
3099 
3100 	if (msr & VPID_CAP_INVVPID_ADDR)
3101 		types |= 1u << INVVPID_ADDR;
3102 	if (msr & VPID_CAP_INVVPID_CXTGLB)
3103 		types |= 1u << INVVPID_CONTEXT_GLOBAL;
3104 	if (msr & VPID_CAP_INVVPID_ALL)
3105 		types |= 1u << INVVPID_ALL;
3106 	if (msr & VPID_CAP_INVVPID_CXTLOC)
3107 		types |= 1u << INVVPID_CONTEXT_LOCAL;
3108 
3109 	if (!types)
3110 		test_skip("No INVVPID types supported.\n");
3111 
3112 	for (i = -127; i < 128; i++)
3113 		try_invvpid(i, 0xffff, 0);
3114 
3115 	/*
3116 	 * VPID must not be more than 16 bits.
3117 	 */
3118 	for (i = 0; i < 64; i++)
3119 		for (type = 0; type < 4; type++)
3120 			if (types & (1u << type))
3121 				try_invvpid(type, 1ul << i, 0);
3122 
3123 	/*
3124 	 * VPID must not be zero, except for "all contexts."
3125 	 */
3126 	for (type = 0; type < 4; type++)
3127 		if (types & (1u << type))
3128 			try_invvpid(type, 0, 0);
3129 
3130 	/*
3131 	 * The gla operand is only validated for single-address INVVPID.
3132 	 */
3133 	if (types & (1u << INVVPID_ADDR))
3134 		try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL);
3135 
3136 	invvpid_test_gp();
3137 	invvpid_test_ss();
3138 	invvpid_test_pf();
3139 	invvpid_test_compatibility_mode();
3140 	invvpid_test_not_in_vmx_operation();
3141 }
3142 
3143 #define TEST(name) { #name, .v2 = name }
3144 
3145 /* name/init/guest_main/exit_handler/syscall_handler/guest_regs */
3146 struct vmx_test vmx_tests[] = {
3147 	{ "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} },
3148 	{ "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} },
3149 	{ "preemption timer", preemption_timer_init, preemption_timer_main,
3150 		preemption_timer_exit_handler, NULL, {0} },
3151 	{ "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main,
3152 		test_ctrl_pat_exit_handler, NULL, {0} },
3153 	{ "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main,
3154 		test_ctrl_efer_exit_handler, NULL, {0} },
3155 	{ "CR shadowing", NULL, cr_shadowing_main,
3156 		cr_shadowing_exit_handler, NULL, {0} },
3157 	{ "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler,
3158 		NULL, {0} },
3159 	{ "instruction intercept", insn_intercept_init, insn_intercept_main,
3160 		insn_intercept_exit_handler, NULL, {0} },
3161 	{ "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} },
3162 	{ "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} },
3163 	{ "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} },
3164 	{ "VPID", vpid_init, vpid_main, vpid_exit_handler, NULL, {0} },
3165 	{ "interrupt", interrupt_init, interrupt_main,
3166 		interrupt_exit_handler, NULL, {0} },
3167 	{ "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler,
3168 		NULL, {0} },
3169 	{ "MSR switch", msr_switch_init, msr_switch_main,
3170 		msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure },
3171 	{ "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} },
3172 	{ "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main,
3173 		disable_rdtscp_exit_handler, NULL, {0} },
3174 	{ "int3", int3_init, int3_guest_main, int3_exit_handler, NULL, {0} },
3175 	{ "into", into_init, into_guest_main, into_exit_handler, NULL, {0} },
3176 	{ "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main,
3177 		exit_monitor_from_l2_handler, NULL, {0} },
3178 	/* Basic V2 tests. */
3179 	TEST(v2_null_test),
3180 	TEST(v2_multiple_entries_test),
3181 	TEST(fixture_test_case1),
3182 	TEST(fixture_test_case2),
3183 	/* EPT access tests. */
3184 	TEST(ept_access_test_not_present),
3185 	TEST(ept_access_test_read_only),
3186 	TEST(ept_access_test_write_only),
3187 	TEST(ept_access_test_read_write),
3188 	TEST(ept_access_test_execute_only),
3189 	TEST(ept_access_test_read_execute),
3190 	TEST(ept_access_test_write_execute),
3191 	TEST(ept_access_test_read_write_execute),
3192 	TEST(ept_access_test_reserved_bits),
3193 	TEST(ept_access_test_ignored_bits),
3194 	TEST(ept_access_test_paddr_not_present_ad_disabled),
3195 	TEST(ept_access_test_paddr_not_present_ad_enabled),
3196 	TEST(ept_access_test_paddr_read_only_ad_disabled),
3197 	TEST(ept_access_test_paddr_read_only_ad_enabled),
3198 	TEST(ept_access_test_paddr_read_write),
3199 	TEST(ept_access_test_paddr_read_write_execute),
3200 	TEST(ept_access_test_paddr_read_execute_ad_disabled),
3201 	TEST(ept_access_test_paddr_read_execute_ad_enabled),
3202 	TEST(ept_access_test_paddr_not_present_page_fault),
3203 	TEST(ept_access_test_force_2m_page),
3204 	/* Opcode tests. */
3205 	TEST(invvpid_test_v2),
3206 	{ NULL, NULL, NULL, NULL, NULL, {0} },
3207 };
3208