xref: /kvm-unit-tests/x86/vmx_tests.c (revision 682cc79c544e811474f9688b8f579bd16b4a3882) !
1 /*
2  * All test cases of nested virtualization should be in this file
3  *
4  * Author : Arthur Chunqi Li <yzt356@gmail.com>
5  */
6 
7 #include <asm/debugreg.h>
8 
9 #include "vmx.h"
10 #include "msr.h"
11 #include "processor.h"
12 #include "vm.h"
13 #include "pci.h"
14 #include "fwcfg.h"
15 #include "isr.h"
16 #include "desc.h"
17 #include "apic.h"
18 #include "types.h"
19 #include "vmalloc.h"
20 #include "alloc_page.h"
21 #include "smp.h"
22 #include "delay.h"
23 #include "access.h"
24 
25 #define VPID_CAP_INVVPID_TYPES_SHIFT 40
26 
27 u64 ia32_pat;
28 u64 ia32_efer;
29 void *io_bitmap_a, *io_bitmap_b;
30 u16 ioport;
31 
32 unsigned long *pml4;
33 u64 eptp;
34 void *data_page1, *data_page2;
35 
36 phys_addr_t pci_physaddr;
37 
38 void *pml_log;
39 #define PML_INDEX 512
40 
41 static inline unsigned ffs(unsigned x)
42 {
43 	int pos = -1;
44 
45 	__asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0"
46 			     : "+r"(pos) : "rm"(x) : "eax");
47 	return pos + 1;
48 }
49 
50 static inline void vmcall(void)
51 {
52 	asm volatile("vmcall");
53 }
54 
55 static void basic_guest_main(void)
56 {
57 	report_pass("Basic VMX test");
58 }
59 
60 static int basic_exit_handler(union exit_reason exit_reason)
61 {
62 	report_fail("Basic VMX test");
63 	print_vmexit_info(exit_reason);
64 	return VMX_TEST_EXIT;
65 }
66 
67 static void vmenter_main(void)
68 {
69 	u64 rax;
70 	u64 rsp, resume_rsp;
71 
72 	report_pass("test vmlaunch");
73 
74 	asm volatile(
75 		"mov %%rsp, %0\n\t"
76 		"mov %3, %%rax\n\t"
77 		"vmcall\n\t"
78 		"mov %%rax, %1\n\t"
79 		"mov %%rsp, %2\n\t"
80 		: "=r"(rsp), "=r"(rax), "=r"(resume_rsp)
81 		: "g"(0xABCD));
82 	report((rax == 0xFFFF) && (rsp == resume_rsp), "test vmresume");
83 }
84 
85 static int vmenter_exit_handler(union exit_reason exit_reason)
86 {
87 	u64 guest_rip = vmcs_read(GUEST_RIP);
88 
89 	switch (exit_reason.basic) {
90 	case VMX_VMCALL:
91 		if (regs.rax != 0xABCD) {
92 			report_fail("test vmresume");
93 			return VMX_TEST_VMEXIT;
94 		}
95 		regs.rax = 0xFFFF;
96 		vmcs_write(GUEST_RIP, guest_rip + 3);
97 		return VMX_TEST_RESUME;
98 	default:
99 		report_fail("test vmresume");
100 		print_vmexit_info(exit_reason);
101 	}
102 	return VMX_TEST_VMEXIT;
103 }
104 
105 u32 preempt_scale;
106 volatile unsigned long long tsc_val;
107 volatile u32 preempt_val;
108 u64 saved_rip;
109 
110 static int preemption_timer_init(struct vmcs *vmcs)
111 {
112 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
113 		printf("\tPreemption timer is not supported\n");
114 		return VMX_TEST_EXIT;
115 	}
116 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
117 	preempt_val = 10000000;
118 	vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
119 	preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
120 
121 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
122 		printf("\tSave preemption value is not supported\n");
123 
124 	return VMX_TEST_START;
125 }
126 
127 static void preemption_timer_main(void)
128 {
129 	tsc_val = rdtsc();
130 	if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) {
131 		vmx_set_test_stage(0);
132 		vmcall();
133 		if (vmx_get_test_stage() == 1)
134 			vmcall();
135 	}
136 	vmx_set_test_stage(1);
137 	while (vmx_get_test_stage() == 1) {
138 		if (((rdtsc() - tsc_val) >> preempt_scale)
139 				> 10 * preempt_val) {
140 			vmx_set_test_stage(2);
141 			vmcall();
142 		}
143 	}
144 	tsc_val = rdtsc();
145 	asm volatile ("hlt");
146 	vmcall();
147 	vmx_set_test_stage(5);
148 	vmcall();
149 }
150 
151 static int preemption_timer_exit_handler(union exit_reason exit_reason)
152 {
153 	bool guest_halted;
154 	u64 guest_rip;
155 	u32 insn_len;
156 	u32 ctrl_exit;
157 
158 	guest_rip = vmcs_read(GUEST_RIP);
159 	insn_len = vmcs_read(EXI_INST_LEN);
160 	switch (exit_reason.basic) {
161 	case VMX_PREEMPT:
162 		switch (vmx_get_test_stage()) {
163 		case 1:
164 		case 2:
165 			report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val,
166 			       "busy-wait for preemption timer");
167 			vmx_set_test_stage(3);
168 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
169 			return VMX_TEST_RESUME;
170 		case 3:
171 			guest_halted =
172 				(vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT);
173 			report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val
174 			        && guest_halted,
175 			       "preemption timer during hlt");
176 			vmx_set_test_stage(4);
177 			vmcs_write(PIN_CONTROLS,
178 				   vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
179 			vmcs_write(EXI_CONTROLS,
180 				   vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_PREEMPT);
181 			vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
182 			return VMX_TEST_RESUME;
183 		case 4:
184 			report(saved_rip == guest_rip,
185 			       "preemption timer with 0 value");
186 			break;
187 		default:
188 			report_fail("Invalid stage.");
189 			print_vmexit_info(exit_reason);
190 			break;
191 		}
192 		break;
193 	case VMX_VMCALL:
194 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
195 		switch (vmx_get_test_stage()) {
196 		case 0:
197 			report(vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val,
198 			       "Keep preemption value");
199 			vmx_set_test_stage(1);
200 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
201 			ctrl_exit = (vmcs_read(EXI_CONTROLS) |
202 				EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr;
203 			vmcs_write(EXI_CONTROLS, ctrl_exit);
204 			return VMX_TEST_RESUME;
205 		case 1:
206 			report(vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val,
207 			       "Save preemption value");
208 			return VMX_TEST_RESUME;
209 		case 2:
210 			report_fail("busy-wait for preemption timer");
211 			vmx_set_test_stage(3);
212 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
213 			return VMX_TEST_RESUME;
214 		case 3:
215 			report_fail("preemption timer during hlt");
216 			vmx_set_test_stage(4);
217 			/* fall through */
218 		case 4:
219 			vmcs_write(PIN_CONTROLS,
220 				   vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
221 			vmcs_write(PREEMPT_TIMER_VALUE, 0);
222 			saved_rip = guest_rip + insn_len;
223 			return VMX_TEST_RESUME;
224 		case 5:
225 			report_fail("preemption timer with 0 value (vmcall stage 5)");
226 			break;
227 		default:
228 			// Should not reach here
229 			report_fail("unexpected stage, %d",
230 				    vmx_get_test_stage());
231 			print_vmexit_info(exit_reason);
232 			return VMX_TEST_VMEXIT;
233 		}
234 		break;
235 	default:
236 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
237 		print_vmexit_info(exit_reason);
238 	}
239 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
240 	return VMX_TEST_VMEXIT;
241 }
242 
243 static void msr_bmp_init(void)
244 {
245 	void *msr_bitmap;
246 	u32 ctrl_cpu0;
247 
248 	msr_bitmap = alloc_page();
249 	ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
250 	ctrl_cpu0 |= CPU_MSR_BITMAP;
251 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
252 	vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
253 }
254 
255 static void *get_msr_bitmap(void)
256 {
257 	void *msr_bitmap;
258 
259 	if (vmcs_read(CPU_EXEC_CTRL0) & CPU_MSR_BITMAP) {
260 		msr_bitmap = (void *)vmcs_read(MSR_BITMAP);
261 	} else {
262 		msr_bitmap = alloc_page();
263 		memset(msr_bitmap, 0xff, PAGE_SIZE);
264 		vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
265 		vmcs_set_bits(CPU_EXEC_CTRL0, CPU_MSR_BITMAP);
266 	}
267 
268 	return msr_bitmap;
269 }
270 
271 static void disable_intercept_for_x2apic_msrs(void)
272 {
273 	unsigned long *msr_bitmap = (unsigned long *)get_msr_bitmap();
274 	u32 msr;
275 
276 	for (msr = APIC_BASE_MSR;
277 		 msr < (APIC_BASE_MSR+0xff);
278 		 msr += BITS_PER_LONG) {
279 		unsigned int word = msr / BITS_PER_LONG;
280 
281 		msr_bitmap[word] = 0;
282 		msr_bitmap[word + (0x800 / sizeof(long))] = 0;
283 	}
284 }
285 
286 static int test_ctrl_pat_init(struct vmcs *vmcs)
287 {
288 	u64 ctrl_ent;
289 	u64 ctrl_exi;
290 
291 	msr_bmp_init();
292 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) &&
293 	    !(ctrl_exit_rev.clr & EXI_LOAD_PAT) &&
294 	    !(ctrl_enter_rev.clr & ENT_LOAD_PAT)) {
295 		printf("\tSave/load PAT is not supported\n");
296 		return 1;
297 	}
298 
299 	ctrl_ent = vmcs_read(ENT_CONTROLS);
300 	ctrl_exi = vmcs_read(EXI_CONTROLS);
301 	ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT;
302 	ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT);
303 	vmcs_write(ENT_CONTROLS, ctrl_ent);
304 	vmcs_write(EXI_CONTROLS, ctrl_exi);
305 	ia32_pat = rdmsr(MSR_IA32_CR_PAT);
306 	vmcs_write(GUEST_PAT, 0x0);
307 	vmcs_write(HOST_PAT, ia32_pat);
308 	return VMX_TEST_START;
309 }
310 
311 static void test_ctrl_pat_main(void)
312 {
313 	u64 guest_ia32_pat;
314 
315 	guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
316 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT))
317 		printf("\tENT_LOAD_PAT is not supported.\n");
318 	else {
319 		if (guest_ia32_pat != 0) {
320 			report_fail("Entry load PAT");
321 			return;
322 		}
323 	}
324 	wrmsr(MSR_IA32_CR_PAT, 0x6);
325 	vmcall();
326 	guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
327 	if (ctrl_enter_rev.clr & ENT_LOAD_PAT)
328 		report(guest_ia32_pat == ia32_pat, "Entry load PAT");
329 }
330 
331 static int test_ctrl_pat_exit_handler(union exit_reason exit_reason)
332 {
333 	u64 guest_rip;
334 	u64 guest_pat;
335 
336 	guest_rip = vmcs_read(GUEST_RIP);
337 	switch (exit_reason.basic) {
338 	case VMX_VMCALL:
339 		guest_pat = vmcs_read(GUEST_PAT);
340 		if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) {
341 			printf("\tEXI_SAVE_PAT is not supported\n");
342 			vmcs_write(GUEST_PAT, 0x6);
343 		} else {
344 			report(guest_pat == 0x6, "Exit save PAT");
345 		}
346 		if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT))
347 			printf("\tEXI_LOAD_PAT is not supported\n");
348 		else
349 			report(rdmsr(MSR_IA32_CR_PAT) == ia32_pat,
350 			       "Exit load PAT");
351 		vmcs_write(GUEST_PAT, ia32_pat);
352 		vmcs_write(GUEST_RIP, guest_rip + 3);
353 		return VMX_TEST_RESUME;
354 	default:
355 		printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full);
356 		break;
357 	}
358 	return VMX_TEST_VMEXIT;
359 }
360 
361 static int test_ctrl_efer_init(struct vmcs *vmcs)
362 {
363 	u64 ctrl_ent;
364 	u64 ctrl_exi;
365 
366 	msr_bmp_init();
367 	ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER;
368 	ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER;
369 	vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr);
370 	vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr);
371 	ia32_efer = rdmsr(MSR_EFER);
372 	vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX);
373 	vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX);
374 	return VMX_TEST_START;
375 }
376 
377 static void test_ctrl_efer_main(void)
378 {
379 	u64 guest_ia32_efer;
380 
381 	guest_ia32_efer = rdmsr(MSR_EFER);
382 	if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER))
383 		printf("\tENT_LOAD_EFER is not supported.\n");
384 	else {
385 		if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) {
386 			report_fail("Entry load EFER");
387 			return;
388 		}
389 	}
390 	wrmsr(MSR_EFER, ia32_efer);
391 	vmcall();
392 	guest_ia32_efer = rdmsr(MSR_EFER);
393 	if (ctrl_enter_rev.clr & ENT_LOAD_EFER)
394 		report(guest_ia32_efer == ia32_efer, "Entry load EFER");
395 }
396 
397 static int test_ctrl_efer_exit_handler(union exit_reason exit_reason)
398 {
399 	u64 guest_rip;
400 	u64 guest_efer;
401 
402 	guest_rip = vmcs_read(GUEST_RIP);
403 	switch (exit_reason.basic) {
404 	case VMX_VMCALL:
405 		guest_efer = vmcs_read(GUEST_EFER);
406 		if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) {
407 			printf("\tEXI_SAVE_EFER is not supported\n");
408 			vmcs_write(GUEST_EFER, ia32_efer);
409 		} else {
410 			report(guest_efer == ia32_efer, "Exit save EFER");
411 		}
412 		if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) {
413 			printf("\tEXI_LOAD_EFER is not supported\n");
414 			wrmsr(MSR_EFER, ia32_efer ^ EFER_NX);
415 		} else {
416 			report(rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX),
417 			       "Exit load EFER");
418 		}
419 		vmcs_write(GUEST_PAT, ia32_efer);
420 		vmcs_write(GUEST_RIP, guest_rip + 3);
421 		return VMX_TEST_RESUME;
422 	default:
423 		printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full);
424 		break;
425 	}
426 	return VMX_TEST_VMEXIT;
427 }
428 
429 u32 guest_cr0, guest_cr4;
430 
431 static void cr_shadowing_main(void)
432 {
433 	u32 cr0, cr4, tmp;
434 
435 	// Test read through
436 	vmx_set_test_stage(0);
437 	guest_cr0 = read_cr0();
438 	if (vmx_get_test_stage() == 1)
439 		report_fail("Read through CR0");
440 	else
441 		vmcall();
442 	vmx_set_test_stage(1);
443 	guest_cr4 = read_cr4();
444 	if (vmx_get_test_stage() == 2)
445 		report_fail("Read through CR4");
446 	else
447 		vmcall();
448 	// Test write through
449 	guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP);
450 	guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE);
451 	vmx_set_test_stage(2);
452 	write_cr0(guest_cr0);
453 	if (vmx_get_test_stage() == 3)
454 		report_fail("Write throuth CR0");
455 	else
456 		vmcall();
457 	vmx_set_test_stage(3);
458 	write_cr4(guest_cr4);
459 	if (vmx_get_test_stage() == 4)
460 		report_fail("Write through CR4");
461 	else
462 		vmcall();
463 	// Test read shadow
464 	vmx_set_test_stage(4);
465 	vmcall();
466 	cr0 = read_cr0();
467 	if (vmx_get_test_stage() != 5)
468 		report(cr0 == guest_cr0, "Read shadowing CR0");
469 	vmx_set_test_stage(5);
470 	cr4 = read_cr4();
471 	if (vmx_get_test_stage() != 6)
472 		report(cr4 == guest_cr4, "Read shadowing CR4");
473 	// Test write shadow (same value with shadow)
474 	vmx_set_test_stage(6);
475 	write_cr0(guest_cr0);
476 	if (vmx_get_test_stage() == 7)
477 		report_fail("Write shadowing CR0 (same value with shadow)");
478 	else
479 		vmcall();
480 	vmx_set_test_stage(7);
481 	write_cr4(guest_cr4);
482 	if (vmx_get_test_stage() == 8)
483 		report_fail("Write shadowing CR4 (same value with shadow)");
484 	else
485 		vmcall();
486 	// Test write shadow (different value)
487 	vmx_set_test_stage(8);
488 	tmp = guest_cr0 ^ X86_CR0_TS;
489 	asm volatile("mov %0, %%rsi\n\t"
490 		"mov %%rsi, %%cr0\n\t"
491 		::"m"(tmp)
492 		:"rsi", "memory", "cc");
493 	report(vmx_get_test_stage() == 9,
494 	       "Write shadowing different X86_CR0_TS");
495 	vmx_set_test_stage(9);
496 	tmp = guest_cr0 ^ X86_CR0_MP;
497 	asm volatile("mov %0, %%rsi\n\t"
498 		"mov %%rsi, %%cr0\n\t"
499 		::"m"(tmp)
500 		:"rsi", "memory", "cc");
501 	report(vmx_get_test_stage() == 10,
502 	       "Write shadowing different X86_CR0_MP");
503 	vmx_set_test_stage(10);
504 	tmp = guest_cr4 ^ X86_CR4_TSD;
505 	asm volatile("mov %0, %%rsi\n\t"
506 		"mov %%rsi, %%cr4\n\t"
507 		::"m"(tmp)
508 		:"rsi", "memory", "cc");
509 	report(vmx_get_test_stage() == 11,
510 	       "Write shadowing different X86_CR4_TSD");
511 	vmx_set_test_stage(11);
512 	tmp = guest_cr4 ^ X86_CR4_DE;
513 	asm volatile("mov %0, %%rsi\n\t"
514 		"mov %%rsi, %%cr4\n\t"
515 		::"m"(tmp)
516 		:"rsi", "memory", "cc");
517 	report(vmx_get_test_stage() == 12,
518 	       "Write shadowing different X86_CR4_DE");
519 }
520 
521 static int cr_shadowing_exit_handler(union exit_reason exit_reason)
522 {
523 	u64 guest_rip;
524 	u32 insn_len;
525 	u32 exit_qual;
526 
527 	guest_rip = vmcs_read(GUEST_RIP);
528 	insn_len = vmcs_read(EXI_INST_LEN);
529 	exit_qual = vmcs_read(EXI_QUALIFICATION);
530 	switch (exit_reason.basic) {
531 	case VMX_VMCALL:
532 		switch (vmx_get_test_stage()) {
533 		case 0:
534 			report(guest_cr0 == vmcs_read(GUEST_CR0),
535 			       "Read through CR0");
536 			break;
537 		case 1:
538 			report(guest_cr4 == vmcs_read(GUEST_CR4),
539 			       "Read through CR4");
540 			break;
541 		case 2:
542 			report(guest_cr0 == vmcs_read(GUEST_CR0),
543 			       "Write through CR0");
544 			break;
545 		case 3:
546 			report(guest_cr4 == vmcs_read(GUEST_CR4),
547 			       "Write through CR4");
548 			break;
549 		case 4:
550 			guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP);
551 			guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE);
552 			vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP);
553 			vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP));
554 			vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE);
555 			vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE));
556 			break;
557 		case 6:
558 			report(guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP)),
559 			       "Write shadowing CR0 (same value)");
560 			break;
561 		case 7:
562 			report(guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE)),
563 			       "Write shadowing CR4 (same value)");
564 			break;
565 		default:
566 			// Should not reach here
567 			report_fail("unexpected stage, %d",
568 				    vmx_get_test_stage());
569 			print_vmexit_info(exit_reason);
570 			return VMX_TEST_VMEXIT;
571 		}
572 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
573 		return VMX_TEST_RESUME;
574 	case VMX_CR:
575 		switch (vmx_get_test_stage()) {
576 		case 4:
577 			report_fail("Read shadowing CR0");
578 			vmx_inc_test_stage();
579 			break;
580 		case 5:
581 			report_fail("Read shadowing CR4");
582 			vmx_inc_test_stage();
583 			break;
584 		case 6:
585 			report_fail("Write shadowing CR0 (same value)");
586 			vmx_inc_test_stage();
587 			break;
588 		case 7:
589 			report_fail("Write shadowing CR4 (same value)");
590 			vmx_inc_test_stage();
591 			break;
592 		case 8:
593 		case 9:
594 			// 0x600 encodes "mov %esi, %cr0"
595 			if (exit_qual == 0x600)
596 				vmx_inc_test_stage();
597 			break;
598 		case 10:
599 		case 11:
600 			// 0x604 encodes "mov %esi, %cr4"
601 			if (exit_qual == 0x604)
602 				vmx_inc_test_stage();
603 			break;
604 		default:
605 			// Should not reach here
606 			report_fail("unexpected stage, %d",
607 				    vmx_get_test_stage());
608 			print_vmexit_info(exit_reason);
609 			return VMX_TEST_VMEXIT;
610 		}
611 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
612 		return VMX_TEST_RESUME;
613 	default:
614 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
615 		print_vmexit_info(exit_reason);
616 	}
617 	return VMX_TEST_VMEXIT;
618 }
619 
620 static int iobmp_init(struct vmcs *vmcs)
621 {
622 	u32 ctrl_cpu0;
623 
624 	io_bitmap_a = alloc_page();
625 	io_bitmap_b = alloc_page();
626 	ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
627 	ctrl_cpu0 |= CPU_IO_BITMAP;
628 	ctrl_cpu0 &= (~CPU_IO);
629 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
630 	vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a);
631 	vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b);
632 	return VMX_TEST_START;
633 }
634 
635 static void iobmp_main(void)
636 {
637 	// stage 0, test IO pass
638 	vmx_set_test_stage(0);
639 	inb(0x5000);
640 	outb(0x0, 0x5000);
641 	report(vmx_get_test_stage() == 0, "I/O bitmap - I/O pass");
642 	// test IO width, in/out
643 	((u8 *)io_bitmap_a)[0] = 0xFF;
644 	vmx_set_test_stage(2);
645 	inb(0x0);
646 	report(vmx_get_test_stage() == 3, "I/O bitmap - trap in");
647 	vmx_set_test_stage(3);
648 	outw(0x0, 0x0);
649 	report(vmx_get_test_stage() == 4, "I/O bitmap - trap out");
650 	vmx_set_test_stage(4);
651 	inl(0x0);
652 	report(vmx_get_test_stage() == 5, "I/O bitmap - I/O width, long");
653 	// test low/high IO port
654 	vmx_set_test_stage(5);
655 	((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8));
656 	inb(0x5000);
657 	report(vmx_get_test_stage() == 6, "I/O bitmap - I/O port, low part");
658 	vmx_set_test_stage(6);
659 	((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8));
660 	inb(0x9000);
661 	report(vmx_get_test_stage() == 7, "I/O bitmap - I/O port, high part");
662 	// test partial pass
663 	vmx_set_test_stage(7);
664 	inl(0x4FFF);
665 	report(vmx_get_test_stage() == 8, "I/O bitmap - partial pass");
666 	// test overrun
667 	vmx_set_test_stage(8);
668 	memset(io_bitmap_a, 0x0, PAGE_SIZE);
669 	memset(io_bitmap_b, 0x0, PAGE_SIZE);
670 	inl(0xFFFF);
671 	report(vmx_get_test_stage() == 9, "I/O bitmap - overrun");
672 	vmx_set_test_stage(9);
673 	vmcall();
674 	outb(0x0, 0x0);
675 	report(vmx_get_test_stage() == 9,
676 	       "I/O bitmap - ignore unconditional exiting");
677 	vmx_set_test_stage(10);
678 	vmcall();
679 	outb(0x0, 0x0);
680 	report(vmx_get_test_stage() == 11,
681 	       "I/O bitmap - unconditional exiting");
682 }
683 
684 static int iobmp_exit_handler(union exit_reason exit_reason)
685 {
686 	u64 guest_rip;
687 	ulong exit_qual;
688 	u32 insn_len, ctrl_cpu0;
689 
690 	guest_rip = vmcs_read(GUEST_RIP);
691 	exit_qual = vmcs_read(EXI_QUALIFICATION);
692 	insn_len = vmcs_read(EXI_INST_LEN);
693 	switch (exit_reason.basic) {
694 	case VMX_IO:
695 		switch (vmx_get_test_stage()) {
696 		case 0:
697 		case 1:
698 			vmx_inc_test_stage();
699 			break;
700 		case 2:
701 			report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE,
702 			       "I/O bitmap - I/O width, byte");
703 			report(exit_qual & VMX_IO_IN,
704 			       "I/O bitmap - I/O direction, in");
705 			vmx_inc_test_stage();
706 			break;
707 		case 3:
708 			report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD,
709 			       "I/O bitmap - I/O width, word");
710 			report(!(exit_qual & VMX_IO_IN),
711 			       "I/O bitmap - I/O direction, out");
712 			vmx_inc_test_stage();
713 			break;
714 		case 4:
715 			report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG,
716 			       "I/O bitmap - I/O width, long");
717 			vmx_inc_test_stage();
718 			break;
719 		case 5:
720 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000)
721 				vmx_inc_test_stage();
722 			break;
723 		case 6:
724 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000)
725 				vmx_inc_test_stage();
726 			break;
727 		case 7:
728 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF)
729 				vmx_inc_test_stage();
730 			break;
731 		case 8:
732 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF)
733 				vmx_inc_test_stage();
734 			break;
735 		case 9:
736 		case 10:
737 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
738 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO);
739 			vmx_inc_test_stage();
740 			break;
741 		default:
742 			// Should not reach here
743 			report_fail("unexpected stage, %d",
744 				    vmx_get_test_stage());
745 			print_vmexit_info(exit_reason);
746 			return VMX_TEST_VMEXIT;
747 		}
748 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
749 		return VMX_TEST_RESUME;
750 	case VMX_VMCALL:
751 		switch (vmx_get_test_stage()) {
752 		case 9:
753 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
754 			ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP;
755 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
756 			break;
757 		case 10:
758 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
759 			ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO;
760 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
761 			break;
762 		default:
763 			// Should not reach here
764 			report_fail("unexpected stage, %d",
765 				    vmx_get_test_stage());
766 			print_vmexit_info(exit_reason);
767 			return VMX_TEST_VMEXIT;
768 		}
769 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
770 		return VMX_TEST_RESUME;
771 	default:
772 		printf("guest_rip = %#lx\n", guest_rip);
773 		printf("\tERROR : Unknown exit reason, 0x%x\n", exit_reason.full);
774 		break;
775 	}
776 	return VMX_TEST_VMEXIT;
777 }
778 
779 #define INSN_CPU0		0
780 #define INSN_CPU1		1
781 #define INSN_ALWAYS_TRAP	2
782 
783 #define FIELD_EXIT_QUAL		(1 << 0)
784 #define FIELD_INSN_INFO		(1 << 1)
785 
786 asm(
787 	"insn_hlt: hlt;ret\n\t"
788 	"insn_invlpg: invlpg 0x12345678;ret\n\t"
789 	"insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t"
790 	"insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t"
791 	"insn_rdtsc: rdtsc;ret\n\t"
792 	"insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t"
793 	"insn_cr3_store: mov %cr3,%rax;ret\n\t"
794 	"insn_cr8_load: xor %eax, %eax; mov %rax,%cr8;ret\n\t"
795 	"insn_cr8_store: mov %cr8,%rax;ret\n\t"
796 	"insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t"
797 	"insn_pause: pause;ret\n\t"
798 	"insn_wbinvd: wbinvd;ret\n\t"
799 	"insn_cpuid: mov $10, %eax; cpuid;ret\n\t"
800 	"insn_invd: invd;ret\n\t"
801 	"insn_sgdt: sgdt gdt_descr;ret\n\t"
802 	"insn_lgdt: lgdt gdt_descr;ret\n\t"
803 	"insn_sidt: sidt idt_descr;ret\n\t"
804 	"insn_lidt: lidt idt_descr;ret\n\t"
805 	"insn_sldt: sldt %ax;ret\n\t"
806 	"insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t"
807 	"insn_str: str %ax;ret\n\t"
808 	"insn_rdrand: rdrand %rax;ret\n\t"
809 	"insn_rdseed: rdseed %rax;ret\n\t"
810 );
811 extern void insn_hlt(void);
812 extern void insn_invlpg(void);
813 extern void insn_mwait(void);
814 extern void insn_rdpmc(void);
815 extern void insn_rdtsc(void);
816 extern void insn_cr3_load(void);
817 extern void insn_cr3_store(void);
818 extern void insn_cr8_load(void);
819 extern void insn_cr8_store(void);
820 extern void insn_monitor(void);
821 extern void insn_pause(void);
822 extern void insn_wbinvd(void);
823 extern void insn_sgdt(void);
824 extern void insn_lgdt(void);
825 extern void insn_sidt(void);
826 extern void insn_lidt(void);
827 extern void insn_sldt(void);
828 extern void insn_lldt(void);
829 extern void insn_str(void);
830 extern void insn_cpuid(void);
831 extern void insn_invd(void);
832 extern void insn_rdrand(void);
833 extern void insn_rdseed(void);
834 
835 u32 cur_insn;
836 u64 cr3;
837 
838 #define X86_FEATURE_MONITOR	(1 << 3)
839 
840 typedef bool (*supported_fn)(void);
841 
842 static bool monitor_supported(void)
843 {
844 	return this_cpu_has(X86_FEATURE_MWAIT);
845 }
846 
847 struct insn_table {
848 	const char *name;
849 	u32 flag;
850 	void (*insn_func)(void);
851 	u32 type;
852 	u32 reason;
853 	ulong exit_qual;
854 	u32 insn_info;
855 	// Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define
856 	// which field need to be tested, reason is always tested
857 	u32 test_field;
858 	const supported_fn supported_fn;
859 	u8 disabled;
860 };
861 
862 /*
863  * Add more test cases of instruction intercept here. Elements in this
864  * table is:
865  *	name/control flag/insn function/type/exit reason/exit qulification/
866  *	instruction info/field to test
867  * The last field defines which fields (exit_qual and insn_info) need to be
868  * tested in exit handler. If set to 0, only "reason" is checked.
869  */
870 static struct insn_table insn_table[] = {
871 	// Flags for Primary Processor-Based VM-Execution Controls
872 	{"HLT",  CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0},
873 	{"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14,
874 		0x12345678, 0, FIELD_EXIT_QUAL},
875 	{"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0, &monitor_supported},
876 	{"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0},
877 	{"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0},
878 	{"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0,
879 		FIELD_EXIT_QUAL},
880 	{"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0,
881 		FIELD_EXIT_QUAL},
882 	{"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0,
883 		FIELD_EXIT_QUAL},
884 	{"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0,
885 		FIELD_EXIT_QUAL},
886 	{"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0, &monitor_supported},
887 	{"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0},
888 	// Flags for Secondary Processor-Based VM-Execution Controls
889 	{"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0},
890 	{"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0},
891 	{"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0},
892 	{"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0},
893 	{"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0},
894 	{"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0},
895 	{"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0},
896 	{"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0},
897 	/* LTR causes a #GP if done with a busy selector, so it is not tested.  */
898 	{"RDRAND", CPU_RDRAND, insn_rdrand, INSN_CPU1, VMX_RDRAND, 0, 0, 0},
899 	{"RDSEED", CPU_RDSEED, insn_rdseed, INSN_CPU1, VMX_RDSEED, 0, 0, 0},
900 	// Instructions always trap
901 	{"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0},
902 	{"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0},
903 	// Instructions never trap
904 	{NULL},
905 };
906 
907 static int insn_intercept_init(struct vmcs *vmcs)
908 {
909 	u32 ctrl_cpu, cur_insn;
910 
911 	ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY;
912 	ctrl_cpu &= ctrl_cpu_rev[0].clr;
913 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu);
914 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set);
915 	cr3 = read_cr3();
916 
917 	for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
918 		if (insn_table[cur_insn].supported_fn == NULL)
919 			continue;
920 		insn_table[cur_insn].disabled = !insn_table[cur_insn].supported_fn();
921 	}
922 	return VMX_TEST_START;
923 }
924 
925 static void insn_intercept_main(void)
926 {
927 	for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
928 		vmx_set_test_stage(cur_insn * 2);
929 		if ((insn_table[cur_insn].type == INSN_CPU0 &&
930 		     !(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) ||
931 		    (insn_table[cur_insn].type == INSN_CPU1 &&
932 		     !(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) {
933 			printf("\tCPU_CTRL%d.CPU_%s is not supported.\n",
934 			       insn_table[cur_insn].type - INSN_CPU0,
935 			       insn_table[cur_insn].name);
936 			continue;
937 		}
938 
939 		if (insn_table[cur_insn].disabled) {
940 			printf("\tFeature required for %s is not supported.\n",
941 			       insn_table[cur_insn].name);
942 			continue;
943 		}
944 
945 		if ((insn_table[cur_insn].type == INSN_CPU0 &&
946 		     !(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) ||
947 		    (insn_table[cur_insn].type == INSN_CPU1 &&
948 		     !(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) {
949 			/* skip hlt, it stalls the guest and is tested below */
950 			if (insn_table[cur_insn].insn_func != insn_hlt)
951 				insn_table[cur_insn].insn_func();
952 			report(vmx_get_test_stage() == cur_insn * 2,
953 					"execute %s",
954 					insn_table[cur_insn].name);
955 		} else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP)
956 			printf("\tCPU_CTRL%d.CPU_%s always traps.\n",
957 			       insn_table[cur_insn].type - INSN_CPU0,
958 			       insn_table[cur_insn].name);
959 
960 		vmcall();
961 
962 		insn_table[cur_insn].insn_func();
963 		report(vmx_get_test_stage() == cur_insn * 2 + 1,
964 				"intercept %s",
965 				insn_table[cur_insn].name);
966 
967 		vmx_set_test_stage(cur_insn * 2 + 1);
968 		vmcall();
969 	}
970 }
971 
972 static int insn_intercept_exit_handler(union exit_reason exit_reason)
973 {
974 	u64 guest_rip;
975 	ulong exit_qual;
976 	u32 insn_len;
977 	u32 insn_info;
978 	bool pass;
979 
980 	guest_rip = vmcs_read(GUEST_RIP);
981 	exit_qual = vmcs_read(EXI_QUALIFICATION);
982 	insn_len = vmcs_read(EXI_INST_LEN);
983 	insn_info = vmcs_read(EXI_INST_INFO);
984 
985 	if (exit_reason.basic == VMX_VMCALL) {
986 		u32 val = 0;
987 
988 		if (insn_table[cur_insn].type == INSN_CPU0)
989 			val = vmcs_read(CPU_EXEC_CTRL0);
990 		else if (insn_table[cur_insn].type == INSN_CPU1)
991 			val = vmcs_read(CPU_EXEC_CTRL1);
992 
993 		if (vmx_get_test_stage() & 1)
994 			val &= ~insn_table[cur_insn].flag;
995 		else
996 			val |= insn_table[cur_insn].flag;
997 
998 		if (insn_table[cur_insn].type == INSN_CPU0)
999 			vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set);
1000 		else if (insn_table[cur_insn].type == INSN_CPU1)
1001 			vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set);
1002 	} else {
1003 		pass = (cur_insn * 2 == vmx_get_test_stage()) &&
1004 			insn_table[cur_insn].reason == exit_reason.full;
1005 		if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL &&
1006 		    insn_table[cur_insn].exit_qual != exit_qual)
1007 			pass = false;
1008 		if (insn_table[cur_insn].test_field & FIELD_INSN_INFO &&
1009 		    insn_table[cur_insn].insn_info != insn_info)
1010 			pass = false;
1011 		if (pass)
1012 			vmx_inc_test_stage();
1013 	}
1014 	vmcs_write(GUEST_RIP, guest_rip + insn_len);
1015 	return VMX_TEST_RESUME;
1016 }
1017 
1018 /**
1019  * __setup_ept - Setup the VMCS fields to enable Extended Page Tables (EPT)
1020  * @hpa:	Host physical address of the top-level, a.k.a. root, EPT table
1021  * @enable_ad:	Whether or not to enable Access/Dirty bits for EPT entries
1022  *
1023  * Returns 0 on success, 1 on failure.
1024  *
1025  * Note that @hpa doesn't need to point at actual memory if VM-Launch is
1026  * expected to fail, e.g. setup_dummy_ept() arbitrarily passes '0' to satisfy
1027  * the various EPTP consistency checks, but doesn't ensure backing for HPA '0'.
1028  */
1029 static int __setup_ept(u64 hpa, bool enable_ad)
1030 {
1031 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1032 	    !(ctrl_cpu_rev[1].clr & CPU_EPT)) {
1033 		printf("\tEPT is not supported\n");
1034 		return 1;
1035 	}
1036 	if (!(ept_vpid.val & EPT_CAP_WB)) {
1037 		printf("\tWB memtype for EPT walks not supported\n");
1038 		return 1;
1039 	}
1040 	if (!(ept_vpid.val & EPT_CAP_PWL4)) {
1041 		printf("\tPWL4 is not supported\n");
1042 		return 1;
1043 	}
1044 
1045 	eptp = EPT_MEM_TYPE_WB;
1046 	eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT);
1047 	eptp |= hpa;
1048 	if (enable_ad)
1049 		eptp |= EPTP_AD_FLAG;
1050 
1051 	vmcs_write(EPTP, eptp);
1052 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0)| CPU_SECONDARY);
1053 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1)| CPU_EPT);
1054 
1055 	return 0;
1056 }
1057 
1058 /**
1059  * setup_ept - Enable Extended Page Tables (EPT) and setup an identity map
1060  * @enable_ad:	Whether or not to enable Access/Dirty bits for EPT entries
1061  *
1062  * Returns 0 on success, 1 on failure.
1063  *
1064  * This is the "real" function for setting up EPT tables, i.e. use this for
1065  * tests that need to run code in the guest with EPT enabled.
1066  */
1067 static int setup_ept(bool enable_ad)
1068 {
1069 	unsigned long end_of_memory;
1070 
1071 	pml4 = alloc_page();
1072 
1073 	if (__setup_ept(virt_to_phys(pml4), enable_ad))
1074 		return 1;
1075 
1076 	end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE);
1077 	if (end_of_memory < (1ul << 32))
1078 		end_of_memory = (1ul << 32);
1079 	/* Cannot use large EPT pages if we need to track EPT
1080 	 * accessed/dirty bits at 4K granularity.
1081 	 */
1082 	setup_ept_range(pml4, 0, end_of_memory, 0,
1083 			!enable_ad && ept_2m_supported(),
1084 			EPT_WA | EPT_RA | EPT_EA);
1085 	return 0;
1086 }
1087 
1088 /**
1089  * setup_dummy_ept - Enable Extended Page Tables (EPT) with a dummy root HPA
1090  *
1091  * Setup EPT using a semi-arbitrary dummy root HPA.  This function is intended
1092  * for use by tests that need EPT enabled to verify dependent VMCS controls
1093  * but never expect to fully enter the guest, i.e. don't need setup the actual
1094  * EPT tables.
1095  */
1096 static void setup_dummy_ept(void)
1097 {
1098 	if (__setup_ept(0, false))
1099 		report_abort("EPT setup unexpectedly failed");
1100 }
1101 
1102 static int enable_unrestricted_guest(bool need_valid_ept)
1103 {
1104 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1105 	    !(ctrl_cpu_rev[1].clr & CPU_URG) ||
1106 	    !(ctrl_cpu_rev[1].clr & CPU_EPT))
1107 		return 1;
1108 
1109 	if (need_valid_ept)
1110 		setup_ept(false);
1111 	else
1112 		setup_dummy_ept();
1113 
1114 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
1115 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG);
1116 
1117 	return 0;
1118 }
1119 
1120 static void ept_enable_ad_bits(void)
1121 {
1122 	eptp |= EPTP_AD_FLAG;
1123 	vmcs_write(EPTP, eptp);
1124 }
1125 
1126 static void ept_disable_ad_bits(void)
1127 {
1128 	eptp &= ~EPTP_AD_FLAG;
1129 	vmcs_write(EPTP, eptp);
1130 }
1131 
1132 static int ept_ad_enabled(void)
1133 {
1134 	return eptp & EPTP_AD_FLAG;
1135 }
1136 
1137 static void ept_enable_ad_bits_or_skip_test(void)
1138 {
1139 	if (!ept_ad_bits_supported())
1140 		test_skip("EPT AD bits not supported.");
1141 	ept_enable_ad_bits();
1142 }
1143 
1144 static int apic_version;
1145 
1146 static int ept_init_common(bool have_ad)
1147 {
1148 	int ret;
1149 	struct pci_dev pcidev;
1150 
1151 	/* INVEPT is required by the EPT violation handler. */
1152 	if (!is_invept_type_supported(INVEPT_SINGLE))
1153 		return VMX_TEST_EXIT;
1154 
1155 	if (setup_ept(have_ad))
1156 		return VMX_TEST_EXIT;
1157 
1158 	data_page1 = alloc_page();
1159 	data_page2 = alloc_page();
1160 	*((u32 *)data_page1) = MAGIC_VAL_1;
1161 	*((u32 *)data_page2) = MAGIC_VAL_2;
1162 	install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2,
1163 			EPT_RA | EPT_WA | EPT_EA);
1164 
1165 	apic_version = apic_read(APIC_LVR);
1166 
1167 	ret = pci_find_dev(PCI_VENDOR_ID_REDHAT, PCI_DEVICE_ID_REDHAT_TEST);
1168 	if (ret != PCIDEVADDR_INVALID) {
1169 		pci_dev_init(&pcidev, ret);
1170 		pci_physaddr = pcidev.resource[PCI_TESTDEV_BAR_MEM];
1171 	}
1172 
1173 	return VMX_TEST_START;
1174 }
1175 
1176 static int ept_init(struct vmcs *vmcs)
1177 {
1178 	return ept_init_common(false);
1179 }
1180 
1181 static void ept_common(void)
1182 {
1183 	vmx_set_test_stage(0);
1184 	if (*((u32 *)data_page2) != MAGIC_VAL_1 ||
1185 			*((u32 *)data_page1) != MAGIC_VAL_1)
1186 		report_fail("EPT basic framework - read");
1187 	else {
1188 		*((u32 *)data_page2) = MAGIC_VAL_3;
1189 		vmcall();
1190 		if (vmx_get_test_stage() == 1) {
1191 			if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
1192 					*((u32 *)data_page2) == MAGIC_VAL_2)
1193 				report_pass("EPT basic framework");
1194 			else
1195 				report_pass("EPT basic framework - remap");
1196 		}
1197 	}
1198 	// Test EPT Misconfigurations
1199 	vmx_set_test_stage(1);
1200 	vmcall();
1201 	*((u32 *)data_page1) = MAGIC_VAL_1;
1202 	if (vmx_get_test_stage() != 2) {
1203 		report_fail("EPT misconfigurations");
1204 		goto t1;
1205 	}
1206 	vmx_set_test_stage(2);
1207 	vmcall();
1208 	*((u32 *)data_page1) = MAGIC_VAL_1;
1209 	report(vmx_get_test_stage() == 3, "EPT misconfigurations");
1210 t1:
1211 	// Test EPT violation
1212 	vmx_set_test_stage(3);
1213 	vmcall();
1214 	*((u32 *)data_page1) = MAGIC_VAL_1;
1215 	report(vmx_get_test_stage() == 4, "EPT violation - page permission");
1216 	// Violation caused by EPT paging structure
1217 	vmx_set_test_stage(4);
1218 	vmcall();
1219 	*((u32 *)data_page1) = MAGIC_VAL_2;
1220 	report(vmx_get_test_stage() == 5, "EPT violation - paging structure");
1221 
1222 	// MMIO Read/Write
1223 	vmx_set_test_stage(5);
1224 	vmcall();
1225 
1226 	*(u32 volatile *)pci_physaddr;
1227 	report(vmx_get_test_stage() == 6, "MMIO EPT violation - read");
1228 
1229 	*(u32 volatile *)pci_physaddr = MAGIC_VAL_1;
1230 	report(vmx_get_test_stage() == 7, "MMIO EPT violation - write");
1231 }
1232 
1233 static void ept_main(void)
1234 {
1235 	ept_common();
1236 
1237 	// Test EPT access to L1 MMIO
1238 	vmx_set_test_stage(7);
1239 	report(*((u32 *)0xfee00030UL) == apic_version, "EPT - MMIO access");
1240 
1241 	// Test invalid operand for INVEPT
1242 	vmcall();
1243 	report(vmx_get_test_stage() == 8, "EPT - unsupported INVEPT");
1244 }
1245 
1246 static bool invept_test(int type, u64 eptp)
1247 {
1248 	bool ret, supported;
1249 
1250 	supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type);
1251 	ret = __invept(type, eptp);
1252 
1253 	if (ret == !supported)
1254 		return false;
1255 
1256 	if (!supported)
1257 		printf("WARNING: unsupported invept passed!\n");
1258 	else
1259 		printf("WARNING: invept failed!\n");
1260 
1261 	return true;
1262 }
1263 
1264 static int pml_exit_handler(union exit_reason exit_reason)
1265 {
1266 	u16 index, count;
1267 	u64 *pmlbuf = pml_log;
1268 	u64 guest_rip = vmcs_read(GUEST_RIP);;
1269 	u64 guest_cr3 = vmcs_read(GUEST_CR3);
1270 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1271 
1272 	switch (exit_reason.basic) {
1273 	case VMX_VMCALL:
1274 		switch (vmx_get_test_stage()) {
1275 		case 0:
1276 			index = vmcs_read(GUEST_PML_INDEX);
1277 			for (count = index + 1; count < PML_INDEX; count++) {
1278 				if (pmlbuf[count] == (u64)data_page2) {
1279 					vmx_inc_test_stage();
1280 					clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1281 					break;
1282 				}
1283 			}
1284 			break;
1285 		case 1:
1286 			index = vmcs_read(GUEST_PML_INDEX);
1287 			/* Keep clearing the dirty bit till a overflow */
1288 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1289 			break;
1290 		default:
1291 			report_fail("unexpected stage, %d.",
1292 			       vmx_get_test_stage());
1293 			print_vmexit_info(exit_reason);
1294 			return VMX_TEST_VMEXIT;
1295 		}
1296 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1297 		return VMX_TEST_RESUME;
1298 	case VMX_PML_FULL:
1299 		vmx_inc_test_stage();
1300 		vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
1301 		return VMX_TEST_RESUME;
1302 	default:
1303 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
1304 		print_vmexit_info(exit_reason);
1305 	}
1306 	return VMX_TEST_VMEXIT;
1307 }
1308 
1309 static int ept_exit_handler_common(union exit_reason exit_reason, bool have_ad)
1310 {
1311 	u64 guest_rip;
1312 	u64 guest_cr3;
1313 	u32 insn_len;
1314 	u32 exit_qual;
1315 	static unsigned long data_page1_pte, data_page1_pte_pte, memaddr_pte,
1316 			     guest_pte_addr;
1317 
1318 	guest_rip = vmcs_read(GUEST_RIP);
1319 	guest_cr3 = vmcs_read(GUEST_CR3);
1320 	insn_len = vmcs_read(EXI_INST_LEN);
1321 	exit_qual = vmcs_read(EXI_QUALIFICATION);
1322 	pteval_t *ptep;
1323 	switch (exit_reason.basic) {
1324 	case VMX_VMCALL:
1325 		switch (vmx_get_test_stage()) {
1326 		case 0:
1327 			check_ept_ad(pml4, guest_cr3,
1328 				     (unsigned long)data_page1,
1329 				     have_ad ? EPT_ACCESS_FLAG : 0,
1330 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1331 			check_ept_ad(pml4, guest_cr3,
1332 				     (unsigned long)data_page2,
1333 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0,
1334 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1335 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1336 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1337 			if (have_ad)
1338 				invept(INVEPT_SINGLE, eptp);
1339 			if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
1340 					*((u32 *)data_page2) == MAGIC_VAL_2) {
1341 				vmx_inc_test_stage();
1342 				install_ept(pml4, (unsigned long)data_page2,
1343 						(unsigned long)data_page2,
1344 						EPT_RA | EPT_WA | EPT_EA);
1345 			} else
1346 				report_fail("EPT basic framework - write");
1347 			break;
1348 		case 1:
1349 			install_ept(pml4, (unsigned long)data_page1,
1350  				(unsigned long)data_page1, EPT_WA);
1351 			invept(INVEPT_SINGLE, eptp);
1352 			break;
1353 		case 2:
1354 			install_ept(pml4, (unsigned long)data_page1,
1355  				(unsigned long)data_page1,
1356  				EPT_RA | EPT_WA | EPT_EA |
1357  				(2 << EPT_MEM_TYPE_SHIFT));
1358 			invept(INVEPT_SINGLE, eptp);
1359 			break;
1360 		case 3:
1361 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1362 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1,
1363 						1, &data_page1_pte));
1364 			set_ept_pte(pml4, (unsigned long)data_page1,
1365 				1, data_page1_pte & ~EPT_PRESENT);
1366 			invept(INVEPT_SINGLE, eptp);
1367 			break;
1368 		case 4:
1369 			ptep = get_pte_level((pgd_t *)guest_cr3, data_page1, /*level=*/2);
1370 			guest_pte_addr = virt_to_phys(ptep) & PAGE_MASK;
1371 
1372 			TEST_ASSERT(get_ept_pte(pml4, guest_pte_addr, 2, &data_page1_pte_pte));
1373 			set_ept_pte(pml4, guest_pte_addr, 2,
1374 				data_page1_pte_pte & ~EPT_PRESENT);
1375 			invept(INVEPT_SINGLE, eptp);
1376 			break;
1377 		case 5:
1378 			install_ept(pml4, (unsigned long)pci_physaddr,
1379 				(unsigned long)pci_physaddr, 0);
1380 			invept(INVEPT_SINGLE, eptp);
1381 			break;
1382 		case 7:
1383 			if (!invept_test(0, eptp))
1384 				vmx_inc_test_stage();
1385 			break;
1386 		// Should not reach here
1387 		default:
1388 			report_fail("ERROR - unexpected stage, %d.",
1389 			       vmx_get_test_stage());
1390 			print_vmexit_info(exit_reason);
1391 			return VMX_TEST_VMEXIT;
1392 		}
1393 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1394 		return VMX_TEST_RESUME;
1395 	case VMX_EPT_MISCONFIG:
1396 		switch (vmx_get_test_stage()) {
1397 		case 1:
1398 		case 2:
1399 			vmx_inc_test_stage();
1400 			install_ept(pml4, (unsigned long)data_page1,
1401  				(unsigned long)data_page1,
1402  				EPT_RA | EPT_WA | EPT_EA);
1403 			invept(INVEPT_SINGLE, eptp);
1404 			break;
1405 		// Should not reach here
1406 		default:
1407 			report_fail("ERROR - unexpected stage, %d.",
1408 			       vmx_get_test_stage());
1409 			print_vmexit_info(exit_reason);
1410 			return VMX_TEST_VMEXIT;
1411 		}
1412 		return VMX_TEST_RESUME;
1413 	case VMX_EPT_VIOLATION:
1414 		/*
1415 		 * Exit-qualifications are masked not to account for advanced
1416 		 * VM-exit information. Once KVM supports this feature, this
1417 		 * masking should be removed.
1418 		 */
1419 		exit_qual &= ~EPT_VLT_GUEST_MASK;
1420 
1421 		switch(vmx_get_test_stage()) {
1422 		case 3:
1423 			check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
1424 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1425 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1426 			if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD |
1427 					EPT_VLT_PADDR))
1428 				vmx_inc_test_stage();
1429 			set_ept_pte(pml4, (unsigned long)data_page1,
1430 				1, data_page1_pte | (EPT_PRESENT));
1431 			invept(INVEPT_SINGLE, eptp);
1432 			break;
1433 		case 4:
1434 			check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
1435 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1436 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1437 			if (exit_qual == (EPT_VLT_RD |
1438 					  (have_ad ? EPT_VLT_WR : 0) |
1439 					  EPT_VLT_LADDR_VLD))
1440 				vmx_inc_test_stage();
1441 			set_ept_pte(pml4, guest_pte_addr, 2,
1442 				data_page1_pte_pte | (EPT_PRESENT));
1443 			invept(INVEPT_SINGLE, eptp);
1444 			break;
1445 		case 5:
1446 			if (exit_qual & EPT_VLT_RD)
1447 				vmx_inc_test_stage();
1448 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr,
1449 						1, &memaddr_pte));
1450 			set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA);
1451 			invept(INVEPT_SINGLE, eptp);
1452 			break;
1453 		case 6:
1454 			if (exit_qual & EPT_VLT_WR)
1455 				vmx_inc_test_stage();
1456 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr,
1457 						1, &memaddr_pte));
1458 			set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA | EPT_WA);
1459 			invept(INVEPT_SINGLE, eptp);
1460 			break;
1461 		default:
1462 			// Should not reach here
1463 			report_fail("ERROR : unexpected stage, %d",
1464 			       vmx_get_test_stage());
1465 			print_vmexit_info(exit_reason);
1466 			return VMX_TEST_VMEXIT;
1467 		}
1468 		return VMX_TEST_RESUME;
1469 	default:
1470 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
1471 		print_vmexit_info(exit_reason);
1472 	}
1473 	return VMX_TEST_VMEXIT;
1474 }
1475 
1476 static int ept_exit_handler(union exit_reason exit_reason)
1477 {
1478 	return ept_exit_handler_common(exit_reason, false);
1479 }
1480 
1481 static int eptad_init(struct vmcs *vmcs)
1482 {
1483 	int r = ept_init_common(true);
1484 
1485 	if (r == VMX_TEST_EXIT)
1486 		return r;
1487 
1488 	if (!ept_ad_bits_supported()) {
1489 		printf("\tEPT A/D bits are not supported");
1490 		return VMX_TEST_EXIT;
1491 	}
1492 
1493 	return r;
1494 }
1495 
1496 static int pml_init(struct vmcs *vmcs)
1497 {
1498 	u32 ctrl_cpu;
1499 	int r = eptad_init(vmcs);
1500 
1501 	if (r == VMX_TEST_EXIT)
1502 		return r;
1503 
1504 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1505 		!(ctrl_cpu_rev[1].clr & CPU_PML)) {
1506 		printf("\tPML is not supported");
1507 		return VMX_TEST_EXIT;
1508 	}
1509 
1510 	pml_log = alloc_page();
1511 	vmcs_write(PMLADDR, (u64)pml_log);
1512 	vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
1513 
1514 	ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML;
1515 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu);
1516 
1517 	return VMX_TEST_START;
1518 }
1519 
1520 static void pml_main(void)
1521 {
1522 	int count = 0;
1523 
1524 	vmx_set_test_stage(0);
1525 	*((u32 *)data_page2) = 0x1;
1526 	vmcall();
1527 	report(vmx_get_test_stage() == 1, "PML - Dirty GPA Logging");
1528 
1529 	while (vmx_get_test_stage() == 1) {
1530 		vmcall();
1531 		*((u32 *)data_page2) = 0x1;
1532 		if (count++ > PML_INDEX)
1533 			break;
1534 	}
1535 	report(vmx_get_test_stage() == 2, "PML Full Event");
1536 }
1537 
1538 static void eptad_main(void)
1539 {
1540 	ept_common();
1541 }
1542 
1543 static int eptad_exit_handler(union exit_reason exit_reason)
1544 {
1545 	return ept_exit_handler_common(exit_reason, true);
1546 }
1547 
1548 #define TIMER_VECTOR	222
1549 
1550 static volatile bool timer_fired;
1551 
1552 static void timer_isr(isr_regs_t *regs)
1553 {
1554 	timer_fired = true;
1555 	apic_write(APIC_EOI, 0);
1556 }
1557 
1558 static int interrupt_init(struct vmcs *vmcs)
1559 {
1560 	msr_bmp_init();
1561 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
1562 	handle_irq(TIMER_VECTOR, timer_isr);
1563 	return VMX_TEST_START;
1564 }
1565 
1566 static void interrupt_main(void)
1567 {
1568 	long long start, loops;
1569 
1570 	vmx_set_test_stage(0);
1571 
1572 	apic_write(APIC_LVTT, TIMER_VECTOR);
1573 	irq_enable();
1574 
1575 	apic_write(APIC_TMICT, 1);
1576 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1577 		asm volatile ("nop");
1578 	report(timer_fired, "direct interrupt while running guest");
1579 
1580 	apic_write(APIC_TMICT, 0);
1581 	irq_disable();
1582 	vmcall();
1583 	timer_fired = false;
1584 	apic_write(APIC_TMICT, 1);
1585 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1586 		asm volatile ("nop");
1587 	report(timer_fired, "intercepted interrupt while running guest");
1588 
1589 	irq_enable();
1590 	apic_write(APIC_TMICT, 0);
1591 	irq_disable();
1592 	vmcall();
1593 	timer_fired = false;
1594 	start = rdtsc();
1595 	apic_write(APIC_TMICT, 1000000);
1596 
1597 	safe_halt();
1598 
1599 	report(rdtsc() - start > 1000000 && timer_fired,
1600 	       "direct interrupt + hlt");
1601 
1602 	apic_write(APIC_TMICT, 0);
1603 	irq_disable();
1604 	vmcall();
1605 	timer_fired = false;
1606 	start = rdtsc();
1607 	apic_write(APIC_TMICT, 1000000);
1608 
1609 	safe_halt();
1610 
1611 	report(rdtsc() - start > 10000 && timer_fired,
1612 	       "intercepted interrupt + hlt");
1613 
1614 	apic_write(APIC_TMICT, 0);
1615 	irq_disable();
1616 	vmcall();
1617 	timer_fired = false;
1618 	start = rdtsc();
1619 	apic_write(APIC_TMICT, 1000000);
1620 
1621 	irq_enable();
1622 	asm volatile ("nop");
1623 	vmcall();
1624 
1625 	report(rdtsc() - start > 10000 && timer_fired,
1626 	       "direct interrupt + activity state hlt");
1627 
1628 	apic_write(APIC_TMICT, 0);
1629 	irq_disable();
1630 	vmcall();
1631 	timer_fired = false;
1632 	start = rdtsc();
1633 	apic_write(APIC_TMICT, 1000000);
1634 
1635 	irq_enable();
1636 	asm volatile ("nop");
1637 	vmcall();
1638 
1639 	report(rdtsc() - start > 10000 && timer_fired,
1640 	       "intercepted interrupt + activity state hlt");
1641 
1642 	apic_write(APIC_TMICT, 0);
1643 	irq_disable();
1644 	vmx_set_test_stage(7);
1645 	vmcall();
1646 	timer_fired = false;
1647 	apic_write(APIC_TMICT, 1);
1648 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1649 		asm volatile ("nop");
1650 	report(timer_fired,
1651 	       "running a guest with interrupt acknowledgement set");
1652 
1653 	apic_write(APIC_TMICT, 0);
1654 	irq_enable();
1655 	timer_fired = false;
1656 	vmcall();
1657 	report(timer_fired, "Inject an event to a halted guest");
1658 }
1659 
1660 static int interrupt_exit_handler(union exit_reason exit_reason)
1661 {
1662 	u64 guest_rip = vmcs_read(GUEST_RIP);
1663 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1664 
1665 	switch (exit_reason.basic) {
1666 	case VMX_VMCALL:
1667 		switch (vmx_get_test_stage()) {
1668 		case 0:
1669 		case 2:
1670 		case 5:
1671 			vmcs_write(PIN_CONTROLS,
1672 				   vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
1673 			break;
1674 		case 7:
1675 			vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA);
1676 			vmcs_write(PIN_CONTROLS,
1677 				   vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
1678 			break;
1679 		case 1:
1680 		case 3:
1681 			vmcs_write(PIN_CONTROLS,
1682 				   vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
1683 			break;
1684 		case 4:
1685 		case 6:
1686 			vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
1687 			break;
1688 
1689 		case 8:
1690 			vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
1691 			vmcs_write(ENT_INTR_INFO,
1692 				   TIMER_VECTOR |
1693 				   (VMX_INTR_TYPE_EXT_INTR << INTR_INFO_INTR_TYPE_SHIFT) |
1694 				   INTR_INFO_VALID_MASK);
1695 			break;
1696 		}
1697 		vmx_inc_test_stage();
1698 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1699 		return VMX_TEST_RESUME;
1700 	case VMX_EXTINT:
1701 		if (vmcs_read(EXI_CONTROLS) & EXI_INTA) {
1702 			int vector = vmcs_read(EXI_INTR_INFO) & 0xff;
1703 			handle_external_interrupt(vector);
1704 		} else {
1705 			irq_enable();
1706 			asm volatile ("nop");
1707 			irq_disable();
1708 		}
1709 		if (vmx_get_test_stage() >= 2)
1710 			vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
1711 		return VMX_TEST_RESUME;
1712 	default:
1713 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
1714 		print_vmexit_info(exit_reason);
1715 	}
1716 
1717 	return VMX_TEST_VMEXIT;
1718 }
1719 
1720 
1721 static volatile int nmi_fired;
1722 
1723 #define NMI_DELAY 100000000ULL
1724 
1725 static void nmi_isr(isr_regs_t *regs)
1726 {
1727 	nmi_fired = true;
1728 }
1729 
1730 static int nmi_hlt_init(struct vmcs *vmcs)
1731 {
1732 	msr_bmp_init();
1733 	handle_irq(NMI_VECTOR, nmi_isr);
1734 	vmcs_write(PIN_CONTROLS,
1735 		   vmcs_read(PIN_CONTROLS) & ~PIN_NMI);
1736 	vmcs_write(PIN_CONTROLS,
1737 		   vmcs_read(PIN_CONTROLS) & ~PIN_VIRT_NMI);
1738 	return VMX_TEST_START;
1739 }
1740 
1741 static void nmi_message_thread(void *data)
1742 {
1743     while (vmx_get_test_stage() != 1)
1744         pause();
1745 
1746     delay(NMI_DELAY);
1747     apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]);
1748 
1749     while (vmx_get_test_stage() != 2)
1750         pause();
1751 
1752     delay(NMI_DELAY);
1753     apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]);
1754 }
1755 
1756 static void nmi_hlt_main(void)
1757 {
1758     long long start;
1759 
1760     if (cpu_count() < 2) {
1761         report_skip(__func__);
1762         vmx_set_test_stage(-1);
1763         return;
1764     }
1765 
1766     vmx_set_test_stage(0);
1767     on_cpu_async(1, nmi_message_thread, NULL);
1768     start = rdtsc();
1769     vmx_set_test_stage(1);
1770     asm volatile ("hlt");
1771     report((rdtsc() - start > NMI_DELAY) && nmi_fired,
1772             "direct NMI + hlt");
1773     if (!nmi_fired)
1774         vmx_set_test_stage(-1);
1775     nmi_fired = false;
1776 
1777     vmcall();
1778 
1779     start = rdtsc();
1780     vmx_set_test_stage(2);
1781     asm volatile ("hlt");
1782     report((rdtsc() - start > NMI_DELAY) && !nmi_fired,
1783             "intercepted NMI + hlt");
1784     if (nmi_fired) {
1785         report(!nmi_fired, "intercepted NMI was dispatched");
1786         vmx_set_test_stage(-1);
1787         return;
1788     }
1789     vmx_set_test_stage(3);
1790 }
1791 
1792 static int nmi_hlt_exit_handler(union exit_reason exit_reason)
1793 {
1794     u64 guest_rip = vmcs_read(GUEST_RIP);
1795     u32 insn_len = vmcs_read(EXI_INST_LEN);
1796 
1797     switch (vmx_get_test_stage()) {
1798     case 1:
1799         if (exit_reason.basic != VMX_VMCALL) {
1800             report_fail("VMEXIT not due to vmcall. Exit reason 0x%x",
1801                         exit_reason.full);
1802             print_vmexit_info(exit_reason);
1803             return VMX_TEST_VMEXIT;
1804         }
1805 
1806         vmcs_write(PIN_CONTROLS,
1807                vmcs_read(PIN_CONTROLS) | PIN_NMI);
1808         vmcs_write(PIN_CONTROLS,
1809                vmcs_read(PIN_CONTROLS) | PIN_VIRT_NMI);
1810         vmcs_write(GUEST_RIP, guest_rip + insn_len);
1811         break;
1812 
1813     case 2:
1814         if (exit_reason.basic != VMX_EXC_NMI) {
1815             report_fail("VMEXIT not due to NMI intercept. Exit reason 0x%x",
1816                         exit_reason.full);
1817             print_vmexit_info(exit_reason);
1818             return VMX_TEST_VMEXIT;
1819         }
1820         report_pass("NMI intercept while running guest");
1821         vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
1822         break;
1823 
1824     case 3:
1825         break;
1826 
1827     default:
1828         return VMX_TEST_VMEXIT;
1829     }
1830 
1831     if (vmx_get_test_stage() == 3)
1832         return VMX_TEST_VMEXIT;
1833 
1834     return VMX_TEST_RESUME;
1835 }
1836 
1837 
1838 static int dbgctls_init(struct vmcs *vmcs)
1839 {
1840 	u64 dr7 = 0x402;
1841 	u64 zero = 0;
1842 
1843 	msr_bmp_init();
1844 	asm volatile(
1845 		"mov %0,%%dr0\n\t"
1846 		"mov %0,%%dr1\n\t"
1847 		"mov %0,%%dr2\n\t"
1848 		"mov %1,%%dr7\n\t"
1849 		: : "r" (zero), "r" (dr7));
1850 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
1851 	vmcs_write(GUEST_DR7, 0x404);
1852 	vmcs_write(GUEST_DEBUGCTL, 0x2);
1853 
1854 	vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
1855 	vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS);
1856 
1857 	return VMX_TEST_START;
1858 }
1859 
1860 static void dbgctls_main(void)
1861 {
1862 	u64 dr7, debugctl;
1863 
1864 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1865 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1866 	/* Commented out: KVM does not support DEBUGCTL so far */
1867 	(void)debugctl;
1868 	report(dr7 == 0x404, "Load debug controls" /* && debugctl == 0x2 */);
1869 
1870 	dr7 = 0x408;
1871 	asm volatile("mov %0,%%dr7" : : "r" (dr7));
1872 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
1873 
1874 	vmx_set_test_stage(0);
1875 	vmcall();
1876 	report(vmx_get_test_stage() == 1, "Save debug controls");
1877 
1878 	if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS ||
1879 	    ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) {
1880 		printf("\tDebug controls are always loaded/saved\n");
1881 		return;
1882 	}
1883 	vmx_set_test_stage(2);
1884 	vmcall();
1885 
1886 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1887 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1888 	/* Commented out: KVM does not support DEBUGCTL so far */
1889 	(void)debugctl;
1890 	report(dr7 == 0x402,
1891 	       "Guest=host debug controls" /* && debugctl == 0x1 */);
1892 
1893 	dr7 = 0x408;
1894 	asm volatile("mov %0,%%dr7" : : "r" (dr7));
1895 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
1896 
1897 	vmx_set_test_stage(3);
1898 	vmcall();
1899 	report(vmx_get_test_stage() == 4, "Don't save debug controls");
1900 }
1901 
1902 static int dbgctls_exit_handler(union exit_reason exit_reason)
1903 {
1904 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1905 	u64 guest_rip = vmcs_read(GUEST_RIP);
1906 	u64 dr7, debugctl;
1907 
1908 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1909 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1910 
1911 	switch (exit_reason.basic) {
1912 	case VMX_VMCALL:
1913 		switch (vmx_get_test_stage()) {
1914 		case 0:
1915 			if (dr7 == 0x400 && debugctl == 0 &&
1916 			    vmcs_read(GUEST_DR7) == 0x408 /* &&
1917 			    Commented out: KVM does not support DEBUGCTL so far
1918 			    vmcs_read(GUEST_DEBUGCTL) == 0x3 */)
1919 				vmx_inc_test_stage();
1920 			break;
1921 		case 2:
1922 			dr7 = 0x402;
1923 			asm volatile("mov %0,%%dr7" : : "r" (dr7));
1924 			wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
1925 			vmcs_write(GUEST_DR7, 0x404);
1926 			vmcs_write(GUEST_DEBUGCTL, 0x2);
1927 
1928 			vmcs_write(ENT_CONTROLS,
1929 				vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS);
1930 			vmcs_write(EXI_CONTROLS,
1931 				vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS);
1932 			break;
1933 		case 3:
1934 			if (dr7 == 0x400 && debugctl == 0 &&
1935 			    vmcs_read(GUEST_DR7) == 0x404 /* &&
1936 			    Commented out: KVM does not support DEBUGCTL so far
1937 			    vmcs_read(GUEST_DEBUGCTL) == 0x2 */)
1938 				vmx_inc_test_stage();
1939 			break;
1940 		}
1941 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1942 		return VMX_TEST_RESUME;
1943 	default:
1944 		report_fail("Unknown exit reason, %d", exit_reason.full);
1945 		print_vmexit_info(exit_reason);
1946 	}
1947 	return VMX_TEST_VMEXIT;
1948 }
1949 
1950 struct vmx_msr_entry {
1951 	u32 index;
1952 	u32 reserved;
1953 	u64 value;
1954 } __attribute__((packed));
1955 
1956 #define MSR_MAGIC 0x31415926
1957 struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load;
1958 
1959 static int msr_switch_init(struct vmcs *vmcs)
1960 {
1961 	msr_bmp_init();
1962 	exit_msr_store = alloc_page();
1963 	exit_msr_load = alloc_page();
1964 	entry_msr_load = alloc_page();
1965 	entry_msr_load[0].index = MSR_KERNEL_GS_BASE;
1966 	entry_msr_load[0].value = MSR_MAGIC;
1967 
1968 	vmx_set_test_stage(1);
1969 	vmcs_write(ENT_MSR_LD_CNT, 1);
1970 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load);
1971 	vmcs_write(EXI_MSR_ST_CNT, 1);
1972 	vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store);
1973 	vmcs_write(EXI_MSR_LD_CNT, 1);
1974 	vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load);
1975 	return VMX_TEST_START;
1976 }
1977 
1978 static void msr_switch_main(void)
1979 {
1980 	if (vmx_get_test_stage() == 1) {
1981 		report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC,
1982 		       "VM entry MSR load");
1983 		vmx_set_test_stage(2);
1984 		wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1);
1985 		exit_msr_store[0].index = MSR_KERNEL_GS_BASE;
1986 		exit_msr_load[0].index = MSR_KERNEL_GS_BASE;
1987 		exit_msr_load[0].value = MSR_MAGIC + 2;
1988 	}
1989 	vmcall();
1990 }
1991 
1992 static int msr_switch_exit_handler(union exit_reason exit_reason)
1993 {
1994 	if (exit_reason.basic == VMX_VMCALL && vmx_get_test_stage() == 2) {
1995 		report(exit_msr_store[0].value == MSR_MAGIC + 1,
1996 		       "VM exit MSR store");
1997 		report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2,
1998 		       "VM exit MSR load");
1999 		vmx_set_test_stage(3);
2000 		entry_msr_load[0].index = MSR_FS_BASE;
2001 		return VMX_TEST_RESUME;
2002 	}
2003 	printf("ERROR %s: unexpected stage=%u or reason=0x%x\n",
2004 		__func__, vmx_get_test_stage(), exit_reason.full);
2005 	return VMX_TEST_EXIT;
2006 }
2007 
2008 static int msr_switch_entry_failure(struct vmentry_result *result)
2009 {
2010 	if (result->vm_fail) {
2011 		printf("ERROR %s: VM-Fail on %s\n", __func__, result->instr);
2012 		return VMX_TEST_EXIT;
2013 	}
2014 
2015 	if (result->exit_reason.failed_vmentry &&
2016 	    result->exit_reason.basic == VMX_FAIL_MSR &&
2017 	    vmx_get_test_stage() == 3) {
2018 		report(vmcs_read(EXI_QUALIFICATION) == 1,
2019 		       "VM entry MSR load: try to load FS_BASE");
2020 		return VMX_TEST_VMEXIT;
2021 	}
2022 	printf("ERROR %s: unexpected stage=%u or reason=%x\n",
2023 		__func__, vmx_get_test_stage(), result->exit_reason.full);
2024 	return VMX_TEST_EXIT;
2025 }
2026 
2027 static int vmmcall_init(struct vmcs *vmcs)
2028 {
2029 	vmcs_write(EXC_BITMAP, 1 << UD_VECTOR);
2030 	return VMX_TEST_START;
2031 }
2032 
2033 static void vmmcall_main(void)
2034 {
2035 	asm volatile(
2036 		"mov $0xABCD, %%rax\n\t"
2037 		"vmmcall\n\t"
2038 		::: "rax");
2039 
2040 	report_fail("VMMCALL");
2041 }
2042 
2043 static int vmmcall_exit_handler(union exit_reason exit_reason)
2044 {
2045 	switch (exit_reason.basic) {
2046 	case VMX_VMCALL:
2047 		printf("here\n");
2048 		report_fail("VMMCALL triggers #UD");
2049 		break;
2050 	case VMX_EXC_NMI:
2051 		report((vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR,
2052 		       "VMMCALL triggers #UD");
2053 		break;
2054 	default:
2055 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
2056 		print_vmexit_info(exit_reason);
2057 	}
2058 
2059 	return VMX_TEST_VMEXIT;
2060 }
2061 
2062 static int disable_rdtscp_init(struct vmcs *vmcs)
2063 {
2064 	u32 ctrl_cpu1;
2065 
2066 	if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) {
2067 		ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
2068 		ctrl_cpu1 &= ~CPU_RDTSCP;
2069 		vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
2070 	}
2071 
2072 	return VMX_TEST_START;
2073 }
2074 
2075 static void disable_rdtscp_ud_handler(struct ex_regs *regs)
2076 {
2077 	switch (vmx_get_test_stage()) {
2078 	case 0:
2079 		report_pass("RDTSCP triggers #UD");
2080 		vmx_inc_test_stage();
2081 		regs->rip += 3;
2082 		break;
2083 	case 2:
2084 		report_pass("RDPID triggers #UD");
2085 		vmx_inc_test_stage();
2086 		regs->rip += 4;
2087 		break;
2088 	}
2089 	return;
2090 
2091 }
2092 
2093 static void disable_rdtscp_main(void)
2094 {
2095 	/* Test that #UD is properly injected in L2.  */
2096 	handle_exception(UD_VECTOR, disable_rdtscp_ud_handler);
2097 
2098 	vmx_set_test_stage(0);
2099 	asm volatile("rdtscp" : : : "eax", "ecx", "edx");
2100 	vmcall();
2101 	asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax");
2102 
2103 	handle_exception(UD_VECTOR, 0);
2104 	vmcall();
2105 }
2106 
2107 static int disable_rdtscp_exit_handler(union exit_reason exit_reason)
2108 {
2109 	switch (exit_reason.basic) {
2110 	case VMX_VMCALL:
2111 		switch (vmx_get_test_stage()) {
2112 		case 0:
2113 			report_fail("RDTSCP triggers #UD");
2114 			vmx_inc_test_stage();
2115 			/* fallthrough */
2116 		case 1:
2117 			vmx_inc_test_stage();
2118 			vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3);
2119 			return VMX_TEST_RESUME;
2120 		case 2:
2121 			report_fail("RDPID triggers #UD");
2122 			break;
2123 		}
2124 		break;
2125 
2126 	default:
2127 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
2128 		print_vmexit_info(exit_reason);
2129 	}
2130 	return VMX_TEST_VMEXIT;
2131 }
2132 
2133 static int int3_init(struct vmcs *vmcs)
2134 {
2135 	vmcs_write(EXC_BITMAP, ~0u);
2136 	return VMX_TEST_START;
2137 }
2138 
2139 static void int3_guest_main(void)
2140 {
2141 	asm volatile ("int3");
2142 }
2143 
2144 static int int3_exit_handler(union exit_reason exit_reason)
2145 {
2146 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
2147 
2148 	report(exit_reason.basic == VMX_EXC_NMI &&
2149 	       (intr_info & INTR_INFO_VALID_MASK) &&
2150 	       (intr_info & INTR_INFO_VECTOR_MASK) == BP_VECTOR &&
2151 	       ((intr_info & INTR_INFO_INTR_TYPE_MASK) >>
2152 	        INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION,
2153 	       "L1 intercepts #BP");
2154 
2155 	return VMX_TEST_VMEXIT;
2156 }
2157 
2158 static int into_init(struct vmcs *vmcs)
2159 {
2160 	vmcs_write(EXC_BITMAP, ~0u);
2161 	return VMX_TEST_START;
2162 }
2163 
2164 static void into_guest_main(void)
2165 {
2166 	struct far_pointer32 fp = {
2167 		.offset = (uintptr_t)&&into,
2168 		.selector = KERNEL_CS32,
2169 	};
2170 	uintptr_t rsp;
2171 
2172 	asm volatile ("mov %%rsp, %0" : "=r"(rsp));
2173 
2174 	if (fp.offset != (uintptr_t)&&into) {
2175 		printf("Code address too high.\n");
2176 		return;
2177 	}
2178 	if ((u32)rsp != rsp) {
2179 		printf("Stack address too high.\n");
2180 		return;
2181 	}
2182 
2183 	asm goto ("lcall *%0" : : "m" (fp) : "rax" : into);
2184 	return;
2185 into:
2186 	asm volatile (".code32;"
2187 		      "movl $0x7fffffff, %eax;"
2188 		      "addl %eax, %eax;"
2189 		      "into;"
2190 		      "lret;"
2191 		      ".code64");
2192 	__builtin_unreachable();
2193 }
2194 
2195 static int into_exit_handler(union exit_reason exit_reason)
2196 {
2197 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
2198 
2199 	report(exit_reason.basic == VMX_EXC_NMI &&
2200 	       (intr_info & INTR_INFO_VALID_MASK) &&
2201 	       (intr_info & INTR_INFO_VECTOR_MASK) == OF_VECTOR &&
2202 	       ((intr_info & INTR_INFO_INTR_TYPE_MASK) >>
2203 	        INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION,
2204 	       "L1 intercepts #OF");
2205 
2206 	return VMX_TEST_VMEXIT;
2207 }
2208 
2209 static void exit_monitor_from_l2_main(void)
2210 {
2211 	printf("Calling exit(0) from l2...\n");
2212 	exit(0);
2213 }
2214 
2215 static int exit_monitor_from_l2_handler(union exit_reason exit_reason)
2216 {
2217 	report_fail("The guest should have killed the VMM");
2218 	return VMX_TEST_EXIT;
2219 }
2220 
2221 static void assert_exit_reason(u64 expected)
2222 {
2223 	u64 actual = vmcs_read(EXI_REASON);
2224 
2225 	TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.",
2226 			   exit_reason_description(expected),
2227 			   exit_reason_description(actual));
2228 }
2229 
2230 static void skip_exit_insn(void)
2231 {
2232 	u64 guest_rip = vmcs_read(GUEST_RIP);
2233 	u32 insn_len = vmcs_read(EXI_INST_LEN);
2234 	vmcs_write(GUEST_RIP, guest_rip + insn_len);
2235 }
2236 
2237 static void skip_exit_vmcall(void)
2238 {
2239 	assert_exit_reason(VMX_VMCALL);
2240 	skip_exit_insn();
2241 }
2242 
2243 static void v2_null_test_guest(void)
2244 {
2245 }
2246 
2247 static void v2_null_test(void)
2248 {
2249 	test_set_guest(v2_null_test_guest);
2250 	enter_guest();
2251 	report_pass(__func__);
2252 }
2253 
2254 static void v2_multiple_entries_test_guest(void)
2255 {
2256 	vmx_set_test_stage(1);
2257 	vmcall();
2258 	vmx_set_test_stage(2);
2259 }
2260 
2261 static void v2_multiple_entries_test(void)
2262 {
2263 	test_set_guest(v2_multiple_entries_test_guest);
2264 	enter_guest();
2265 	TEST_ASSERT_EQ(vmx_get_test_stage(), 1);
2266 	skip_exit_vmcall();
2267 	enter_guest();
2268 	TEST_ASSERT_EQ(vmx_get_test_stage(), 2);
2269 	report_pass(__func__);
2270 }
2271 
2272 static int fixture_test_data = 1;
2273 
2274 static void fixture_test_teardown(void *data)
2275 {
2276 	*((int *) data) = 1;
2277 }
2278 
2279 static void fixture_test_guest(void)
2280 {
2281 	fixture_test_data++;
2282 }
2283 
2284 
2285 static void fixture_test_setup(void)
2286 {
2287 	TEST_ASSERT_EQ_MSG(1, fixture_test_data,
2288 			   "fixture_test_teardown didn't run?!");
2289 	fixture_test_data = 2;
2290 	test_add_teardown(fixture_test_teardown, &fixture_test_data);
2291 	test_set_guest(fixture_test_guest);
2292 }
2293 
2294 static void fixture_test_case1(void)
2295 {
2296 	fixture_test_setup();
2297 	TEST_ASSERT_EQ(2, fixture_test_data);
2298 	enter_guest();
2299 	TEST_ASSERT_EQ(3, fixture_test_data);
2300 	report_pass(__func__);
2301 }
2302 
2303 static void fixture_test_case2(void)
2304 {
2305 	fixture_test_setup();
2306 	TEST_ASSERT_EQ(2, fixture_test_data);
2307 	enter_guest();
2308 	TEST_ASSERT_EQ(3, fixture_test_data);
2309 	report_pass(__func__);
2310 }
2311 
2312 enum ept_access_op {
2313 	OP_READ,
2314 	OP_WRITE,
2315 	OP_EXEC,
2316 	OP_FLUSH_TLB,
2317 	OP_EXIT,
2318 };
2319 
2320 static struct ept_access_test_data {
2321 	unsigned long gpa;
2322 	unsigned long *gva;
2323 	unsigned long hpa;
2324 	unsigned long *hva;
2325 	enum ept_access_op op;
2326 } ept_access_test_data;
2327 
2328 extern unsigned char ret42_start;
2329 extern unsigned char ret42_end;
2330 
2331 /* Returns 42. */
2332 asm(
2333 	".align 64\n"
2334 	"ret42_start:\n"
2335 	"mov $42, %eax\n"
2336 	"ret\n"
2337 	"ret42_end:\n"
2338 );
2339 
2340 static void
2341 diagnose_ept_violation_qual(u64 expected, u64 actual)
2342 {
2343 
2344 #define DIAGNOSE(flag)							\
2345 do {									\
2346 	if ((expected & flag) != (actual & flag))			\
2347 		printf(#flag " %sexpected\n",				\
2348 		       (expected & flag) ? "" : "un");			\
2349 } while (0)
2350 
2351 	DIAGNOSE(EPT_VLT_RD);
2352 	DIAGNOSE(EPT_VLT_WR);
2353 	DIAGNOSE(EPT_VLT_FETCH);
2354 	DIAGNOSE(EPT_VLT_PERM_RD);
2355 	DIAGNOSE(EPT_VLT_PERM_WR);
2356 	DIAGNOSE(EPT_VLT_PERM_EX);
2357 	DIAGNOSE(EPT_VLT_LADDR_VLD);
2358 	DIAGNOSE(EPT_VLT_PADDR);
2359 
2360 #undef DIAGNOSE
2361 }
2362 
2363 static void do_ept_access_op(enum ept_access_op op)
2364 {
2365 	ept_access_test_data.op = op;
2366 	enter_guest();
2367 }
2368 
2369 /*
2370  * Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only
2371  * needed by tests that modify guest PTEs.
2372  */
2373 static void ept_access_test_guest_flush_tlb(void)
2374 {
2375 	do_ept_access_op(OP_FLUSH_TLB);
2376 	skip_exit_vmcall();
2377 }
2378 
2379 /*
2380  * Modifies the EPT entry at @level in the mapping of @gpa. First clears the
2381  * bits in @clear then sets the bits in @set. @mkhuge transforms the entry into
2382  * a huge page.
2383  */
2384 static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level,
2385 				 unsigned long clear, unsigned long set)
2386 {
2387 	struct ept_access_test_data *data = &ept_access_test_data;
2388 	unsigned long orig_pte;
2389 	unsigned long pte;
2390 
2391 	/* Screw with the mapping at the requested level. */
2392 	TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte));
2393 	pte = orig_pte;
2394 	if (mkhuge)
2395 		pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE;
2396 	else
2397 		pte = orig_pte;
2398 	pte = (pte & ~clear) | set;
2399 	set_ept_pte(pml4, gpa, level, pte);
2400 	invept(INVEPT_SINGLE, eptp);
2401 
2402 	return orig_pte;
2403 }
2404 
2405 static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte)
2406 {
2407 	set_ept_pte(pml4, gpa, level, orig_pte);
2408 	invept(INVEPT_SINGLE, eptp);
2409 }
2410 
2411 static void do_ept_violation(bool leaf, enum ept_access_op op,
2412 			     u64 expected_qual, u64 expected_paddr)
2413 {
2414 	u64 qual;
2415 
2416 	/* Try the access and observe the violation. */
2417 	do_ept_access_op(op);
2418 
2419 	assert_exit_reason(VMX_EPT_VIOLATION);
2420 
2421 	qual = vmcs_read(EXI_QUALIFICATION);
2422 
2423 	/* Mask undefined bits (which may later be defined in certain cases). */
2424 	qual &= ~(EPT_VLT_GUEST_USER | EPT_VLT_GUEST_RW | EPT_VLT_GUEST_EX |
2425 		 EPT_VLT_PERM_USER_EX);
2426 
2427 	diagnose_ept_violation_qual(expected_qual, qual);
2428 	TEST_EXPECT_EQ(expected_qual, qual);
2429 
2430 	#if 0
2431 	/* Disable for now otherwise every test will fail */
2432 	TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
2433 		       (unsigned long) (
2434 			       op == OP_EXEC ? data->gva + 1 : data->gva));
2435 	#endif
2436 	/*
2437 	 * TODO: tests that probe expected_paddr in pages other than the one at
2438 	 * the beginning of the 1g region.
2439 	 */
2440 	TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr);
2441 }
2442 
2443 static void
2444 ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear,
2445 			      unsigned long set, enum ept_access_op op,
2446 			      u64 expected_qual)
2447 {
2448 	struct ept_access_test_data *data = &ept_access_test_data;
2449 	unsigned long orig_pte;
2450 
2451 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2452 
2453 	do_ept_violation(level == 1 || mkhuge, op, expected_qual,
2454 			 op == OP_EXEC ? data->gpa + sizeof(unsigned long) :
2455 					 data->gpa);
2456 
2457 	/* Fix the violation and resume the op loop. */
2458 	ept_untwiddle(data->gpa, level, orig_pte);
2459 	enter_guest();
2460 	skip_exit_vmcall();
2461 }
2462 
2463 static void
2464 ept_violation_at_level(int level, unsigned long clear, unsigned long set,
2465 		       enum ept_access_op op, u64 expected_qual)
2466 {
2467 	ept_violation_at_level_mkhuge(false, level, clear, set, op,
2468 				      expected_qual);
2469 	if (ept_huge_pages_supported(level))
2470 		ept_violation_at_level_mkhuge(true, level, clear, set, op,
2471 					      expected_qual);
2472 }
2473 
2474 static void ept_violation(unsigned long clear, unsigned long set,
2475 			  enum ept_access_op op, u64 expected_qual)
2476 {
2477 	ept_violation_at_level(1, clear, set, op, expected_qual);
2478 	ept_violation_at_level(2, clear, set, op, expected_qual);
2479 	ept_violation_at_level(3, clear, set, op, expected_qual);
2480 	ept_violation_at_level(4, clear, set, op, expected_qual);
2481 }
2482 
2483 static void ept_access_violation(unsigned long access, enum ept_access_op op,
2484 				       u64 expected_qual)
2485 {
2486 	ept_violation(EPT_PRESENT, access, op,
2487 		      expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2488 }
2489 
2490 /*
2491  * For translations that don't involve a GVA, that is physical address (paddr)
2492  * accesses, EPT violations don't set the flag EPT_VLT_PADDR.  For a typical
2493  * guest memory access, the hardware does GVA -> GPA -> HPA.  However, certain
2494  * translations don't involve GVAs, such as when the hardware does the guest
2495  * page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU
2496  * might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides
2497  * on isn't present in the EPT, then the EPT violation will be for GPA_2 and
2498  * the EPT_VLT_PADDR bit will be clear in the exit qualification.
2499  *
2500  * Note that paddr violations can also be triggered by loading PAE page tables
2501  * with wonky addresses. We don't test that yet.
2502  *
2503  * This function modifies the EPT entry that maps the GPA that the guest page
2504  * table entry mapping ept_access_test_data.gva resides on.
2505  *
2506  *	@ept_access	EPT permissions to set. Other permissions are cleared.
2507  *
2508  *	@pte_ad		Set the A/D bits on the guest PTE accordingly.
2509  *
2510  *	@op		Guest operation to perform with
2511  *			ept_access_test_data.gva.
2512  *
2513  *	@expect_violation
2514  *			Is a violation expected during the paddr access?
2515  *
2516  *	@expected_qual	Expected qualification for the EPT violation.
2517  *			EPT_VLT_PADDR should be clear.
2518  */
2519 static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad,
2520 			     enum ept_access_op op, bool expect_violation,
2521 			     u64 expected_qual)
2522 {
2523 	struct ept_access_test_data *data = &ept_access_test_data;
2524 	unsigned long *ptep;
2525 	unsigned long gpa;
2526 	unsigned long orig_epte;
2527 	unsigned long epte;
2528 	int i;
2529 
2530 	/* Modify the guest PTE mapping data->gva according to @pte_ad.  */
2531 	ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1);
2532 	TEST_ASSERT(ptep);
2533 	TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa);
2534 	*ptep = (*ptep & ~PT_AD_MASK) | pte_ad;
2535 	ept_access_test_guest_flush_tlb();
2536 
2537 	/*
2538 	 * Now modify the access bits on the EPT entry for the GPA that the
2539 	 * guest PTE resides on. Note that by modifying a single EPT entry,
2540 	 * we're potentially affecting 512 guest PTEs. However, we've carefully
2541 	 * constructed our test such that those other 511 PTEs aren't used by
2542 	 * the guest: data->gva is at the beginning of a 1G huge page, thus the
2543 	 * PTE we're modifying is at the beginning of a 4K page and the
2544 	 * following 511 entires are also under our control (and not touched by
2545 	 * the guest).
2546 	 */
2547 	gpa = virt_to_phys(ptep);
2548 	TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0);
2549 	/*
2550 	 * Make sure the guest page table page is mapped with a 4K EPT entry,
2551 	 * otherwise our level=1 twiddling below will fail. We use the
2552 	 * identity map (gpa = gpa) since page tables are shared with the host.
2553 	 */
2554 	install_ept(pml4, gpa, gpa, EPT_PRESENT);
2555 	orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1,
2556 				/*clear=*/EPT_PRESENT, /*set=*/ept_access);
2557 
2558 	if (expect_violation) {
2559 		do_ept_violation(/*leaf=*/true, op,
2560 				 expected_qual | EPT_VLT_LADDR_VLD, gpa);
2561 		ept_untwiddle(gpa, /*level=*/1, orig_epte);
2562 		do_ept_access_op(op);
2563 	} else {
2564 		do_ept_access_op(op);
2565 		if (ept_ad_enabled()) {
2566 			for (i = EPT_PAGE_LEVEL; i > 0; i--) {
2567 				TEST_ASSERT(get_ept_pte(pml4, gpa, i, &epte));
2568 				TEST_ASSERT(epte & EPT_ACCESS_FLAG);
2569 				if (i == 1)
2570 					TEST_ASSERT(epte & EPT_DIRTY_FLAG);
2571 				else
2572 					TEST_ASSERT_EQ(epte & EPT_DIRTY_FLAG, 0);
2573 			}
2574 		}
2575 
2576 		ept_untwiddle(gpa, /*level=*/1, orig_epte);
2577 	}
2578 
2579 	TEST_ASSERT(*ptep & PT_ACCESSED_MASK);
2580 	if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE)
2581 		TEST_ASSERT(*ptep & PT_DIRTY_MASK);
2582 
2583 	skip_exit_vmcall();
2584 }
2585 
2586 static void ept_access_allowed_paddr(unsigned long ept_access,
2587 				     unsigned long pte_ad,
2588 				     enum ept_access_op op)
2589 {
2590 	ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false,
2591 			 /*expected_qual=*/-1);
2592 }
2593 
2594 static void ept_access_violation_paddr(unsigned long ept_access,
2595 				       unsigned long pte_ad,
2596 				       enum ept_access_op op,
2597 				       u64 expected_qual)
2598 {
2599 	ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true,
2600 			 expected_qual);
2601 }
2602 
2603 
2604 static void ept_allowed_at_level_mkhuge(bool mkhuge, int level,
2605 					unsigned long clear,
2606 					unsigned long set,
2607 					enum ept_access_op op)
2608 {
2609 	struct ept_access_test_data *data = &ept_access_test_data;
2610 	unsigned long orig_pte;
2611 
2612 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2613 
2614 	/* No violation. Should proceed to vmcall. */
2615 	do_ept_access_op(op);
2616 	skip_exit_vmcall();
2617 
2618 	ept_untwiddle(data->gpa, level, orig_pte);
2619 }
2620 
2621 static void ept_allowed_at_level(int level, unsigned long clear,
2622 				 unsigned long set, enum ept_access_op op)
2623 {
2624 	ept_allowed_at_level_mkhuge(false, level, clear, set, op);
2625 	if (ept_huge_pages_supported(level))
2626 		ept_allowed_at_level_mkhuge(true, level, clear, set, op);
2627 }
2628 
2629 static void ept_allowed(unsigned long clear, unsigned long set,
2630 			enum ept_access_op op)
2631 {
2632 	ept_allowed_at_level(1, clear, set, op);
2633 	ept_allowed_at_level(2, clear, set, op);
2634 	ept_allowed_at_level(3, clear, set, op);
2635 	ept_allowed_at_level(4, clear, set, op);
2636 }
2637 
2638 static void ept_ignored_bit(int bit)
2639 {
2640 	/* Set the bit. */
2641 	ept_allowed(0, 1ul << bit, OP_READ);
2642 	ept_allowed(0, 1ul << bit, OP_WRITE);
2643 	ept_allowed(0, 1ul << bit, OP_EXEC);
2644 
2645 	/* Clear the bit. */
2646 	ept_allowed(1ul << bit, 0, OP_READ);
2647 	ept_allowed(1ul << bit, 0, OP_WRITE);
2648 	ept_allowed(1ul << bit, 0, OP_EXEC);
2649 }
2650 
2651 static void ept_access_allowed(unsigned long access, enum ept_access_op op)
2652 {
2653 	ept_allowed(EPT_PRESENT, access, op);
2654 }
2655 
2656 
2657 static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level,
2658 					     unsigned long clear,
2659 					     unsigned long set,
2660 					     enum ept_access_op op)
2661 {
2662 	struct ept_access_test_data *data = &ept_access_test_data;
2663 	unsigned long orig_pte;
2664 
2665 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2666 
2667 	do_ept_access_op(op);
2668 	assert_exit_reason(VMX_EPT_MISCONFIG);
2669 
2670 	/* Intel 27.2.1, "For all other VM exits, this field is cleared." */
2671 	#if 0
2672 	/* broken: */
2673 	TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0);
2674 	#endif
2675 	#if 0
2676 	/*
2677 	 * broken:
2678 	 * According to description of exit qual for EPT violation,
2679 	 * EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid.
2680 	 * However, I can't find anything that says GUEST_LINEAR_ADDRESS ought
2681 	 * to be set for msiconfig.
2682 	 */
2683 	TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
2684 		       (unsigned long) (
2685 			       op == OP_EXEC ? data->gva + 1 : data->gva));
2686 	#endif
2687 
2688 	/* Fix the violation and resume the op loop. */
2689 	ept_untwiddle(data->gpa, level, orig_pte);
2690 	enter_guest();
2691 	skip_exit_vmcall();
2692 }
2693 
2694 static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level,
2695 					  unsigned long clear,
2696 					  unsigned long set)
2697 {
2698 	/* The op shouldn't matter (read, write, exec), so try them all! */
2699 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ);
2700 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE);
2701 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC);
2702 }
2703 
2704 static void ept_misconfig_at_level(int level, unsigned long clear,
2705 				   unsigned long set)
2706 {
2707 	ept_misconfig_at_level_mkhuge(false, level, clear, set);
2708 	if (ept_huge_pages_supported(level))
2709 		ept_misconfig_at_level_mkhuge(true, level, clear, set);
2710 }
2711 
2712 static void ept_misconfig(unsigned long clear, unsigned long set)
2713 {
2714 	ept_misconfig_at_level(1, clear, set);
2715 	ept_misconfig_at_level(2, clear, set);
2716 	ept_misconfig_at_level(3, clear, set);
2717 	ept_misconfig_at_level(4, clear, set);
2718 }
2719 
2720 static void ept_access_misconfig(unsigned long access)
2721 {
2722 	ept_misconfig(EPT_PRESENT, access);
2723 }
2724 
2725 static void ept_reserved_bit_at_level_nohuge(int level, int bit)
2726 {
2727 	/* Setting the bit causes a misconfig. */
2728 	ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit);
2729 
2730 	/* Making the entry non-present turns reserved bits into ignored. */
2731 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2732 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2733 }
2734 
2735 static void ept_reserved_bit_at_level_huge(int level, int bit)
2736 {
2737 	/* Setting the bit causes a misconfig. */
2738 	ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit);
2739 
2740 	/* Making the entry non-present turns reserved bits into ignored. */
2741 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2742 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2743 }
2744 
2745 static void ept_reserved_bit_at_level(int level, int bit)
2746 {
2747 	/* Setting the bit causes a misconfig. */
2748 	ept_misconfig_at_level(level, 0, 1ul << bit);
2749 
2750 	/* Making the entry non-present turns reserved bits into ignored. */
2751 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2752 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2753 }
2754 
2755 static void ept_reserved_bit(int bit)
2756 {
2757 	ept_reserved_bit_at_level(1, bit);
2758 	ept_reserved_bit_at_level(2, bit);
2759 	ept_reserved_bit_at_level(3, bit);
2760 	ept_reserved_bit_at_level(4, bit);
2761 }
2762 
2763 #define PAGE_2M_ORDER 9
2764 #define PAGE_1G_ORDER 18
2765 
2766 static void *get_1g_page(void)
2767 {
2768 	static void *alloc;
2769 
2770 	if (!alloc)
2771 		alloc = alloc_pages(PAGE_1G_ORDER);
2772 	return alloc;
2773 }
2774 
2775 static void ept_access_test_teardown(void *unused)
2776 {
2777 	/* Exit the guest cleanly. */
2778 	do_ept_access_op(OP_EXIT);
2779 }
2780 
2781 static void ept_access_test_guest(void)
2782 {
2783 	struct ept_access_test_data *data = &ept_access_test_data;
2784 	int (*code)(void) = (int (*)(void)) &data->gva[1];
2785 
2786 	while (true) {
2787 		switch (data->op) {
2788 		case OP_READ:
2789 			TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1);
2790 			break;
2791 		case OP_WRITE:
2792 			*data->gva = MAGIC_VAL_2;
2793 			TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2);
2794 			*data->gva = MAGIC_VAL_1;
2795 			break;
2796 		case OP_EXEC:
2797 			TEST_ASSERT_EQ(42, code());
2798 			break;
2799 		case OP_FLUSH_TLB:
2800 			write_cr3(read_cr3());
2801 			break;
2802 		case OP_EXIT:
2803 			return;
2804 		default:
2805 			TEST_ASSERT_MSG(false, "Unknown op %d", data->op);
2806 		}
2807 		vmcall();
2808 	}
2809 }
2810 
2811 static void ept_access_test_setup(void)
2812 {
2813 	struct ept_access_test_data *data = &ept_access_test_data;
2814 	unsigned long npages = 1ul << PAGE_1G_ORDER;
2815 	unsigned long size = npages * PAGE_SIZE;
2816 	unsigned long *page_table = current_page_table();
2817 	unsigned long pte;
2818 
2819 	if (setup_ept(false))
2820 		test_skip("EPT not supported");
2821 
2822 	/* We use data->gpa = 1 << 39 so that test data has a separate pml4 entry */
2823 	if (cpuid_maxphyaddr() < 40)
2824 		test_skip("Test needs MAXPHYADDR >= 40");
2825 
2826 	test_set_guest(ept_access_test_guest);
2827 	test_add_teardown(ept_access_test_teardown, NULL);
2828 
2829 	data->hva = get_1g_page();
2830 	TEST_ASSERT(data->hva);
2831 	data->hpa = virt_to_phys(data->hva);
2832 
2833 	data->gpa = 1ul << 39;
2834 	data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2),
2835 				   size);
2836 	TEST_ASSERT(!any_present_pages(page_table, data->gva, size));
2837 	install_pages(page_table, data->gpa, size, data->gva);
2838 
2839 	/*
2840 	 * Make sure nothing's mapped here so the tests that screw with the
2841 	 * pml4 entry don't inadvertently break something.
2842 	 */
2843 	TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0);
2844 	TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0);
2845 	install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT);
2846 
2847 	data->hva[0] = MAGIC_VAL_1;
2848 	memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start);
2849 }
2850 
2851 static void ept_access_test_not_present(void)
2852 {
2853 	ept_access_test_setup();
2854 	/* --- */
2855 	ept_access_violation(0, OP_READ, EPT_VLT_RD);
2856 	ept_access_violation(0, OP_WRITE, EPT_VLT_WR);
2857 	ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH);
2858 }
2859 
2860 static void ept_access_test_read_only(void)
2861 {
2862 	ept_access_test_setup();
2863 
2864 	/* r-- */
2865 	ept_access_allowed(EPT_RA, OP_READ);
2866 	ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD);
2867 	ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD);
2868 }
2869 
2870 static void ept_access_test_write_only(void)
2871 {
2872 	ept_access_test_setup();
2873 	/* -w- */
2874 	ept_access_misconfig(EPT_WA);
2875 }
2876 
2877 static void ept_access_test_read_write(void)
2878 {
2879 	ept_access_test_setup();
2880 	/* rw- */
2881 	ept_access_allowed(EPT_RA | EPT_WA, OP_READ);
2882 	ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE);
2883 	ept_access_violation(EPT_RA | EPT_WA, OP_EXEC,
2884 			   EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR);
2885 }
2886 
2887 
2888 static void ept_access_test_execute_only(void)
2889 {
2890 	ept_access_test_setup();
2891 	/* --x */
2892 	if (ept_execute_only_supported()) {
2893 		ept_access_violation(EPT_EA, OP_READ,
2894 				     EPT_VLT_RD | EPT_VLT_PERM_EX);
2895 		ept_access_violation(EPT_EA, OP_WRITE,
2896 				     EPT_VLT_WR | EPT_VLT_PERM_EX);
2897 		ept_access_allowed(EPT_EA, OP_EXEC);
2898 	} else {
2899 		ept_access_misconfig(EPT_EA);
2900 	}
2901 }
2902 
2903 static void ept_access_test_read_execute(void)
2904 {
2905 	ept_access_test_setup();
2906 	/* r-x */
2907 	ept_access_allowed(EPT_RA | EPT_EA, OP_READ);
2908 	ept_access_violation(EPT_RA | EPT_EA, OP_WRITE,
2909 			   EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX);
2910 	ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC);
2911 }
2912 
2913 static void ept_access_test_write_execute(void)
2914 {
2915 	ept_access_test_setup();
2916 	/* -wx */
2917 	ept_access_misconfig(EPT_WA | EPT_EA);
2918 }
2919 
2920 static void ept_access_test_read_write_execute(void)
2921 {
2922 	ept_access_test_setup();
2923 	/* rwx */
2924 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ);
2925 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE);
2926 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC);
2927 }
2928 
2929 static void ept_access_test_reserved_bits(void)
2930 {
2931 	int i;
2932 	int maxphyaddr;
2933 
2934 	ept_access_test_setup();
2935 
2936 	/* Reserved bits above maxphyaddr. */
2937 	maxphyaddr = cpuid_maxphyaddr();
2938 	for (i = maxphyaddr; i <= 51; i++) {
2939 		report_prefix_pushf("reserved_bit=%d", i);
2940 		ept_reserved_bit(i);
2941 		report_prefix_pop();
2942 	}
2943 
2944 	/* Level-specific reserved bits. */
2945 	ept_reserved_bit_at_level_nohuge(2, 3);
2946 	ept_reserved_bit_at_level_nohuge(2, 4);
2947 	ept_reserved_bit_at_level_nohuge(2, 5);
2948 	ept_reserved_bit_at_level_nohuge(2, 6);
2949 	/* 2M alignment. */
2950 	for (i = 12; i < 20; i++) {
2951 		report_prefix_pushf("reserved_bit=%d", i);
2952 		ept_reserved_bit_at_level_huge(2, i);
2953 		report_prefix_pop();
2954 	}
2955 	ept_reserved_bit_at_level_nohuge(3, 3);
2956 	ept_reserved_bit_at_level_nohuge(3, 4);
2957 	ept_reserved_bit_at_level_nohuge(3, 5);
2958 	ept_reserved_bit_at_level_nohuge(3, 6);
2959 	/* 1G alignment. */
2960 	for (i = 12; i < 29; i++) {
2961 		report_prefix_pushf("reserved_bit=%d", i);
2962 		ept_reserved_bit_at_level_huge(3, i);
2963 		report_prefix_pop();
2964 	}
2965 	ept_reserved_bit_at_level(4, 3);
2966 	ept_reserved_bit_at_level(4, 4);
2967 	ept_reserved_bit_at_level(4, 5);
2968 	ept_reserved_bit_at_level(4, 6);
2969 	ept_reserved_bit_at_level(4, 7);
2970 }
2971 
2972 static void ept_access_test_ignored_bits(void)
2973 {
2974 	ept_access_test_setup();
2975 	/*
2976 	 * Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as
2977 	 * far as translation is concerned even if AD bits are enabled in the
2978 	 * EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution
2979 	 * control is 0.
2980 	 */
2981 	ept_ignored_bit(8);
2982 	ept_ignored_bit(9);
2983 	ept_ignored_bit(10);
2984 	ept_ignored_bit(11);
2985 	ept_ignored_bit(52);
2986 	ept_ignored_bit(53);
2987 	ept_ignored_bit(54);
2988 	ept_ignored_bit(55);
2989 	ept_ignored_bit(56);
2990 	ept_ignored_bit(57);
2991 	ept_ignored_bit(58);
2992 	ept_ignored_bit(59);
2993 	ept_ignored_bit(60);
2994 	ept_ignored_bit(61);
2995 	ept_ignored_bit(62);
2996 	ept_ignored_bit(63);
2997 }
2998 
2999 static void ept_access_test_paddr_not_present_ad_disabled(void)
3000 {
3001 	ept_access_test_setup();
3002 	ept_disable_ad_bits();
3003 
3004 	ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD);
3005 	ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD);
3006 	ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD);
3007 }
3008 
3009 static void ept_access_test_paddr_not_present_ad_enabled(void)
3010 {
3011 	u64 qual = EPT_VLT_RD | EPT_VLT_WR;
3012 
3013 	ept_access_test_setup();
3014 	ept_enable_ad_bits_or_skip_test();
3015 
3016 	ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual);
3017 	ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual);
3018 	ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual);
3019 }
3020 
3021 static void ept_access_test_paddr_read_only_ad_disabled(void)
3022 {
3023 	/*
3024 	 * When EPT AD bits are disabled, all accesses to guest paging
3025 	 * structures are reported separately as a read and (after
3026 	 * translation of the GPA to host physical address) a read+write
3027 	 * if the A/D bits have to be set.
3028 	 */
3029 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
3030 
3031 	ept_access_test_setup();
3032 	ept_disable_ad_bits();
3033 
3034 	/* Can't update A bit, so all accesses fail. */
3035 	ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
3036 	ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
3037 	ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
3038 	/* AD bits disabled, so only writes try to update the D bit. */
3039 	ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ);
3040 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
3041 	ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC);
3042 	/* Both A and D already set, so read-only is OK. */
3043 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ);
3044 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE);
3045 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC);
3046 }
3047 
3048 static void ept_access_test_paddr_read_only_ad_enabled(void)
3049 {
3050 	/*
3051 	 * When EPT AD bits are enabled, all accesses to guest paging
3052 	 * structures are considered writes as far as EPT translation
3053 	 * is concerned.
3054 	 */
3055 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
3056 
3057 	ept_access_test_setup();
3058 	ept_enable_ad_bits_or_skip_test();
3059 
3060 	ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
3061 	ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
3062 	ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
3063 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual);
3064 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
3065 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual);
3066 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual);
3067 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual);
3068 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual);
3069 }
3070 
3071 static void ept_access_test_paddr_read_write(void)
3072 {
3073 	ept_access_test_setup();
3074 	/* Read-write access to paging structure. */
3075 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ);
3076 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE);
3077 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC);
3078 }
3079 
3080 static void ept_access_test_paddr_read_write_execute(void)
3081 {
3082 	ept_access_test_setup();
3083 	/* RWX access to paging structure. */
3084 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ);
3085 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE);
3086 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC);
3087 }
3088 
3089 static void ept_access_test_paddr_read_execute_ad_disabled(void)
3090 {
3091   	/*
3092 	 * When EPT AD bits are disabled, all accesses to guest paging
3093 	 * structures are reported separately as a read and (after
3094 	 * translation of the GPA to host physical address) a read+write
3095 	 * if the A/D bits have to be set.
3096 	 */
3097 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
3098 
3099 	ept_access_test_setup();
3100 	ept_disable_ad_bits();
3101 
3102 	/* Can't update A bit, so all accesses fail. */
3103 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
3104 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
3105 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
3106 	/* AD bits disabled, so only writes try to update the D bit. */
3107 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ);
3108 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
3109 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC);
3110 	/* Both A and D already set, so read-only is OK. */
3111 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ);
3112 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE);
3113 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC);
3114 }
3115 
3116 static void ept_access_test_paddr_read_execute_ad_enabled(void)
3117 {
3118 	/*
3119 	 * When EPT AD bits are enabled, all accesses to guest paging
3120 	 * structures are considered writes as far as EPT translation
3121 	 * is concerned.
3122 	 */
3123 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
3124 
3125 	ept_access_test_setup();
3126 	ept_enable_ad_bits_or_skip_test();
3127 
3128 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
3129 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
3130 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
3131 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual);
3132 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
3133 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual);
3134 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual);
3135 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual);
3136 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual);
3137 }
3138 
3139 static void ept_access_test_paddr_not_present_page_fault(void)
3140 {
3141 	ept_access_test_setup();
3142 	/*
3143 	 * TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is
3144 	 * page is read-only in EPT but GVA is also mapped read only in PT.
3145 	 * Thus guest page fault before host takes EPT violation for trying to
3146 	 * update A bit.
3147 	 */
3148 }
3149 
3150 static void ept_access_test_force_2m_page(void)
3151 {
3152 	ept_access_test_setup();
3153 
3154 	TEST_ASSERT_EQ(ept_2m_supported(), true);
3155 	ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ);
3156 	ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE,
3157 				      EPT_VLT_WR | EPT_VLT_PERM_RD |
3158 				      EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
3159 	ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA);
3160 }
3161 
3162 static bool invvpid_valid(u64 type, u64 vpid, u64 gla)
3163 {
3164 	if (!is_invvpid_type_supported(type))
3165 		return false;
3166 
3167 	if (vpid >> 16)
3168 		return false;
3169 
3170 	if (type != INVVPID_ALL && !vpid)
3171 		return false;
3172 
3173 	if (type == INVVPID_ADDR && !is_canonical(gla))
3174 		return false;
3175 
3176 	return true;
3177 }
3178 
3179 static void try_invvpid(u64 type, u64 vpid, u64 gla)
3180 {
3181 	int rc;
3182 	bool valid = invvpid_valid(type, vpid, gla);
3183 	u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT
3184 		: VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID;
3185 	/*
3186 	 * Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so
3187 	 * that we can tell if it is updated by INVVPID.
3188 	 */
3189 	vmcs_read(~0);
3190 	rc = __invvpid(type, vpid, gla);
3191 	report(!rc == valid, "INVVPID type %ld VPID %lx GLA %lx %s", type,
3192 	       vpid, gla,
3193 	       valid ? "passes" : "fails");
3194 	report(vmcs_read(VMX_INST_ERROR) == expected,
3195 	       "After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)",
3196 	       rc ? "failed" : "successful",
3197 	       expected, vmcs_read(VMX_INST_ERROR));
3198 }
3199 
3200 static inline unsigned long get_first_supported_invvpid_type(void)
3201 {
3202 	u64 type = ffs(ept_vpid.val >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
3203 
3204 	__TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
3205 	return type;
3206 }
3207 
3208 static void ds_invvpid(void *data)
3209 {
3210 	asm volatile("invvpid %0, %1"
3211 		     :
3212 		     : "m"(*(struct invvpid_operand *)data),
3213 		       "r"(get_first_supported_invvpid_type()));
3214 }
3215 
3216 /*
3217  * The SS override is ignored in 64-bit mode, so we use an addressing
3218  * mode with %rsp as the base register to generate an implicit SS
3219  * reference.
3220  */
3221 static void ss_invvpid(void *data)
3222 {
3223 	asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1"
3224 		     : "+r"(data)
3225 		     : "r"(get_first_supported_invvpid_type()));
3226 }
3227 
3228 static void invvpid_test_gp(void)
3229 {
3230 	bool fault;
3231 
3232 	fault = test_for_exception(GP_VECTOR, &ds_invvpid,
3233 				   (void *)NONCANONICAL);
3234 	report(fault, "INVVPID with non-canonical DS operand raises #GP");
3235 }
3236 
3237 static void invvpid_test_ss(void)
3238 {
3239 	bool fault;
3240 
3241 	fault = test_for_exception(SS_VECTOR, &ss_invvpid,
3242 				   (void *)NONCANONICAL);
3243 	report(fault, "INVVPID with non-canonical SS operand raises #SS");
3244 }
3245 
3246 static void invvpid_test_pf(void)
3247 {
3248 	void *vpage = alloc_vpage();
3249 	bool fault;
3250 
3251 	fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage);
3252 	report(fault, "INVVPID with unmapped operand raises #PF");
3253 }
3254 
3255 static void try_compat_invvpid(void *unused)
3256 {
3257 	struct far_pointer32 fp = {
3258 		.offset = (uintptr_t)&&invvpid,
3259 		.selector = KERNEL_CS32,
3260 	};
3261 	uintptr_t rsp;
3262 
3263 	asm volatile ("mov %%rsp, %0" : "=r"(rsp));
3264 
3265 	TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid,
3266 			"Code address too high.");
3267 	TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high.");
3268 
3269 	asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid);
3270 	return;
3271 invvpid:
3272 	asm volatile (".code32;"
3273 		      "invvpid (%eax), %eax;"
3274 		      "lret;"
3275 		      ".code64");
3276 	__builtin_unreachable();
3277 }
3278 
3279 static void invvpid_test_compatibility_mode(void)
3280 {
3281 	bool fault;
3282 
3283 	fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL);
3284 	report(fault, "Compatibility mode INVVPID raises #UD");
3285 }
3286 
3287 static void invvpid_test_not_in_vmx_operation(void)
3288 {
3289 	bool fault;
3290 
3291 	TEST_ASSERT(!vmx_off());
3292 	fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL);
3293 	report(fault, "INVVPID outside of VMX operation raises #UD");
3294 	TEST_ASSERT(!vmx_on());
3295 }
3296 
3297 /*
3298  * This does not test real-address mode, virtual-8086 mode, protected mode,
3299  * or CPL > 0.
3300  */
3301 static void invvpid_test(void)
3302 {
3303 	int i;
3304 	unsigned types = 0;
3305 	unsigned type;
3306 
3307 	if (!is_vpid_supported())
3308 		test_skip("VPID not supported");
3309 
3310 	if (!is_invvpid_supported())
3311 		test_skip("INVVPID not supported.\n");
3312 
3313 	if (is_invvpid_type_supported(INVVPID_ADDR))
3314 		types |= 1u << INVVPID_ADDR;
3315 	if (is_invvpid_type_supported(INVVPID_CONTEXT_GLOBAL))
3316 		types |= 1u << INVVPID_CONTEXT_GLOBAL;
3317 	if (is_invvpid_type_supported(INVVPID_ALL))
3318 		types |= 1u << INVVPID_ALL;
3319 	if (is_invvpid_type_supported(INVVPID_CONTEXT_LOCAL))
3320 		types |= 1u << INVVPID_CONTEXT_LOCAL;
3321 
3322 	if (!types)
3323 		test_skip("No INVVPID types supported.\n");
3324 
3325 	for (i = -127; i < 128; i++)
3326 		try_invvpid(i, 0xffff, 0);
3327 
3328 	/*
3329 	 * VPID must not be more than 16 bits.
3330 	 */
3331 	for (i = 0; i < 64; i++)
3332 		for (type = 0; type < 4; type++)
3333 			if (types & (1u << type))
3334 				try_invvpid(type, 1ul << i, 0);
3335 
3336 	/*
3337 	 * VPID must not be zero, except for "all contexts."
3338 	 */
3339 	for (type = 0; type < 4; type++)
3340 		if (types & (1u << type))
3341 			try_invvpid(type, 0, 0);
3342 
3343 	/*
3344 	 * The gla operand is only validated for single-address INVVPID.
3345 	 */
3346 	if (types & (1u << INVVPID_ADDR))
3347 		try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL);
3348 
3349 	invvpid_test_gp();
3350 	invvpid_test_ss();
3351 	invvpid_test_pf();
3352 	invvpid_test_compatibility_mode();
3353 	invvpid_test_not_in_vmx_operation();
3354 }
3355 
3356 /*
3357  * Test for early VMLAUNCH failure. Returns true if VMLAUNCH makes it
3358  * at least as far as the guest-state checks. Returns false if the
3359  * VMLAUNCH fails early and execution falls through to the next
3360  * instruction.
3361  */
3362 static bool vmlaunch_succeeds(void)
3363 {
3364 	u32 exit_reason;
3365 
3366 	/*
3367 	 * Indirectly set VMX_INST_ERR to 12 ("VMREAD/VMWRITE from/to
3368 	 * unsupported VMCS component"). The caller can then check
3369 	 * to see if a failed VM-entry sets VMX_INST_ERR as expected.
3370 	 */
3371 	vmcs_write(~0u, 0);
3372 
3373 	vmcs_write(HOST_RIP, (uintptr_t)&&success);
3374 	__asm__ __volatile__ goto ("vmwrite %%rsp, %0; vmlaunch"
3375 				   :
3376 				   : "r" ((u64)HOST_RSP)
3377 				   : "cc", "memory"
3378 				   : success);
3379 	return false;
3380 success:
3381 	exit_reason = vmcs_read(EXI_REASON);
3382 	TEST_ASSERT(exit_reason == (VMX_FAIL_STATE | VMX_ENTRY_FAILURE) ||
3383 		    exit_reason == (VMX_FAIL_MSR | VMX_ENTRY_FAILURE));
3384 	return true;
3385 }
3386 
3387 /*
3388  * Try to launch the current VMCS.
3389  */
3390 static void test_vmx_vmlaunch(u32 xerror)
3391 {
3392 	bool success = vmlaunch_succeeds();
3393 	u32 vmx_inst_err;
3394 
3395 	report(success == !xerror, "vmlaunch %s",
3396 	       !xerror ? "succeeds" : "fails");
3397 	if (!success && xerror) {
3398 		vmx_inst_err = vmcs_read(VMX_INST_ERROR);
3399 		report(vmx_inst_err == xerror,
3400 		       "VMX inst error is %d (actual %d)", xerror,
3401 		       vmx_inst_err);
3402 	}
3403 }
3404 
3405 /*
3406  * Try to launch the current VMCS, and expect one of two possible
3407  * errors (or success) codes.
3408  */
3409 static void test_vmx_vmlaunch2(u32 xerror1, u32 xerror2)
3410 {
3411 	bool success = vmlaunch_succeeds();
3412 	u32 vmx_inst_err;
3413 
3414 	if (!xerror1 == !xerror2)
3415 		report(success == !xerror1, "vmlaunch %s",
3416 		       !xerror1 ? "succeeds" : "fails");
3417 
3418 	if (!success && (xerror1 || xerror2)) {
3419 		vmx_inst_err = vmcs_read(VMX_INST_ERROR);
3420 		report(vmx_inst_err == xerror1 || vmx_inst_err == xerror2,
3421 		       "VMX inst error is %d or %d (actual %d)", xerror1,
3422 		       xerror2, vmx_inst_err);
3423 	}
3424 }
3425 
3426 static void test_vmx_invalid_controls(void)
3427 {
3428 	test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3429 }
3430 
3431 static void test_vmx_valid_controls(void)
3432 {
3433 	test_vmx_vmlaunch(0);
3434 }
3435 
3436 /*
3437  * Test a particular value of a VM-execution control bit, if the value
3438  * is required or if the value is zero.
3439  */
3440 static void test_rsvd_ctl_bit_value(const char *name, union vmx_ctrl_msr msr,
3441 				    enum Encoding encoding, unsigned bit,
3442 				    unsigned val)
3443 {
3444 	u32 mask = 1u << bit;
3445 	bool expected;
3446 	u32 controls;
3447 
3448 	if (msr.set & mask)
3449 		TEST_ASSERT(msr.clr & mask);
3450 
3451 	/*
3452 	 * We can't arbitrarily turn on a control bit, because it may
3453 	 * introduce dependencies on other VMCS fields. So, we only
3454 	 * test turning on bits that have a required setting.
3455 	 */
3456 	if (val && (msr.clr & mask) && !(msr.set & mask))
3457 		return;
3458 
3459 	report_prefix_pushf("%s %s bit %d",
3460 			    val ? "Set" : "Clear", name, bit);
3461 
3462 	controls = vmcs_read(encoding);
3463 	if (val) {
3464 		vmcs_write(encoding, msr.set | mask);
3465 		expected = (msr.clr & mask);
3466 	} else {
3467 		vmcs_write(encoding, msr.set & ~mask);
3468 		expected = !(msr.set & mask);
3469 	}
3470 	if (expected)
3471 		test_vmx_valid_controls();
3472 	else
3473 		test_vmx_invalid_controls();
3474 	vmcs_write(encoding, controls);
3475 	report_prefix_pop();
3476 }
3477 
3478 /*
3479  * Test reserved values of a VM-execution control bit, based on the
3480  * allowed bit settings from the corresponding VMX capability MSR.
3481  */
3482 static void test_rsvd_ctl_bit(const char *name, union vmx_ctrl_msr msr,
3483 			      enum Encoding encoding, unsigned bit)
3484 {
3485 	test_rsvd_ctl_bit_value(name, msr, encoding, bit, 0);
3486 	test_rsvd_ctl_bit_value(name, msr, encoding, bit, 1);
3487 }
3488 
3489 /*
3490  * Reserved bits in the pin-based VM-execution controls must be set
3491  * properly. Software may consult the VMX capability MSRs to determine
3492  * the proper settings.
3493  * [Intel SDM]
3494  */
3495 static void test_pin_based_ctls(void)
3496 {
3497 	unsigned bit;
3498 
3499 	printf("%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PIN" :
3500 	       "MSR_IA32_VMX_PINBASED_CTLS", ctrl_pin_rev.val);
3501 	for (bit = 0; bit < 32; bit++)
3502 		test_rsvd_ctl_bit("pin-based controls",
3503 				  ctrl_pin_rev, PIN_CONTROLS, bit);
3504 }
3505 
3506 /*
3507  * Reserved bits in the primary processor-based VM-execution controls
3508  * must be set properly. Software may consult the VMX capability MSRs
3509  * to determine the proper settings.
3510  * [Intel SDM]
3511  */
3512 static void test_primary_processor_based_ctls(void)
3513 {
3514 	unsigned bit;
3515 
3516 	printf("\n%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PROC" :
3517 	       "MSR_IA32_VMX_PROCBASED_CTLS", ctrl_cpu_rev[0].val);
3518 	for (bit = 0; bit < 32; bit++)
3519 		test_rsvd_ctl_bit("primary processor-based controls",
3520 				  ctrl_cpu_rev[0], CPU_EXEC_CTRL0, bit);
3521 }
3522 
3523 /*
3524  * If the "activate secondary controls" primary processor-based
3525  * VM-execution control is 1, reserved bits in the secondary
3526  * processor-based VM-execution controls must be cleared. Software may
3527  * consult the VMX capability MSRs to determine which bits are
3528  * reserved.
3529  * If the "activate secondary controls" primary processor-based
3530  * VM-execution control is 0 (or if the processor does not support the
3531  * 1-setting of that control), no checks are performed on the
3532  * secondary processor-based VM-execution controls.
3533  * [Intel SDM]
3534  */
3535 static void test_secondary_processor_based_ctls(void)
3536 {
3537 	u32 primary;
3538 	u32 secondary;
3539 	unsigned bit;
3540 
3541 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY))
3542 		return;
3543 
3544 	primary = vmcs_read(CPU_EXEC_CTRL0);
3545 	secondary = vmcs_read(CPU_EXEC_CTRL1);
3546 
3547 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3548 	printf("\nMSR_IA32_VMX_PROCBASED_CTLS2: %lx\n", ctrl_cpu_rev[1].val);
3549 	for (bit = 0; bit < 32; bit++)
3550 		test_rsvd_ctl_bit("secondary processor-based controls",
3551 				  ctrl_cpu_rev[1], CPU_EXEC_CTRL1, bit);
3552 
3553 	/*
3554 	 * When the "activate secondary controls" VM-execution control
3555 	 * is clear, there are no checks on the secondary controls.
3556 	 */
3557 	vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
3558 	vmcs_write(CPU_EXEC_CTRL1, ~0);
3559 	report(vmlaunch_succeeds(),
3560 	       "Secondary processor-based controls ignored");
3561 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3562 	vmcs_write(CPU_EXEC_CTRL0, primary);
3563 }
3564 
3565 static void try_cr3_target_count(unsigned i, unsigned max)
3566 {
3567 	report_prefix_pushf("CR3 target count 0x%x", i);
3568 	vmcs_write(CR3_TARGET_COUNT, i);
3569 	if (i <= max)
3570 		test_vmx_valid_controls();
3571 	else
3572 		test_vmx_invalid_controls();
3573 	report_prefix_pop();
3574 }
3575 
3576 /*
3577  * The CR3-target count must not be greater than 4. Future processors
3578  * may support a different number of CR3-target values. Software
3579  * should read the VMX capability MSR IA32_VMX_MISC to determine the
3580  * number of values supported.
3581  * [Intel SDM]
3582  */
3583 static void test_cr3_targets(void)
3584 {
3585 	unsigned supported_targets = (rdmsr(MSR_IA32_VMX_MISC) >> 16) & 0x1ff;
3586 	u32 cr3_targets = vmcs_read(CR3_TARGET_COUNT);
3587 	unsigned i;
3588 
3589 	printf("\nSupported CR3 targets: %d\n", supported_targets);
3590 	TEST_ASSERT(supported_targets <= 256);
3591 
3592 	try_cr3_target_count(-1u, supported_targets);
3593 	try_cr3_target_count(0x80000000, supported_targets);
3594 	try_cr3_target_count(0x7fffffff, supported_targets);
3595 	for (i = 0; i <= supported_targets + 1; i++)
3596 		try_cr3_target_count(i, supported_targets);
3597 	vmcs_write(CR3_TARGET_COUNT, cr3_targets);
3598 
3599 	/* VMWRITE to nonexistent target fields should fail. */
3600 	for (i = supported_targets; i < 256; i++)
3601 		TEST_ASSERT(vmcs_write(CR3_TARGET_0 + i*2, 0));
3602 }
3603 
3604 /*
3605  * Test a particular address setting in the VMCS
3606  */
3607 static void test_vmcs_addr(const char *name,
3608 			   enum Encoding encoding,
3609 			   u64 align,
3610 			   bool ignored,
3611 			   bool skip_beyond_mapped_ram,
3612 			   u64 addr)
3613 {
3614 	report_prefix_pushf("%s = %lx", name, addr);
3615 	vmcs_write(encoding, addr);
3616 	if (skip_beyond_mapped_ram &&
3617 	    addr > fwcfg_get_u64(FW_CFG_RAM_SIZE) - align &&
3618 	    addr < (1ul << cpuid_maxphyaddr()))
3619 		printf("Skipping physical address beyond mapped RAM\n");
3620 	else if (ignored || (IS_ALIGNED(addr, align) &&
3621 	    addr < (1ul << cpuid_maxphyaddr())))
3622 		test_vmx_valid_controls();
3623 	else
3624 		test_vmx_invalid_controls();
3625 	report_prefix_pop();
3626 }
3627 
3628 /*
3629  * Test interesting values for a VMCS address
3630  */
3631 static void test_vmcs_addr_values(const char *name,
3632 				  enum Encoding encoding,
3633 				  u64 align,
3634 				  bool ignored,
3635 				  bool skip_beyond_mapped_ram,
3636 				  u32 bit_start, u32 bit_end)
3637 {
3638 	unsigned i;
3639 	u64 orig_val = vmcs_read(encoding);
3640 
3641 	for (i = bit_start; i <= bit_end; i++)
3642 		test_vmcs_addr(name, encoding, align, ignored,
3643 			       skip_beyond_mapped_ram, 1ul << i);
3644 
3645 	test_vmcs_addr(name, encoding, align, ignored,
3646 		       skip_beyond_mapped_ram, PAGE_SIZE - 1);
3647 	test_vmcs_addr(name, encoding, align, ignored,
3648 		       skip_beyond_mapped_ram, PAGE_SIZE);
3649 	test_vmcs_addr(name, encoding, align, ignored,
3650 		       skip_beyond_mapped_ram,
3651 		      (1ul << cpuid_maxphyaddr()) - PAGE_SIZE);
3652 	test_vmcs_addr(name, encoding, align, ignored,
3653 		       skip_beyond_mapped_ram, -1ul);
3654 
3655 	vmcs_write(encoding, orig_val);
3656 }
3657 
3658 /*
3659  * Test a physical address reference in the VMCS, when the corresponding
3660  * feature is enabled and when the corresponding feature is disabled.
3661  */
3662 static void test_vmcs_addr_reference(u32 control_bit, enum Encoding field,
3663 				     const char *field_name,
3664 				     const char *control_name, u64 align,
3665 				     bool skip_beyond_mapped_ram,
3666 				     bool control_primary)
3667 {
3668 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
3669 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
3670 	u64 page_addr;
3671 
3672 	if (control_primary) {
3673 		if (!(ctrl_cpu_rev[0].clr & control_bit))
3674 			return;
3675 	} else {
3676 		if (!(ctrl_cpu_rev[1].clr & control_bit))
3677 			return;
3678 	}
3679 
3680 	page_addr = vmcs_read(field);
3681 
3682 	report_prefix_pushf("%s enabled", control_name);
3683 	if (control_primary) {
3684 		vmcs_write(CPU_EXEC_CTRL0, primary | control_bit);
3685 	} else {
3686 		vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3687 		vmcs_write(CPU_EXEC_CTRL1, secondary | control_bit);
3688 	}
3689 
3690 	test_vmcs_addr_values(field_name, field, align, false,
3691 			      skip_beyond_mapped_ram, 0, 63);
3692 	report_prefix_pop();
3693 
3694 	report_prefix_pushf("%s disabled", control_name);
3695 	if (control_primary) {
3696 		vmcs_write(CPU_EXEC_CTRL0, primary & ~control_bit);
3697 	} else {
3698 		vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
3699 		vmcs_write(CPU_EXEC_CTRL1, secondary & ~control_bit);
3700 	}
3701 
3702 	test_vmcs_addr_values(field_name, field, align, true, false, 0, 63);
3703 	report_prefix_pop();
3704 
3705 	vmcs_write(field, page_addr);
3706 	vmcs_write(CPU_EXEC_CTRL0, primary);
3707 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3708 }
3709 
3710 /*
3711  * If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of
3712  * each I/O-bitmap address must be 0. Neither address should set any
3713  * bits beyond the processor's physical-address width.
3714  * [Intel SDM]
3715  */
3716 static void test_io_bitmaps(void)
3717 {
3718 	test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_A,
3719 				 "I/O bitmap A", "Use I/O bitmaps",
3720 				 PAGE_SIZE, false, true);
3721 	test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_B,
3722 				 "I/O bitmap B", "Use I/O bitmaps",
3723 				 PAGE_SIZE, false, true);
3724 }
3725 
3726 /*
3727  * If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of
3728  * the MSR-bitmap address must be 0. The address should not set any
3729  * bits beyond the processor's physical-address width.
3730  * [Intel SDM]
3731  */
3732 static void test_msr_bitmap(void)
3733 {
3734 	test_vmcs_addr_reference(CPU_MSR_BITMAP, MSR_BITMAP,
3735 				 "MSR bitmap", "Use MSR bitmaps",
3736 				 PAGE_SIZE, false, true);
3737 }
3738 
3739 /*
3740  * If the "use TPR shadow" VM-execution control is 1, the virtual-APIC
3741  * address must satisfy the following checks:
3742  * - Bits 11:0 of the address must be 0.
3743  * - The address should not set any bits beyond the processor's
3744  *   physical-address width.
3745  * [Intel SDM]
3746  */
3747 static void test_apic_virt_addr(void)
3748 {
3749 	/*
3750 	 * Ensure the processor will never use the virtual-APIC page, since
3751 	 * we will point it to invalid RAM.  Otherwise KVM is puzzled about
3752 	 * what we're trying to achieve and fails vmentry.
3753 	 */
3754 	u32 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0);
3755 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0 | CPU_CR8_LOAD | CPU_CR8_STORE);
3756 	test_vmcs_addr_reference(CPU_TPR_SHADOW, APIC_VIRT_ADDR,
3757 				 "virtual-APIC address", "Use TPR shadow",
3758 				 PAGE_SIZE, false, true);
3759 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0);
3760 }
3761 
3762 /*
3763  * If the "virtualize APIC-accesses" VM-execution control is 1, the
3764  * APIC-access address must satisfy the following checks:
3765  *  - Bits 11:0 of the address must be 0.
3766  *  - The address should not set any bits beyond the processor's
3767  *    physical-address width.
3768  * [Intel SDM]
3769  */
3770 static void test_apic_access_addr(void)
3771 {
3772 	void *apic_access_page = alloc_page();
3773 
3774 	vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_page));
3775 
3776 	test_vmcs_addr_reference(CPU_VIRT_APIC_ACCESSES, APIC_ACCS_ADDR,
3777 				 "APIC-access address",
3778 				 "virtualize APIC-accesses", PAGE_SIZE,
3779 				 true, false);
3780 }
3781 
3782 static bool set_bit_pattern(u8 mask, u32 *secondary)
3783 {
3784 	u8 i;
3785 	bool flag = false;
3786 	u32 test_bits[3] = {
3787 		CPU_VIRT_X2APIC,
3788 		CPU_APIC_REG_VIRT,
3789 		CPU_VINTD
3790 	};
3791 
3792         for (i = 0; i < ARRAY_SIZE(test_bits); i++) {
3793 		if ((mask & (1u << i)) &&
3794 		    (ctrl_cpu_rev[1].clr & test_bits[i])) {
3795 			*secondary |= test_bits[i];
3796 			flag = true;
3797 		}
3798 	}
3799 
3800 	return (flag);
3801 }
3802 
3803 /*
3804  * If the "use TPR shadow" VM-execution control is 0, the following
3805  * VM-execution controls must also be 0:
3806  * 	- virtualize x2APIC mode
3807  *	- APIC-register virtualization
3808  *	- virtual-interrupt delivery
3809  *    [Intel SDM]
3810  *
3811  * 2. If the "virtualize x2APIC mode" VM-execution control is 1, the
3812  *    "virtualize APIC accesses" VM-execution control must be 0.
3813  *    [Intel SDM]
3814  */
3815 static void test_apic_virtual_ctls(void)
3816 {
3817 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3818 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3819 	u32 primary = saved_primary;
3820 	u32 secondary = saved_secondary;
3821 	bool is_ctrl_valid = false;
3822 	char str[10] = "disabled";
3823 	u8 i = 0, j;
3824 
3825 	/*
3826 	 * First test
3827 	 */
3828 	if (!((ctrl_cpu_rev[0].clr & (CPU_SECONDARY | CPU_TPR_SHADOW)) ==
3829 	    (CPU_SECONDARY | CPU_TPR_SHADOW)))
3830 		return;
3831 
3832 	primary |= CPU_SECONDARY;
3833 	primary &= ~CPU_TPR_SHADOW;
3834 	vmcs_write(CPU_EXEC_CTRL0, primary);
3835 
3836 	while (1) {
3837 		for (j = 1; j < 8; j++) {
3838 			secondary &= ~(CPU_VIRT_X2APIC | CPU_APIC_REG_VIRT | CPU_VINTD);
3839 			if (primary & CPU_TPR_SHADOW) {
3840 				is_ctrl_valid = true;
3841 			} else {
3842 				if (! set_bit_pattern(j, &secondary))
3843 					is_ctrl_valid = true;
3844 				else
3845 					is_ctrl_valid = false;
3846 			}
3847 
3848 			vmcs_write(CPU_EXEC_CTRL1, secondary);
3849 			report_prefix_pushf("Use TPR shadow %s, virtualize x2APIC mode %s, APIC-register virtualization %s, virtual-interrupt delivery %s",
3850 				str, (secondary & CPU_VIRT_X2APIC) ? "enabled" : "disabled", (secondary & CPU_APIC_REG_VIRT) ? "enabled" : "disabled", (secondary & CPU_VINTD) ? "enabled" : "disabled");
3851 			if (is_ctrl_valid)
3852 				test_vmx_valid_controls();
3853 			else
3854 				test_vmx_invalid_controls();
3855 			report_prefix_pop();
3856 		}
3857 
3858 		if (i == 1)
3859 			break;
3860 		i++;
3861 
3862 		primary |= CPU_TPR_SHADOW;
3863 		vmcs_write(CPU_EXEC_CTRL0, primary);
3864 		strcpy(str, "enabled");
3865 	}
3866 
3867 	/*
3868 	 * Second test
3869 	 */
3870 	u32 apic_virt_ctls = (CPU_VIRT_X2APIC | CPU_VIRT_APIC_ACCESSES);
3871 
3872 	primary = saved_primary;
3873 	secondary = saved_secondary;
3874 	if (!((ctrl_cpu_rev[1].clr & apic_virt_ctls) == apic_virt_ctls))
3875 		return;
3876 
3877 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3878 	secondary &= ~CPU_VIRT_APIC_ACCESSES;
3879 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_X2APIC);
3880 	report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access disabled");
3881 	test_vmx_valid_controls();
3882 	report_prefix_pop();
3883 
3884 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_APIC_ACCESSES);
3885 	report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access enabled");
3886 	test_vmx_valid_controls();
3887 	report_prefix_pop();
3888 
3889 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_X2APIC);
3890 	report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access enabled");
3891 	test_vmx_invalid_controls();
3892 	report_prefix_pop();
3893 
3894 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_APIC_ACCESSES);
3895 	report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access disabled");
3896 	test_vmx_valid_controls();
3897 	report_prefix_pop();
3898 
3899 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
3900 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
3901 }
3902 
3903 /*
3904  * If the "virtual-interrupt delivery" VM-execution control is 1, the
3905  * "external-interrupt exiting" VM-execution control must be 1.
3906  * [Intel SDM]
3907  */
3908 static void test_virtual_intr_ctls(void)
3909 {
3910 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3911 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3912 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
3913 	u32 primary = saved_primary;
3914 	u32 secondary = saved_secondary;
3915 	u32 pin = saved_pin;
3916 
3917 	if (!((ctrl_cpu_rev[1].clr & CPU_VINTD) &&
3918 	    (ctrl_pin_rev.clr & PIN_EXTINT)))
3919 		return;
3920 
3921 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW);
3922 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VINTD);
3923 	vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT);
3924 	report_prefix_pushf("Virtualize interrupt-delivery disabled; external-interrupt exiting disabled");
3925 	test_vmx_valid_controls();
3926 	report_prefix_pop();
3927 
3928 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VINTD);
3929 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled");
3930 	test_vmx_invalid_controls();
3931 	report_prefix_pop();
3932 
3933 	vmcs_write(PIN_CONTROLS, pin | PIN_EXTINT);
3934 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting enabled");
3935 	test_vmx_valid_controls();
3936 	report_prefix_pop();
3937 
3938 	vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT);
3939 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled");
3940 	test_vmx_invalid_controls();
3941 	report_prefix_pop();
3942 
3943 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
3944 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
3945 	vmcs_write(PIN_CONTROLS, saved_pin);
3946 }
3947 
3948 static void test_pi_desc_addr(u64 addr, bool is_ctrl_valid)
3949 {
3950 	vmcs_write(POSTED_INTR_DESC_ADDR, addr);
3951 	report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-descriptor-address 0x%lx", addr);
3952 	if (is_ctrl_valid)
3953 		test_vmx_valid_controls();
3954 	else
3955 		test_vmx_invalid_controls();
3956 	report_prefix_pop();
3957 }
3958 
3959 /*
3960  * If the "process posted interrupts" VM-execution control is 1, the
3961  * following must be true:
3962  *
3963  *	- The "virtual-interrupt delivery" VM-execution control is 1.
3964  *	- The "acknowledge interrupt on exit" VM-exit control is 1.
3965  *	- The posted-interrupt notification vector has a value in the
3966  *	- range 0 - 255 (bits 15:8 are all 0).
3967  *	- Bits 5:0 of the posted-interrupt descriptor address are all 0.
3968  *	- The posted-interrupt descriptor address does not set any bits
3969  *	  beyond the processor's physical-address width.
3970  * [Intel SDM]
3971  */
3972 static void test_posted_intr(void)
3973 {
3974 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3975 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3976 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
3977 	u32 exit_ctl_saved = vmcs_read(EXI_CONTROLS);
3978 	u32 primary = saved_primary;
3979 	u32 secondary = saved_secondary;
3980 	u32 pin = saved_pin;
3981 	u32 exit_ctl = exit_ctl_saved;
3982 	u16 vec;
3983 	int i;
3984 
3985 	if (!((ctrl_pin_rev.clr & PIN_POST_INTR) &&
3986 	    (ctrl_cpu_rev[1].clr & CPU_VINTD) &&
3987 	    (ctrl_exit_rev.clr & EXI_INTA)))
3988 		return;
3989 
3990 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW);
3991 
3992 	/*
3993 	 * Test virtual-interrupt-delivery and acknowledge-interrupt-on-exit
3994 	 */
3995 	pin |= PIN_POST_INTR;
3996 	vmcs_write(PIN_CONTROLS, pin);
3997 	secondary &= ~CPU_VINTD;
3998 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3999 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled");
4000 	test_vmx_invalid_controls();
4001 	report_prefix_pop();
4002 
4003 	secondary |= CPU_VINTD;
4004 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4005 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled");
4006 	test_vmx_invalid_controls();
4007 	report_prefix_pop();
4008 
4009 	exit_ctl &= ~EXI_INTA;
4010 	vmcs_write(EXI_CONTROLS, exit_ctl);
4011 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit disabled");
4012 	test_vmx_invalid_controls();
4013 	report_prefix_pop();
4014 
4015 	exit_ctl |= EXI_INTA;
4016 	vmcs_write(EXI_CONTROLS, exit_ctl);
4017 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled");
4018 	test_vmx_valid_controls();
4019 	report_prefix_pop();
4020 
4021 	secondary &= ~CPU_VINTD;
4022 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4023 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled; acknowledge-interrupt-on-exit enabled");
4024 	test_vmx_invalid_controls();
4025 	report_prefix_pop();
4026 
4027 	secondary |= CPU_VINTD;
4028 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4029 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled");
4030 	test_vmx_valid_controls();
4031 	report_prefix_pop();
4032 
4033 	/*
4034 	 * Test posted-interrupt notification vector
4035 	 */
4036 	for (i = 0; i < 8; i++) {
4037 		vec = (1ul << i);
4038 		vmcs_write(PINV, vec);
4039 		report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
4040 		test_vmx_valid_controls();
4041 		report_prefix_pop();
4042 	}
4043 	for (i = 8; i < 16; i++) {
4044 		vec = (1ul << i);
4045 		vmcs_write(PINV, vec);
4046 		report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
4047 		test_vmx_invalid_controls();
4048 		report_prefix_pop();
4049 	}
4050 
4051 	vec &= ~(0xff << 8);
4052 	vmcs_write(PINV, vec);
4053 	report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
4054 	test_vmx_valid_controls();
4055 	report_prefix_pop();
4056 
4057 	/*
4058 	 * Test posted-interrupt descriptor addresss
4059 	 */
4060 	for (i = 0; i < 6; i++) {
4061 		test_pi_desc_addr(1ul << i, false);
4062 	}
4063 
4064 	test_pi_desc_addr(0xf0, false);
4065 	test_pi_desc_addr(0xff, false);
4066 	test_pi_desc_addr(0x0f, false);
4067 	test_pi_desc_addr(0x8000, true);
4068 	test_pi_desc_addr(0x00, true);
4069 	test_pi_desc_addr(0xc000, true);
4070 
4071 	test_vmcs_addr_values("process-posted interrupts",
4072 			       POSTED_INTR_DESC_ADDR, 64,
4073 			       false, false, 0, 63);
4074 
4075 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
4076 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
4077 	vmcs_write(PIN_CONTROLS, saved_pin);
4078 }
4079 
4080 static void test_apic_ctls(void)
4081 {
4082 	test_apic_virt_addr();
4083 	test_apic_access_addr();
4084 	test_apic_virtual_ctls();
4085 	test_virtual_intr_ctls();
4086 	test_posted_intr();
4087 }
4088 
4089 /*
4090  * If the "enable VPID" VM-execution control is 1, the value of the
4091  * of the VPID VM-execution control field must not be 0000H.
4092  * [Intel SDM]
4093  */
4094 static void test_vpid(void)
4095 {
4096 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
4097 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
4098 	u16 vpid = 0x0000;
4099 	int i;
4100 
4101 	if (!is_vpid_supported()) {
4102 		printf("Secondary controls and/or VPID not supported\n");
4103 		return;
4104 	}
4105 
4106 	vmcs_write(CPU_EXEC_CTRL0, saved_primary | CPU_SECONDARY);
4107 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary & ~CPU_VPID);
4108 	vmcs_write(VPID, vpid);
4109 	report_prefix_pushf("VPID disabled; VPID value %x", vpid);
4110 	test_vmx_valid_controls();
4111 	report_prefix_pop();
4112 
4113 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary | CPU_VPID);
4114 	report_prefix_pushf("VPID enabled; VPID value %x", vpid);
4115 	test_vmx_invalid_controls();
4116 	report_prefix_pop();
4117 
4118 	for (i = 0; i < 16; i++) {
4119 		vpid = (short)1 << i;;
4120 		vmcs_write(VPID, vpid);
4121 		report_prefix_pushf("VPID enabled; VPID value %x", vpid);
4122 		test_vmx_valid_controls();
4123 		report_prefix_pop();
4124 	}
4125 
4126 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
4127 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
4128 }
4129 
4130 static void set_vtpr(unsigned vtpr)
4131 {
4132 	*(u32 *)phys_to_virt(vmcs_read(APIC_VIRT_ADDR) + APIC_TASKPRI) = vtpr;
4133 }
4134 
4135 static void try_tpr_threshold_and_vtpr(unsigned threshold, unsigned vtpr)
4136 {
4137 	bool valid = true;
4138 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4139 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4140 
4141 	if ((primary & CPU_TPR_SHADOW) &&
4142 	    (!(primary & CPU_SECONDARY) ||
4143 	     !(secondary & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES))))
4144 		valid = (threshold & 0xf) <= ((vtpr >> 4) & 0xf);
4145 
4146 	set_vtpr(vtpr);
4147 	report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0x%x",
4148 	    threshold, (vtpr >> 4) & 0xf);
4149 	if (valid)
4150 		test_vmx_valid_controls();
4151 	else
4152 		test_vmx_invalid_controls();
4153 	report_prefix_pop();
4154 }
4155 
4156 static void test_invalid_event_injection(void)
4157 {
4158 	u32 ent_intr_info_save = vmcs_read(ENT_INTR_INFO);
4159 	u32 ent_intr_error_save = vmcs_read(ENT_INTR_ERROR);
4160 	u32 ent_inst_len_save = vmcs_read(ENT_INST_LEN);
4161 	u32 primary_save = vmcs_read(CPU_EXEC_CTRL0);
4162 	u32 secondary_save = vmcs_read(CPU_EXEC_CTRL1);
4163 	u64 guest_cr0_save = vmcs_read(GUEST_CR0);
4164 	u32 ent_intr_info_base = INTR_INFO_VALID_MASK;
4165 	u32 ent_intr_info, ent_intr_err, ent_intr_len;
4166 	u32 cnt;
4167 
4168 	/* Setup */
4169 	report_prefix_push("invalid event injection");
4170 	vmcs_write(ENT_INTR_ERROR, 0x00000000);
4171 	vmcs_write(ENT_INST_LEN, 0x00000001);
4172 
4173 	/* The field's interruption type is not set to a reserved value. */
4174 	ent_intr_info = ent_intr_info_base | INTR_TYPE_RESERVED | DE_VECTOR;
4175 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4176 			    "RESERVED interruption type invalid [-]",
4177 			    ent_intr_info);
4178 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4179 	test_vmx_invalid_controls();
4180 	report_prefix_pop();
4181 
4182 	ent_intr_info = ent_intr_info_base | INTR_TYPE_EXT_INTR |
4183 			DE_VECTOR;
4184 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4185 			    "RESERVED interruption type invalid [+]",
4186 			    ent_intr_info);
4187 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4188 	test_vmx_valid_controls();
4189 	report_prefix_pop();
4190 
4191 	/* If the interruption type is other event, the vector is 0. */
4192 	ent_intr_info = ent_intr_info_base | INTR_TYPE_OTHER_EVENT | DB_VECTOR;
4193 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4194 			    "(OTHER EVENT && vector != 0) invalid [-]",
4195 			    ent_intr_info);
4196 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4197 	test_vmx_invalid_controls();
4198 	report_prefix_pop();
4199 
4200 	/* If the interruption type is NMI, the vector is 2 (negative case). */
4201 	ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | DE_VECTOR;
4202 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4203 			    "(NMI && vector != 2) invalid [-]", ent_intr_info);
4204 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4205 	test_vmx_invalid_controls();
4206 	report_prefix_pop();
4207 
4208 	/* If the interruption type is NMI, the vector is 2 (positive case). */
4209 	ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | NMI_VECTOR;
4210 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4211 			    "(NMI && vector == 2) valid [+]", ent_intr_info);
4212 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4213 	test_vmx_valid_controls();
4214 	report_prefix_pop();
4215 
4216 	/*
4217 	 * If the interruption type
4218 	 * is HW exception, the vector is at most 31.
4219 	 */
4220 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 0x20;
4221 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4222 			    "(HW exception && vector > 31) invalid [-]",
4223 			    ent_intr_info);
4224 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4225 	test_vmx_invalid_controls();
4226 	report_prefix_pop();
4227 
4228 	/*
4229 	 * deliver-error-code is 1 iff either
4230 	 * (a) the "unrestricted guest" VM-execution control is 0
4231 	 * (b) CR0.PE is set.
4232 	 */
4233 
4234 	/* Assert that unrestricted guest is disabled or unsupported */
4235 	assert(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
4236 	       !(secondary_save & CPU_URG));
4237 
4238 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION |
4239 			GP_VECTOR;
4240 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4241 			    "error code <-> (!URG || prot_mode) [-]",
4242 			    ent_intr_info);
4243 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4244 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4245 	test_vmx_invalid_controls();
4246 	report_prefix_pop();
4247 
4248 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4249 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4250 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4251 			    "error code <-> (!URG || prot_mode) [+]",
4252 			    ent_intr_info);
4253 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4254 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4255 	test_vmx_valid_controls();
4256 	report_prefix_pop();
4257 
4258 	if (enable_unrestricted_guest(false))
4259 		goto skip_unrestricted_guest;
4260 
4261 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4262 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4263 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4264 			    "error code <-> (!URG || prot_mode) [-]",
4265 			    ent_intr_info);
4266 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4267 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4268 	test_vmx_invalid_controls();
4269 	report_prefix_pop();
4270 
4271 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION |
4272 			GP_VECTOR;
4273 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4274 			    "error code <-> (!URG || prot_mode) [-]",
4275 			    ent_intr_info);
4276 	vmcs_write(GUEST_CR0, guest_cr0_save | X86_CR0_PE);
4277 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4278 	test_vmx_invalid_controls();
4279 	report_prefix_pop();
4280 
4281 	vmcs_write(CPU_EXEC_CTRL1, secondary_save);
4282 	vmcs_write(CPU_EXEC_CTRL0, primary_save);
4283 
4284 skip_unrestricted_guest:
4285 	vmcs_write(GUEST_CR0, guest_cr0_save);
4286 
4287 	/* deliver-error-code is 1 iff the interruption type is HW exception */
4288 	report_prefix_push("error code <-> HW exception");
4289 	for (cnt = 0; cnt < 8; cnt++) {
4290 		u32 exception_type_mask = cnt << 8;
4291 		u32 deliver_error_code_mask =
4292 			exception_type_mask != INTR_TYPE_HARD_EXCEPTION ?
4293 			INTR_INFO_DELIVER_CODE_MASK : 0;
4294 
4295 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4296 				exception_type_mask | GP_VECTOR;
4297 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4298 				    ent_intr_info);
4299 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4300 		test_vmx_invalid_controls();
4301 		report_prefix_pop();
4302 	}
4303 	report_prefix_pop();
4304 
4305 	/*
4306 	 * deliver-error-code is 1 iff the the vector
4307 	 * indicates an exception that would normally deliver an error code
4308 	 */
4309 	report_prefix_push("error code <-> vector delivers error code");
4310 	for (cnt = 0; cnt < 32; cnt++) {
4311 		bool has_error_code = false;
4312 		u32 deliver_error_code_mask;
4313 
4314 		switch (cnt) {
4315 		case DF_VECTOR:
4316 		case TS_VECTOR:
4317 		case NP_VECTOR:
4318 		case SS_VECTOR:
4319 		case GP_VECTOR:
4320 		case PF_VECTOR:
4321 		case AC_VECTOR:
4322 			has_error_code = true;
4323 		case CP_VECTOR:
4324 			/* Some CPUs have error code and some do not, skip */
4325 			continue;
4326 		}
4327 
4328 		/* Negative case */
4329 		deliver_error_code_mask = has_error_code ?
4330 						0 :
4331 						INTR_INFO_DELIVER_CODE_MASK;
4332 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4333 				INTR_TYPE_HARD_EXCEPTION | cnt;
4334 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4335 				    ent_intr_info);
4336 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4337 		test_vmx_invalid_controls();
4338 		report_prefix_pop();
4339 
4340 		/* Positive case */
4341 		deliver_error_code_mask = has_error_code ?
4342 						INTR_INFO_DELIVER_CODE_MASK :
4343 						0;
4344 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4345 				INTR_TYPE_HARD_EXCEPTION | cnt;
4346 		report_prefix_pushf("VM-entry intr info=0x%x [+]",
4347 				    ent_intr_info);
4348 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4349 		test_vmx_valid_controls();
4350 		report_prefix_pop();
4351 	}
4352 	report_prefix_pop();
4353 
4354 	/* Reserved bits in the field (30:12) are 0. */
4355 	report_prefix_push("reserved bits clear");
4356 	for (cnt = 12; cnt <= 30; cnt++) {
4357 		ent_intr_info = ent_intr_info_base |
4358 				INTR_INFO_DELIVER_CODE_MASK |
4359 				INTR_TYPE_HARD_EXCEPTION | GP_VECTOR |
4360 				(1U << cnt);
4361 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4362 				    ent_intr_info);
4363 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4364 		test_vmx_invalid_controls();
4365 		report_prefix_pop();
4366 	}
4367 	report_prefix_pop();
4368 
4369 	/*
4370 	 * If deliver-error-code is 1
4371 	 * bits 31:16 of the VM-entry exception error-code field are 0.
4372 	 */
4373 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4374 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4375 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4376 			    "VM-entry exception error code[31:16] clear",
4377 			    ent_intr_info);
4378 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4379 	for (cnt = 16; cnt <= 31; cnt++) {
4380 		ent_intr_err = 1U << cnt;
4381 		report_prefix_pushf("VM-entry intr error=0x%x [-]",
4382 				    ent_intr_err);
4383 		vmcs_write(ENT_INTR_ERROR, ent_intr_err);
4384 		test_vmx_invalid_controls();
4385 		report_prefix_pop();
4386 	}
4387 	vmcs_write(ENT_INTR_ERROR, 0x00000000);
4388 	report_prefix_pop();
4389 
4390 	/*
4391 	 * If the interruption type is software interrupt, software exception,
4392 	 * or privileged software exception, the VM-entry instruction-length
4393 	 * field is in the range 0 - 15.
4394 	 */
4395 
4396 	for (cnt = 0; cnt < 3; cnt++) {
4397 		switch (cnt) {
4398 		case 0:
4399 			ent_intr_info = ent_intr_info_base |
4400 					INTR_TYPE_SOFT_INTR;
4401 			break;
4402 		case 1:
4403 			ent_intr_info = ent_intr_info_base |
4404 					INTR_TYPE_SOFT_EXCEPTION;
4405 			break;
4406 		case 2:
4407 			ent_intr_info = ent_intr_info_base |
4408 					INTR_TYPE_PRIV_SW_EXCEPTION;
4409 			break;
4410 		}
4411 		report_prefix_pushf("%s, VM-entry intr info=0x%x",
4412 				    "VM-entry instruction-length check",
4413 				    ent_intr_info);
4414 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4415 
4416 		/* Instruction length set to -1 (0xFFFFFFFF) should fail */
4417 		ent_intr_len = -1;
4418 		report_prefix_pushf("VM-entry intr length = 0x%x [-]",
4419 				    ent_intr_len);
4420 		vmcs_write(ENT_INST_LEN, ent_intr_len);
4421 		test_vmx_invalid_controls();
4422 		report_prefix_pop();
4423 
4424 		/* Instruction length set to 16 should fail */
4425 		ent_intr_len = 0x00000010;
4426 		report_prefix_pushf("VM-entry intr length = 0x%x [-]",
4427 				    ent_intr_len);
4428 		vmcs_write(ENT_INST_LEN, 0x00000010);
4429 		test_vmx_invalid_controls();
4430 		report_prefix_pop();
4431 
4432 		report_prefix_pop();
4433 	}
4434 
4435 	/* Cleanup */
4436 	vmcs_write(ENT_INTR_INFO, ent_intr_info_save);
4437 	vmcs_write(ENT_INTR_ERROR, ent_intr_error_save);
4438 	vmcs_write(ENT_INST_LEN, ent_inst_len_save);
4439 	vmcs_write(CPU_EXEC_CTRL0, primary_save);
4440 	vmcs_write(CPU_EXEC_CTRL1, secondary_save);
4441 	vmcs_write(GUEST_CR0, guest_cr0_save);
4442 	report_prefix_pop();
4443 }
4444 
4445 /*
4446  * Test interesting vTPR values for a given TPR threshold.
4447  */
4448 static void test_vtpr_values(unsigned threshold)
4449 {
4450 	try_tpr_threshold_and_vtpr(threshold, (threshold - 1) << 4);
4451 	try_tpr_threshold_and_vtpr(threshold, threshold << 4);
4452 	try_tpr_threshold_and_vtpr(threshold, (threshold + 1) << 4);
4453 }
4454 
4455 static void try_tpr_threshold(unsigned threshold)
4456 {
4457 	bool valid = true;
4458 
4459 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4460 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4461 
4462 	if ((primary & CPU_TPR_SHADOW) && !((primary & CPU_SECONDARY) &&
4463 	    (secondary & CPU_VINTD)))
4464 		valid = !(threshold >> 4);
4465 
4466 	set_vtpr(-1);
4467 	vmcs_write(TPR_THRESHOLD, threshold);
4468 	report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0xf", threshold);
4469 	if (valid)
4470 		test_vmx_valid_controls();
4471 	else
4472 		test_vmx_invalid_controls();
4473 	report_prefix_pop();
4474 
4475 	if (valid)
4476 		test_vtpr_values(threshold);
4477 }
4478 
4479 /*
4480  * Test interesting TPR threshold values.
4481  */
4482 static void test_tpr_threshold_values(void)
4483 {
4484 	unsigned i;
4485 
4486 	for (i = 0; i < 0x10; i++)
4487 		try_tpr_threshold(i);
4488 	for (i = 4; i < 32; i++)
4489 		try_tpr_threshold(1u << i);
4490 	try_tpr_threshold(-1u);
4491 	try_tpr_threshold(0x7fffffff);
4492 }
4493 
4494 /*
4495  * This test covers the following two VM entry checks:
4496  *
4497  *      i) If the "use TPR shadow" VM-execution control is 1 and the
4498  *         "virtual-interrupt delivery" VM-execution control is 0, bits
4499  *         31:4 of the TPR threshold VM-execution control field must
4500 	   be 0.
4501  *         [Intel SDM]
4502  *
4503  *      ii) If the "use TPR shadow" VM-execution control is 1, the
4504  *          "virtual-interrupt delivery" VM-execution control is 0
4505  *          and the "virtualize APIC accesses" VM-execution control
4506  *          is 0, the value of bits 3:0 of the TPR threshold VM-execution
4507  *          control field must not be greater than the value of bits
4508  *          7:4 of VTPR.
4509  *          [Intel SDM]
4510  */
4511 static void test_tpr_threshold(void)
4512 {
4513 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4514 	u64 apic_virt_addr = vmcs_read(APIC_VIRT_ADDR);
4515 	u64 threshold = vmcs_read(TPR_THRESHOLD);
4516 	void *virtual_apic_page;
4517 
4518 	if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW))
4519 		return;
4520 
4521 	virtual_apic_page = alloc_page();
4522 	memset(virtual_apic_page, 0xff, PAGE_SIZE);
4523 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
4524 
4525 	vmcs_write(CPU_EXEC_CTRL0, primary & ~(CPU_TPR_SHADOW | CPU_SECONDARY));
4526 	report_prefix_pushf("Use TPR shadow disabled, secondary controls disabled");
4527 	test_tpr_threshold_values();
4528 	report_prefix_pop();
4529 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_TPR_SHADOW);
4530 	report_prefix_pushf("Use TPR shadow enabled, secondary controls disabled");
4531 	test_tpr_threshold_values();
4532 	report_prefix_pop();
4533 
4534 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4535 	    (ctrl_cpu_rev[1].clr & (CPU_VINTD  | CPU_VIRT_APIC_ACCESSES))))
4536 		goto out;
4537 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4538 
4539 	if (ctrl_cpu_rev[1].clr & CPU_VINTD) {
4540 		vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD);
4541 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled");
4542 		test_tpr_threshold_values();
4543 		report_prefix_pop();
4544 
4545 		vmcs_write(CPU_EXEC_CTRL0,
4546 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4547 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled");
4548 		test_tpr_threshold_values();
4549 		report_prefix_pop();
4550 	}
4551 
4552 	if (ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES) {
4553 		vmcs_write(CPU_EXEC_CTRL0,
4554 			   vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY);
4555 		vmcs_write(CPU_EXEC_CTRL1, CPU_VIRT_APIC_ACCESSES);
4556 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4557 		test_tpr_threshold_values();
4558 		report_prefix_pop();
4559 
4560 		vmcs_write(CPU_EXEC_CTRL0,
4561 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4562 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4563 		test_tpr_threshold_values();
4564 		report_prefix_pop();
4565 	}
4566 
4567 	if ((ctrl_cpu_rev[1].clr &
4568 	     (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) ==
4569 	    (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) {
4570 		vmcs_write(CPU_EXEC_CTRL0,
4571 			   vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY);
4572 		vmcs_write(CPU_EXEC_CTRL1,
4573 			   CPU_VINTD | CPU_VIRT_APIC_ACCESSES);
4574 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4575 		test_tpr_threshold_values();
4576 		report_prefix_pop();
4577 
4578 		vmcs_write(CPU_EXEC_CTRL0,
4579 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4580 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4581 		test_tpr_threshold_values();
4582 		report_prefix_pop();
4583 	}
4584 
4585 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4586 out:
4587 	vmcs_write(TPR_THRESHOLD, threshold);
4588 	vmcs_write(APIC_VIRT_ADDR, apic_virt_addr);
4589 	vmcs_write(CPU_EXEC_CTRL0, primary);
4590 }
4591 
4592 /*
4593  * This test verifies the following two vmentry checks:
4594  *
4595  *  If the "NMI exiting" VM-execution control is 0, "Virtual NMIs"
4596  *  VM-execution control must be 0.
4597  *  [Intel SDM]
4598  *
4599  *  If the "virtual NMIs" VM-execution control is 0, the "NMI-window
4600  *  exiting" VM-execution control must be 0.
4601  *  [Intel SDM]
4602  */
4603 static void test_nmi_ctrls(void)
4604 {
4605 	u32 pin_ctrls, cpu_ctrls0, test_pin_ctrls, test_cpu_ctrls0;
4606 
4607 	if ((ctrl_pin_rev.clr & (PIN_NMI | PIN_VIRT_NMI)) !=
4608 	    (PIN_NMI | PIN_VIRT_NMI)) {
4609 		printf("NMI exiting and Virtual NMIs are not supported !\n");
4610 		return;
4611 	}
4612 
4613 	/* Save the controls so that we can restore them after our tests */
4614 	pin_ctrls = vmcs_read(PIN_CONTROLS);
4615 	cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0);
4616 
4617 	test_pin_ctrls = pin_ctrls & ~(PIN_NMI | PIN_VIRT_NMI);
4618 	test_cpu_ctrls0 = cpu_ctrls0 & ~CPU_NMI_WINDOW;
4619 
4620 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4621 	report_prefix_pushf("NMI-exiting disabled, virtual-NMIs disabled");
4622 	test_vmx_valid_controls();
4623 	report_prefix_pop();
4624 
4625 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_VIRT_NMI);
4626 	report_prefix_pushf("NMI-exiting disabled, virtual-NMIs enabled");
4627 	test_vmx_invalid_controls();
4628 	report_prefix_pop();
4629 
4630 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4631 	report_prefix_pushf("NMI-exiting enabled, virtual-NMIs enabled");
4632 	test_vmx_valid_controls();
4633 	report_prefix_pop();
4634 
4635 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_NMI);
4636 	report_prefix_pushf("NMI-exiting enabled, virtual-NMIs disabled");
4637 	test_vmx_valid_controls();
4638 	report_prefix_pop();
4639 
4640 	if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) {
4641 		report_info("NMI-window exiting is not supported, skipping...");
4642 		goto done;
4643 	}
4644 
4645 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4646 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW);
4647 	report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting enabled");
4648 	test_vmx_invalid_controls();
4649 	report_prefix_pop();
4650 
4651 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4652 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0);
4653 	report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting disabled");
4654 	test_vmx_valid_controls();
4655 	report_prefix_pop();
4656 
4657 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4658 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW);
4659 	report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting enabled");
4660 	test_vmx_valid_controls();
4661 	report_prefix_pop();
4662 
4663 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4664 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0);
4665 	report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting disabled");
4666 	test_vmx_valid_controls();
4667 	report_prefix_pop();
4668 
4669 	/* Restore the controls to their original values */
4670 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0);
4671 done:
4672 	vmcs_write(PIN_CONTROLS, pin_ctrls);
4673 }
4674 
4675 static void test_eptp_ad_bit(u64 eptp, bool is_ctrl_valid)
4676 {
4677 	vmcs_write(EPTP, eptp);
4678 	report_prefix_pushf("Enable-EPT enabled; EPT accessed and dirty flag %s",
4679 	    (eptp & EPTP_AD_FLAG) ? "1": "0");
4680 	if (is_ctrl_valid)
4681 		test_vmx_valid_controls();
4682 	else
4683 		test_vmx_invalid_controls();
4684 	report_prefix_pop();
4685 
4686 }
4687 
4688 /*
4689  * 1. If the "enable EPT" VM-execution control is 1, the "EPTP VM-execution"
4690  *    control field must satisfy the following checks:
4691  *
4692  *     - The EPT memory type (bits 2:0) must be a value supported by the
4693  *	 processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR.
4694  *     - Bits 5:3 (1 less than the EPT page-walk length) must indicate a
4695  *	 supported EPT page-walk length.
4696  *     - Bit 6 (enable bit for accessed and dirty flags for EPT) must be
4697  *	 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP MSR is read as 0,
4698  *	 indicating that the processor does not support accessed and dirty
4699  *	 dirty flags for EPT.
4700  *     - Reserved bits 11:7 and 63:N (where N is the processor's
4701  *	 physical-address width) must all be 0.
4702  *
4703  * 2. If the "unrestricted guest" VM-execution control is 1, the
4704  *    "enable EPT" VM-execution control must also be 1.
4705  */
4706 static void test_ept_eptp(void)
4707 {
4708 	u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0);
4709 	u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1);
4710 	u64 eptp_saved = vmcs_read(EPTP);
4711 	u32 primary = primary_saved;
4712 	u32 secondary = secondary_saved;
4713 	u64 eptp = eptp_saved;
4714 	u32 i, maxphysaddr;
4715 	u64 j, resv_bits_mask = 0;
4716 
4717 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4718 	    (ctrl_cpu_rev[1].clr & CPU_EPT))) {
4719 		printf("\"CPU secondary\" and/or \"enable EPT\" execution controls are not supported !\n");
4720 		return;
4721 	}
4722 
4723 	/* Support for 4-level EPT is mandatory. */
4724 	report(is_4_level_ept_supported(), "4-level EPT support check");
4725 
4726 	primary |= CPU_SECONDARY;
4727 	vmcs_write(CPU_EXEC_CTRL0, primary);
4728 	secondary |= CPU_EPT;
4729 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4730 	eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4731 	    (3ul << EPTP_PG_WALK_LEN_SHIFT);
4732 	vmcs_write(EPTP, eptp);
4733 
4734 	for (i = 0; i < 8; i++) {
4735 		eptp = (eptp & ~EPT_MEM_TYPE_MASK) | i;
4736 		vmcs_write(EPTP, eptp);
4737 		report_prefix_pushf("Enable-EPT enabled; EPT memory type %lu",
4738 		    eptp & EPT_MEM_TYPE_MASK);
4739 		if (is_ept_memtype_supported(i))
4740 			test_vmx_valid_controls();
4741 		else
4742 			test_vmx_invalid_controls();
4743 		report_prefix_pop();
4744 	}
4745 
4746 	eptp = (eptp & ~EPT_MEM_TYPE_MASK) | 6ul;
4747 
4748 	/*
4749 	 * Page walk length (bits 5:3).  Note, the value in VMCS.EPTP "is 1
4750 	 * less than the EPT page-walk length".
4751 	 */
4752 	for (i = 0; i < 8; i++) {
4753 		eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4754 		    (i << EPTP_PG_WALK_LEN_SHIFT);
4755 
4756 		vmcs_write(EPTP, eptp);
4757 		report_prefix_pushf("Enable-EPT enabled; EPT page walk length %lu",
4758 		    eptp & EPTP_PG_WALK_LEN_MASK);
4759 		if (i == 3 || (i == 4 && is_5_level_ept_supported()))
4760 			test_vmx_valid_controls();
4761 		else
4762 			test_vmx_invalid_controls();
4763 		report_prefix_pop();
4764 	}
4765 
4766 	eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4767 	    3ul << EPTP_PG_WALK_LEN_SHIFT;
4768 
4769 	/*
4770 	 * Accessed and dirty flag (bit 6)
4771 	 */
4772 	if (ept_ad_bits_supported()) {
4773 		report_info("Processor supports accessed and dirty flag");
4774 		eptp &= ~EPTP_AD_FLAG;
4775 		test_eptp_ad_bit(eptp, true);
4776 
4777 		eptp |= EPTP_AD_FLAG;
4778 		test_eptp_ad_bit(eptp, true);
4779 	} else {
4780 		report_info("Processor does not supports accessed and dirty flag");
4781 		eptp &= ~EPTP_AD_FLAG;
4782 		test_eptp_ad_bit(eptp, true);
4783 
4784 		eptp |= EPTP_AD_FLAG;
4785 		test_eptp_ad_bit(eptp, false);
4786 	}
4787 
4788 	/*
4789 	 * Reserved bits [11:7] and [63:N]
4790 	 */
4791 	for (i = 0; i < 32; i++) {
4792 		eptp = (eptp &
4793 		    ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)) |
4794 		    (i << EPTP_RESERV_BITS_SHIFT);
4795 		vmcs_write(EPTP, eptp);
4796 		report_prefix_pushf("Enable-EPT enabled; reserved bits [11:7] %lu",
4797 		    (eptp >> EPTP_RESERV_BITS_SHIFT) &
4798 		    EPTP_RESERV_BITS_MASK);
4799 		if (i == 0)
4800 			test_vmx_valid_controls();
4801 		else
4802 			test_vmx_invalid_controls();
4803 		report_prefix_pop();
4804 	}
4805 
4806 	eptp = (eptp & ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT));
4807 
4808 	maxphysaddr = cpuid_maxphyaddr();
4809 	for (i = 0; i < (63 - maxphysaddr + 1); i++) {
4810 		resv_bits_mask |= 1ul << i;
4811 	}
4812 
4813 	for (j = maxphysaddr - 1; j <= 63; j++) {
4814 		eptp = (eptp & ~(resv_bits_mask << maxphysaddr)) |
4815 		    (j < maxphysaddr ? 0 : 1ul << j);
4816 		vmcs_write(EPTP, eptp);
4817 		report_prefix_pushf("Enable-EPT enabled; reserved bits [63:N] %lu",
4818 		    (eptp >> maxphysaddr) & resv_bits_mask);
4819 		if (j < maxphysaddr)
4820 			test_vmx_valid_controls();
4821 		else
4822 			test_vmx_invalid_controls();
4823 		report_prefix_pop();
4824 	}
4825 
4826 	secondary &= ~(CPU_EPT | CPU_URG);
4827 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4828 	report_prefix_pushf("Enable-EPT disabled, unrestricted-guest disabled");
4829 	test_vmx_valid_controls();
4830 	report_prefix_pop();
4831 
4832 	if (!(ctrl_cpu_rev[1].clr & CPU_URG))
4833 		goto skip_unrestricted_guest;
4834 
4835 	secondary |= CPU_URG;
4836 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4837 	report_prefix_pushf("Enable-EPT disabled, unrestricted-guest enabled");
4838 	test_vmx_invalid_controls();
4839 	report_prefix_pop();
4840 
4841 	secondary |= CPU_EPT;
4842 	setup_dummy_ept();
4843 	report_prefix_pushf("Enable-EPT enabled, unrestricted-guest enabled");
4844 	test_vmx_valid_controls();
4845 	report_prefix_pop();
4846 
4847 skip_unrestricted_guest:
4848 	secondary &= ~CPU_URG;
4849 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4850 	report_prefix_pushf("Enable-EPT enabled, unrestricted-guest disabled");
4851 	test_vmx_valid_controls();
4852 	report_prefix_pop();
4853 
4854 	vmcs_write(CPU_EXEC_CTRL0, primary_saved);
4855 	vmcs_write(CPU_EXEC_CTRL1, secondary_saved);
4856 	vmcs_write(EPTP, eptp_saved);
4857 }
4858 
4859 /*
4860  * If the 'enable PML' VM-execution control is 1, the 'enable EPT'
4861  * VM-execution control must also be 1. In addition, the PML address
4862  * must satisfy the following checks:
4863  *
4864  *    * Bits 11:0 of the address must be 0.
4865  *    * The address should not set any bits beyond the processor's
4866  *	physical-address width.
4867  *
4868  *  [Intel SDM]
4869  */
4870 static void test_pml(void)
4871 {
4872 	u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0);
4873 	u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1);
4874 	u32 primary = primary_saved;
4875 	u32 secondary = secondary_saved;
4876 
4877 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4878 	    (ctrl_cpu_rev[1].clr & CPU_EPT) && (ctrl_cpu_rev[1].clr & CPU_PML))) {
4879 		printf("\"Secondary execution\" control or \"enable EPT\" control or \"enable PML\" control is not supported !\n");
4880 		return;
4881 	}
4882 
4883 	primary |= CPU_SECONDARY;
4884 	vmcs_write(CPU_EXEC_CTRL0, primary);
4885 	secondary &= ~(CPU_PML | CPU_EPT);
4886 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4887 	report_prefix_pushf("enable-PML disabled, enable-EPT disabled");
4888 	test_vmx_valid_controls();
4889 	report_prefix_pop();
4890 
4891 	secondary |= CPU_PML;
4892 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4893 	report_prefix_pushf("enable-PML enabled, enable-EPT disabled");
4894 	test_vmx_invalid_controls();
4895 	report_prefix_pop();
4896 
4897 	secondary |= CPU_EPT;
4898 	setup_dummy_ept();
4899 	report_prefix_pushf("enable-PML enabled, enable-EPT enabled");
4900 	test_vmx_valid_controls();
4901 	report_prefix_pop();
4902 
4903 	secondary &= ~CPU_PML;
4904 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4905 	report_prefix_pushf("enable-PML disabled, enable EPT enabled");
4906 	test_vmx_valid_controls();
4907 	report_prefix_pop();
4908 
4909 	test_vmcs_addr_reference(CPU_PML, PMLADDR, "PML address", "PML",
4910 				 PAGE_SIZE, false, false);
4911 
4912 	vmcs_write(CPU_EXEC_CTRL0, primary_saved);
4913 	vmcs_write(CPU_EXEC_CTRL1, secondary_saved);
4914 }
4915 
4916  /*
4917  * If the "activate VMX-preemption timer" VM-execution control is 0, the
4918  * the "save VMX-preemption timer value" VM-exit control must also be 0.
4919  *
4920  *  [Intel SDM]
4921  */
4922 static void test_vmx_preemption_timer(void)
4923 {
4924 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
4925 	u32 saved_exit = vmcs_read(EXI_CONTROLS);
4926 	u32 pin = saved_pin;
4927 	u32 exit = saved_exit;
4928 
4929 	if (!((ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) ||
4930 	    (ctrl_pin_rev.clr & PIN_PREEMPT))) {
4931 		printf("\"Save-VMX-preemption-timer\" control and/or \"Enable-VMX-preemption-timer\" control is not supported\n");
4932 		return;
4933 	}
4934 
4935 	pin |= PIN_PREEMPT;
4936 	vmcs_write(PIN_CONTROLS, pin);
4937 	exit &= ~EXI_SAVE_PREEMPT;
4938 	vmcs_write(EXI_CONTROLS, exit);
4939 	report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer disabled");
4940 	test_vmx_valid_controls();
4941 	report_prefix_pop();
4942 
4943 	exit |= EXI_SAVE_PREEMPT;
4944 	vmcs_write(EXI_CONTROLS, exit);
4945 	report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer enabled");
4946 	test_vmx_valid_controls();
4947 	report_prefix_pop();
4948 
4949 	pin &= ~PIN_PREEMPT;
4950 	vmcs_write(PIN_CONTROLS, pin);
4951 	report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer enabled");
4952 	test_vmx_invalid_controls();
4953 	report_prefix_pop();
4954 
4955 	exit &= ~EXI_SAVE_PREEMPT;
4956 	vmcs_write(EXI_CONTROLS, exit);
4957 	report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer disabled");
4958 	test_vmx_valid_controls();
4959 	report_prefix_pop();
4960 
4961 	vmcs_write(PIN_CONTROLS, saved_pin);
4962 	vmcs_write(EXI_CONTROLS, saved_exit);
4963 }
4964 
4965 extern unsigned char test_mtf1;
4966 extern unsigned char test_mtf2;
4967 extern unsigned char test_mtf3;
4968 extern unsigned char test_mtf4;
4969 
4970 static void test_mtf_guest(void)
4971 {
4972 	asm ("vmcall;\n\t"
4973 	     "out %al, $0x80;\n\t"
4974 	     "test_mtf1:\n\t"
4975 	     "vmcall;\n\t"
4976 	     "out %al, $0x80;\n\t"
4977 	     "test_mtf2:\n\t"
4978 	     /*
4979 	      * Prepare for the 'MOV CR3' test. Attempt to induce a
4980 	      * general-protection fault by moving a non-canonical address into
4981 	      * CR3. The 'MOV CR3' instruction does not take an imm64 operand,
4982 	      * so we must MOV the desired value into a register first.
4983 	      *
4984 	      * MOV RAX is done before the VMCALL such that MTF is only enabled
4985 	      * for the instruction under test.
4986 	      */
4987 	     "mov $0xaaaaaaaaaaaaaaaa, %rax;\n\t"
4988 	     "vmcall;\n\t"
4989 	     "mov %rax, %cr3;\n\t"
4990 	     "test_mtf3:\n\t"
4991 	     "vmcall;\n\t"
4992 	     /*
4993 	      * ICEBP/INT1 instruction. Though the instruction is now
4994 	      * documented, don't rely on assemblers enumerating the
4995 	      * instruction. Resort to hand assembly.
4996 	      */
4997 	     ".byte 0xf1;\n\t"
4998 	     "vmcall;\n\t"
4999 	     "test_mtf4:\n\t"
5000 	     "mov $0, %eax;\n\t");
5001 }
5002 
5003 static void test_mtf_gp_handler(struct ex_regs *regs)
5004 {
5005 	regs->rip = (unsigned long) &test_mtf3;
5006 }
5007 
5008 static void test_mtf_db_handler(struct ex_regs *regs)
5009 {
5010 }
5011 
5012 static void enable_mtf(void)
5013 {
5014 	u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
5015 
5016 	vmcs_write(CPU_EXEC_CTRL0, ctrl0 | CPU_MTF);
5017 }
5018 
5019 static void disable_mtf(void)
5020 {
5021 	u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
5022 
5023 	vmcs_write(CPU_EXEC_CTRL0, ctrl0 & ~CPU_MTF);
5024 }
5025 
5026 static void enable_tf(void)
5027 {
5028 	unsigned long rflags = vmcs_read(GUEST_RFLAGS);
5029 
5030 	vmcs_write(GUEST_RFLAGS, rflags | X86_EFLAGS_TF);
5031 }
5032 
5033 static void disable_tf(void)
5034 {
5035 	unsigned long rflags = vmcs_read(GUEST_RFLAGS);
5036 
5037 	vmcs_write(GUEST_RFLAGS, rflags & ~X86_EFLAGS_TF);
5038 }
5039 
5040 static void report_mtf(const char *insn_name, unsigned long exp_rip)
5041 {
5042 	unsigned long rip = vmcs_read(GUEST_RIP);
5043 
5044 	assert_exit_reason(VMX_MTF);
5045 	report(rip == exp_rip, "MTF VM-exit after %s. RIP: 0x%lx (expected 0x%lx)",
5046 	       insn_name, rip, exp_rip);
5047 }
5048 
5049 static void vmx_mtf_test(void)
5050 {
5051 	unsigned long pending_dbg;
5052 	handler old_gp, old_db;
5053 
5054 	if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) {
5055 		printf("CPU does not support the 'monitor trap flag' processor-based VM-execution control.\n");
5056 		return;
5057 	}
5058 
5059 	test_set_guest(test_mtf_guest);
5060 
5061 	/* Expect an MTF VM-exit after OUT instruction */
5062 	enter_guest();
5063 	skip_exit_vmcall();
5064 
5065 	enable_mtf();
5066 	enter_guest();
5067 	report_mtf("OUT", (unsigned long) &test_mtf1);
5068 	disable_mtf();
5069 
5070 	/*
5071 	 * Concurrent #DB trap and MTF on instruction boundary. Expect MTF
5072 	 * VM-exit with populated 'pending debug exceptions' VMCS field.
5073 	 */
5074 	enter_guest();
5075 	skip_exit_vmcall();
5076 
5077 	enable_mtf();
5078 	enable_tf();
5079 
5080 	enter_guest();
5081 	report_mtf("OUT", (unsigned long) &test_mtf2);
5082 	pending_dbg = vmcs_read(GUEST_PENDING_DEBUG);
5083 	report(pending_dbg & DR_STEP,
5084 	       "'pending debug exceptions' field after MTF VM-exit: 0x%lx (expected 0x%lx)",
5085 	       pending_dbg, (unsigned long) DR_STEP);
5086 
5087 	disable_mtf();
5088 	disable_tf();
5089 	vmcs_write(GUEST_PENDING_DEBUG, 0);
5090 
5091 	/*
5092 	 * #GP exception takes priority over MTF. Expect MTF VM-exit with RIP
5093 	 * advanced to first instruction of #GP handler.
5094 	 */
5095 	enter_guest();
5096 	skip_exit_vmcall();
5097 
5098 	old_gp = handle_exception(GP_VECTOR, test_mtf_gp_handler);
5099 
5100 	enable_mtf();
5101 	enter_guest();
5102 	report_mtf("MOV CR3", (unsigned long) get_idt_addr(&boot_idt[GP_VECTOR]));
5103 	disable_mtf();
5104 
5105 	/*
5106 	 * Concurrent MTF and privileged software exception (i.e. ICEBP/INT1).
5107 	 * MTF should follow the delivery of #DB trap, though the SDM doesn't
5108 	 * provide clear indication of the relative priority.
5109 	 */
5110 	enter_guest();
5111 	skip_exit_vmcall();
5112 
5113 	handle_exception(GP_VECTOR, old_gp);
5114 	old_db = handle_exception(DB_VECTOR, test_mtf_db_handler);
5115 
5116 	enable_mtf();
5117 	enter_guest();
5118 	report_mtf("INT1", (unsigned long) get_idt_addr(&boot_idt[DB_VECTOR]));
5119 	disable_mtf();
5120 
5121 	enter_guest();
5122 	skip_exit_vmcall();
5123 	handle_exception(DB_VECTOR, old_db);
5124 	vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | INTR_TYPE_OTHER_EVENT);
5125 	enter_guest();
5126 	report_mtf("injected MTF", (unsigned long) &test_mtf4);
5127 	enter_guest();
5128 }
5129 
5130 extern char vmx_mtf_pdpte_guest_begin;
5131 extern char vmx_mtf_pdpte_guest_end;
5132 
5133 asm("vmx_mtf_pdpte_guest_begin:\n\t"
5134     "mov %cr0, %rax\n\t"    /* save CR0 with PG=1                 */
5135     "vmcall\n\t"            /* on return from this CR0.PG=0       */
5136     "mov %rax, %cr0\n\t"    /* restore CR0.PG=1 to enter PAE mode */
5137     "vmcall\n\t"
5138     "retq\n\t"
5139     "vmx_mtf_pdpte_guest_end:");
5140 
5141 static void vmx_mtf_pdpte_test(void)
5142 {
5143 	void *test_mtf_pdpte_guest;
5144 	pteval_t *pdpt;
5145 	u32 guest_ar_cs;
5146 	u64 guest_efer;
5147 	pteval_t *pte;
5148 	u64 guest_cr0;
5149 	u64 guest_cr3;
5150 	u64 guest_cr4;
5151 	u64 ent_ctls;
5152 	int i;
5153 
5154 	if (setup_ept(false))
5155 		return;
5156 
5157 	if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) {
5158 		printf("CPU does not support 'monitor trap flag.'\n");
5159 		return;
5160 	}
5161 
5162 	if (!(ctrl_cpu_rev[1].clr & CPU_URG)) {
5163 		printf("CPU does not support 'unrestricted guest.'\n");
5164 		return;
5165 	}
5166 
5167 	vmcs_write(EXC_BITMAP, ~0);
5168 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG);
5169 
5170 	/*
5171 	 * Copy the guest code to an identity-mapped page.
5172 	 */
5173 	test_mtf_pdpte_guest = alloc_page();
5174 	memcpy(test_mtf_pdpte_guest, &vmx_mtf_pdpte_guest_begin,
5175 	       &vmx_mtf_pdpte_guest_end - &vmx_mtf_pdpte_guest_begin);
5176 
5177 	test_set_guest(test_mtf_pdpte_guest);
5178 
5179 	enter_guest();
5180 	skip_exit_vmcall();
5181 
5182 	/*
5183 	 * Put the guest in non-paged 32-bit protected mode, ready to enter
5184 	 * PAE mode when CR0.PG is set. CR4.PAE will already have been set
5185 	 * when the guest started out in long mode.
5186 	 */
5187 	ent_ctls = vmcs_read(ENT_CONTROLS);
5188 	vmcs_write(ENT_CONTROLS, ent_ctls & ~ENT_GUEST_64);
5189 
5190 	guest_efer = vmcs_read(GUEST_EFER);
5191 	vmcs_write(GUEST_EFER, guest_efer & ~(EFER_LMA | EFER_LME));
5192 
5193 	/*
5194 	 * Set CS access rights bits for 32-bit protected mode:
5195 	 * 3:0    B execute/read/accessed
5196 	 * 4      1 code or data
5197 	 * 6:5    0 descriptor privilege level
5198 	 * 7      1 present
5199 	 * 11:8   0 reserved
5200 	 * 12     0 available for use by system software
5201 	 * 13     0 64 bit mode not active
5202 	 * 14     1 default operation size 32-bit segment
5203 	 * 15     1 page granularity: segment limit in 4K units
5204 	 * 16     0 segment usable
5205 	 * 31:17  0 reserved
5206 	 */
5207 	guest_ar_cs = vmcs_read(GUEST_AR_CS);
5208 	vmcs_write(GUEST_AR_CS, 0xc09b);
5209 
5210 	guest_cr0 = vmcs_read(GUEST_CR0);
5211 	vmcs_write(GUEST_CR0, guest_cr0 & ~X86_CR0_PG);
5212 
5213 	guest_cr4 = vmcs_read(GUEST_CR4);
5214 	vmcs_write(GUEST_CR4, guest_cr4 & ~X86_CR4_PCIDE);
5215 
5216 	guest_cr3 = vmcs_read(GUEST_CR3);
5217 
5218 	/*
5219 	 * Turn the 4-level page table into a PAE page table by following the 0th
5220 	 * PML4 entry to a PDPT page, and grab the first four PDPTEs from that
5221 	 * page.
5222 	 *
5223 	 * Why does this work?
5224 	 *
5225 	 * PAE uses 32-bit addressing which implies:
5226 	 * Bits 11:0   page offset
5227 	 * Bits 20:12  entry into 512-entry page table
5228 	 * Bits 29:21  entry into a 512-entry directory table
5229 	 * Bits 31:30  entry into the page directory pointer table.
5230 	 * Bits 63:32  zero
5231 	 *
5232 	 * As only 2 bits are needed to select the PDPTEs for the entire
5233 	 * 32-bit address space, take the first 4 PDPTEs in the level 3 page
5234 	 * directory pointer table. It doesn't matter which of these PDPTEs
5235 	 * are present because they must cover the guest code given that it
5236 	 * has already run successfully.
5237 	 *
5238 	 * Get a pointer to PTE for GVA=0 in the page directory pointer table
5239 	 */
5240 	pte = get_pte_level(
5241             (pgd_t *)phys_to_virt(guest_cr3 & ~X86_CR3_PCID_MASK), 0,
5242             PDPT_LEVEL);
5243 
5244 	/*
5245 	 * Need some memory for the 4-entry PAE page directory pointer
5246 	 * table. Use the end of the identity-mapped page where the guest code
5247 	 * is stored. There is definitely space as the guest code is only a
5248 	 * few bytes.
5249 	 */
5250 	pdpt = test_mtf_pdpte_guest + PAGE_SIZE - 4 * sizeof(pteval_t);
5251 
5252 	/*
5253 	 * Copy the first four PDPTEs into the PAE page table with reserved
5254 	 * bits cleared. Note that permission bits from the PML4E and PDPTE
5255 	 * are not propagated.
5256 	 */
5257 	for (i = 0; i < 4; i++) {
5258 		TEST_ASSERT_EQ_MSG(0, (pte[i] & PDPTE64_RSVD_MASK),
5259 				   "PDPTE has invalid reserved bits");
5260 		TEST_ASSERT_EQ_MSG(0, (pte[i] & PDPTE64_PAGE_SIZE_MASK),
5261 				   "Cannot use 1GB super pages for PAE");
5262 		pdpt[i] = pte[i] & ~(PAE_PDPTE_RSVD_MASK);
5263 	}
5264 	vmcs_write(GUEST_CR3, virt_to_phys(pdpt));
5265 
5266 	enable_mtf();
5267 	enter_guest();
5268 	assert_exit_reason(VMX_MTF);
5269 	disable_mtf();
5270 
5271 	/*
5272 	 * The four PDPTEs should have been loaded into the VMCS when
5273 	 * the guest set CR0.PG to enter PAE mode.
5274 	 */
5275 	for (i = 0; i < 4; i++) {
5276 		u64 pdpte = vmcs_read(GUEST_PDPTE + 2 * i);
5277 
5278 		report(pdpte == pdpt[i], "PDPTE%d is 0x%lx (expected 0x%lx)",
5279 		       i, pdpte, pdpt[i]);
5280 	}
5281 
5282 	/*
5283 	 * Now, try to enter the guest in PAE mode. If the PDPTEs in the
5284 	 * vmcs are wrong, this will fail.
5285 	 */
5286 	enter_guest();
5287 	skip_exit_vmcall();
5288 
5289 	/*
5290 	 * Return guest to 64-bit mode and wrap up.
5291 	 */
5292 	vmcs_write(ENT_CONTROLS, ent_ctls);
5293 	vmcs_write(GUEST_EFER, guest_efer);
5294 	vmcs_write(GUEST_AR_CS, guest_ar_cs);
5295 	vmcs_write(GUEST_CR0, guest_cr0);
5296 	vmcs_write(GUEST_CR4, guest_cr4);
5297 	vmcs_write(GUEST_CR3, guest_cr3);
5298 
5299 	enter_guest();
5300 }
5301 
5302 /*
5303  * Tests for VM-execution control fields
5304  */
5305 static void test_vm_execution_ctls(void)
5306 {
5307 	test_pin_based_ctls();
5308 	test_primary_processor_based_ctls();
5309 	test_secondary_processor_based_ctls();
5310 	test_cr3_targets();
5311 	test_io_bitmaps();
5312 	test_msr_bitmap();
5313 	test_apic_ctls();
5314 	test_tpr_threshold();
5315 	test_nmi_ctrls();
5316 	test_pml();
5317 	test_vpid();
5318 	test_ept_eptp();
5319 	test_vmx_preemption_timer();
5320 }
5321 
5322  /*
5323   * The following checks are performed for the VM-entry MSR-load address if
5324   * the VM-entry MSR-load count field is non-zero:
5325   *
5326   *    - The lower 4 bits of the VM-entry MSR-load address must be 0.
5327   *      The address should not set any bits beyond the processor's
5328   *      physical-address width.
5329   *
5330   *    - The address of the last byte in the VM-entry MSR-load area
5331   *      should not set any bits beyond the processor's physical-address
5332   *      width. The address of this last byte is VM-entry MSR-load address
5333   *      + (MSR count * 16) - 1. (The arithmetic used for the computation
5334   *      uses more bits than the processor's physical-address width.)
5335   *
5336   *
5337   *  [Intel SDM]
5338   */
5339 static void test_entry_msr_load(void)
5340 {
5341 	entry_msr_load = alloc_page();
5342 	u64 tmp;
5343 	u32 entry_msr_ld_cnt = 1;
5344 	int i;
5345 	u32 addr_len = 64;
5346 
5347 	vmcs_write(ENT_MSR_LD_CNT, entry_msr_ld_cnt);
5348 
5349 	/* Check first 4 bits of VM-entry MSR-load address */
5350 	for (i = 0; i < 4; i++) {
5351 		tmp = (u64)entry_msr_load | 1ull << i;
5352 		vmcs_write(ENTER_MSR_LD_ADDR, tmp);
5353 		report_prefix_pushf("VM-entry MSR-load addr [4:0] %lx",
5354 				    tmp & 0xf);
5355 		test_vmx_invalid_controls();
5356 		report_prefix_pop();
5357 	}
5358 
5359 	if (basic.val & (1ul << 48))
5360 		addr_len = 32;
5361 
5362 	test_vmcs_addr_values("VM-entry-MSR-load address",
5363 				ENTER_MSR_LD_ADDR, 16, false, false,
5364 				4, addr_len - 1);
5365 
5366 	/*
5367 	 * Check last byte of VM-entry MSR-load address
5368 	 */
5369 	entry_msr_load = (struct vmx_msr_entry *)((u64)entry_msr_load & ~0xf);
5370 
5371 	for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len);
5372 							i < 64; i++) {
5373 		tmp = ((u64)entry_msr_load + entry_msr_ld_cnt * 16 - 1) |
5374 			1ul << i;
5375 		vmcs_write(ENTER_MSR_LD_ADDR,
5376 			   tmp - (entry_msr_ld_cnt * 16 - 1));
5377 		test_vmx_invalid_controls();
5378 	}
5379 
5380 	vmcs_write(ENT_MSR_LD_CNT, 2);
5381 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 16);
5382 	test_vmx_invalid_controls();
5383 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 32);
5384 	test_vmx_valid_controls();
5385 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 48);
5386 	test_vmx_valid_controls();
5387 }
5388 
5389 static struct vmx_state_area_test_data {
5390 	u32 msr;
5391 	u64 exp;
5392 	bool enabled;
5393 } vmx_state_area_test_data;
5394 
5395 static void guest_state_test_main(void)
5396 {
5397 	u64 obs;
5398 	struct vmx_state_area_test_data *data = &vmx_state_area_test_data;
5399 
5400 	while (1) {
5401 		if (vmx_get_test_stage() == 2)
5402 			break;
5403 
5404 		if (data->enabled) {
5405 			obs = rdmsr(data->msr);
5406 			report(data->exp == obs,
5407 			       "Guest state is 0x%lx (expected 0x%lx)",
5408 			       obs, data->exp);
5409 		}
5410 
5411 		vmcall();
5412 	}
5413 
5414 	asm volatile("fnop");
5415 }
5416 
5417 static void test_guest_state(const char *test, bool xfail, u64 field,
5418 			     const char * field_name)
5419 {
5420 	struct vmentry_result result;
5421 	u8 abort_flags;
5422 
5423 	abort_flags = ABORT_ON_EARLY_VMENTRY_FAIL;
5424 	if (!xfail)
5425 		abort_flags = ABORT_ON_INVALID_GUEST_STATE;
5426 
5427 	__enter_guest(abort_flags, &result);
5428 
5429 	report(result.exit_reason.failed_vmentry == xfail &&
5430 	       ((xfail && result.exit_reason.basic == VMX_FAIL_STATE) ||
5431 	        (!xfail && result.exit_reason.basic == VMX_VMCALL)) &&
5432 		(!xfail || vmcs_read(EXI_QUALIFICATION) == ENTRY_FAIL_DEFAULT),
5433 	        "%s, %s = %lx", test, field_name, field);
5434 
5435 	if (!result.exit_reason.failed_vmentry)
5436 		skip_exit_insn();
5437 }
5438 
5439 /*
5440  * Tests for VM-entry control fields
5441  */
5442 static void test_vm_entry_ctls(void)
5443 {
5444 	test_invalid_event_injection();
5445 	test_entry_msr_load();
5446 }
5447 
5448 /*
5449  * The following checks are performed for the VM-exit MSR-store address if
5450  * the VM-exit MSR-store count field is non-zero:
5451  *
5452  *    - The lower 4 bits of the VM-exit MSR-store address must be 0.
5453  *      The address should not set any bits beyond the processor's
5454  *      physical-address width.
5455  *
5456  *    - The address of the last byte in the VM-exit MSR-store area
5457  *      should not set any bits beyond the processor's physical-address
5458  *      width. The address of this last byte is VM-exit MSR-store address
5459  *      + (MSR count * 16) - 1. (The arithmetic used for the computation
5460  *      uses more bits than the processor's physical-address width.)
5461  *
5462  * If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits
5463  * in the range 63:32.
5464  *
5465  *  [Intel SDM]
5466  */
5467 static void test_exit_msr_store(void)
5468 {
5469 	exit_msr_store = alloc_page();
5470 	u64 tmp;
5471 	u32 exit_msr_st_cnt = 1;
5472 	int i;
5473 	u32 addr_len = 64;
5474 
5475 	vmcs_write(EXI_MSR_ST_CNT, exit_msr_st_cnt);
5476 
5477 	/* Check first 4 bits of VM-exit MSR-store address */
5478 	for (i = 0; i < 4; i++) {
5479 		tmp = (u64)exit_msr_store | 1ull << i;
5480 		vmcs_write(EXIT_MSR_ST_ADDR, tmp);
5481 		report_prefix_pushf("VM-exit MSR-store addr [4:0] %lx",
5482 				    tmp & 0xf);
5483 		test_vmx_invalid_controls();
5484 		report_prefix_pop();
5485 	}
5486 
5487 	if (basic.val & (1ul << 48))
5488 		addr_len = 32;
5489 
5490 	test_vmcs_addr_values("VM-exit-MSR-store address",
5491 				EXIT_MSR_ST_ADDR, 16, false, false,
5492 				4, addr_len - 1);
5493 
5494 	/*
5495 	 * Check last byte of VM-exit MSR-store address
5496 	 */
5497 	exit_msr_store = (struct vmx_msr_entry *)((u64)exit_msr_store & ~0xf);
5498 
5499 	for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len);
5500 							i < 64; i++) {
5501 		tmp = ((u64)exit_msr_store + exit_msr_st_cnt * 16 - 1) |
5502 			1ul << i;
5503 		vmcs_write(EXIT_MSR_ST_ADDR,
5504 			   tmp - (exit_msr_st_cnt * 16 - 1));
5505 		test_vmx_invalid_controls();
5506 	}
5507 
5508 	vmcs_write(EXI_MSR_ST_CNT, 2);
5509 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 16);
5510 	test_vmx_invalid_controls();
5511 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 32);
5512 	test_vmx_valid_controls();
5513 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 48);
5514 	test_vmx_valid_controls();
5515 }
5516 
5517 /*
5518  * Tests for VM-exit controls
5519  */
5520 static void test_vm_exit_ctls(void)
5521 {
5522 	test_exit_msr_store();
5523 }
5524 
5525 /*
5526  * Check that the virtual CPU checks all of the VMX controls as
5527  * documented in the Intel SDM.
5528  */
5529 static void vmx_controls_test(void)
5530 {
5531 	/*
5532 	 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will
5533 	 * fail due to invalid guest state, should we make it that
5534 	 * far.
5535 	 */
5536 	vmcs_write(GUEST_RFLAGS, 0);
5537 
5538 	test_vm_execution_ctls();
5539 	test_vm_exit_ctls();
5540 	test_vm_entry_ctls();
5541 }
5542 
5543 struct apic_reg_virt_config {
5544 	bool apic_register_virtualization;
5545 	bool use_tpr_shadow;
5546 	bool virtualize_apic_accesses;
5547 	bool virtualize_x2apic_mode;
5548 	bool activate_secondary_controls;
5549 };
5550 
5551 struct apic_reg_test {
5552 	const char *name;
5553 	struct apic_reg_virt_config apic_reg_virt_config;
5554 };
5555 
5556 struct apic_reg_virt_expectation {
5557 	enum Reason rd_exit_reason;
5558 	enum Reason wr_exit_reason;
5559 	u32 val;
5560 	u32 (*virt_fn)(u32);
5561 
5562 	/*
5563 	 * If false, accessing the APIC access address from L2 is treated as a
5564 	 * normal memory operation, rather than triggering virtualization.
5565 	 */
5566 	bool virtualize_apic_accesses;
5567 };
5568 
5569 static u32 apic_virt_identity(u32 val)
5570 {
5571 	return val;
5572 }
5573 
5574 static u32 apic_virt_nibble1(u32 val)
5575 {
5576 	return val & 0xf0;
5577 }
5578 
5579 static u32 apic_virt_byte3(u32 val)
5580 {
5581 	return val & (0xff << 24);
5582 }
5583 
5584 static bool apic_reg_virt_exit_expectation(
5585 	u32 reg, struct apic_reg_virt_config *config,
5586 	struct apic_reg_virt_expectation *expectation)
5587 {
5588 	/* Good configs, where some L2 APIC accesses are virtualized. */
5589 	bool virtualize_apic_accesses_only =
5590 		config->virtualize_apic_accesses &&
5591 		!config->use_tpr_shadow &&
5592 		!config->apic_register_virtualization &&
5593 		!config->virtualize_x2apic_mode &&
5594 		config->activate_secondary_controls;
5595 	bool virtualize_apic_accesses_and_use_tpr_shadow =
5596 		config->virtualize_apic_accesses &&
5597 		config->use_tpr_shadow &&
5598 		!config->apic_register_virtualization &&
5599 		!config->virtualize_x2apic_mode &&
5600 		config->activate_secondary_controls;
5601 	bool apic_register_virtualization =
5602 		config->virtualize_apic_accesses &&
5603 		config->use_tpr_shadow &&
5604 		config->apic_register_virtualization &&
5605 		!config->virtualize_x2apic_mode &&
5606 		config->activate_secondary_controls;
5607 
5608 	expectation->val = MAGIC_VAL_1;
5609 	expectation->virt_fn = apic_virt_identity;
5610 	expectation->virtualize_apic_accesses =
5611 		config->virtualize_apic_accesses &&
5612 		config->activate_secondary_controls;
5613 	if (virtualize_apic_accesses_only) {
5614 		expectation->rd_exit_reason = VMX_APIC_ACCESS;
5615 		expectation->wr_exit_reason = VMX_APIC_ACCESS;
5616 	} else if (virtualize_apic_accesses_and_use_tpr_shadow) {
5617 		switch (reg) {
5618 		case APIC_TASKPRI:
5619 			expectation->rd_exit_reason = VMX_VMCALL;
5620 			expectation->wr_exit_reason = VMX_VMCALL;
5621 			expectation->virt_fn = apic_virt_nibble1;
5622 			break;
5623 		default:
5624 			expectation->rd_exit_reason = VMX_APIC_ACCESS;
5625 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5626 		}
5627 	} else if (apic_register_virtualization) {
5628 		expectation->rd_exit_reason = VMX_VMCALL;
5629 
5630 		switch (reg) {
5631 		case APIC_ID:
5632 		case APIC_EOI:
5633 		case APIC_LDR:
5634 		case APIC_DFR:
5635 		case APIC_SPIV:
5636 		case APIC_ESR:
5637 		case APIC_ICR:
5638 		case APIC_LVTT:
5639 		case APIC_LVTTHMR:
5640 		case APIC_LVTPC:
5641 		case APIC_LVT0:
5642 		case APIC_LVT1:
5643 		case APIC_LVTERR:
5644 		case APIC_TMICT:
5645 		case APIC_TDCR:
5646 			expectation->wr_exit_reason = VMX_APIC_WRITE;
5647 			break;
5648 		case APIC_LVR:
5649 		case APIC_ISR ... APIC_ISR + 0x70:
5650 		case APIC_TMR ... APIC_TMR + 0x70:
5651 		case APIC_IRR ... APIC_IRR + 0x70:
5652 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5653 			break;
5654 		case APIC_TASKPRI:
5655 			expectation->wr_exit_reason = VMX_VMCALL;
5656 			expectation->virt_fn = apic_virt_nibble1;
5657 			break;
5658 		case APIC_ICR2:
5659 			expectation->wr_exit_reason = VMX_VMCALL;
5660 			expectation->virt_fn = apic_virt_byte3;
5661 			break;
5662 		default:
5663 			expectation->rd_exit_reason = VMX_APIC_ACCESS;
5664 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5665 		}
5666 	} else if (!expectation->virtualize_apic_accesses) {
5667 		/*
5668 		 * No APIC registers are directly virtualized. This includes
5669 		 * VTPR, which can be virtualized through MOV to/from CR8 via
5670 		 * the use TPR shadow control, but not through directly
5671 		 * accessing VTPR.
5672 		 */
5673 		expectation->rd_exit_reason = VMX_VMCALL;
5674 		expectation->wr_exit_reason = VMX_VMCALL;
5675 	} else {
5676 		printf("Cannot parse APIC register virtualization config:\n"
5677 		       "\tvirtualize_apic_accesses: %d\n"
5678 		       "\tuse_tpr_shadow: %d\n"
5679 		       "\tapic_register_virtualization: %d\n"
5680 		       "\tvirtualize_x2apic_mode: %d\n"
5681 		       "\tactivate_secondary_controls: %d\n",
5682 		       config->virtualize_apic_accesses,
5683 		       config->use_tpr_shadow,
5684 		       config->apic_register_virtualization,
5685 		       config->virtualize_x2apic_mode,
5686 		       config->activate_secondary_controls);
5687 
5688 		return false;
5689 	}
5690 
5691 	return true;
5692 }
5693 
5694 struct apic_reg_test apic_reg_tests[] = {
5695 	/* Good configs, where some L2 APIC accesses are virtualized. */
5696 	{
5697 		.name = "Virtualize APIC accesses",
5698 		.apic_reg_virt_config = {
5699 			.virtualize_apic_accesses = true,
5700 			.use_tpr_shadow = false,
5701 			.apic_register_virtualization = false,
5702 			.virtualize_x2apic_mode = false,
5703 			.activate_secondary_controls = true,
5704 		},
5705 	},
5706 	{
5707 		.name = "Virtualize APIC accesses + Use TPR shadow",
5708 		.apic_reg_virt_config = {
5709 			.virtualize_apic_accesses = true,
5710 			.use_tpr_shadow = true,
5711 			.apic_register_virtualization = false,
5712 			.virtualize_x2apic_mode = false,
5713 			.activate_secondary_controls = true,
5714 		},
5715 	},
5716 	{
5717 		.name = "APIC-register virtualization",
5718 		.apic_reg_virt_config = {
5719 			.virtualize_apic_accesses = true,
5720 			.use_tpr_shadow = true,
5721 			.apic_register_virtualization = true,
5722 			.virtualize_x2apic_mode = false,
5723 			.activate_secondary_controls = true,
5724 		},
5725 	},
5726 
5727 	/*
5728 	 * Test that the secondary processor-based VM-execution controls are
5729 	 * correctly ignored when "activate secondary controls" is disabled.
5730 	 */
5731 	{
5732 		.name = "Activate secondary controls off",
5733 		.apic_reg_virt_config = {
5734 			.virtualize_apic_accesses = true,
5735 			.use_tpr_shadow = false,
5736 			.apic_register_virtualization = true,
5737 			.virtualize_x2apic_mode = true,
5738 			.activate_secondary_controls = false,
5739 		},
5740 	},
5741 	{
5742 		.name = "Activate secondary controls off + Use TPR shadow",
5743 		.apic_reg_virt_config = {
5744 			.virtualize_apic_accesses = true,
5745 			.use_tpr_shadow = true,
5746 			.apic_register_virtualization = true,
5747 			.virtualize_x2apic_mode = true,
5748 			.activate_secondary_controls = false,
5749 		},
5750 	},
5751 
5752 	/*
5753 	 * Test that the APIC access address is treated like an arbitrary memory
5754 	 * address when "virtualize APIC accesses" is disabled.
5755 	 */
5756 	{
5757 		.name = "Virtualize APIC accesses off + Use TPR shadow",
5758 		.apic_reg_virt_config = {
5759 			.virtualize_apic_accesses = false,
5760 			.use_tpr_shadow = true,
5761 			.apic_register_virtualization = true,
5762 			.virtualize_x2apic_mode = true,
5763 			.activate_secondary_controls = true,
5764 		},
5765 	},
5766 
5767 	/*
5768 	 * Test that VM entry fails due to invalid controls when
5769 	 * "APIC-register virtualization" is enabled while "use TPR shadow" is
5770 	 * disabled.
5771 	 */
5772 	{
5773 		.name = "APIC-register virtualization + Use TPR shadow off",
5774 		.apic_reg_virt_config = {
5775 			.virtualize_apic_accesses = true,
5776 			.use_tpr_shadow = false,
5777 			.apic_register_virtualization = true,
5778 			.virtualize_x2apic_mode = false,
5779 			.activate_secondary_controls = true,
5780 		},
5781 	},
5782 
5783 	/*
5784 	 * Test that VM entry fails due to invalid controls when
5785 	 * "Virtualize x2APIC mode" is enabled while "use TPR shadow" is
5786 	 * disabled.
5787 	 */
5788 	{
5789 		.name = "Virtualize x2APIC mode + Use TPR shadow off",
5790 		.apic_reg_virt_config = {
5791 			.virtualize_apic_accesses = false,
5792 			.use_tpr_shadow = false,
5793 			.apic_register_virtualization = false,
5794 			.virtualize_x2apic_mode = true,
5795 			.activate_secondary_controls = true,
5796 		},
5797 	},
5798 	{
5799 		.name = "Virtualize x2APIC mode + Use TPR shadow off v2",
5800 		.apic_reg_virt_config = {
5801 			.virtualize_apic_accesses = false,
5802 			.use_tpr_shadow = false,
5803 			.apic_register_virtualization = true,
5804 			.virtualize_x2apic_mode = true,
5805 			.activate_secondary_controls = true,
5806 		},
5807 	},
5808 
5809 	/*
5810 	 * Test that VM entry fails due to invalid controls when
5811 	 * "virtualize x2APIC mode" is enabled while "virtualize APIC accesses"
5812 	 * is enabled.
5813 	 */
5814 	{
5815 		.name = "Virtualize x2APIC mode + Virtualize APIC accesses",
5816 		.apic_reg_virt_config = {
5817 			.virtualize_apic_accesses = true,
5818 			.use_tpr_shadow = true,
5819 			.apic_register_virtualization = false,
5820 			.virtualize_x2apic_mode = true,
5821 			.activate_secondary_controls = true,
5822 		},
5823 	},
5824 	{
5825 		.name = "Virtualize x2APIC mode + Virtualize APIC accesses v2",
5826 		.apic_reg_virt_config = {
5827 			.virtualize_apic_accesses = true,
5828 			.use_tpr_shadow = true,
5829 			.apic_register_virtualization = true,
5830 			.virtualize_x2apic_mode = true,
5831 			.activate_secondary_controls = true,
5832 		},
5833 	},
5834 };
5835 
5836 enum Apic_op {
5837 	APIC_OP_XAPIC_RD,
5838 	APIC_OP_XAPIC_WR,
5839 	TERMINATE,
5840 };
5841 
5842 static u32 vmx_xapic_read(u32 *apic_access_address, u32 reg)
5843 {
5844 	return *(volatile u32 *)((uintptr_t)apic_access_address + reg);
5845 }
5846 
5847 static void vmx_xapic_write(u32 *apic_access_address, u32 reg, u32 val)
5848 {
5849 	*(volatile u32 *)((uintptr_t)apic_access_address + reg) = val;
5850 }
5851 
5852 struct apic_reg_virt_guest_args {
5853 	enum Apic_op op;
5854 	u32 *apic_access_address;
5855 	u32 reg;
5856 	u32 val;
5857 	bool check_rd;
5858 	u32 (*virt_fn)(u32);
5859 } apic_reg_virt_guest_args;
5860 
5861 static void apic_reg_virt_guest(void)
5862 {
5863 	volatile struct apic_reg_virt_guest_args *args =
5864 		&apic_reg_virt_guest_args;
5865 
5866 	for (;;) {
5867 		enum Apic_op op = args->op;
5868 		u32 *apic_access_address = args->apic_access_address;
5869 		u32 reg = args->reg;
5870 		u32 val = args->val;
5871 		bool check_rd = args->check_rd;
5872 		u32 (*virt_fn)(u32) = args->virt_fn;
5873 
5874 		if (op == TERMINATE)
5875 			break;
5876 
5877 		if (op == APIC_OP_XAPIC_RD) {
5878 			u32 ret = vmx_xapic_read(apic_access_address, reg);
5879 
5880 			if (check_rd) {
5881 				u32 want = virt_fn(val);
5882 				u32 got = virt_fn(ret);
5883 
5884 				report(got == want,
5885 				       "read 0x%x, expected 0x%x.", got, want);
5886 			}
5887 		} else if (op == APIC_OP_XAPIC_WR) {
5888 			vmx_xapic_write(apic_access_address, reg, val);
5889 		}
5890 
5891 		/*
5892 		 * The L1 should always execute a vmcall after it's done testing
5893 		 * an individual APIC operation. This helps to validate that the
5894 		 * L1 and L2 are in sync with each other, as expected.
5895 		 */
5896 		vmcall();
5897 	}
5898 }
5899 
5900 static void test_xapic_rd(
5901 	u32 reg, struct apic_reg_virt_expectation *expectation,
5902 	u32 *apic_access_address, u32 *virtual_apic_page)
5903 {
5904 	u32 val = expectation->val;
5905 	u32 exit_reason_want = expectation->rd_exit_reason;
5906 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
5907 
5908 	report_prefix_pushf("xapic - reading 0x%03x", reg);
5909 
5910 	/* Configure guest to do an xapic read */
5911 	args->op = APIC_OP_XAPIC_RD;
5912 	args->apic_access_address = apic_access_address;
5913 	args->reg = reg;
5914 	args->val = val;
5915 	args->check_rd = exit_reason_want == VMX_VMCALL;
5916 	args->virt_fn = expectation->virt_fn;
5917 
5918 	/* Setup virtual APIC page */
5919 	if (!expectation->virtualize_apic_accesses) {
5920 		apic_access_address[apic_reg_index(reg)] = val;
5921 		virtual_apic_page[apic_reg_index(reg)] = 0;
5922 	} else if (exit_reason_want == VMX_VMCALL) {
5923 		apic_access_address[apic_reg_index(reg)] = 0;
5924 		virtual_apic_page[apic_reg_index(reg)] = val;
5925 	}
5926 
5927 	/* Enter guest */
5928 	enter_guest();
5929 
5930 	/*
5931 	 * Validate the behavior and
5932 	 * pass a magic value back to the guest.
5933 	 */
5934 	if (exit_reason_want == VMX_APIC_ACCESS) {
5935 		u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff;
5936 
5937 		assert_exit_reason(exit_reason_want);
5938 		report(apic_page_offset == reg,
5939 		       "got APIC access exit @ page offset 0x%03x, want 0x%03x",
5940 		       apic_page_offset, reg);
5941 		skip_exit_insn();
5942 
5943 		/* Reenter guest so it can consume/check rcx and exit again. */
5944 		enter_guest();
5945 	} else if (exit_reason_want != VMX_VMCALL) {
5946 		report_fail("Oops, bad exit expectation: %u.", exit_reason_want);
5947 	}
5948 
5949 	skip_exit_vmcall();
5950 	report_prefix_pop();
5951 }
5952 
5953 static void test_xapic_wr(
5954 	u32 reg, struct apic_reg_virt_expectation *expectation,
5955 	u32 *apic_access_address, u32 *virtual_apic_page)
5956 {
5957 	u32 val = expectation->val;
5958 	u32 exit_reason_want = expectation->wr_exit_reason;
5959 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
5960 	bool virtualized =
5961 		expectation->virtualize_apic_accesses &&
5962 		(exit_reason_want == VMX_APIC_WRITE ||
5963 		 exit_reason_want == VMX_VMCALL);
5964 	bool checked = false;
5965 
5966 	report_prefix_pushf("xapic - writing 0x%x to 0x%03x", val, reg);
5967 
5968 	/* Configure guest to do an xapic read */
5969 	args->op = APIC_OP_XAPIC_WR;
5970 	args->apic_access_address = apic_access_address;
5971 	args->reg = reg;
5972 	args->val = val;
5973 
5974 	/* Setup virtual APIC page */
5975 	if (virtualized || !expectation->virtualize_apic_accesses) {
5976 		apic_access_address[apic_reg_index(reg)] = 0;
5977 		virtual_apic_page[apic_reg_index(reg)] = 0;
5978 	}
5979 
5980 	/* Enter guest */
5981 	enter_guest();
5982 
5983 	/*
5984 	 * Validate the behavior and
5985 	 * pass a magic value back to the guest.
5986 	 */
5987 	if (exit_reason_want == VMX_APIC_ACCESS) {
5988 		u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff;
5989 
5990 		assert_exit_reason(exit_reason_want);
5991 		report(apic_page_offset == reg,
5992 		       "got APIC access exit @ page offset 0x%03x, want 0x%03x",
5993 		       apic_page_offset, reg);
5994 		skip_exit_insn();
5995 
5996 		/* Reenter guest so it can consume/check rcx and exit again. */
5997 		enter_guest();
5998 	} else if (exit_reason_want == VMX_APIC_WRITE) {
5999 		assert_exit_reason(exit_reason_want);
6000 		report(virtual_apic_page[apic_reg_index(reg)] == val,
6001 		       "got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%x",
6002 		       apic_reg_index(reg),
6003 		       virtual_apic_page[apic_reg_index(reg)], val);
6004 		checked = true;
6005 
6006 		/* Reenter guest so it can consume/check rcx and exit again. */
6007 		enter_guest();
6008 	} else if (exit_reason_want != VMX_VMCALL) {
6009 		report_fail("Oops, bad exit expectation: %u.", exit_reason_want);
6010 	}
6011 
6012 	assert_exit_reason(VMX_VMCALL);
6013 	if (virtualized && !checked) {
6014 		u32 want = expectation->virt_fn(val);
6015 		u32 got = virtual_apic_page[apic_reg_index(reg)];
6016 		got = expectation->virt_fn(got);
6017 
6018 		report(got == want, "exitless write; val is 0x%x, want 0x%x",
6019 		       got, want);
6020 	} else if (!expectation->virtualize_apic_accesses && !checked) {
6021 		u32 got = apic_access_address[apic_reg_index(reg)];
6022 
6023 		report(got == val,
6024 		       "non-virtualized write; val is 0x%x, want 0x%x", got,
6025 		       val);
6026 	} else if (!expectation->virtualize_apic_accesses && checked) {
6027 		report_fail("Non-virtualized write was prematurely checked!");
6028 	}
6029 
6030 	skip_exit_vmcall();
6031 	report_prefix_pop();
6032 }
6033 
6034 enum Config_type {
6035 	CONFIG_TYPE_GOOD,
6036 	CONFIG_TYPE_UNSUPPORTED,
6037 	CONFIG_TYPE_VMENTRY_FAILS_EARLY,
6038 };
6039 
6040 static enum Config_type configure_apic_reg_virt_test(
6041 	struct apic_reg_virt_config *apic_reg_virt_config)
6042 {
6043 	u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6044 	u32 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6045 	/* Configs where L2 entry fails early, due to invalid controls. */
6046 	bool use_tpr_shadow_incorrectly_off =
6047 		!apic_reg_virt_config->use_tpr_shadow &&
6048 		(apic_reg_virt_config->apic_register_virtualization ||
6049 		 apic_reg_virt_config->virtualize_x2apic_mode) &&
6050 		apic_reg_virt_config->activate_secondary_controls;
6051 	bool virtualize_apic_accesses_incorrectly_on =
6052 		apic_reg_virt_config->virtualize_apic_accesses &&
6053 		apic_reg_virt_config->virtualize_x2apic_mode &&
6054 		apic_reg_virt_config->activate_secondary_controls;
6055 	bool vmentry_fails_early =
6056 		use_tpr_shadow_incorrectly_off ||
6057 		virtualize_apic_accesses_incorrectly_on;
6058 
6059 	if (apic_reg_virt_config->activate_secondary_controls) {
6060 		if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) {
6061 			printf("VM-execution control \"activate secondary controls\" NOT supported.\n");
6062 			return CONFIG_TYPE_UNSUPPORTED;
6063 		}
6064 		cpu_exec_ctrl0 |= CPU_SECONDARY;
6065 	} else {
6066 		cpu_exec_ctrl0 &= ~CPU_SECONDARY;
6067 	}
6068 
6069 	if (apic_reg_virt_config->virtualize_apic_accesses) {
6070 		if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES)) {
6071 			printf("VM-execution control \"virtualize APIC accesses\" NOT supported.\n");
6072 			return CONFIG_TYPE_UNSUPPORTED;
6073 		}
6074 		cpu_exec_ctrl1 |= CPU_VIRT_APIC_ACCESSES;
6075 	} else {
6076 		cpu_exec_ctrl1 &= ~CPU_VIRT_APIC_ACCESSES;
6077 	}
6078 
6079 	if (apic_reg_virt_config->use_tpr_shadow) {
6080 		if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) {
6081 			printf("VM-execution control \"use TPR shadow\" NOT supported.\n");
6082 			return CONFIG_TYPE_UNSUPPORTED;
6083 		}
6084 		cpu_exec_ctrl0 |= CPU_TPR_SHADOW;
6085 	} else {
6086 		cpu_exec_ctrl0 &= ~CPU_TPR_SHADOW;
6087 	}
6088 
6089 	if (apic_reg_virt_config->apic_register_virtualization) {
6090 		if (!(ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT)) {
6091 			printf("VM-execution control \"APIC-register virtualization\" NOT supported.\n");
6092 			return CONFIG_TYPE_UNSUPPORTED;
6093 		}
6094 		cpu_exec_ctrl1 |= CPU_APIC_REG_VIRT;
6095 	} else {
6096 		cpu_exec_ctrl1 &= ~CPU_APIC_REG_VIRT;
6097 	}
6098 
6099 	if (apic_reg_virt_config->virtualize_x2apic_mode) {
6100 		if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_X2APIC)) {
6101 			printf("VM-execution control \"virtualize x2APIC mode\" NOT supported.\n");
6102 			return CONFIG_TYPE_UNSUPPORTED;
6103 		}
6104 		cpu_exec_ctrl1 |= CPU_VIRT_X2APIC;
6105 	} else {
6106 		cpu_exec_ctrl1 &= ~CPU_VIRT_X2APIC;
6107 	}
6108 
6109 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6110 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6111 
6112 	if (vmentry_fails_early)
6113 		return CONFIG_TYPE_VMENTRY_FAILS_EARLY;
6114 
6115 	return CONFIG_TYPE_GOOD;
6116 }
6117 
6118 static bool cpu_has_apicv(void)
6119 {
6120 	return ((ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT) &&
6121 		(ctrl_cpu_rev[1].clr & CPU_VINTD) &&
6122 		(ctrl_pin_rev.clr & PIN_POST_INTR));
6123 }
6124 
6125 /* Validates APIC register access across valid virtualization configurations. */
6126 static void apic_reg_virt_test(void)
6127 {
6128 	u32 *apic_access_address;
6129 	u32 *virtual_apic_page;
6130 	u64 control;
6131 	u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6132 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6133 	int i;
6134 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
6135 
6136 	if (!cpu_has_apicv()) {
6137 		report_skip(__func__);
6138 		return;
6139 	}
6140 
6141 	control = cpu_exec_ctrl1;
6142 	control &= ~CPU_VINTD;
6143 	vmcs_write(CPU_EXEC_CTRL1, control);
6144 
6145 	test_set_guest(apic_reg_virt_guest);
6146 
6147 	/*
6148 	 * From the SDM: The 1-setting of the "virtualize APIC accesses"
6149 	 * VM-execution is guaranteed to apply only if translations to the
6150 	 * APIC-access address use a 4-KByte page.
6151 	 */
6152 	apic_access_address = alloc_page();
6153 	force_4k_page(apic_access_address);
6154 	vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_address));
6155 
6156 	virtual_apic_page = alloc_page();
6157 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
6158 
6159 	for (i = 0; i < ARRAY_SIZE(apic_reg_tests); i++) {
6160 		struct apic_reg_test *apic_reg_test = &apic_reg_tests[i];
6161 		struct apic_reg_virt_config *apic_reg_virt_config =
6162 				&apic_reg_test->apic_reg_virt_config;
6163 		enum Config_type config_type;
6164 		u32 reg;
6165 
6166 		printf("--- %s test ---\n", apic_reg_test->name);
6167 		config_type =
6168 			configure_apic_reg_virt_test(apic_reg_virt_config);
6169 		if (config_type == CONFIG_TYPE_UNSUPPORTED) {
6170 			printf("Skip because of missing features.\n");
6171 			continue;
6172 		}
6173 
6174 		if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) {
6175 			enter_guest_with_bad_controls();
6176 			continue;
6177 		}
6178 
6179 		for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) {
6180 			struct apic_reg_virt_expectation expectation = {};
6181 			bool ok;
6182 
6183 			ok = apic_reg_virt_exit_expectation(
6184 				reg, apic_reg_virt_config, &expectation);
6185 			if (!ok) {
6186 				report_fail("Malformed test.");
6187 				break;
6188 			}
6189 
6190 			test_xapic_rd(reg, &expectation, apic_access_address,
6191 				      virtual_apic_page);
6192 			test_xapic_wr(reg, &expectation, apic_access_address,
6193 				      virtual_apic_page);
6194 		}
6195 	}
6196 
6197 	/* Terminate the guest */
6198 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6199 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6200 	args->op = TERMINATE;
6201 	enter_guest();
6202 	assert_exit_reason(VMX_VMCALL);
6203 }
6204 
6205 struct virt_x2apic_mode_config {
6206 	struct apic_reg_virt_config apic_reg_virt_config;
6207 	bool virtual_interrupt_delivery;
6208 	bool use_msr_bitmaps;
6209 	bool disable_x2apic_msr_intercepts;
6210 	bool disable_x2apic;
6211 };
6212 
6213 struct virt_x2apic_mode_test_case {
6214 	const char *name;
6215 	struct virt_x2apic_mode_config virt_x2apic_mode_config;
6216 };
6217 
6218 enum Virt_x2apic_mode_behavior_type {
6219 	X2APIC_ACCESS_VIRTUALIZED,
6220 	X2APIC_ACCESS_PASSED_THROUGH,
6221 	X2APIC_ACCESS_TRIGGERS_GP,
6222 };
6223 
6224 struct virt_x2apic_mode_expectation {
6225 	enum Reason rd_exit_reason;
6226 	enum Reason wr_exit_reason;
6227 
6228 	/*
6229 	 * RDMSR and WRMSR handle 64-bit values. However, except for ICR, all of
6230 	 * the x2APIC registers are 32 bits. Notice:
6231 	 *   1. vmx_x2apic_read() clears the upper 32 bits for 32-bit registers.
6232 	 *   2. vmx_x2apic_write() expects the val arg to be well-formed.
6233 	 */
6234 	u64 rd_val;
6235 	u64 wr_val;
6236 
6237 	/*
6238 	 * Compares input to virtualized output;
6239 	 * 1st arg is pointer to return expected virtualization output.
6240 	 */
6241 	u64 (*virt_fn)(u64);
6242 
6243 	enum Virt_x2apic_mode_behavior_type rd_behavior;
6244 	enum Virt_x2apic_mode_behavior_type wr_behavior;
6245 	bool wr_only;
6246 };
6247 
6248 static u64 virt_x2apic_mode_identity(u64 val)
6249 {
6250 	return val;
6251 }
6252 
6253 static u64 virt_x2apic_mode_nibble1(u64 val)
6254 {
6255 	return val & 0xf0;
6256 }
6257 
6258 static void virt_x2apic_mode_rd_expectation(
6259 	u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic,
6260 	bool apic_register_virtualization, bool virtual_interrupt_delivery,
6261 	struct virt_x2apic_mode_expectation *expectation)
6262 {
6263 	bool readable =
6264 		!x2apic_reg_reserved(reg) &&
6265 		reg != APIC_EOI;
6266 
6267 	expectation->rd_exit_reason = VMX_VMCALL;
6268 	expectation->virt_fn = virt_x2apic_mode_identity;
6269 	if (virt_x2apic_mode_on && apic_register_virtualization) {
6270 		expectation->rd_val = MAGIC_VAL_1;
6271 		if (reg == APIC_PROCPRI && virtual_interrupt_delivery)
6272 			expectation->virt_fn = virt_x2apic_mode_nibble1;
6273 		else if (reg == APIC_TASKPRI)
6274 			expectation->virt_fn = virt_x2apic_mode_nibble1;
6275 		expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED;
6276 	} else if (virt_x2apic_mode_on && !apic_register_virtualization &&
6277 		   reg == APIC_TASKPRI) {
6278 		expectation->rd_val = MAGIC_VAL_1;
6279 		expectation->virt_fn = virt_x2apic_mode_nibble1;
6280 		expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED;
6281 	} else if (!disable_x2apic && readable) {
6282 		expectation->rd_val = apic_read(reg);
6283 		expectation->rd_behavior = X2APIC_ACCESS_PASSED_THROUGH;
6284 	} else {
6285 		expectation->rd_behavior = X2APIC_ACCESS_TRIGGERS_GP;
6286 	}
6287 }
6288 
6289 /*
6290  * get_x2apic_wr_val() creates an innocuous write value for an x2APIC register.
6291  *
6292  * For writable registers, get_x2apic_wr_val() deposits the write value into the
6293  * val pointer arg and returns true. For non-writable registers, val is not
6294  * modified and get_x2apic_wr_val() returns false.
6295  */
6296 static bool get_x2apic_wr_val(u32 reg, u64 *val)
6297 {
6298 	switch (reg) {
6299 	case APIC_TASKPRI:
6300 		/* Bits 31:8 are reserved. */
6301 		*val &= 0xff;
6302 		break;
6303 	case APIC_EOI:
6304 	case APIC_ESR:
6305 	case APIC_TMICT:
6306 		/*
6307 		 * EOI, ESR: WRMSR of a non-zero value causes #GP(0).
6308 		 * TMICT: A write of 0 to the initial-count register effectively
6309 		 *        stops the local APIC timer, in both one-shot and
6310 		 *        periodic mode.
6311 		 */
6312 		*val = 0;
6313 		break;
6314 	case APIC_SPIV:
6315 	case APIC_LVTT:
6316 	case APIC_LVTTHMR:
6317 	case APIC_LVTPC:
6318 	case APIC_LVT0:
6319 	case APIC_LVT1:
6320 	case APIC_LVTERR:
6321 	case APIC_TDCR:
6322 		/*
6323 		 * To avoid writing a 1 to a reserved bit or causing some other
6324 		 * unintended side effect, read the current value and use it as
6325 		 * the write value.
6326 		 */
6327 		*val = apic_read(reg);
6328 		break;
6329 	case APIC_CMCI:
6330 		if (!apic_lvt_entry_supported(6))
6331 			return false;
6332 		*val = apic_read(reg);
6333 		break;
6334 	case APIC_ICR:
6335 		*val = 0x40000 | 0xf1;
6336 		break;
6337 	case APIC_SELF_IPI:
6338 		/*
6339 		 * With special processing (i.e., virtualize x2APIC mode +
6340 		 * virtual interrupt delivery), writing zero causes an
6341 		 * APIC-write VM exit. We plan to add a test for enabling
6342 		 * "virtual-interrupt delivery" in VMCS12, and that's where we
6343 		 * will test a self IPI with special processing.
6344 		 */
6345 		*val = 0x0;
6346 		break;
6347 	default:
6348 		return false;
6349 	}
6350 
6351 	return true;
6352 }
6353 
6354 static bool special_processing_applies(u32 reg, u64 *val,
6355 				       bool virt_int_delivery)
6356 {
6357 	bool special_processing =
6358 		(reg == APIC_TASKPRI) ||
6359 		(virt_int_delivery &&
6360 		 (reg == APIC_EOI || reg == APIC_SELF_IPI));
6361 
6362 	if (special_processing) {
6363 		TEST_ASSERT(get_x2apic_wr_val(reg, val));
6364 		return true;
6365 	}
6366 
6367 	return false;
6368 }
6369 
6370 static void virt_x2apic_mode_wr_expectation(
6371 	u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic,
6372 	bool virt_int_delivery,
6373 	struct virt_x2apic_mode_expectation *expectation)
6374 {
6375 	expectation->wr_exit_reason = VMX_VMCALL;
6376 	expectation->wr_val = MAGIC_VAL_1;
6377 	expectation->wr_only = false;
6378 
6379 	if (virt_x2apic_mode_on &&
6380 	    special_processing_applies(reg, &expectation->wr_val,
6381 				       virt_int_delivery)) {
6382 		expectation->wr_behavior = X2APIC_ACCESS_VIRTUALIZED;
6383 		if (reg == APIC_SELF_IPI)
6384 			expectation->wr_exit_reason = VMX_APIC_WRITE;
6385 	} else if (!disable_x2apic &&
6386 		   get_x2apic_wr_val(reg, &expectation->wr_val)) {
6387 		expectation->wr_behavior = X2APIC_ACCESS_PASSED_THROUGH;
6388 		if (reg == APIC_EOI || reg == APIC_SELF_IPI)
6389 			expectation->wr_only = true;
6390 		if (reg == APIC_ICR)
6391 			expectation->wr_exit_reason = VMX_EXTINT;
6392 	} else {
6393 		expectation->wr_behavior = X2APIC_ACCESS_TRIGGERS_GP;
6394 		/*
6395 		 * Writing 1 to a reserved bit triggers a #GP.
6396 		 * Thus, set the write value to 0, which seems
6397 		 * the most likely to detect a missed #GP.
6398 		 */
6399 		expectation->wr_val = 0;
6400 	}
6401 }
6402 
6403 static void virt_x2apic_mode_exit_expectation(
6404 	u32 reg, struct virt_x2apic_mode_config *config,
6405 	struct virt_x2apic_mode_expectation *expectation)
6406 {
6407 	struct apic_reg_virt_config *base_config =
6408 		&config->apic_reg_virt_config;
6409 	bool virt_x2apic_mode_on =
6410 		base_config->virtualize_x2apic_mode &&
6411 		config->use_msr_bitmaps &&
6412 		config->disable_x2apic_msr_intercepts &&
6413 		base_config->activate_secondary_controls;
6414 
6415 	virt_x2apic_mode_wr_expectation(
6416 		reg, virt_x2apic_mode_on, config->disable_x2apic,
6417 		config->virtual_interrupt_delivery, expectation);
6418 	virt_x2apic_mode_rd_expectation(
6419 		reg, virt_x2apic_mode_on, config->disable_x2apic,
6420 		base_config->apic_register_virtualization,
6421 		config->virtual_interrupt_delivery, expectation);
6422 }
6423 
6424 struct virt_x2apic_mode_test_case virt_x2apic_mode_tests[] = {
6425 	/*
6426 	 * Baseline "virtualize x2APIC mode" configuration:
6427 	 *   - virtualize x2APIC mode
6428 	 *   - virtual-interrupt delivery
6429 	 *   - APIC-register virtualization
6430 	 *   - x2APIC MSR intercepts disabled
6431 	 *
6432 	 * Reads come from virtual APIC page, special processing applies to
6433 	 * VTPR, EOI, and SELF IPI, and all other writes pass through to L1
6434 	 * APIC.
6435 	 */
6436 	{
6437 		.name = "Baseline",
6438 		.virt_x2apic_mode_config = {
6439 			.virtual_interrupt_delivery = true,
6440 			.use_msr_bitmaps = true,
6441 			.disable_x2apic_msr_intercepts = true,
6442 			.disable_x2apic = false,
6443 			.apic_reg_virt_config = {
6444 				.apic_register_virtualization = true,
6445 				.use_tpr_shadow = true,
6446 				.virtualize_apic_accesses = false,
6447 				.virtualize_x2apic_mode = true,
6448 				.activate_secondary_controls = true,
6449 			},
6450 		},
6451 	},
6452 	{
6453 		.name = "Baseline w/ x2apic disabled",
6454 		.virt_x2apic_mode_config = {
6455 			.virtual_interrupt_delivery = true,
6456 			.use_msr_bitmaps = true,
6457 			.disable_x2apic_msr_intercepts = true,
6458 			.disable_x2apic = true,
6459 			.apic_reg_virt_config = {
6460 				.apic_register_virtualization = true,
6461 				.use_tpr_shadow = true,
6462 				.virtualize_apic_accesses = false,
6463 				.virtualize_x2apic_mode = true,
6464 				.activate_secondary_controls = true,
6465 			},
6466 		},
6467 	},
6468 
6469 	/*
6470 	 * Baseline, minus virtual-interrupt delivery. Reads come from virtual
6471 	 * APIC page, special processing applies to VTPR, and all other writes
6472 	 * pass through to L1 APIC.
6473 	 */
6474 	{
6475 		.name = "Baseline - virtual interrupt delivery",
6476 		.virt_x2apic_mode_config = {
6477 			.virtual_interrupt_delivery = false,
6478 			.use_msr_bitmaps = true,
6479 			.disable_x2apic_msr_intercepts = true,
6480 			.disable_x2apic = false,
6481 			.apic_reg_virt_config = {
6482 				.apic_register_virtualization = true,
6483 				.use_tpr_shadow = true,
6484 				.virtualize_apic_accesses = false,
6485 				.virtualize_x2apic_mode = true,
6486 				.activate_secondary_controls = true,
6487 			},
6488 		},
6489 	},
6490 
6491 	/*
6492 	 * Baseline, minus APIC-register virtualization. x2APIC reads pass
6493 	 * through to L1's APIC, unless reading VTPR
6494 	 */
6495 	{
6496 		.name = "Virtualize x2APIC mode, no APIC reg virt",
6497 		.virt_x2apic_mode_config = {
6498 			.virtual_interrupt_delivery = true,
6499 			.use_msr_bitmaps = true,
6500 			.disable_x2apic_msr_intercepts = true,
6501 			.disable_x2apic = false,
6502 			.apic_reg_virt_config = {
6503 				.apic_register_virtualization = false,
6504 				.use_tpr_shadow = true,
6505 				.virtualize_apic_accesses = false,
6506 				.virtualize_x2apic_mode = true,
6507 				.activate_secondary_controls = true,
6508 			},
6509 		},
6510 	},
6511 	{
6512 		.name = "Virtualize x2APIC mode, no APIC reg virt, x2APIC off",
6513 		.virt_x2apic_mode_config = {
6514 			.virtual_interrupt_delivery = true,
6515 			.use_msr_bitmaps = true,
6516 			.disable_x2apic_msr_intercepts = true,
6517 			.disable_x2apic = true,
6518 			.apic_reg_virt_config = {
6519 				.apic_register_virtualization = false,
6520 				.use_tpr_shadow = true,
6521 				.virtualize_apic_accesses = false,
6522 				.virtualize_x2apic_mode = true,
6523 				.activate_secondary_controls = true,
6524 			},
6525 		},
6526 	},
6527 
6528 	/*
6529 	 * Enable "virtualize x2APIC mode" and "APIC-register virtualization",
6530 	 * and disable intercepts for the x2APIC MSRs, but fail to enable
6531 	 * "activate secondary controls" (i.e. L2 gets access to L1's x2APIC
6532 	 * MSRs).
6533 	 */
6534 	{
6535 		.name = "Fail to enable activate secondary controls",
6536 		.virt_x2apic_mode_config = {
6537 			.virtual_interrupt_delivery = true,
6538 			.use_msr_bitmaps = true,
6539 			.disable_x2apic_msr_intercepts = true,
6540 			.disable_x2apic = false,
6541 			.apic_reg_virt_config = {
6542 				.apic_register_virtualization = true,
6543 				.use_tpr_shadow = true,
6544 				.virtualize_apic_accesses = false,
6545 				.virtualize_x2apic_mode = true,
6546 				.activate_secondary_controls = false,
6547 			},
6548 		},
6549 	},
6550 
6551 	/*
6552 	 * Enable "APIC-register virtualization" and enable "activate secondary
6553 	 * controls" and disable intercepts for the x2APIC MSRs, but do not
6554 	 * enable the "virtualize x2APIC mode" VM-execution control (i.e. L2
6555 	 * gets access to L1's x2APIC MSRs).
6556 	 */
6557 	{
6558 		.name = "Fail to enable virtualize x2APIC mode",
6559 		.virt_x2apic_mode_config = {
6560 			.virtual_interrupt_delivery = true,
6561 			.use_msr_bitmaps = true,
6562 			.disable_x2apic_msr_intercepts = true,
6563 			.disable_x2apic = false,
6564 			.apic_reg_virt_config = {
6565 				.apic_register_virtualization = true,
6566 				.use_tpr_shadow = true,
6567 				.virtualize_apic_accesses = false,
6568 				.virtualize_x2apic_mode = false,
6569 				.activate_secondary_controls = true,
6570 			},
6571 		},
6572 	},
6573 
6574 	/*
6575 	 * Disable "Virtualize x2APIC mode", disable x2APIC MSR intercepts, and
6576 	 * enable "APIC-register virtualization" --> L2 gets L1's x2APIC MSRs.
6577 	 */
6578 	{
6579 		.name = "Baseline",
6580 		.virt_x2apic_mode_config = {
6581 			.virtual_interrupt_delivery = true,
6582 			.use_msr_bitmaps = true,
6583 			.disable_x2apic_msr_intercepts = true,
6584 			.disable_x2apic = false,
6585 			.apic_reg_virt_config = {
6586 				.apic_register_virtualization = true,
6587 				.use_tpr_shadow = true,
6588 				.virtualize_apic_accesses = false,
6589 				.virtualize_x2apic_mode = false,
6590 				.activate_secondary_controls = true,
6591 			},
6592 		},
6593 	},
6594 };
6595 
6596 enum X2apic_op {
6597 	X2APIC_OP_RD,
6598 	X2APIC_OP_WR,
6599 	X2APIC_TERMINATE,
6600 };
6601 
6602 static u64 vmx_x2apic_read(u32 reg)
6603 {
6604 	u32 msr_addr = x2apic_msr(reg);
6605 	u64 val;
6606 
6607 	val = rdmsr(msr_addr);
6608 
6609 	return val;
6610 }
6611 
6612 static void vmx_x2apic_write(u32 reg, u64 val)
6613 {
6614 	u32 msr_addr = x2apic_msr(reg);
6615 
6616 	wrmsr(msr_addr, val);
6617 }
6618 
6619 struct virt_x2apic_mode_guest_args {
6620 	enum X2apic_op op;
6621 	u32 reg;
6622 	u64 val;
6623 	bool should_gp;
6624 	u64 (*virt_fn)(u64);
6625 } virt_x2apic_mode_guest_args;
6626 
6627 static volatile bool handle_x2apic_gp_ran;
6628 static volatile u32 handle_x2apic_gp_insn_len;
6629 static void handle_x2apic_gp(struct ex_regs *regs)
6630 {
6631 	handle_x2apic_gp_ran = true;
6632 	regs->rip += handle_x2apic_gp_insn_len;
6633 }
6634 
6635 static handler setup_x2apic_gp_handler(void)
6636 {
6637 	handler old_handler;
6638 
6639 	old_handler = handle_exception(GP_VECTOR, handle_x2apic_gp);
6640 	/* RDMSR and WRMSR are both 2 bytes, assuming no prefixes. */
6641 	handle_x2apic_gp_insn_len = 2;
6642 
6643 	return old_handler;
6644 }
6645 
6646 static void teardown_x2apic_gp_handler(handler old_handler)
6647 {
6648 	handle_exception(GP_VECTOR, old_handler);
6649 
6650 	/*
6651 	 * Defensively reset instruction length, so that if the handler is
6652 	 * incorrectly used, it will loop infinitely, rather than run off into
6653 	 * la la land.
6654 	 */
6655 	handle_x2apic_gp_insn_len = 0;
6656 	handle_x2apic_gp_ran = false;
6657 }
6658 
6659 static void virt_x2apic_mode_guest(void)
6660 {
6661 	volatile struct virt_x2apic_mode_guest_args *args =
6662 		&virt_x2apic_mode_guest_args;
6663 
6664 	for (;;) {
6665 		enum X2apic_op op = args->op;
6666 		u32 reg = args->reg;
6667 		u64 val = args->val;
6668 		bool should_gp = args->should_gp;
6669 		u64 (*virt_fn)(u64) = args->virt_fn;
6670 		handler old_handler;
6671 
6672 		if (op == X2APIC_TERMINATE)
6673 			break;
6674 
6675 		if (should_gp) {
6676 			TEST_ASSERT(!handle_x2apic_gp_ran);
6677 			old_handler = setup_x2apic_gp_handler();
6678 		}
6679 
6680 		if (op == X2APIC_OP_RD) {
6681 			u64 ret = vmx_x2apic_read(reg);
6682 
6683 			if (!should_gp) {
6684 				u64 want = virt_fn(val);
6685 				u64 got = virt_fn(ret);
6686 
6687 				report(got == want,
6688 				       "APIC read; got 0x%lx, want 0x%lx.",
6689 				       got, want);
6690 			}
6691 		} else if (op == X2APIC_OP_WR) {
6692 			vmx_x2apic_write(reg, val);
6693 		}
6694 
6695 		if (should_gp) {
6696 			report(handle_x2apic_gp_ran,
6697 			       "x2APIC op triggered GP.");
6698 			teardown_x2apic_gp_handler(old_handler);
6699 		}
6700 
6701 		/*
6702 		 * The L1 should always execute a vmcall after it's done testing
6703 		 * an individual APIC operation. This helps to validate that the
6704 		 * L1 and L2 are in sync with each other, as expected.
6705 		 */
6706 		vmcall();
6707 	}
6708 }
6709 
6710 static void test_x2apic_rd(
6711 	u32 reg, struct virt_x2apic_mode_expectation *expectation,
6712 	u32 *virtual_apic_page)
6713 {
6714 	u64 val = expectation->rd_val;
6715 	u32 exit_reason_want = expectation->rd_exit_reason;
6716 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6717 
6718 	report_prefix_pushf("x2apic - reading 0x%03x", reg);
6719 
6720 	/* Configure guest to do an x2apic read */
6721 	args->op = X2APIC_OP_RD;
6722 	args->reg = reg;
6723 	args->val = val;
6724 	args->should_gp = expectation->rd_behavior == X2APIC_ACCESS_TRIGGERS_GP;
6725 	args->virt_fn = expectation->virt_fn;
6726 
6727 	/* Setup virtual APIC page */
6728 	if (expectation->rd_behavior == X2APIC_ACCESS_VIRTUALIZED)
6729 		virtual_apic_page[apic_reg_index(reg)] = (u32)val;
6730 
6731 	/* Enter guest */
6732 	enter_guest();
6733 
6734 	if (exit_reason_want != VMX_VMCALL) {
6735 		report_fail("Oops, bad exit expectation: %u.", exit_reason_want);
6736 	}
6737 
6738 	skip_exit_vmcall();
6739 	report_prefix_pop();
6740 }
6741 
6742 static volatile bool handle_x2apic_ipi_ran;
6743 static void handle_x2apic_ipi(isr_regs_t *regs)
6744 {
6745 	handle_x2apic_ipi_ran = true;
6746 	eoi();
6747 }
6748 
6749 static void test_x2apic_wr(
6750 	u32 reg, struct virt_x2apic_mode_expectation *expectation,
6751 	u32 *virtual_apic_page)
6752 {
6753 	u64 val = expectation->wr_val;
6754 	u32 exit_reason_want = expectation->wr_exit_reason;
6755 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6756 	int ipi_vector = 0xf1;
6757 	u32 restore_val = 0;
6758 
6759 	report_prefix_pushf("x2apic - writing 0x%lx to 0x%03x", val, reg);
6760 
6761 	/* Configure guest to do an x2apic read */
6762 	args->op = X2APIC_OP_WR;
6763 	args->reg = reg;
6764 	args->val = val;
6765 	args->should_gp = expectation->wr_behavior == X2APIC_ACCESS_TRIGGERS_GP;
6766 
6767 	/* Setup virtual APIC page */
6768 	if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED)
6769 		virtual_apic_page[apic_reg_index(reg)] = 0;
6770 	if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH && !expectation->wr_only)
6771 		restore_val = apic_read(reg);
6772 
6773 	/* Setup IPI handler */
6774 	handle_x2apic_ipi_ran = false;
6775 	handle_irq(ipi_vector, handle_x2apic_ipi);
6776 
6777 	/* Enter guest */
6778 	enter_guest();
6779 
6780 	/*
6781 	 * Validate the behavior and
6782 	 * pass a magic value back to the guest.
6783 	 */
6784 	if (exit_reason_want == VMX_EXTINT) {
6785 		assert_exit_reason(exit_reason_want);
6786 
6787 		/* Clear the external interrupt. */
6788 		irq_enable();
6789 		asm volatile ("nop");
6790 		irq_disable();
6791 		report(handle_x2apic_ipi_ran,
6792 		       "Got pending interrupt after IRQ enabled.");
6793 
6794 		enter_guest();
6795 	} else if (exit_reason_want == VMX_APIC_WRITE) {
6796 		assert_exit_reason(exit_reason_want);
6797 		report(virtual_apic_page[apic_reg_index(reg)] == val,
6798 		       "got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%lx",
6799 		       apic_reg_index(reg),
6800 		       virtual_apic_page[apic_reg_index(reg)], val);
6801 
6802 		/* Reenter guest so it can consume/check rcx and exit again. */
6803 		enter_guest();
6804 	} else if (exit_reason_want != VMX_VMCALL) {
6805 		report_fail("Oops, bad exit expectation: %u.", exit_reason_want);
6806 	}
6807 
6808 	assert_exit_reason(VMX_VMCALL);
6809 	if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) {
6810 		u64 want = val;
6811 		u32 got = virtual_apic_page[apic_reg_index(reg)];
6812 
6813 		report(got == want, "x2APIC write; got 0x%x, want 0x%lx", got,
6814 		       want);
6815 	} else if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH) {
6816 		if (!expectation->wr_only) {
6817 			u32 got = apic_read(reg);
6818 			bool ok;
6819 
6820 			/*
6821 			 * When L1's TPR is passed through to L2, the lower
6822 			 * nibble can be lost. For example, if L2 executes
6823 			 * WRMSR(0x808, 0x78), then, L1 might read 0x70.
6824 			 *
6825 			 * Here's how the lower nibble can get lost:
6826 			 *   1. L2 executes WRMSR(0x808, 0x78).
6827 			 *   2. L2 exits to L0 with a WRMSR exit.
6828 			 *   3. L0 emulates WRMSR, by writing L1's TPR.
6829 			 *   4. L0 re-enters L2.
6830 			 *   5. L2 exits to L0 (reason doesn't matter).
6831 			 *   6. L0 reflects L2's exit to L1.
6832 			 *   7. Before entering L1, L0 exits to user-space
6833 			 *      (e.g., to satisfy TPR access reporting).
6834 			 *   8. User-space executes KVM_SET_REGS ioctl, which
6835 			 *      clears the lower nibble of L1's TPR.
6836 			 */
6837 			if (reg == APIC_TASKPRI) {
6838 				got = apic_virt_nibble1(got);
6839 				val = apic_virt_nibble1(val);
6840 			}
6841 
6842 			ok = got == val;
6843 			report(ok,
6844 			       "non-virtualized write; val is 0x%x, want 0x%lx",
6845 			       got, val);
6846 			apic_write(reg, restore_val);
6847 		} else {
6848 			report_pass("non-virtualized and write-only OK");
6849 		}
6850 	}
6851 	skip_exit_insn();
6852 
6853 	report_prefix_pop();
6854 }
6855 
6856 static enum Config_type configure_virt_x2apic_mode_test(
6857 	struct virt_x2apic_mode_config *virt_x2apic_mode_config,
6858 	u8 *msr_bitmap_page)
6859 {
6860 	int msr;
6861 	u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6862 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6863 
6864 	/* x2apic-specific VMCS config */
6865 	if (virt_x2apic_mode_config->use_msr_bitmaps) {
6866 		/* virt_x2apic_mode_test() checks for MSR bitmaps support */
6867 		cpu_exec_ctrl0 |= CPU_MSR_BITMAP;
6868 	} else {
6869 		cpu_exec_ctrl0 &= ~CPU_MSR_BITMAP;
6870 	}
6871 
6872 	if (virt_x2apic_mode_config->virtual_interrupt_delivery) {
6873 		if (!(ctrl_cpu_rev[1].clr & CPU_VINTD)) {
6874 			report_skip("VM-execution control \"virtual-interrupt delivery\" NOT supported.\n");
6875 			return CONFIG_TYPE_UNSUPPORTED;
6876 		}
6877 		cpu_exec_ctrl1 |= CPU_VINTD;
6878 	} else {
6879 		cpu_exec_ctrl1 &= ~CPU_VINTD;
6880 	}
6881 
6882 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6883 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6884 
6885 	/* x2APIC MSR intercepts are usually off for "Virtualize x2APIC mode" */
6886 	for (msr = 0x800; msr <= 0x8ff; msr++) {
6887 		if (virt_x2apic_mode_config->disable_x2apic_msr_intercepts) {
6888 			clear_bit(msr, msr_bitmap_page + 0x000);
6889 			clear_bit(msr, msr_bitmap_page + 0x800);
6890 		} else {
6891 			set_bit(msr, msr_bitmap_page + 0x000);
6892 			set_bit(msr, msr_bitmap_page + 0x800);
6893 		}
6894 	}
6895 
6896 	/* x2APIC mode can impact virtualization */
6897 	reset_apic();
6898 	if (!virt_x2apic_mode_config->disable_x2apic)
6899 		enable_x2apic();
6900 
6901 	return configure_apic_reg_virt_test(
6902 		&virt_x2apic_mode_config->apic_reg_virt_config);
6903 }
6904 
6905 static void virt_x2apic_mode_test(void)
6906 {
6907 	u32 *virtual_apic_page;
6908 	u8 *msr_bitmap_page;
6909 	u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6910 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6911 	int i;
6912 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6913 
6914 	if (!cpu_has_apicv()) {
6915 		report_skip(__func__);
6916 		return;
6917 	}
6918 
6919 	/*
6920 	 * This is to exercise an issue in KVM's logic to merge L0's and L1's
6921 	 * MSR bitmaps. Previously, an L1 could get at L0's x2APIC MSRs by
6922 	 * writing the IA32_SPEC_CTRL MSR or the IA32_PRED_CMD MSRs. KVM would
6923 	 * then proceed to manipulate the MSR bitmaps, as if VMCS12 had the
6924 	 * "Virtualize x2APIC mod" control set, even when it didn't.
6925 	 */
6926 	if (has_spec_ctrl())
6927 		wrmsr(MSR_IA32_SPEC_CTRL, 1);
6928 
6929 	/*
6930 	 * Check that VMCS12 supports:
6931 	 *   - "Virtual-APIC address", indicated by "use TPR shadow"
6932 	 *   - "MSR-bitmap address", indicated by "use MSR bitmaps"
6933 	 */
6934 	if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) {
6935 		report_skip("VM-execution control \"use TPR shadow\" NOT supported.\n");
6936 		return;
6937 	} else if (!(ctrl_cpu_rev[0].clr & CPU_MSR_BITMAP)) {
6938 		report_skip("VM-execution control \"use MSR bitmaps\" NOT supported.\n");
6939 		return;
6940 	}
6941 
6942 	test_set_guest(virt_x2apic_mode_guest);
6943 
6944 	virtual_apic_page = alloc_page();
6945 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
6946 
6947 	msr_bitmap_page = alloc_page();
6948 	memset(msr_bitmap_page, 0xff, PAGE_SIZE);
6949 	vmcs_write(MSR_BITMAP, virt_to_phys(msr_bitmap_page));
6950 
6951 	for (i = 0; i < ARRAY_SIZE(virt_x2apic_mode_tests); i++) {
6952 		struct virt_x2apic_mode_test_case *virt_x2apic_mode_test_case =
6953 			&virt_x2apic_mode_tests[i];
6954 		struct virt_x2apic_mode_config *virt_x2apic_mode_config =
6955 			&virt_x2apic_mode_test_case->virt_x2apic_mode_config;
6956 		enum Config_type config_type;
6957 		u32 reg;
6958 
6959 		printf("--- %s test ---\n", virt_x2apic_mode_test_case->name);
6960 		config_type =
6961 			configure_virt_x2apic_mode_test(virt_x2apic_mode_config,
6962 							msr_bitmap_page);
6963 		if (config_type == CONFIG_TYPE_UNSUPPORTED) {
6964 			report_skip("Skip because of missing features.\n");
6965 			continue;
6966 		} else if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) {
6967 			enter_guest_with_bad_controls();
6968 			continue;
6969 		}
6970 
6971 		for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) {
6972 			struct virt_x2apic_mode_expectation expectation;
6973 
6974 			virt_x2apic_mode_exit_expectation(
6975 				reg, virt_x2apic_mode_config, &expectation);
6976 
6977 			test_x2apic_rd(reg, &expectation, virtual_apic_page);
6978 			test_x2apic_wr(reg, &expectation, virtual_apic_page);
6979 		}
6980 	}
6981 
6982 
6983 	/* Terminate the guest */
6984 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6985 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6986 	args->op = X2APIC_TERMINATE;
6987 	enter_guest();
6988 	assert_exit_reason(VMX_VMCALL);
6989 }
6990 
6991 static void test_ctl_reg(const char *cr_name, u64 cr, u64 fixed0, u64 fixed1)
6992 {
6993 	u64 val;
6994 	u64 cr_saved = vmcs_read(cr);
6995 	int i;
6996 
6997 	val = fixed0 & fixed1;
6998 	if (cr == HOST_CR4)
6999 		vmcs_write(cr, val | X86_CR4_PAE);
7000 	else
7001 		vmcs_write(cr, val);
7002 	report_prefix_pushf("%s %lx", cr_name, val);
7003 	if (val == fixed0)
7004 		test_vmx_vmlaunch(0);
7005 	else
7006 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7007 	report_prefix_pop();
7008 
7009 	for (i = 0; i < 64; i++) {
7010 
7011 		/* Set a bit when the corresponding bit in fixed1 is 0 */
7012 		if ((fixed1 & (1ull << i)) == 0) {
7013 			if (cr == HOST_CR4 && ((1ull << i) & X86_CR4_SMEP ||
7014 					       (1ull << i) & X86_CR4_SMAP))
7015 				continue;
7016 
7017 			vmcs_write(cr, cr_saved | (1ull << i));
7018 			report_prefix_pushf("%s %llx", cr_name,
7019 						cr_saved | (1ull << i));
7020 			test_vmx_vmlaunch(
7021 				VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7022 			report_prefix_pop();
7023 		}
7024 
7025 		/* Unset a bit when the corresponding bit in fixed0 is 1 */
7026 		if (fixed0 & (1ull << i)) {
7027 			vmcs_write(cr, cr_saved & ~(1ull << i));
7028 			report_prefix_pushf("%s %llx", cr_name,
7029 						cr_saved & ~(1ull << i));
7030 			test_vmx_vmlaunch(
7031 				VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7032 			report_prefix_pop();
7033 		}
7034 	}
7035 
7036 	vmcs_write(cr, cr_saved);
7037 }
7038 
7039 /*
7040  * 1. The CR0 field must not set any bit to a value not supported in VMX
7041  *    operation.
7042  * 2. The CR4 field must not set any bit to a value not supported in VMX
7043  *    operation.
7044  * 3. On processors that support Intel 64 architecture, the CR3 field must
7045  *    be such that bits 63:52 and bits in the range 51:32 beyond the
7046  *    processor's physical-address width must be 0.
7047  *
7048  *  [Intel SDM]
7049  */
7050 static void test_host_ctl_regs(void)
7051 {
7052 	u64 fixed0, fixed1, cr3, cr3_saved;
7053 	int i;
7054 
7055 	/* Test CR0 */
7056 	fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0);
7057 	fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1);
7058 	test_ctl_reg("HOST_CR0", HOST_CR0, fixed0, fixed1);
7059 
7060 	/* Test CR4 */
7061 	fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
7062 	fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1) &
7063 		 ~(X86_CR4_SMEP | X86_CR4_SMAP);
7064 	test_ctl_reg("HOST_CR4", HOST_CR4, fixed0, fixed1);
7065 
7066 	/* Test CR3 */
7067 	cr3_saved = vmcs_read(HOST_CR3);
7068 	for (i = cpuid_maxphyaddr(); i < 64; i++) {
7069 		cr3 = cr3_saved | (1ul << i);
7070 		vmcs_write(HOST_CR3, cr3);
7071 		report_prefix_pushf("HOST_CR3 %lx", cr3);
7072 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7073 		report_prefix_pop();
7074 	}
7075 
7076 	vmcs_write(HOST_CR3, cr3_saved);
7077 }
7078 
7079 static void test_efer_vmlaunch(u32 fld, bool ok)
7080 {
7081 	if (fld == HOST_EFER) {
7082 		if (ok)
7083 			test_vmx_vmlaunch(0);
7084 		else
7085 			test_vmx_vmlaunch2(VMXERR_ENTRY_INVALID_CONTROL_FIELD,
7086 					VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7087 	} else {
7088 		test_guest_state("EFER test", !ok, GUEST_EFER, "GUEST_EFER");
7089 	}
7090 }
7091 
7092 static void test_efer_one(u32 fld, const char * fld_name, u64 efer,
7093 			  u32 ctrl_fld, u64 ctrl,
7094 			  int i, const char *efer_bit_name)
7095 {
7096 	bool ok;
7097 
7098 	ok = true;
7099 	if (ctrl_fld == EXI_CONTROLS && (ctrl & EXI_LOAD_EFER)) {
7100 		if (!!(efer & EFER_LMA) != !!(ctrl & EXI_HOST_64))
7101 			ok = false;
7102 		if (!!(efer & EFER_LME) != !!(ctrl & EXI_HOST_64))
7103 			ok = false;
7104 	}
7105 	if (ctrl_fld == ENT_CONTROLS && (ctrl & ENT_LOAD_EFER)) {
7106 		/* Check LMA too since CR0.PG is set.  */
7107 		if (!!(efer & EFER_LMA) != !!(ctrl & ENT_GUEST_64))
7108 			ok = false;
7109 		if (!!(efer & EFER_LME) != !!(ctrl & ENT_GUEST_64))
7110 			ok = false;
7111 	}
7112 
7113 	/*
7114 	 * Skip the test if it would enter the guest in 32-bit mode.
7115 	 * Perhaps write the test in assembly and make sure it
7116 	 * can be run in either mode?
7117 	 */
7118 	if (fld == GUEST_EFER && ok && !(ctrl & ENT_GUEST_64))
7119 		return;
7120 
7121 	vmcs_write(ctrl_fld, ctrl);
7122 	vmcs_write(fld, efer);
7123 	report_prefix_pushf("%s %s bit turned %s, controls %s",
7124 			    fld_name, efer_bit_name,
7125 			    (i & 1) ? "on" : "off",
7126 			    (i & 2) ? "on" : "off");
7127 
7128 	test_efer_vmlaunch(fld, ok);
7129 	report_prefix_pop();
7130 }
7131 
7132 static void test_efer_bit(u32 fld, const char * fld_name,
7133 			  u32 ctrl_fld, u64 ctrl_bit, u64 efer_bit,
7134 			  const char *efer_bit_name)
7135 {
7136 	u64 efer_saved = vmcs_read(fld);
7137 	u32 ctrl_saved = vmcs_read(ctrl_fld);
7138 	int i;
7139 
7140 	for (i = 0; i < 4; i++) {
7141 		u64 efer = efer_saved & ~efer_bit;
7142 		u64 ctrl = ctrl_saved & ~ctrl_bit;
7143 
7144 		if (i & 1)
7145 			efer |= efer_bit;
7146 		if (i & 2)
7147 			ctrl |= ctrl_bit;
7148 
7149 		test_efer_one(fld, fld_name, efer, ctrl_fld, ctrl,
7150 			      i, efer_bit_name);
7151 	}
7152 
7153 	vmcs_write(ctrl_fld, ctrl_saved);
7154 	vmcs_write(fld, efer_saved);
7155 }
7156 
7157 static void test_efer(u32 fld, const char * fld_name, u32 ctrl_fld,
7158 		      u64 ctrl_bit1, u64 ctrl_bit2)
7159 {
7160 	u64 efer_saved = vmcs_read(fld);
7161 	u32 ctrl_saved = vmcs_read(ctrl_fld);
7162 	u64 efer_reserved_bits =  ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
7163 	u64 i;
7164 	u64 efer;
7165 
7166 	if (cpu_has_efer_nx())
7167 		efer_reserved_bits &= ~EFER_NX;
7168 
7169 	if (!ctrl_bit1) {
7170 		printf("\"Load-IA32-EFER\" exit control not supported\n");
7171 		goto test_entry_exit_mode;
7172 	}
7173 
7174 	report_prefix_pushf("%s %lx", fld_name, efer_saved);
7175 	test_efer_vmlaunch(fld, true);
7176 	report_prefix_pop();
7177 
7178 	/*
7179 	 * Check reserved bits
7180 	 */
7181 	vmcs_write(ctrl_fld, ctrl_saved & ~ctrl_bit1);
7182 	for (i = 0; i < 64; i++) {
7183 		if ((1ull << i) & efer_reserved_bits) {
7184 			efer = efer_saved | (1ull << i);
7185 			vmcs_write(fld, efer);
7186 			report_prefix_pushf("%s %lx", fld_name, efer);
7187 			test_efer_vmlaunch(fld, true);
7188 			report_prefix_pop();
7189 		}
7190 	}
7191 
7192 	vmcs_write(ctrl_fld, ctrl_saved | ctrl_bit1);
7193 	for (i = 0; i < 64; i++) {
7194 		if ((1ull << i) & efer_reserved_bits) {
7195 			efer = efer_saved | (1ull << i);
7196 			vmcs_write(fld, efer);
7197 			report_prefix_pushf("%s %lx", fld_name, efer);
7198 			test_efer_vmlaunch(fld, false);
7199 			report_prefix_pop();
7200 		}
7201 	}
7202 
7203 	vmcs_write(ctrl_fld, ctrl_saved);
7204 	vmcs_write(fld, efer_saved);
7205 
7206 	/*
7207 	 * Check LMA and LME bits
7208 	 */
7209 	test_efer_bit(fld, fld_name,
7210 		      ctrl_fld, ctrl_bit1,
7211 		      EFER_LMA,
7212 		      "EFER_LMA");
7213 	test_efer_bit(fld, fld_name,
7214 		      ctrl_fld, ctrl_bit1,
7215 		      EFER_LME,
7216 		      "EFER_LME");
7217 
7218 test_entry_exit_mode:
7219 	test_efer_bit(fld, fld_name,
7220 		      ctrl_fld, ctrl_bit2,
7221 		      EFER_LMA,
7222 		      "EFER_LMA");
7223 	test_efer_bit(fld, fld_name,
7224 		      ctrl_fld, ctrl_bit2,
7225 		      EFER_LME,
7226 		      "EFER_LME");
7227 }
7228 
7229 /*
7230  * If the 'load IA32_EFER' VM-exit control is 1, bits reserved in the
7231  * IA32_EFER MSR must be 0 in the field for that register. In addition,
7232  * the values of the LMA and LME bits in the field must each be that of
7233  * the 'host address-space size' VM-exit control.
7234  *
7235  *  [Intel SDM]
7236  */
7237 static void test_host_efer(void)
7238 {
7239 	test_efer(HOST_EFER, "HOST_EFER", EXI_CONTROLS,
7240 		  ctrl_exit_rev.clr & EXI_LOAD_EFER,
7241 		  EXI_HOST_64);
7242 }
7243 
7244 /*
7245  * If the 'load IA32_EFER' VM-enter control is 1, bits reserved in the
7246  * IA32_EFER MSR must be 0 in the field for that register. In addition,
7247  * the values of the LMA and LME bits in the field must each be that of
7248  * the 'IA32e-mode guest' VM-exit control.
7249  */
7250 static void test_guest_efer(void)
7251 {
7252 	if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) {
7253 		printf("\"Load-IA32-EFER\" entry control not supported\n");
7254 		return;
7255 	}
7256 
7257 	vmcs_write(GUEST_EFER, rdmsr(MSR_EFER));
7258 	test_efer(GUEST_EFER, "GUEST_EFER", ENT_CONTROLS,
7259 		  ctrl_enter_rev.clr & ENT_LOAD_EFER,
7260 		  ENT_GUEST_64);
7261 }
7262 
7263 /*
7264  * PAT values higher than 8 are uninteresting since they're likely lumped
7265  * in with "8". We only test values above 8 one bit at a time,
7266  * in order to reduce the number of VM-Entries and keep the runtime reasonable.
7267  */
7268 #define	PAT_VAL_LIMIT	8
7269 
7270 static void test_pat(u32 field, const char * field_name, u32 ctrl_field,
7271 		     u64 ctrl_bit)
7272 {
7273 	u32 ctrl_saved = vmcs_read(ctrl_field);
7274 	u64 pat_saved = vmcs_read(field);
7275 	u64 i, val;
7276 	u32 j;
7277 	int error;
7278 
7279 	vmcs_clear_bits(ctrl_field, ctrl_bit);
7280 
7281 	for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) {
7282 		/* Test PAT0..PAT7 fields */
7283 		for (j = 0; j < (i ? 8 : 1); j++) {
7284 			val = i << j * 8;
7285 			vmcs_write(field, val);
7286 			if (field == HOST_PAT) {
7287 				report_prefix_pushf("%s %lx", field_name, val);
7288 				test_vmx_vmlaunch(0);
7289 				report_prefix_pop();
7290 
7291 			} else {	// GUEST_PAT
7292 				test_guest_state("ENT_LOAD_PAT enabled", false,
7293 						 val, "GUEST_PAT");
7294 			}
7295 		}
7296 	}
7297 
7298 	vmcs_set_bits(ctrl_field, ctrl_bit);
7299 	for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) {
7300 		/* Test PAT0..PAT7 fields */
7301 		for (j = 0; j < (i ? 8 : 1); j++) {
7302 			val = i << j * 8;
7303 			vmcs_write(field, val);
7304 
7305 			if (field == HOST_PAT) {
7306 				report_prefix_pushf("%s %lx", field_name, val);
7307 				if (i == 0x2 || i == 0x3 || i >= 0x8)
7308 					error =
7309 					VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
7310 				else
7311 					error = 0;
7312 
7313 				test_vmx_vmlaunch(error);
7314 				report_prefix_pop();
7315 
7316 			} else {	// GUEST_PAT
7317 				error = (i == 0x2 || i == 0x3 || i >= 0x8);
7318 				test_guest_state("ENT_LOAD_PAT enabled", !!error,
7319 						 val, "GUEST_PAT");
7320 			}
7321 
7322 		}
7323 	}
7324 
7325 	vmcs_write(ctrl_field, ctrl_saved);
7326 	vmcs_write(field, pat_saved);
7327 }
7328 
7329 /*
7330  *  If the "load IA32_PAT" VM-exit control is 1, the value of the field
7331  *  for the IA32_PAT MSR must be one that could be written by WRMSR
7332  *  without fault at CPL 0. Specifically, each of the 8 bytes in the
7333  *  field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
7334  *  6 (WB), or 7 (UC-).
7335  *
7336  *  [Intel SDM]
7337  */
7338 static void test_load_host_pat(void)
7339 {
7340 	/*
7341 	 * "load IA32_PAT" VM-exit control
7342 	 */
7343 	if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) {
7344 		printf("\"Load-IA32-PAT\" exit control not supported\n");
7345 		return;
7346 	}
7347 
7348 	test_pat(HOST_PAT, "HOST_PAT", EXI_CONTROLS, EXI_LOAD_PAT);
7349 }
7350 
7351 union cpuidA_eax {
7352 	struct {
7353 		unsigned int version_id:8;
7354 		unsigned int num_counters_gp:8;
7355 		unsigned int bit_width:8;
7356 		unsigned int mask_length:8;
7357 	} split;
7358 	unsigned int full;
7359 };
7360 
7361 union cpuidA_edx {
7362 	struct {
7363 		unsigned int num_counters_fixed:5;
7364 		unsigned int bit_width_fixed:8;
7365 		unsigned int reserved:9;
7366 	} split;
7367 	unsigned int full;
7368 };
7369 
7370 static bool valid_pgc(u64 val)
7371 {
7372 	struct cpuid id;
7373 	union cpuidA_eax eax;
7374 	union cpuidA_edx edx;
7375 	u64 mask;
7376 
7377 	id = cpuid(0xA);
7378 	eax.full = id.a;
7379 	edx.full = id.d;
7380 	mask = ~(((1ull << eax.split.num_counters_gp) - 1) |
7381 		 (((1ull << edx.split.num_counters_fixed) - 1) << 32));
7382 
7383 	return !(val & mask);
7384 }
7385 
7386 static void test_pgc_vmlaunch(u32 xerror, u32 xreason, bool xfail, bool host)
7387 {
7388 	u32 inst_err;
7389 	u64 obs;
7390 	bool success;
7391 	struct vmx_state_area_test_data *data = &vmx_state_area_test_data;
7392 
7393 	if (host) {
7394 		success = vmlaunch_succeeds();
7395 		obs = rdmsr(data->msr);
7396 		if (!success) {
7397 			inst_err = vmcs_read(VMX_INST_ERROR);
7398 			report(xerror == inst_err, "vmlaunch failed, "
7399 			       "VMX Inst Error is %d (expected %d)",
7400 			       inst_err, xerror);
7401 		} else {
7402 			report(!data->enabled || data->exp == obs,
7403 			       "Host state is 0x%lx (expected 0x%lx)",
7404 			       obs, data->exp);
7405 			report(success != xfail, "vmlaunch succeeded");
7406 		}
7407 	} else {
7408 		test_guest_state("load GUEST_PERF_GLOBAL_CTRL", xfail,
7409 				 GUEST_PERF_GLOBAL_CTRL,
7410 				 "GUEST_PERF_GLOBAL_CTRL");
7411 	}
7412 }
7413 
7414 /*
7415  * test_load_perf_global_ctrl is a generic function for testing the
7416  * "load IA32_PERF_GLOBAL_CTRL" VM-{Entry,Exit} controls. This test function
7417  * tests the provided ctrl_val when disabled and enabled.
7418  *
7419  * @nr: VMCS field number corresponding to the host/guest state field
7420  * @name: Name of the above VMCS field for printing in test report
7421  * @ctrl_nr: VMCS field number corresponding to the VM-{Entry,Exit} control
7422  * @ctrl_val: Bit to set on the ctrl_field
7423  */
7424 static void test_perf_global_ctrl(u32 nr, const char *name, u32 ctrl_nr,
7425 				  const char *ctrl_name, u64 ctrl_val)
7426 {
7427 	u64 ctrl_saved = vmcs_read(ctrl_nr);
7428 	u64 pgc_saved = vmcs_read(nr);
7429 	u64 i, val;
7430 	bool host = nr == HOST_PERF_GLOBAL_CTRL;
7431 	struct vmx_state_area_test_data *data = &vmx_state_area_test_data;
7432 
7433 	data->msr = MSR_CORE_PERF_GLOBAL_CTRL;
7434 	msr_bmp_init();
7435 	vmcs_write(ctrl_nr, ctrl_saved & ~ctrl_val);
7436 	data->enabled = false;
7437 	report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=0 on %s",
7438 			    ctrl_name);
7439 
7440 	for (i = 0; i < 64; i++) {
7441 		val = 1ull << i;
7442 		vmcs_write(nr, val);
7443 		report_prefix_pushf("%s = 0x%lx", name, val);
7444 		test_pgc_vmlaunch(0, VMX_VMCALL, false, host);
7445 		report_prefix_pop();
7446 	}
7447 	report_prefix_pop();
7448 
7449 	vmcs_write(ctrl_nr, ctrl_saved | ctrl_val);
7450 	data->enabled = true;
7451 	report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=1 on %s",
7452 			    ctrl_name);
7453 	for (i = 0; i < 64; i++) {
7454 		val = 1ull << i;
7455 		data->exp = val;
7456 		vmcs_write(nr, val);
7457 		report_prefix_pushf("%s = 0x%lx", name, val);
7458 		if (valid_pgc(val)) {
7459 			test_pgc_vmlaunch(0, VMX_VMCALL, false, host);
7460 		} else {
7461 			if (host)
7462 				test_pgc_vmlaunch(
7463 					VMXERR_ENTRY_INVALID_HOST_STATE_FIELD,
7464 					0,
7465 					true,
7466 					host);
7467 			else
7468 				test_pgc_vmlaunch(
7469 					0,
7470 					VMX_ENTRY_FAILURE | VMX_FAIL_STATE,
7471 					true,
7472 					host);
7473 		}
7474 		report_prefix_pop();
7475 	}
7476 
7477 	data->enabled = false;
7478 	report_prefix_pop();
7479 	vmcs_write(ctrl_nr, ctrl_saved);
7480 	vmcs_write(nr, pgc_saved);
7481 }
7482 
7483 static void test_load_host_perf_global_ctrl(void)
7484 {
7485 	if (!(ctrl_exit_rev.clr & EXI_LOAD_PERF)) {
7486 		printf("\"load IA32_PERF_GLOBAL_CTRL\" exit control not supported\n");
7487 		return;
7488 	}
7489 
7490 	test_perf_global_ctrl(HOST_PERF_GLOBAL_CTRL, "HOST_PERF_GLOBAL_CTRL",
7491 				   EXI_CONTROLS, "EXI_CONTROLS", EXI_LOAD_PERF);
7492 }
7493 
7494 
7495 static void test_load_guest_perf_global_ctrl(void)
7496 {
7497 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PERF)) {
7498 		printf("\"load IA32_PERF_GLOBAL_CTRL\" entry control not supported\n");
7499 		return;
7500 	}
7501 
7502 	test_perf_global_ctrl(GUEST_PERF_GLOBAL_CTRL, "GUEST_PERF_GLOBAL_CTRL",
7503 				   ENT_CONTROLS, "ENT_CONTROLS", ENT_LOAD_PERF);
7504 }
7505 
7506 
7507 /*
7508  * test_vmcs_field - test a value for the given VMCS field
7509  * @field: VMCS field
7510  * @field_name: string name of VMCS field
7511  * @bit_start: starting bit
7512  * @bit_end: ending bit
7513  * @val: value that the bit range must or must not contain
7514  * @valid_val: whether value given in 'val' must be valid or not
7515  * @error: expected VMCS error when vmentry fails for an invalid value
7516  */
7517 static void test_vmcs_field(u64 field, const char *field_name, u32 bit_start,
7518 			    u32 bit_end, u64 val, bool valid_val, u32 error)
7519 {
7520 	u64 field_saved = vmcs_read(field);
7521 	u32 i;
7522 	u64 tmp;
7523 	u32 bit_on;
7524 	u64 mask = ~0ull;
7525 
7526 	mask = (mask >> bit_end) << bit_end;
7527 	mask = mask | ((1 << bit_start) - 1);
7528 	tmp = (field_saved & mask) | (val << bit_start);
7529 
7530 	vmcs_write(field, tmp);
7531 	report_prefix_pushf("%s %lx", field_name, tmp);
7532 	if (valid_val)
7533 		test_vmx_vmlaunch(0);
7534 	else
7535 		test_vmx_vmlaunch(error);
7536 	report_prefix_pop();
7537 
7538 	for (i = bit_start; i <= bit_end; i = i + 2) {
7539 		bit_on = ((1ull < i) & (val << bit_start)) ? 0 : 1;
7540 		if (bit_on)
7541 			tmp = field_saved | (1ull << i);
7542 		else
7543 			tmp = field_saved & ~(1ull << i);
7544 		vmcs_write(field, tmp);
7545 		report_prefix_pushf("%s %lx", field_name, tmp);
7546 		if (valid_val)
7547 			test_vmx_vmlaunch(error);
7548 		else
7549 			test_vmx_vmlaunch(0);
7550 		report_prefix_pop();
7551 	}
7552 
7553 	vmcs_write(field, field_saved);
7554 }
7555 
7556 static void test_canonical(u64 field, const char * field_name, bool host)
7557 {
7558 	u64 addr_saved = vmcs_read(field);
7559 
7560 	/*
7561 	 * Use the existing value if possible.  Writing a random canonical
7562 	 * value is not an option as doing so would corrupt the field being
7563 	 * tested and likely hose the test.
7564 	 */
7565 	if (is_canonical(addr_saved)) {
7566 		if (host) {
7567 			report_prefix_pushf("%s %lx", field_name, addr_saved);
7568 			test_vmx_vmlaunch(0);
7569 			report_prefix_pop();
7570 		} else {
7571 			test_guest_state("Test canonical address", false,
7572 					 addr_saved, field_name);
7573 		}
7574 	}
7575 
7576 	vmcs_write(field, NONCANONICAL);
7577 
7578 	if (host) {
7579 		report_prefix_pushf("%s %llx", field_name, NONCANONICAL);
7580 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7581 		report_prefix_pop();
7582 	} else {
7583 		test_guest_state("Test non-canonical address", true,
7584 				 NONCANONICAL, field_name);
7585 	}
7586 
7587 	vmcs_write(field, addr_saved);
7588 }
7589 
7590 #define TEST_RPL_TI_FLAGS(reg, name)				\
7591 	test_vmcs_field(reg, name, 0, 2, 0x0, true,		\
7592 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7593 
7594 #define TEST_CS_TR_FLAGS(reg, name)				\
7595 	test_vmcs_field(reg, name, 3, 15, 0x0000, false,	\
7596 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7597 
7598 /*
7599  * 1. In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the
7600  *    RPL (bits 1:0) and the TI flag (bit 2) must be 0.
7601  * 2. The selector fields for CS and TR cannot be 0000H.
7602  * 3. The selector field for SS cannot be 0000H if the "host address-space
7603  *    size" VM-exit control is 0.
7604  * 4. On processors that support Intel 64 architecture, the base-address
7605  *    fields for FS, GS and TR must contain canonical addresses.
7606  */
7607 static void test_host_segment_regs(void)
7608 {
7609 	u16 selector_saved;
7610 
7611 	/*
7612 	 * Test RPL and TI flags
7613 	 */
7614 	TEST_RPL_TI_FLAGS(HOST_SEL_CS, "HOST_SEL_CS");
7615 	TEST_RPL_TI_FLAGS(HOST_SEL_SS, "HOST_SEL_SS");
7616 	TEST_RPL_TI_FLAGS(HOST_SEL_DS, "HOST_SEL_DS");
7617 	TEST_RPL_TI_FLAGS(HOST_SEL_ES, "HOST_SEL_ES");
7618 	TEST_RPL_TI_FLAGS(HOST_SEL_FS, "HOST_SEL_FS");
7619 	TEST_RPL_TI_FLAGS(HOST_SEL_GS, "HOST_SEL_GS");
7620 	TEST_RPL_TI_FLAGS(HOST_SEL_TR, "HOST_SEL_TR");
7621 
7622 	/*
7623 	 * Test that CS and TR fields can not be 0x0000
7624 	 */
7625 	TEST_CS_TR_FLAGS(HOST_SEL_CS, "HOST_SEL_CS");
7626 	TEST_CS_TR_FLAGS(HOST_SEL_TR, "HOST_SEL_TR");
7627 
7628 	/*
7629 	 * SS field can not be 0x0000 if "host address-space size" VM-exit
7630 	 * control is 0
7631 	 */
7632 	selector_saved = vmcs_read(HOST_SEL_SS);
7633 	vmcs_write(HOST_SEL_SS, 0);
7634 	report_prefix_pushf("HOST_SEL_SS 0");
7635 	if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) {
7636 		test_vmx_vmlaunch(0);
7637 	} else {
7638 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7639 	}
7640 	report_prefix_pop();
7641 
7642 	vmcs_write(HOST_SEL_SS, selector_saved);
7643 
7644 	/*
7645 	 * Base address for FS, GS and TR must be canonical
7646 	 */
7647 	test_canonical(HOST_BASE_FS, "HOST_BASE_FS", true);
7648 	test_canonical(HOST_BASE_GS, "HOST_BASE_GS", true);
7649 	test_canonical(HOST_BASE_TR, "HOST_BASE_TR", true);
7650 }
7651 
7652 /*
7653  *  On processors that support Intel 64 architecture, the base-address
7654  *  fields for GDTR and IDTR must contain canonical addresses.
7655  */
7656 static void test_host_desc_tables(void)
7657 {
7658 	test_canonical(HOST_BASE_GDTR, "HOST_BASE_GDTR", true);
7659 	test_canonical(HOST_BASE_IDTR, "HOST_BASE_IDTR", true);
7660 }
7661 
7662 /*
7663  * If the "host address-space size" VM-exit control is 0, the following must
7664  * hold:
7665  *    - The "IA-32e mode guest" VM-entry control is 0.
7666  *    - Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.
7667  *    - Bits 63:32 in the RIP field are 0.
7668  *
7669  * If the "host address-space size" VM-exit control is 1, the following must
7670  * hold:
7671  *    - Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.
7672  *    - The RIP field contains a canonical address.
7673  *
7674  */
7675 static void test_host_addr_size(void)
7676 {
7677 	u64 cr4_saved = vmcs_read(HOST_CR4);
7678 	u64 rip_saved = vmcs_read(HOST_RIP);
7679 	u64 entry_ctrl_saved = vmcs_read(ENT_CONTROLS);
7680 	int i;
7681 	u64 tmp;
7682 
7683 	if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) {
7684 		vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64);
7685 		report_prefix_pushf("\"IA-32e mode guest\" enabled");
7686 		test_vmx_vmlaunch(0);
7687 		report_prefix_pop();
7688 
7689 		vmcs_write(HOST_CR4, cr4_saved | X86_CR4_PCIDE);
7690 		report_prefix_pushf("\"CR4.PCIDE\" set");
7691 		test_vmx_vmlaunch(0);
7692 		report_prefix_pop();
7693 
7694 		for (i = 32; i <= 63; i = i + 4) {
7695 			tmp = rip_saved | 1ull << i;
7696 			vmcs_write(HOST_RIP, tmp);
7697 			report_prefix_pushf("HOST_RIP %lx", tmp);
7698 			test_vmx_vmlaunch(0);
7699 			report_prefix_pop();
7700 		}
7701 
7702 		if (cr4_saved & X86_CR4_PAE) {
7703 			vmcs_write(HOST_CR4, cr4_saved  & ~X86_CR4_PAE);
7704 			report_prefix_pushf("\"CR4.PAE\" unset");
7705 			test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7706 		} else {
7707 			report_prefix_pushf("\"CR4.PAE\" set");
7708 			test_vmx_vmlaunch(0);
7709 		}
7710 		report_prefix_pop();
7711 
7712 		vmcs_write(HOST_RIP, NONCANONICAL);
7713 		report_prefix_pushf("HOST_RIP %llx", NONCANONICAL);
7714 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7715 		report_prefix_pop();
7716 
7717 		vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64);
7718 		vmcs_write(HOST_RIP, rip_saved);
7719 		vmcs_write(HOST_CR4, cr4_saved);
7720 
7721 		/* Restore host's active RIP and CR4 values. */
7722 		report_prefix_pushf("restore host state");
7723 		test_vmx_vmlaunch(0);
7724 		report_prefix_pop();
7725 	}
7726 }
7727 
7728 /*
7729  * Check that the virtual CPU checks the VMX Host State Area as
7730  * documented in the Intel SDM.
7731  */
7732 static void vmx_host_state_area_test(void)
7733 {
7734 	/*
7735 	 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will
7736 	 * fail due to invalid guest state, should we make it that
7737 	 * far.
7738 	 */
7739 	vmcs_write(GUEST_RFLAGS, 0);
7740 
7741 	test_host_ctl_regs();
7742 
7743 	test_canonical(HOST_SYSENTER_ESP, "HOST_SYSENTER_ESP", true);
7744 	test_canonical(HOST_SYSENTER_EIP, "HOST_SYSENTER_EIP", true);
7745 
7746 	test_host_efer();
7747 	test_load_host_pat();
7748 	test_host_segment_regs();
7749 	test_host_desc_tables();
7750 	test_host_addr_size();
7751 	test_load_host_perf_global_ctrl();
7752 }
7753 
7754 /*
7755  * If the "load debug controls" VM-entry control is 1, bits 63:32 in
7756  * the DR7 field must be 0.
7757  *
7758  * [Intel SDM]
7759  */
7760 static void test_guest_dr7(void)
7761 {
7762 	u32 ent_saved = vmcs_read(ENT_CONTROLS);
7763 	u64 dr7_saved = vmcs_read(GUEST_DR7);
7764 	u64 val;
7765 	int i;
7766 
7767 	if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS) {
7768 		vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS);
7769 		for (i = 0; i < 64; i++) {
7770 			val = 1ull << i;
7771 			vmcs_write(GUEST_DR7, val);
7772 			test_guest_state("ENT_LOAD_DBGCTLS disabled", false,
7773 					 val, "GUEST_DR7");
7774 		}
7775 	}
7776 	if (ctrl_enter_rev.clr & ENT_LOAD_DBGCTLS) {
7777 		vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS);
7778 		for (i = 0; i < 64; i++) {
7779 			val = 1ull << i;
7780 			vmcs_write(GUEST_DR7, val);
7781 			test_guest_state("ENT_LOAD_DBGCTLS enabled", i >= 32,
7782 					 val, "GUEST_DR7");
7783 		}
7784 	}
7785 	vmcs_write(GUEST_DR7, dr7_saved);
7786 	vmcs_write(ENT_CONTROLS, ent_saved);
7787 }
7788 
7789 /*
7790  *  If the "load IA32_PAT" VM-entry control is 1, the value of the field
7791  *  for the IA32_PAT MSR must be one that could be written by WRMSR
7792  *  without fault at CPL 0. Specifically, each of the 8 bytes in the
7793  *  field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
7794  *  6 (WB), or 7 (UC-).
7795  *
7796  *  [Intel SDM]
7797  */
7798 static void test_load_guest_pat(void)
7799 {
7800 	/*
7801 	 * "load IA32_PAT" VM-entry control
7802 	 */
7803 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) {
7804 		printf("\"Load-IA32-PAT\" entry control not supported\n");
7805 		return;
7806 	}
7807 
7808 	test_pat(GUEST_PAT, "GUEST_PAT", ENT_CONTROLS, ENT_LOAD_PAT);
7809 }
7810 
7811 #define MSR_IA32_BNDCFGS_RSVD_MASK	0x00000ffc
7812 
7813 /*
7814  * If the "load IA32_BNDCFGS" VM-entry control is 1, the following
7815  * checks are performed on the field for the IA32_BNDCFGS MSR:
7816  *
7817  *   - Bits reserved in the IA32_BNDCFGS MSR must be 0.
7818  *   - The linear address in bits 63:12 must be canonical.
7819  *
7820  *  [Intel SDM]
7821  */
7822 static void test_load_guest_bndcfgs(void)
7823 {
7824 	u64 bndcfgs_saved = vmcs_read(GUEST_BNDCFGS);
7825 	u64 bndcfgs;
7826 
7827 	if (!(ctrl_enter_rev.clr & ENT_LOAD_BNDCFGS)) {
7828 		printf("\"Load-IA32-BNDCFGS\" entry control not supported\n");
7829 		return;
7830 	}
7831 
7832 	vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS);
7833 
7834 	vmcs_write(GUEST_BNDCFGS, NONCANONICAL);
7835 	test_guest_state("ENT_LOAD_BNDCFGS disabled", false,
7836 			 GUEST_BNDCFGS, "GUEST_BNDCFGS");
7837 	bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK;
7838 	vmcs_write(GUEST_BNDCFGS, bndcfgs);
7839 	test_guest_state("ENT_LOAD_BNDCFGS disabled", false,
7840 			 GUEST_BNDCFGS, "GUEST_BNDCFGS");
7841 
7842 	vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS);
7843 
7844 	vmcs_write(GUEST_BNDCFGS, NONCANONICAL);
7845 	test_guest_state("ENT_LOAD_BNDCFGS enabled", true,
7846 			 GUEST_BNDCFGS, "GUEST_BNDCFGS");
7847 	bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK;
7848 	vmcs_write(GUEST_BNDCFGS, bndcfgs);
7849 	test_guest_state("ENT_LOAD_BNDCFGS enabled", true,
7850 			 GUEST_BNDCFGS, "GUEST_BNDCFGS");
7851 
7852 	vmcs_write(GUEST_BNDCFGS, bndcfgs_saved);
7853 }
7854 
7855 #define	GUEST_SEG_UNUSABLE_MASK	(1u << 16)
7856 #define	GUEST_SEG_SEL_TI_MASK	(1u << 2)
7857 
7858 
7859 #define	TEST_SEGMENT_SEL(test, xfail, sel, val)				\
7860 do {									\
7861 	vmcs_write(sel, val);						\
7862 	test_guest_state(test " segment", xfail, val, xstr(sel));	\
7863 } while (0)
7864 
7865 #define	TEST_INVALID_SEG_SEL(sel, val) \
7866 	TEST_SEGMENT_SEL("Invalid: " xstr(val), true, sel, val);
7867 
7868 #define	TEST_VALID_SEG_SEL(sel, val) \
7869 	TEST_SEGMENT_SEL("Valid: " xstr(val), false, sel, val);
7870 
7871 /*
7872  * The following checks are done on the Selector field of the Guest Segment
7873  * Registers:
7874  *    - TR. The TI flag (bit 2) must be 0.
7875  *    - LDTR. If LDTR is usable, the TI flag (bit 2) must be 0.
7876  *    - SS. If the guest will not be virtual-8086 and the "unrestricted
7877  *	guest" VM-execution control is 0, the RPL (bits 1:0) must equal
7878  *	the RPL of the selector field for CS.
7879  *
7880  *  [Intel SDM]
7881  */
7882 static void test_guest_segment_sel_fields(void)
7883 {
7884 	u16 sel_saved;
7885 	u32 ar_saved;
7886 	u32 cpu_ctrl0_saved;
7887 	u32 cpu_ctrl1_saved;
7888 	u16 cs_rpl_bits;
7889 
7890 	/*
7891 	 * Test for GUEST_SEL_TR
7892 	 */
7893 	sel_saved = vmcs_read(GUEST_SEL_TR);
7894 	TEST_INVALID_SEG_SEL(GUEST_SEL_TR, sel_saved | GUEST_SEG_SEL_TI_MASK);
7895 	vmcs_write(GUEST_SEL_TR, sel_saved);
7896 
7897 	/*
7898 	 * Test for GUEST_SEL_LDTR
7899 	 */
7900 	sel_saved = vmcs_read(GUEST_SEL_LDTR);
7901 	ar_saved = vmcs_read(GUEST_AR_LDTR);
7902 	/* LDTR is set unusable */
7903 	vmcs_write(GUEST_AR_LDTR, ar_saved | GUEST_SEG_UNUSABLE_MASK);
7904 	TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved | GUEST_SEG_SEL_TI_MASK);
7905 	TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved & ~GUEST_SEG_SEL_TI_MASK);
7906 	/* LDTR is set usable */
7907 	vmcs_write(GUEST_AR_LDTR, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
7908 	TEST_INVALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved | GUEST_SEG_SEL_TI_MASK);
7909 
7910 	TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved & ~GUEST_SEG_SEL_TI_MASK);
7911 
7912 	vmcs_write(GUEST_AR_LDTR, ar_saved);
7913 	vmcs_write(GUEST_SEL_LDTR, sel_saved);
7914 
7915 	/*
7916 	 * Test for GUEST_SEL_SS
7917 	 */
7918 	cpu_ctrl0_saved = vmcs_read(CPU_EXEC_CTRL0);
7919 	cpu_ctrl1_saved = vmcs_read(CPU_EXEC_CTRL1);
7920 	ar_saved = vmcs_read(GUEST_AR_SS);
7921 	/* Turn off "unrestricted guest" vm-execution control */
7922 	vmcs_write(CPU_EXEC_CTRL1, cpu_ctrl1_saved & ~CPU_URG);
7923 	cs_rpl_bits = vmcs_read(GUEST_SEL_CS) & 0x3;
7924 	sel_saved = vmcs_read(GUEST_SEL_SS);
7925 	TEST_INVALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3)));
7926 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3)));
7927 	/* Make SS usable if it's unusable or vice-versa */
7928 	if (ar_saved & GUEST_SEG_UNUSABLE_MASK)
7929 		vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
7930 	else
7931 		vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK);
7932 	TEST_INVALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3)));
7933 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3)));
7934 
7935 	/* Need a valid EPTP as the passing case fully enters the guest. */
7936 	if (enable_unrestricted_guest(true))
7937 		goto skip_ss_tests;
7938 
7939 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3)));
7940 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3)));
7941 
7942 	/* Make SS usable if it's unusable or vice-versa */
7943 	if (vmcs_read(GUEST_AR_SS) & GUEST_SEG_UNUSABLE_MASK)
7944 		vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
7945 	else
7946 		vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK);
7947 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3)));
7948 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3)));
7949 skip_ss_tests:
7950 
7951 	vmcs_write(GUEST_AR_SS, ar_saved);
7952 	vmcs_write(GUEST_SEL_SS, sel_saved);
7953 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrl0_saved);
7954 	vmcs_write(CPU_EXEC_CTRL1, cpu_ctrl1_saved);
7955 }
7956 
7957 #define	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(xfail, seg_base)			\
7958 do {										\
7959 	addr_saved = vmcs_read(seg_base);					\
7960 	for (i = 32; i < 63; i = i + 4) {					\
7961 		addr = addr_saved | 1ull << i;					\
7962 		vmcs_write(seg_base, addr);					\
7963 		test_guest_state("seg.BASE[63:32] != 0, usable = " xstr(xfail),	\
7964 				 xfail, addr, xstr(seg_base));			\
7965 	}									\
7966 	vmcs_write(seg_base, addr_saved);					\
7967 } while (0)
7968 
7969 #define	TEST_SEGMENT_BASE_ADDR_CANONICAL(xfail, seg_base)		  \
7970 do {									  \
7971 	addr_saved = vmcs_read(seg_base);				  \
7972 	vmcs_write(seg_base, NONCANONICAL);				  \
7973 	test_guest_state("seg.BASE non-canonical, usable = " xstr(xfail), \
7974 			 xfail, NONCANONICAL, xstr(seg_base));		  \
7975 	vmcs_write(seg_base, addr_saved);				  \
7976 } while (0)
7977 
7978 /*
7979  * The following checks are done on the Base Address field of the Guest
7980  * Segment Registers on processors that support Intel 64 architecture:
7981  *    - TR, FS, GS : The address must be canonical.
7982  *    - LDTR : If LDTR is usable, the address must be canonical.
7983  *    - CS : Bits 63:32 of the address must be zero.
7984  *    - SS, DS, ES : If the register is usable, bits 63:32 of the address
7985  *	must be zero.
7986  *
7987  *  [Intel SDM]
7988  */
7989 static void test_guest_segment_base_addr_fields(void)
7990 {
7991 	u64 addr_saved;
7992 	u64 addr;
7993 	u32 ar_saved;
7994 	int i;
7995 
7996 	/*
7997 	 * The address of TR, FS, GS and LDTR must be canonical.
7998 	 */
7999 	TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_TR);
8000 	TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_FS);
8001 	TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_GS);
8002 	ar_saved = vmcs_read(GUEST_AR_LDTR);
8003 	/* Make LDTR unusable */
8004 	vmcs_write(GUEST_AR_LDTR, ar_saved | GUEST_SEG_UNUSABLE_MASK);
8005 	TEST_SEGMENT_BASE_ADDR_CANONICAL(false, GUEST_BASE_LDTR);
8006 	/* Make LDTR usable */
8007 	vmcs_write(GUEST_AR_LDTR, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
8008 	TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_LDTR);
8009 
8010 	vmcs_write(GUEST_AR_LDTR, ar_saved);
8011 
8012 	/*
8013 	 * Bits 63:32 in CS, SS, DS and ES base address must be zero
8014 	 */
8015 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_CS);
8016 	ar_saved = vmcs_read(GUEST_AR_SS);
8017 	/* Make SS unusable */
8018 	vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK);
8019 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_SS);
8020 	/* Make SS usable */
8021 	vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
8022 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_SS);
8023 	vmcs_write(GUEST_AR_SS, ar_saved);
8024 
8025 	ar_saved = vmcs_read(GUEST_AR_DS);
8026 	/* Make DS unusable */
8027 	vmcs_write(GUEST_AR_DS, ar_saved | GUEST_SEG_UNUSABLE_MASK);
8028 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_DS);
8029 	/* Make DS usable */
8030 	vmcs_write(GUEST_AR_DS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
8031 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_DS);
8032 	vmcs_write(GUEST_AR_DS, ar_saved);
8033 
8034 	ar_saved = vmcs_read(GUEST_AR_ES);
8035 	/* Make ES unusable */
8036 	vmcs_write(GUEST_AR_ES, ar_saved | GUEST_SEG_UNUSABLE_MASK);
8037 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_ES);
8038 	/* Make ES usable */
8039 	vmcs_write(GUEST_AR_ES, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
8040 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_ES);
8041 	vmcs_write(GUEST_AR_ES, ar_saved);
8042 }
8043 
8044 /*
8045  * Check that the virtual CPU checks the VMX Guest State Area as
8046  * documented in the Intel SDM.
8047  */
8048 static void vmx_guest_state_area_test(void)
8049 {
8050 	vmx_set_test_stage(1);
8051 	test_set_guest(guest_state_test_main);
8052 
8053 	/*
8054 	 * The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field
8055 	 * must each contain a canonical address.
8056 	 */
8057 	test_canonical(GUEST_SYSENTER_ESP, "GUEST_SYSENTER_ESP", false);
8058 	test_canonical(GUEST_SYSENTER_EIP, "GUEST_SYSENTER_EIP", false);
8059 
8060 	test_guest_dr7();
8061 	test_load_guest_pat();
8062 	test_guest_efer();
8063 	test_load_guest_perf_global_ctrl();
8064 	test_load_guest_bndcfgs();
8065 
8066 	test_guest_segment_sel_fields();
8067 	test_guest_segment_base_addr_fields();
8068 
8069 	test_canonical(GUEST_BASE_GDTR, "GUEST_BASE_GDTR", false);
8070 	test_canonical(GUEST_BASE_IDTR, "GUEST_BASE_IDTR", false);
8071 
8072 	u32 guest_desc_limit_saved = vmcs_read(GUEST_LIMIT_GDTR);
8073 	int i;
8074 	for (i = 16; i <= 31; i++) {
8075 		u32 tmp = guest_desc_limit_saved | (1ull << i);
8076 		vmcs_write(GUEST_LIMIT_GDTR, tmp);
8077 		test_guest_state("GDT.limit > 0xffff", true, tmp, "GUEST_LIMIT_GDTR");
8078 	}
8079 	vmcs_write(GUEST_LIMIT_GDTR, guest_desc_limit_saved);
8080 
8081 	guest_desc_limit_saved = vmcs_read(GUEST_LIMIT_IDTR);
8082 	for (i = 16; i <= 31; i++) {
8083 		u32 tmp = guest_desc_limit_saved | (1ull << i);
8084 		vmcs_write(GUEST_LIMIT_IDTR, tmp);
8085 		test_guest_state("IDT.limit > 0xffff", true, tmp, "GUEST_LIMIT_IDTR");
8086 	}
8087 	vmcs_write(GUEST_LIMIT_IDTR, guest_desc_limit_saved);
8088 
8089 	/*
8090 	 * Let the guest finish execution
8091 	 */
8092 	vmx_set_test_stage(2);
8093 	enter_guest();
8094 }
8095 
8096 extern void unrestricted_guest_main(void);
8097 asm (".code32\n"
8098 	"unrestricted_guest_main:\n"
8099 	"vmcall\n"
8100 	"nop\n"
8101 	"mov $1, %edi\n"
8102 	"call hypercall\n"
8103 	".code64\n");
8104 
8105 static void setup_unrestricted_guest(void)
8106 {
8107 	vmcs_write(GUEST_CR0, vmcs_read(GUEST_CR0) & ~(X86_CR0_PG));
8108 	vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) & ~ENT_GUEST_64);
8109 	vmcs_write(GUEST_EFER, vmcs_read(GUEST_EFER) & ~EFER_LMA);
8110 	vmcs_write(GUEST_RIP, virt_to_phys(unrestricted_guest_main));
8111 }
8112 
8113 static void unsetup_unrestricted_guest(void)
8114 {
8115 	vmcs_write(GUEST_CR0, vmcs_read(GUEST_CR0) | X86_CR0_PG);
8116 	vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_GUEST_64);
8117 	vmcs_write(GUEST_EFER, vmcs_read(GUEST_EFER) | EFER_LMA);
8118 	vmcs_write(GUEST_RIP, (u64) phys_to_virt(vmcs_read(GUEST_RIP)));
8119 	vmcs_write(GUEST_RSP, (u64) phys_to_virt(vmcs_read(GUEST_RSP)));
8120 }
8121 
8122 /*
8123  * If "unrestricted guest" secondary VM-execution control is set, guests
8124  * can run in unpaged protected mode.
8125  */
8126 static void vmentry_unrestricted_guest_test(void)
8127 {
8128 	if (enable_unrestricted_guest(true)) {
8129 		report_skip("Unrestricted guest not supported");
8130 		return;
8131 	}
8132 
8133 	test_set_guest(unrestricted_guest_main);
8134 	setup_unrestricted_guest();
8135 	test_guest_state("Unrestricted guest test", false, CPU_URG, "CPU_URG");
8136 
8137 	/*
8138 	 * Let the guest finish execution as a regular guest
8139 	 */
8140 	unsetup_unrestricted_guest();
8141 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) & ~CPU_URG);
8142 	enter_guest();
8143 }
8144 
8145 static bool valid_vmcs_for_vmentry(void)
8146 {
8147 	struct vmcs *current_vmcs = NULL;
8148 
8149 	if (vmcs_save(&current_vmcs))
8150 		return false;
8151 
8152 	return current_vmcs && !current_vmcs->hdr.shadow_vmcs;
8153 }
8154 
8155 static void try_vmentry_in_movss_shadow(void)
8156 {
8157 	u32 vm_inst_err;
8158 	u32 flags;
8159 	bool early_failure = false;
8160 	u32 expected_flags = X86_EFLAGS_FIXED;
8161 	bool valid_vmcs = valid_vmcs_for_vmentry();
8162 
8163 	expected_flags |= valid_vmcs ? X86_EFLAGS_ZF : X86_EFLAGS_CF;
8164 
8165 	/*
8166 	 * Indirectly set VM_INST_ERR to 12 ("VMREAD/VMWRITE from/to
8167 	 * unsupported VMCS component").
8168 	 */
8169 	vmcs_write(~0u, 0);
8170 
8171 	__asm__ __volatile__ ("mov %[host_rsp], %%edx;"
8172 			      "vmwrite %%rsp, %%rdx;"
8173 			      "mov 0f, %%rax;"
8174 			      "mov %[host_rip], %%edx;"
8175 			      "vmwrite %%rax, %%rdx;"
8176 			      "mov $-1, %%ah;"
8177 			      "sahf;"
8178 			      "mov %%ss, %%ax;"
8179 			      "mov %%ax, %%ss;"
8180 			      "vmlaunch;"
8181 			      "mov $1, %[early_failure];"
8182 			      "0: lahf;"
8183 			      "movzbl %%ah, %[flags]"
8184 			      : [early_failure] "+r" (early_failure),
8185 				[flags] "=&a" (flags)
8186 			      : [host_rsp] "i" (HOST_RSP),
8187 				[host_rip] "i" (HOST_RIP)
8188 			      : "rdx", "cc", "memory");
8189 	vm_inst_err = vmcs_read(VMX_INST_ERROR);
8190 
8191 	report(early_failure, "Early VM-entry failure");
8192 	report(flags == expected_flags, "RFLAGS[8:0] is %x (actual %x)",
8193 	       expected_flags, flags);
8194 	if (valid_vmcs)
8195 		report(vm_inst_err == VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS,
8196 		       "VM-instruction error is %d (actual %d)",
8197 		       VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, vm_inst_err);
8198 }
8199 
8200 static void vmentry_movss_shadow_test(void)
8201 {
8202 	struct vmcs *orig_vmcs;
8203 
8204 	TEST_ASSERT(!vmcs_save(&orig_vmcs));
8205 
8206 	/*
8207 	 * Set the launched flag on the current VMCS to verify the correct
8208 	 * error priority, below.
8209 	 */
8210 	test_set_guest(v2_null_test_guest);
8211 	enter_guest();
8212 
8213 	/*
8214 	 * With bit 1 of the guest's RFLAGS clear, VM-entry should
8215 	 * fail due to invalid guest state (if we make it that far).
8216 	 */
8217 	vmcs_write(GUEST_RFLAGS, 0);
8218 
8219 	/*
8220 	 * "VM entry with events blocked by MOV SS" takes precedence over
8221 	 * "VMLAUNCH with non-clear VMCS."
8222 	 */
8223 	report_prefix_push("valid current-VMCS");
8224 	try_vmentry_in_movss_shadow();
8225 	report_prefix_pop();
8226 
8227 	/*
8228 	 * VMfailInvalid takes precedence over "VM entry with events
8229 	 * blocked by MOV SS."
8230 	 */
8231 	TEST_ASSERT(!vmcs_clear(orig_vmcs));
8232 	report_prefix_push("no current-VMCS");
8233 	try_vmentry_in_movss_shadow();
8234 	report_prefix_pop();
8235 
8236 	TEST_ASSERT(!make_vmcs_current(orig_vmcs));
8237 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
8238 }
8239 
8240 static void vmx_ldtr_test_guest(void)
8241 {
8242 	u16 ldtr = sldt();
8243 
8244 	report(ldtr == NP_SEL, "Expected %x for L2 LDTR selector (got %x)",
8245 	       NP_SEL, ldtr);
8246 }
8247 
8248 /*
8249  * Ensure that the L1 LDTR is set to 0 on VM-exit.
8250  */
8251 static void vmx_ldtr_test(void)
8252 {
8253 	const u8 ldt_ar = 0x82; /* Present LDT */
8254 	u16 sel = FIRST_SPARE_SEL;
8255 
8256 	/* Set up a non-zero L1 LDTR prior to VM-entry. */
8257 	set_gdt_entry(sel, 0, 0, ldt_ar, 0);
8258 	lldt(sel);
8259 
8260 	test_set_guest(vmx_ldtr_test_guest);
8261 	/*
8262 	 * Set up a different LDTR for L2. The actual GDT contents are
8263 	 * irrelevant, since we stuff the hidden descriptor state
8264 	 * straight into the VMCS rather than reading it from the GDT.
8265 	 */
8266 	vmcs_write(GUEST_SEL_LDTR, NP_SEL);
8267 	vmcs_write(GUEST_AR_LDTR, ldt_ar);
8268 	enter_guest();
8269 
8270 	/*
8271 	 * VM-exit should clear LDTR (and make it unusable, but we
8272 	 * won't verify that here).
8273 	 */
8274 	sel = sldt();
8275 	report(!sel, "Expected 0 for L1 LDTR selector (got %x)", sel);
8276 }
8277 
8278 static void vmx_single_vmcall_guest(void)
8279 {
8280 	vmcall();
8281 }
8282 
8283 static void vmx_cr_load_test(void)
8284 {
8285 	unsigned long cr3, cr4, orig_cr3, orig_cr4;
8286 	u32 ctrls[2] = {0};
8287 	pgd_t *pml5;
8288 
8289 	orig_cr4 = read_cr4();
8290 	orig_cr3 = read_cr3();
8291 
8292 	if (!this_cpu_has(X86_FEATURE_PCID)) {
8293 		report_skip("PCID not detected");
8294 		return;
8295 	}
8296 	if (!this_cpu_has(X86_FEATURE_MCE)) {
8297 		report_skip("MCE not detected");
8298 		return;
8299 	}
8300 
8301 	TEST_ASSERT(!(orig_cr3 & X86_CR3_PCID_MASK));
8302 
8303 	/* Enable PCID for L1. */
8304 	cr4 = orig_cr4 | X86_CR4_PCIDE;
8305 	cr3 = orig_cr3 | 0x1;
8306 	TEST_ASSERT(!write_cr4_checking(cr4));
8307 	write_cr3(cr3);
8308 
8309 	test_set_guest(vmx_single_vmcall_guest);
8310 	vmcs_write(HOST_CR4, cr4);
8311 	vmcs_write(HOST_CR3, cr3);
8312 	enter_guest();
8313 
8314 	/*
8315 	 * No exception is expected.
8316 	 *
8317 	 * NB. KVM loads the last guest write to CR4 into CR4 read
8318 	 *     shadow. In order to trigger an exit to KVM, we can toggle a
8319 	 *     bit that is owned by KVM. We use CR4.MCE, which shall
8320 	 *     have no side effect because normally no guest MCE (e.g., as the
8321 	 *     result of bad memory) would happen during this test.
8322 	 */
8323 	TEST_ASSERT(!write_cr4_checking(cr4 ^ X86_CR4_MCE));
8324 
8325 	/* Cleanup L1 state. */
8326 	write_cr3(orig_cr3);
8327 	TEST_ASSERT(!write_cr4_checking(orig_cr4));
8328 
8329 	if (!this_cpu_has(X86_FEATURE_LA57))
8330 		goto done;
8331 
8332 	/*
8333 	 * Allocate a full page for PML5 to guarantee alignment, though only
8334 	 * the first entry needs to be filled (the test's virtual addresses
8335 	 * most definitely do not have any of bits 56:48 set).
8336 	 */
8337 	pml5 = alloc_page();
8338 	*pml5 = orig_cr3 | PT_PRESENT_MASK | PT_WRITABLE_MASK;
8339 
8340 	/*
8341 	 * Transition to/from 5-level paging in the host via VM-Exit.  CR4.LA57
8342 	 * can't be toggled while long is active via MOV CR4, but there are no
8343 	 * such restrictions on VM-Exit.
8344 	 */
8345 lol_5level:
8346 	vmcs_write(HOST_CR4, orig_cr4 | X86_CR4_LA57);
8347 	vmcs_write(HOST_CR3, virt_to_phys(pml5));
8348 	enter_guest();
8349 
8350 	/*
8351 	 * VMREAD with a memory operand to verify KVM detects the LA57 change,
8352 	 * e.g. uses the correct guest root level in gva_to_gpa().
8353 	 */
8354 	TEST_ASSERT(vmcs_readm(HOST_CR3) == virt_to_phys(pml5));
8355 	TEST_ASSERT(vmcs_readm(HOST_CR4) == (orig_cr4 | X86_CR4_LA57));
8356 
8357 	vmcs_write(HOST_CR4, orig_cr4);
8358 	vmcs_write(HOST_CR3, orig_cr3);
8359 	enter_guest();
8360 
8361 	TEST_ASSERT(vmcs_readm(HOST_CR3) == orig_cr3);
8362 	TEST_ASSERT(vmcs_readm(HOST_CR4) == orig_cr4);
8363 
8364 	/*
8365 	 * And now do the same LA57 shenanigans with EPT enabled.  KVM uses
8366 	 * two separate MMUs when L1 uses TDP, whereas the above shadow paging
8367 	 * version shares an MMU between L1 and L2.
8368 	 *
8369 	 * If the saved execution controls are non-zero then the EPT version
8370 	 * has already run.  In that case, restore the old controls.  If EPT
8371 	 * setup fails, e.g. EPT isn't supported, fall through and finish up.
8372 	 */
8373 	if (ctrls[0]) {
8374 		vmcs_write(CPU_EXEC_CTRL0, ctrls[0]);
8375 		vmcs_write(CPU_EXEC_CTRL1, ctrls[1]);
8376 	} else if (!setup_ept(false)) {
8377 		ctrls[0] = vmcs_read(CPU_EXEC_CTRL0);
8378 		ctrls[1]  = vmcs_read(CPU_EXEC_CTRL1);
8379 		goto lol_5level;
8380 	}
8381 
8382 	free_page(pml5);
8383 
8384 done:
8385 	skip_exit_vmcall();
8386 	enter_guest();
8387 }
8388 
8389 static void vmx_cr4_osxsave_test_guest(void)
8390 {
8391 	write_cr4(read_cr4() & ~X86_CR4_OSXSAVE);
8392 }
8393 
8394 /*
8395  * Ensure that kvm recalculates the L1 guest's CPUID.01H:ECX.OSXSAVE
8396  * after VM-exit from an L2 guest that sets CR4.OSXSAVE to a different
8397  * value than in L1.
8398  */
8399 static void vmx_cr4_osxsave_test(void)
8400 {
8401 	if (!this_cpu_has(X86_FEATURE_XSAVE)) {
8402 		report_skip("XSAVE not detected");
8403 		return;
8404 	}
8405 
8406 	if (!(read_cr4() & X86_CR4_OSXSAVE)) {
8407 		unsigned long cr4 = read_cr4() | X86_CR4_OSXSAVE;
8408 
8409 		write_cr4(cr4);
8410 		vmcs_write(GUEST_CR4, cr4);
8411 		vmcs_write(HOST_CR4, cr4);
8412 	}
8413 
8414 	TEST_ASSERT(cpuid_osxsave());
8415 
8416 	test_set_guest(vmx_cr4_osxsave_test_guest);
8417 	enter_guest();
8418 
8419 	TEST_ASSERT(cpuid_osxsave());
8420 }
8421 
8422 static void vmx_nm_test_guest(void)
8423 {
8424 	write_cr0(read_cr0() | X86_CR0_TS);
8425 	asm volatile("fnop");
8426 }
8427 
8428 static void check_nm_exit(const char *test)
8429 {
8430 	u32 reason = vmcs_read(EXI_REASON);
8431 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
8432 	const u32 expected = INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
8433 		NM_VECTOR;
8434 
8435 	report(reason == VMX_EXC_NMI && intr_info == expected, "%s", test);
8436 }
8437 
8438 /*
8439  * This test checks that:
8440  *
8441  * (a) If L2 launches with CR0.TS clear, but later sets CR0.TS, then
8442  *     a subsequent #NM VM-exit is reflected to L1.
8443  *
8444  * (b) If L2 launches with CR0.TS clear and CR0.EM set, then a
8445  *     subsequent #NM VM-exit is reflected to L1.
8446  */
8447 static void vmx_nm_test(void)
8448 {
8449 	unsigned long cr0 = read_cr0();
8450 
8451 	test_set_guest(vmx_nm_test_guest);
8452 
8453 	/*
8454 	 * L1 wants to intercept #NM exceptions encountered in L2.
8455 	 */
8456 	vmcs_write(EXC_BITMAP, 1 << NM_VECTOR);
8457 
8458 	/*
8459 	 * Launch L2 with CR0.TS clear, but don't claim host ownership of
8460 	 * any CR0 bits. L2 will set CR0.TS and then try to execute fnop,
8461 	 * which will raise #NM. L0 should reflect the #NM VM-exit to L1.
8462 	 */
8463 	vmcs_write(CR0_MASK, 0);
8464 	vmcs_write(GUEST_CR0, cr0 & ~X86_CR0_TS);
8465 	enter_guest();
8466 	check_nm_exit("fnop with CR0.TS set in L2 triggers #NM VM-exit to L1");
8467 
8468 	/*
8469 	 * Re-enter L2 at the fnop instruction, with CR0.TS clear but
8470 	 * CR0.EM set. The fnop will still raise #NM, and L0 should
8471 	 * reflect the #NM VM-exit to L1.
8472 	 */
8473 	vmcs_write(GUEST_CR0, (cr0 & ~X86_CR0_TS) | X86_CR0_EM);
8474 	enter_guest();
8475 	check_nm_exit("fnop with CR0.EM set in L2 triggers #NM VM-exit to L1");
8476 
8477 	/*
8478 	 * Re-enter L2 at the fnop instruction, with both CR0.TS and
8479 	 * CR0.EM clear. There will be no #NM, and the L2 guest should
8480 	 * exit normally.
8481 	 */
8482 	vmcs_write(GUEST_CR0, cr0 & ~(X86_CR0_TS | X86_CR0_EM));
8483 	enter_guest();
8484 }
8485 
8486 bool vmx_pending_event_ipi_fired;
8487 static void vmx_pending_event_ipi_isr(isr_regs_t *regs)
8488 {
8489 	vmx_pending_event_ipi_fired = true;
8490 	eoi();
8491 }
8492 
8493 bool vmx_pending_event_guest_run;
8494 static void vmx_pending_event_guest(void)
8495 {
8496 	vmcall();
8497 	vmx_pending_event_guest_run = true;
8498 }
8499 
8500 static void vmx_pending_event_test_core(bool guest_hlt)
8501 {
8502 	int ipi_vector = 0xf1;
8503 
8504 	vmx_pending_event_ipi_fired = false;
8505 	handle_irq(ipi_vector, vmx_pending_event_ipi_isr);
8506 
8507 	vmx_pending_event_guest_run = false;
8508 	test_set_guest(vmx_pending_event_guest);
8509 
8510 	vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT);
8511 
8512 	enter_guest();
8513 	skip_exit_vmcall();
8514 
8515 	if (guest_hlt)
8516 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8517 
8518 	irq_disable();
8519 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
8520 				   APIC_DM_FIXED | ipi_vector,
8521 				   0);
8522 
8523 	enter_guest();
8524 
8525 	assert_exit_reason(VMX_EXTINT);
8526 	report(!vmx_pending_event_guest_run,
8527 	       "Guest did not run before host received IPI");
8528 
8529 	irq_enable();
8530 	asm volatile ("nop");
8531 	irq_disable();
8532 	report(vmx_pending_event_ipi_fired,
8533 	       "Got pending interrupt after IRQ enabled");
8534 
8535 	if (guest_hlt)
8536 		vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
8537 
8538 	enter_guest();
8539 	report(vmx_pending_event_guest_run,
8540 	       "Guest finished running when no interrupt");
8541 }
8542 
8543 static void vmx_pending_event_test(void)
8544 {
8545 	vmx_pending_event_test_core(false);
8546 }
8547 
8548 static void vmx_pending_event_hlt_test(void)
8549 {
8550 	vmx_pending_event_test_core(true);
8551 }
8552 
8553 static int vmx_window_test_db_count;
8554 
8555 static void vmx_window_test_db_handler(struct ex_regs *regs)
8556 {
8557 	vmx_window_test_db_count++;
8558 }
8559 
8560 static void vmx_nmi_window_test_guest(void)
8561 {
8562 	handle_exception(DB_VECTOR, vmx_window_test_db_handler);
8563 
8564 	asm volatile("vmcall\n\t"
8565 		     "nop\n\t");
8566 
8567 	handle_exception(DB_VECTOR, NULL);
8568 }
8569 
8570 static void verify_nmi_window_exit(u64 rip)
8571 {
8572 	u32 exit_reason = vmcs_read(EXI_REASON);
8573 
8574 	report(exit_reason == VMX_NMI_WINDOW,
8575 	       "Exit reason (%d) is 'NMI window'", exit_reason);
8576 	report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx",
8577 	       vmcs_read(GUEST_RIP), rip);
8578 	vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
8579 }
8580 
8581 static void vmx_nmi_window_test(void)
8582 {
8583 	u64 nop_addr;
8584 	void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]);
8585 
8586 	if (!(ctrl_pin_rev.clr & PIN_VIRT_NMI)) {
8587 		report_skip("CPU does not support the \"Virtual NMIs\" VM-execution control.");
8588 		return;
8589 	}
8590 
8591 	if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) {
8592 		report_skip("CPU does not support the \"NMI-window exiting\" VM-execution control.");
8593 		return;
8594 	}
8595 
8596 	vmx_window_test_db_count = 0;
8597 
8598 	report_prefix_push("NMI-window");
8599 	test_set_guest(vmx_nmi_window_test_guest);
8600 	vmcs_set_bits(PIN_CONTROLS, PIN_VIRT_NMI);
8601 	enter_guest();
8602 	skip_exit_vmcall();
8603 	nop_addr = vmcs_read(GUEST_RIP);
8604 
8605 	/*
8606 	 * Ask for "NMI-window exiting," and expect an immediate VM-exit.
8607 	 * RIP will not advance.
8608 	 */
8609 	report_prefix_push("active, no blocking");
8610 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW);
8611 	enter_guest();
8612 	verify_nmi_window_exit(nop_addr);
8613 	report_prefix_pop();
8614 
8615 	/*
8616 	 * Ask for "NMI-window exiting" in a MOV-SS shadow, and expect
8617 	 * a VM-exit on the next instruction after the nop. (The nop
8618 	 * is one byte.)
8619 	 */
8620 	report_prefix_push("active, blocking by MOV-SS");
8621 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
8622 	enter_guest();
8623 	verify_nmi_window_exit(nop_addr + 1);
8624 	report_prefix_pop();
8625 
8626 	/*
8627 	 * Ask for "NMI-window exiting" (with event injection), and
8628 	 * expect a VM-exit after the event is injected. (RIP should
8629 	 * be at the address specified in the IDT entry for #DB.)
8630 	 */
8631 	report_prefix_push("active, no blocking, injecting #DB");
8632 	vmcs_write(ENT_INTR_INFO,
8633 		   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
8634 	enter_guest();
8635 	verify_nmi_window_exit((u64)db_fault_addr);
8636 	report_prefix_pop();
8637 
8638 	/*
8639 	 * Ask for "NMI-window exiting" with NMI blocking, and expect
8640 	 * a VM-exit after the next IRET (i.e. after the #DB handler
8641 	 * returns). So, RIP should be back at one byte past the nop.
8642 	 */
8643 	report_prefix_push("active, blocking by NMI");
8644 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_NMI);
8645 	enter_guest();
8646 	verify_nmi_window_exit(nop_addr + 1);
8647 	report(vmx_window_test_db_count == 1,
8648 	       "#DB handler executed once (actual %d times)",
8649 	       vmx_window_test_db_count);
8650 	report_prefix_pop();
8651 
8652 	if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) {
8653 		report_skip("CPU does not support activity state HLT.");
8654 	} else {
8655 		/*
8656 		 * Ask for "NMI-window exiting" when entering activity
8657 		 * state HLT, and expect an immediate VM-exit. RIP is
8658 		 * still one byte past the nop.
8659 		 */
8660 		report_prefix_push("halted, no blocking");
8661 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8662 		enter_guest();
8663 		verify_nmi_window_exit(nop_addr + 1);
8664 		report_prefix_pop();
8665 
8666 		/*
8667 		 * Ask for "NMI-window exiting" when entering activity
8668 		 * state HLT (with event injection), and expect a
8669 		 * VM-exit after the event is injected. (RIP should be
8670 		 * at the address specified in the IDT entry for #DB.)
8671 		 */
8672 		report_prefix_push("halted, no blocking, injecting #DB");
8673 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8674 		vmcs_write(ENT_INTR_INFO,
8675 			   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
8676 			   DB_VECTOR);
8677 		enter_guest();
8678 		verify_nmi_window_exit((u64)db_fault_addr);
8679 		report_prefix_pop();
8680 	}
8681 
8682 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW);
8683 	enter_guest();
8684 	report_prefix_pop();
8685 }
8686 
8687 static void vmx_intr_window_test_guest(void)
8688 {
8689 	handle_exception(DB_VECTOR, vmx_window_test_db_handler);
8690 
8691 	/*
8692 	 * The two consecutive STIs are to ensure that only the first
8693 	 * one has a shadow. Note that NOP and STI are one byte
8694 	 * instructions.
8695 	 */
8696 	asm volatile("vmcall\n\t"
8697 		     "nop\n\t"
8698 		     "sti\n\t"
8699 		     "sti\n\t");
8700 
8701 	handle_exception(DB_VECTOR, NULL);
8702 }
8703 
8704 static void verify_intr_window_exit(u64 rip)
8705 {
8706 	u32 exit_reason = vmcs_read(EXI_REASON);
8707 
8708 	report(exit_reason == VMX_INTR_WINDOW,
8709 	       "Exit reason (%d) is 'interrupt window'", exit_reason);
8710 	report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx",
8711 	       vmcs_read(GUEST_RIP), rip);
8712 	vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
8713 }
8714 
8715 static void vmx_intr_window_test(void)
8716 {
8717 	u64 vmcall_addr;
8718 	u64 nop_addr;
8719 	unsigned int orig_db_gate_type;
8720 	void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]);
8721 
8722 	if (!(ctrl_cpu_rev[0].clr & CPU_INTR_WINDOW)) {
8723 		report_skip("CPU does not support the \"interrupt-window exiting\" VM-execution control.");
8724 		return;
8725 	}
8726 
8727 	/*
8728 	 * Change the IDT entry for #DB from interrupt gate to trap gate,
8729 	 * so that it won't clear RFLAGS.IF. We don't want interrupts to
8730 	 * be disabled after vectoring a #DB.
8731 	 */
8732 	orig_db_gate_type = boot_idt[DB_VECTOR].type;
8733 	boot_idt[DB_VECTOR].type = 15;
8734 
8735 	report_prefix_push("interrupt-window");
8736 	test_set_guest(vmx_intr_window_test_guest);
8737 	enter_guest();
8738 	assert_exit_reason(VMX_VMCALL);
8739 	vmcall_addr = vmcs_read(GUEST_RIP);
8740 
8741 	/*
8742 	 * Ask for "interrupt-window exiting" with RFLAGS.IF set and
8743 	 * no blocking; expect an immediate VM-exit. Note that we have
8744 	 * not advanced past the vmcall instruction yet, so RIP should
8745 	 * point to the vmcall instruction.
8746 	 */
8747 	report_prefix_push("active, no blocking, RFLAGS.IF=1");
8748 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
8749 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_IF);
8750 	enter_guest();
8751 	verify_intr_window_exit(vmcall_addr);
8752 	report_prefix_pop();
8753 
8754 	/*
8755 	 * Ask for "interrupt-window exiting" (with event injection)
8756 	 * with RFLAGS.IF set and no blocking; expect a VM-exit after
8757 	 * the event is injected. That is, RIP should should be at the
8758 	 * address specified in the IDT entry for #DB.
8759 	 */
8760 	report_prefix_push("active, no blocking, RFLAGS.IF=1, injecting #DB");
8761 	vmcs_write(ENT_INTR_INFO,
8762 		   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
8763 	vmcall_addr = vmcs_read(GUEST_RIP);
8764 	enter_guest();
8765 	verify_intr_window_exit((u64)db_fault_addr);
8766 	report_prefix_pop();
8767 
8768 	/*
8769 	 * Let the L2 guest run through the IRET, back to the VMCALL.
8770 	 * We have to clear the "interrupt-window exiting"
8771 	 * VM-execution control, or it would just keep causing
8772 	 * VM-exits. Then, advance past the VMCALL and set the
8773 	 * "interrupt-window exiting" VM-execution control again.
8774 	 */
8775 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
8776 	enter_guest();
8777 	skip_exit_vmcall();
8778 	nop_addr = vmcs_read(GUEST_RIP);
8779 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
8780 
8781 	/*
8782 	 * Ask for "interrupt-window exiting" in a MOV-SS shadow with
8783 	 * RFLAGS.IF set, and expect a VM-exit on the next
8784 	 * instruction. (NOP is one byte.)
8785 	 */
8786 	report_prefix_push("active, blocking by MOV-SS, RFLAGS.IF=1");
8787 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
8788 	enter_guest();
8789 	verify_intr_window_exit(nop_addr + 1);
8790 	report_prefix_pop();
8791 
8792 	/*
8793 	 * Back up to the NOP and ask for "interrupt-window exiting"
8794 	 * in an STI shadow with RFLAGS.IF set, and expect a VM-exit
8795 	 * on the next instruction. (NOP is one byte.)
8796 	 */
8797 	report_prefix_push("active, blocking by STI, RFLAGS.IF=1");
8798 	vmcs_write(GUEST_RIP, nop_addr);
8799 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_STI);
8800 	enter_guest();
8801 	verify_intr_window_exit(nop_addr + 1);
8802 	report_prefix_pop();
8803 
8804 	/*
8805 	 * Ask for "interrupt-window exiting" with RFLAGS.IF clear,
8806 	 * and expect a VM-exit on the instruction following the STI
8807 	 * shadow. Only the first STI (which is one byte past the NOP)
8808 	 * should have a shadow. The second STI (which is two bytes
8809 	 * past the NOP) has no shadow. Therefore, the interrupt
8810 	 * window opens at three bytes past the NOP.
8811 	 */
8812 	report_prefix_push("active, RFLAGS.IF = 0");
8813 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
8814 	enter_guest();
8815 	verify_intr_window_exit(nop_addr + 3);
8816 	report_prefix_pop();
8817 
8818 	if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) {
8819 		report_skip("CPU does not support activity state HLT.");
8820 	} else {
8821 		/*
8822 		 * Ask for "interrupt-window exiting" when entering
8823 		 * activity state HLT, and expect an immediate
8824 		 * VM-exit. RIP is still three bytes past the nop.
8825 		 */
8826 		report_prefix_push("halted, no blocking");
8827 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8828 		enter_guest();
8829 		verify_intr_window_exit(nop_addr + 3);
8830 		report_prefix_pop();
8831 
8832 		/*
8833 		 * Ask for "interrupt-window exiting" when entering
8834 		 * activity state HLT (with event injection), and
8835 		 * expect a VM-exit after the event is injected. That
8836 		 * is, RIP should should be at the address specified
8837 		 * in the IDT entry for #DB.
8838 		 */
8839 		report_prefix_push("halted, no blocking, injecting #DB");
8840 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8841 		vmcs_write(ENT_INTR_INFO,
8842 			   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
8843 			   DB_VECTOR);
8844 		enter_guest();
8845 		verify_intr_window_exit((u64)db_fault_addr);
8846 		report_prefix_pop();
8847 	}
8848 
8849 	boot_idt[DB_VECTOR].type = orig_db_gate_type;
8850 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
8851 	enter_guest();
8852 	report_prefix_pop();
8853 }
8854 
8855 #define GUEST_TSC_OFFSET (1u << 30)
8856 
8857 static u64 guest_tsc;
8858 
8859 static void vmx_store_tsc_test_guest(void)
8860 {
8861 	guest_tsc = rdtsc();
8862 }
8863 
8864 /*
8865  * This test ensures that when IA32_TSC is in the VM-exit MSR-store
8866  * list, the value saved is not subject to the TSC offset that is
8867  * applied to RDTSC/RDTSCP/RDMSR(IA32_TSC) in guest execution.
8868  */
8869 static void vmx_store_tsc_test(void)
8870 {
8871 	struct vmx_msr_entry msr_entry = { .index = MSR_IA32_TSC };
8872 	u64 low, high;
8873 
8874 	if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) {
8875 		report_skip("'Use TSC offsetting' not supported");
8876 		return;
8877 	}
8878 
8879 	test_set_guest(vmx_store_tsc_test_guest);
8880 
8881 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET);
8882 	vmcs_write(EXI_MSR_ST_CNT, 1);
8883 	vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(&msr_entry));
8884 	vmcs_write(TSC_OFFSET, GUEST_TSC_OFFSET);
8885 
8886 	low = rdtsc();
8887 	enter_guest();
8888 	high = rdtsc();
8889 
8890 	report(low + GUEST_TSC_OFFSET <= guest_tsc &&
8891 	       guest_tsc <= high + GUEST_TSC_OFFSET,
8892 	       "RDTSC value in the guest (%lu) is in range [%lu, %lu]",
8893 	       guest_tsc, low + GUEST_TSC_OFFSET, high + GUEST_TSC_OFFSET);
8894 	report(low <= msr_entry.value && msr_entry.value <= high,
8895 	       "IA32_TSC value saved in the VM-exit MSR-store list (%lu) is in range [%lu, %lu]",
8896 	       msr_entry.value, low, high);
8897 }
8898 
8899 static void vmx_preemption_timer_zero_test_db_handler(struct ex_regs *regs)
8900 {
8901 }
8902 
8903 static void vmx_preemption_timer_zero_test_guest(void)
8904 {
8905 	while (vmx_get_test_stage() < 3)
8906 		vmcall();
8907 }
8908 
8909 static void vmx_preemption_timer_zero_activate_preemption_timer(void)
8910 {
8911 	vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT);
8912 	vmcs_write(PREEMPT_TIMER_VALUE, 0);
8913 }
8914 
8915 static void vmx_preemption_timer_zero_advance_past_vmcall(void)
8916 {
8917 	vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
8918 	enter_guest();
8919 	skip_exit_vmcall();
8920 }
8921 
8922 static void vmx_preemption_timer_zero_inject_db(bool intercept_db)
8923 {
8924 	vmx_preemption_timer_zero_activate_preemption_timer();
8925 	vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK |
8926 		   INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
8927 	vmcs_write(EXC_BITMAP, intercept_db ? 1 << DB_VECTOR : 0);
8928 	enter_guest();
8929 }
8930 
8931 static void vmx_preemption_timer_zero_set_pending_dbg(u32 exception_bitmap)
8932 {
8933 	vmx_preemption_timer_zero_activate_preemption_timer();
8934 	vmcs_write(GUEST_PENDING_DEBUG, BIT(12) | DR_TRAP1);
8935 	vmcs_write(EXC_BITMAP, exception_bitmap);
8936 	enter_guest();
8937 }
8938 
8939 static void vmx_preemption_timer_zero_expect_preempt_at_rip(u64 expected_rip)
8940 {
8941 	u32 reason = (u32)vmcs_read(EXI_REASON);
8942 	u64 guest_rip = vmcs_read(GUEST_RIP);
8943 
8944 	report(reason == VMX_PREEMPT && guest_rip == expected_rip,
8945 	       "Exit reason is 0x%x (expected 0x%x) and guest RIP is %lx (0x%lx expected).",
8946 	       reason, VMX_PREEMPT, guest_rip, expected_rip);
8947 }
8948 
8949 /*
8950  * This test ensures that when the VMX preemption timer is zero at
8951  * VM-entry, a VM-exit occurs after any event injection and after any
8952  * pending debug exceptions are raised, but before execution of any
8953  * guest instructions.
8954  */
8955 static void vmx_preemption_timer_zero_test(void)
8956 {
8957 	u64 db_fault_address = (u64)get_idt_addr(&boot_idt[DB_VECTOR]);
8958 	handler old_db;
8959 	u32 reason;
8960 
8961 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
8962 		report_skip("'Activate VMX-preemption timer' not supported");
8963 		return;
8964 	}
8965 
8966 	/*
8967 	 * Install a custom #DB handler that doesn't abort.
8968 	 */
8969 	old_db = handle_exception(DB_VECTOR,
8970 				  vmx_preemption_timer_zero_test_db_handler);
8971 
8972 	test_set_guest(vmx_preemption_timer_zero_test_guest);
8973 
8974 	/*
8975 	 * VMX-preemption timer should fire after event injection.
8976 	 */
8977 	vmx_set_test_stage(0);
8978 	vmx_preemption_timer_zero_inject_db(0);
8979 	vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address);
8980 	vmx_preemption_timer_zero_advance_past_vmcall();
8981 
8982 	/*
8983 	 * VMX-preemption timer should fire after event injection.
8984 	 * Exception bitmap is irrelevant, since you can't intercept
8985 	 * an event that you injected.
8986 	 */
8987 	vmx_set_test_stage(1);
8988 	vmx_preemption_timer_zero_inject_db(true);
8989 	vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address);
8990 	vmx_preemption_timer_zero_advance_past_vmcall();
8991 
8992 	/*
8993 	 * VMX-preemption timer should fire after pending debug exceptions
8994 	 * have delivered a #DB trap.
8995 	 */
8996 	vmx_set_test_stage(2);
8997 	vmx_preemption_timer_zero_set_pending_dbg(0);
8998 	vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address);
8999 	vmx_preemption_timer_zero_advance_past_vmcall();
9000 
9001 	/*
9002 	 * VMX-preemption timer would fire after pending debug exceptions
9003 	 * have delivered a #DB trap, but in this case, the #DB trap is
9004 	 * intercepted.
9005 	 */
9006 	vmx_set_test_stage(3);
9007 	vmx_preemption_timer_zero_set_pending_dbg(1 << DB_VECTOR);
9008 	reason = (u32)vmcs_read(EXI_REASON);
9009 	report(reason == VMX_EXC_NMI, "Exit reason is 0x%x (expected 0x%x)",
9010 	       reason, VMX_EXC_NMI);
9011 
9012 	vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
9013 	enter_guest();
9014 
9015 	handle_exception(DB_VECTOR, old_db);
9016 }
9017 
9018 static u64 vmx_preemption_timer_tf_test_prev_rip;
9019 
9020 static void vmx_preemption_timer_tf_test_db_handler(struct ex_regs *regs)
9021 {
9022 	extern char vmx_preemption_timer_tf_test_endloop;
9023 
9024 	if (vmx_get_test_stage() == 2) {
9025 		/*
9026 		 * Stage 2 means that we're done, one way or another.
9027 		 * Arrange for the iret to drop us out of the wbinvd
9028 		 * loop and stop single-stepping.
9029 		 */
9030 		regs->rip = (u64)&vmx_preemption_timer_tf_test_endloop;
9031 		regs->rflags &= ~X86_EFLAGS_TF;
9032 	} else if (regs->rip == vmx_preemption_timer_tf_test_prev_rip) {
9033 		/*
9034 		 * The RIP should alternate between the wbinvd and the
9035 		 * jmp instruction in the code below. If we ever see
9036 		 * the same instruction twice in a row, that means a
9037 		 * single-step trap has been dropped. Let the
9038 		 * hypervisor know about the failure by executing a
9039 		 * VMCALL.
9040 		 */
9041 		vmcall();
9042 	}
9043 	vmx_preemption_timer_tf_test_prev_rip = regs->rip;
9044 }
9045 
9046 static void vmx_preemption_timer_tf_test_guest(void)
9047 {
9048 	/*
9049 	 * The hypervisor doesn't intercept WBINVD, so the loop below
9050 	 * shouldn't be a problem--it's just two instructions
9051 	 * executing in VMX non-root mode. However, when the
9052 	 * hypervisor is running in a virtual environment, the parent
9053 	 * hypervisor might intercept WBINVD and emulate it. If the
9054 	 * parent hypervisor is broken, the single-step trap after the
9055 	 * WBINVD might be lost.
9056 	 */
9057 	asm volatile("vmcall\n\t"
9058 		     "0: wbinvd\n\t"
9059 		     "1: jmp 0b\n\t"
9060 		     "vmx_preemption_timer_tf_test_endloop:");
9061 }
9062 
9063 /*
9064  * Ensure that the delivery of a "VMX-preemption timer expired"
9065  * VM-exit doesn't disrupt single-stepping in the guest. Note that
9066  * passing this test doesn't ensure correctness, because the test will
9067  * only fail if the VMX-preemtion timer fires at the right time (or
9068  * the wrong time, as it were).
9069  */
9070 static void vmx_preemption_timer_tf_test(void)
9071 {
9072 	handler old_db;
9073 	u32 reason;
9074 	int i;
9075 
9076 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
9077 		report_skip("'Activate VMX-preemption timer' not supported");
9078 		return;
9079 	}
9080 
9081 	old_db = handle_exception(DB_VECTOR,
9082 				  vmx_preemption_timer_tf_test_db_handler);
9083 
9084 	test_set_guest(vmx_preemption_timer_tf_test_guest);
9085 
9086 	enter_guest();
9087 	skip_exit_vmcall();
9088 
9089 	vmx_set_test_stage(1);
9090 	vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT);
9091 	vmcs_write(PREEMPT_TIMER_VALUE, 50000);
9092 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF);
9093 
9094 	/*
9095 	 * The only exit we should see is "VMX-preemption timer
9096 	 * expired."  If we get a VMCALL exit, that means the #DB
9097 	 * handler has detected a missing single-step trap. It doesn't
9098 	 * matter where the guest RIP is when the VMX-preemption timer
9099 	 * expires (whether it's in the WBINVD loop or in the #DB
9100 	 * handler)--a single-step trap should never be discarded.
9101 	 */
9102 	for (i = 0; i < 10000; i++) {
9103 		enter_guest();
9104 		reason = (u32)vmcs_read(EXI_REASON);
9105 		if (reason == VMX_PREEMPT)
9106 			continue;
9107 		TEST_ASSERT(reason == VMX_VMCALL);
9108 		skip_exit_insn();
9109 		break;
9110 	}
9111 
9112 	report(reason == VMX_PREEMPT, "No single-step traps skipped");
9113 
9114 	vmx_set_test_stage(2);
9115 	vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
9116 	enter_guest();
9117 
9118 	handle_exception(DB_VECTOR, old_db);
9119 }
9120 
9121 #define VMX_PREEMPTION_TIMER_EXPIRY_CYCLES 1000000
9122 
9123 static u64 vmx_preemption_timer_expiry_start;
9124 static u64 vmx_preemption_timer_expiry_finish;
9125 
9126 static void vmx_preemption_timer_expiry_test_guest(void)
9127 {
9128 	vmcall();
9129 	vmx_preemption_timer_expiry_start = fenced_rdtsc();
9130 
9131 	while (vmx_get_test_stage() == 0)
9132 		vmx_preemption_timer_expiry_finish = fenced_rdtsc();
9133 }
9134 
9135 /*
9136  * Test that the VMX-preemption timer is not excessively delayed.
9137  *
9138  * Per the SDM, volume 3, VM-entry starts the VMX-preemption timer
9139  * with the unsigned value in the VMX-preemption timer-value field,
9140  * and the VMX-preemption timer counts down by 1 every time bit X in
9141  * the TSC changes due to a TSC increment (where X is
9142  * IA32_VMX_MISC[4:0]). If the timer counts down to zero in any state
9143  * other than the wait-for-SIPI state, the logical processor
9144  * transitions to the C0 C-state and causes a VM-exit.
9145  *
9146  * The guest code above reads the starting TSC after VM-entry. At this
9147  * point, the VMX-preemption timer has already been activated. Next,
9148  * the guest code reads the current TSC in a loop, storing the value
9149  * read to memory.
9150  *
9151  * If the RDTSC in the loop reads a value past the VMX-preemption
9152  * timer deadline, then the VMX-preemption timer VM-exit must be
9153  * delivered before the next instruction retires. Even if a higher
9154  * priority SMI is delivered first, the VMX-preemption timer VM-exit
9155  * must be delivered before the next instruction retires. Hence, a TSC
9156  * value past the VMX-preemption timer deadline might be read, but it
9157  * cannot be stored. If a TSC value past the deadline *is* stored,
9158  * then the architectural specification has been violated.
9159  */
9160 static void vmx_preemption_timer_expiry_test(void)
9161 {
9162 	u32 preemption_timer_value;
9163 	union vmx_misc misc;
9164 	u64 tsc_deadline;
9165 	u32 reason;
9166 
9167 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
9168 		report_skip("'Activate VMX-preemption timer' not supported");
9169 		return;
9170 	}
9171 
9172 	test_set_guest(vmx_preemption_timer_expiry_test_guest);
9173 
9174 	enter_guest();
9175 	skip_exit_vmcall();
9176 
9177 	misc.val = rdmsr(MSR_IA32_VMX_MISC);
9178 	preemption_timer_value =
9179 		VMX_PREEMPTION_TIMER_EXPIRY_CYCLES >> misc.pt_bit;
9180 
9181 	vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT);
9182 	vmcs_write(PREEMPT_TIMER_VALUE, preemption_timer_value);
9183 	vmx_set_test_stage(0);
9184 
9185 	enter_guest();
9186 	reason = (u32)vmcs_read(EXI_REASON);
9187 	TEST_ASSERT(reason == VMX_PREEMPT);
9188 
9189 	vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
9190 	vmx_set_test_stage(1);
9191 	enter_guest();
9192 
9193 	tsc_deadline = ((vmx_preemption_timer_expiry_start >> misc.pt_bit) <<
9194 			misc.pt_bit) + (preemption_timer_value << misc.pt_bit);
9195 
9196 	report(vmx_preemption_timer_expiry_finish < tsc_deadline,
9197 	       "Last stored guest TSC (%lu) < TSC deadline (%lu)",
9198 	       vmx_preemption_timer_expiry_finish, tsc_deadline);
9199 }
9200 
9201 static void vmx_db_test_guest(void)
9202 {
9203 	/*
9204 	 * For a hardware generated single-step #DB.
9205 	 */
9206 	asm volatile("vmcall;"
9207 		     "nop;"
9208 		     ".Lpost_nop:");
9209 	/*
9210 	 * ...in a MOVSS shadow, with pending debug exceptions.
9211 	 */
9212 	asm volatile("vmcall;"
9213 		     "nop;"
9214 		     ".Lpost_movss_nop:");
9215 	/*
9216 	 * For an L0 synthesized single-step #DB. (L0 intercepts WBINVD and
9217 	 * emulates it in software.)
9218 	 */
9219 	asm volatile("vmcall;"
9220 		     "wbinvd;"
9221 		     ".Lpost_wbinvd:");
9222 	/*
9223 	 * ...in a MOVSS shadow, with pending debug exceptions.
9224 	 */
9225 	asm volatile("vmcall;"
9226 		     "wbinvd;"
9227 		     ".Lpost_movss_wbinvd:");
9228 	/*
9229 	 * For a hardware generated single-step #DB in a transactional region.
9230 	 */
9231 	asm volatile("vmcall;"
9232 		     ".Lxbegin: xbegin .Lskip_rtm;"
9233 		     "xend;"
9234 		     ".Lskip_rtm:");
9235 }
9236 
9237 /*
9238  * Clear the pending debug exceptions and RFLAGS.TF and re-enter
9239  * L2. No #DB is delivered and L2 continues to the next point of
9240  * interest.
9241  */
9242 static void dismiss_db(void)
9243 {
9244 	vmcs_write(GUEST_PENDING_DEBUG, 0);
9245 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
9246 	enter_guest();
9247 }
9248 
9249 /*
9250  * Check a variety of VMCS fields relevant to an intercepted #DB exception.
9251  * Then throw away the #DB exception and resume L2.
9252  */
9253 static void check_db_exit(bool xfail_qual, bool xfail_dr6, bool xfail_pdbg,
9254 			  void *expected_rip, u64 expected_exit_qual,
9255 			  u64 expected_dr6)
9256 {
9257 	u32 reason = vmcs_read(EXI_REASON);
9258 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
9259 	u64 exit_qual = vmcs_read(EXI_QUALIFICATION);
9260 	u64 guest_rip = vmcs_read(GUEST_RIP);
9261 	u64 guest_pending_dbg = vmcs_read(GUEST_PENDING_DEBUG);
9262 	u64 dr6 = read_dr6();
9263 	const u32 expected_intr_info = INTR_INFO_VALID_MASK |
9264 		INTR_TYPE_HARD_EXCEPTION | DB_VECTOR;
9265 
9266 	report(reason == VMX_EXC_NMI && intr_info == expected_intr_info,
9267 	       "Expected #DB VM-exit");
9268 	report((u64)expected_rip == guest_rip, "Expected RIP %p (actual %lx)",
9269 	       expected_rip, guest_rip);
9270 	report_xfail(xfail_pdbg, 0 == guest_pending_dbg,
9271 		     "Expected pending debug exceptions 0 (actual %lx)",
9272 		     guest_pending_dbg);
9273 	report_xfail(xfail_qual, expected_exit_qual == exit_qual,
9274 		     "Expected exit qualification %lx (actual %lx)",
9275 		     expected_exit_qual, exit_qual);
9276 	report_xfail(xfail_dr6, expected_dr6 == dr6,
9277 		     "Expected DR6 %lx (actual %lx)", expected_dr6, dr6);
9278 	dismiss_db();
9279 }
9280 
9281 /*
9282  * Assuming the guest has just exited on a VMCALL instruction, skip
9283  * over the vmcall, and set the guest's RFLAGS.TF in the VMCS. If
9284  * pending debug exceptions are non-zero, set the VMCS up as if the
9285  * previous instruction was a MOVSS that generated the indicated
9286  * pending debug exceptions. Then enter L2.
9287  */
9288 static void single_step_guest(const char *test_name, u64 starting_dr6,
9289 			      u64 pending_debug_exceptions)
9290 {
9291 	printf("\n%s\n", test_name);
9292 	skip_exit_vmcall();
9293 	write_dr6(starting_dr6);
9294 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF);
9295 	if (pending_debug_exceptions) {
9296 		vmcs_write(GUEST_PENDING_DEBUG, pending_debug_exceptions);
9297 		vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
9298 	}
9299 	enter_guest();
9300 }
9301 
9302 /*
9303  * When L1 intercepts #DB, verify that a single-step trap clears
9304  * pending debug exceptions, populates the exit qualification field
9305  * properly, and that DR6 is not prematurely clobbered. In a
9306  * (simulated) MOVSS shadow, make sure that the pending debug
9307  * exception bits are properly accumulated into the exit qualification
9308  * field.
9309  */
9310 static void vmx_db_test(void)
9311 {
9312 	/*
9313 	 * We are going to set a few arbitrary bits in DR6 to verify that
9314 	 * (a) DR6 is not modified by an intercepted #DB, and
9315 	 * (b) stale bits in DR6 (DR6.BD, in particular) don't leak into
9316          *     the exit qualification field for a subsequent #DB exception.
9317 	 */
9318 	const u64 starting_dr6 = DR6_RESERVED | BIT(13) | DR_TRAP3 | DR_TRAP1;
9319 	extern char post_nop asm(".Lpost_nop");
9320 	extern char post_movss_nop asm(".Lpost_movss_nop");
9321 	extern char post_wbinvd asm(".Lpost_wbinvd");
9322 	extern char post_movss_wbinvd asm(".Lpost_movss_wbinvd");
9323 	extern char xbegin asm(".Lxbegin");
9324 	extern char skip_rtm asm(".Lskip_rtm");
9325 
9326 	/*
9327 	 * L1 wants to intercept #DB exceptions encountered in L2.
9328 	 */
9329 	vmcs_write(EXC_BITMAP, BIT(DB_VECTOR));
9330 
9331 	/*
9332 	 * Start L2 and run it up to the first point of interest.
9333 	 */
9334 	test_set_guest(vmx_db_test_guest);
9335 	enter_guest();
9336 
9337 	/*
9338 	 * Hardware-delivered #DB trap for single-step sets the
9339 	 * standard that L0 has to follow for emulated instructions.
9340 	 */
9341 	single_step_guest("Hardware delivered single-step", starting_dr6, 0);
9342 	check_db_exit(false, false, false, &post_nop, DR_STEP, starting_dr6);
9343 
9344 	/*
9345 	 * Hardware-delivered #DB trap for single-step in MOVSS shadow
9346 	 * also sets the standard that L0 has to follow for emulated
9347 	 * instructions. Here, we establish the VMCS pending debug
9348 	 * exceptions to indicate that the simulated MOVSS triggered a
9349 	 * data breakpoint as well as the single-step trap.
9350 	 */
9351 	single_step_guest("Hardware delivered single-step in MOVSS shadow",
9352 			  starting_dr6, BIT(12) | DR_STEP | DR_TRAP0 );
9353 	check_db_exit(false, false, false, &post_movss_nop, DR_STEP | DR_TRAP0,
9354 		      starting_dr6);
9355 
9356 	/*
9357 	 * L0 synthesized #DB trap for single-step is buggy, because
9358 	 * kvm (a) clobbers DR6 too early, and (b) tries its best to
9359 	 * reconstitute the exit qualification from the prematurely
9360 	 * modified DR6, but fails miserably.
9361 	 */
9362 	single_step_guest("Software synthesized single-step", starting_dr6, 0);
9363 	check_db_exit(false, false, false, &post_wbinvd, DR_STEP, starting_dr6);
9364 
9365 	/*
9366 	 * L0 synthesized #DB trap for single-step in MOVSS shadow is
9367 	 * even worse, because L0 also leaves the pending debug
9368 	 * exceptions in the VMCS instead of accumulating them into
9369 	 * the exit qualification field for the #DB exception.
9370 	 */
9371 	single_step_guest("Software synthesized single-step in MOVSS shadow",
9372 			  starting_dr6, BIT(12) | DR_STEP | DR_TRAP0);
9373 	check_db_exit(true, false, true, &post_movss_wbinvd, DR_STEP | DR_TRAP0,
9374 		      starting_dr6);
9375 
9376 	/*
9377 	 * Optional RTM test for hardware that supports RTM, to
9378 	 * demonstrate that the current volume 3 of the SDM
9379 	 * (325384-067US), table 27-1 is incorrect. Bit 16 of the exit
9380 	 * qualification for debug exceptions is not reserved. It is
9381 	 * set to 1 if a debug exception (#DB) or a breakpoint
9382 	 * exception (#BP) occurs inside an RTM region while advanced
9383 	 * debugging of RTM transactional regions is enabled.
9384 	 */
9385 	if (this_cpu_has(X86_FEATURE_RTM)) {
9386 		vmcs_write(ENT_CONTROLS,
9387 			   vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
9388 		/*
9389 		 * Set DR7.RTM[bit 11] and IA32_DEBUGCTL.RTM[bit 15]
9390 		 * in the guest to enable advanced debugging of RTM
9391 		 * transactional regions.
9392 		 */
9393 		vmcs_write(GUEST_DR7, BIT(11));
9394 		vmcs_write(GUEST_DEBUGCTL, BIT(15));
9395 		single_step_guest("Hardware delivered single-step in "
9396 				  "transactional region", starting_dr6, 0);
9397 		check_db_exit(false, false, false, &xbegin, BIT(16),
9398 			      starting_dr6);
9399 	} else {
9400 		vmcs_write(GUEST_RIP, (u64)&skip_rtm);
9401 		enter_guest();
9402 	}
9403 }
9404 
9405 static void enable_vid(void)
9406 {
9407 	void *virtual_apic_page;
9408 
9409 	assert(cpu_has_apicv());
9410 
9411 	disable_intercept_for_x2apic_msrs();
9412 
9413 	virtual_apic_page = alloc_page();
9414 	vmcs_write(APIC_VIRT_ADDR, (u64)virtual_apic_page);
9415 
9416 	vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT);
9417 
9418 	vmcs_write(EOI_EXIT_BITMAP0, 0x0);
9419 	vmcs_write(EOI_EXIT_BITMAP1, 0x0);
9420 	vmcs_write(EOI_EXIT_BITMAP2, 0x0);
9421 	vmcs_write(EOI_EXIT_BITMAP3, 0x0);
9422 
9423 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY | CPU_TPR_SHADOW);
9424 	vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VINTD | CPU_VIRT_X2APIC);
9425 }
9426 
9427 static void trigger_ioapic_scan_thread(void *data)
9428 {
9429 	/* Wait until other CPU entered L2 */
9430 	while (vmx_get_test_stage() != 1)
9431 		;
9432 
9433 	/* Trigger ioapic scan */
9434 	ioapic_set_redir(0xf, 0x79, TRIGGER_LEVEL);
9435 	vmx_set_test_stage(2);
9436 }
9437 
9438 static void irq_79_handler_guest(isr_regs_t *regs)
9439 {
9440 	eoi();
9441 
9442 	/* L1 expects vmexit on VMX_VMCALL and not VMX_EOI_INDUCED */
9443 	vmcall();
9444 }
9445 
9446 /*
9447  * Constant for num of busy-loop iterations after which
9448  * a timer interrupt should have happened in host
9449  */
9450 #define TIMER_INTERRUPT_DELAY 100000000
9451 
9452 static void vmx_eoi_bitmap_ioapic_scan_test_guest(void)
9453 {
9454 	handle_irq(0x79, irq_79_handler_guest);
9455 	irq_enable();
9456 
9457 	/* Signal to L1 CPU to trigger ioapic scan */
9458 	vmx_set_test_stage(1);
9459 	/* Wait until L1 CPU to trigger ioapic scan */
9460 	while (vmx_get_test_stage() != 2)
9461 		;
9462 
9463 	/*
9464 	 * Wait for L0 timer interrupt to be raised while we run in L2
9465 	 * such that L0 will process the IOAPIC scan request before
9466 	 * resuming L2
9467 	 */
9468 	delay(TIMER_INTERRUPT_DELAY);
9469 
9470 	asm volatile ("int $0x79");
9471 }
9472 
9473 static void vmx_eoi_bitmap_ioapic_scan_test(void)
9474 {
9475 	if (!cpu_has_apicv() || (cpu_count() < 2)) {
9476 		report_skip(__func__);
9477 		return;
9478 	}
9479 
9480 	enable_vid();
9481 
9482 	on_cpu_async(1, trigger_ioapic_scan_thread, NULL);
9483 	test_set_guest(vmx_eoi_bitmap_ioapic_scan_test_guest);
9484 
9485 	/*
9486 	 * Launch L2.
9487 	 * We expect the exit reason to be VMX_VMCALL (and not EOI INDUCED).
9488 	 * In case the reason isn't VMX_VMCALL, the asserion inside
9489 	 * skip_exit_vmcall() will fail.
9490 	 */
9491 	enter_guest();
9492 	skip_exit_vmcall();
9493 
9494 	/* Let L2 finish */
9495 	enter_guest();
9496 	report_pass(__func__);
9497 }
9498 
9499 #define HLT_WITH_RVI_VECTOR		(0xf1)
9500 
9501 bool vmx_hlt_with_rvi_guest_isr_fired;
9502 static void vmx_hlt_with_rvi_guest_isr(isr_regs_t *regs)
9503 {
9504 	vmx_hlt_with_rvi_guest_isr_fired = true;
9505 	eoi();
9506 }
9507 
9508 static void vmx_hlt_with_rvi_guest(void)
9509 {
9510 	handle_irq(HLT_WITH_RVI_VECTOR, vmx_hlt_with_rvi_guest_isr);
9511 
9512 	irq_enable();
9513 	asm volatile ("nop");
9514 
9515 	vmcall();
9516 }
9517 
9518 static void vmx_hlt_with_rvi_test(void)
9519 {
9520 	if (!cpu_has_apicv()) {
9521 		report_skip(__func__);
9522 		return;
9523 	}
9524 
9525 	enable_vid();
9526 
9527 	vmx_hlt_with_rvi_guest_isr_fired = false;
9528 	test_set_guest(vmx_hlt_with_rvi_guest);
9529 
9530 	enter_guest();
9531 	skip_exit_vmcall();
9532 
9533 	vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
9534 	vmcs_write(GUEST_INT_STATUS, HLT_WITH_RVI_VECTOR);
9535 	enter_guest();
9536 
9537 	report(vmx_hlt_with_rvi_guest_isr_fired, "Interrupt raised in guest");
9538 }
9539 
9540 static void set_irq_line_thread(void *data)
9541 {
9542 	/* Wait until other CPU entered L2 */
9543 	while (vmx_get_test_stage() != 1)
9544 		;
9545 
9546 	/* Set irq-line 0xf to raise vector 0x78 for vCPU 0 */
9547 	ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL);
9548 	vmx_set_test_stage(2);
9549 }
9550 
9551 static bool irq_78_handler_vmcall_before_eoi;
9552 static void irq_78_handler_guest(isr_regs_t *regs)
9553 {
9554 	set_irq_line(0xf, 0);
9555 	if (irq_78_handler_vmcall_before_eoi)
9556 		vmcall();
9557 	eoi();
9558 	vmcall();
9559 }
9560 
9561 static void vmx_apic_passthrough_guest(void)
9562 {
9563 	handle_irq(0x78, irq_78_handler_guest);
9564 	irq_enable();
9565 
9566 	/* If requested, wait for other CPU to trigger ioapic scan */
9567 	if (vmx_get_test_stage() < 1) {
9568 		vmx_set_test_stage(1);
9569 		while (vmx_get_test_stage() != 2)
9570 			;
9571 	}
9572 
9573 	set_irq_line(0xf, 1);
9574 }
9575 
9576 static void vmx_apic_passthrough(bool set_irq_line_from_thread)
9577 {
9578 	if (set_irq_line_from_thread && (cpu_count() < 2)) {
9579 		report_skip(__func__);
9580 		return;
9581 	}
9582 
9583 	/* Test device is required for generating IRQs */
9584 	if (!test_device_enabled()) {
9585 		report_skip(__func__);
9586 		return;
9587 	}
9588 	u64 cpu_ctrl_0 = CPU_SECONDARY;
9589 	u64 cpu_ctrl_1 = 0;
9590 
9591 	disable_intercept_for_x2apic_msrs();
9592 
9593 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
9594 
9595 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0);
9596 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1);
9597 
9598 	if (set_irq_line_from_thread) {
9599 		irq_78_handler_vmcall_before_eoi = false;
9600 		on_cpu_async(1, set_irq_line_thread, NULL);
9601 	} else {
9602 		irq_78_handler_vmcall_before_eoi = true;
9603 		ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL);
9604 		vmx_set_test_stage(2);
9605 	}
9606 	test_set_guest(vmx_apic_passthrough_guest);
9607 
9608 	if (irq_78_handler_vmcall_before_eoi) {
9609 		/* Before EOI remote_irr should still be set */
9610 		enter_guest();
9611 		skip_exit_vmcall();
9612 		TEST_ASSERT_EQ_MSG(1, (int)ioapic_read_redir(0xf).remote_irr,
9613 			"IOAPIC pass-through: remote_irr=1 before EOI");
9614 	}
9615 
9616 	/* After EOI remote_irr should be cleared */
9617 	enter_guest();
9618 	skip_exit_vmcall();
9619 	TEST_ASSERT_EQ_MSG(0, (int)ioapic_read_redir(0xf).remote_irr,
9620 		"IOAPIC pass-through: remote_irr=0 after EOI");
9621 
9622 	/* Let L2 finish */
9623 	enter_guest();
9624 	report_pass(__func__);
9625 }
9626 
9627 static void vmx_apic_passthrough_test(void)
9628 {
9629 	vmx_apic_passthrough(false);
9630 }
9631 
9632 static void vmx_apic_passthrough_thread_test(void)
9633 {
9634 	vmx_apic_passthrough(true);
9635 }
9636 
9637 static void vmx_apic_passthrough_tpr_threshold_guest(void)
9638 {
9639 	cli();
9640 	apic_set_tpr(0);
9641 }
9642 
9643 static bool vmx_apic_passthrough_tpr_threshold_ipi_isr_fired;
9644 static void vmx_apic_passthrough_tpr_threshold_ipi_isr(isr_regs_t *regs)
9645 {
9646 	vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = true;
9647 	eoi();
9648 }
9649 
9650 static void vmx_apic_passthrough_tpr_threshold_test(void)
9651 {
9652 	int ipi_vector = 0xe1;
9653 
9654 	disable_intercept_for_x2apic_msrs();
9655 	vmcs_clear_bits(PIN_CONTROLS, PIN_EXTINT);
9656 
9657 	/* Raise L0 TPR-threshold by queueing vector in LAPIC IRR */
9658 	cli();
9659 	apic_set_tpr((ipi_vector >> 4) + 1);
9660 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
9661 			APIC_DM_FIXED | ipi_vector,
9662 			0);
9663 
9664 	test_set_guest(vmx_apic_passthrough_tpr_threshold_guest);
9665 	enter_guest();
9666 
9667 	report(apic_get_tpr() == 0, "TPR was zero by guest");
9668 
9669 	/* Clean pending self-IPI */
9670 	vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = false;
9671 	handle_irq(ipi_vector, vmx_apic_passthrough_tpr_threshold_ipi_isr);
9672 	sti();
9673 	asm volatile ("nop");
9674 	report(vmx_apic_passthrough_tpr_threshold_ipi_isr_fired, "self-IPI fired");
9675 
9676 	report_pass(__func__);
9677 }
9678 
9679 static u64 init_signal_test_exit_reason;
9680 static bool init_signal_test_thread_continued;
9681 
9682 static void init_signal_test_thread(void *data)
9683 {
9684 	struct vmcs *test_vmcs = data;
9685 
9686 	/* Enter VMX operation (i.e. exec VMXON) */
9687 	u64 *ap_vmxon_region = alloc_page();
9688 	enable_vmx();
9689 	init_vmx(ap_vmxon_region);
9690 	_vmx_on(ap_vmxon_region);
9691 
9692 	/* Signal CPU have entered VMX operation */
9693 	vmx_set_test_stage(1);
9694 
9695 	/* Wait for BSP CPU to send INIT signal */
9696 	while (vmx_get_test_stage() != 2)
9697 		;
9698 
9699 	/*
9700 	 * Signal that we continue as usual as INIT signal
9701 	 * should be blocked while CPU is in VMX operation
9702 	 */
9703 	vmx_set_test_stage(3);
9704 
9705 	/* Wait for signal to enter VMX non-root mode */
9706 	while (vmx_get_test_stage() != 4)
9707 		;
9708 
9709 	/* Enter VMX non-root mode */
9710 	test_set_guest(v2_null_test_guest);
9711 	make_vmcs_current(test_vmcs);
9712 	enter_guest();
9713 	/* Save exit reason for BSP CPU to compare to expected result */
9714 	init_signal_test_exit_reason = vmcs_read(EXI_REASON);
9715 	/* VMCLEAR test-vmcs so it could be loaded by BSP CPU */
9716 	vmcs_clear(test_vmcs);
9717 	launched = false;
9718 	/* Signal that CPU exited to VMX root mode */
9719 	vmx_set_test_stage(5);
9720 
9721 	/* Wait for BSP CPU to signal to exit VMX operation */
9722 	while (vmx_get_test_stage() != 6)
9723 		;
9724 
9725 	/* Exit VMX operation (i.e. exec VMXOFF) */
9726 	vmx_off();
9727 
9728 	/*
9729 	 * Signal to BSP CPU that we continue as usual as INIT signal
9730 	 * should have been consumed by VMX_INIT exit from guest
9731 	 */
9732 	vmx_set_test_stage(7);
9733 
9734 	/* Wait for BSP CPU to signal to enter VMX operation */
9735 	while (vmx_get_test_stage() != 8)
9736 		;
9737 	/* Enter VMX operation (i.e. exec VMXON) */
9738 	_vmx_on(ap_vmxon_region);
9739 	/* Signal to BSP we are in VMX operation */
9740 	vmx_set_test_stage(9);
9741 
9742 	/* Wait for BSP CPU to send INIT signal */
9743 	while (vmx_get_test_stage() != 10)
9744 		;
9745 
9746 	/* Exit VMX operation (i.e. exec VMXOFF) */
9747 	vmx_off();
9748 
9749 	/*
9750 	 * Exiting VMX operation should result in latched
9751 	 * INIT signal being processed. Therefore, we should
9752 	 * never reach the below code. Thus, signal to BSP
9753 	 * CPU if we have reached here so it is able to
9754 	 * report an issue if it happens.
9755 	 */
9756 	init_signal_test_thread_continued = true;
9757 }
9758 
9759 #define INIT_SIGNAL_TEST_DELAY	100000000ULL
9760 
9761 static void vmx_init_signal_test(void)
9762 {
9763 	struct vmcs *test_vmcs;
9764 
9765 	if (cpu_count() < 2) {
9766 		report_skip(__func__);
9767 		return;
9768 	}
9769 
9770 	/* VMCLEAR test-vmcs so it could be loaded by other CPU */
9771 	vmcs_save(&test_vmcs);
9772 	vmcs_clear(test_vmcs);
9773 
9774 	vmx_set_test_stage(0);
9775 	on_cpu_async(1, init_signal_test_thread, test_vmcs);
9776 
9777 	/* Wait for other CPU to enter VMX operation */
9778 	while (vmx_get_test_stage() != 1)
9779 		;
9780 
9781 	/* Send INIT signal to other CPU */
9782 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT,
9783 				   id_map[1]);
9784 	/* Signal other CPU we have sent INIT signal */
9785 	vmx_set_test_stage(2);
9786 
9787 	/*
9788 	 * Wait reasonable amount of time for INIT signal to
9789 	 * be received on other CPU and verify that other CPU
9790 	 * have proceed as usual to next test stage as INIT
9791 	 * signal should be blocked while other CPU in
9792 	 * VMX operation
9793 	 */
9794 	delay(INIT_SIGNAL_TEST_DELAY);
9795 	report(vmx_get_test_stage() == 3,
9796 	       "INIT signal blocked when CPU in VMX operation");
9797 	/* No point to continue if we failed at this point */
9798 	if (vmx_get_test_stage() != 3)
9799 		return;
9800 
9801 	/* Signal other CPU to enter VMX non-root mode */
9802 	init_signal_test_exit_reason = -1ull;
9803 	vmx_set_test_stage(4);
9804 	/*
9805 	 * Wait reasonable amont of time for other CPU
9806 	 * to exit to VMX root mode
9807 	 */
9808 	delay(INIT_SIGNAL_TEST_DELAY);
9809 	if (vmx_get_test_stage() != 5) {
9810 		report_fail("Pending INIT signal didn't result in VMX exit");
9811 		return;
9812 	}
9813 	report(init_signal_test_exit_reason == VMX_INIT,
9814 			"INIT signal during VMX non-root mode result in exit-reason %s (%lu)",
9815 			exit_reason_description(init_signal_test_exit_reason),
9816 			init_signal_test_exit_reason);
9817 
9818 	/* Run guest to completion */
9819 	make_vmcs_current(test_vmcs);
9820 	enter_guest();
9821 
9822 	/* Signal other CPU to exit VMX operation */
9823 	init_signal_test_thread_continued = false;
9824 	vmx_set_test_stage(6);
9825 
9826 	/* Wait reasonable amount of time for other CPU to exit VMX operation */
9827 	delay(INIT_SIGNAL_TEST_DELAY);
9828 	report(vmx_get_test_stage() == 7,
9829 	       "INIT signal consumed on VMX_INIT exit");
9830 	/* No point to continue if we failed at this point */
9831 	if (vmx_get_test_stage() != 7)
9832 		return;
9833 
9834 	/* Signal other CPU to enter VMX operation */
9835 	vmx_set_test_stage(8);
9836 	/* Wait for other CPU to enter VMX operation */
9837 	while (vmx_get_test_stage() != 9)
9838 		;
9839 
9840 	/* Send INIT signal to other CPU */
9841 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT,
9842 				   id_map[1]);
9843 	/* Signal other CPU we have sent INIT signal */
9844 	vmx_set_test_stage(10);
9845 
9846 	/*
9847 	 * Wait reasonable amount of time for other CPU
9848 	 * to exit VMX operation and process INIT signal
9849 	 */
9850 	delay(INIT_SIGNAL_TEST_DELAY);
9851 	report(!init_signal_test_thread_continued,
9852 	       "INIT signal processed after exit VMX operation");
9853 
9854 	/*
9855 	 * TODO: Send SIPI to other CPU to sipi_entry (See x86/cstart64.S)
9856 	 * to re-init it to kvm-unit-tests standard environment.
9857 	 * Somehow (?) verify that SIPI was indeed received.
9858 	 */
9859 }
9860 
9861 #define SIPI_SIGNAL_TEST_DELAY	100000000ULL
9862 
9863 static void vmx_sipi_test_guest(void)
9864 {
9865 	if (apic_id() == 0) {
9866 		/* wait AP enter guest with activity=WAIT_SIPI */
9867 		while (vmx_get_test_stage() != 1)
9868 			;
9869 		delay(SIPI_SIGNAL_TEST_DELAY);
9870 
9871 		/* First SIPI signal */
9872 		apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP | APIC_INT_ASSERT, id_map[1]);
9873 		report_pass("BSP(L2): Send first SIPI to cpu[%d]", id_map[1]);
9874 
9875 		/* wait AP enter guest */
9876 		while (vmx_get_test_stage() != 2)
9877 			;
9878 		delay(SIPI_SIGNAL_TEST_DELAY);
9879 
9880 		/* Second SIPI signal should be ignored since AP is not in WAIT_SIPI state */
9881 		apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP | APIC_INT_ASSERT, id_map[1]);
9882 		report_pass("BSP(L2): Send second SIPI to cpu[%d]", id_map[1]);
9883 
9884 		/* Delay a while to check whether second SIPI would cause VMExit */
9885 		delay(SIPI_SIGNAL_TEST_DELAY);
9886 
9887 		/* Test is done, notify AP to exit test */
9888 		vmx_set_test_stage(3);
9889 
9890 		/* wait AP exit non-root mode */
9891 		while (vmx_get_test_stage() != 5)
9892 			;
9893 	} else {
9894 		/* wait BSP notify test is done */
9895 		while (vmx_get_test_stage() != 3)
9896 			;
9897 
9898 		/* AP exit guest */
9899 		vmx_set_test_stage(4);
9900 	}
9901 }
9902 
9903 static void sipi_test_ap_thread(void *data)
9904 {
9905 	struct vmcs *ap_vmcs;
9906 	u64 *ap_vmxon_region;
9907 	void *ap_stack, *ap_syscall_stack;
9908 	u64 cpu_ctrl_0 = CPU_SECONDARY;
9909 	u64 cpu_ctrl_1 = 0;
9910 
9911 	/* Enter VMX operation (i.e. exec VMXON) */
9912 	ap_vmxon_region = alloc_page();
9913 	enable_vmx();
9914 	init_vmx(ap_vmxon_region);
9915 	_vmx_on(ap_vmxon_region);
9916 	init_vmcs(&ap_vmcs);
9917 	make_vmcs_current(ap_vmcs);
9918 
9919 	/* Set stack for AP */
9920 	ap_stack = alloc_page();
9921 	ap_syscall_stack = alloc_page();
9922 	vmcs_write(GUEST_RSP, (u64)(ap_stack + PAGE_SIZE - 1));
9923 	vmcs_write(GUEST_SYSENTER_ESP, (u64)(ap_syscall_stack + PAGE_SIZE - 1));
9924 
9925 	/* passthrough lapic to L2 */
9926 	disable_intercept_for_x2apic_msrs();
9927 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
9928 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0);
9929 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1);
9930 
9931 	/* Set guest activity state to wait-for-SIPI state */
9932 	vmcs_write(GUEST_ACTV_STATE, ACTV_WAIT_SIPI);
9933 
9934 	vmx_set_test_stage(1);
9935 
9936 	/* AP enter guest */
9937 	enter_guest();
9938 
9939 	if (vmcs_read(EXI_REASON) == VMX_SIPI) {
9940 		report_pass("AP: Handle SIPI VMExit");
9941 		vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
9942 		vmx_set_test_stage(2);
9943 	} else {
9944 		report_fail("AP: Unexpected VMExit, reason=%ld", vmcs_read(EXI_REASON));
9945 		vmx_off();
9946 		return;
9947 	}
9948 
9949 	/* AP enter guest */
9950 	enter_guest();
9951 
9952 	report(vmcs_read(EXI_REASON) != VMX_SIPI,
9953 		"AP: should no SIPI VMExit since activity is not in WAIT_SIPI state");
9954 
9955 	/* notify BSP that AP is already exit from non-root mode */
9956 	vmx_set_test_stage(5);
9957 
9958 	/* Leave VMX operation */
9959 	vmx_off();
9960 }
9961 
9962 static void vmx_sipi_signal_test(void)
9963 {
9964 	if (!(rdmsr(MSR_IA32_VMX_MISC) & MSR_IA32_VMX_MISC_ACTIVITY_WAIT_SIPI)) {
9965 		printf("\tACTIVITY_WAIT_SIPI state is not supported.\n");
9966 		return;
9967 	}
9968 
9969 	if (cpu_count() < 2) {
9970 		report_skip(__func__);
9971 		return;
9972 	}
9973 
9974 	u64 cpu_ctrl_0 = CPU_SECONDARY;
9975 	u64 cpu_ctrl_1 = 0;
9976 
9977 	/* passthrough lapic to L2 */
9978 	disable_intercept_for_x2apic_msrs();
9979 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
9980 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0);
9981 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1);
9982 
9983 	test_set_guest(vmx_sipi_test_guest);
9984 
9985 	/* update CR3 on AP */
9986 	on_cpu(1, update_cr3, (void *)read_cr3());
9987 
9988 	/* start AP */
9989 	on_cpu_async(1, sipi_test_ap_thread, NULL);
9990 
9991 	vmx_set_test_stage(0);
9992 
9993 	/* BSP enter guest */
9994 	enter_guest();
9995 }
9996 
9997 
9998 enum vmcs_access {
9999 	ACCESS_VMREAD,
10000 	ACCESS_VMWRITE,
10001 	ACCESS_NONE,
10002 };
10003 
10004 struct vmcs_shadow_test_common {
10005 	enum vmcs_access op;
10006 	enum Reason reason;
10007 	u64 field;
10008 	u64 value;
10009 	u64 flags;
10010 	u64 time;
10011 } l1_l2_common;
10012 
10013 static inline u64 vmread_flags(u64 field, u64 *val)
10014 {
10015 	u64 flags;
10016 
10017 	asm volatile ("vmread %2, %1; pushf; pop %0"
10018 		      : "=r" (flags), "=rm" (*val) : "r" (field) : "cc");
10019 	return flags & X86_EFLAGS_ALU;
10020 }
10021 
10022 static inline u64 vmwrite_flags(u64 field, u64 val)
10023 {
10024 	u64 flags;
10025 
10026 	asm volatile ("vmwrite %1, %2; pushf; pop %0"
10027 		      : "=r"(flags) : "rm" (val), "r" (field) : "cc");
10028 	return flags & X86_EFLAGS_ALU;
10029 }
10030 
10031 static void vmx_vmcs_shadow_test_guest(void)
10032 {
10033 	struct vmcs_shadow_test_common *c = &l1_l2_common;
10034 	u64 start;
10035 
10036 	while (c->op != ACCESS_NONE) {
10037 		start = rdtsc();
10038 		switch (c->op) {
10039 		default:
10040 			c->flags = -1ull;
10041 			break;
10042 		case ACCESS_VMREAD:
10043 			c->flags = vmread_flags(c->field, &c->value);
10044 			break;
10045 		case ACCESS_VMWRITE:
10046 			c->flags = vmwrite_flags(c->field, 0);
10047 			break;
10048 		}
10049 		c->time = rdtsc() - start;
10050 		vmcall();
10051 	}
10052 }
10053 
10054 static u64 vmread_from_shadow(u64 field)
10055 {
10056 	struct vmcs *primary;
10057 	struct vmcs *shadow;
10058 	u64 value;
10059 
10060 	TEST_ASSERT(!vmcs_save(&primary));
10061 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
10062 	TEST_ASSERT(!make_vmcs_current(shadow));
10063 	value = vmcs_read(field);
10064 	TEST_ASSERT(!make_vmcs_current(primary));
10065 	return value;
10066 }
10067 
10068 static u64 vmwrite_to_shadow(u64 field, u64 value)
10069 {
10070 	struct vmcs *primary;
10071 	struct vmcs *shadow;
10072 
10073 	TEST_ASSERT(!vmcs_save(&primary));
10074 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
10075 	TEST_ASSERT(!make_vmcs_current(shadow));
10076 	vmcs_write(field, value);
10077 	value = vmcs_read(field);
10078 	TEST_ASSERT(!make_vmcs_current(primary));
10079 	return value;
10080 }
10081 
10082 static void vmcs_shadow_test_access(u8 *bitmap[2], enum vmcs_access access)
10083 {
10084 	struct vmcs_shadow_test_common *c = &l1_l2_common;
10085 
10086 	c->op = access;
10087 	vmcs_write(VMX_INST_ERROR, 0);
10088 	enter_guest();
10089 	c->reason = vmcs_read(EXI_REASON) & 0xffff;
10090 	if (c->reason != VMX_VMCALL) {
10091 		skip_exit_insn();
10092 		enter_guest();
10093 	}
10094 	skip_exit_vmcall();
10095 }
10096 
10097 static void vmcs_shadow_test_field(u8 *bitmap[2], u64 field)
10098 {
10099 	struct vmcs_shadow_test_common *c = &l1_l2_common;
10100 	struct vmcs *shadow;
10101 	u64 value;
10102 	uintptr_t flags[2];
10103 	bool good_shadow;
10104 	u32 vmx_inst_error;
10105 
10106 	report_prefix_pushf("field %lx", field);
10107 	c->field = field;
10108 
10109 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
10110 	if (shadow != (struct vmcs *)-1ull) {
10111 		flags[ACCESS_VMREAD] = vmread_flags(field, &value);
10112 		flags[ACCESS_VMWRITE] = vmwrite_flags(field, value);
10113 		good_shadow = !flags[ACCESS_VMREAD] && !flags[ACCESS_VMWRITE];
10114 	} else {
10115 		/*
10116 		 * When VMCS link pointer is -1ull, VMWRITE/VMREAD on
10117 		 * shadowed-fields should fail with setting RFLAGS.CF.
10118 		 */
10119 		flags[ACCESS_VMREAD] = X86_EFLAGS_CF;
10120 		flags[ACCESS_VMWRITE] = X86_EFLAGS_CF;
10121 		good_shadow = false;
10122 	}
10123 
10124 	/* Intercept both VMREAD and VMWRITE. */
10125 	report_prefix_push("no VMREAD/VMWRITE permission");
10126 	/* VMWRITE/VMREAD done on reserved-bit should always intercept */
10127 	if (!(field >> VMCS_FIELD_RESERVED_SHIFT)) {
10128 		set_bit(field, bitmap[ACCESS_VMREAD]);
10129 		set_bit(field, bitmap[ACCESS_VMWRITE]);
10130 	}
10131 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
10132 	report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE");
10133 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
10134 	report(c->reason == VMX_VMREAD, "not shadowed for VMREAD");
10135 	report_prefix_pop();
10136 
10137 	if (field >> VMCS_FIELD_RESERVED_SHIFT)
10138 		goto out;
10139 
10140 	/* Permit shadowed VMREAD. */
10141 	report_prefix_push("VMREAD permission only");
10142 	clear_bit(field, bitmap[ACCESS_VMREAD]);
10143 	set_bit(field, bitmap[ACCESS_VMWRITE]);
10144 	if (good_shadow)
10145 		value = vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
10146 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
10147 	report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE");
10148 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
10149 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
10150 	report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)",
10151 	       c->time);
10152 	report(c->flags == flags[ACCESS_VMREAD],
10153 	       "ALU flags after VMREAD (%lx) are as expected (%lx)",
10154 	       c->flags, flags[ACCESS_VMREAD]);
10155 	if (good_shadow)
10156 		report(c->value == value,
10157 		       "value read from shadow (%lx) is as expected (%lx)",
10158 		       c->value, value);
10159 	else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD])
10160 		report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
10161 		       "VMX_INST_ERROR (%d) is as expected (%d)",
10162 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
10163 	report_prefix_pop();
10164 
10165 	/* Permit shadowed VMWRITE. */
10166 	report_prefix_push("VMWRITE permission only");
10167 	set_bit(field, bitmap[ACCESS_VMREAD]);
10168 	clear_bit(field, bitmap[ACCESS_VMWRITE]);
10169 	if (good_shadow)
10170 		vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
10171 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
10172 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
10173 	report(c->reason == VMX_VMCALL,
10174 		"shadowed for VMWRITE (in %ld cycles)",
10175 		c->time);
10176 	report(c->flags == flags[ACCESS_VMREAD],
10177 	       "ALU flags after VMWRITE (%lx) are as expected (%lx)",
10178 	       c->flags, flags[ACCESS_VMREAD]);
10179 	if (good_shadow) {
10180 		value = vmread_from_shadow(field);
10181 		report(value == 0,
10182 		       "shadow VMCS value (%lx) is as expected (%lx)", value,
10183 		       0ul);
10184 	} else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) {
10185 		report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
10186 		       "VMX_INST_ERROR (%d) is as expected (%d)",
10187 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
10188 	}
10189 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
10190 	report(c->reason == VMX_VMREAD, "not shadowed for VMREAD");
10191 	report_prefix_pop();
10192 
10193 	/* Permit shadowed VMREAD and VMWRITE. */
10194 	report_prefix_push("VMREAD and VMWRITE permission");
10195 	clear_bit(field, bitmap[ACCESS_VMREAD]);
10196 	clear_bit(field, bitmap[ACCESS_VMWRITE]);
10197 	if (good_shadow)
10198 		vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
10199 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
10200 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
10201 	report(c->reason == VMX_VMCALL,
10202 		"shadowed for VMWRITE (in %ld cycles)",
10203 		c->time);
10204 	report(c->flags == flags[ACCESS_VMREAD],
10205 	       "ALU flags after VMWRITE (%lx) are as expected (%lx)",
10206 	       c->flags, flags[ACCESS_VMREAD]);
10207 	if (good_shadow) {
10208 		value = vmread_from_shadow(field);
10209 		report(value == 0,
10210 		       "shadow VMCS value (%lx) is as expected (%lx)", value,
10211 		       0ul);
10212 	} else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) {
10213 		report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
10214 		       "VMX_INST_ERROR (%d) is as expected (%d)",
10215 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
10216 	}
10217 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
10218 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
10219 	report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)",
10220 	       c->time);
10221 	report(c->flags == flags[ACCESS_VMREAD],
10222 	       "ALU flags after VMREAD (%lx) are as expected (%lx)",
10223 	       c->flags, flags[ACCESS_VMREAD]);
10224 	if (good_shadow)
10225 		report(c->value == 0,
10226 		       "value read from shadow (%lx) is as expected (%lx)",
10227 		       c->value, 0ul);
10228 	else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD])
10229 		report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
10230 		       "VMX_INST_ERROR (%d) is as expected (%d)",
10231 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
10232 	report_prefix_pop();
10233 
10234 out:
10235 	report_prefix_pop();
10236 }
10237 
10238 static void vmx_vmcs_shadow_test_body(u8 *bitmap[2])
10239 {
10240 	unsigned base;
10241 	unsigned index;
10242 	unsigned bit;
10243 	unsigned highest_index = rdmsr(MSR_IA32_VMX_VMCS_ENUM);
10244 
10245 	/* Run test on all possible valid VMCS fields */
10246 	for (base = 0;
10247 	     base < (1 << VMCS_FIELD_RESERVED_SHIFT);
10248 	     base += (1 << VMCS_FIELD_TYPE_SHIFT))
10249 		for (index = 0; index <= highest_index; index++)
10250 			vmcs_shadow_test_field(bitmap, base + index);
10251 
10252 	/*
10253 	 * Run tests on some invalid VMCS fields
10254 	 * (Have reserved bit set).
10255 	 */
10256 	for (bit = VMCS_FIELD_RESERVED_SHIFT; bit < VMCS_FIELD_BIT_SIZE; bit++)
10257 		vmcs_shadow_test_field(bitmap, (1ull << bit));
10258 }
10259 
10260 static void vmx_vmcs_shadow_test(void)
10261 {
10262 	u8 *bitmap[2];
10263 	struct vmcs *shadow;
10264 
10265 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) {
10266 		printf("\t'Activate secondary controls' not supported.\n");
10267 		return;
10268 	}
10269 
10270 	if (!(ctrl_cpu_rev[1].clr & CPU_SHADOW_VMCS)) {
10271 		printf("\t'VMCS shadowing' not supported.\n");
10272 		return;
10273 	}
10274 
10275 	if (!(rdmsr(MSR_IA32_VMX_MISC) &
10276 	      MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) {
10277 		printf("\tVMWRITE can't modify VM-exit information fields.\n");
10278 		return;
10279 	}
10280 
10281 	test_set_guest(vmx_vmcs_shadow_test_guest);
10282 
10283 	bitmap[ACCESS_VMREAD] = alloc_page();
10284 	bitmap[ACCESS_VMWRITE] = alloc_page();
10285 
10286 	vmcs_write(VMREAD_BITMAP, virt_to_phys(bitmap[ACCESS_VMREAD]));
10287 	vmcs_write(VMWRITE_BITMAP, virt_to_phys(bitmap[ACCESS_VMWRITE]));
10288 
10289 	shadow = alloc_page();
10290 	shadow->hdr.revision_id = basic.revision;
10291 	shadow->hdr.shadow_vmcs = 1;
10292 	TEST_ASSERT(!vmcs_clear(shadow));
10293 
10294 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_RDTSC);
10295 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY);
10296 	vmcs_set_bits(CPU_EXEC_CTRL1, CPU_SHADOW_VMCS);
10297 
10298 	vmcs_write(VMCS_LINK_PTR, virt_to_phys(shadow));
10299 	report_prefix_push("valid link pointer");
10300 	vmx_vmcs_shadow_test_body(bitmap);
10301 	report_prefix_pop();
10302 
10303 	vmcs_write(VMCS_LINK_PTR, -1ull);
10304 	report_prefix_push("invalid link pointer");
10305 	vmx_vmcs_shadow_test_body(bitmap);
10306 	report_prefix_pop();
10307 
10308 	l1_l2_common.op = ACCESS_NONE;
10309 	enter_guest();
10310 }
10311 
10312 /*
10313  * This test monitors the difference between a guest RDTSC instruction
10314  * and the IA32_TIME_STAMP_COUNTER MSR value stored in the VMCS12
10315  * VM-exit MSR-store list when taking a VM-exit on the instruction
10316  * following RDTSC.
10317  */
10318 #define RDTSC_DIFF_ITERS 100000
10319 #define RDTSC_DIFF_FAILS 100
10320 #define HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD 750
10321 
10322 /*
10323  * Set 'use TSC offsetting' and set the guest offset to the
10324  * inverse of the host's current TSC value, so that the guest starts running
10325  * with an effective TSC value of 0.
10326  */
10327 static void reset_guest_tsc_to_zero(void)
10328 {
10329 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET);
10330 	vmcs_write(TSC_OFFSET, -rdtsc());
10331 }
10332 
10333 static void rdtsc_vmexit_diff_test_guest(void)
10334 {
10335 	int i;
10336 
10337 	for (i = 0; i < RDTSC_DIFF_ITERS; i++)
10338 		/* Ensure rdtsc is the last instruction before the vmcall. */
10339 		asm volatile("rdtsc; vmcall" : : : "eax", "edx");
10340 }
10341 
10342 /*
10343  * This function only considers the "use TSC offsetting" VM-execution
10344  * control.  It does not handle "use TSC scaling" (because the latter
10345  * isn't available to the host today.)
10346  */
10347 static unsigned long long host_time_to_guest_time(unsigned long long t)
10348 {
10349 	TEST_ASSERT(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
10350 		    !(vmcs_read(CPU_EXEC_CTRL1) & CPU_USE_TSC_SCALING));
10351 
10352 	if (vmcs_read(CPU_EXEC_CTRL0) & CPU_USE_TSC_OFFSET)
10353 		t += vmcs_read(TSC_OFFSET);
10354 
10355 	return t;
10356 }
10357 
10358 static unsigned long long rdtsc_vmexit_diff_test_iteration(void)
10359 {
10360 	unsigned long long guest_tsc, host_to_guest_tsc;
10361 
10362 	enter_guest();
10363 	skip_exit_vmcall();
10364 	guest_tsc = (u32) regs.rax + (regs.rdx << 32);
10365 	host_to_guest_tsc = host_time_to_guest_time(exit_msr_store[0].value);
10366 
10367 	return host_to_guest_tsc - guest_tsc;
10368 }
10369 
10370 static void rdtsc_vmexit_diff_test(void)
10371 {
10372 	unsigned long long delta;
10373 	int fail = 0;
10374 	int i;
10375 
10376 	if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET))
10377 		test_skip("CPU doesn't support the 'use TSC offsetting' processor-based VM-execution control.\n");
10378 
10379 	test_set_guest(rdtsc_vmexit_diff_test_guest);
10380 
10381 	reset_guest_tsc_to_zero();
10382 
10383 	/*
10384 	 * Set up the VMCS12 VM-exit MSR-store list to store just one
10385 	 * MSR: IA32_TIME_STAMP_COUNTER. Note that the value stored is
10386 	 * in the host time domain (i.e., it is not adjusted according
10387 	 * to the TSC multiplier and TSC offset fields in the VMCS12,
10388 	 * as a guest RDTSC would be.)
10389 	 */
10390 	exit_msr_store = alloc_page();
10391 	exit_msr_store[0].index = MSR_IA32_TSC;
10392 	vmcs_write(EXI_MSR_ST_CNT, 1);
10393 	vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(exit_msr_store));
10394 
10395 	for (i = 0; i < RDTSC_DIFF_ITERS && fail < RDTSC_DIFF_FAILS; i++) {
10396 		delta = rdtsc_vmexit_diff_test_iteration();
10397 		if (delta >= HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD)
10398 			fail++;
10399 	}
10400 
10401 	enter_guest();
10402 
10403 	report(fail < RDTSC_DIFF_FAILS,
10404 	       "RDTSC to VM-exit delta too high in %d of %d iterations, last = %llu",
10405 	       fail, i, delta);
10406 }
10407 
10408 static int invalid_msr_init(struct vmcs *vmcs)
10409 {
10410 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
10411 		printf("\tPreemption timer is not supported\n");
10412 		return VMX_TEST_EXIT;
10413 	}
10414 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
10415 	preempt_val = 10000000;
10416 	vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
10417 	preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
10418 
10419 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
10420 		printf("\tSave preemption value is not supported\n");
10421 
10422 	vmcs_write(ENT_MSR_LD_CNT, 1);
10423 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)0x13370000);
10424 
10425 	return VMX_TEST_START;
10426 }
10427 
10428 
10429 static void invalid_msr_main(void)
10430 {
10431 	report_fail("Invalid MSR load");
10432 }
10433 
10434 static int invalid_msr_exit_handler(union exit_reason exit_reason)
10435 {
10436 	report_fail("Invalid MSR load");
10437 	print_vmexit_info(exit_reason);
10438 	return VMX_TEST_EXIT;
10439 }
10440 
10441 static int invalid_msr_entry_failure(struct vmentry_result *result)
10442 {
10443 	report(result->exit_reason.failed_vmentry &&
10444 	       result->exit_reason.basic == VMX_FAIL_MSR, "Invalid MSR load");
10445 	return VMX_TEST_VMEXIT;
10446 }
10447 
10448 /*
10449  * The max number of MSRs in an atomic switch MSR list is:
10450  * (111B + 1) * 512 = 4096
10451  *
10452  * Each list entry consumes:
10453  * 4-byte MSR index + 4 bytes reserved + 8-byte data = 16 bytes
10454  *
10455  * Allocate 128 kB to cover max_msr_list_size (i.e., 64 kB) and then some.
10456  */
10457 static const u32 msr_list_page_order = 5;
10458 
10459 static void atomic_switch_msr_limit_test_guest(void)
10460 {
10461 	vmcall();
10462 }
10463 
10464 static void populate_msr_list(struct vmx_msr_entry *msr_list,
10465 			      size_t byte_capacity, int count)
10466 {
10467 	int i;
10468 
10469 	for (i = 0; i < count; i++) {
10470 		msr_list[i].index = MSR_IA32_TSC;
10471 		msr_list[i].reserved = 0;
10472 		msr_list[i].value = 0x1234567890abcdef;
10473 	}
10474 
10475 	memset(msr_list + count, 0xff,
10476 	       byte_capacity - count * sizeof(*msr_list));
10477 }
10478 
10479 static int max_msr_list_size(void)
10480 {
10481 	u32 vmx_misc = rdmsr(MSR_IA32_VMX_MISC);
10482 	u32 factor = ((vmx_misc & GENMASK(27, 25)) >> 25) + 1;
10483 
10484 	return factor * 512;
10485 }
10486 
10487 static void atomic_switch_msrs_test(int count)
10488 {
10489 	struct vmx_msr_entry *vm_enter_load;
10490         struct vmx_msr_entry *vm_exit_load;
10491         struct vmx_msr_entry *vm_exit_store;
10492 	int max_allowed = max_msr_list_size();
10493 	int byte_capacity = 1ul << (msr_list_page_order + PAGE_SHIFT);
10494 	/* Exceeding the max MSR list size at exit trigers KVM to abort. */
10495 	int exit_count = count > max_allowed ? max_allowed : count;
10496 	int cleanup_count = count > max_allowed ? 2 : 1;
10497 	int i;
10498 
10499 	/*
10500 	 * Check for the IA32_TSC MSR,
10501 	 * available with the "TSC flag" and used to populate the MSR lists.
10502 	 */
10503 	if (!(cpuid(1).d & (1 << 4))) {
10504 		report_skip(__func__);
10505 		return;
10506 	}
10507 
10508 	/* Set L2 guest. */
10509 	test_set_guest(atomic_switch_msr_limit_test_guest);
10510 
10511 	/* Setup atomic MSR switch lists. */
10512 	vm_enter_load = alloc_pages(msr_list_page_order);
10513 	vm_exit_load = alloc_pages(msr_list_page_order);
10514 	vm_exit_store = alloc_pages(msr_list_page_order);
10515 
10516 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)vm_enter_load);
10517 	vmcs_write(EXIT_MSR_LD_ADDR, (u64)vm_exit_load);
10518 	vmcs_write(EXIT_MSR_ST_ADDR, (u64)vm_exit_store);
10519 
10520 	/*
10521 	 * VM-Enter should succeed up to the max number of MSRs per list, and
10522 	 * should not consume junk beyond the last entry.
10523 	 */
10524 	populate_msr_list(vm_enter_load, byte_capacity, count);
10525 	populate_msr_list(vm_exit_load, byte_capacity, exit_count);
10526 	populate_msr_list(vm_exit_store, byte_capacity, exit_count);
10527 
10528 	vmcs_write(ENT_MSR_LD_CNT, count);
10529 	vmcs_write(EXI_MSR_LD_CNT, exit_count);
10530 	vmcs_write(EXI_MSR_ST_CNT, exit_count);
10531 
10532 	if (count <= max_allowed) {
10533 		enter_guest();
10534 		assert_exit_reason(VMX_VMCALL);
10535 		skip_exit_vmcall();
10536 	} else {
10537 		u32 exit_qual;
10538 
10539 		test_guest_state("Invalid MSR Load Count", true, count,
10540 				 "ENT_MSR_LD_CNT");
10541 
10542 		exit_qual = vmcs_read(EXI_QUALIFICATION);
10543 		report(exit_qual == max_allowed + 1, "exit_qual, %u, is %u.",
10544 		       exit_qual, max_allowed + 1);
10545 	}
10546 
10547 	/* Cleanup. */
10548 	vmcs_write(ENT_MSR_LD_CNT, 0);
10549 	vmcs_write(EXI_MSR_LD_CNT, 0);
10550 	vmcs_write(EXI_MSR_ST_CNT, 0);
10551 	for (i = 0; i < cleanup_count; i++) {
10552 		enter_guest();
10553 		skip_exit_vmcall();
10554 	}
10555 	free_pages_by_order(vm_enter_load, msr_list_page_order);
10556 	free_pages_by_order(vm_exit_load, msr_list_page_order);
10557 	free_pages_by_order(vm_exit_store, msr_list_page_order);
10558 }
10559 
10560 static void atomic_switch_max_msrs_test(void)
10561 {
10562 	atomic_switch_msrs_test(max_msr_list_size());
10563 }
10564 
10565 static void atomic_switch_overflow_msrs_test(void)
10566 {
10567 	if (test_device_enabled())
10568 		atomic_switch_msrs_test(max_msr_list_size() + 1);
10569 	else
10570 		test_skip("Test is only supported on KVM");
10571 }
10572 
10573 static void vmx_pf_exception_test_guest(void)
10574 {
10575 	ac_test_run(PT_LEVEL_PML4);
10576 }
10577 
10578 static void vmx_pf_exception_test(void)
10579 {
10580 	u64 efer;
10581 	struct cpuid cpuid;
10582 
10583 	test_set_guest(vmx_pf_exception_test_guest);
10584 
10585 	enter_guest();
10586 
10587 	while (vmcs_read(EXI_REASON) != VMX_VMCALL) {
10588 		switch (vmcs_read(EXI_REASON)) {
10589 		case VMX_RDMSR:
10590 			assert(regs.rcx == MSR_EFER);
10591 			efer = vmcs_read(GUEST_EFER);
10592 			regs.rdx = efer >> 32;
10593 			regs.rax = efer & 0xffffffff;
10594 			break;
10595 		case VMX_WRMSR:
10596 			assert(regs.rcx == MSR_EFER);
10597 			efer = regs.rdx << 32 | (regs.rax & 0xffffffff);
10598 			vmcs_write(GUEST_EFER, efer);
10599 			break;
10600 		case VMX_CPUID:
10601 			cpuid = (struct cpuid) {0, 0, 0, 0};
10602 			cpuid = raw_cpuid(regs.rax, regs.rcx);
10603 			regs.rax = cpuid.a;
10604 			regs.rbx = cpuid.b;
10605 			regs.rcx = cpuid.c;
10606 			regs.rdx = cpuid.d;
10607 			break;
10608 		default:
10609 			assert_msg(false,
10610 				"Unexpected exit to L1, exit_reason: %s (0x%lx)",
10611 				exit_reason_description(vmcs_read(EXI_REASON)),
10612 				vmcs_read(EXI_REASON));
10613 		}
10614 		skip_exit_insn();
10615 		enter_guest();
10616 	}
10617 
10618 	assert_exit_reason(VMX_VMCALL);
10619 }
10620 #define TEST(name) { #name, .v2 = name }
10621 
10622 /* name/init/guest_main/exit_handler/syscall_handler/guest_regs */
10623 struct vmx_test vmx_tests[] = {
10624 	{ "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} },
10625 	{ "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} },
10626 	{ "preemption timer", preemption_timer_init, preemption_timer_main,
10627 		preemption_timer_exit_handler, NULL, {0} },
10628 	{ "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main,
10629 		test_ctrl_pat_exit_handler, NULL, {0} },
10630 	{ "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main,
10631 		test_ctrl_efer_exit_handler, NULL, {0} },
10632 	{ "CR shadowing", NULL, cr_shadowing_main,
10633 		cr_shadowing_exit_handler, NULL, {0} },
10634 	{ "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler,
10635 		NULL, {0} },
10636 	{ "instruction intercept", insn_intercept_init, insn_intercept_main,
10637 		insn_intercept_exit_handler, NULL, {0} },
10638 	{ "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} },
10639 	{ "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} },
10640 	{ "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} },
10641 	{ "interrupt", interrupt_init, interrupt_main,
10642 		interrupt_exit_handler, NULL, {0} },
10643 	{ "nmi_hlt", nmi_hlt_init, nmi_hlt_main,
10644 		nmi_hlt_exit_handler, NULL, {0} },
10645 	{ "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler,
10646 		NULL, {0} },
10647 	{ "MSR switch", msr_switch_init, msr_switch_main,
10648 		msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure },
10649 	{ "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} },
10650 	{ "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main,
10651 		disable_rdtscp_exit_handler, NULL, {0} },
10652 	{ "int3", int3_init, int3_guest_main, int3_exit_handler, NULL, {0} },
10653 	{ "into", into_init, into_guest_main, into_exit_handler, NULL, {0} },
10654 	{ "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main,
10655 		exit_monitor_from_l2_handler, NULL, {0} },
10656 	{ "invalid_msr", invalid_msr_init, invalid_msr_main,
10657 		invalid_msr_exit_handler, NULL, {0}, invalid_msr_entry_failure},
10658 	/* Basic V2 tests. */
10659 	TEST(v2_null_test),
10660 	TEST(v2_multiple_entries_test),
10661 	TEST(fixture_test_case1),
10662 	TEST(fixture_test_case2),
10663 	/* Opcode tests. */
10664 	TEST(invvpid_test),
10665 	/* VM-entry tests */
10666 	TEST(vmx_controls_test),
10667 	TEST(vmx_host_state_area_test),
10668 	TEST(vmx_guest_state_area_test),
10669 	TEST(vmentry_movss_shadow_test),
10670 	TEST(vmentry_unrestricted_guest_test),
10671 	/* APICv tests */
10672 	TEST(vmx_eoi_bitmap_ioapic_scan_test),
10673 	TEST(vmx_hlt_with_rvi_test),
10674 	TEST(apic_reg_virt_test),
10675 	TEST(virt_x2apic_mode_test),
10676 	/* APIC pass-through tests */
10677 	TEST(vmx_apic_passthrough_test),
10678 	TEST(vmx_apic_passthrough_thread_test),
10679 	TEST(vmx_apic_passthrough_tpr_threshold_test),
10680 	TEST(vmx_init_signal_test),
10681 	TEST(vmx_sipi_signal_test),
10682 	/* VMCS Shadowing tests */
10683 	TEST(vmx_vmcs_shadow_test),
10684 	/* Regression tests */
10685 	TEST(vmx_ldtr_test),
10686 	TEST(vmx_cr_load_test),
10687 	TEST(vmx_cr4_osxsave_test),
10688 	TEST(vmx_nm_test),
10689 	TEST(vmx_db_test),
10690 	TEST(vmx_nmi_window_test),
10691 	TEST(vmx_intr_window_test),
10692 	TEST(vmx_pending_event_test),
10693 	TEST(vmx_pending_event_hlt_test),
10694 	TEST(vmx_store_tsc_test),
10695 	TEST(vmx_preemption_timer_zero_test),
10696 	TEST(vmx_preemption_timer_tf_test),
10697 	TEST(vmx_preemption_timer_expiry_test),
10698 	/* EPT access tests. */
10699 	TEST(ept_access_test_not_present),
10700 	TEST(ept_access_test_read_only),
10701 	TEST(ept_access_test_write_only),
10702 	TEST(ept_access_test_read_write),
10703 	TEST(ept_access_test_execute_only),
10704 	TEST(ept_access_test_read_execute),
10705 	TEST(ept_access_test_write_execute),
10706 	TEST(ept_access_test_read_write_execute),
10707 	TEST(ept_access_test_reserved_bits),
10708 	TEST(ept_access_test_ignored_bits),
10709 	TEST(ept_access_test_paddr_not_present_ad_disabled),
10710 	TEST(ept_access_test_paddr_not_present_ad_enabled),
10711 	TEST(ept_access_test_paddr_read_only_ad_disabled),
10712 	TEST(ept_access_test_paddr_read_only_ad_enabled),
10713 	TEST(ept_access_test_paddr_read_write),
10714 	TEST(ept_access_test_paddr_read_write_execute),
10715 	TEST(ept_access_test_paddr_read_execute_ad_disabled),
10716 	TEST(ept_access_test_paddr_read_execute_ad_enabled),
10717 	TEST(ept_access_test_paddr_not_present_page_fault),
10718 	TEST(ept_access_test_force_2m_page),
10719 	/* Atomic MSR switch tests. */
10720 	TEST(atomic_switch_max_msrs_test),
10721 	TEST(atomic_switch_overflow_msrs_test),
10722 	TEST(rdtsc_vmexit_diff_test),
10723 	TEST(vmx_mtf_test),
10724 	TEST(vmx_mtf_pdpte_test),
10725 	TEST(vmx_pf_exception_test),
10726 	{ NULL, NULL, NULL, NULL, NULL, {0} },
10727 };
10728