xref: /kvm-unit-tests/x86/vmx_tests.c (revision 48adfb0f2e8e4b34bda6a4fc0a1928e3e0812c62)
1 /*
2  * All test cases of nested virtualization should be in this file
3  *
4  * Author : Arthur Chunqi Li <yzt356@gmail.com>
5  */
6 
7 #include <asm/debugreg.h>
8 
9 #include "vmx.h"
10 #include "msr.h"
11 #include "processor.h"
12 #include "vm.h"
13 #include "pci.h"
14 #include "fwcfg.h"
15 #include "isr.h"
16 #include "desc.h"
17 #include "apic.h"
18 #include "types.h"
19 #include "vmalloc.h"
20 #include "alloc_page.h"
21 #include "smp.h"
22 #include "delay.h"
23 
24 #define NONCANONICAL            0xaaaaaaaaaaaaaaaaull
25 
26 #define VPID_CAP_INVVPID_TYPES_SHIFT 40
27 
28 u64 ia32_pat;
29 u64 ia32_efer;
30 void *io_bitmap_a, *io_bitmap_b;
31 u16 ioport;
32 
33 unsigned long *pml4;
34 u64 eptp;
35 void *data_page1, *data_page2;
36 
37 phys_addr_t pci_physaddr;
38 
39 void *pml_log;
40 #define PML_INDEX 512
41 
42 static inline unsigned ffs(unsigned x)
43 {
44 	int pos = -1;
45 
46 	__asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0"
47 			     : "+r"(pos) : "rm"(x) : "eax");
48 	return pos + 1;
49 }
50 
51 static inline void vmcall(void)
52 {
53 	asm volatile("vmcall");
54 }
55 
56 static void basic_guest_main(void)
57 {
58 	report("Basic VMX test", 1);
59 }
60 
61 static int basic_exit_handler(void)
62 {
63 	report("Basic VMX test", 0);
64 	print_vmexit_info();
65 	return VMX_TEST_EXIT;
66 }
67 
68 static void vmenter_main(void)
69 {
70 	u64 rax;
71 	u64 rsp, resume_rsp;
72 
73 	report("test vmlaunch", 1);
74 
75 	asm volatile(
76 		"mov %%rsp, %0\n\t"
77 		"mov %3, %%rax\n\t"
78 		"vmcall\n\t"
79 		"mov %%rax, %1\n\t"
80 		"mov %%rsp, %2\n\t"
81 		: "=r"(rsp), "=r"(rax), "=r"(resume_rsp)
82 		: "g"(0xABCD));
83 	report("test vmresume", (rax == 0xFFFF) && (rsp == resume_rsp));
84 }
85 
86 static int vmenter_exit_handler(void)
87 {
88 	u64 guest_rip;
89 	ulong reason;
90 
91 	guest_rip = vmcs_read(GUEST_RIP);
92 	reason = vmcs_read(EXI_REASON) & 0xff;
93 	switch (reason) {
94 	case VMX_VMCALL:
95 		if (regs.rax != 0xABCD) {
96 			report("test vmresume", 0);
97 			return VMX_TEST_VMEXIT;
98 		}
99 		regs.rax = 0xFFFF;
100 		vmcs_write(GUEST_RIP, guest_rip + 3);
101 		return VMX_TEST_RESUME;
102 	default:
103 		report("test vmresume", 0);
104 		print_vmexit_info();
105 	}
106 	return VMX_TEST_VMEXIT;
107 }
108 
109 u32 preempt_scale;
110 volatile unsigned long long tsc_val;
111 volatile u32 preempt_val;
112 u64 saved_rip;
113 
114 static int preemption_timer_init(struct vmcs *vmcs)
115 {
116 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
117 		printf("\tPreemption timer is not supported\n");
118 		return VMX_TEST_EXIT;
119 	}
120 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
121 	preempt_val = 10000000;
122 	vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
123 	preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
124 
125 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
126 		printf("\tSave preemption value is not supported\n");
127 
128 	return VMX_TEST_START;
129 }
130 
131 static void preemption_timer_main(void)
132 {
133 	tsc_val = rdtsc();
134 	if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) {
135 		vmx_set_test_stage(0);
136 		vmcall();
137 		if (vmx_get_test_stage() == 1)
138 			vmcall();
139 	}
140 	vmx_set_test_stage(1);
141 	while (vmx_get_test_stage() == 1) {
142 		if (((rdtsc() - tsc_val) >> preempt_scale)
143 				> 10 * preempt_val) {
144 			vmx_set_test_stage(2);
145 			vmcall();
146 		}
147 	}
148 	tsc_val = rdtsc();
149 	asm volatile ("hlt");
150 	vmcall();
151 	vmx_set_test_stage(5);
152 	vmcall();
153 }
154 
155 static int preemption_timer_exit_handler(void)
156 {
157 	bool guest_halted;
158 	u64 guest_rip;
159 	ulong reason;
160 	u32 insn_len;
161 	u32 ctrl_exit;
162 
163 	guest_rip = vmcs_read(GUEST_RIP);
164 	reason = vmcs_read(EXI_REASON) & 0xff;
165 	insn_len = vmcs_read(EXI_INST_LEN);
166 	switch (reason) {
167 	case VMX_PREEMPT:
168 		switch (vmx_get_test_stage()) {
169 		case 1:
170 		case 2:
171 			report("busy-wait for preemption timer",
172 			       ((rdtsc() - tsc_val) >> preempt_scale) >=
173 			       preempt_val);
174 			vmx_set_test_stage(3);
175 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
176 			return VMX_TEST_RESUME;
177 		case 3:
178 			guest_halted =
179 				(vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT);
180 			report("preemption timer during hlt",
181 			       ((rdtsc() - tsc_val) >> preempt_scale) >=
182 			       preempt_val && guest_halted);
183 			vmx_set_test_stage(4);
184 			vmcs_write(PIN_CONTROLS,
185 				   vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
186 			vmcs_write(EXI_CONTROLS,
187 				   vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_PREEMPT);
188 			vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
189 			return VMX_TEST_RESUME;
190 		case 4:
191 			report("preemption timer with 0 value",
192 			       saved_rip == guest_rip);
193 			break;
194 		default:
195 			report("Invalid stage.", false);
196 			print_vmexit_info();
197 			break;
198 		}
199 		break;
200 	case VMX_VMCALL:
201 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
202 		switch (vmx_get_test_stage()) {
203 		case 0:
204 			report("Keep preemption value",
205 			       vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val);
206 			vmx_set_test_stage(1);
207 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
208 			ctrl_exit = (vmcs_read(EXI_CONTROLS) |
209 				EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr;
210 			vmcs_write(EXI_CONTROLS, ctrl_exit);
211 			return VMX_TEST_RESUME;
212 		case 1:
213 			report("Save preemption value",
214 			       vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val);
215 			return VMX_TEST_RESUME;
216 		case 2:
217 			report("busy-wait for preemption timer", 0);
218 			vmx_set_test_stage(3);
219 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
220 			return VMX_TEST_RESUME;
221 		case 3:
222 			report("preemption timer during hlt", 0);
223 			vmx_set_test_stage(4);
224 			/* fall through */
225 		case 4:
226 			vmcs_write(PIN_CONTROLS,
227 				   vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
228 			vmcs_write(PREEMPT_TIMER_VALUE, 0);
229 			saved_rip = guest_rip + insn_len;
230 			return VMX_TEST_RESUME;
231 		case 5:
232 			report("preemption timer with 0 value (vmcall stage 5)", 0);
233 			break;
234 		default:
235 			// Should not reach here
236 			report("unexpected stage, %d", false,
237 			       vmx_get_test_stage());
238 			print_vmexit_info();
239 			return VMX_TEST_VMEXIT;
240 		}
241 		break;
242 	default:
243 		report("Unknown exit reason, %ld", false, reason);
244 		print_vmexit_info();
245 	}
246 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
247 	return VMX_TEST_VMEXIT;
248 }
249 
250 static void msr_bmp_init(void)
251 {
252 	void *msr_bitmap;
253 	u32 ctrl_cpu0;
254 
255 	msr_bitmap = alloc_page();
256 	ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
257 	ctrl_cpu0 |= CPU_MSR_BITMAP;
258 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
259 	vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
260 }
261 
262 static void *get_msr_bitmap(void)
263 {
264 	void *msr_bitmap;
265 
266 	if (vmcs_read(CPU_EXEC_CTRL0) & CPU_MSR_BITMAP) {
267 		msr_bitmap = (void *)vmcs_read(MSR_BITMAP);
268 	} else {
269 		msr_bitmap = alloc_page();
270 		memset(msr_bitmap, 0xff, PAGE_SIZE);
271 		vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
272 		vmcs_set_bits(CPU_EXEC_CTRL0, CPU_MSR_BITMAP);
273 	}
274 
275 	return msr_bitmap;
276 }
277 
278 static void disable_intercept_for_x2apic_msrs(void)
279 {
280 	unsigned long *msr_bitmap = (unsigned long *)get_msr_bitmap();
281 	u32 msr;
282 
283 	for (msr = APIC_BASE_MSR;
284 		 msr < (APIC_BASE_MSR+0xff);
285 		 msr += BITS_PER_LONG) {
286 		unsigned int word = msr / BITS_PER_LONG;
287 
288 		msr_bitmap[word] = 0;
289 		msr_bitmap[word + (0x800 / sizeof(long))] = 0;
290 	}
291 }
292 
293 static int test_ctrl_pat_init(struct vmcs *vmcs)
294 {
295 	u64 ctrl_ent;
296 	u64 ctrl_exi;
297 
298 	msr_bmp_init();
299 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) &&
300 	    !(ctrl_exit_rev.clr & EXI_LOAD_PAT) &&
301 	    !(ctrl_enter_rev.clr & ENT_LOAD_PAT)) {
302 		printf("\tSave/load PAT is not supported\n");
303 		return 1;
304 	}
305 
306 	ctrl_ent = vmcs_read(ENT_CONTROLS);
307 	ctrl_exi = vmcs_read(EXI_CONTROLS);
308 	ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT;
309 	ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT);
310 	vmcs_write(ENT_CONTROLS, ctrl_ent);
311 	vmcs_write(EXI_CONTROLS, ctrl_exi);
312 	ia32_pat = rdmsr(MSR_IA32_CR_PAT);
313 	vmcs_write(GUEST_PAT, 0x0);
314 	vmcs_write(HOST_PAT, ia32_pat);
315 	return VMX_TEST_START;
316 }
317 
318 static void test_ctrl_pat_main(void)
319 {
320 	u64 guest_ia32_pat;
321 
322 	guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
323 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT))
324 		printf("\tENT_LOAD_PAT is not supported.\n");
325 	else {
326 		if (guest_ia32_pat != 0) {
327 			report("Entry load PAT", 0);
328 			return;
329 		}
330 	}
331 	wrmsr(MSR_IA32_CR_PAT, 0x6);
332 	vmcall();
333 	guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
334 	if (ctrl_enter_rev.clr & ENT_LOAD_PAT)
335 		report("Entry load PAT", guest_ia32_pat == ia32_pat);
336 }
337 
338 static int test_ctrl_pat_exit_handler(void)
339 {
340 	u64 guest_rip;
341 	ulong reason;
342 	u64 guest_pat;
343 
344 	guest_rip = vmcs_read(GUEST_RIP);
345 	reason = vmcs_read(EXI_REASON) & 0xff;
346 	switch (reason) {
347 	case VMX_VMCALL:
348 		guest_pat = vmcs_read(GUEST_PAT);
349 		if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) {
350 			printf("\tEXI_SAVE_PAT is not supported\n");
351 			vmcs_write(GUEST_PAT, 0x6);
352 		} else {
353 			report("Exit save PAT", guest_pat == 0x6);
354 		}
355 		if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT))
356 			printf("\tEXI_LOAD_PAT is not supported\n");
357 		else
358 			report("Exit load PAT", rdmsr(MSR_IA32_CR_PAT) == ia32_pat);
359 		vmcs_write(GUEST_PAT, ia32_pat);
360 		vmcs_write(GUEST_RIP, guest_rip + 3);
361 		return VMX_TEST_RESUME;
362 	default:
363 		printf("ERROR : Undefined exit reason, reason = %ld.\n", reason);
364 		break;
365 	}
366 	return VMX_TEST_VMEXIT;
367 }
368 
369 static int test_ctrl_efer_init(struct vmcs *vmcs)
370 {
371 	u64 ctrl_ent;
372 	u64 ctrl_exi;
373 
374 	msr_bmp_init();
375 	ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER;
376 	ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER;
377 	vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr);
378 	vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr);
379 	ia32_efer = rdmsr(MSR_EFER);
380 	vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX);
381 	vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX);
382 	return VMX_TEST_START;
383 }
384 
385 static void test_ctrl_efer_main(void)
386 {
387 	u64 guest_ia32_efer;
388 
389 	guest_ia32_efer = rdmsr(MSR_EFER);
390 	if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER))
391 		printf("\tENT_LOAD_EFER is not supported.\n");
392 	else {
393 		if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) {
394 			report("Entry load EFER", 0);
395 			return;
396 		}
397 	}
398 	wrmsr(MSR_EFER, ia32_efer);
399 	vmcall();
400 	guest_ia32_efer = rdmsr(MSR_EFER);
401 	if (ctrl_enter_rev.clr & ENT_LOAD_EFER)
402 		report("Entry load EFER", guest_ia32_efer == ia32_efer);
403 }
404 
405 static int test_ctrl_efer_exit_handler(void)
406 {
407 	u64 guest_rip;
408 	ulong reason;
409 	u64 guest_efer;
410 
411 	guest_rip = vmcs_read(GUEST_RIP);
412 	reason = vmcs_read(EXI_REASON) & 0xff;
413 	switch (reason) {
414 	case VMX_VMCALL:
415 		guest_efer = vmcs_read(GUEST_EFER);
416 		if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) {
417 			printf("\tEXI_SAVE_EFER is not supported\n");
418 			vmcs_write(GUEST_EFER, ia32_efer);
419 		} else {
420 			report("Exit save EFER", guest_efer == ia32_efer);
421 		}
422 		if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) {
423 			printf("\tEXI_LOAD_EFER is not supported\n");
424 			wrmsr(MSR_EFER, ia32_efer ^ EFER_NX);
425 		} else {
426 			report("Exit load EFER", rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX));
427 		}
428 		vmcs_write(GUEST_PAT, ia32_efer);
429 		vmcs_write(GUEST_RIP, guest_rip + 3);
430 		return VMX_TEST_RESUME;
431 	default:
432 		printf("ERROR : Undefined exit reason, reason = %ld.\n", reason);
433 		break;
434 	}
435 	return VMX_TEST_VMEXIT;
436 }
437 
438 u32 guest_cr0, guest_cr4;
439 
440 static void cr_shadowing_main(void)
441 {
442 	u32 cr0, cr4, tmp;
443 
444 	// Test read through
445 	vmx_set_test_stage(0);
446 	guest_cr0 = read_cr0();
447 	if (vmx_get_test_stage() == 1)
448 		report("Read through CR0", 0);
449 	else
450 		vmcall();
451 	vmx_set_test_stage(1);
452 	guest_cr4 = read_cr4();
453 	if (vmx_get_test_stage() == 2)
454 		report("Read through CR4", 0);
455 	else
456 		vmcall();
457 	// Test write through
458 	guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP);
459 	guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE);
460 	vmx_set_test_stage(2);
461 	write_cr0(guest_cr0);
462 	if (vmx_get_test_stage() == 3)
463 		report("Write throuth CR0", 0);
464 	else
465 		vmcall();
466 	vmx_set_test_stage(3);
467 	write_cr4(guest_cr4);
468 	if (vmx_get_test_stage() == 4)
469 		report("Write through CR4", 0);
470 	else
471 		vmcall();
472 	// Test read shadow
473 	vmx_set_test_stage(4);
474 	vmcall();
475 	cr0 = read_cr0();
476 	if (vmx_get_test_stage() != 5)
477 		report("Read shadowing CR0", cr0 == guest_cr0);
478 	vmx_set_test_stage(5);
479 	cr4 = read_cr4();
480 	if (vmx_get_test_stage() != 6)
481 		report("Read shadowing CR4", cr4 == guest_cr4);
482 	// Test write shadow (same value with shadow)
483 	vmx_set_test_stage(6);
484 	write_cr0(guest_cr0);
485 	if (vmx_get_test_stage() == 7)
486 		report("Write shadowing CR0 (same value with shadow)", 0);
487 	else
488 		vmcall();
489 	vmx_set_test_stage(7);
490 	write_cr4(guest_cr4);
491 	if (vmx_get_test_stage() == 8)
492 		report("Write shadowing CR4 (same value with shadow)", 0);
493 	else
494 		vmcall();
495 	// Test write shadow (different value)
496 	vmx_set_test_stage(8);
497 	tmp = guest_cr0 ^ X86_CR0_TS;
498 	asm volatile("mov %0, %%rsi\n\t"
499 		"mov %%rsi, %%cr0\n\t"
500 		::"m"(tmp)
501 		:"rsi", "memory", "cc");
502 	report("Write shadowing different X86_CR0_TS", vmx_get_test_stage() == 9);
503 	vmx_set_test_stage(9);
504 	tmp = guest_cr0 ^ X86_CR0_MP;
505 	asm volatile("mov %0, %%rsi\n\t"
506 		"mov %%rsi, %%cr0\n\t"
507 		::"m"(tmp)
508 		:"rsi", "memory", "cc");
509 	report("Write shadowing different X86_CR0_MP", vmx_get_test_stage() == 10);
510 	vmx_set_test_stage(10);
511 	tmp = guest_cr4 ^ X86_CR4_TSD;
512 	asm volatile("mov %0, %%rsi\n\t"
513 		"mov %%rsi, %%cr4\n\t"
514 		::"m"(tmp)
515 		:"rsi", "memory", "cc");
516 	report("Write shadowing different X86_CR4_TSD", vmx_get_test_stage() == 11);
517 	vmx_set_test_stage(11);
518 	tmp = guest_cr4 ^ X86_CR4_DE;
519 	asm volatile("mov %0, %%rsi\n\t"
520 		"mov %%rsi, %%cr4\n\t"
521 		::"m"(tmp)
522 		:"rsi", "memory", "cc");
523 	report("Write shadowing different X86_CR4_DE", vmx_get_test_stage() == 12);
524 }
525 
526 static int cr_shadowing_exit_handler(void)
527 {
528 	u64 guest_rip;
529 	ulong reason;
530 	u32 insn_len;
531 	u32 exit_qual;
532 
533 	guest_rip = vmcs_read(GUEST_RIP);
534 	reason = vmcs_read(EXI_REASON) & 0xff;
535 	insn_len = vmcs_read(EXI_INST_LEN);
536 	exit_qual = vmcs_read(EXI_QUALIFICATION);
537 	switch (reason) {
538 	case VMX_VMCALL:
539 		switch (vmx_get_test_stage()) {
540 		case 0:
541 			report("Read through CR0", guest_cr0 == vmcs_read(GUEST_CR0));
542 			break;
543 		case 1:
544 			report("Read through CR4", guest_cr4 == vmcs_read(GUEST_CR4));
545 			break;
546 		case 2:
547 			report("Write through CR0", guest_cr0 == vmcs_read(GUEST_CR0));
548 			break;
549 		case 3:
550 			report("Write through CR4", guest_cr4 == vmcs_read(GUEST_CR4));
551 			break;
552 		case 4:
553 			guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP);
554 			guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE);
555 			vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP);
556 			vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP));
557 			vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE);
558 			vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE));
559 			break;
560 		case 6:
561 			report("Write shadowing CR0 (same value)",
562 					guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP)));
563 			break;
564 		case 7:
565 			report("Write shadowing CR4 (same value)",
566 					guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE)));
567 			break;
568 		default:
569 			// Should not reach here
570 			report("unexpected stage, %d", false,
571 			       vmx_get_test_stage());
572 			print_vmexit_info();
573 			return VMX_TEST_VMEXIT;
574 		}
575 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
576 		return VMX_TEST_RESUME;
577 	case VMX_CR:
578 		switch (vmx_get_test_stage()) {
579 		case 4:
580 			report("Read shadowing CR0", 0);
581 			vmx_inc_test_stage();
582 			break;
583 		case 5:
584 			report("Read shadowing CR4", 0);
585 			vmx_inc_test_stage();
586 			break;
587 		case 6:
588 			report("Write shadowing CR0 (same value)", 0);
589 			vmx_inc_test_stage();
590 			break;
591 		case 7:
592 			report("Write shadowing CR4 (same value)", 0);
593 			vmx_inc_test_stage();
594 			break;
595 		case 8:
596 		case 9:
597 			// 0x600 encodes "mov %esi, %cr0"
598 			if (exit_qual == 0x600)
599 				vmx_inc_test_stage();
600 			break;
601 		case 10:
602 		case 11:
603 			// 0x604 encodes "mov %esi, %cr4"
604 			if (exit_qual == 0x604)
605 				vmx_inc_test_stage();
606 			break;
607 		default:
608 			// Should not reach here
609 			report("unexpected stage, %d", false,
610 			       vmx_get_test_stage());
611 			print_vmexit_info();
612 			return VMX_TEST_VMEXIT;
613 		}
614 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
615 		return VMX_TEST_RESUME;
616 	default:
617 		report("Unknown exit reason, %ld", false, reason);
618 		print_vmexit_info();
619 	}
620 	return VMX_TEST_VMEXIT;
621 }
622 
623 static int iobmp_init(struct vmcs *vmcs)
624 {
625 	u32 ctrl_cpu0;
626 
627 	io_bitmap_a = alloc_page();
628 	io_bitmap_b = alloc_page();
629 	ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
630 	ctrl_cpu0 |= CPU_IO_BITMAP;
631 	ctrl_cpu0 &= (~CPU_IO);
632 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
633 	vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a);
634 	vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b);
635 	return VMX_TEST_START;
636 }
637 
638 static void iobmp_main(void)
639 {
640 	// stage 0, test IO pass
641 	vmx_set_test_stage(0);
642 	inb(0x5000);
643 	outb(0x0, 0x5000);
644 	report("I/O bitmap - I/O pass", vmx_get_test_stage() == 0);
645 	// test IO width, in/out
646 	((u8 *)io_bitmap_a)[0] = 0xFF;
647 	vmx_set_test_stage(2);
648 	inb(0x0);
649 	report("I/O bitmap - trap in", vmx_get_test_stage() == 3);
650 	vmx_set_test_stage(3);
651 	outw(0x0, 0x0);
652 	report("I/O bitmap - trap out", vmx_get_test_stage() == 4);
653 	vmx_set_test_stage(4);
654 	inl(0x0);
655 	report("I/O bitmap - I/O width, long", vmx_get_test_stage() == 5);
656 	// test low/high IO port
657 	vmx_set_test_stage(5);
658 	((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8));
659 	inb(0x5000);
660 	report("I/O bitmap - I/O port, low part", vmx_get_test_stage() == 6);
661 	vmx_set_test_stage(6);
662 	((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8));
663 	inb(0x9000);
664 	report("I/O bitmap - I/O port, high part", vmx_get_test_stage() == 7);
665 	// test partial pass
666 	vmx_set_test_stage(7);
667 	inl(0x4FFF);
668 	report("I/O bitmap - partial pass", vmx_get_test_stage() == 8);
669 	// test overrun
670 	vmx_set_test_stage(8);
671 	memset(io_bitmap_a, 0x0, PAGE_SIZE);
672 	memset(io_bitmap_b, 0x0, PAGE_SIZE);
673 	inl(0xFFFF);
674 	report("I/O bitmap - overrun", vmx_get_test_stage() == 9);
675 	vmx_set_test_stage(9);
676 	vmcall();
677 	outb(0x0, 0x0);
678 	report("I/O bitmap - ignore unconditional exiting",
679 	       vmx_get_test_stage() == 9);
680 	vmx_set_test_stage(10);
681 	vmcall();
682 	outb(0x0, 0x0);
683 	report("I/O bitmap - unconditional exiting",
684 	       vmx_get_test_stage() == 11);
685 }
686 
687 static int iobmp_exit_handler(void)
688 {
689 	u64 guest_rip;
690 	ulong reason, exit_qual;
691 	u32 insn_len, ctrl_cpu0;
692 
693 	guest_rip = vmcs_read(GUEST_RIP);
694 	reason = vmcs_read(EXI_REASON) & 0xff;
695 	exit_qual = vmcs_read(EXI_QUALIFICATION);
696 	insn_len = vmcs_read(EXI_INST_LEN);
697 	switch (reason) {
698 	case VMX_IO:
699 		switch (vmx_get_test_stage()) {
700 		case 0:
701 		case 1:
702 			vmx_inc_test_stage();
703 			break;
704 		case 2:
705 			report("I/O bitmap - I/O width, byte",
706 					(exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE);
707 			report("I/O bitmap - I/O direction, in", exit_qual & VMX_IO_IN);
708 			vmx_inc_test_stage();
709 			break;
710 		case 3:
711 			report("I/O bitmap - I/O width, word",
712 					(exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD);
713 			report("I/O bitmap - I/O direction, out",
714 					!(exit_qual & VMX_IO_IN));
715 			vmx_inc_test_stage();
716 			break;
717 		case 4:
718 			report("I/O bitmap - I/O width, long",
719 					(exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG);
720 			vmx_inc_test_stage();
721 			break;
722 		case 5:
723 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000)
724 				vmx_inc_test_stage();
725 			break;
726 		case 6:
727 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000)
728 				vmx_inc_test_stage();
729 			break;
730 		case 7:
731 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF)
732 				vmx_inc_test_stage();
733 			break;
734 		case 8:
735 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF)
736 				vmx_inc_test_stage();
737 			break;
738 		case 9:
739 		case 10:
740 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
741 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO);
742 			vmx_inc_test_stage();
743 			break;
744 		default:
745 			// Should not reach here
746 			report("unexpected stage, %d", false,
747 			       vmx_get_test_stage());
748 			print_vmexit_info();
749 			return VMX_TEST_VMEXIT;
750 		}
751 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
752 		return VMX_TEST_RESUME;
753 	case VMX_VMCALL:
754 		switch (vmx_get_test_stage()) {
755 		case 9:
756 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
757 			ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP;
758 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
759 			break;
760 		case 10:
761 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
762 			ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO;
763 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
764 			break;
765 		default:
766 			// Should not reach here
767 			report("unexpected stage, %d", false,
768 			       vmx_get_test_stage());
769 			print_vmexit_info();
770 			return VMX_TEST_VMEXIT;
771 		}
772 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
773 		return VMX_TEST_RESUME;
774 	default:
775 		printf("guest_rip = %#lx\n", guest_rip);
776 		printf("\tERROR : Undefined exit reason, reason = %ld.\n", reason);
777 		break;
778 	}
779 	return VMX_TEST_VMEXIT;
780 }
781 
782 #define INSN_CPU0		0
783 #define INSN_CPU1		1
784 #define INSN_ALWAYS_TRAP	2
785 
786 #define FIELD_EXIT_QUAL		(1 << 0)
787 #define FIELD_INSN_INFO		(1 << 1)
788 
789 asm(
790 	"insn_hlt: hlt;ret\n\t"
791 	"insn_invlpg: invlpg 0x12345678;ret\n\t"
792 	"insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t"
793 	"insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t"
794 	"insn_rdtsc: rdtsc;ret\n\t"
795 	"insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t"
796 	"insn_cr3_store: mov %cr3,%rax;ret\n\t"
797 #ifdef __x86_64__
798 	"insn_cr8_load: xor %eax, %eax; mov %rax,%cr8;ret\n\t"
799 	"insn_cr8_store: mov %cr8,%rax;ret\n\t"
800 #endif
801 	"insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t"
802 	"insn_pause: pause;ret\n\t"
803 	"insn_wbinvd: wbinvd;ret\n\t"
804 	"insn_cpuid: mov $10, %eax; cpuid;ret\n\t"
805 	"insn_invd: invd;ret\n\t"
806 	"insn_sgdt: sgdt gdt64_desc;ret\n\t"
807 	"insn_lgdt: lgdt gdt64_desc;ret\n\t"
808 	"insn_sidt: sidt idt_descr;ret\n\t"
809 	"insn_lidt: lidt idt_descr;ret\n\t"
810 	"insn_sldt: sldt %ax;ret\n\t"
811 	"insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t"
812 	"insn_str: str %ax;ret\n\t"
813 	"insn_rdrand: rdrand %rax;ret\n\t"
814 	"insn_rdseed: rdseed %rax;ret\n\t"
815 );
816 extern void insn_hlt(void);
817 extern void insn_invlpg(void);
818 extern void insn_mwait(void);
819 extern void insn_rdpmc(void);
820 extern void insn_rdtsc(void);
821 extern void insn_cr3_load(void);
822 extern void insn_cr3_store(void);
823 #ifdef __x86_64__
824 extern void insn_cr8_load(void);
825 extern void insn_cr8_store(void);
826 #endif
827 extern void insn_monitor(void);
828 extern void insn_pause(void);
829 extern void insn_wbinvd(void);
830 extern void insn_sgdt(void);
831 extern void insn_lgdt(void);
832 extern void insn_sidt(void);
833 extern void insn_lidt(void);
834 extern void insn_sldt(void);
835 extern void insn_lldt(void);
836 extern void insn_str(void);
837 extern void insn_cpuid(void);
838 extern void insn_invd(void);
839 extern void insn_rdrand(void);
840 extern void insn_rdseed(void);
841 
842 u32 cur_insn;
843 u64 cr3;
844 
845 #define X86_FEATURE_MONITOR	(1 << 3)
846 
847 typedef bool (*supported_fn)(void);
848 
849 static bool monitor_supported(void)
850 {
851 	return this_cpu_has(X86_FEATURE_MWAIT);
852 }
853 
854 struct insn_table {
855 	const char *name;
856 	u32 flag;
857 	void (*insn_func)(void);
858 	u32 type;
859 	u32 reason;
860 	ulong exit_qual;
861 	u32 insn_info;
862 	// Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define
863 	// which field need to be tested, reason is always tested
864 	u32 test_field;
865 	const supported_fn supported_fn;
866 	u8 disabled;
867 };
868 
869 /*
870  * Add more test cases of instruction intercept here. Elements in this
871  * table is:
872  *	name/control flag/insn function/type/exit reason/exit qulification/
873  *	instruction info/field to test
874  * The last field defines which fields (exit_qual and insn_info) need to be
875  * tested in exit handler. If set to 0, only "reason" is checked.
876  */
877 static struct insn_table insn_table[] = {
878 	// Flags for Primary Processor-Based VM-Execution Controls
879 	{"HLT",  CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0},
880 	{"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14,
881 		0x12345678, 0, FIELD_EXIT_QUAL},
882 	{"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0, &monitor_supported},
883 	{"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0},
884 	{"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0},
885 	{"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0,
886 		FIELD_EXIT_QUAL},
887 	{"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0,
888 		FIELD_EXIT_QUAL},
889 #ifdef __x86_64__
890 	{"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0,
891 		FIELD_EXIT_QUAL},
892 	{"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0,
893 		FIELD_EXIT_QUAL},
894 #endif
895 	{"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0, &monitor_supported},
896 	{"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0},
897 	// Flags for Secondary Processor-Based VM-Execution Controls
898 	{"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0},
899 	{"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0},
900 	{"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0},
901 	{"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0},
902 	{"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0},
903 	{"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0},
904 	{"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0},
905 	{"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0},
906 	/* LTR causes a #GP if done with a busy selector, so it is not tested.  */
907 	{"RDRAND", CPU_RDRAND, insn_rdrand, INSN_CPU1, VMX_RDRAND, 0, 0, 0},
908 	{"RDSEED", CPU_RDSEED, insn_rdseed, INSN_CPU1, VMX_RDSEED, 0, 0, 0},
909 	// Instructions always trap
910 	{"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0},
911 	{"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0},
912 	// Instructions never trap
913 	{NULL},
914 };
915 
916 static int insn_intercept_init(struct vmcs *vmcs)
917 {
918 	u32 ctrl_cpu, cur_insn;
919 
920 	ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY;
921 	ctrl_cpu &= ctrl_cpu_rev[0].clr;
922 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu);
923 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set);
924 	cr3 = read_cr3();
925 
926 	for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
927 		if (insn_table[cur_insn].supported_fn == NULL)
928 			continue;
929 		insn_table[cur_insn].disabled = !insn_table[cur_insn].supported_fn();
930 	}
931 	return VMX_TEST_START;
932 }
933 
934 static void insn_intercept_main(void)
935 {
936 	for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
937 		vmx_set_test_stage(cur_insn * 2);
938 		if ((insn_table[cur_insn].type == INSN_CPU0 &&
939 		     !(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) ||
940 		    (insn_table[cur_insn].type == INSN_CPU1 &&
941 		     !(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) {
942 			printf("\tCPU_CTRL%d.CPU_%s is not supported.\n",
943 			       insn_table[cur_insn].type - INSN_CPU0,
944 			       insn_table[cur_insn].name);
945 			continue;
946 		}
947 
948 		if (insn_table[cur_insn].disabled) {
949 			printf("\tFeature required for %s is not supported.\n",
950 			       insn_table[cur_insn].name);
951 			continue;
952 		}
953 
954 		if ((insn_table[cur_insn].type == INSN_CPU0 &&
955 		     !(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) ||
956 		    (insn_table[cur_insn].type == INSN_CPU1 &&
957 		     !(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) {
958 			/* skip hlt, it stalls the guest and is tested below */
959 			if (insn_table[cur_insn].insn_func != insn_hlt)
960 				insn_table[cur_insn].insn_func();
961 			report("execute %s", vmx_get_test_stage() == cur_insn * 2,
962 					insn_table[cur_insn].name);
963 		} else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP)
964 			printf("\tCPU_CTRL%d.CPU_%s always traps.\n",
965 			       insn_table[cur_insn].type - INSN_CPU0,
966 			       insn_table[cur_insn].name);
967 
968 		vmcall();
969 
970 		insn_table[cur_insn].insn_func();
971 		report("intercept %s", vmx_get_test_stage() == cur_insn * 2 + 1,
972 				insn_table[cur_insn].name);
973 
974 		vmx_set_test_stage(cur_insn * 2 + 1);
975 		vmcall();
976 	}
977 }
978 
979 static int insn_intercept_exit_handler(void)
980 {
981 	u64 guest_rip;
982 	u32 reason;
983 	ulong exit_qual;
984 	u32 insn_len;
985 	u32 insn_info;
986 	bool pass;
987 
988 	guest_rip = vmcs_read(GUEST_RIP);
989 	reason = vmcs_read(EXI_REASON) & 0xff;
990 	exit_qual = vmcs_read(EXI_QUALIFICATION);
991 	insn_len = vmcs_read(EXI_INST_LEN);
992 	insn_info = vmcs_read(EXI_INST_INFO);
993 
994 	if (reason == VMX_VMCALL) {
995 		u32 val = 0;
996 
997 		if (insn_table[cur_insn].type == INSN_CPU0)
998 			val = vmcs_read(CPU_EXEC_CTRL0);
999 		else if (insn_table[cur_insn].type == INSN_CPU1)
1000 			val = vmcs_read(CPU_EXEC_CTRL1);
1001 
1002 		if (vmx_get_test_stage() & 1)
1003 			val &= ~insn_table[cur_insn].flag;
1004 		else
1005 			val |= insn_table[cur_insn].flag;
1006 
1007 		if (insn_table[cur_insn].type == INSN_CPU0)
1008 			vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set);
1009 		else if (insn_table[cur_insn].type == INSN_CPU1)
1010 			vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set);
1011 	} else {
1012 		pass = (cur_insn * 2 == vmx_get_test_stage()) &&
1013 			insn_table[cur_insn].reason == reason;
1014 		if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL &&
1015 		    insn_table[cur_insn].exit_qual != exit_qual)
1016 			pass = false;
1017 		if (insn_table[cur_insn].test_field & FIELD_INSN_INFO &&
1018 		    insn_table[cur_insn].insn_info != insn_info)
1019 			pass = false;
1020 		if (pass)
1021 			vmx_inc_test_stage();
1022 	}
1023 	vmcs_write(GUEST_RIP, guest_rip + insn_len);
1024 	return VMX_TEST_RESUME;
1025 }
1026 
1027 /**
1028  * __setup_ept - Setup the VMCS fields to enable Extended Page Tables (EPT)
1029  * @hpa:	Host physical address of the top-level, a.k.a. root, EPT table
1030  * @enable_ad:	Whether or not to enable Access/Dirty bits for EPT entries
1031  *
1032  * Returns 0 on success, 1 on failure.
1033  *
1034  * Note that @hpa doesn't need to point at actual memory if VM-Launch is
1035  * expected to fail, e.g. setup_dummy_ept() arbitrarily passes '0' to satisfy
1036  * the various EPTP consistency checks, but doesn't ensure backing for HPA '0'.
1037  */
1038 static int __setup_ept(u64 hpa, bool enable_ad)
1039 {
1040 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1041 	    !(ctrl_cpu_rev[1].clr & CPU_EPT)) {
1042 		printf("\tEPT is not supported");
1043 		return 1;
1044 	}
1045 	if (!(ept_vpid.val & EPT_CAP_WB)) {
1046 		printf("WB memtype for EPT walks not supported\n");
1047 		return 1;
1048 	}
1049 	if (!(ept_vpid.val & EPT_CAP_PWL4)) {
1050 		printf("\tPWL4 is not supported\n");
1051 		return 1;
1052 	}
1053 
1054 	eptp = EPT_MEM_TYPE_WB;
1055 	eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT);
1056 	eptp |= hpa;
1057 	if (enable_ad)
1058 		eptp |= EPTP_AD_FLAG;
1059 
1060 	vmcs_write(EPTP, eptp);
1061 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0)| CPU_SECONDARY);
1062 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1)| CPU_EPT);
1063 
1064 	return 0;
1065 }
1066 
1067 /**
1068  * setup_ept - Enable Extended Page Tables (EPT) and setup an identity map
1069  * @enable_ad:	Whether or not to enable Access/Dirty bits for EPT entries
1070  *
1071  * Returns 0 on success, 1 on failure.
1072  *
1073  * This is the "real" function for setting up EPT tables, i.e. use this for
1074  * tests that need to run code in the guest with EPT enabled.
1075  */
1076 static int setup_ept(bool enable_ad)
1077 {
1078 	unsigned long end_of_memory;
1079 
1080 	pml4 = alloc_page();
1081 
1082 	if (__setup_ept(virt_to_phys(pml4), enable_ad))
1083 		return 1;
1084 
1085 	end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE);
1086 	if (end_of_memory < (1ul << 32))
1087 		end_of_memory = (1ul << 32);
1088 	/* Cannot use large EPT pages if we need to track EPT
1089 	 * accessed/dirty bits at 4K granularity.
1090 	 */
1091 	setup_ept_range(pml4, 0, end_of_memory, 0,
1092 			!enable_ad && ept_2m_supported(),
1093 			EPT_WA | EPT_RA | EPT_EA);
1094 	return 0;
1095 }
1096 
1097 /**
1098  * setup_dummy_ept - Enable Extended Page Tables (EPT) with a dummy root HPA
1099  *
1100  * Setup EPT using a semi-arbitrary dummy root HPA.  This function is intended
1101  * for use by tests that need EPT enabled to verify dependent VMCS controls
1102  * but never expect to fully enter the guest, i.e. don't need setup the actual
1103  * EPT tables.
1104  */
1105 static void setup_dummy_ept(void)
1106 {
1107 	if (__setup_ept(0, false))
1108 		report_abort("EPT setup unexpectedly failed");
1109 }
1110 
1111 static int enable_unrestricted_guest(void)
1112 {
1113 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1114 	    !(ctrl_cpu_rev[1].clr & CPU_URG) ||
1115 	    !(ctrl_cpu_rev[1].clr & CPU_EPT))
1116 		return 1;
1117 
1118 	setup_dummy_ept();
1119 
1120 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
1121 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG);
1122 
1123 	return 0;
1124 }
1125 
1126 static void ept_enable_ad_bits(void)
1127 {
1128 	eptp |= EPTP_AD_FLAG;
1129 	vmcs_write(EPTP, eptp);
1130 }
1131 
1132 static void ept_disable_ad_bits(void)
1133 {
1134 	eptp &= ~EPTP_AD_FLAG;
1135 	vmcs_write(EPTP, eptp);
1136 }
1137 
1138 static void ept_enable_ad_bits_or_skip_test(void)
1139 {
1140 	if (!ept_ad_bits_supported())
1141 		test_skip("EPT AD bits not supported.");
1142 	ept_enable_ad_bits();
1143 }
1144 
1145 static int apic_version;
1146 
1147 static int ept_init_common(bool have_ad)
1148 {
1149 	int ret;
1150 	struct pci_dev pcidev;
1151 
1152 	if (setup_ept(have_ad))
1153 		return VMX_TEST_EXIT;
1154 	data_page1 = alloc_page();
1155 	data_page2 = alloc_page();
1156 	*((u32 *)data_page1) = MAGIC_VAL_1;
1157 	*((u32 *)data_page2) = MAGIC_VAL_2;
1158 	install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2,
1159 			EPT_RA | EPT_WA | EPT_EA);
1160 
1161 	apic_version = apic_read(APIC_LVR);
1162 
1163 	ret = pci_find_dev(PCI_VENDOR_ID_REDHAT, PCI_DEVICE_ID_REDHAT_TEST);
1164 	if (ret != PCIDEVADDR_INVALID) {
1165 		pci_dev_init(&pcidev, ret);
1166 		pci_physaddr = pcidev.resource[PCI_TESTDEV_BAR_MEM];
1167 	}
1168 
1169 	return VMX_TEST_START;
1170 }
1171 
1172 static int ept_init(struct vmcs *vmcs)
1173 {
1174 	return ept_init_common(false);
1175 }
1176 
1177 static void ept_common(void)
1178 {
1179 	vmx_set_test_stage(0);
1180 	if (*((u32 *)data_page2) != MAGIC_VAL_1 ||
1181 			*((u32 *)data_page1) != MAGIC_VAL_1)
1182 		report("EPT basic framework - read", 0);
1183 	else {
1184 		*((u32 *)data_page2) = MAGIC_VAL_3;
1185 		vmcall();
1186 		if (vmx_get_test_stage() == 1) {
1187 			if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
1188 					*((u32 *)data_page2) == MAGIC_VAL_2)
1189 				report("EPT basic framework", 1);
1190 			else
1191 				report("EPT basic framework - remap", 1);
1192 		}
1193 	}
1194 	// Test EPT Misconfigurations
1195 	vmx_set_test_stage(1);
1196 	vmcall();
1197 	*((u32 *)data_page1) = MAGIC_VAL_1;
1198 	if (vmx_get_test_stage() != 2) {
1199 		report("EPT misconfigurations", 0);
1200 		goto t1;
1201 	}
1202 	vmx_set_test_stage(2);
1203 	vmcall();
1204 	*((u32 *)data_page1) = MAGIC_VAL_1;
1205 	report("EPT misconfigurations", vmx_get_test_stage() == 3);
1206 t1:
1207 	// Test EPT violation
1208 	vmx_set_test_stage(3);
1209 	vmcall();
1210 	*((u32 *)data_page1) = MAGIC_VAL_1;
1211 	report("EPT violation - page permission", vmx_get_test_stage() == 4);
1212 	// Violation caused by EPT paging structure
1213 	vmx_set_test_stage(4);
1214 	vmcall();
1215 	*((u32 *)data_page1) = MAGIC_VAL_2;
1216 	report("EPT violation - paging structure", vmx_get_test_stage() == 5);
1217 
1218 	// MMIO Read/Write
1219 	vmx_set_test_stage(5);
1220 	vmcall();
1221 
1222 	*(u32 volatile *)pci_physaddr;
1223 	report("MMIO EPT violation - read", vmx_get_test_stage() == 6);
1224 
1225 	*(u32 volatile *)pci_physaddr = MAGIC_VAL_1;
1226 	report("MMIO EPT violation - write", vmx_get_test_stage() == 7);
1227 }
1228 
1229 static void ept_main(void)
1230 {
1231 	ept_common();
1232 
1233 	// Test EPT access to L1 MMIO
1234 	vmx_set_test_stage(7);
1235 	report("EPT - MMIO access", *((u32 *)0xfee00030UL) == apic_version);
1236 
1237 	// Test invalid operand for INVEPT
1238 	vmcall();
1239 	report("EPT - unsupported INVEPT", vmx_get_test_stage() == 8);
1240 }
1241 
1242 static bool invept_test(int type, u64 eptp)
1243 {
1244 	bool ret, supported;
1245 
1246 	supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type);
1247 	ret = invept(type, eptp);
1248 
1249 	if (ret == !supported)
1250 		return false;
1251 
1252 	if (!supported)
1253 		printf("WARNING: unsupported invept passed!\n");
1254 	else
1255 		printf("WARNING: invept failed!\n");
1256 
1257 	return true;
1258 }
1259 
1260 static int pml_exit_handler(void)
1261 {
1262 	u16 index, count;
1263 	ulong reason = vmcs_read(EXI_REASON) & 0xff;
1264 	u64 *pmlbuf = pml_log;
1265 	u64 guest_rip = vmcs_read(GUEST_RIP);;
1266 	u64 guest_cr3 = vmcs_read(GUEST_CR3);
1267 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1268 
1269 	switch (reason) {
1270 	case VMX_VMCALL:
1271 		switch (vmx_get_test_stage()) {
1272 		case 0:
1273 			index = vmcs_read(GUEST_PML_INDEX);
1274 			for (count = index + 1; count < PML_INDEX; count++) {
1275 				if (pmlbuf[count] == (u64)data_page2) {
1276 					vmx_inc_test_stage();
1277 					clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1278 					break;
1279 				}
1280 			}
1281 			break;
1282 		case 1:
1283 			index = vmcs_read(GUEST_PML_INDEX);
1284 			/* Keep clearing the dirty bit till a overflow */
1285 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1286 			break;
1287 		default:
1288 			report("unexpected stage, %d.", false,
1289 			       vmx_get_test_stage());
1290 			print_vmexit_info();
1291 			return VMX_TEST_VMEXIT;
1292 		}
1293 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1294 		return VMX_TEST_RESUME;
1295 	case VMX_PML_FULL:
1296 		vmx_inc_test_stage();
1297 		vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
1298 		return VMX_TEST_RESUME;
1299 	default:
1300 		report("Unknown exit reason, %ld", false, reason);
1301 		print_vmexit_info();
1302 	}
1303 	return VMX_TEST_VMEXIT;
1304 }
1305 
1306 static int ept_exit_handler_common(bool have_ad)
1307 {
1308 	u64 guest_rip;
1309 	u64 guest_cr3;
1310 	ulong reason;
1311 	u32 insn_len;
1312 	u32 exit_qual;
1313 	static unsigned long data_page1_pte, data_page1_pte_pte, memaddr_pte;
1314 
1315 	guest_rip = vmcs_read(GUEST_RIP);
1316 	guest_cr3 = vmcs_read(GUEST_CR3);
1317 	reason = vmcs_read(EXI_REASON) & 0xff;
1318 	insn_len = vmcs_read(EXI_INST_LEN);
1319 	exit_qual = vmcs_read(EXI_QUALIFICATION);
1320 	switch (reason) {
1321 	case VMX_VMCALL:
1322 		switch (vmx_get_test_stage()) {
1323 		case 0:
1324 			check_ept_ad(pml4, guest_cr3,
1325 				     (unsigned long)data_page1,
1326 				     have_ad ? EPT_ACCESS_FLAG : 0,
1327 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1328 			check_ept_ad(pml4, guest_cr3,
1329 				     (unsigned long)data_page2,
1330 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0,
1331 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1332 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1333 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1334 			if (have_ad)
1335 				ept_sync(INVEPT_SINGLE, eptp);;
1336 			if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
1337 					*((u32 *)data_page2) == MAGIC_VAL_2) {
1338 				vmx_inc_test_stage();
1339 				install_ept(pml4, (unsigned long)data_page2,
1340 						(unsigned long)data_page2,
1341 						EPT_RA | EPT_WA | EPT_EA);
1342 			} else
1343 				report("EPT basic framework - write", 0);
1344 			break;
1345 		case 1:
1346 			install_ept(pml4, (unsigned long)data_page1,
1347  				(unsigned long)data_page1, EPT_WA);
1348 			ept_sync(INVEPT_SINGLE, eptp);
1349 			break;
1350 		case 2:
1351 			install_ept(pml4, (unsigned long)data_page1,
1352  				(unsigned long)data_page1,
1353  				EPT_RA | EPT_WA | EPT_EA |
1354  				(2 << EPT_MEM_TYPE_SHIFT));
1355 			ept_sync(INVEPT_SINGLE, eptp);
1356 			break;
1357 		case 3:
1358 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1359 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1,
1360 						1, &data_page1_pte));
1361 			set_ept_pte(pml4, (unsigned long)data_page1,
1362 				1, data_page1_pte & ~EPT_PRESENT);
1363 			ept_sync(INVEPT_SINGLE, eptp);
1364 			break;
1365 		case 4:
1366 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1,
1367 						2, &data_page1_pte));
1368 			data_page1_pte &= PAGE_MASK;
1369 			TEST_ASSERT(get_ept_pte(pml4, data_page1_pte,
1370 						2, &data_page1_pte_pte));
1371 			set_ept_pte(pml4, data_page1_pte, 2,
1372 				data_page1_pte_pte & ~EPT_PRESENT);
1373 			ept_sync(INVEPT_SINGLE, eptp);
1374 			break;
1375 		case 5:
1376 			install_ept(pml4, (unsigned long)pci_physaddr,
1377 				(unsigned long)pci_physaddr, 0);
1378 			ept_sync(INVEPT_SINGLE, eptp);
1379 			break;
1380 		case 7:
1381 			if (!invept_test(0, eptp))
1382 				vmx_inc_test_stage();
1383 			break;
1384 		// Should not reach here
1385 		default:
1386 			report("ERROR - unexpected stage, %d.", false,
1387 			       vmx_get_test_stage());
1388 			print_vmexit_info();
1389 			return VMX_TEST_VMEXIT;
1390 		}
1391 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1392 		return VMX_TEST_RESUME;
1393 	case VMX_EPT_MISCONFIG:
1394 		switch (vmx_get_test_stage()) {
1395 		case 1:
1396 		case 2:
1397 			vmx_inc_test_stage();
1398 			install_ept(pml4, (unsigned long)data_page1,
1399  				(unsigned long)data_page1,
1400  				EPT_RA | EPT_WA | EPT_EA);
1401 			ept_sync(INVEPT_SINGLE, eptp);
1402 			break;
1403 		// Should not reach here
1404 		default:
1405 			report("ERROR - unexpected stage, %d.", false,
1406 			       vmx_get_test_stage());
1407 			print_vmexit_info();
1408 			return VMX_TEST_VMEXIT;
1409 		}
1410 		return VMX_TEST_RESUME;
1411 	case VMX_EPT_VIOLATION:
1412 		switch(vmx_get_test_stage()) {
1413 		case 3:
1414 			check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
1415 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1416 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1417 			if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD |
1418 					EPT_VLT_PADDR))
1419 				vmx_inc_test_stage();
1420 			set_ept_pte(pml4, (unsigned long)data_page1,
1421 				1, data_page1_pte | (EPT_PRESENT));
1422 			ept_sync(INVEPT_SINGLE, eptp);
1423 			break;
1424 		case 4:
1425 			check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
1426 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1427 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1428 			if (exit_qual == (EPT_VLT_RD |
1429 					  (have_ad ? EPT_VLT_WR : 0) |
1430 					  EPT_VLT_LADDR_VLD))
1431 				vmx_inc_test_stage();
1432 			set_ept_pte(pml4, data_page1_pte, 2,
1433 				data_page1_pte_pte | (EPT_PRESENT));
1434 			ept_sync(INVEPT_SINGLE, eptp);
1435 			break;
1436 		case 5:
1437 			if (exit_qual & EPT_VLT_RD)
1438 				vmx_inc_test_stage();
1439 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr,
1440 						1, &memaddr_pte));
1441 			set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA);
1442 			ept_sync(INVEPT_SINGLE, eptp);
1443 			break;
1444 		case 6:
1445 			if (exit_qual & EPT_VLT_WR)
1446 				vmx_inc_test_stage();
1447 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr,
1448 						1, &memaddr_pte));
1449 			set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA | EPT_WA);
1450 			ept_sync(INVEPT_SINGLE, eptp);
1451 			break;
1452 		default:
1453 			// Should not reach here
1454 			report("ERROR : unexpected stage, %d", false,
1455 			       vmx_get_test_stage());
1456 			print_vmexit_info();
1457 			return VMX_TEST_VMEXIT;
1458 		}
1459 		return VMX_TEST_RESUME;
1460 	default:
1461 		report("Unknown exit reason, %ld", false, reason);
1462 		print_vmexit_info();
1463 	}
1464 	return VMX_TEST_VMEXIT;
1465 }
1466 
1467 static int ept_exit_handler(void)
1468 {
1469 	return ept_exit_handler_common(false);
1470 }
1471 
1472 static int eptad_init(struct vmcs *vmcs)
1473 {
1474 	int r = ept_init_common(true);
1475 
1476 	if (r == VMX_TEST_EXIT)
1477 		return r;
1478 
1479 	if ((rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & EPT_CAP_AD_FLAG) == 0) {
1480 		printf("\tEPT A/D bits are not supported");
1481 		return VMX_TEST_EXIT;
1482 	}
1483 
1484 	return r;
1485 }
1486 
1487 static int pml_init(struct vmcs *vmcs)
1488 {
1489 	u32 ctrl_cpu;
1490 	int r = eptad_init(vmcs);
1491 
1492 	if (r == VMX_TEST_EXIT)
1493 		return r;
1494 
1495 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1496 		!(ctrl_cpu_rev[1].clr & CPU_PML)) {
1497 		printf("\tPML is not supported");
1498 		return VMX_TEST_EXIT;
1499 	}
1500 
1501 	pml_log = alloc_page();
1502 	vmcs_write(PMLADDR, (u64)pml_log);
1503 	vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
1504 
1505 	ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML;
1506 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu);
1507 
1508 	return VMX_TEST_START;
1509 }
1510 
1511 static void pml_main(void)
1512 {
1513 	int count = 0;
1514 
1515 	vmx_set_test_stage(0);
1516 	*((u32 *)data_page2) = 0x1;
1517 	vmcall();
1518 	report("PML - Dirty GPA Logging", vmx_get_test_stage() == 1);
1519 
1520 	while (vmx_get_test_stage() == 1) {
1521 		vmcall();
1522 		*((u32 *)data_page2) = 0x1;
1523 		if (count++ > PML_INDEX)
1524 			break;
1525 	}
1526 	report("PML Full Event", vmx_get_test_stage() == 2);
1527 }
1528 
1529 static void eptad_main(void)
1530 {
1531 	ept_common();
1532 }
1533 
1534 static int eptad_exit_handler(void)
1535 {
1536 	return ept_exit_handler_common(true);
1537 }
1538 
1539 static bool invvpid_test(int type, u16 vpid)
1540 {
1541 	bool ret, supported;
1542 
1543 	supported = ept_vpid.val &
1544 		(VPID_CAP_INVVPID_ADDR >> INVVPID_ADDR << type);
1545 	ret = invvpid(type, vpid, 0);
1546 
1547 	if (ret == !supported)
1548 		return false;
1549 
1550 	if (!supported)
1551 		printf("WARNING: unsupported invvpid passed!\n");
1552 	else
1553 		printf("WARNING: invvpid failed!\n");
1554 
1555 	return true;
1556 }
1557 
1558 static int vpid_init(struct vmcs *vmcs)
1559 {
1560 	u32 ctrl_cpu1;
1561 
1562 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1563 		!(ctrl_cpu_rev[1].clr & CPU_VPID)) {
1564 		printf("\tVPID is not supported");
1565 		return VMX_TEST_EXIT;
1566 	}
1567 
1568 	ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
1569 	ctrl_cpu1 |= CPU_VPID;
1570 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
1571 	return VMX_TEST_START;
1572 }
1573 
1574 static void vpid_main(void)
1575 {
1576 	vmx_set_test_stage(0);
1577 	vmcall();
1578 	report("INVVPID SINGLE ADDRESS", vmx_get_test_stage() == 1);
1579 	vmx_set_test_stage(2);
1580 	vmcall();
1581 	report("INVVPID SINGLE", vmx_get_test_stage() == 3);
1582 	vmx_set_test_stage(4);
1583 	vmcall();
1584 	report("INVVPID ALL", vmx_get_test_stage() == 5);
1585 }
1586 
1587 static int vpid_exit_handler(void)
1588 {
1589 	u64 guest_rip;
1590 	ulong reason;
1591 	u32 insn_len;
1592 
1593 	guest_rip = vmcs_read(GUEST_RIP);
1594 	reason = vmcs_read(EXI_REASON) & 0xff;
1595 	insn_len = vmcs_read(EXI_INST_LEN);
1596 
1597 	switch (reason) {
1598 	case VMX_VMCALL:
1599 		switch(vmx_get_test_stage()) {
1600 		case 0:
1601 			if (!invvpid_test(INVVPID_ADDR, 1))
1602 				vmx_inc_test_stage();
1603 			break;
1604 		case 2:
1605 			if (!invvpid_test(INVVPID_CONTEXT_GLOBAL, 1))
1606 				vmx_inc_test_stage();
1607 			break;
1608 		case 4:
1609 			if (!invvpid_test(INVVPID_ALL, 1))
1610 				vmx_inc_test_stage();
1611 			break;
1612 		default:
1613 			report("ERROR: unexpected stage, %d", false,
1614 					vmx_get_test_stage());
1615 			print_vmexit_info();
1616 			return VMX_TEST_VMEXIT;
1617 		}
1618 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1619 		return VMX_TEST_RESUME;
1620 	default:
1621 		report("Unknown exit reason, %ld", false, reason);
1622 		print_vmexit_info();
1623 	}
1624 	return VMX_TEST_VMEXIT;
1625 }
1626 
1627 #define TIMER_VECTOR	222
1628 
1629 static volatile bool timer_fired;
1630 
1631 static void timer_isr(isr_regs_t *regs)
1632 {
1633 	timer_fired = true;
1634 	apic_write(APIC_EOI, 0);
1635 }
1636 
1637 static int interrupt_init(struct vmcs *vmcs)
1638 {
1639 	msr_bmp_init();
1640 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
1641 	handle_irq(TIMER_VECTOR, timer_isr);
1642 	return VMX_TEST_START;
1643 }
1644 
1645 static void interrupt_main(void)
1646 {
1647 	long long start, loops;
1648 
1649 	vmx_set_test_stage(0);
1650 
1651 	apic_write(APIC_LVTT, TIMER_VECTOR);
1652 	irq_enable();
1653 
1654 	apic_write(APIC_TMICT, 1);
1655 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1656 		asm volatile ("nop");
1657 	report("direct interrupt while running guest", timer_fired);
1658 
1659 	apic_write(APIC_TMICT, 0);
1660 	irq_disable();
1661 	vmcall();
1662 	timer_fired = false;
1663 	apic_write(APIC_TMICT, 1);
1664 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1665 		asm volatile ("nop");
1666 	report("intercepted interrupt while running guest", timer_fired);
1667 
1668 	irq_enable();
1669 	apic_write(APIC_TMICT, 0);
1670 	irq_disable();
1671 	vmcall();
1672 	timer_fired = false;
1673 	start = rdtsc();
1674 	apic_write(APIC_TMICT, 1000000);
1675 
1676 	asm volatile ("sti; hlt");
1677 
1678 	report("direct interrupt + hlt",
1679 	       rdtsc() - start > 1000000 && timer_fired);
1680 
1681 	apic_write(APIC_TMICT, 0);
1682 	irq_disable();
1683 	vmcall();
1684 	timer_fired = false;
1685 	start = rdtsc();
1686 	apic_write(APIC_TMICT, 1000000);
1687 
1688 	asm volatile ("sti; hlt");
1689 
1690 	report("intercepted interrupt + hlt",
1691 	       rdtsc() - start > 10000 && timer_fired);
1692 
1693 	apic_write(APIC_TMICT, 0);
1694 	irq_disable();
1695 	vmcall();
1696 	timer_fired = false;
1697 	start = rdtsc();
1698 	apic_write(APIC_TMICT, 1000000);
1699 
1700 	irq_enable();
1701 	asm volatile ("nop");
1702 	vmcall();
1703 
1704 	report("direct interrupt + activity state hlt",
1705 	       rdtsc() - start > 10000 && timer_fired);
1706 
1707 	apic_write(APIC_TMICT, 0);
1708 	irq_disable();
1709 	vmcall();
1710 	timer_fired = false;
1711 	start = rdtsc();
1712 	apic_write(APIC_TMICT, 1000000);
1713 
1714 	irq_enable();
1715 	asm volatile ("nop");
1716 	vmcall();
1717 
1718 	report("intercepted interrupt + activity state hlt",
1719 	       rdtsc() - start > 10000 && timer_fired);
1720 
1721 	apic_write(APIC_TMICT, 0);
1722 	irq_disable();
1723 	vmx_set_test_stage(7);
1724 	vmcall();
1725 	timer_fired = false;
1726 	apic_write(APIC_TMICT, 1);
1727 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1728 		asm volatile ("nop");
1729 	report("running a guest with interrupt acknowledgement set", timer_fired);
1730 
1731 	apic_write(APIC_TMICT, 0);
1732 	irq_enable();
1733 	timer_fired = false;
1734 	vmcall();
1735 	report("Inject an event to a halted guest", timer_fired);
1736 }
1737 
1738 static int interrupt_exit_handler(void)
1739 {
1740 	u64 guest_rip = vmcs_read(GUEST_RIP);
1741 	ulong reason = vmcs_read(EXI_REASON) & 0xff;
1742 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1743 
1744 	switch (reason) {
1745 	case VMX_VMCALL:
1746 		switch (vmx_get_test_stage()) {
1747 		case 0:
1748 		case 2:
1749 		case 5:
1750 			vmcs_write(PIN_CONTROLS,
1751 				   vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
1752 			break;
1753 		case 7:
1754 			vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA);
1755 			vmcs_write(PIN_CONTROLS,
1756 				   vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
1757 			break;
1758 		case 1:
1759 		case 3:
1760 			vmcs_write(PIN_CONTROLS,
1761 				   vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
1762 			break;
1763 		case 4:
1764 		case 6:
1765 			vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
1766 			break;
1767 
1768 		case 8:
1769 			vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
1770 			vmcs_write(ENT_INTR_INFO,
1771 				   TIMER_VECTOR |
1772 				   (VMX_INTR_TYPE_EXT_INTR << INTR_INFO_INTR_TYPE_SHIFT) |
1773 				   INTR_INFO_VALID_MASK);
1774 			break;
1775 		}
1776 		vmx_inc_test_stage();
1777 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1778 		return VMX_TEST_RESUME;
1779 	case VMX_EXTINT:
1780 		if (vmcs_read(EXI_CONTROLS) & EXI_INTA) {
1781 			int vector = vmcs_read(EXI_INTR_INFO) & 0xff;
1782 			handle_external_interrupt(vector);
1783 		} else {
1784 			irq_enable();
1785 			asm volatile ("nop");
1786 			irq_disable();
1787 		}
1788 		if (vmx_get_test_stage() >= 2)
1789 			vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
1790 		return VMX_TEST_RESUME;
1791 	default:
1792 		report("Unknown exit reason, %ld", false, reason);
1793 		print_vmexit_info();
1794 	}
1795 
1796 	return VMX_TEST_VMEXIT;
1797 }
1798 
1799 static int dbgctls_init(struct vmcs *vmcs)
1800 {
1801 	u64 dr7 = 0x402;
1802 	u64 zero = 0;
1803 
1804 	msr_bmp_init();
1805 	asm volatile(
1806 		"mov %0,%%dr0\n\t"
1807 		"mov %0,%%dr1\n\t"
1808 		"mov %0,%%dr2\n\t"
1809 		"mov %1,%%dr7\n\t"
1810 		: : "r" (zero), "r" (dr7));
1811 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
1812 	vmcs_write(GUEST_DR7, 0x404);
1813 	vmcs_write(GUEST_DEBUGCTL, 0x2);
1814 
1815 	vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
1816 	vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS);
1817 
1818 	return VMX_TEST_START;
1819 }
1820 
1821 static void dbgctls_main(void)
1822 {
1823 	u64 dr7, debugctl;
1824 
1825 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1826 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1827 	/* Commented out: KVM does not support DEBUGCTL so far */
1828 	(void)debugctl;
1829 	report("Load debug controls", dr7 == 0x404 /* && debugctl == 0x2 */);
1830 
1831 	dr7 = 0x408;
1832 	asm volatile("mov %0,%%dr7" : : "r" (dr7));
1833 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
1834 
1835 	vmx_set_test_stage(0);
1836 	vmcall();
1837 	report("Save debug controls", vmx_get_test_stage() == 1);
1838 
1839 	if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS ||
1840 	    ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) {
1841 		printf("\tDebug controls are always loaded/saved\n");
1842 		return;
1843 	}
1844 	vmx_set_test_stage(2);
1845 	vmcall();
1846 
1847 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1848 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1849 	/* Commented out: KVM does not support DEBUGCTL so far */
1850 	(void)debugctl;
1851 	report("Guest=host debug controls", dr7 == 0x402 /* && debugctl == 0x1 */);
1852 
1853 	dr7 = 0x408;
1854 	asm volatile("mov %0,%%dr7" : : "r" (dr7));
1855 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
1856 
1857 	vmx_set_test_stage(3);
1858 	vmcall();
1859 	report("Don't save debug controls", vmx_get_test_stage() == 4);
1860 }
1861 
1862 static int dbgctls_exit_handler(void)
1863 {
1864 	unsigned int reason = vmcs_read(EXI_REASON) & 0xff;
1865 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1866 	u64 guest_rip = vmcs_read(GUEST_RIP);
1867 	u64 dr7, debugctl;
1868 
1869 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1870 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1871 
1872 	switch (reason) {
1873 	case VMX_VMCALL:
1874 		switch (vmx_get_test_stage()) {
1875 		case 0:
1876 			if (dr7 == 0x400 && debugctl == 0 &&
1877 			    vmcs_read(GUEST_DR7) == 0x408 /* &&
1878 			    Commented out: KVM does not support DEBUGCTL so far
1879 			    vmcs_read(GUEST_DEBUGCTL) == 0x3 */)
1880 				vmx_inc_test_stage();
1881 			break;
1882 		case 2:
1883 			dr7 = 0x402;
1884 			asm volatile("mov %0,%%dr7" : : "r" (dr7));
1885 			wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
1886 			vmcs_write(GUEST_DR7, 0x404);
1887 			vmcs_write(GUEST_DEBUGCTL, 0x2);
1888 
1889 			vmcs_write(ENT_CONTROLS,
1890 				vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS);
1891 			vmcs_write(EXI_CONTROLS,
1892 				vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS);
1893 			break;
1894 		case 3:
1895 			if (dr7 == 0x400 && debugctl == 0 &&
1896 			    vmcs_read(GUEST_DR7) == 0x404 /* &&
1897 			    Commented out: KVM does not support DEBUGCTL so far
1898 			    vmcs_read(GUEST_DEBUGCTL) == 0x2 */)
1899 				vmx_inc_test_stage();
1900 			break;
1901 		}
1902 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1903 		return VMX_TEST_RESUME;
1904 	default:
1905 		report("Unknown exit reason, %d", false, reason);
1906 		print_vmexit_info();
1907 	}
1908 	return VMX_TEST_VMEXIT;
1909 }
1910 
1911 struct vmx_msr_entry {
1912 	u32 index;
1913 	u32 reserved;
1914 	u64 value;
1915 } __attribute__((packed));
1916 
1917 #define MSR_MAGIC 0x31415926
1918 struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load;
1919 
1920 static int msr_switch_init(struct vmcs *vmcs)
1921 {
1922 	msr_bmp_init();
1923 	exit_msr_store = alloc_page();
1924 	exit_msr_load = alloc_page();
1925 	entry_msr_load = alloc_page();
1926 	entry_msr_load[0].index = MSR_KERNEL_GS_BASE;
1927 	entry_msr_load[0].value = MSR_MAGIC;
1928 
1929 	vmx_set_test_stage(1);
1930 	vmcs_write(ENT_MSR_LD_CNT, 1);
1931 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load);
1932 	vmcs_write(EXI_MSR_ST_CNT, 1);
1933 	vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store);
1934 	vmcs_write(EXI_MSR_LD_CNT, 1);
1935 	vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load);
1936 	return VMX_TEST_START;
1937 }
1938 
1939 static void msr_switch_main(void)
1940 {
1941 	if (vmx_get_test_stage() == 1) {
1942 		report("VM entry MSR load",
1943 			rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC);
1944 		vmx_set_test_stage(2);
1945 		wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1);
1946 		exit_msr_store[0].index = MSR_KERNEL_GS_BASE;
1947 		exit_msr_load[0].index = MSR_KERNEL_GS_BASE;
1948 		exit_msr_load[0].value = MSR_MAGIC + 2;
1949 	}
1950 	vmcall();
1951 }
1952 
1953 static int msr_switch_exit_handler(void)
1954 {
1955 	ulong reason;
1956 
1957 	reason = vmcs_read(EXI_REASON);
1958 	if (reason == VMX_VMCALL && vmx_get_test_stage() == 2) {
1959 		report("VM exit MSR store",
1960 			exit_msr_store[0].value == MSR_MAGIC + 1);
1961 		report("VM exit MSR load",
1962 			rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2);
1963 		vmx_set_test_stage(3);
1964 		entry_msr_load[0].index = MSR_FS_BASE;
1965 		return VMX_TEST_RESUME;
1966 	}
1967 	printf("ERROR %s: unexpected stage=%u or reason=%lu\n",
1968 		__func__, vmx_get_test_stage(), reason);
1969 	return VMX_TEST_EXIT;
1970 }
1971 
1972 static int msr_switch_entry_failure(struct vmentry_failure *failure)
1973 {
1974 	ulong reason;
1975 
1976 	if (failure->early) {
1977 		printf("ERROR %s: early exit\n", __func__);
1978 		return VMX_TEST_EXIT;
1979 	}
1980 
1981 	reason = vmcs_read(EXI_REASON);
1982 	if (reason == (VMX_ENTRY_FAILURE | VMX_FAIL_MSR) &&
1983 	    vmx_get_test_stage() == 3) {
1984 		report("VM entry MSR load: try to load FS_BASE",
1985 			vmcs_read(EXI_QUALIFICATION) == 1);
1986 		return VMX_TEST_VMEXIT;
1987 	}
1988 	printf("ERROR %s: unexpected stage=%u or reason=%lu\n",
1989 		__func__, vmx_get_test_stage(), reason);
1990 	return VMX_TEST_EXIT;
1991 }
1992 
1993 static int vmmcall_init(struct vmcs *vmcs)
1994 {
1995 	vmcs_write(EXC_BITMAP, 1 << UD_VECTOR);
1996 	return VMX_TEST_START;
1997 }
1998 
1999 static void vmmcall_main(void)
2000 {
2001 	asm volatile(
2002 		"mov $0xABCD, %%rax\n\t"
2003 		"vmmcall\n\t"
2004 		::: "rax");
2005 
2006 	report("VMMCALL", 0);
2007 }
2008 
2009 static int vmmcall_exit_handler(void)
2010 {
2011 	ulong reason;
2012 
2013 	reason = vmcs_read(EXI_REASON);
2014 	switch (reason) {
2015 	case VMX_VMCALL:
2016 		printf("here\n");
2017 		report("VMMCALL triggers #UD", 0);
2018 		break;
2019 	case VMX_EXC_NMI:
2020 		report("VMMCALL triggers #UD",
2021 		       (vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR);
2022 		break;
2023 	default:
2024 		report("Unknown exit reason, %ld", false, reason);
2025 		print_vmexit_info();
2026 	}
2027 
2028 	return VMX_TEST_VMEXIT;
2029 }
2030 
2031 static int disable_rdtscp_init(struct vmcs *vmcs)
2032 {
2033 	u32 ctrl_cpu1;
2034 
2035 	if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) {
2036 		ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
2037 		ctrl_cpu1 &= ~CPU_RDTSCP;
2038 		vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
2039 	}
2040 
2041 	return VMX_TEST_START;
2042 }
2043 
2044 static void disable_rdtscp_ud_handler(struct ex_regs *regs)
2045 {
2046 	switch (vmx_get_test_stage()) {
2047 	case 0:
2048 		report("RDTSCP triggers #UD", true);
2049 		vmx_inc_test_stage();
2050 		regs->rip += 3;
2051 		break;
2052 	case 2:
2053 		report("RDPID triggers #UD", true);
2054 		vmx_inc_test_stage();
2055 		regs->rip += 4;
2056 		break;
2057 	}
2058 	return;
2059 
2060 }
2061 
2062 static void disable_rdtscp_main(void)
2063 {
2064 	/* Test that #UD is properly injected in L2.  */
2065 	handle_exception(UD_VECTOR, disable_rdtscp_ud_handler);
2066 
2067 	vmx_set_test_stage(0);
2068 	asm volatile("rdtscp" : : : "eax", "ecx", "edx");
2069 	vmcall();
2070 	asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax");
2071 
2072 	handle_exception(UD_VECTOR, 0);
2073 	vmcall();
2074 }
2075 
2076 static int disable_rdtscp_exit_handler(void)
2077 {
2078 	unsigned int reason = vmcs_read(EXI_REASON) & 0xff;
2079 
2080 	switch (reason) {
2081 	case VMX_VMCALL:
2082 		switch (vmx_get_test_stage()) {
2083 		case 0:
2084 			report("RDTSCP triggers #UD", false);
2085 			vmx_inc_test_stage();
2086 			/* fallthrough */
2087 		case 1:
2088 			vmx_inc_test_stage();
2089 			vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3);
2090 			return VMX_TEST_RESUME;
2091 		case 2:
2092 			report("RDPID triggers #UD", false);
2093 			break;
2094 		}
2095 		break;
2096 
2097 	default:
2098 		report("Unknown exit reason, %d", false, reason);
2099 		print_vmexit_info();
2100 	}
2101 	return VMX_TEST_VMEXIT;
2102 }
2103 
2104 static int int3_init(struct vmcs *vmcs)
2105 {
2106 	vmcs_write(EXC_BITMAP, ~0u);
2107 	return VMX_TEST_START;
2108 }
2109 
2110 static void int3_guest_main(void)
2111 {
2112 	asm volatile ("int3");
2113 }
2114 
2115 static int int3_exit_handler(void)
2116 {
2117 	u32 reason = vmcs_read(EXI_REASON);
2118 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
2119 
2120 	report("L1 intercepts #BP", reason == VMX_EXC_NMI &&
2121 	       (intr_info & INTR_INFO_VALID_MASK) &&
2122 	       (intr_info & INTR_INFO_VECTOR_MASK) == BP_VECTOR &&
2123 	       ((intr_info & INTR_INFO_INTR_TYPE_MASK) >>
2124 		INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION);
2125 
2126 	return VMX_TEST_VMEXIT;
2127 }
2128 
2129 static int into_init(struct vmcs *vmcs)
2130 {
2131 	vmcs_write(EXC_BITMAP, ~0u);
2132 	return VMX_TEST_START;
2133 }
2134 
2135 static void into_guest_main(void)
2136 {
2137 	struct far_pointer32 fp = {
2138 		.offset = (uintptr_t)&&into,
2139 		.selector = KERNEL_CS32,
2140 	};
2141 	register uintptr_t rsp asm("rsp");
2142 
2143 	if (fp.offset != (uintptr_t)&&into) {
2144 		printf("Code address too high.\n");
2145 		return;
2146 	}
2147 	if ((u32)rsp != rsp) {
2148 		printf("Stack address too high.\n");
2149 		return;
2150 	}
2151 
2152 	asm goto ("lcall *%0" : : "m" (fp) : "rax" : into);
2153 	return;
2154 into:
2155 	asm volatile (".code32;"
2156 		      "movl $0x7fffffff, %eax;"
2157 		      "addl %eax, %eax;"
2158 		      "into;"
2159 		      "lret;"
2160 		      ".code64");
2161 	__builtin_unreachable();
2162 }
2163 
2164 static int into_exit_handler(void)
2165 {
2166 	u32 reason = vmcs_read(EXI_REASON);
2167 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
2168 
2169 	report("L1 intercepts #OF", reason == VMX_EXC_NMI &&
2170 	       (intr_info & INTR_INFO_VALID_MASK) &&
2171 	       (intr_info & INTR_INFO_VECTOR_MASK) == OF_VECTOR &&
2172 	       ((intr_info & INTR_INFO_INTR_TYPE_MASK) >>
2173 		INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION);
2174 
2175 	return VMX_TEST_VMEXIT;
2176 }
2177 
2178 static void exit_monitor_from_l2_main(void)
2179 {
2180 	printf("Calling exit(0) from l2...\n");
2181 	exit(0);
2182 }
2183 
2184 static int exit_monitor_from_l2_handler(void)
2185 {
2186 	report("The guest should have killed the VMM", false);
2187 	return VMX_TEST_EXIT;
2188 }
2189 
2190 static void assert_exit_reason(u64 expected)
2191 {
2192 	u64 actual = vmcs_read(EXI_REASON);
2193 
2194 	TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.",
2195 			   exit_reason_description(expected),
2196 			   exit_reason_description(actual));
2197 }
2198 
2199 static void skip_exit_insn(void)
2200 {
2201 	u64 guest_rip = vmcs_read(GUEST_RIP);
2202 	u32 insn_len = vmcs_read(EXI_INST_LEN);
2203 	vmcs_write(GUEST_RIP, guest_rip + insn_len);
2204 }
2205 
2206 static void skip_exit_vmcall(void)
2207 {
2208 	assert_exit_reason(VMX_VMCALL);
2209 	skip_exit_insn();
2210 }
2211 
2212 static void v2_null_test_guest(void)
2213 {
2214 }
2215 
2216 static void v2_null_test(void)
2217 {
2218 	test_set_guest(v2_null_test_guest);
2219 	enter_guest();
2220 	report(__func__, 1);
2221 }
2222 
2223 static void v2_multiple_entries_test_guest(void)
2224 {
2225 	vmx_set_test_stage(1);
2226 	vmcall();
2227 	vmx_set_test_stage(2);
2228 }
2229 
2230 static void v2_multiple_entries_test(void)
2231 {
2232 	test_set_guest(v2_multiple_entries_test_guest);
2233 	enter_guest();
2234 	TEST_ASSERT_EQ(vmx_get_test_stage(), 1);
2235 	skip_exit_vmcall();
2236 	enter_guest();
2237 	TEST_ASSERT_EQ(vmx_get_test_stage(), 2);
2238 	report(__func__, 1);
2239 }
2240 
2241 static int fixture_test_data = 1;
2242 
2243 static void fixture_test_teardown(void *data)
2244 {
2245 	*((int *) data) = 1;
2246 }
2247 
2248 static void fixture_test_guest(void)
2249 {
2250 	fixture_test_data++;
2251 }
2252 
2253 
2254 static void fixture_test_setup(void)
2255 {
2256 	TEST_ASSERT_EQ_MSG(1, fixture_test_data,
2257 			   "fixture_test_teardown didn't run?!");
2258 	fixture_test_data = 2;
2259 	test_add_teardown(fixture_test_teardown, &fixture_test_data);
2260 	test_set_guest(fixture_test_guest);
2261 }
2262 
2263 static void fixture_test_case1(void)
2264 {
2265 	fixture_test_setup();
2266 	TEST_ASSERT_EQ(2, fixture_test_data);
2267 	enter_guest();
2268 	TEST_ASSERT_EQ(3, fixture_test_data);
2269 	report(__func__, 1);
2270 }
2271 
2272 static void fixture_test_case2(void)
2273 {
2274 	fixture_test_setup();
2275 	TEST_ASSERT_EQ(2, fixture_test_data);
2276 	enter_guest();
2277 	TEST_ASSERT_EQ(3, fixture_test_data);
2278 	report(__func__, 1);
2279 }
2280 
2281 enum ept_access_op {
2282 	OP_READ,
2283 	OP_WRITE,
2284 	OP_EXEC,
2285 	OP_FLUSH_TLB,
2286 	OP_EXIT,
2287 };
2288 
2289 static struct ept_access_test_data {
2290 	unsigned long gpa;
2291 	unsigned long *gva;
2292 	unsigned long hpa;
2293 	unsigned long *hva;
2294 	enum ept_access_op op;
2295 } ept_access_test_data;
2296 
2297 extern unsigned char ret42_start;
2298 extern unsigned char ret42_end;
2299 
2300 /* Returns 42. */
2301 asm(
2302 	".align 64\n"
2303 	"ret42_start:\n"
2304 	"mov $42, %eax\n"
2305 	"ret\n"
2306 	"ret42_end:\n"
2307 );
2308 
2309 static void
2310 diagnose_ept_violation_qual(u64 expected, u64 actual)
2311 {
2312 
2313 #define DIAGNOSE(flag)							\
2314 do {									\
2315 	if ((expected & flag) != (actual & flag))			\
2316 		printf(#flag " %sexpected\n",				\
2317 		       (expected & flag) ? "" : "un");			\
2318 } while (0)
2319 
2320 	DIAGNOSE(EPT_VLT_RD);
2321 	DIAGNOSE(EPT_VLT_WR);
2322 	DIAGNOSE(EPT_VLT_FETCH);
2323 	DIAGNOSE(EPT_VLT_PERM_RD);
2324 	DIAGNOSE(EPT_VLT_PERM_WR);
2325 	DIAGNOSE(EPT_VLT_PERM_EX);
2326 	DIAGNOSE(EPT_VLT_LADDR_VLD);
2327 	DIAGNOSE(EPT_VLT_PADDR);
2328 
2329 #undef DIAGNOSE
2330 }
2331 
2332 static void do_ept_access_op(enum ept_access_op op)
2333 {
2334 	ept_access_test_data.op = op;
2335 	enter_guest();
2336 }
2337 
2338 /*
2339  * Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only
2340  * needed by tests that modify guest PTEs.
2341  */
2342 static void ept_access_test_guest_flush_tlb(void)
2343 {
2344 	do_ept_access_op(OP_FLUSH_TLB);
2345 	skip_exit_vmcall();
2346 }
2347 
2348 /*
2349  * Modifies the EPT entry at @level in the mapping of @gpa. First clears the
2350  * bits in @clear then sets the bits in @set. @mkhuge transforms the entry into
2351  * a huge page.
2352  */
2353 static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level,
2354 				 unsigned long clear, unsigned long set)
2355 {
2356 	struct ept_access_test_data *data = &ept_access_test_data;
2357 	unsigned long orig_pte;
2358 	unsigned long pte;
2359 
2360 	/* Screw with the mapping at the requested level. */
2361 	TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte));
2362 	pte = orig_pte;
2363 	if (mkhuge)
2364 		pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE;
2365 	else
2366 		pte = orig_pte;
2367 	pte = (pte & ~clear) | set;
2368 	set_ept_pte(pml4, gpa, level, pte);
2369 	ept_sync(INVEPT_SINGLE, eptp);
2370 
2371 	return orig_pte;
2372 }
2373 
2374 static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte)
2375 {
2376 	set_ept_pte(pml4, gpa, level, orig_pte);
2377 	ept_sync(INVEPT_SINGLE, eptp);
2378 }
2379 
2380 static void do_ept_violation(bool leaf, enum ept_access_op op,
2381 			     u64 expected_qual, u64 expected_paddr)
2382 {
2383 	u64 qual;
2384 
2385 	/* Try the access and observe the violation. */
2386 	do_ept_access_op(op);
2387 
2388 	assert_exit_reason(VMX_EPT_VIOLATION);
2389 
2390 	qual = vmcs_read(EXI_QUALIFICATION);
2391 
2392 	/* Mask undefined bits (which may later be defined in certain cases). */
2393 	qual &= ~(EPT_VLT_GUEST_USER | EPT_VLT_GUEST_RW | EPT_VLT_GUEST_EX |
2394 		 EPT_VLT_PERM_USER_EX);
2395 
2396 	diagnose_ept_violation_qual(expected_qual, qual);
2397 	TEST_EXPECT_EQ(expected_qual, qual);
2398 
2399 	#if 0
2400 	/* Disable for now otherwise every test will fail */
2401 	TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
2402 		       (unsigned long) (
2403 			       op == OP_EXEC ? data->gva + 1 : data->gva));
2404 	#endif
2405 	/*
2406 	 * TODO: tests that probe expected_paddr in pages other than the one at
2407 	 * the beginning of the 1g region.
2408 	 */
2409 	TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr);
2410 }
2411 
2412 static void
2413 ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear,
2414 			      unsigned long set, enum ept_access_op op,
2415 			      u64 expected_qual)
2416 {
2417 	struct ept_access_test_data *data = &ept_access_test_data;
2418 	unsigned long orig_pte;
2419 
2420 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2421 
2422 	do_ept_violation(level == 1 || mkhuge, op, expected_qual,
2423 			 op == OP_EXEC ? data->gpa + sizeof(unsigned long) :
2424 					 data->gpa);
2425 
2426 	/* Fix the violation and resume the op loop. */
2427 	ept_untwiddle(data->gpa, level, orig_pte);
2428 	enter_guest();
2429 	skip_exit_vmcall();
2430 }
2431 
2432 static void
2433 ept_violation_at_level(int level, unsigned long clear, unsigned long set,
2434 		       enum ept_access_op op, u64 expected_qual)
2435 {
2436 	ept_violation_at_level_mkhuge(false, level, clear, set, op,
2437 				      expected_qual);
2438 	if (ept_huge_pages_supported(level))
2439 		ept_violation_at_level_mkhuge(true, level, clear, set, op,
2440 					      expected_qual);
2441 }
2442 
2443 static void ept_violation(unsigned long clear, unsigned long set,
2444 			  enum ept_access_op op, u64 expected_qual)
2445 {
2446 	ept_violation_at_level(1, clear, set, op, expected_qual);
2447 	ept_violation_at_level(2, clear, set, op, expected_qual);
2448 	ept_violation_at_level(3, clear, set, op, expected_qual);
2449 	ept_violation_at_level(4, clear, set, op, expected_qual);
2450 }
2451 
2452 static void ept_access_violation(unsigned long access, enum ept_access_op op,
2453 				       u64 expected_qual)
2454 {
2455 	ept_violation(EPT_PRESENT, access, op,
2456 		      expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2457 }
2458 
2459 /*
2460  * For translations that don't involve a GVA, that is physical address (paddr)
2461  * accesses, EPT violations don't set the flag EPT_VLT_PADDR.  For a typical
2462  * guest memory access, the hardware does GVA -> GPA -> HPA.  However, certain
2463  * translations don't involve GVAs, such as when the hardware does the guest
2464  * page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU
2465  * might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides
2466  * on isn't present in the EPT, then the EPT violation will be for GPA_2 and
2467  * the EPT_VLT_PADDR bit will be clear in the exit qualification.
2468  *
2469  * Note that paddr violations can also be triggered by loading PAE page tables
2470  * with wonky addresses. We don't test that yet.
2471  *
2472  * This function modifies the EPT entry that maps the GPA that the guest page
2473  * table entry mapping ept_access_test_data.gva resides on.
2474  *
2475  *	@ept_access	EPT permissions to set. Other permissions are cleared.
2476  *
2477  *	@pte_ad		Set the A/D bits on the guest PTE accordingly.
2478  *
2479  *	@op		Guest operation to perform with
2480  *			ept_access_test_data.gva.
2481  *
2482  *	@expect_violation
2483  *			Is a violation expected during the paddr access?
2484  *
2485  *	@expected_qual	Expected qualification for the EPT violation.
2486  *			EPT_VLT_PADDR should be clear.
2487  */
2488 static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad,
2489 			     enum ept_access_op op, bool expect_violation,
2490 			     u64 expected_qual)
2491 {
2492 	struct ept_access_test_data *data = &ept_access_test_data;
2493 	unsigned long *ptep;
2494 	unsigned long gpa;
2495 	unsigned long orig_epte;
2496 
2497 	/* Modify the guest PTE mapping data->gva according to @pte_ad.  */
2498 	ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1);
2499 	TEST_ASSERT(ptep);
2500 	TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa);
2501 	*ptep = (*ptep & ~PT_AD_MASK) | pte_ad;
2502 	ept_access_test_guest_flush_tlb();
2503 
2504 	/*
2505 	 * Now modify the access bits on the EPT entry for the GPA that the
2506 	 * guest PTE resides on. Note that by modifying a single EPT entry,
2507 	 * we're potentially affecting 512 guest PTEs. However, we've carefully
2508 	 * constructed our test such that those other 511 PTEs aren't used by
2509 	 * the guest: data->gva is at the beginning of a 1G huge page, thus the
2510 	 * PTE we're modifying is at the beginning of a 4K page and the
2511 	 * following 511 entires are also under our control (and not touched by
2512 	 * the guest).
2513 	 */
2514 	gpa = virt_to_phys(ptep);
2515 	TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0);
2516 	/*
2517 	 * Make sure the guest page table page is mapped with a 4K EPT entry,
2518 	 * otherwise our level=1 twiddling below will fail. We use the
2519 	 * identity map (gpa = gpa) since page tables are shared with the host.
2520 	 */
2521 	install_ept(pml4, gpa, gpa, EPT_PRESENT);
2522 	orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1,
2523 				/*clear=*/EPT_PRESENT, /*set=*/ept_access);
2524 
2525 	if (expect_violation) {
2526 		do_ept_violation(/*leaf=*/true, op,
2527 				 expected_qual | EPT_VLT_LADDR_VLD, gpa);
2528 		ept_untwiddle(gpa, /*level=*/1, orig_epte);
2529 		do_ept_access_op(op);
2530 	} else {
2531 		do_ept_access_op(op);
2532 		ept_untwiddle(gpa, /*level=*/1, orig_epte);
2533 	}
2534 
2535 	TEST_ASSERT(*ptep & PT_ACCESSED_MASK);
2536 	if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE)
2537 		TEST_ASSERT(*ptep & PT_DIRTY_MASK);
2538 
2539 	skip_exit_vmcall();
2540 }
2541 
2542 static void ept_access_allowed_paddr(unsigned long ept_access,
2543 				     unsigned long pte_ad,
2544 				     enum ept_access_op op)
2545 {
2546 	ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false,
2547 			 /*expected_qual=*/-1);
2548 }
2549 
2550 static void ept_access_violation_paddr(unsigned long ept_access,
2551 				       unsigned long pte_ad,
2552 				       enum ept_access_op op,
2553 				       u64 expected_qual)
2554 {
2555 	ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true,
2556 			 expected_qual);
2557 }
2558 
2559 
2560 static void ept_allowed_at_level_mkhuge(bool mkhuge, int level,
2561 					unsigned long clear,
2562 					unsigned long set,
2563 					enum ept_access_op op)
2564 {
2565 	struct ept_access_test_data *data = &ept_access_test_data;
2566 	unsigned long orig_pte;
2567 
2568 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2569 
2570 	/* No violation. Should proceed to vmcall. */
2571 	do_ept_access_op(op);
2572 	skip_exit_vmcall();
2573 
2574 	ept_untwiddle(data->gpa, level, orig_pte);
2575 }
2576 
2577 static void ept_allowed_at_level(int level, unsigned long clear,
2578 				 unsigned long set, enum ept_access_op op)
2579 {
2580 	ept_allowed_at_level_mkhuge(false, level, clear, set, op);
2581 	if (ept_huge_pages_supported(level))
2582 		ept_allowed_at_level_mkhuge(true, level, clear, set, op);
2583 }
2584 
2585 static void ept_allowed(unsigned long clear, unsigned long set,
2586 			enum ept_access_op op)
2587 {
2588 	ept_allowed_at_level(1, clear, set, op);
2589 	ept_allowed_at_level(2, clear, set, op);
2590 	ept_allowed_at_level(3, clear, set, op);
2591 	ept_allowed_at_level(4, clear, set, op);
2592 }
2593 
2594 static void ept_ignored_bit(int bit)
2595 {
2596 	/* Set the bit. */
2597 	ept_allowed(0, 1ul << bit, OP_READ);
2598 	ept_allowed(0, 1ul << bit, OP_WRITE);
2599 	ept_allowed(0, 1ul << bit, OP_EXEC);
2600 
2601 	/* Clear the bit. */
2602 	ept_allowed(1ul << bit, 0, OP_READ);
2603 	ept_allowed(1ul << bit, 0, OP_WRITE);
2604 	ept_allowed(1ul << bit, 0, OP_EXEC);
2605 }
2606 
2607 static void ept_access_allowed(unsigned long access, enum ept_access_op op)
2608 {
2609 	ept_allowed(EPT_PRESENT, access, op);
2610 }
2611 
2612 
2613 static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level,
2614 					     unsigned long clear,
2615 					     unsigned long set,
2616 					     enum ept_access_op op)
2617 {
2618 	struct ept_access_test_data *data = &ept_access_test_data;
2619 	unsigned long orig_pte;
2620 
2621 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2622 
2623 	do_ept_access_op(op);
2624 	assert_exit_reason(VMX_EPT_MISCONFIG);
2625 
2626 	/* Intel 27.2.1, "For all other VM exits, this field is cleared." */
2627 	#if 0
2628 	/* broken: */
2629 	TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0);
2630 	#endif
2631 	#if 0
2632 	/*
2633 	 * broken:
2634 	 * According to description of exit qual for EPT violation,
2635 	 * EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid.
2636 	 * However, I can't find anything that says GUEST_LINEAR_ADDRESS ought
2637 	 * to be set for msiconfig.
2638 	 */
2639 	TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
2640 		       (unsigned long) (
2641 			       op == OP_EXEC ? data->gva + 1 : data->gva));
2642 	#endif
2643 
2644 	/* Fix the violation and resume the op loop. */
2645 	ept_untwiddle(data->gpa, level, orig_pte);
2646 	enter_guest();
2647 	skip_exit_vmcall();
2648 }
2649 
2650 static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level,
2651 					  unsigned long clear,
2652 					  unsigned long set)
2653 {
2654 	/* The op shouldn't matter (read, write, exec), so try them all! */
2655 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ);
2656 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE);
2657 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC);
2658 }
2659 
2660 static void ept_misconfig_at_level(int level, unsigned long clear,
2661 				   unsigned long set)
2662 {
2663 	ept_misconfig_at_level_mkhuge(false, level, clear, set);
2664 	if (ept_huge_pages_supported(level))
2665 		ept_misconfig_at_level_mkhuge(true, level, clear, set);
2666 }
2667 
2668 static void ept_misconfig(unsigned long clear, unsigned long set)
2669 {
2670 	ept_misconfig_at_level(1, clear, set);
2671 	ept_misconfig_at_level(2, clear, set);
2672 	ept_misconfig_at_level(3, clear, set);
2673 	ept_misconfig_at_level(4, clear, set);
2674 }
2675 
2676 static void ept_access_misconfig(unsigned long access)
2677 {
2678 	ept_misconfig(EPT_PRESENT, access);
2679 }
2680 
2681 static void ept_reserved_bit_at_level_nohuge(int level, int bit)
2682 {
2683 	/* Setting the bit causes a misconfig. */
2684 	ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit);
2685 
2686 	/* Making the entry non-present turns reserved bits into ignored. */
2687 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2688 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2689 }
2690 
2691 static void ept_reserved_bit_at_level_huge(int level, int bit)
2692 {
2693 	/* Setting the bit causes a misconfig. */
2694 	ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit);
2695 
2696 	/* Making the entry non-present turns reserved bits into ignored. */
2697 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2698 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2699 }
2700 
2701 static void ept_reserved_bit_at_level(int level, int bit)
2702 {
2703 	/* Setting the bit causes a misconfig. */
2704 	ept_misconfig_at_level(level, 0, 1ul << bit);
2705 
2706 	/* Making the entry non-present turns reserved bits into ignored. */
2707 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2708 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2709 }
2710 
2711 static void ept_reserved_bit(int bit)
2712 {
2713 	ept_reserved_bit_at_level(1, bit);
2714 	ept_reserved_bit_at_level(2, bit);
2715 	ept_reserved_bit_at_level(3, bit);
2716 	ept_reserved_bit_at_level(4, bit);
2717 }
2718 
2719 #define PAGE_2M_ORDER 9
2720 #define PAGE_1G_ORDER 18
2721 
2722 static void *get_1g_page(void)
2723 {
2724 	static void *alloc;
2725 
2726 	if (!alloc)
2727 		alloc = alloc_pages(PAGE_1G_ORDER);
2728 	return alloc;
2729 }
2730 
2731 static void ept_access_test_teardown(void *unused)
2732 {
2733 	/* Exit the guest cleanly. */
2734 	do_ept_access_op(OP_EXIT);
2735 }
2736 
2737 static void ept_access_test_guest(void)
2738 {
2739 	struct ept_access_test_data *data = &ept_access_test_data;
2740 	int (*code)(void) = (int (*)(void)) &data->gva[1];
2741 
2742 	while (true) {
2743 		switch (data->op) {
2744 		case OP_READ:
2745 			TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1);
2746 			break;
2747 		case OP_WRITE:
2748 			*data->gva = MAGIC_VAL_2;
2749 			TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2);
2750 			*data->gva = MAGIC_VAL_1;
2751 			break;
2752 		case OP_EXEC:
2753 			TEST_ASSERT_EQ(42, code());
2754 			break;
2755 		case OP_FLUSH_TLB:
2756 			write_cr3(read_cr3());
2757 			break;
2758 		case OP_EXIT:
2759 			return;
2760 		default:
2761 			TEST_ASSERT_MSG(false, "Unknown op %d", data->op);
2762 		}
2763 		vmcall();
2764 	}
2765 }
2766 
2767 static void ept_access_test_setup(void)
2768 {
2769 	struct ept_access_test_data *data = &ept_access_test_data;
2770 	unsigned long npages = 1ul << PAGE_1G_ORDER;
2771 	unsigned long size = npages * PAGE_SIZE;
2772 	unsigned long *page_table = current_page_table();
2773 	unsigned long pte;
2774 
2775 	if (setup_ept(false))
2776 		test_skip("EPT not supported");
2777 
2778 	/* We use data->gpa = 1 << 39 so that test data has a separate pml4 entry */
2779 	if (cpuid_maxphyaddr() < 40)
2780 		test_skip("Test needs MAXPHYADDR >= 40");
2781 
2782 	test_set_guest(ept_access_test_guest);
2783 	test_add_teardown(ept_access_test_teardown, NULL);
2784 
2785 	data->hva = get_1g_page();
2786 	TEST_ASSERT(data->hva);
2787 	data->hpa = virt_to_phys(data->hva);
2788 
2789 	data->gpa = 1ul << 39;
2790 	data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2),
2791 				   size);
2792 	TEST_ASSERT(!any_present_pages(page_table, data->gva, size));
2793 	install_pages(page_table, data->gpa, size, data->gva);
2794 
2795 	/*
2796 	 * Make sure nothing's mapped here so the tests that screw with the
2797 	 * pml4 entry don't inadvertently break something.
2798 	 */
2799 	TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0);
2800 	TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0);
2801 	install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT);
2802 
2803 	data->hva[0] = MAGIC_VAL_1;
2804 	memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start);
2805 }
2806 
2807 static void ept_access_test_not_present(void)
2808 {
2809 	ept_access_test_setup();
2810 	/* --- */
2811 	ept_access_violation(0, OP_READ, EPT_VLT_RD);
2812 	ept_access_violation(0, OP_WRITE, EPT_VLT_WR);
2813 	ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH);
2814 }
2815 
2816 static void ept_access_test_read_only(void)
2817 {
2818 	ept_access_test_setup();
2819 
2820 	/* r-- */
2821 	ept_access_allowed(EPT_RA, OP_READ);
2822 	ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD);
2823 	ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD);
2824 }
2825 
2826 static void ept_access_test_write_only(void)
2827 {
2828 	ept_access_test_setup();
2829 	/* -w- */
2830 	ept_access_misconfig(EPT_WA);
2831 }
2832 
2833 static void ept_access_test_read_write(void)
2834 {
2835 	ept_access_test_setup();
2836 	/* rw- */
2837 	ept_access_allowed(EPT_RA | EPT_WA, OP_READ);
2838 	ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE);
2839 	ept_access_violation(EPT_RA | EPT_WA, OP_EXEC,
2840 			   EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR);
2841 }
2842 
2843 
2844 static void ept_access_test_execute_only(void)
2845 {
2846 	ept_access_test_setup();
2847 	/* --x */
2848 	if (ept_execute_only_supported()) {
2849 		ept_access_violation(EPT_EA, OP_READ,
2850 				     EPT_VLT_RD | EPT_VLT_PERM_EX);
2851 		ept_access_violation(EPT_EA, OP_WRITE,
2852 				     EPT_VLT_WR | EPT_VLT_PERM_EX);
2853 		ept_access_allowed(EPT_EA, OP_EXEC);
2854 	} else {
2855 		ept_access_misconfig(EPT_EA);
2856 	}
2857 }
2858 
2859 static void ept_access_test_read_execute(void)
2860 {
2861 	ept_access_test_setup();
2862 	/* r-x */
2863 	ept_access_allowed(EPT_RA | EPT_EA, OP_READ);
2864 	ept_access_violation(EPT_RA | EPT_EA, OP_WRITE,
2865 			   EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX);
2866 	ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC);
2867 }
2868 
2869 static void ept_access_test_write_execute(void)
2870 {
2871 	ept_access_test_setup();
2872 	/* -wx */
2873 	ept_access_misconfig(EPT_WA | EPT_EA);
2874 }
2875 
2876 static void ept_access_test_read_write_execute(void)
2877 {
2878 	ept_access_test_setup();
2879 	/* rwx */
2880 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ);
2881 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE);
2882 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC);
2883 }
2884 
2885 static void ept_access_test_reserved_bits(void)
2886 {
2887 	int i;
2888 	int maxphyaddr;
2889 
2890 	ept_access_test_setup();
2891 
2892 	/* Reserved bits above maxphyaddr. */
2893 	maxphyaddr = cpuid_maxphyaddr();
2894 	for (i = maxphyaddr; i <= 51; i++) {
2895 		report_prefix_pushf("reserved_bit=%d", i);
2896 		ept_reserved_bit(i);
2897 		report_prefix_pop();
2898 	}
2899 
2900 	/* Level-specific reserved bits. */
2901 	ept_reserved_bit_at_level_nohuge(2, 3);
2902 	ept_reserved_bit_at_level_nohuge(2, 4);
2903 	ept_reserved_bit_at_level_nohuge(2, 5);
2904 	ept_reserved_bit_at_level_nohuge(2, 6);
2905 	/* 2M alignment. */
2906 	for (i = 12; i < 20; i++) {
2907 		report_prefix_pushf("reserved_bit=%d", i);
2908 		ept_reserved_bit_at_level_huge(2, i);
2909 		report_prefix_pop();
2910 	}
2911 	ept_reserved_bit_at_level_nohuge(3, 3);
2912 	ept_reserved_bit_at_level_nohuge(3, 4);
2913 	ept_reserved_bit_at_level_nohuge(3, 5);
2914 	ept_reserved_bit_at_level_nohuge(3, 6);
2915 	/* 1G alignment. */
2916 	for (i = 12; i < 29; i++) {
2917 		report_prefix_pushf("reserved_bit=%d", i);
2918 		ept_reserved_bit_at_level_huge(3, i);
2919 		report_prefix_pop();
2920 	}
2921 	ept_reserved_bit_at_level(4, 3);
2922 	ept_reserved_bit_at_level(4, 4);
2923 	ept_reserved_bit_at_level(4, 5);
2924 	ept_reserved_bit_at_level(4, 6);
2925 	ept_reserved_bit_at_level(4, 7);
2926 }
2927 
2928 static void ept_access_test_ignored_bits(void)
2929 {
2930 	ept_access_test_setup();
2931 	/*
2932 	 * Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as
2933 	 * far as translation is concerned even if AD bits are enabled in the
2934 	 * EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution
2935 	 * control is 0.
2936 	 */
2937 	ept_ignored_bit(8);
2938 	ept_ignored_bit(9);
2939 	ept_ignored_bit(10);
2940 	ept_ignored_bit(11);
2941 	ept_ignored_bit(52);
2942 	ept_ignored_bit(53);
2943 	ept_ignored_bit(54);
2944 	ept_ignored_bit(55);
2945 	ept_ignored_bit(56);
2946 	ept_ignored_bit(57);
2947 	ept_ignored_bit(58);
2948 	ept_ignored_bit(59);
2949 	ept_ignored_bit(60);
2950 	ept_ignored_bit(61);
2951 	ept_ignored_bit(62);
2952 	ept_ignored_bit(63);
2953 }
2954 
2955 static void ept_access_test_paddr_not_present_ad_disabled(void)
2956 {
2957 	ept_access_test_setup();
2958 	ept_disable_ad_bits();
2959 
2960 	ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD);
2961 	ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD);
2962 	ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD);
2963 }
2964 
2965 static void ept_access_test_paddr_not_present_ad_enabled(void)
2966 {
2967 	u64 qual = EPT_VLT_RD | EPT_VLT_WR;
2968 
2969 	ept_access_test_setup();
2970 	ept_enable_ad_bits_or_skip_test();
2971 
2972 	ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual);
2973 	ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual);
2974 	ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual);
2975 }
2976 
2977 static void ept_access_test_paddr_read_only_ad_disabled(void)
2978 {
2979 	/*
2980 	 * When EPT AD bits are disabled, all accesses to guest paging
2981 	 * structures are reported separately as a read and (after
2982 	 * translation of the GPA to host physical address) a read+write
2983 	 * if the A/D bits have to be set.
2984 	 */
2985 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
2986 
2987 	ept_access_test_setup();
2988 	ept_disable_ad_bits();
2989 
2990 	/* Can't update A bit, so all accesses fail. */
2991 	ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
2992 	ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
2993 	ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
2994 	/* AD bits disabled, so only writes try to update the D bit. */
2995 	ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ);
2996 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
2997 	ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC);
2998 	/* Both A and D already set, so read-only is OK. */
2999 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ);
3000 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE);
3001 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC);
3002 }
3003 
3004 static void ept_access_test_paddr_read_only_ad_enabled(void)
3005 {
3006 	/*
3007 	 * When EPT AD bits are enabled, all accesses to guest paging
3008 	 * structures are considered writes as far as EPT translation
3009 	 * is concerned.
3010 	 */
3011 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
3012 
3013 	ept_access_test_setup();
3014 	ept_enable_ad_bits_or_skip_test();
3015 
3016 	ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
3017 	ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
3018 	ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
3019 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual);
3020 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
3021 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual);
3022 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual);
3023 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual);
3024 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual);
3025 }
3026 
3027 static void ept_access_test_paddr_read_write(void)
3028 {
3029 	ept_access_test_setup();
3030 	/* Read-write access to paging structure. */
3031 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ);
3032 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE);
3033 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC);
3034 }
3035 
3036 static void ept_access_test_paddr_read_write_execute(void)
3037 {
3038 	ept_access_test_setup();
3039 	/* RWX access to paging structure. */
3040 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ);
3041 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE);
3042 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC);
3043 }
3044 
3045 static void ept_access_test_paddr_read_execute_ad_disabled(void)
3046 {
3047   	/*
3048 	 * When EPT AD bits are disabled, all accesses to guest paging
3049 	 * structures are reported separately as a read and (after
3050 	 * translation of the GPA to host physical address) a read+write
3051 	 * if the A/D bits have to be set.
3052 	 */
3053 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
3054 
3055 	ept_access_test_setup();
3056 	ept_disable_ad_bits();
3057 
3058 	/* Can't update A bit, so all accesses fail. */
3059 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
3060 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
3061 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
3062 	/* AD bits disabled, so only writes try to update the D bit. */
3063 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ);
3064 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
3065 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC);
3066 	/* Both A and D already set, so read-only is OK. */
3067 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ);
3068 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE);
3069 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC);
3070 }
3071 
3072 static void ept_access_test_paddr_read_execute_ad_enabled(void)
3073 {
3074 	/*
3075 	 * When EPT AD bits are enabled, all accesses to guest paging
3076 	 * structures are considered writes as far as EPT translation
3077 	 * is concerned.
3078 	 */
3079 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
3080 
3081 	ept_access_test_setup();
3082 	ept_enable_ad_bits_or_skip_test();
3083 
3084 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
3085 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
3086 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
3087 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual);
3088 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
3089 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual);
3090 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual);
3091 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual);
3092 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual);
3093 }
3094 
3095 static void ept_access_test_paddr_not_present_page_fault(void)
3096 {
3097 	ept_access_test_setup();
3098 	/*
3099 	 * TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is
3100 	 * page is read-only in EPT but GVA is also mapped read only in PT.
3101 	 * Thus guest page fault before host takes EPT violation for trying to
3102 	 * update A bit.
3103 	 */
3104 }
3105 
3106 static void ept_access_test_force_2m_page(void)
3107 {
3108 	ept_access_test_setup();
3109 
3110 	TEST_ASSERT_EQ(ept_2m_supported(), true);
3111 	ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ);
3112 	ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE,
3113 				      EPT_VLT_WR | EPT_VLT_PERM_RD |
3114 				      EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
3115 	ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA);
3116 }
3117 
3118 static bool invvpid_valid(u64 type, u64 vpid, u64 gla)
3119 {
3120 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3121 
3122 	TEST_ASSERT(msr & VPID_CAP_INVVPID);
3123 
3124 	if (type < INVVPID_ADDR || type > INVVPID_CONTEXT_LOCAL)
3125 		return false;
3126 
3127 	if (!(msr & (1ull << (type + VPID_CAP_INVVPID_TYPES_SHIFT))))
3128 		return false;
3129 
3130 	if (vpid >> 16)
3131 		return false;
3132 
3133 	if (type != INVVPID_ALL && !vpid)
3134 		return false;
3135 
3136 	if (type == INVVPID_ADDR && !is_canonical(gla))
3137 		return false;
3138 
3139 	return true;
3140 }
3141 
3142 static void try_invvpid(u64 type, u64 vpid, u64 gla)
3143 {
3144 	int rc;
3145 	bool valid = invvpid_valid(type, vpid, gla);
3146 	u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT
3147 		: VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID;
3148 	/*
3149 	 * Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so
3150 	 * that we can tell if it is updated by INVVPID.
3151 	 */
3152 	vmcs_read(~0);
3153 	rc = invvpid(type, vpid, gla);
3154 	report("INVVPID type %ld VPID %lx GLA %lx %s",
3155 	       !rc == valid, type, vpid, gla,
3156 	       valid ? "passes" : "fails");
3157 	report("After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)",
3158 	       vmcs_read(VMX_INST_ERROR) == expected,
3159 	       rc ? "failed" : "successful",
3160 	       expected, vmcs_read(VMX_INST_ERROR));
3161 }
3162 
3163 static void ds_invvpid(void *data)
3164 {
3165 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3166 	u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
3167 
3168 	TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
3169 	asm volatile("invvpid %0, %1"
3170 		     :
3171 		     : "m"(*(struct invvpid_operand *)data),
3172 		       "r"(type));
3173 }
3174 
3175 /*
3176  * The SS override is ignored in 64-bit mode, so we use an addressing
3177  * mode with %rsp as the base register to generate an implicit SS
3178  * reference.
3179  */
3180 static void ss_invvpid(void *data)
3181 {
3182 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3183 	u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
3184 
3185 	TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
3186 	asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1"
3187 		     : "+r"(data)
3188 		     : "r"(type));
3189 }
3190 
3191 static void invvpid_test_gp(void)
3192 {
3193 	bool fault;
3194 
3195 	fault = test_for_exception(GP_VECTOR, &ds_invvpid,
3196 				   (void *)NONCANONICAL);
3197 	report("INVVPID with non-canonical DS operand raises #GP", fault);
3198 }
3199 
3200 static void invvpid_test_ss(void)
3201 {
3202 	bool fault;
3203 
3204 	fault = test_for_exception(SS_VECTOR, &ss_invvpid,
3205 				   (void *)NONCANONICAL);
3206 	report("INVVPID with non-canonical SS operand raises #SS", fault);
3207 }
3208 
3209 static void invvpid_test_pf(void)
3210 {
3211 	void *vpage = alloc_vpage();
3212 	bool fault;
3213 
3214 	fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage);
3215 	report("INVVPID with unmapped operand raises #PF", fault);
3216 }
3217 
3218 static void try_compat_invvpid(void *unused)
3219 {
3220 	struct far_pointer32 fp = {
3221 		.offset = (uintptr_t)&&invvpid,
3222 		.selector = KERNEL_CS32,
3223 	};
3224 	register uintptr_t rsp asm("rsp");
3225 
3226 	TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid,
3227 			"Code address too high.");
3228 	TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high.");
3229 
3230 	asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid);
3231 	return;
3232 invvpid:
3233 	asm volatile (".code32;"
3234 		      "invvpid (%eax), %eax;"
3235 		      "lret;"
3236 		      ".code64");
3237 	__builtin_unreachable();
3238 }
3239 
3240 static void invvpid_test_compatibility_mode(void)
3241 {
3242 	bool fault;
3243 
3244 	fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL);
3245 	report("Compatibility mode INVVPID raises #UD", fault);
3246 }
3247 
3248 static void invvpid_test_not_in_vmx_operation(void)
3249 {
3250 	bool fault;
3251 
3252 	TEST_ASSERT(!vmx_off());
3253 	fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL);
3254 	report("INVVPID outside of VMX operation raises #UD", fault);
3255 	TEST_ASSERT(!vmx_on());
3256 }
3257 
3258 /*
3259  * This does not test real-address mode, virtual-8086 mode, protected mode,
3260  * or CPL > 0.
3261  */
3262 static void invvpid_test_v2(void)
3263 {
3264 	u64 msr;
3265 	int i;
3266 	unsigned types = 0;
3267 	unsigned type;
3268 
3269 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
3270 	    !(ctrl_cpu_rev[1].clr & CPU_VPID))
3271 		test_skip("VPID not supported");
3272 
3273 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3274 
3275 	if (!(msr & VPID_CAP_INVVPID))
3276 		test_skip("INVVPID not supported.\n");
3277 
3278 	if (msr & VPID_CAP_INVVPID_ADDR)
3279 		types |= 1u << INVVPID_ADDR;
3280 	if (msr & VPID_CAP_INVVPID_CXTGLB)
3281 		types |= 1u << INVVPID_CONTEXT_GLOBAL;
3282 	if (msr & VPID_CAP_INVVPID_ALL)
3283 		types |= 1u << INVVPID_ALL;
3284 	if (msr & VPID_CAP_INVVPID_CXTLOC)
3285 		types |= 1u << INVVPID_CONTEXT_LOCAL;
3286 
3287 	if (!types)
3288 		test_skip("No INVVPID types supported.\n");
3289 
3290 	for (i = -127; i < 128; i++)
3291 		try_invvpid(i, 0xffff, 0);
3292 
3293 	/*
3294 	 * VPID must not be more than 16 bits.
3295 	 */
3296 	for (i = 0; i < 64; i++)
3297 		for (type = 0; type < 4; type++)
3298 			if (types & (1u << type))
3299 				try_invvpid(type, 1ul << i, 0);
3300 
3301 	/*
3302 	 * VPID must not be zero, except for "all contexts."
3303 	 */
3304 	for (type = 0; type < 4; type++)
3305 		if (types & (1u << type))
3306 			try_invvpid(type, 0, 0);
3307 
3308 	/*
3309 	 * The gla operand is only validated for single-address INVVPID.
3310 	 */
3311 	if (types & (1u << INVVPID_ADDR))
3312 		try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL);
3313 
3314 	invvpid_test_gp();
3315 	invvpid_test_ss();
3316 	invvpid_test_pf();
3317 	invvpid_test_compatibility_mode();
3318 	invvpid_test_not_in_vmx_operation();
3319 }
3320 
3321 /*
3322  * Test for early VMLAUNCH failure. Returns true if VMLAUNCH makes it
3323  * at least as far as the guest-state checks. Returns false if the
3324  * VMLAUNCH fails early and execution falls through to the next
3325  * instruction.
3326  */
3327 static bool vmlaunch_succeeds(void)
3328 {
3329 	u32 exit_reason;
3330 
3331 	/*
3332 	 * Indirectly set VMX_INST_ERR to 12 ("VMREAD/VMWRITE from/to
3333 	 * unsupported VMCS component"). The caller can then check
3334 	 * to see if a failed VM-entry sets VMX_INST_ERR as expected.
3335 	 */
3336 	vmcs_write(~0u, 0);
3337 
3338 	vmcs_write(HOST_RIP, (uintptr_t)&&success);
3339 	__asm__ __volatile__ goto ("vmwrite %%rsp, %0; vmlaunch"
3340 				   :
3341 				   : "r" ((u64)HOST_RSP)
3342 				   : "cc", "memory"
3343 				   : success);
3344 	return false;
3345 success:
3346 	exit_reason = vmcs_read(EXI_REASON);
3347 	TEST_ASSERT(exit_reason == (VMX_FAIL_STATE | VMX_ENTRY_FAILURE) ||
3348 		    exit_reason == (VMX_FAIL_MSR | VMX_ENTRY_FAILURE));
3349 	return true;
3350 }
3351 
3352 /*
3353  * Try to launch the current VMCS.
3354  */
3355 static void test_vmx_vmlaunch(u32 xerror, bool xfail)
3356 {
3357 	bool success = vmlaunch_succeeds();
3358 	u32 vmx_inst_err;
3359 
3360 	report_xfail("vmlaunch %s", xfail, success == !xerror,
3361 		     !xerror ? "succeeds" : "fails");
3362 	if (!success && xerror) {
3363 		vmx_inst_err = vmcs_read(VMX_INST_ERROR);
3364 		report("VMX inst error is %d (actual %d)",
3365 		       vmx_inst_err == xerror, xerror, vmx_inst_err);
3366 	}
3367 }
3368 
3369 static void test_vmx_invalid_controls(bool xfail)
3370 {
3371 	test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_CONTROL_FIELD, xfail);
3372 }
3373 
3374 static void test_vmx_valid_controls(bool xfail)
3375 {
3376 	test_vmx_vmlaunch(0, xfail);
3377 }
3378 
3379 /*
3380  * Test a particular value of a VM-execution control bit, if the value
3381  * is required or if the value is zero.
3382  */
3383 static void test_rsvd_ctl_bit_value(const char *name, union vmx_ctrl_msr msr,
3384 				    enum Encoding encoding, unsigned bit,
3385 				    unsigned val)
3386 {
3387 	u32 mask = 1u << bit;
3388 	bool expected;
3389 	u32 controls;
3390 
3391 	if (msr.set & mask)
3392 		TEST_ASSERT(msr.clr & mask);
3393 
3394 	/*
3395 	 * We can't arbitrarily turn on a control bit, because it may
3396 	 * introduce dependencies on other VMCS fields. So, we only
3397 	 * test turning on bits that have a required setting.
3398 	 */
3399 	if (val && (msr.clr & mask) && !(msr.set & mask))
3400 		return;
3401 
3402 	report_prefix_pushf("%s %s bit %d",
3403 			    val ? "Set" : "Clear", name, bit);
3404 
3405 	controls = vmcs_read(encoding);
3406 	if (val) {
3407 		vmcs_write(encoding, msr.set | mask);
3408 		expected = (msr.clr & mask);
3409 	} else {
3410 		vmcs_write(encoding, msr.set & ~mask);
3411 		expected = !(msr.set & mask);
3412 	}
3413 	if (expected)
3414 		test_vmx_valid_controls(false);
3415 	else
3416 		test_vmx_invalid_controls(false);
3417 	vmcs_write(encoding, controls);
3418 	report_prefix_pop();
3419 }
3420 
3421 /*
3422  * Test reserved values of a VM-execution control bit, based on the
3423  * allowed bit settings from the corresponding VMX capability MSR.
3424  */
3425 static void test_rsvd_ctl_bit(const char *name, union vmx_ctrl_msr msr,
3426 			      enum Encoding encoding, unsigned bit)
3427 {
3428 	test_rsvd_ctl_bit_value(name, msr, encoding, bit, 0);
3429 	test_rsvd_ctl_bit_value(name, msr, encoding, bit, 1);
3430 }
3431 
3432 /*
3433  * Reserved bits in the pin-based VM-execution controls must be set
3434  * properly. Software may consult the VMX capability MSRs to determine
3435  * the proper settings.
3436  * [Intel SDM]
3437  */
3438 static void test_pin_based_ctls(void)
3439 {
3440 	unsigned bit;
3441 
3442 	printf("%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PIN" :
3443 	       "MSR_IA32_VMX_PINBASED_CTLS", ctrl_pin_rev.val);
3444 	for (bit = 0; bit < 32; bit++)
3445 		test_rsvd_ctl_bit("pin-based controls",
3446 				  ctrl_pin_rev, PIN_CONTROLS, bit);
3447 }
3448 
3449 /*
3450  * Reserved bits in the primary processor-based VM-execution controls
3451  * must be set properly. Software may consult the VMX capability MSRs
3452  * to determine the proper settings.
3453  * [Intel SDM]
3454  */
3455 static void test_primary_processor_based_ctls(void)
3456 {
3457 	unsigned bit;
3458 
3459 	printf("\n%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PROC" :
3460 	       "MSR_IA32_VMX_PROCBASED_CTLS", ctrl_cpu_rev[0].val);
3461 	for (bit = 0; bit < 32; bit++)
3462 		test_rsvd_ctl_bit("primary processor-based controls",
3463 				  ctrl_cpu_rev[0], CPU_EXEC_CTRL0, bit);
3464 }
3465 
3466 /*
3467  * If the "activate secondary controls" primary processor-based
3468  * VM-execution control is 1, reserved bits in the secondary
3469  * processor-based VM-execution controls must be cleared. Software may
3470  * consult the VMX capability MSRs to determine which bits are
3471  * reserved.
3472  * If the "activate secondary controls" primary processor-based
3473  * VM-execution control is 0 (or if the processor does not support the
3474  * 1-setting of that control), no checks are performed on the
3475  * secondary processor-based VM-execution controls.
3476  * [Intel SDM]
3477  */
3478 static void test_secondary_processor_based_ctls(void)
3479 {
3480 	u32 primary;
3481 	u32 secondary;
3482 	unsigned bit;
3483 
3484 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY))
3485 		return;
3486 
3487 	primary = vmcs_read(CPU_EXEC_CTRL0);
3488 	secondary = vmcs_read(CPU_EXEC_CTRL1);
3489 
3490 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3491 	printf("\nMSR_IA32_VMX_PROCBASED_CTLS2: %lx\n", ctrl_cpu_rev[1].val);
3492 	for (bit = 0; bit < 32; bit++)
3493 		test_rsvd_ctl_bit("secondary processor-based controls",
3494 				  ctrl_cpu_rev[1], CPU_EXEC_CTRL1, bit);
3495 
3496 	/*
3497 	 * When the "activate secondary controls" VM-execution control
3498 	 * is clear, there are no checks on the secondary controls.
3499 	 */
3500 	vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
3501 	vmcs_write(CPU_EXEC_CTRL1, ~0);
3502 	report("Secondary processor-based controls ignored",
3503 	       vmlaunch_succeeds());
3504 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3505 	vmcs_write(CPU_EXEC_CTRL0, primary);
3506 }
3507 
3508 static void try_cr3_target_count(unsigned i, unsigned max)
3509 {
3510 	report_prefix_pushf("CR3 target count 0x%x", i);
3511 	vmcs_write(CR3_TARGET_COUNT, i);
3512 	if (i <= max)
3513 		test_vmx_valid_controls(false);
3514 	else
3515 		test_vmx_invalid_controls(false);
3516 	report_prefix_pop();
3517 }
3518 
3519 /*
3520  * The CR3-target count must not be greater than 4. Future processors
3521  * may support a different number of CR3-target values. Software
3522  * should read the VMX capability MSR IA32_VMX_MISC to determine the
3523  * number of values supported.
3524  * [Intel SDM]
3525  */
3526 static void test_cr3_targets(void)
3527 {
3528 	unsigned supported_targets = (rdmsr(MSR_IA32_VMX_MISC) >> 16) & 0x1ff;
3529 	u32 cr3_targets = vmcs_read(CR3_TARGET_COUNT);
3530 	unsigned i;
3531 
3532 	printf("\nSupported CR3 targets: %d\n", supported_targets);
3533 	TEST_ASSERT(supported_targets <= 256);
3534 
3535 	try_cr3_target_count(-1u, supported_targets);
3536 	try_cr3_target_count(0x80000000, supported_targets);
3537 	try_cr3_target_count(0x7fffffff, supported_targets);
3538 	for (i = 0; i <= supported_targets + 1; i++)
3539 		try_cr3_target_count(i, supported_targets);
3540 	vmcs_write(CR3_TARGET_COUNT, cr3_targets);
3541 }
3542 
3543 /*
3544  * Test a particular address setting in the VMCS
3545  */
3546 static void test_vmcs_addr(const char *name,
3547 			   enum Encoding encoding,
3548 			   u64 align,
3549 			   bool ignored,
3550 			   bool xfail_beyond_mapped_ram,
3551 			   u64 addr)
3552 {
3553 	bool xfail =
3554 		(xfail_beyond_mapped_ram &&
3555 		 addr > fwcfg_get_u64(FW_CFG_RAM_SIZE) - align &&
3556 		 addr < (1ul << cpuid_maxphyaddr()));
3557 
3558 	report_prefix_pushf("%s = %lx", name, addr);
3559 	vmcs_write(encoding, addr);
3560 	if (ignored || (IS_ALIGNED(addr, align) &&
3561 	    addr < (1ul << cpuid_maxphyaddr())))
3562 		test_vmx_valid_controls(xfail);
3563 	else
3564 		test_vmx_invalid_controls(xfail);
3565 	report_prefix_pop();
3566 	xfail = false;
3567 }
3568 
3569 /*
3570  * Test interesting values for a VMCS address
3571  */
3572 static void test_vmcs_addr_values(const char *name,
3573 				  enum Encoding encoding,
3574 				  u64 align,
3575 				  bool ignored,
3576 				  bool xfail_beyond_mapped_ram,
3577 				  u32 bit_start, u32 bit_end)
3578 {
3579 	unsigned i;
3580 	u64 orig_val = vmcs_read(encoding);
3581 
3582 	for (i = bit_start; i <= bit_end; i++)
3583 		test_vmcs_addr(name, encoding, align, ignored,
3584 			       xfail_beyond_mapped_ram, 1ul << i);
3585 
3586 	test_vmcs_addr(name, encoding, align, ignored,
3587 		       xfail_beyond_mapped_ram, PAGE_SIZE - 1);
3588 	test_vmcs_addr(name, encoding, align, ignored,
3589 		       xfail_beyond_mapped_ram, PAGE_SIZE);
3590 	test_vmcs_addr(name, encoding, align, ignored,
3591 		       xfail_beyond_mapped_ram,
3592 		      (1ul << cpuid_maxphyaddr()) - PAGE_SIZE);
3593 	test_vmcs_addr(name, encoding, align, ignored,
3594 		       xfail_beyond_mapped_ram, -1ul);
3595 
3596 	vmcs_write(encoding, orig_val);
3597 }
3598 
3599 /*
3600  * Test a physical address reference in the VMCS, when the corresponding
3601  * feature is enabled and when the corresponding feature is disabled.
3602  */
3603 static void test_vmcs_addr_reference(u32 control_bit, enum Encoding field,
3604 				     const char *field_name,
3605 				     const char *control_name, u64 align,
3606 				     bool xfail_beyond_mapped_ram,
3607 				     bool control_primary)
3608 {
3609 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
3610 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
3611 	u64 page_addr;
3612 
3613 	if (control_primary) {
3614 		if (!(ctrl_cpu_rev[0].clr & control_bit))
3615 			return;
3616 	} else {
3617 		if (!(ctrl_cpu_rev[1].clr & control_bit))
3618 			return;
3619 	}
3620 
3621 	page_addr = vmcs_read(field);
3622 
3623 	report_prefix_pushf("%s enabled", control_name);
3624 	if (control_primary) {
3625 		vmcs_write(CPU_EXEC_CTRL0, primary | control_bit);
3626 	} else {
3627 		vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3628 		vmcs_write(CPU_EXEC_CTRL1, secondary | control_bit);
3629 	}
3630 
3631 	test_vmcs_addr_values(field_name, field, align, false,
3632 			      xfail_beyond_mapped_ram, 0, 63);
3633 	report_prefix_pop();
3634 
3635 	report_prefix_pushf("%s disabled", control_name);
3636 	if (control_primary) {
3637 		vmcs_write(CPU_EXEC_CTRL0, primary & ~control_bit);
3638 	} else {
3639 		vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
3640 		vmcs_write(CPU_EXEC_CTRL1, secondary & ~control_bit);
3641 	}
3642 
3643 	test_vmcs_addr_values(field_name, field, align, true, false, 0, 63);
3644 	report_prefix_pop();
3645 
3646 	vmcs_write(field, page_addr);
3647 	vmcs_write(CPU_EXEC_CTRL0, primary);
3648 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3649 }
3650 
3651 /*
3652  * If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of
3653  * each I/O-bitmap address must be 0. Neither address should set any
3654  * bits beyond the processor's physical-address width.
3655  * [Intel SDM]
3656  */
3657 static void test_io_bitmaps(void)
3658 {
3659 	test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_A,
3660 				 "I/O bitmap A", "Use I/O bitmaps",
3661 				 PAGE_SIZE, false, true);
3662 	test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_B,
3663 				 "I/O bitmap B", "Use I/O bitmaps",
3664 				 PAGE_SIZE, false, true);
3665 }
3666 
3667 /*
3668  * If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of
3669  * the MSR-bitmap address must be 0. The address should not set any
3670  * bits beyond the processor's physical-address width.
3671  * [Intel SDM]
3672  */
3673 static void test_msr_bitmap(void)
3674 {
3675 	test_vmcs_addr_reference(CPU_MSR_BITMAP, MSR_BITMAP,
3676 				 "MSR bitmap", "Use MSR bitmaps",
3677 				 PAGE_SIZE, false, true);
3678 }
3679 
3680 /*
3681  * If the "use TPR shadow" VM-execution control is 1, the virtual-APIC
3682  * address must satisfy the following checks:
3683  * - Bits 11:0 of the address must be 0.
3684  * - The address should not set any bits beyond the processor's
3685  *   physical-address width.
3686  * [Intel SDM]
3687  */
3688 static void test_apic_virt_addr(void)
3689 {
3690 	/*
3691 	 * Ensure the processor will never use the virtual-APIC page, since
3692 	 * we will point it to invalid RAM.  Otherwise KVM is puzzled about
3693 	 * what we're trying to achieve and fails vmentry.
3694 	 */
3695 	u32 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0);
3696 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0 | CPU_CR8_LOAD | CPU_CR8_STORE);
3697 	test_vmcs_addr_reference(CPU_TPR_SHADOW, APIC_VIRT_ADDR,
3698 				 "virtual-APIC address", "Use TPR shadow",
3699 				 PAGE_SIZE, false, true);
3700 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0);
3701 }
3702 
3703 /*
3704  * If the "virtualize APIC-accesses" VM-execution control is 1, the
3705  * APIC-access address must satisfy the following checks:
3706  *  - Bits 11:0 of the address must be 0.
3707  *  - The address should not set any bits beyond the processor's
3708  *    physical-address width.
3709  * [Intel SDM]
3710  */
3711 static void test_apic_access_addr(void)
3712 {
3713 	void *apic_access_page = alloc_page();
3714 
3715 	vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_page));
3716 
3717 	test_vmcs_addr_reference(CPU_VIRT_APIC_ACCESSES, APIC_ACCS_ADDR,
3718 				 "APIC-access address",
3719 				 "virtualize APIC-accesses", PAGE_SIZE,
3720 				 false, false);
3721 }
3722 
3723 static bool set_bit_pattern(u8 mask, u32 *secondary)
3724 {
3725 	u8 i;
3726 	bool flag = false;
3727 	u32 test_bits[3] = {
3728 		CPU_VIRT_X2APIC,
3729 		CPU_APIC_REG_VIRT,
3730 		CPU_VINTD
3731 	};
3732 
3733         for (i = 0; i < ARRAY_SIZE(test_bits); i++) {
3734 		if ((mask & (1u << i)) &&
3735 		    (ctrl_cpu_rev[1].clr & test_bits[i])) {
3736 			*secondary |= test_bits[i];
3737 			flag = true;
3738 		}
3739 	}
3740 
3741 	return (flag);
3742 }
3743 
3744 /*
3745  * If the "use TPR shadow" VM-execution control is 0, the following
3746  * VM-execution controls must also be 0:
3747  * 	- virtualize x2APIC mode
3748  *	- APIC-register virtualization
3749  *	- virtual-interrupt delivery
3750  *    [Intel SDM]
3751  *
3752  * 2. If the "virtualize x2APIC mode" VM-execution control is 1, the
3753  *    "virtualize APIC accesses" VM-execution control must be 0.
3754  *    [Intel SDM]
3755  */
3756 static void test_apic_virtual_ctls(void)
3757 {
3758 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3759 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3760 	u32 primary = saved_primary;
3761 	u32 secondary = saved_secondary;
3762 	bool ctrl = false;
3763 	char str[10] = "disabled";
3764 	u8 i = 0, j;
3765 
3766 	/*
3767 	 * First test
3768 	 */
3769 	if (!((ctrl_cpu_rev[0].clr & (CPU_SECONDARY | CPU_TPR_SHADOW)) ==
3770 	    (CPU_SECONDARY | CPU_TPR_SHADOW)))
3771 		return;
3772 
3773 	primary |= CPU_SECONDARY;
3774 	primary &= ~CPU_TPR_SHADOW;
3775 	vmcs_write(CPU_EXEC_CTRL0, primary);
3776 
3777 	while (1) {
3778 		for (j = 1; j < 8; j++) {
3779 			secondary &= ~(CPU_VIRT_X2APIC | CPU_APIC_REG_VIRT | CPU_VINTD);
3780 			if (primary & CPU_TPR_SHADOW) {
3781 				ctrl = true;
3782 			} else {
3783 				if (! set_bit_pattern(j, &secondary))
3784 					ctrl = true;
3785 				else
3786 					ctrl = false;
3787 			}
3788 
3789 			vmcs_write(CPU_EXEC_CTRL1, secondary);
3790 			report_prefix_pushf("Use TPR shadow %s, virtualize x2APIC mode %s, APIC-register virtualization %s, virtual-interrupt delivery %s",
3791 				str, (secondary & CPU_VIRT_X2APIC) ? "enabled" : "disabled", (secondary & CPU_APIC_REG_VIRT) ? "enabled" : "disabled", (secondary & CPU_VINTD) ? "enabled" : "disabled");
3792 			if (ctrl)
3793 				test_vmx_valid_controls(false);
3794 			else
3795 				test_vmx_invalid_controls(false);
3796 			report_prefix_pop();
3797 		}
3798 
3799 		if (i == 1)
3800 			break;
3801 		i++;
3802 
3803 		primary |= CPU_TPR_SHADOW;
3804 		vmcs_write(CPU_EXEC_CTRL0, primary);
3805 		strcpy(str, "enabled");
3806 	}
3807 
3808 	/*
3809 	 * Second test
3810 	 */
3811 	u32 apic_virt_ctls = (CPU_VIRT_X2APIC | CPU_VIRT_APIC_ACCESSES);
3812 
3813 	primary = saved_primary;
3814 	secondary = saved_secondary;
3815 	if (!((ctrl_cpu_rev[1].clr & apic_virt_ctls) == apic_virt_ctls))
3816 		return;
3817 
3818 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3819 	secondary &= ~CPU_VIRT_APIC_ACCESSES;
3820 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_X2APIC);
3821 	report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access disabled");
3822 	test_vmx_valid_controls(false);
3823 	report_prefix_pop();
3824 
3825 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_APIC_ACCESSES);
3826 	report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access enabled");
3827 	test_vmx_valid_controls(false);
3828 	report_prefix_pop();
3829 
3830 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_X2APIC);
3831 	report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access enabled");
3832 	test_vmx_invalid_controls(false);
3833 	report_prefix_pop();
3834 
3835 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_APIC_ACCESSES);
3836 	report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access disabled");
3837 	test_vmx_valid_controls(false);
3838 	report_prefix_pop();
3839 
3840 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
3841 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
3842 }
3843 
3844 /*
3845  * If the "virtual-interrupt delivery" VM-execution control is 1, the
3846  * "external-interrupt exiting" VM-execution control must be 1.
3847  * [Intel SDM]
3848  */
3849 static void test_virtual_intr_ctls(void)
3850 {
3851 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3852 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3853 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
3854 	u32 primary = saved_primary;
3855 	u32 secondary = saved_secondary;
3856 	u32 pin = saved_pin;
3857 
3858 	if (!((ctrl_cpu_rev[1].clr & CPU_VINTD) &&
3859 	    (ctrl_pin_rev.clr & PIN_EXTINT)))
3860 		return;
3861 
3862 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW);
3863 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VINTD);
3864 	vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT);
3865 	report_prefix_pushf("Virtualize interrupt-delivery disabled; external-interrupt exiting disabled");
3866 	test_vmx_valid_controls(false);
3867 	report_prefix_pop();
3868 
3869 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VINTD);
3870 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled");
3871 	test_vmx_invalid_controls(false);
3872 	report_prefix_pop();
3873 
3874 	vmcs_write(PIN_CONTROLS, pin | PIN_EXTINT);
3875 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting enabled");
3876 	test_vmx_valid_controls(false);
3877 	report_prefix_pop();
3878 
3879 	vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT);
3880 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled");
3881 	test_vmx_invalid_controls(false);
3882 	report_prefix_pop();
3883 
3884 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
3885 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
3886 	vmcs_write(PIN_CONTROLS, saved_pin);
3887 }
3888 
3889 static void test_pi_desc_addr(u64 addr, bool ctrl)
3890 {
3891 	vmcs_write(POSTED_INTR_DESC_ADDR, addr);
3892 	report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-descriptor-address 0x%lx", addr);
3893 	if (ctrl)
3894 		test_vmx_valid_controls(false);
3895 	else
3896 		test_vmx_invalid_controls(false);
3897 	report_prefix_pop();
3898 }
3899 
3900 /*
3901  * If the “process posted interrupts†VM-execution control is 1, the
3902  * following must be true:
3903  *
3904  *	- The “virtual-interrupt delivery†VM-execution control is 1.
3905  *	- The “acknowledge interrupt on exit†VM-exit control is 1.
3906  *	- The posted-interrupt notification vector has a value in the
3907  *	- range 0–255 (bits 15:8 are all 0).
3908  *	- Bits 5:0 of the posted-interrupt descriptor address are all 0.
3909  *	- The posted-interrupt descriptor address does not set any bits
3910  *	  beyond the processor's physical-address width.
3911  * [Intel SDM]
3912  */
3913 static void test_posted_intr(void)
3914 {
3915 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3916 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3917 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
3918 	u32 exit_ctl_saved = vmcs_read(EXI_CONTROLS);
3919 	u32 primary = saved_primary;
3920 	u32 secondary = saved_secondary;
3921 	u32 pin = saved_pin;
3922 	u32 exit_ctl = exit_ctl_saved;
3923 	u16 vec;
3924 	int i;
3925 
3926 	if (!((ctrl_pin_rev.clr & PIN_POST_INTR) &&
3927 	    (ctrl_cpu_rev[1].clr & CPU_VINTD) &&
3928 	    (ctrl_exit_rev.clr & EXI_INTA)))
3929 		return;
3930 
3931 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW);
3932 
3933 	/*
3934 	 * Test virtual-interrupt-delivery and acknowledge-interrupt-on-exit
3935 	 */
3936 	pin |= PIN_POST_INTR;
3937 	vmcs_write(PIN_CONTROLS, pin);
3938 	secondary &= ~CPU_VINTD;
3939 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3940 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled");
3941 	test_vmx_invalid_controls(false);
3942 	report_prefix_pop();
3943 
3944 	secondary |= CPU_VINTD;
3945 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3946 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled");
3947 	test_vmx_invalid_controls(false);
3948 	report_prefix_pop();
3949 
3950 	exit_ctl &= ~EXI_INTA;
3951 	vmcs_write(EXI_CONTROLS, exit_ctl);
3952 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit disabled");
3953 	test_vmx_invalid_controls(false);
3954 	report_prefix_pop();
3955 
3956 	exit_ctl |= EXI_INTA;
3957 	vmcs_write(EXI_CONTROLS, exit_ctl);
3958 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled");
3959 	test_vmx_valid_controls(false);
3960 	report_prefix_pop();
3961 
3962 	secondary &= ~CPU_VINTD;
3963 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3964 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled; acknowledge-interrupt-on-exit enabled");
3965 	test_vmx_invalid_controls(false);
3966 	report_prefix_pop();
3967 
3968 	secondary |= CPU_VINTD;
3969 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3970 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled");
3971 	test_vmx_valid_controls(false);
3972 	report_prefix_pop();
3973 
3974 	/*
3975 	 * Test posted-interrupt notification vector
3976 	 */
3977 	for (i = 0; i < 8; i++) {
3978 		vec = (1ul << i);
3979 		vmcs_write(PINV, vec);
3980 		report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
3981 		test_vmx_valid_controls(false);
3982 		report_prefix_pop();
3983 	}
3984 	for (i = 8; i < 16; i++) {
3985 		vec = (1ul << i);
3986 		vmcs_write(PINV, vec);
3987 		report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
3988 		test_vmx_invalid_controls(false);
3989 		report_prefix_pop();
3990 	}
3991 
3992 	vec &= ~(0xff << 8);
3993 	vmcs_write(PINV, vec);
3994 	report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
3995 	test_vmx_valid_controls(false);
3996 	report_prefix_pop();
3997 
3998 	/*
3999 	 * Test posted-interrupt descriptor addresss
4000 	 */
4001 	for (i = 0; i < 6; i++) {
4002 		test_pi_desc_addr(1ul << i, false);
4003 	}
4004 
4005 	test_pi_desc_addr(0xf0, false);
4006 	test_pi_desc_addr(0xff, false);
4007 	test_pi_desc_addr(0x0f, false);
4008 	test_pi_desc_addr(0x8000, true);
4009 	test_pi_desc_addr(0x00, true);
4010 	test_pi_desc_addr(0xc000, true);
4011 
4012 	test_vmcs_addr_values("process-posted interrupts",
4013 			       POSTED_INTR_DESC_ADDR, 64,
4014 			       false, false, 0, 63);
4015 
4016 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
4017 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
4018 	vmcs_write(PIN_CONTROLS, saved_pin);
4019 }
4020 
4021 static void test_apic_ctls(void)
4022 {
4023 	test_apic_virt_addr();
4024 	test_apic_access_addr();
4025 	test_apic_virtual_ctls();
4026 	test_virtual_intr_ctls();
4027 	test_posted_intr();
4028 }
4029 
4030 /*
4031  * If the “enable VPID†VM-execution control is 1, the value of the
4032  * of the VPID VM-execution control field must not be 0000H.
4033  * [Intel SDM]
4034  */
4035 static void test_vpid(void)
4036 {
4037 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
4038 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
4039 	u16 vpid = 0x0000;
4040 	int i;
4041 
4042 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4043 	    (ctrl_cpu_rev[1].clr & CPU_VPID))) {
4044 		printf("Secondary controls and/or VPID not supported\n");
4045 		return;
4046 	}
4047 
4048 	vmcs_write(CPU_EXEC_CTRL0, saved_primary | CPU_SECONDARY);
4049 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary & ~CPU_VPID);
4050 	vmcs_write(VPID, vpid);
4051 	report_prefix_pushf("VPID disabled; VPID value %x", vpid);
4052 	test_vmx_valid_controls(false);
4053 	report_prefix_pop();
4054 
4055 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary | CPU_VPID);
4056 	report_prefix_pushf("VPID enabled; VPID value %x", vpid);
4057 	test_vmx_invalid_controls(false);
4058 	report_prefix_pop();
4059 
4060 	for (i = 0; i < 16; i++) {
4061 		vpid = (short)1 << i;;
4062 		vmcs_write(VPID, vpid);
4063 		report_prefix_pushf("VPID enabled; VPID value %x", vpid);
4064 		test_vmx_valid_controls(false);
4065 		report_prefix_pop();
4066 	}
4067 
4068 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
4069 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
4070 }
4071 
4072 static void set_vtpr(unsigned vtpr)
4073 {
4074 	*(u32 *)phys_to_virt(vmcs_read(APIC_VIRT_ADDR) + APIC_TASKPRI) = vtpr;
4075 }
4076 
4077 static void try_tpr_threshold_and_vtpr(unsigned threshold, unsigned vtpr)
4078 {
4079 	bool valid = true;
4080 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4081 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4082 
4083 	if ((primary & CPU_TPR_SHADOW) &&
4084 	    (!(primary & CPU_SECONDARY) ||
4085 	     !(secondary & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES))))
4086 		valid = (threshold & 0xf) <= ((vtpr >> 4) & 0xf);
4087 
4088 	set_vtpr(vtpr);
4089 	report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0x%x",
4090 	    threshold, (vtpr >> 4) & 0xf);
4091 	if (valid)
4092 		test_vmx_valid_controls(false);
4093 	else
4094 		test_vmx_invalid_controls(false);
4095 	report_prefix_pop();
4096 }
4097 
4098 static void test_invalid_event_injection(void)
4099 {
4100 	u32 ent_intr_info_save = vmcs_read(ENT_INTR_INFO);
4101 	u32 ent_intr_error_save = vmcs_read(ENT_INTR_ERROR);
4102 	u32 ent_inst_len_save = vmcs_read(ENT_INST_LEN);
4103 	u32 primary_save = vmcs_read(CPU_EXEC_CTRL0);
4104 	u32 secondary_save = vmcs_read(CPU_EXEC_CTRL1);
4105 	u64 guest_cr0_save = vmcs_read(GUEST_CR0);
4106 	u32 ent_intr_info_base = INTR_INFO_VALID_MASK;
4107 	u32 ent_intr_info, ent_intr_err, ent_intr_len;
4108 	u32 cnt;
4109 
4110 	/* Setup */
4111 	report_prefix_push("invalid event injection");
4112 	vmcs_write(ENT_INTR_ERROR, 0x00000000);
4113 	vmcs_write(ENT_INST_LEN, 0x00000001);
4114 
4115 	/* The field’s interruption type is not set to a reserved value. */
4116 	ent_intr_info = ent_intr_info_base | INTR_TYPE_RESERVED | DE_VECTOR;
4117 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4118 			    "RESERVED interruption type invalid [-]",
4119 			    ent_intr_info);
4120 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4121 	test_vmx_invalid_controls(false);
4122 	report_prefix_pop();
4123 
4124 	ent_intr_info = ent_intr_info_base | INTR_TYPE_EXT_INTR |
4125 			DE_VECTOR;
4126 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4127 			    "RESERVED interruption type invalid [+]",
4128 			    ent_intr_info);
4129 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4130 	test_vmx_valid_controls(false);
4131 	report_prefix_pop();
4132 
4133 	/* If the interruption type is other event, the vector is 0. */
4134 	ent_intr_info = ent_intr_info_base | INTR_TYPE_OTHER_EVENT | DB_VECTOR;
4135 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4136 			    "(OTHER EVENT && vector != 0) invalid [-]",
4137 			    ent_intr_info);
4138 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4139 	test_vmx_invalid_controls(false);
4140 	report_prefix_pop();
4141 
4142 	/* If the interruption type is NMI, the vector is 2 (negative case). */
4143 	ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | DE_VECTOR;
4144 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4145 			    "(NMI && vector != 2) invalid [-]", ent_intr_info);
4146 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4147 	test_vmx_invalid_controls(false);
4148 	report_prefix_pop();
4149 
4150 	/* If the interruption type is NMI, the vector is 2 (positive case). */
4151 	ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | NMI_VECTOR;
4152 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4153 			    "(NMI && vector == 2) valid [+]", ent_intr_info);
4154 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4155 	test_vmx_valid_controls(false);
4156 	report_prefix_pop();
4157 
4158 	/*
4159 	 * If the interruption type
4160 	 * is HW exception, the vector is at most 31.
4161 	 */
4162 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 0x20;
4163 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4164 			    "(HW exception && vector > 31) invalid [-]",
4165 			    ent_intr_info);
4166 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4167 	test_vmx_invalid_controls(false);
4168 	report_prefix_pop();
4169 
4170 	/*
4171 	 * deliver-error-code is 1 iff either
4172 	 * (a) the "unrestricted guest" VM-execution control is 0
4173 	 * (b) CR0.PE is set.
4174 	 */
4175 
4176 	/* Assert that unrestricted guest is disabled or unsupported */
4177 	assert(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
4178 	       !(secondary_save & CPU_URG));
4179 
4180 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION |
4181 			GP_VECTOR;
4182 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4183 			    "error code <-> (!URG || prot_mode) [-]",
4184 			    ent_intr_info);
4185 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4186 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4187 	test_vmx_invalid_controls(false);
4188 	report_prefix_pop();
4189 
4190 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4191 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4192 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4193 			    "error code <-> (!URG || prot_mode) [+]",
4194 			    ent_intr_info);
4195 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4196 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4197 	test_vmx_valid_controls(false);
4198 	report_prefix_pop();
4199 
4200 	if (enable_unrestricted_guest())
4201 		goto skip_unrestricted_guest;
4202 
4203 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4204 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4205 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4206 			    "error code <-> (!URG || prot_mode) [-]",
4207 			    ent_intr_info);
4208 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4209 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4210 	test_vmx_invalid_controls(false);
4211 	report_prefix_pop();
4212 
4213 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION |
4214 			GP_VECTOR;
4215 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4216 			    "error code <-> (!URG || prot_mode) [-]",
4217 			    ent_intr_info);
4218 	vmcs_write(GUEST_CR0, guest_cr0_save | X86_CR0_PE);
4219 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4220 	test_vmx_invalid_controls(false);
4221 	report_prefix_pop();
4222 
4223 	vmcs_write(CPU_EXEC_CTRL1, secondary_save);
4224 	vmcs_write(CPU_EXEC_CTRL0, primary_save);
4225 
4226 skip_unrestricted_guest:
4227 	vmcs_write(GUEST_CR0, guest_cr0_save);
4228 
4229 	/* deliver-error-code is 1 iff the interruption type is HW exception */
4230 	report_prefix_push("error code <-> HW exception");
4231 	for (cnt = 0; cnt < 8; cnt++) {
4232 		u32 exception_type_mask = cnt << 8;
4233 		u32 deliver_error_code_mask =
4234 			exception_type_mask != INTR_TYPE_HARD_EXCEPTION ?
4235 			INTR_INFO_DELIVER_CODE_MASK : 0;
4236 
4237 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4238 				exception_type_mask | GP_VECTOR;
4239 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4240 				    ent_intr_info);
4241 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4242 		test_vmx_invalid_controls(false);
4243 		report_prefix_pop();
4244 	}
4245 	report_prefix_pop();
4246 
4247 	/*
4248 	 * deliver-error-code is 1 iff the the vector
4249 	 * indicates an exception that would normally deliver an error code
4250 	 */
4251 	report_prefix_push("error code <-> vector delivers error code");
4252 	for (cnt = 0; cnt < 32; cnt++) {
4253 		bool has_error_code = false;
4254 		u32 deliver_error_code_mask;
4255 
4256 		switch (cnt) {
4257 		case DF_VECTOR:
4258 		case TS_VECTOR:
4259 		case NP_VECTOR:
4260 		case SS_VECTOR:
4261 		case GP_VECTOR:
4262 		case PF_VECTOR:
4263 		case AC_VECTOR:
4264 			has_error_code = true;
4265 		}
4266 
4267 		/* Negative case */
4268 		deliver_error_code_mask = has_error_code ?
4269 						0 :
4270 						INTR_INFO_DELIVER_CODE_MASK;
4271 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4272 				INTR_TYPE_HARD_EXCEPTION | cnt;
4273 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4274 				    ent_intr_info);
4275 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4276 		test_vmx_invalid_controls(false);
4277 		report_prefix_pop();
4278 
4279 		/* Positive case */
4280 		deliver_error_code_mask = has_error_code ?
4281 						INTR_INFO_DELIVER_CODE_MASK :
4282 						0;
4283 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4284 				INTR_TYPE_HARD_EXCEPTION | cnt;
4285 		report_prefix_pushf("VM-entry intr info=0x%x [+]",
4286 				    ent_intr_info);
4287 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4288 		test_vmx_valid_controls(false);
4289 		report_prefix_pop();
4290 	}
4291 	report_prefix_pop();
4292 
4293 	/* Reserved bits in the field (30:12) are 0. */
4294 	report_prefix_push("reserved bits clear");
4295 	for (cnt = 12; cnt <= 30; cnt++) {
4296 		ent_intr_info = ent_intr_info_base |
4297 				INTR_INFO_DELIVER_CODE_MASK |
4298 				INTR_TYPE_HARD_EXCEPTION | GP_VECTOR |
4299 				(1U << cnt);
4300 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4301 				    ent_intr_info);
4302 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4303 		test_vmx_invalid_controls(false);
4304 		report_prefix_pop();
4305 	}
4306 	report_prefix_pop();
4307 
4308 	/*
4309 	 * If deliver-error-code is 1
4310 	 * bits 31:16 of the VM-entry exception error-code field are 0.
4311 	 */
4312 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4313 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4314 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4315 			    "VM-entry exception error code[31:16] clear",
4316 			    ent_intr_info);
4317 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4318 	for (cnt = 16; cnt <= 31; cnt++) {
4319 		ent_intr_err = 1U << cnt;
4320 		report_prefix_pushf("VM-entry intr error=0x%x [-]",
4321 				    ent_intr_err);
4322 		vmcs_write(ENT_INTR_ERROR, ent_intr_err);
4323 		test_vmx_invalid_controls(false);
4324 		report_prefix_pop();
4325 	}
4326 	vmcs_write(ENT_INTR_ERROR, 0x00000000);
4327 	report_prefix_pop();
4328 
4329 	/*
4330 	 * If the interruption type is software interrupt, software exception,
4331 	 * or privileged software exception, the VM-entry instruction-length
4332 	 * field is in the range 0–15.
4333 	 */
4334 
4335 	for (cnt = 0; cnt < 3; cnt++) {
4336 		switch (cnt) {
4337 		case 0:
4338 			ent_intr_info = ent_intr_info_base |
4339 					INTR_TYPE_SOFT_INTR;
4340 			break;
4341 		case 1:
4342 			ent_intr_info = ent_intr_info_base |
4343 					INTR_TYPE_SOFT_EXCEPTION;
4344 			break;
4345 		case 2:
4346 			ent_intr_info = ent_intr_info_base |
4347 					INTR_TYPE_PRIV_SW_EXCEPTION;
4348 			break;
4349 		}
4350 		report_prefix_pushf("%s, VM-entry intr info=0x%x",
4351 				    "VM-entry instruction-length check",
4352 				    ent_intr_info);
4353 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4354 
4355 		/* Instruction length set to -1 (0xFFFFFFFF) should fail */
4356 		ent_intr_len = -1;
4357 		report_prefix_pushf("VM-entry intr length = 0x%x [-]",
4358 				    ent_intr_len);
4359 		vmcs_write(ENT_INST_LEN, ent_intr_len);
4360 		test_vmx_invalid_controls(false);
4361 		report_prefix_pop();
4362 
4363 		/* Instruction length set to 16 should fail */
4364 		ent_intr_len = 0x00000010;
4365 		report_prefix_pushf("VM-entry intr length = 0x%x [-]",
4366 				    ent_intr_len);
4367 		vmcs_write(ENT_INST_LEN, 0x00000010);
4368 		test_vmx_invalid_controls(false);
4369 		report_prefix_pop();
4370 
4371 		report_prefix_pop();
4372 	}
4373 
4374 	/* Cleanup */
4375 	vmcs_write(ENT_INTR_INFO, ent_intr_info_save);
4376 	vmcs_write(ENT_INTR_ERROR, ent_intr_error_save);
4377 	vmcs_write(ENT_INST_LEN, ent_inst_len_save);
4378 	vmcs_write(CPU_EXEC_CTRL0, primary_save);
4379 	vmcs_write(CPU_EXEC_CTRL1, secondary_save);
4380 	vmcs_write(GUEST_CR0, guest_cr0_save);
4381 	report_prefix_pop();
4382 }
4383 
4384 /*
4385  * Test interesting vTPR values for a given TPR threshold.
4386  */
4387 static void test_vtpr_values(unsigned threshold)
4388 {
4389 	try_tpr_threshold_and_vtpr(threshold, (threshold - 1) << 4);
4390 	try_tpr_threshold_and_vtpr(threshold, threshold << 4);
4391 	try_tpr_threshold_and_vtpr(threshold, (threshold + 1) << 4);
4392 }
4393 
4394 static void try_tpr_threshold(unsigned threshold)
4395 {
4396 	bool valid = true;
4397 
4398 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4399 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4400 
4401 	if ((primary & CPU_TPR_SHADOW) && !((primary & CPU_SECONDARY) &&
4402 	    (secondary & CPU_VINTD)))
4403 		valid = !(threshold >> 4);
4404 
4405 	set_vtpr(-1);
4406 	vmcs_write(TPR_THRESHOLD, threshold);
4407 	report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0xf", threshold);
4408 	if (valid)
4409 		test_vmx_valid_controls(false);
4410 	else
4411 		test_vmx_invalid_controls(false);
4412 	report_prefix_pop();
4413 
4414 	if (valid)
4415 		test_vtpr_values(threshold);
4416 }
4417 
4418 /*
4419  * Test interesting TPR threshold values.
4420  */
4421 static void test_tpr_threshold_values(void)
4422 {
4423 	unsigned i;
4424 
4425 	for (i = 0; i < 0x10; i++)
4426 		try_tpr_threshold(i);
4427 	for (i = 4; i < 32; i++)
4428 		try_tpr_threshold(1u << i);
4429 	try_tpr_threshold(-1u);
4430 	try_tpr_threshold(0x7fffffff);
4431 }
4432 
4433 /*
4434  * This test covers the following two VM entry checks:
4435  *
4436  *      i) If the "use TPR shadow" VM-execution control is 1 and the
4437  *         "virtual-interrupt delivery" VM-execution control is 0, bits
4438  *         31:4 of the TPR threshold VM-execution control field must
4439 	   be 0.
4440  *         [Intel SDM]
4441  *
4442  *      ii) If the "use TPR shadow" VM-execution control is 1, the
4443  *          "virtual-interrupt delivery" VM-execution control is 0
4444  *          and the "virtualize APIC accesses" VM-execution control
4445  *          is 0, the value of bits 3:0 of the TPR threshold VM-execution
4446  *          control field must not be greater than the value of bits
4447  *          7:4 of VTPR.
4448  *          [Intel SDM]
4449  */
4450 static void test_tpr_threshold(void)
4451 {
4452 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4453 	u64 apic_virt_addr = vmcs_read(APIC_VIRT_ADDR);
4454 	u64 threshold = vmcs_read(TPR_THRESHOLD);
4455 	void *virtual_apic_page;
4456 
4457 	if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW))
4458 		return;
4459 
4460 	virtual_apic_page = alloc_page();
4461 	memset(virtual_apic_page, 0xff, PAGE_SIZE);
4462 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
4463 
4464 	vmcs_write(CPU_EXEC_CTRL0, primary & ~(CPU_TPR_SHADOW | CPU_SECONDARY));
4465 	report_prefix_pushf("Use TPR shadow disabled, secondary controls disabled");
4466 	test_tpr_threshold_values();
4467 	report_prefix_pop();
4468 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_TPR_SHADOW);
4469 	report_prefix_pushf("Use TPR shadow enabled, secondary controls disabled");
4470 	test_tpr_threshold_values();
4471 	report_prefix_pop();
4472 
4473 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4474 	    (ctrl_cpu_rev[1].clr & (CPU_VINTD  | CPU_VIRT_APIC_ACCESSES))))
4475 		goto out;
4476 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4477 
4478 	if (ctrl_cpu_rev[1].clr & CPU_VINTD) {
4479 		vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD);
4480 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled");
4481 		test_tpr_threshold_values();
4482 		report_prefix_pop();
4483 
4484 		vmcs_write(CPU_EXEC_CTRL0,
4485 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4486 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled");
4487 		test_tpr_threshold_values();
4488 		report_prefix_pop();
4489 	}
4490 
4491 	if (ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES) {
4492 		vmcs_write(CPU_EXEC_CTRL0,
4493 			   vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY);
4494 		vmcs_write(CPU_EXEC_CTRL1, CPU_VIRT_APIC_ACCESSES);
4495 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4496 		test_tpr_threshold_values();
4497 		report_prefix_pop();
4498 
4499 		vmcs_write(CPU_EXEC_CTRL0,
4500 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4501 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4502 		test_tpr_threshold_values();
4503 		report_prefix_pop();
4504 	}
4505 
4506 	if ((ctrl_cpu_rev[1].clr &
4507 	     (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) ==
4508 	    (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) {
4509 		vmcs_write(CPU_EXEC_CTRL0,
4510 			   vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY);
4511 		vmcs_write(CPU_EXEC_CTRL1,
4512 			   CPU_VINTD | CPU_VIRT_APIC_ACCESSES);
4513 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4514 		test_tpr_threshold_values();
4515 		report_prefix_pop();
4516 
4517 		vmcs_write(CPU_EXEC_CTRL0,
4518 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4519 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4520 		test_tpr_threshold_values();
4521 		report_prefix_pop();
4522 	}
4523 
4524 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4525 out:
4526 	vmcs_write(TPR_THRESHOLD, threshold);
4527 	vmcs_write(APIC_VIRT_ADDR, apic_virt_addr);
4528 	vmcs_write(CPU_EXEC_CTRL0, primary);
4529 }
4530 
4531 /*
4532  * This test verifies the following two vmentry checks:
4533  *
4534  *  If the "NMI exiting" VM-execution control is 0, "Virtual NMIs"
4535  *  VM-execution control must be 0.
4536  *  [Intel SDM]
4537  *
4538  *  If the “virtual NMIs” VM-execution control is 0, the “NMI-window
4539  *  exiting” VM-execution control must be 0.
4540  *  [Intel SDM]
4541  */
4542 static void test_nmi_ctrls(void)
4543 {
4544 	u32 pin_ctrls, cpu_ctrls0, test_pin_ctrls, test_cpu_ctrls0;
4545 
4546 	if ((ctrl_pin_rev.clr & (PIN_NMI | PIN_VIRT_NMI)) !=
4547 	    (PIN_NMI | PIN_VIRT_NMI)) {
4548 		printf("NMI exiting and Virtual NMIs are not supported !\n");
4549 		return;
4550 	}
4551 
4552 	/* Save the controls so that we can restore them after our tests */
4553 	pin_ctrls = vmcs_read(PIN_CONTROLS);
4554 	cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0);
4555 
4556 	test_pin_ctrls = pin_ctrls & ~(PIN_NMI | PIN_VIRT_NMI);
4557 	test_cpu_ctrls0 = cpu_ctrls0 & ~CPU_NMI_WINDOW;
4558 
4559 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4560 	report_prefix_pushf("NMI-exiting disabled, virtual-NMIs disabled");
4561 	test_vmx_valid_controls(false);
4562 	report_prefix_pop();
4563 
4564 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_VIRT_NMI);
4565 	report_prefix_pushf("NMI-exiting disabled, virtual-NMIs enabled");
4566 	test_vmx_invalid_controls(false);
4567 	report_prefix_pop();
4568 
4569 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4570 	report_prefix_pushf("NMI-exiting enabled, virtual-NMIs enabled");
4571 	test_vmx_valid_controls(false);
4572 	report_prefix_pop();
4573 
4574 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_NMI);
4575 	report_prefix_pushf("NMI-exiting enabled, virtual-NMIs disabled");
4576 	test_vmx_valid_controls(false);
4577 	report_prefix_pop();
4578 
4579 	if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) {
4580 		report_info("NMI-window exiting is not supported, skipping...");
4581 		goto done;
4582 	}
4583 
4584 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4585 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW);
4586 	report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting enabled");
4587 	test_vmx_invalid_controls(false);
4588 	report_prefix_pop();
4589 
4590 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4591 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0);
4592 	report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting disabled");
4593 	test_vmx_valid_controls(false);
4594 	report_prefix_pop();
4595 
4596 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4597 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW);
4598 	report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting enabled");
4599 	test_vmx_valid_controls(false);
4600 	report_prefix_pop();
4601 
4602 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4603 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0);
4604 	report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting disabled");
4605 	test_vmx_valid_controls(false);
4606 	report_prefix_pop();
4607 
4608 	/* Restore the controls to their original values */
4609 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0);
4610 done:
4611 	vmcs_write(PIN_CONTROLS, pin_ctrls);
4612 }
4613 
4614 static void test_eptp_ad_bit(u64 eptp, bool ctrl)
4615 {
4616 	vmcs_write(EPTP, eptp);
4617 	report_prefix_pushf("Enable-EPT enabled; EPT accessed and dirty flag %s",
4618 	    (eptp & EPTP_AD_FLAG) ? "1": "0");
4619 	if (ctrl)
4620 		test_vmx_valid_controls(false);
4621 	else
4622 		test_vmx_invalid_controls(false);
4623 	report_prefix_pop();
4624 
4625 }
4626 
4627 /*
4628  * 1. If the "enable EPT" VM-execution control is 1, the "EPTP VM-execution"
4629  *    control field must satisfy the following checks:
4630  *
4631  *     - The EPT memory type (bits 2:0) must be a value supported by the
4632  *	 processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR.
4633  *     - Bits 5:3 (1 less than the EPT page-walk length) must be 3,
4634  *	 indicating an EPT page-walk length of 4.
4635  *     - Bit 6 (enable bit for accessed and dirty flags for EPT) must be
4636  *	 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP MSR is read as 0,
4637  *	 indicating that the processor does not support accessed and dirty
4638  *	 dirty flags for EPT.
4639  *     - Reserved bits 11:7 and 63:N (where N is the processor's
4640  *	 physical-address width) must all be 0.
4641  *
4642  * 2. If the "unrestricted guest" VM-execution control is 1, the
4643  *    "enable EPT" VM-execution control must also be 1.
4644  */
4645 static void test_ept_eptp(void)
4646 {
4647 	u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0);
4648 	u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1);
4649 	u64 eptp_saved = vmcs_read(EPTP);
4650 	u32 primary = primary_saved;
4651 	u32 secondary = secondary_saved;
4652 	u64 msr, eptp = eptp_saved;
4653 	bool un_cache = false;
4654 	bool wr_bk = false;
4655 	bool ctrl;
4656 	u32 i, maxphysaddr;
4657 	u64 j, resv_bits_mask = 0;
4658 
4659 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4660 	    (ctrl_cpu_rev[1].clr & CPU_EPT))) {
4661 		printf("\"CPU secondary\" and/or \"enable EPT\" execution controls are not supported !\n");
4662 		return;
4663 	}
4664 
4665 	/*
4666 	 * Memory type (bits 2:0)
4667 	 */
4668 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
4669 	if (msr & EPT_CAP_UC)
4670 		un_cache = true;
4671 	if (msr & EPT_CAP_WB)
4672 		wr_bk = true;
4673 
4674 	primary |= CPU_SECONDARY;
4675 	vmcs_write(CPU_EXEC_CTRL0, primary);
4676 	secondary |= CPU_EPT;
4677 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4678 	eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4679 	    (3ul << EPTP_PG_WALK_LEN_SHIFT);
4680 	vmcs_write(EPTP, eptp);
4681 
4682 	for (i = 0; i < 8; i++) {
4683 		if (i == 0) {
4684 			if (un_cache) {
4685 				report_info("EPT paging structure memory-type is Un-cacheable\n");
4686 				ctrl = true;
4687 			} else {
4688 				ctrl = false;
4689 			}
4690 		} else if (i == 6) {
4691 			if (wr_bk) {
4692 				report_info("EPT paging structure memory-type is Write-back\n");
4693 				ctrl = true;
4694 			} else {
4695 				ctrl = false;
4696 			}
4697 		} else {
4698 			ctrl = false;
4699 		}
4700 
4701 		eptp = (eptp & ~EPT_MEM_TYPE_MASK) | i;
4702 		vmcs_write(EPTP, eptp);
4703 		report_prefix_pushf("Enable-EPT enabled; EPT memory type %lu",
4704 		    eptp & EPT_MEM_TYPE_MASK);
4705 		if (ctrl)
4706 			test_vmx_valid_controls(false);
4707 		else
4708 			test_vmx_invalid_controls(false);
4709 		report_prefix_pop();
4710 	}
4711 
4712 	eptp = (eptp & ~EPT_MEM_TYPE_MASK) | 6ul;
4713 
4714 	/*
4715 	 * Page walk length (bits 5:3)
4716 	 */
4717 	for (i = 0; i < 8; i++) {
4718 		eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4719 		    (i << EPTP_PG_WALK_LEN_SHIFT);
4720 		if (i == 3)
4721 			ctrl = true;
4722 		else
4723 			ctrl = false;
4724 
4725 		vmcs_write(EPTP, eptp);
4726 		report_prefix_pushf("Enable-EPT enabled; EPT page walk length %lu",
4727 		    eptp & EPTP_PG_WALK_LEN_MASK);
4728 		if (ctrl)
4729 			test_vmx_valid_controls(false);
4730 		else
4731 			test_vmx_invalid_controls(false);
4732 		report_prefix_pop();
4733 	}
4734 
4735 	eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4736 	    3ul << EPTP_PG_WALK_LEN_SHIFT;
4737 
4738 	/*
4739 	 * Accessed and dirty flag (bit 6)
4740 	 */
4741 	if (msr & EPT_CAP_AD_FLAG) {
4742 		report_info("Processor supports accessed and dirty flag");
4743 		eptp &= ~EPTP_AD_FLAG;
4744 		test_eptp_ad_bit(eptp, true);
4745 
4746 		eptp |= EPTP_AD_FLAG;
4747 		test_eptp_ad_bit(eptp, true);
4748 	} else {
4749 		report_info("Processor does not supports accessed and dirty flag");
4750 		eptp &= ~EPTP_AD_FLAG;
4751 		test_eptp_ad_bit(eptp, true);
4752 
4753 		eptp |= EPTP_AD_FLAG;
4754 		test_eptp_ad_bit(eptp, false);
4755 	}
4756 
4757 	/*
4758 	 * Reserved bits [11:7] and [63:N]
4759 	 */
4760 	for (i = 0; i < 32; i++) {
4761 		eptp = (eptp &
4762 		    ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)) |
4763 		    (i << EPTP_RESERV_BITS_SHIFT);
4764 		vmcs_write(EPTP, eptp);
4765 		report_prefix_pushf("Enable-EPT enabled; reserved bits [11:7] %lu",
4766 		    (eptp >> EPTP_RESERV_BITS_SHIFT) &
4767 		    EPTP_RESERV_BITS_MASK);
4768 		if (i == 0)
4769 			test_vmx_valid_controls(false);
4770 		else
4771 			test_vmx_invalid_controls(false);
4772 		report_prefix_pop();
4773 	}
4774 
4775 	eptp = (eptp & ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT));
4776 
4777 	maxphysaddr = cpuid_maxphyaddr();
4778 	for (i = 0; i < (63 - maxphysaddr + 1); i++) {
4779 		resv_bits_mask |= 1ul << i;
4780 	}
4781 
4782 	for (j = maxphysaddr - 1; j <= 63; j++) {
4783 		eptp = (eptp & ~(resv_bits_mask << maxphysaddr)) |
4784 		    (j < maxphysaddr ? 0 : 1ul << j);
4785 		vmcs_write(EPTP, eptp);
4786 		report_prefix_pushf("Enable-EPT enabled; reserved bits [63:N] %lu",
4787 		    (eptp >> maxphysaddr) & resv_bits_mask);
4788 		if (j < maxphysaddr)
4789 			test_vmx_valid_controls(false);
4790 		else
4791 			test_vmx_invalid_controls(false);
4792 		report_prefix_pop();
4793 	}
4794 
4795 	secondary &= ~(CPU_EPT | CPU_URG);
4796 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4797 	report_prefix_pushf("Enable-EPT disabled, unrestricted-guest disabled");
4798 	test_vmx_valid_controls(false);
4799 	report_prefix_pop();
4800 
4801 	if (!(ctrl_cpu_rev[1].clr & CPU_URG))
4802 		goto skip_unrestricted_guest;
4803 
4804 	secondary |= CPU_URG;
4805 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4806 	report_prefix_pushf("Enable-EPT disabled, unrestricted-guest enabled");
4807 	test_vmx_invalid_controls(false);
4808 	report_prefix_pop();
4809 
4810 	secondary |= CPU_EPT;
4811 	setup_dummy_ept();
4812 	report_prefix_pushf("Enable-EPT enabled, unrestricted-guest enabled");
4813 	test_vmx_valid_controls(false);
4814 	report_prefix_pop();
4815 
4816 skip_unrestricted_guest:
4817 	secondary &= ~CPU_URG;
4818 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4819 	report_prefix_pushf("Enable-EPT enabled, unrestricted-guest disabled");
4820 	test_vmx_valid_controls(false);
4821 	report_prefix_pop();
4822 
4823 	vmcs_write(CPU_EXEC_CTRL0, primary_saved);
4824 	vmcs_write(CPU_EXEC_CTRL1, secondary_saved);
4825 	vmcs_write(EPTP, eptp_saved);
4826 }
4827 
4828 /*
4829  * If the 'enable PML' VM-execution control is 1, the 'enable EPT'
4830  * VM-execution control must also be 1. In addition, the PML address
4831  * must satisfy the following checks:
4832  *
4833  *    * Bits 11:0 of the address must be 0.
4834  *    * The address should not set any bits beyond the processor's
4835  *	physical-address width.
4836  *
4837  *  [Intel SDM]
4838  */
4839 static void test_pml(void)
4840 {
4841 	u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0);
4842 	u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1);
4843 	u32 primary = primary_saved;
4844 	u32 secondary = secondary_saved;
4845 
4846 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4847 	    (ctrl_cpu_rev[1].clr & CPU_EPT) && (ctrl_cpu_rev[1].clr & CPU_PML))) {
4848 		printf("\"Secondary execution\" control or \"enable EPT\" control or \"enable PML\" control is not supported !\n");
4849 		return;
4850 	}
4851 
4852 	primary |= CPU_SECONDARY;
4853 	vmcs_write(CPU_EXEC_CTRL0, primary);
4854 	secondary &= ~(CPU_PML | CPU_EPT);
4855 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4856 	report_prefix_pushf("enable-PML disabled, enable-EPT disabled");
4857 	test_vmx_valid_controls(false);
4858 	report_prefix_pop();
4859 
4860 	secondary |= CPU_PML;
4861 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4862 	report_prefix_pushf("enable-PML enabled, enable-EPT disabled");
4863 	test_vmx_invalid_controls(false);
4864 	report_prefix_pop();
4865 
4866 	secondary |= CPU_EPT;
4867 	setup_dummy_ept();
4868 	report_prefix_pushf("enable-PML enabled, enable-EPT enabled");
4869 	test_vmx_valid_controls(false);
4870 	report_prefix_pop();
4871 
4872 	secondary &= ~CPU_PML;
4873 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4874 	report_prefix_pushf("enable-PML disabled, enable EPT enabled");
4875 	test_vmx_valid_controls(false);
4876 	report_prefix_pop();
4877 
4878 	test_vmcs_addr_reference(CPU_PML, PMLADDR, "PML address", "PML",
4879 				 PAGE_SIZE, false, false);
4880 
4881 	vmcs_write(CPU_EXEC_CTRL0, primary_saved);
4882 	vmcs_write(CPU_EXEC_CTRL1, secondary_saved);
4883 }
4884 
4885  /*
4886  * If the "activate VMX-preemption timer" VM-execution control is 0, the
4887  * the "save VMX-preemption timer value" VM-exit control must also be 0.
4888  *
4889  *  [Intel SDM]
4890  */
4891 static void test_vmx_preemption_timer(void)
4892 {
4893 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
4894 	u32 saved_exit = vmcs_read(EXI_CONTROLS);
4895 	u32 pin = saved_pin;
4896 	u32 exit = saved_exit;
4897 
4898 	if (!((ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) ||
4899 	    (ctrl_pin_rev.clr & PIN_PREEMPT))) {
4900 		printf("\"Save-VMX-preemption-timer\" control and/or \"Enable-VMX-preemption-timer\" control is not supported\n");
4901 		return;
4902 	}
4903 
4904 	pin |= PIN_PREEMPT;
4905 	vmcs_write(PIN_CONTROLS, pin);
4906 	exit &= ~EXI_SAVE_PREEMPT;
4907 	vmcs_write(EXI_CONTROLS, exit);
4908 	report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer disabled");
4909 	test_vmx_valid_controls(false);
4910 	report_prefix_pop();
4911 
4912 	exit |= EXI_SAVE_PREEMPT;
4913 	vmcs_write(EXI_CONTROLS, exit);
4914 	report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer enabled");
4915 	test_vmx_valid_controls(false);
4916 	report_prefix_pop();
4917 
4918 	pin &= ~PIN_PREEMPT;
4919 	vmcs_write(PIN_CONTROLS, pin);
4920 	report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer enabled");
4921 	test_vmx_invalid_controls(false);
4922 	report_prefix_pop();
4923 
4924 	exit &= ~EXI_SAVE_PREEMPT;
4925 	vmcs_write(EXI_CONTROLS, exit);
4926 	report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer disabled");
4927 	test_vmx_valid_controls(false);
4928 	report_prefix_pop();
4929 
4930 	vmcs_write(PIN_CONTROLS, saved_pin);
4931 	vmcs_write(EXI_CONTROLS, saved_exit);
4932 }
4933 
4934 /*
4935  * Tests for VM-execution control fields
4936  */
4937 static void test_vm_execution_ctls(void)
4938 {
4939 	test_pin_based_ctls();
4940 	test_primary_processor_based_ctls();
4941 	test_secondary_processor_based_ctls();
4942 	test_cr3_targets();
4943 	test_io_bitmaps();
4944 	test_msr_bitmap();
4945 	test_apic_ctls();
4946 	test_tpr_threshold();
4947 	test_nmi_ctrls();
4948 	test_pml();
4949 	test_vpid();
4950 	test_ept_eptp();
4951 	test_vmx_preemption_timer();
4952 }
4953 
4954  /*
4955   * The following checks are performed for the VM-entry MSR-load address if
4956   * the VM-entry MSR-load count field is non-zero:
4957   *
4958   *    - The lower 4 bits of the VM-entry MSR-load address must be 0.
4959   *      The address should not set any bits beyond the processor’s
4960   *      physical-address width.
4961   *
4962   *    - The address of the last byte in the VM-entry MSR-load area
4963   *      should not set any bits beyond the processor’s physical-address
4964   *      width. The address of this last byte is VM-entry MSR-load address
4965   *      + (MSR count * 16) - 1. (The arithmetic used for the computation
4966   *      uses more bits than the processor’s physical-address width.)
4967   *
4968   *
4969   *  [Intel SDM]
4970   */
4971 static void test_entry_msr_load(void)
4972 {
4973 	entry_msr_load = alloc_page();
4974 	u64 tmp;
4975 	u32 entry_msr_ld_cnt = 1;
4976 	int i;
4977 	u32 addr_len = 64;
4978 
4979 	vmcs_write(ENT_MSR_LD_CNT, entry_msr_ld_cnt);
4980 
4981 	/* Check first 4 bits of VM-entry MSR-load address */
4982 	for (i = 0; i < 4; i++) {
4983 		tmp = (u64)entry_msr_load | 1ull << i;
4984 		vmcs_write(ENTER_MSR_LD_ADDR, tmp);
4985 		report_prefix_pushf("VM-entry MSR-load addr [4:0] %lx",
4986 				    tmp & 0xf);
4987 		test_vmx_invalid_controls(false);
4988 		report_prefix_pop();
4989 	}
4990 
4991 	if (basic.val & (1ul << 48))
4992 		addr_len = 32;
4993 
4994 	test_vmcs_addr_values("VM-entry-MSR-load address",
4995 				ENTER_MSR_LD_ADDR, 16, false, false,
4996 				4, addr_len - 1);
4997 
4998 	/*
4999 	 * Check last byte of VM-entry MSR-load address
5000 	 */
5001 	entry_msr_load = (struct vmx_msr_entry *)((u64)entry_msr_load & ~0xf);
5002 
5003 	for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len);
5004 							i < 64; i++) {
5005 		tmp = ((u64)entry_msr_load + entry_msr_ld_cnt * 16 - 1) |
5006 			1ul << i;
5007 		vmcs_write(ENTER_MSR_LD_ADDR,
5008 			   tmp - (entry_msr_ld_cnt * 16 - 1));
5009 		test_vmx_invalid_controls(false);
5010 	}
5011 
5012 	vmcs_write(ENT_MSR_LD_CNT, 2);
5013 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 16);
5014 	test_vmx_invalid_controls(false);
5015 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 32);
5016 	test_vmx_valid_controls(false);
5017 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 48);
5018 	test_vmx_valid_controls(false);
5019 }
5020 
5021 static void guest_state_test_main(void)
5022 {
5023 	while (1) {
5024 		if (vmx_get_test_stage() != 2)
5025 			vmcall();
5026 		else
5027 			break;
5028 	}
5029 
5030 	asm volatile("fnop");
5031 }
5032 
5033 static void report_guest_state_test(const char *test, u32 xreason,
5034 				    u64 field, const char * field_name)
5035 {
5036 	u32 reason = vmcs_read(EXI_REASON);
5037 	u64 guest_rip;
5038 	u32 insn_len;
5039 
5040 	report("%s, %s %lx", reason == xreason, test, field_name, field);
5041 
5042 	guest_rip = vmcs_read(GUEST_RIP);
5043 	insn_len = vmcs_read(EXI_INST_LEN);
5044 	if (! (reason & 0x80000021))
5045 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
5046 }
5047 
5048 /*
5049  * Tests for VM-entry control fields
5050  */
5051 static void test_vm_entry_ctls(void)
5052 {
5053 	test_invalid_event_injection();
5054 	test_entry_msr_load();
5055 }
5056 
5057 /*
5058  * The following checks are performed for the VM-exit MSR-store address if
5059  * the VM-exit MSR-store count field is non-zero:
5060  *
5061  *    - The lower 4 bits of the VM-exit MSR-store address must be 0.
5062  *      The address should not set any bits beyond the processor’s
5063  *      physical-address width.
5064  *
5065  *    - The address of the last byte in the VM-exit MSR-store area
5066  *      should not set any bits beyond the processor’s physical-address
5067  *      width. The address of this last byte is VM-exit MSR-store address
5068  *      + (MSR count * 16) - 1. (The arithmetic used for the computation
5069  *      uses more bits than the processor’s physical-address width.)
5070  *
5071  * If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits
5072  * in the range 63:32.
5073  *
5074  *  [Intel SDM]
5075  */
5076 static void test_exit_msr_store(void)
5077 {
5078 	exit_msr_store = alloc_page();
5079 	u64 tmp;
5080 	u32 exit_msr_st_cnt = 1;
5081 	int i;
5082 	u32 addr_len = 64;
5083 
5084 	vmcs_write(EXI_MSR_ST_CNT, exit_msr_st_cnt);
5085 
5086 	/* Check first 4 bits of VM-exit MSR-store address */
5087 	for (i = 0; i < 4; i++) {
5088 		tmp = (u64)exit_msr_store | 1ull << i;
5089 		vmcs_write(EXIT_MSR_ST_ADDR, tmp);
5090 		report_prefix_pushf("VM-exit MSR-store addr [4:0] %lx",
5091 				    tmp & 0xf);
5092 		test_vmx_invalid_controls(false);
5093 		report_prefix_pop();
5094 	}
5095 
5096 	if (basic.val & (1ul << 48))
5097 		addr_len = 32;
5098 
5099 	test_vmcs_addr_values("VM-exit-MSR-store address",
5100 				EXIT_MSR_ST_ADDR, 16, false, false,
5101 				4, addr_len - 1);
5102 
5103 	/*
5104 	 * Check last byte of VM-exit MSR-store address
5105 	 */
5106 	exit_msr_store = (struct vmx_msr_entry *)((u64)exit_msr_store & ~0xf);
5107 
5108 	for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len);
5109 							i < 64; i++) {
5110 		tmp = ((u64)exit_msr_store + exit_msr_st_cnt * 16 - 1) |
5111 			1ul << i;
5112 		vmcs_write(EXIT_MSR_ST_ADDR,
5113 			   tmp - (exit_msr_st_cnt * 16 - 1));
5114 		test_vmx_invalid_controls(false);
5115 	}
5116 
5117 	vmcs_write(EXI_MSR_ST_CNT, 2);
5118 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 16);
5119 	test_vmx_invalid_controls(false);
5120 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 32);
5121 	test_vmx_valid_controls(false);
5122 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 48);
5123 	test_vmx_valid_controls(false);
5124 }
5125 
5126 /*
5127  * Tests for VM-exit controls
5128  */
5129 static void test_vm_exit_ctls(void)
5130 {
5131 	test_exit_msr_store();
5132 }
5133 
5134 /*
5135  * Check that the virtual CPU checks all of the VMX controls as
5136  * documented in the Intel SDM.
5137  */
5138 static void vmx_controls_test(void)
5139 {
5140 	/*
5141 	 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will
5142 	 * fail due to invalid guest state, should we make it that
5143 	 * far.
5144 	 */
5145 	vmcs_write(GUEST_RFLAGS, 0);
5146 
5147 	test_vm_execution_ctls();
5148 	test_vm_exit_ctls();
5149 	test_vm_entry_ctls();
5150 }
5151 
5152 struct apic_reg_virt_config {
5153 	bool apic_register_virtualization;
5154 	bool use_tpr_shadow;
5155 	bool virtualize_apic_accesses;
5156 	bool virtualize_x2apic_mode;
5157 	bool activate_secondary_controls;
5158 };
5159 
5160 struct apic_reg_test {
5161 	const char *name;
5162 	struct apic_reg_virt_config apic_reg_virt_config;
5163 };
5164 
5165 struct apic_reg_virt_expectation {
5166 	enum Reason rd_exit_reason;
5167 	enum Reason wr_exit_reason;
5168 	u32 val;
5169 	u32 (*virt_fn)(u32);
5170 
5171 	/*
5172 	 * If false, accessing the APIC access address from L2 is treated as a
5173 	 * normal memory operation, rather than triggering virtualization.
5174 	 */
5175 	bool virtualize_apic_accesses;
5176 };
5177 
5178 static u32 apic_virt_identity(u32 val)
5179 {
5180 	return val;
5181 }
5182 
5183 static u32 apic_virt_nibble1(u32 val)
5184 {
5185 	return val & 0xf0;
5186 }
5187 
5188 static u32 apic_virt_byte3(u32 val)
5189 {
5190 	return val & (0xff << 24);
5191 }
5192 
5193 static bool apic_reg_virt_exit_expectation(
5194 	u32 reg, struct apic_reg_virt_config *config,
5195 	struct apic_reg_virt_expectation *expectation)
5196 {
5197 	/* Good configs, where some L2 APIC accesses are virtualized. */
5198 	bool virtualize_apic_accesses_only =
5199 		config->virtualize_apic_accesses &&
5200 		!config->use_tpr_shadow &&
5201 		!config->apic_register_virtualization &&
5202 		!config->virtualize_x2apic_mode &&
5203 		config->activate_secondary_controls;
5204 	bool virtualize_apic_accesses_and_use_tpr_shadow =
5205 		config->virtualize_apic_accesses &&
5206 		config->use_tpr_shadow &&
5207 		!config->apic_register_virtualization &&
5208 		!config->virtualize_x2apic_mode &&
5209 		config->activate_secondary_controls;
5210 	bool apic_register_virtualization =
5211 		config->virtualize_apic_accesses &&
5212 		config->use_tpr_shadow &&
5213 		config->apic_register_virtualization &&
5214 		!config->virtualize_x2apic_mode &&
5215 		config->activate_secondary_controls;
5216 
5217 	expectation->val = MAGIC_VAL_1;
5218 	expectation->virt_fn = apic_virt_identity;
5219 	expectation->virtualize_apic_accesses =
5220 		config->virtualize_apic_accesses &&
5221 		config->activate_secondary_controls;
5222 	if (virtualize_apic_accesses_only) {
5223 		expectation->rd_exit_reason = VMX_APIC_ACCESS;
5224 		expectation->wr_exit_reason = VMX_APIC_ACCESS;
5225 	} else if (virtualize_apic_accesses_and_use_tpr_shadow) {
5226 		switch (reg) {
5227 		case APIC_TASKPRI:
5228 			expectation->rd_exit_reason = VMX_VMCALL;
5229 			expectation->wr_exit_reason = VMX_VMCALL;
5230 			expectation->virt_fn = apic_virt_nibble1;
5231 			break;
5232 		default:
5233 			expectation->rd_exit_reason = VMX_APIC_ACCESS;
5234 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5235 		}
5236 	} else if (apic_register_virtualization) {
5237 		expectation->rd_exit_reason = VMX_VMCALL;
5238 
5239 		switch (reg) {
5240 		case APIC_ID:
5241 		case APIC_EOI:
5242 		case APIC_LDR:
5243 		case APIC_DFR:
5244 		case APIC_SPIV:
5245 		case APIC_ESR:
5246 		case APIC_ICR:
5247 		case APIC_LVTT:
5248 		case APIC_LVTTHMR:
5249 		case APIC_LVTPC:
5250 		case APIC_LVT0:
5251 		case APIC_LVT1:
5252 		case APIC_LVTERR:
5253 		case APIC_TMICT:
5254 		case APIC_TDCR:
5255 			expectation->wr_exit_reason = VMX_APIC_WRITE;
5256 			break;
5257 		case APIC_LVR:
5258 		case APIC_ISR ... APIC_ISR + 0x70:
5259 		case APIC_TMR ... APIC_TMR + 0x70:
5260 		case APIC_IRR ... APIC_IRR + 0x70:
5261 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5262 			break;
5263 		case APIC_TASKPRI:
5264 			expectation->wr_exit_reason = VMX_VMCALL;
5265 			expectation->virt_fn = apic_virt_nibble1;
5266 			break;
5267 		case APIC_ICR2:
5268 			expectation->wr_exit_reason = VMX_VMCALL;
5269 			expectation->virt_fn = apic_virt_byte3;
5270 			break;
5271 		default:
5272 			expectation->rd_exit_reason = VMX_APIC_ACCESS;
5273 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5274 		}
5275 	} else if (!expectation->virtualize_apic_accesses) {
5276 		/*
5277 		 * No APIC registers are directly virtualized. This includes
5278 		 * VTPR, which can be virtualized through MOV to/from CR8 via
5279 		 * the use TPR shadow control, but not through directly
5280 		 * accessing VTPR.
5281 		 */
5282 		expectation->rd_exit_reason = VMX_VMCALL;
5283 		expectation->wr_exit_reason = VMX_VMCALL;
5284 	} else {
5285 		printf("Cannot parse APIC register virtualization config:\n"
5286 		       "\tvirtualize_apic_accesses: %d\n"
5287 		       "\tuse_tpr_shadow: %d\n"
5288 		       "\tapic_register_virtualization: %d\n"
5289 		       "\tvirtualize_x2apic_mode: %d\n"
5290 		       "\tactivate_secondary_controls: %d\n",
5291 		       config->virtualize_apic_accesses,
5292 		       config->use_tpr_shadow,
5293 		       config->apic_register_virtualization,
5294 		       config->virtualize_x2apic_mode,
5295 		       config->activate_secondary_controls);
5296 
5297 		return false;
5298 	}
5299 
5300 	return true;
5301 }
5302 
5303 struct apic_reg_test apic_reg_tests[] = {
5304 	/* Good configs, where some L2 APIC accesses are virtualized. */
5305 	{
5306 		.name = "Virtualize APIC accesses",
5307 		.apic_reg_virt_config = {
5308 			.virtualize_apic_accesses = true,
5309 			.use_tpr_shadow = false,
5310 			.apic_register_virtualization = false,
5311 			.virtualize_x2apic_mode = false,
5312 			.activate_secondary_controls = true,
5313 		},
5314 	},
5315 	{
5316 		.name = "Virtualize APIC accesses + Use TPR shadow",
5317 		.apic_reg_virt_config = {
5318 			.virtualize_apic_accesses = true,
5319 			.use_tpr_shadow = true,
5320 			.apic_register_virtualization = false,
5321 			.virtualize_x2apic_mode = false,
5322 			.activate_secondary_controls = true,
5323 		},
5324 	},
5325 	{
5326 		.name = "APIC-register virtualization",
5327 		.apic_reg_virt_config = {
5328 			.virtualize_apic_accesses = true,
5329 			.use_tpr_shadow = true,
5330 			.apic_register_virtualization = true,
5331 			.virtualize_x2apic_mode = false,
5332 			.activate_secondary_controls = true,
5333 		},
5334 	},
5335 
5336 	/*
5337 	 * Test that the secondary processor-based VM-execution controls are
5338 	 * correctly ignored when "activate secondary controls" is disabled.
5339 	 */
5340 	{
5341 		.name = "Activate secondary controls off",
5342 		.apic_reg_virt_config = {
5343 			.virtualize_apic_accesses = true,
5344 			.use_tpr_shadow = false,
5345 			.apic_register_virtualization = true,
5346 			.virtualize_x2apic_mode = true,
5347 			.activate_secondary_controls = false,
5348 		},
5349 	},
5350 	{
5351 		.name = "Activate secondary controls off + Use TPR shadow",
5352 		.apic_reg_virt_config = {
5353 			.virtualize_apic_accesses = true,
5354 			.use_tpr_shadow = true,
5355 			.apic_register_virtualization = true,
5356 			.virtualize_x2apic_mode = true,
5357 			.activate_secondary_controls = false,
5358 		},
5359 	},
5360 
5361 	/*
5362 	 * Test that the APIC access address is treated like an arbitrary memory
5363 	 * address when "virtualize APIC accesses" is disabled.
5364 	 */
5365 	{
5366 		.name = "Virtualize APIC accesses off + Use TPR shadow",
5367 		.apic_reg_virt_config = {
5368 			.virtualize_apic_accesses = false,
5369 			.use_tpr_shadow = true,
5370 			.apic_register_virtualization = true,
5371 			.virtualize_x2apic_mode = true,
5372 			.activate_secondary_controls = true,
5373 		},
5374 	},
5375 
5376 	/*
5377 	 * Test that VM entry fails due to invalid controls when
5378 	 * "APIC-register virtualization" is enabled while "use TPR shadow" is
5379 	 * disabled.
5380 	 */
5381 	{
5382 		.name = "APIC-register virtualization + Use TPR shadow off",
5383 		.apic_reg_virt_config = {
5384 			.virtualize_apic_accesses = true,
5385 			.use_tpr_shadow = false,
5386 			.apic_register_virtualization = true,
5387 			.virtualize_x2apic_mode = false,
5388 			.activate_secondary_controls = true,
5389 		},
5390 	},
5391 
5392 	/*
5393 	 * Test that VM entry fails due to invalid controls when
5394 	 * "Virtualize x2APIC mode" is enabled while "use TPR shadow" is
5395 	 * disabled.
5396 	 */
5397 	{
5398 		.name = "Virtualize x2APIC mode + Use TPR shadow off",
5399 		.apic_reg_virt_config = {
5400 			.virtualize_apic_accesses = false,
5401 			.use_tpr_shadow = false,
5402 			.apic_register_virtualization = false,
5403 			.virtualize_x2apic_mode = true,
5404 			.activate_secondary_controls = true,
5405 		},
5406 	},
5407 	{
5408 		.name = "Virtualize x2APIC mode + Use TPR shadow off v2",
5409 		.apic_reg_virt_config = {
5410 			.virtualize_apic_accesses = false,
5411 			.use_tpr_shadow = false,
5412 			.apic_register_virtualization = true,
5413 			.virtualize_x2apic_mode = true,
5414 			.activate_secondary_controls = true,
5415 		},
5416 	},
5417 
5418 	/*
5419 	 * Test that VM entry fails due to invalid controls when
5420 	 * "virtualize x2APIC mode" is enabled while "virtualize APIC accesses"
5421 	 * is enabled.
5422 	 */
5423 	{
5424 		.name = "Virtualize x2APIC mode + Virtualize APIC accesses",
5425 		.apic_reg_virt_config = {
5426 			.virtualize_apic_accesses = true,
5427 			.use_tpr_shadow = true,
5428 			.apic_register_virtualization = false,
5429 			.virtualize_x2apic_mode = true,
5430 			.activate_secondary_controls = true,
5431 		},
5432 	},
5433 	{
5434 		.name = "Virtualize x2APIC mode + Virtualize APIC accesses v2",
5435 		.apic_reg_virt_config = {
5436 			.virtualize_apic_accesses = true,
5437 			.use_tpr_shadow = true,
5438 			.apic_register_virtualization = true,
5439 			.virtualize_x2apic_mode = true,
5440 			.activate_secondary_controls = true,
5441 		},
5442 	},
5443 };
5444 
5445 enum Apic_op {
5446 	APIC_OP_XAPIC_RD,
5447 	APIC_OP_XAPIC_WR,
5448 	TERMINATE,
5449 };
5450 
5451 static u32 vmx_xapic_read(u32 *apic_access_address, u32 reg)
5452 {
5453 	return *(volatile u32 *)((uintptr_t)apic_access_address + reg);
5454 }
5455 
5456 static void vmx_xapic_write(u32 *apic_access_address, u32 reg, u32 val)
5457 {
5458 	*(volatile u32 *)((uintptr_t)apic_access_address + reg) = val;
5459 }
5460 
5461 struct apic_reg_virt_guest_args {
5462 	enum Apic_op op;
5463 	u32 *apic_access_address;
5464 	u32 reg;
5465 	u32 val;
5466 	bool check_rd;
5467 	u32 (*virt_fn)(u32);
5468 } apic_reg_virt_guest_args;
5469 
5470 static void apic_reg_virt_guest(void)
5471 {
5472 	volatile struct apic_reg_virt_guest_args *args =
5473 		&apic_reg_virt_guest_args;
5474 
5475 	for (;;) {
5476 		enum Apic_op op = args->op;
5477 		u32 *apic_access_address = args->apic_access_address;
5478 		u32 reg = args->reg;
5479 		u32 val = args->val;
5480 		bool check_rd = args->check_rd;
5481 		u32 (*virt_fn)(u32) = args->virt_fn;
5482 
5483 		if (op == TERMINATE)
5484 			break;
5485 
5486 		if (op == APIC_OP_XAPIC_RD) {
5487 			u32 ret = vmx_xapic_read(apic_access_address, reg);
5488 
5489 			if (check_rd) {
5490 				u32 want = virt_fn(val);
5491 				u32 got = virt_fn(ret);
5492 
5493 				report("read 0x%x, expected 0x%x.",
5494 				       got == want, got, want);
5495 			}
5496 		} else if (op == APIC_OP_XAPIC_WR) {
5497 			vmx_xapic_write(apic_access_address, reg, val);
5498 		}
5499 
5500 		/*
5501 		 * The L1 should always execute a vmcall after it's done testing
5502 		 * an individual APIC operation. This helps to validate that the
5503 		 * L1 and L2 are in sync with each other, as expected.
5504 		 */
5505 		vmcall();
5506 	}
5507 }
5508 
5509 static void test_xapic_rd(
5510 	u32 reg, struct apic_reg_virt_expectation *expectation,
5511 	u32 *apic_access_address, u32 *virtual_apic_page)
5512 {
5513 	u32 val = expectation->val;
5514 	u32 exit_reason_want = expectation->rd_exit_reason;
5515 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
5516 
5517 	report_prefix_pushf("xapic - reading 0x%03x", reg);
5518 
5519 	/* Configure guest to do an xapic read */
5520 	args->op = APIC_OP_XAPIC_RD;
5521 	args->apic_access_address = apic_access_address;
5522 	args->reg = reg;
5523 	args->val = val;
5524 	args->check_rd = exit_reason_want == VMX_VMCALL;
5525 	args->virt_fn = expectation->virt_fn;
5526 
5527 	/* Setup virtual APIC page */
5528 	if (!expectation->virtualize_apic_accesses) {
5529 		apic_access_address[apic_reg_index(reg)] = val;
5530 		virtual_apic_page[apic_reg_index(reg)] = 0;
5531 	} else if (exit_reason_want == VMX_VMCALL) {
5532 		apic_access_address[apic_reg_index(reg)] = 0;
5533 		virtual_apic_page[apic_reg_index(reg)] = val;
5534 	}
5535 
5536 	/* Enter guest */
5537 	enter_guest();
5538 
5539 	/*
5540 	 * Validate the behavior and
5541 	 * pass a magic value back to the guest.
5542 	 */
5543 	if (exit_reason_want == VMX_APIC_ACCESS) {
5544 		u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff;
5545 
5546 		assert_exit_reason(exit_reason_want);
5547 		report("got APIC access exit @ page offset 0x%03x, want 0x%03x",
5548 		       apic_page_offset == reg, apic_page_offset, reg);
5549 		skip_exit_insn();
5550 
5551 		/* Reenter guest so it can consume/check rcx and exit again. */
5552 		enter_guest();
5553 	} else if (exit_reason_want != VMX_VMCALL) {
5554 		report("Oops, bad exit expectation: %u.", false,
5555 		       exit_reason_want);
5556 	}
5557 
5558 	skip_exit_vmcall();
5559 	report_prefix_pop();
5560 }
5561 
5562 static void test_xapic_wr(
5563 	u32 reg, struct apic_reg_virt_expectation *expectation,
5564 	u32 *apic_access_address, u32 *virtual_apic_page)
5565 {
5566 	u32 val = expectation->val;
5567 	u32 exit_reason_want = expectation->wr_exit_reason;
5568 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
5569 	bool virtualized =
5570 		expectation->virtualize_apic_accesses &&
5571 		(exit_reason_want == VMX_APIC_WRITE ||
5572 		 exit_reason_want == VMX_VMCALL);
5573 	bool checked = false;
5574 
5575 	report_prefix_pushf("xapic - writing 0x%x to 0x%03x", val, reg);
5576 
5577 	/* Configure guest to do an xapic read */
5578 	args->op = APIC_OP_XAPIC_WR;
5579 	args->apic_access_address = apic_access_address;
5580 	args->reg = reg;
5581 	args->val = val;
5582 
5583 	/* Setup virtual APIC page */
5584 	if (virtualized || !expectation->virtualize_apic_accesses) {
5585 		apic_access_address[apic_reg_index(reg)] = 0;
5586 		virtual_apic_page[apic_reg_index(reg)] = 0;
5587 	}
5588 
5589 	/* Enter guest */
5590 	enter_guest();
5591 
5592 	/*
5593 	 * Validate the behavior and
5594 	 * pass a magic value back to the guest.
5595 	 */
5596 	if (exit_reason_want == VMX_APIC_ACCESS) {
5597 		u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff;
5598 
5599 		assert_exit_reason(exit_reason_want);
5600 		report("got APIC access exit @ page offset 0x%03x, want 0x%03x",
5601 		       apic_page_offset == reg, apic_page_offset, reg);
5602 		skip_exit_insn();
5603 
5604 		/* Reenter guest so it can consume/check rcx and exit again. */
5605 		enter_guest();
5606 	} else if (exit_reason_want == VMX_APIC_WRITE) {
5607 		assert_exit_reason(exit_reason_want);
5608 		report("got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%x",
5609 		       virtual_apic_page[apic_reg_index(reg)] == val,
5610 		       apic_reg_index(reg),
5611 		       virtual_apic_page[apic_reg_index(reg)], val);
5612 		checked = true;
5613 
5614 		/* Reenter guest so it can consume/check rcx and exit again. */
5615 		enter_guest();
5616 	} else if (exit_reason_want != VMX_VMCALL) {
5617 		report("Oops, bad exit expectation: %u.", false,
5618 		       exit_reason_want);
5619 	}
5620 
5621 	assert_exit_reason(VMX_VMCALL);
5622 	if (virtualized && !checked) {
5623 		u32 want = expectation->virt_fn(val);
5624 		u32 got = virtual_apic_page[apic_reg_index(reg)];
5625 		got = expectation->virt_fn(got);
5626 
5627 		report("exitless write; val is 0x%x, want 0x%x",
5628 		       got == want, got, want);
5629 	} else if (!expectation->virtualize_apic_accesses && !checked) {
5630 		u32 got = apic_access_address[apic_reg_index(reg)];
5631 
5632 		report("non-virtualized write; val is 0x%x, want 0x%x",
5633 		       got == val, got, val);
5634 	} else if (!expectation->virtualize_apic_accesses && checked) {
5635 		report("Non-virtualized write was prematurely checked!", false);
5636 	}
5637 
5638 	skip_exit_vmcall();
5639 	report_prefix_pop();
5640 }
5641 
5642 enum Config_type {
5643 	CONFIG_TYPE_GOOD,
5644 	CONFIG_TYPE_UNSUPPORTED,
5645 	CONFIG_TYPE_VMENTRY_FAILS_EARLY,
5646 };
5647 
5648 static enum Config_type configure_apic_reg_virt_test(
5649 	struct apic_reg_virt_config *apic_reg_virt_config)
5650 {
5651 	u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
5652 	u32 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
5653 	/* Configs where L2 entry fails early, due to invalid controls. */
5654 	bool use_tpr_shadow_incorrectly_off =
5655 		!apic_reg_virt_config->use_tpr_shadow &&
5656 		(apic_reg_virt_config->apic_register_virtualization ||
5657 		 apic_reg_virt_config->virtualize_x2apic_mode) &&
5658 		apic_reg_virt_config->activate_secondary_controls;
5659 	bool virtualize_apic_accesses_incorrectly_on =
5660 		apic_reg_virt_config->virtualize_apic_accesses &&
5661 		apic_reg_virt_config->virtualize_x2apic_mode &&
5662 		apic_reg_virt_config->activate_secondary_controls;
5663 	bool vmentry_fails_early =
5664 		use_tpr_shadow_incorrectly_off ||
5665 		virtualize_apic_accesses_incorrectly_on;
5666 
5667 	if (apic_reg_virt_config->activate_secondary_controls) {
5668 		if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) {
5669 			printf("VM-execution control \"activate secondary controls\" NOT supported.\n");
5670 			return CONFIG_TYPE_UNSUPPORTED;
5671 		}
5672 		cpu_exec_ctrl0 |= CPU_SECONDARY;
5673 	} else {
5674 		cpu_exec_ctrl0 &= ~CPU_SECONDARY;
5675 	}
5676 
5677 	if (apic_reg_virt_config->virtualize_apic_accesses) {
5678 		if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES)) {
5679 			printf("VM-execution control \"virtualize APIC accesses\" NOT supported.\n");
5680 			return CONFIG_TYPE_UNSUPPORTED;
5681 		}
5682 		cpu_exec_ctrl1 |= CPU_VIRT_APIC_ACCESSES;
5683 	} else {
5684 		cpu_exec_ctrl1 &= ~CPU_VIRT_APIC_ACCESSES;
5685 	}
5686 
5687 	if (apic_reg_virt_config->use_tpr_shadow) {
5688 		if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) {
5689 			printf("VM-execution control \"use TPR shadow\" NOT supported.\n");
5690 			return CONFIG_TYPE_UNSUPPORTED;
5691 		}
5692 		cpu_exec_ctrl0 |= CPU_TPR_SHADOW;
5693 	} else {
5694 		cpu_exec_ctrl0 &= ~CPU_TPR_SHADOW;
5695 	}
5696 
5697 	if (apic_reg_virt_config->apic_register_virtualization) {
5698 		if (!(ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT)) {
5699 			printf("VM-execution control \"APIC-register virtualization\" NOT supported.\n");
5700 			return CONFIG_TYPE_UNSUPPORTED;
5701 		}
5702 		cpu_exec_ctrl1 |= CPU_APIC_REG_VIRT;
5703 	} else {
5704 		cpu_exec_ctrl1 &= ~CPU_APIC_REG_VIRT;
5705 	}
5706 
5707 	if (apic_reg_virt_config->virtualize_x2apic_mode) {
5708 		if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_X2APIC)) {
5709 			printf("VM-execution control \"virtualize x2APIC mode\" NOT supported.\n");
5710 			return CONFIG_TYPE_UNSUPPORTED;
5711 		}
5712 		cpu_exec_ctrl1 |= CPU_VIRT_X2APIC;
5713 	} else {
5714 		cpu_exec_ctrl1 &= ~CPU_VIRT_X2APIC;
5715 	}
5716 
5717 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
5718 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
5719 
5720 	if (vmentry_fails_early)
5721 		return CONFIG_TYPE_VMENTRY_FAILS_EARLY;
5722 
5723 	return CONFIG_TYPE_GOOD;
5724 }
5725 
5726 static bool cpu_has_apicv(void)
5727 {
5728 	return ((ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT) &&
5729 		(ctrl_cpu_rev[1].clr & CPU_VINTD) &&
5730 		(ctrl_pin_rev.clr & PIN_POST_INTR));
5731 }
5732 
5733 /* Validates APIC register access across valid virtualization configurations. */
5734 static void apic_reg_virt_test(void)
5735 {
5736 	u32 *apic_access_address;
5737 	u32 *virtual_apic_page;
5738 	u64 control;
5739 	u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
5740 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
5741 	int i;
5742 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
5743 
5744 	if (!cpu_has_apicv()) {
5745 		report_skip(__func__);
5746 		return;
5747 	}
5748 
5749 	control = cpu_exec_ctrl1;
5750 	control &= ~CPU_VINTD;
5751 	vmcs_write(CPU_EXEC_CTRL1, control);
5752 
5753 	test_set_guest(apic_reg_virt_guest);
5754 
5755 	/*
5756 	 * From the SDM: The 1-setting of the "virtualize APIC accesses"
5757 	 * VM-execution is guaranteed to apply only if translations to the
5758 	 * APIC-access address use a 4-KByte page.
5759 	 */
5760 	apic_access_address = alloc_page();
5761 	force_4k_page(apic_access_address);
5762 	vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_address));
5763 
5764 	virtual_apic_page = alloc_page();
5765 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
5766 
5767 	for (i = 0; i < ARRAY_SIZE(apic_reg_tests); i++) {
5768 		struct apic_reg_test *apic_reg_test = &apic_reg_tests[i];
5769 		struct apic_reg_virt_config *apic_reg_virt_config =
5770 				&apic_reg_test->apic_reg_virt_config;
5771 		enum Config_type config_type;
5772 		u32 reg;
5773 
5774 		printf("--- %s test ---\n", apic_reg_test->name);
5775 		config_type =
5776 			configure_apic_reg_virt_test(apic_reg_virt_config);
5777 		if (config_type == CONFIG_TYPE_UNSUPPORTED) {
5778 			printf("Skip because of missing features.\n");
5779 			continue;
5780 		}
5781 
5782 		if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) {
5783 			enter_guest_with_bad_controls();
5784 			continue;
5785 		}
5786 
5787 		for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) {
5788 			struct apic_reg_virt_expectation expectation = {};
5789 			bool ok;
5790 
5791 			ok = apic_reg_virt_exit_expectation(
5792 				reg, apic_reg_virt_config, &expectation);
5793 			if (!ok) {
5794 				report("Malformed test.", false);
5795 				break;
5796 			}
5797 
5798 			test_xapic_rd(reg, &expectation, apic_access_address,
5799 				      virtual_apic_page);
5800 			test_xapic_wr(reg, &expectation, apic_access_address,
5801 				      virtual_apic_page);
5802 		}
5803 	}
5804 
5805 	/* Terminate the guest */
5806 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
5807 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
5808 	args->op = TERMINATE;
5809 	enter_guest();
5810 	assert_exit_reason(VMX_VMCALL);
5811 }
5812 
5813 struct virt_x2apic_mode_config {
5814 	struct apic_reg_virt_config apic_reg_virt_config;
5815 	bool virtual_interrupt_delivery;
5816 	bool use_msr_bitmaps;
5817 	bool disable_x2apic_msr_intercepts;
5818 	bool disable_x2apic;
5819 };
5820 
5821 struct virt_x2apic_mode_test_case {
5822 	const char *name;
5823 	struct virt_x2apic_mode_config virt_x2apic_mode_config;
5824 };
5825 
5826 enum Virt_x2apic_mode_behavior_type {
5827 	X2APIC_ACCESS_VIRTUALIZED,
5828 	X2APIC_ACCESS_PASSED_THROUGH,
5829 	X2APIC_ACCESS_TRIGGERS_GP,
5830 };
5831 
5832 struct virt_x2apic_mode_expectation {
5833 	enum Reason rd_exit_reason;
5834 	enum Reason wr_exit_reason;
5835 
5836 	/*
5837 	 * RDMSR and WRMSR handle 64-bit values. However, except for ICR, all of
5838 	 * the x2APIC registers are 32 bits. Notice:
5839 	 *   1. vmx_x2apic_read() clears the upper 32 bits for 32-bit registers.
5840 	 *   2. vmx_x2apic_write() expects the val arg to be well-formed.
5841 	 */
5842 	u64 rd_val;
5843 	u64 wr_val;
5844 
5845 	/*
5846 	 * Compares input to virtualized output;
5847 	 * 1st arg is pointer to return expected virtualization output.
5848 	 */
5849 	u64 (*virt_fn)(u64);
5850 
5851 	enum Virt_x2apic_mode_behavior_type rd_behavior;
5852 	enum Virt_x2apic_mode_behavior_type wr_behavior;
5853 	bool wr_only;
5854 };
5855 
5856 static u64 virt_x2apic_mode_identity(u64 val)
5857 {
5858 	return val;
5859 }
5860 
5861 static u64 virt_x2apic_mode_nibble1(u64 val)
5862 {
5863 	return val & 0xf0;
5864 }
5865 
5866 static bool is_cmci_enabled(void)
5867 {
5868 	return rdmsr(MSR_IA32_MCG_CAP) & BIT_ULL(10);
5869 }
5870 
5871 static void virt_x2apic_mode_rd_expectation(
5872 	u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic,
5873 	bool apic_register_virtualization, bool virtual_interrupt_delivery,
5874 	struct virt_x2apic_mode_expectation *expectation)
5875 {
5876 	bool readable =
5877 		!x2apic_reg_reserved(reg) &&
5878 		reg != APIC_EOI;
5879 
5880 	if (reg == APIC_CMCI && !is_cmci_enabled())
5881 		readable = false;
5882 
5883 	expectation->rd_exit_reason = VMX_VMCALL;
5884 	expectation->virt_fn = virt_x2apic_mode_identity;
5885 	if (virt_x2apic_mode_on && apic_register_virtualization) {
5886 		expectation->rd_val = MAGIC_VAL_1;
5887 		if (reg == APIC_PROCPRI && virtual_interrupt_delivery)
5888 			expectation->virt_fn = virt_x2apic_mode_nibble1;
5889 		else if (reg == APIC_TASKPRI)
5890 			expectation->virt_fn = virt_x2apic_mode_nibble1;
5891 		expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED;
5892 	} else if (virt_x2apic_mode_on && !apic_register_virtualization &&
5893 		   reg == APIC_TASKPRI) {
5894 		expectation->rd_val = MAGIC_VAL_1;
5895 		expectation->virt_fn = virt_x2apic_mode_nibble1;
5896 		expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED;
5897 	} else if (!disable_x2apic && readable) {
5898 		expectation->rd_val = apic_read(reg);
5899 		expectation->rd_behavior = X2APIC_ACCESS_PASSED_THROUGH;
5900 	} else {
5901 		expectation->rd_behavior = X2APIC_ACCESS_TRIGGERS_GP;
5902 	}
5903 }
5904 
5905 /*
5906  * get_x2apic_wr_val() creates an innocuous write value for an x2APIC register.
5907  *
5908  * For writable registers, get_x2apic_wr_val() deposits the write value into the
5909  * val pointer arg and returns true. For non-writable registers, val is not
5910  * modified and get_x2apic_wr_val() returns false.
5911  */
5912 static bool get_x2apic_wr_val(u32 reg, u64 *val)
5913 {
5914 	switch (reg) {
5915 	case APIC_TASKPRI:
5916 		/* Bits 31:8 are reserved. */
5917 		*val &= 0xff;
5918 		break;
5919 	case APIC_EOI:
5920 	case APIC_ESR:
5921 	case APIC_TMICT:
5922 		/*
5923 		 * EOI, ESR: WRMSR of a non-zero value causes #GP(0).
5924 		 * TMICT: A write of 0 to the initial-count register effectively
5925 		 *        stops the local APIC timer, in both one-shot and
5926 		 *        periodic mode.
5927 		 */
5928 		*val = 0;
5929 		break;
5930 	case APIC_SPIV:
5931 	case APIC_LVTT:
5932 	case APIC_LVTTHMR:
5933 	case APIC_LVTPC:
5934 	case APIC_LVT0:
5935 	case APIC_LVT1:
5936 	case APIC_LVTERR:
5937 	case APIC_TDCR:
5938 		/*
5939 		 * To avoid writing a 1 to a reserved bit or causing some other
5940 		 * unintended side effect, read the current value and use it as
5941 		 * the write value.
5942 		 */
5943 		*val = apic_read(reg);
5944 		break;
5945 	case APIC_CMCI:
5946 		if (!is_cmci_enabled())
5947 			return false;
5948 		*val = apic_read(reg);
5949 		break;
5950 	case APIC_ICR:
5951 		*val = 0x40000 | 0xf1;
5952 		break;
5953 	case APIC_SELF_IPI:
5954 		/*
5955 		 * With special processing (i.e., virtualize x2APIC mode +
5956 		 * virtual interrupt delivery), writing zero causes an
5957 		 * APIC-write VM exit. We plan to add a test for enabling
5958 		 * "virtual-interrupt delivery" in VMCS12, and that's where we
5959 		 * will test a self IPI with special processing.
5960 		 */
5961 		*val = 0x0;
5962 		break;
5963 	default:
5964 		return false;
5965 	}
5966 
5967 	return true;
5968 }
5969 
5970 static bool special_processing_applies(u32 reg, u64 *val,
5971 				       bool virt_int_delivery)
5972 {
5973 	bool special_processing =
5974 		(reg == APIC_TASKPRI) ||
5975 		(virt_int_delivery &&
5976 		 (reg == APIC_EOI || reg == APIC_SELF_IPI));
5977 
5978 	if (special_processing) {
5979 		TEST_ASSERT(get_x2apic_wr_val(reg, val));
5980 		return true;
5981 	}
5982 
5983 	return false;
5984 }
5985 
5986 static void virt_x2apic_mode_wr_expectation(
5987 	u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic,
5988 	bool virt_int_delivery,
5989 	struct virt_x2apic_mode_expectation *expectation)
5990 {
5991 	expectation->wr_exit_reason = VMX_VMCALL;
5992 	expectation->wr_val = MAGIC_VAL_1;
5993 	expectation->wr_only = false;
5994 
5995 	if (virt_x2apic_mode_on &&
5996 	    special_processing_applies(reg, &expectation->wr_val,
5997 				       virt_int_delivery)) {
5998 		expectation->wr_behavior = X2APIC_ACCESS_VIRTUALIZED;
5999 		if (reg == APIC_SELF_IPI)
6000 			expectation->wr_exit_reason = VMX_APIC_WRITE;
6001 	} else if (!disable_x2apic &&
6002 		   get_x2apic_wr_val(reg, &expectation->wr_val)) {
6003 		expectation->wr_behavior = X2APIC_ACCESS_PASSED_THROUGH;
6004 		if (reg == APIC_EOI || reg == APIC_SELF_IPI)
6005 			expectation->wr_only = true;
6006 		if (reg == APIC_ICR)
6007 			expectation->wr_exit_reason = VMX_EXTINT;
6008 	} else {
6009 		expectation->wr_behavior = X2APIC_ACCESS_TRIGGERS_GP;
6010 		/*
6011 		 * Writing 1 to a reserved bit triggers a #GP.
6012 		 * Thus, set the write value to 0, which seems
6013 		 * the most likely to detect a missed #GP.
6014 		 */
6015 		expectation->wr_val = 0;
6016 	}
6017 }
6018 
6019 static void virt_x2apic_mode_exit_expectation(
6020 	u32 reg, struct virt_x2apic_mode_config *config,
6021 	struct virt_x2apic_mode_expectation *expectation)
6022 {
6023 	struct apic_reg_virt_config *base_config =
6024 		&config->apic_reg_virt_config;
6025 	bool virt_x2apic_mode_on =
6026 		base_config->virtualize_x2apic_mode &&
6027 		config->use_msr_bitmaps &&
6028 		config->disable_x2apic_msr_intercepts &&
6029 		base_config->activate_secondary_controls;
6030 
6031 	virt_x2apic_mode_wr_expectation(
6032 		reg, virt_x2apic_mode_on, config->disable_x2apic,
6033 		config->virtual_interrupt_delivery, expectation);
6034 	virt_x2apic_mode_rd_expectation(
6035 		reg, virt_x2apic_mode_on, config->disable_x2apic,
6036 		base_config->apic_register_virtualization,
6037 		config->virtual_interrupt_delivery, expectation);
6038 }
6039 
6040 struct virt_x2apic_mode_test_case virt_x2apic_mode_tests[] = {
6041 	/*
6042 	 * Baseline "virtualize x2APIC mode" configuration:
6043 	 *   - virtualize x2APIC mode
6044 	 *   - virtual-interrupt delivery
6045 	 *   - APIC-register virtualization
6046 	 *   - x2APIC MSR intercepts disabled
6047 	 *
6048 	 * Reads come from virtual APIC page, special processing applies to
6049 	 * VTPR, EOI, and SELF IPI, and all other writes pass through to L1
6050 	 * APIC.
6051 	 */
6052 	{
6053 		.name = "Baseline",
6054 		.virt_x2apic_mode_config = {
6055 			.virtual_interrupt_delivery = true,
6056 			.use_msr_bitmaps = true,
6057 			.disable_x2apic_msr_intercepts = true,
6058 			.disable_x2apic = false,
6059 			.apic_reg_virt_config = {
6060 				.apic_register_virtualization = true,
6061 				.use_tpr_shadow = true,
6062 				.virtualize_apic_accesses = false,
6063 				.virtualize_x2apic_mode = true,
6064 				.activate_secondary_controls = true,
6065 			},
6066 		},
6067 	},
6068 	{
6069 		.name = "Baseline w/ x2apic disabled",
6070 		.virt_x2apic_mode_config = {
6071 			.virtual_interrupt_delivery = true,
6072 			.use_msr_bitmaps = true,
6073 			.disable_x2apic_msr_intercepts = true,
6074 			.disable_x2apic = true,
6075 			.apic_reg_virt_config = {
6076 				.apic_register_virtualization = true,
6077 				.use_tpr_shadow = true,
6078 				.virtualize_apic_accesses = false,
6079 				.virtualize_x2apic_mode = true,
6080 				.activate_secondary_controls = true,
6081 			},
6082 		},
6083 	},
6084 
6085 	/*
6086 	 * Baseline, minus virtual-interrupt delivery. Reads come from virtual
6087 	 * APIC page, special processing applies to VTPR, and all other writes
6088 	 * pass through to L1 APIC.
6089 	 */
6090 	{
6091 		.name = "Baseline - virtual interrupt delivery",
6092 		.virt_x2apic_mode_config = {
6093 			.virtual_interrupt_delivery = false,
6094 			.use_msr_bitmaps = true,
6095 			.disable_x2apic_msr_intercepts = true,
6096 			.disable_x2apic = false,
6097 			.apic_reg_virt_config = {
6098 				.apic_register_virtualization = true,
6099 				.use_tpr_shadow = true,
6100 				.virtualize_apic_accesses = false,
6101 				.virtualize_x2apic_mode = true,
6102 				.activate_secondary_controls = true,
6103 			},
6104 		},
6105 	},
6106 
6107 	/*
6108 	 * Baseline, minus APIC-register virtualization. x2APIC reads pass
6109 	 * through to L1's APIC, unless reading VTPR
6110 	 */
6111 	{
6112 		.name = "Virtualize x2APIC mode, no APIC reg virt",
6113 		.virt_x2apic_mode_config = {
6114 			.virtual_interrupt_delivery = true,
6115 			.use_msr_bitmaps = true,
6116 			.disable_x2apic_msr_intercepts = true,
6117 			.disable_x2apic = false,
6118 			.apic_reg_virt_config = {
6119 				.apic_register_virtualization = false,
6120 				.use_tpr_shadow = true,
6121 				.virtualize_apic_accesses = false,
6122 				.virtualize_x2apic_mode = true,
6123 				.activate_secondary_controls = true,
6124 			},
6125 		},
6126 	},
6127 	{
6128 		.name = "Virtualize x2APIC mode, no APIC reg virt, x2APIC off",
6129 		.virt_x2apic_mode_config = {
6130 			.virtual_interrupt_delivery = true,
6131 			.use_msr_bitmaps = true,
6132 			.disable_x2apic_msr_intercepts = true,
6133 			.disable_x2apic = true,
6134 			.apic_reg_virt_config = {
6135 				.apic_register_virtualization = false,
6136 				.use_tpr_shadow = true,
6137 				.virtualize_apic_accesses = false,
6138 				.virtualize_x2apic_mode = true,
6139 				.activate_secondary_controls = true,
6140 			},
6141 		},
6142 	},
6143 
6144 	/*
6145 	 * Enable "virtualize x2APIC mode" and "APIC-register virtualization",
6146 	 * and disable intercepts for the x2APIC MSRs, but fail to enable
6147 	 * "activate secondary controls" (i.e. L2 gets access to L1's x2APIC
6148 	 * MSRs).
6149 	 */
6150 	{
6151 		.name = "Fail to enable activate secondary controls",
6152 		.virt_x2apic_mode_config = {
6153 			.virtual_interrupt_delivery = true,
6154 			.use_msr_bitmaps = true,
6155 			.disable_x2apic_msr_intercepts = true,
6156 			.disable_x2apic = false,
6157 			.apic_reg_virt_config = {
6158 				.apic_register_virtualization = true,
6159 				.use_tpr_shadow = true,
6160 				.virtualize_apic_accesses = false,
6161 				.virtualize_x2apic_mode = true,
6162 				.activate_secondary_controls = false,
6163 			},
6164 		},
6165 	},
6166 
6167 	/*
6168 	 * Enable "APIC-register virtualization" and enable "activate secondary
6169 	 * controls" and disable intercepts for the x2APIC MSRs, but do not
6170 	 * enable the "virtualize x2APIC mode" VM-execution control (i.e. L2
6171 	 * gets access to L1's x2APIC MSRs).
6172 	 */
6173 	{
6174 		.name = "Fail to enable virtualize x2APIC mode",
6175 		.virt_x2apic_mode_config = {
6176 			.virtual_interrupt_delivery = true,
6177 			.use_msr_bitmaps = true,
6178 			.disable_x2apic_msr_intercepts = true,
6179 			.disable_x2apic = false,
6180 			.apic_reg_virt_config = {
6181 				.apic_register_virtualization = true,
6182 				.use_tpr_shadow = true,
6183 				.virtualize_apic_accesses = false,
6184 				.virtualize_x2apic_mode = false,
6185 				.activate_secondary_controls = true,
6186 			},
6187 		},
6188 	},
6189 
6190 	/*
6191 	 * Disable "Virtualize x2APIC mode", disable x2APIC MSR intercepts, and
6192 	 * enable "APIC-register virtualization" --> L2 gets L1's x2APIC MSRs.
6193 	 */
6194 	{
6195 		.name = "Baseline",
6196 		.virt_x2apic_mode_config = {
6197 			.virtual_interrupt_delivery = true,
6198 			.use_msr_bitmaps = true,
6199 			.disable_x2apic_msr_intercepts = true,
6200 			.disable_x2apic = false,
6201 			.apic_reg_virt_config = {
6202 				.apic_register_virtualization = true,
6203 				.use_tpr_shadow = true,
6204 				.virtualize_apic_accesses = false,
6205 				.virtualize_x2apic_mode = false,
6206 				.activate_secondary_controls = true,
6207 			},
6208 		},
6209 	},
6210 };
6211 
6212 enum X2apic_op {
6213 	X2APIC_OP_RD,
6214 	X2APIC_OP_WR,
6215 	X2APIC_TERMINATE,
6216 };
6217 
6218 static u64 vmx_x2apic_read(u32 reg)
6219 {
6220 	u32 msr_addr = x2apic_msr(reg);
6221 	u64 val;
6222 
6223 	val = rdmsr(msr_addr);
6224 
6225 	return val;
6226 }
6227 
6228 static void vmx_x2apic_write(u32 reg, u64 val)
6229 {
6230 	u32 msr_addr = x2apic_msr(reg);
6231 
6232 	wrmsr(msr_addr, val);
6233 }
6234 
6235 struct virt_x2apic_mode_guest_args {
6236 	enum X2apic_op op;
6237 	u32 reg;
6238 	u64 val;
6239 	bool should_gp;
6240 	u64 (*virt_fn)(u64);
6241 } virt_x2apic_mode_guest_args;
6242 
6243 static volatile bool handle_x2apic_gp_ran;
6244 static volatile u32 handle_x2apic_gp_insn_len;
6245 static void handle_x2apic_gp(struct ex_regs *regs)
6246 {
6247 	handle_x2apic_gp_ran = true;
6248 	regs->rip += handle_x2apic_gp_insn_len;
6249 }
6250 
6251 static handler setup_x2apic_gp_handler(void)
6252 {
6253 	handler old_handler;
6254 
6255 	old_handler = handle_exception(GP_VECTOR, handle_x2apic_gp);
6256 	/* RDMSR and WRMSR are both 2 bytes, assuming no prefixes. */
6257 	handle_x2apic_gp_insn_len = 2;
6258 
6259 	return old_handler;
6260 }
6261 
6262 static void teardown_x2apic_gp_handler(handler old_handler)
6263 {
6264 	handle_exception(GP_VECTOR, old_handler);
6265 
6266 	/*
6267 	 * Defensively reset instruction length, so that if the handler is
6268 	 * incorrectly used, it will loop infinitely, rather than run off into
6269 	 * la la land.
6270 	 */
6271 	handle_x2apic_gp_insn_len = 0;
6272 	handle_x2apic_gp_ran = false;
6273 }
6274 
6275 static void virt_x2apic_mode_guest(void)
6276 {
6277 	volatile struct virt_x2apic_mode_guest_args *args =
6278 		&virt_x2apic_mode_guest_args;
6279 
6280 	for (;;) {
6281 		enum X2apic_op op = args->op;
6282 		u32 reg = args->reg;
6283 		u64 val = args->val;
6284 		bool should_gp = args->should_gp;
6285 		u64 (*virt_fn)(u64) = args->virt_fn;
6286 		handler old_handler;
6287 
6288 		if (op == X2APIC_TERMINATE)
6289 			break;
6290 
6291 		if (should_gp) {
6292 			TEST_ASSERT(!handle_x2apic_gp_ran);
6293 			old_handler = setup_x2apic_gp_handler();
6294 		}
6295 
6296 		if (op == X2APIC_OP_RD) {
6297 			u64 ret = vmx_x2apic_read(reg);
6298 
6299 			if (!should_gp) {
6300 				u64 want = virt_fn(val);
6301 				u64 got = virt_fn(ret);
6302 
6303 				report("APIC read; got 0x%lx, want 0x%lx.",
6304 				       got == want, got, want);
6305 			}
6306 		} else if (op == X2APIC_OP_WR) {
6307 			vmx_x2apic_write(reg, val);
6308 		}
6309 
6310 		if (should_gp) {
6311 			report("x2APIC op triggered GP.",
6312 			       handle_x2apic_gp_ran);
6313 			teardown_x2apic_gp_handler(old_handler);
6314 		}
6315 
6316 		/*
6317 		 * The L1 should always execute a vmcall after it's done testing
6318 		 * an individual APIC operation. This helps to validate that the
6319 		 * L1 and L2 are in sync with each other, as expected.
6320 		 */
6321 		vmcall();
6322 	}
6323 }
6324 
6325 static void test_x2apic_rd(
6326 	u32 reg, struct virt_x2apic_mode_expectation *expectation,
6327 	u32 *virtual_apic_page)
6328 {
6329 	u64 val = expectation->rd_val;
6330 	u32 exit_reason_want = expectation->rd_exit_reason;
6331 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6332 
6333 	report_prefix_pushf("x2apic - reading 0x%03x", reg);
6334 
6335 	/* Configure guest to do an x2apic read */
6336 	args->op = X2APIC_OP_RD;
6337 	args->reg = reg;
6338 	args->val = val;
6339 	args->should_gp = expectation->rd_behavior == X2APIC_ACCESS_TRIGGERS_GP;
6340 	args->virt_fn = expectation->virt_fn;
6341 
6342 	/* Setup virtual APIC page */
6343 	if (expectation->rd_behavior == X2APIC_ACCESS_VIRTUALIZED)
6344 		virtual_apic_page[apic_reg_index(reg)] = (u32)val;
6345 
6346 	/* Enter guest */
6347 	enter_guest();
6348 
6349 	if (exit_reason_want != VMX_VMCALL) {
6350 		report("Oops, bad exit expectation: %u.", false,
6351 		       exit_reason_want);
6352 	}
6353 
6354 	skip_exit_vmcall();
6355 	report_prefix_pop();
6356 }
6357 
6358 static volatile bool handle_x2apic_ipi_ran;
6359 static void handle_x2apic_ipi(isr_regs_t *regs)
6360 {
6361 	handle_x2apic_ipi_ran = true;
6362 	eoi();
6363 }
6364 
6365 static void test_x2apic_wr(
6366 	u32 reg, struct virt_x2apic_mode_expectation *expectation,
6367 	u32 *virtual_apic_page)
6368 {
6369 	u64 val = expectation->wr_val;
6370 	u32 exit_reason_want = expectation->wr_exit_reason;
6371 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6372 	int ipi_vector = 0xf1;
6373 	u32 restore_val = 0;
6374 
6375 	report_prefix_pushf("x2apic - writing 0x%lx to 0x%03x", val, reg);
6376 
6377 	/* Configure guest to do an x2apic read */
6378 	args->op = X2APIC_OP_WR;
6379 	args->reg = reg;
6380 	args->val = val;
6381 	args->should_gp = expectation->wr_behavior == X2APIC_ACCESS_TRIGGERS_GP;
6382 
6383 	/* Setup virtual APIC page */
6384 	if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED)
6385 		virtual_apic_page[apic_reg_index(reg)] = 0;
6386 	if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH && !expectation->wr_only)
6387 		restore_val = apic_read(reg);
6388 
6389 	/* Setup IPI handler */
6390 	handle_x2apic_ipi_ran = false;
6391 	handle_irq(ipi_vector, handle_x2apic_ipi);
6392 
6393 	/* Enter guest */
6394 	enter_guest();
6395 
6396 	/*
6397 	 * Validate the behavior and
6398 	 * pass a magic value back to the guest.
6399 	 */
6400 	if (exit_reason_want == VMX_EXTINT) {
6401 		assert_exit_reason(exit_reason_want);
6402 
6403 		/* Clear the external interrupt. */
6404 		irq_enable();
6405 		asm volatile ("nop");
6406 		irq_disable();
6407 		report("Got pending interrupt after IRQ enabled.",
6408 		       handle_x2apic_ipi_ran);
6409 
6410 		enter_guest();
6411 	} else if (exit_reason_want == VMX_APIC_WRITE) {
6412 		assert_exit_reason(exit_reason_want);
6413 		report("got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%lx",
6414 		       virtual_apic_page[apic_reg_index(reg)] == val,
6415 		       apic_reg_index(reg),
6416 		       virtual_apic_page[apic_reg_index(reg)], val);
6417 
6418 		/* Reenter guest so it can consume/check rcx and exit again. */
6419 		enter_guest();
6420 	} else if (exit_reason_want != VMX_VMCALL) {
6421 		report("Oops, bad exit expectation: %u.", false,
6422 		       exit_reason_want);
6423 	}
6424 
6425 	assert_exit_reason(VMX_VMCALL);
6426 	if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) {
6427 		u64 want = val;
6428 		u32 got = virtual_apic_page[apic_reg_index(reg)];
6429 
6430 		report("x2APIC write; got 0x%x, want 0x%lx",
6431 		       got == want, got, want);
6432 	} else if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH) {
6433 		if (!expectation->wr_only) {
6434 			u32 got = apic_read(reg);
6435 			bool ok;
6436 
6437 			/*
6438 			 * When L1's TPR is passed through to L2, the lower
6439 			 * nibble can be lost. For example, if L2 executes
6440 			 * WRMSR(0x808, 0x78), then, L1 might read 0x70.
6441 			 *
6442 			 * Here's how the lower nibble can get lost:
6443 			 *   1. L2 executes WRMSR(0x808, 0x78).
6444 			 *   2. L2 exits to L0 with a WRMSR exit.
6445 			 *   3. L0 emulates WRMSR, by writing L1's TPR.
6446 			 *   4. L0 re-enters L2.
6447 			 *   5. L2 exits to L0 (reason doesn't matter).
6448 			 *   6. L0 reflects L2's exit to L1.
6449 			 *   7. Before entering L1, L0 exits to user-space
6450 			 *      (e.g., to satisfy TPR access reporting).
6451 			 *   8. User-space executes KVM_SET_REGS ioctl, which
6452 			 *      clears the lower nibble of L1's TPR.
6453 			 */
6454 			if (reg == APIC_TASKPRI) {
6455 				got = apic_virt_nibble1(got);
6456 				val = apic_virt_nibble1(val);
6457 			}
6458 
6459 			ok = got == val;
6460 			report("non-virtualized write; val is 0x%x, want 0x%lx",
6461 			       ok, got, val);
6462 			apic_write(reg, restore_val);
6463 		} else {
6464 			report("non-virtualized and write-only OK", true);
6465 		}
6466 	}
6467 	skip_exit_insn();
6468 
6469 	report_prefix_pop();
6470 }
6471 
6472 static enum Config_type configure_virt_x2apic_mode_test(
6473 	struct virt_x2apic_mode_config *virt_x2apic_mode_config,
6474 	u8 *msr_bitmap_page)
6475 {
6476 	int msr;
6477 	u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6478 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6479 
6480 	/* x2apic-specific VMCS config */
6481 	if (virt_x2apic_mode_config->use_msr_bitmaps) {
6482 		/* virt_x2apic_mode_test() checks for MSR bitmaps support */
6483 		cpu_exec_ctrl0 |= CPU_MSR_BITMAP;
6484 	} else {
6485 		cpu_exec_ctrl0 &= ~CPU_MSR_BITMAP;
6486 	}
6487 
6488 	if (virt_x2apic_mode_config->virtual_interrupt_delivery) {
6489 		if (!(ctrl_cpu_rev[1].clr & CPU_VINTD)) {
6490 			report_skip("VM-execution control \"virtual-interrupt delivery\" NOT supported.\n");
6491 			return CONFIG_TYPE_UNSUPPORTED;
6492 		}
6493 		cpu_exec_ctrl1 |= CPU_VINTD;
6494 	} else {
6495 		cpu_exec_ctrl1 &= ~CPU_VINTD;
6496 	}
6497 
6498 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6499 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6500 
6501 	/* x2APIC MSR intercepts are usually off for "Virtualize x2APIC mode" */
6502 	for (msr = 0x800; msr <= 0x8ff; msr++) {
6503 		if (virt_x2apic_mode_config->disable_x2apic_msr_intercepts) {
6504 			clear_bit(msr, msr_bitmap_page + 0x000);
6505 			clear_bit(msr, msr_bitmap_page + 0x800);
6506 		} else {
6507 			set_bit(msr, msr_bitmap_page + 0x000);
6508 			set_bit(msr, msr_bitmap_page + 0x800);
6509 		}
6510 	}
6511 
6512 	/* x2APIC mode can impact virtualization */
6513 	reset_apic();
6514 	if (!virt_x2apic_mode_config->disable_x2apic)
6515 		enable_x2apic();
6516 
6517 	return configure_apic_reg_virt_test(
6518 		&virt_x2apic_mode_config->apic_reg_virt_config);
6519 }
6520 
6521 static void virt_x2apic_mode_test(void)
6522 {
6523 	u32 *virtual_apic_page;
6524 	u8 *msr_bitmap_page;
6525 	u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6526 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6527 	int i;
6528 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6529 
6530 	if (!cpu_has_apicv()) {
6531 		report_skip(__func__);
6532 		return;
6533 	}
6534 
6535 	/*
6536 	 * This is to exercise an issue in KVM's logic to merge L0's and L1's
6537 	 * MSR bitmaps. Previously, an L1 could get at L0's x2APIC MSRs by
6538 	 * writing the IA32_SPEC_CTRL MSR or the IA32_PRED_CMD MSRs. KVM would
6539 	 * then proceed to manipulate the MSR bitmaps, as if VMCS12 had the
6540 	 * "Virtualize x2APIC mod" control set, even when it didn't.
6541 	 */
6542 	if (has_spec_ctrl())
6543 		wrmsr(MSR_IA32_SPEC_CTRL, 1);
6544 
6545 	/*
6546 	 * Check that VMCS12 supports:
6547 	 *   - "Virtual-APIC address", indicated by "use TPR shadow"
6548 	 *   - "MSR-bitmap address", indicated by "use MSR bitmaps"
6549 	 */
6550 	if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) {
6551 		report_skip("VM-execution control \"use TPR shadow\" NOT supported.\n");
6552 		return;
6553 	} else if (!(ctrl_cpu_rev[0].clr & CPU_MSR_BITMAP)) {
6554 		report_skip("VM-execution control \"use MSR bitmaps\" NOT supported.\n");
6555 		return;
6556 	}
6557 
6558 	test_set_guest(virt_x2apic_mode_guest);
6559 
6560 	virtual_apic_page = alloc_page();
6561 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
6562 
6563 	msr_bitmap_page = alloc_page();
6564 	memset(msr_bitmap_page, 0xff, PAGE_SIZE);
6565 	vmcs_write(MSR_BITMAP, virt_to_phys(msr_bitmap_page));
6566 
6567 	for (i = 0; i < ARRAY_SIZE(virt_x2apic_mode_tests); i++) {
6568 		struct virt_x2apic_mode_test_case *virt_x2apic_mode_test_case =
6569 			&virt_x2apic_mode_tests[i];
6570 		struct virt_x2apic_mode_config *virt_x2apic_mode_config =
6571 			&virt_x2apic_mode_test_case->virt_x2apic_mode_config;
6572 		enum Config_type config_type;
6573 		u32 reg;
6574 
6575 		printf("--- %s test ---\n", virt_x2apic_mode_test_case->name);
6576 		config_type =
6577 			configure_virt_x2apic_mode_test(virt_x2apic_mode_config,
6578 							msr_bitmap_page);
6579 		if (config_type == CONFIG_TYPE_UNSUPPORTED) {
6580 			report_skip("Skip because of missing features.\n");
6581 			continue;
6582 		} else if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) {
6583 			enter_guest_with_bad_controls();
6584 			continue;
6585 		}
6586 
6587 		for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) {
6588 			struct virt_x2apic_mode_expectation expectation;
6589 
6590 			virt_x2apic_mode_exit_expectation(
6591 				reg, virt_x2apic_mode_config, &expectation);
6592 
6593 			test_x2apic_rd(reg, &expectation, virtual_apic_page);
6594 			test_x2apic_wr(reg, &expectation, virtual_apic_page);
6595 		}
6596 	}
6597 
6598 
6599 	/* Terminate the guest */
6600 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6601 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6602 	args->op = X2APIC_TERMINATE;
6603 	enter_guest();
6604 	assert_exit_reason(VMX_VMCALL);
6605 }
6606 
6607 /*
6608  * On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP
6609  * field and the IA32_SYSENTER_EIP field must each contain a canonical
6610  * address.
6611  *
6612  *  [Intel SDM]
6613  */
6614 static void test_sysenter_field(u32 field, const char *name)
6615 {
6616 	u64 addr_saved = vmcs_read(field);
6617 
6618 	vmcs_write(field, NONCANONICAL);
6619 	report_prefix_pushf("%s non-canonical", name);
6620 	test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD, false);
6621 	report_prefix_pop();
6622 
6623 	vmcs_write(field, 0xffffffff);
6624 	report_prefix_pushf("%s canonical", name);
6625 	test_vmx_vmlaunch(0, false);
6626 	report_prefix_pop();
6627 
6628 	vmcs_write(field, addr_saved);
6629 }
6630 
6631 static void test_ctl_reg(const char *cr_name, u64 cr, u64 fixed0, u64 fixed1)
6632 {
6633 	u64 val;
6634 	u64 cr_saved = vmcs_read(cr);
6635 	int i;
6636 
6637 	val = fixed0 & fixed1;
6638 	if (cr == HOST_CR4)
6639 		vmcs_write(cr, val | X86_CR4_PAE);
6640 	else
6641 		vmcs_write(cr, val);
6642 	report_prefix_pushf("%s %lx", cr_name, val);
6643 	if (val == fixed0)
6644 		test_vmx_vmlaunch(0, false);
6645 	else
6646 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD,
6647 				  false);
6648 	report_prefix_pop();
6649 
6650 	for (i = 0; i < 64; i++) {
6651 
6652 		/* Set a bit when the corresponding bit in fixed1 is 0 */
6653 		if ((fixed1 & (1ull << i)) == 0) {
6654 			if (cr == HOST_CR4 && ((1ull << i) & X86_CR4_SMEP ||
6655 					       (1ull << i) & X86_CR4_SMAP))
6656 				continue;
6657 
6658 			vmcs_write(cr, cr_saved | (1ull << i));
6659 			report_prefix_pushf("%s %llx", cr_name,
6660 						cr_saved | (1ull << i));
6661 			test_vmx_vmlaunch(
6662 					VMXERR_ENTRY_INVALID_HOST_STATE_FIELD,
6663 					false);
6664 			report_prefix_pop();
6665 		}
6666 
6667 		/* Unset a bit when the corresponding bit in fixed0 is 1 */
6668 		if (fixed0 & (1ull << i)) {
6669 			vmcs_write(cr, cr_saved & ~(1ull << i));
6670 			report_prefix_pushf("%s %llx", cr_name,
6671 						cr_saved & ~(1ull << i));
6672 			test_vmx_vmlaunch(
6673 					VMXERR_ENTRY_INVALID_HOST_STATE_FIELD,
6674 					false);
6675 			report_prefix_pop();
6676 		}
6677 	}
6678 
6679 	vmcs_write(cr, cr_saved);
6680 }
6681 
6682 /*
6683  * 1. The CR0 field must not set any bit to a value not supported in VMX
6684  *    operation.
6685  * 2. The CR4 field must not set any bit to a value not supported in VMX
6686  *    operation.
6687  * 3. On processors that support Intel 64 architecture, the CR3 field must
6688  *    be such that bits 63:52 and bits in the range 51:32 beyond the
6689  *    processor’s physical-address width must be 0.
6690  *
6691  *  [Intel SDM]
6692  */
6693 static void test_host_ctl_regs(void)
6694 {
6695 	u64 fixed0, fixed1, cr3, cr3_saved;
6696 	int i;
6697 
6698 	/* Test CR0 */
6699 	fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0);
6700 	fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1);
6701 	test_ctl_reg("HOST_CR0", HOST_CR0, fixed0, fixed1);
6702 
6703 	/* Test CR4 */
6704 	fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
6705 	fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1) &
6706 		 ~(X86_CR4_SMEP | X86_CR4_SMAP);
6707 	test_ctl_reg("HOST_CR4", HOST_CR4, fixed0, fixed1);
6708 
6709 	/* Test CR3 */
6710 	cr3_saved = vmcs_read(HOST_CR3);
6711 	for (i = cpuid_maxphyaddr(); i < 64; i++) {
6712 		cr3 = cr3_saved | (1ul << i);
6713 		vmcs_write(HOST_CR3, cr3);
6714 		report_prefix_pushf("HOST_CR3 %lx", cr3);
6715 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD,
6716 				  false);
6717 		report_prefix_pop();
6718 	}
6719 
6720 	vmcs_write(HOST_CR3, cr3_saved);
6721 }
6722 
6723 static void test_efer_bit(u32 fld, const char * fld_name, u32 ctrl_fld,
6724 			   u64 ctrl_bit, u64 efer_bit,
6725 			   const char *efer_bit_name)
6726 {
6727 	u64 efer_saved = vmcs_read(fld);
6728 	u32 ctrl_saved = vmcs_read(ctrl_fld);
6729 	u64 host_addr_size = ctrl_saved & EXI_HOST_64;
6730 	u64 efer;
6731 
6732 	vmcs_write(ctrl_fld, ctrl_saved & ~ctrl_bit);
6733 	efer = efer_saved & ~efer_bit;
6734 	vmcs_write(fld, efer);
6735 	report_prefix_pushf("%s bit turned off, %s %lx", efer_bit_name,
6736 			    fld_name, efer);
6737 	test_vmx_vmlaunch(0, false);
6738 	report_prefix_pop();
6739 
6740 	efer = efer_saved | efer_bit;
6741 	vmcs_write(fld, efer);
6742 	report_prefix_pushf("%s bit turned on, %s %lx", efer_bit_name,
6743 			    fld_name, efer);
6744 	test_vmx_vmlaunch(0, false);
6745 	report_prefix_pop();
6746 
6747 	vmcs_write(ctrl_fld, ctrl_saved | ctrl_bit);
6748 	efer = efer_saved & ~efer_bit;
6749 	vmcs_write(fld, efer);
6750 	report_prefix_pushf("%s bit turned off, %s %lx", efer_bit_name,
6751 			    fld_name, efer);
6752 	if (host_addr_size)
6753 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD,
6754 				  false);
6755 	else
6756 		test_vmx_vmlaunch(0, false);
6757 	report_prefix_pop();
6758 
6759 	efer = efer_saved | efer_bit;
6760 	vmcs_write(fld, efer);
6761 	report_prefix_pushf("%s bit turned on, %s %lx", efer_bit_name,
6762 			    fld_name, efer);
6763 	if (host_addr_size)
6764 		test_vmx_vmlaunch(0, false);
6765 	else
6766 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD,
6767 				  false);
6768 	report_prefix_pop();
6769 
6770 	vmcs_write(ctrl_fld, ctrl_saved);
6771 	vmcs_write(fld, efer_saved);
6772 }
6773 
6774 static void test_efer(u32 fld, const char * fld_name, u32 ctrl_fld,
6775 		      u64 ctrl_bit)
6776 {
6777 	u64 efer_saved = vmcs_read(fld);
6778 	u32 ctrl_saved = vmcs_read(ctrl_fld);
6779 	u64 efer_reserved_bits =  ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
6780 	u64 i;
6781 	u64 efer;
6782 
6783 	if (cpu_has_efer_nx())
6784 		efer_reserved_bits &= ~EFER_NX;
6785 
6786 	/*
6787 	 * Check reserved bits
6788 	 */
6789 	vmcs_write(ctrl_fld, ctrl_saved & ~ctrl_bit);
6790 	for (i = 0; i < 64; i++) {
6791 		if ((1ull << i) & efer_reserved_bits) {
6792 			efer = efer_saved | (1ull << i);
6793 			vmcs_write(fld, efer);
6794 			report_prefix_pushf("%s %lx", fld_name, efer);
6795 			test_vmx_vmlaunch(0, false);
6796 			report_prefix_pop();
6797 		}
6798 	}
6799 
6800 	vmcs_write(ctrl_fld, ctrl_saved | ctrl_bit);
6801 	for (i = 0; i < 64; i++) {
6802 		if ((1ull << i) & efer_reserved_bits) {
6803 			efer = efer_saved | (1ull << i);
6804 			vmcs_write(fld, efer);
6805 			report_prefix_pushf("%s %lx", fld_name, efer);
6806 			test_vmx_vmlaunch(
6807 				VMXERR_ENTRY_INVALID_HOST_STATE_FIELD,
6808 				false);
6809 			report_prefix_pop();
6810 		}
6811 	}
6812 
6813 	vmcs_write(ctrl_fld, ctrl_saved);
6814 	vmcs_write(fld, efer_saved);
6815 
6816 	/*
6817 	 * Check LMA and LME bits
6818 	 */
6819 	test_efer_bit(fld, fld_name, ctrl_fld, ctrl_bit, EFER_LMA,
6820 		      "EFER_LMA");
6821 	test_efer_bit(fld, fld_name, ctrl_fld, ctrl_bit, EFER_LME,
6822 		      "EFER_LME");
6823 }
6824 
6825 /*
6826  * If the “load IA32_EFER†VM-exit control is 1, bits reserved in the
6827  * IA32_EFER MSR must be 0 in the field for that register. In addition,
6828  * the values of the LMA and LME bits in the field must each be that of
6829  * the “host address-space size†VM-exit control.
6830  *
6831  *  [Intel SDM]
6832  */
6833 static void test_host_efer(void)
6834 {
6835 	if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) {
6836 		printf("\"Load-IA32-EFER\" exit control not supported\n");
6837 		return;
6838 	}
6839 
6840 	test_efer(HOST_EFER, "HOST_EFER", EXI_CONTROLS, EXI_LOAD_EFER);
6841 }
6842 
6843 /*
6844  * PAT values higher than 8 are uninteresting since they're likely lumped
6845  * in with "8". We only test values above 8 one bit at a time,
6846  * in order to reduce the number of VM-Entries and keep the runtime reasonable.
6847  */
6848 #define	PAT_VAL_LIMIT	8
6849 
6850 static void test_pat(u32 field, const char * field_name, u32 ctrl_field,
6851 		     u64 ctrl_bit)
6852 {
6853 	u32 ctrl_saved = vmcs_read(ctrl_field);
6854 	u64 pat_saved = vmcs_read(field);
6855 	u64 i, val;
6856 	u32 j;
6857 	int error;
6858 
6859 	vmcs_clear_bits(ctrl_field, ctrl_bit);
6860 	if (field == GUEST_PAT) {
6861 		vmx_set_test_stage(1);
6862 		test_set_guest(guest_state_test_main);
6863 	}
6864 
6865 	for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) {
6866 		/* Test PAT0..PAT7 fields */
6867 		for (j = 0; j < (i ? 8 : 1); j++) {
6868 			val = i << j * 8;
6869 			vmcs_write(field, val);
6870 			if (field == HOST_PAT) {
6871 				report_prefix_pushf("%s %lx", field_name, val);
6872 				test_vmx_vmlaunch(0, false);
6873 				report_prefix_pop();
6874 
6875 			} else {	// GUEST_PAT
6876 				enter_guest();
6877 				report_guest_state_test("ENT_LOAD_PAT enabled",
6878 							VMX_VMCALL, val,
6879 							"GUEST_PAT");
6880 			}
6881 		}
6882 	}
6883 
6884 	vmcs_set_bits(ctrl_field, ctrl_bit);
6885 	for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) {
6886 		/* Test PAT0..PAT7 fields */
6887 		for (j = 0; j < (i ? 8 : 1); j++) {
6888 			val = i << j * 8;
6889 			vmcs_write(field, val);
6890 
6891 			if (field == HOST_PAT) {
6892 				report_prefix_pushf("%s %lx", field_name, val);
6893 				if (i == 0x2 || i == 0x3 || i >= 0x8)
6894 					error =
6895 					VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
6896 				else
6897 					error = 0;
6898 
6899 				test_vmx_vmlaunch(error, false);
6900 				report_prefix_pop();
6901 
6902 			} else {	// GUEST_PAT
6903 				if (i == 0x2 || i == 0x3 || i >= 0x8) {
6904 					enter_guest_with_invalid_guest_state();
6905 					report_guest_state_test("ENT_LOAD_PAT "
6906 							        "enabled",
6907 							        VMX_FAIL_STATE | VMX_ENTRY_FAILURE,
6908 							        val,
6909 							        "GUEST_PAT");
6910 				} else {
6911 					enter_guest();
6912 					report_guest_state_test("ENT_LOAD_PAT "
6913 							        "enabled",
6914 							        VMX_VMCALL,
6915 							        val,
6916 							        "GUEST_PAT");
6917 				}
6918 			}
6919 
6920 		}
6921 	}
6922 
6923 	if (field == GUEST_PAT) {
6924 		/*
6925 		 * Let the guest finish execution
6926 		 */
6927 		vmx_set_test_stage(2);
6928 		vmcs_write(field, pat_saved);
6929 		enter_guest();
6930 	}
6931 
6932 	vmcs_write(ctrl_field, ctrl_saved);
6933 	vmcs_write(field, pat_saved);
6934 }
6935 
6936 /*
6937  *  If the "load IA32_PAT" VM-exit control is 1, the value of the field
6938  *  for the IA32_PAT MSR must be one that could be written by WRMSR
6939  *  without fault at CPL 0. Specifically, each of the 8 bytes in the
6940  *  field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
6941  *  6 (WB), or 7 (UC-).
6942  *
6943  *  [Intel SDM]
6944  */
6945 static void test_load_host_pat(void)
6946 {
6947 	/*
6948 	 * "load IA32_PAT" VM-exit control
6949 	 */
6950 	if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) {
6951 		printf("\"Load-IA32-PAT\" exit control not supported\n");
6952 		return;
6953 	}
6954 
6955 	test_pat(HOST_PAT, "HOST_PAT", EXI_CONTROLS, EXI_LOAD_PAT);
6956 }
6957 
6958 /*
6959  * test_vmcs_field - test a value for the given VMCS field
6960  * @field: VMCS field
6961  * @field_name: string name of VMCS field
6962  * @bit_start: starting bit
6963  * @bit_end: ending bit
6964  * @val: value that the bit range must or must not contain
6965  * @valid_val: whether value given in 'val' must be valid or not
6966  * @error: expected VMCS error when vmentry fails for an invalid value
6967  */
6968 static void test_vmcs_field(u64 field, const char *field_name, u32 bit_start,
6969 			    u32 bit_end, u64 val, bool valid_val, u32 error)
6970 {
6971 	u64 field_saved = vmcs_read(field);
6972 	u32 i;
6973 	u64 tmp;
6974 	u32 bit_on;
6975 	u64 mask = ~0ull;
6976 
6977 	mask = (mask >> bit_end) << bit_end;
6978 	mask = mask | ((1 << bit_start) - 1);
6979 	tmp = (field_saved & mask) | (val << bit_start);
6980 
6981 	vmcs_write(field, tmp);
6982 	report_prefix_pushf("%s %lx", field_name, tmp);
6983 	if (valid_val)
6984 		test_vmx_vmlaunch(0, false);
6985 	else
6986 		test_vmx_vmlaunch(error, false);
6987 	report_prefix_pop();
6988 
6989 	for (i = bit_start; i <= bit_end; i = i + 2) {
6990 		bit_on = ((1ull < i) & (val << bit_start)) ? 0 : 1;
6991 		if (bit_on)
6992 			tmp = field_saved | (1ull << i);
6993 		else
6994 			tmp = field_saved & ~(1ull << i);
6995 		vmcs_write(field, tmp);
6996 		report_prefix_pushf("%s %lx", field_name, tmp);
6997 		if (valid_val)
6998 			test_vmx_vmlaunch(error, false);
6999 		else
7000 			test_vmx_vmlaunch(0, false);
7001 		report_prefix_pop();
7002 	}
7003 
7004 	vmcs_write(field, field_saved);
7005 }
7006 
7007 static void test_canonical(u64 field, const char * field_name)
7008 {
7009 	u64 addr_saved = vmcs_read(field);
7010 
7011 	report_prefix_pushf("%s %lx", field_name, addr_saved);
7012 	if (is_canonical(addr_saved)) {
7013 		test_vmx_vmlaunch(0, false);
7014 		report_prefix_pop();
7015 
7016 		vmcs_write(field, NONCANONICAL);
7017 		report_prefix_pushf("%s %llx", field_name, NONCANONICAL);
7018 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD,
7019 				  false);
7020 
7021 		vmcs_write(field, addr_saved);
7022 	} else {
7023 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD,
7024 				  false);
7025 	}
7026 	report_prefix_pop();
7027 }
7028 
7029 #define TEST_RPL_TI_FLAGS(reg, name)				\
7030 	test_vmcs_field(reg, name, 0, 2, 0x0, true,		\
7031 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7032 
7033 #define TEST_CS_TR_FLAGS(reg, name)				\
7034 	test_vmcs_field(reg, name, 3, 15, 0x0000, false,	\
7035 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7036 
7037 /*
7038  * 1. In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the
7039  *    RPL (bits 1:0) and the TI flag (bit 2) must be 0.
7040  * 2. The selector fields for CS and TR cannot be 0000H.
7041  * 3. The selector field for SS cannot be 0000H if the "host address-space
7042  *    size" VM-exit control is 0.
7043  * 4. On processors that support Intel 64 architecture, the base-address
7044  *    fields for FS, GS and TR must contain canonical addresses.
7045  */
7046 static void test_host_segment_regs(void)
7047 {
7048 	u16 selector_saved;
7049 
7050 	/*
7051 	 * Test RPL and TI flags
7052 	 */
7053 	TEST_RPL_TI_FLAGS(HOST_SEL_CS, "HOST_SEL_CS");
7054 	TEST_RPL_TI_FLAGS(HOST_SEL_SS, "HOST_SEL_SS");
7055 	TEST_RPL_TI_FLAGS(HOST_SEL_DS, "HOST_SEL_DS");
7056 	TEST_RPL_TI_FLAGS(HOST_SEL_ES, "HOST_SEL_ES");
7057 	TEST_RPL_TI_FLAGS(HOST_SEL_FS, "HOST_SEL_FS");
7058 	TEST_RPL_TI_FLAGS(HOST_SEL_GS, "HOST_SEL_GS");
7059 	TEST_RPL_TI_FLAGS(HOST_SEL_TR, "HOST_SEL_TR");
7060 
7061 	/*
7062 	 * Test that CS and TR fields can not be 0x0000
7063 	 */
7064 	TEST_CS_TR_FLAGS(HOST_SEL_CS, "HOST_SEL_CS");
7065 	TEST_CS_TR_FLAGS(HOST_SEL_TR, "HOST_SEL_TR");
7066 
7067 	/*
7068 	 * SS field can not be 0x0000 if "host address-space size" VM-exit
7069 	 * control is 0
7070 	 */
7071 	selector_saved = vmcs_read(HOST_SEL_SS);
7072 	vmcs_write(HOST_SEL_SS, 0);
7073 	report_prefix_pushf("HOST_SEL_SS 0");
7074 	if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) {
7075 		test_vmx_vmlaunch(0, false);
7076 	} else {
7077 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD, false);
7078 	}
7079 	report_prefix_pop();
7080 
7081 	vmcs_write(HOST_SEL_SS, selector_saved);
7082 
7083 #ifdef __x86_64__
7084 	/*
7085 	 * Base address for FS, GS and TR must be canonical
7086 	 */
7087 	test_canonical(HOST_BASE_FS, "HOST_BASE_FS");
7088 	test_canonical(HOST_BASE_GS, "HOST_BASE_GS");
7089 	test_canonical(HOST_BASE_TR, "HOST_BASE_TR");
7090 #endif
7091 }
7092 
7093 /*
7094  *  On processors that support Intel 64 architecture, the base-address
7095  *  fields for GDTR and IDTR must contain canonical addresses.
7096  */
7097 static void test_host_desc_tables(void)
7098 {
7099 #ifdef __x86_64__
7100 	test_canonical(HOST_BASE_GDTR, "HOST_BASE_GDTR");
7101 	test_canonical(HOST_BASE_IDTR, "HOST_BASE_IDTR");
7102 #endif
7103 }
7104 
7105 /*
7106  * If the "host address-space size" VM-exit control is 0, the following must
7107  * hold:
7108  *    - The "IA-32e mode guest" VM-entry control is 0.
7109  *    - Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.
7110  *    - Bits 63:32 in the RIP field are 0.
7111  *
7112  * If the "host address-space size" VM-exit control is 1, the following must
7113  * hold:
7114  *    - Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.
7115  *    - The RIP field contains a canonical address.
7116  *
7117  */
7118 static void test_host_addr_size(void)
7119 {
7120 	u64 cr4_saved = vmcs_read(HOST_CR4);
7121 	u64 rip_saved = vmcs_read(HOST_RIP);
7122 	u64 entry_ctrl_saved = vmcs_read(ENT_CONTROLS);
7123 	int i;
7124 	u64 tmp;
7125 
7126 	if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) {
7127 		vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64);
7128 		report_prefix_pushf("\"IA-32e mode guest\" enabled");
7129 		test_vmx_vmlaunch(0, false);
7130 		report_prefix_pop();
7131 
7132 		vmcs_write(HOST_CR4, cr4_saved | X86_CR4_PCIDE);
7133 		report_prefix_pushf("\"CR4.PCIDE\" set");
7134 		test_vmx_vmlaunch(0, false);
7135 		report_prefix_pop();
7136 
7137 		for (i = 32; i <= 63; i = i + 4) {
7138 			tmp = rip_saved | 1ull << i;
7139 			vmcs_write(HOST_RIP, tmp);
7140 			report_prefix_pushf("HOST_RIP %lx", tmp);
7141 			test_vmx_vmlaunch(0, false);
7142 			report_prefix_pop();
7143 		}
7144 
7145 		if (cr4_saved & X86_CR4_PAE) {
7146 			vmcs_write(HOST_CR4, cr4_saved  & ~X86_CR4_PAE);
7147 			report_prefix_pushf("\"CR4.PAE\" unset");
7148 			test_vmx_vmlaunch(
7149 				VMXERR_ENTRY_INVALID_HOST_STATE_FIELD, false);
7150 		} else {
7151 			report_prefix_pushf("\"CR4.PAE\" set");
7152 			test_vmx_vmlaunch(0, false);
7153 		}
7154 		report_prefix_pop();
7155 
7156 		vmcs_write(HOST_RIP, NONCANONICAL);
7157 		report_prefix_pushf("HOST_RIP %llx", NONCANONICAL);
7158 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD, false);
7159 		report_prefix_pop();
7160 
7161 		vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64);
7162 		vmcs_write(HOST_RIP, rip_saved);
7163 		vmcs_write(HOST_CR4, cr4_saved);
7164 	}
7165 }
7166 
7167 /*
7168  * Check that the virtual CPU checks the VMX Host State Area as
7169  * documented in the Intel SDM.
7170  */
7171 static void vmx_host_state_area_test(void)
7172 {
7173 	/*
7174 	 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will
7175 	 * fail due to invalid guest state, should we make it that
7176 	 * far.
7177 	 */
7178 	vmcs_write(GUEST_RFLAGS, 0);
7179 
7180 	test_host_ctl_regs();
7181 
7182 	test_sysenter_field(HOST_SYSENTER_ESP, "HOST_SYSENTER_ESP");
7183 	test_sysenter_field(HOST_SYSENTER_EIP, "HOST_SYSENTER_EIP");
7184 
7185 	test_host_efer();
7186 	test_load_host_pat();
7187 	test_host_segment_regs();
7188 	test_host_desc_tables();
7189 	test_host_addr_size();
7190 }
7191 
7192 /*
7193  *  If the "load IA32_PAT" VM-entry control is 1, the value of the field
7194  *  for the IA32_PAT MSR must be one that could be written by WRMSR
7195  *  without fault at CPL 0. Specifically, each of the 8 bytes in the
7196  *  field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
7197  *  6 (WB), or 7 (UC-).
7198  *
7199  *  [Intel SDM]
7200  */
7201 static void test_load_guest_pat(void)
7202 {
7203 	/*
7204 	 * "load IA32_PAT" VM-entry control
7205 	 */
7206 	if (!(ctrl_exit_rev.clr & ENT_LOAD_PAT)) {
7207 		printf("\"Load-IA32-PAT\" entry control not supported\n");
7208 		return;
7209 	}
7210 
7211 	test_pat(GUEST_PAT, "GUEST_PAT", ENT_CONTROLS, ENT_LOAD_PAT);
7212 }
7213 
7214 /*
7215  * Check that the virtual CPU checks the VMX Guest State Area as
7216  * documented in the Intel SDM.
7217  */
7218 static void vmx_guest_state_area_test(void)
7219 {
7220 	test_load_guest_pat();
7221 }
7222 
7223 static bool valid_vmcs_for_vmentry(void)
7224 {
7225 	struct vmcs *current_vmcs = NULL;
7226 
7227 	if (vmcs_save(&current_vmcs))
7228 		return false;
7229 
7230 	return current_vmcs && !current_vmcs->hdr.shadow_vmcs;
7231 }
7232 
7233 static void try_vmentry_in_movss_shadow(void)
7234 {
7235 	u32 vm_inst_err;
7236 	u32 flags;
7237 	bool early_failure = false;
7238 	u32 expected_flags = X86_EFLAGS_FIXED;
7239 	bool valid_vmcs = valid_vmcs_for_vmentry();
7240 
7241 	expected_flags |= valid_vmcs ? X86_EFLAGS_ZF : X86_EFLAGS_CF;
7242 
7243 	/*
7244 	 * Indirectly set VM_INST_ERR to 12 ("VMREAD/VMWRITE from/to
7245 	 * unsupported VMCS component").
7246 	 */
7247 	vmcs_write(~0u, 0);
7248 
7249 	__asm__ __volatile__ ("mov %[host_rsp], %%edx;"
7250 			      "vmwrite %%rsp, %%rdx;"
7251 			      "mov 0f, %%rax;"
7252 			      "mov %[host_rip], %%edx;"
7253 			      "vmwrite %%rax, %%rdx;"
7254 			      "mov $-1, %%ah;"
7255 			      "sahf;"
7256 			      "mov %%ss, %%ax;"
7257 			      "mov %%ax, %%ss;"
7258 			      "vmlaunch;"
7259 			      "mov $1, %[early_failure];"
7260 			      "0: lahf;"
7261 			      "movzbl %%ah, %[flags]"
7262 			      : [early_failure] "+r" (early_failure),
7263 				[flags] "=&a" (flags)
7264 			      : [host_rsp] "i" (HOST_RSP),
7265 				[host_rip] "i" (HOST_RIP)
7266 			      : "rdx", "cc", "memory");
7267 	vm_inst_err = vmcs_read(VMX_INST_ERROR);
7268 
7269 	report("Early VM-entry failure", early_failure);
7270 	report("RFLAGS[8:0] is %x (actual %x)", flags == expected_flags,
7271 	       expected_flags, flags);
7272 	if (valid_vmcs)
7273 		report("VM-instruction error is %d (actual %d)",
7274 		       vm_inst_err == VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS,
7275 		       VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, vm_inst_err);
7276 }
7277 
7278 static void vmentry_movss_shadow_test(void)
7279 {
7280 	struct vmcs *orig_vmcs;
7281 
7282 	TEST_ASSERT(!vmcs_save(&orig_vmcs));
7283 
7284 	/*
7285 	 * Set the launched flag on the current VMCS to verify the correct
7286 	 * error priority, below.
7287 	 */
7288 	test_set_guest(v2_null_test_guest);
7289 	enter_guest();
7290 
7291 	/*
7292 	 * With bit 1 of the guest's RFLAGS clear, VM-entry should
7293 	 * fail due to invalid guest state (if we make it that far).
7294 	 */
7295 	vmcs_write(GUEST_RFLAGS, 0);
7296 
7297 	/*
7298 	 * "VM entry with events blocked by MOV SS" takes precedence over
7299 	 * "VMLAUNCH with non-clear VMCS."
7300 	 */
7301 	report_prefix_push("valid current-VMCS");
7302 	try_vmentry_in_movss_shadow();
7303 	report_prefix_pop();
7304 
7305 	/*
7306 	 * VMfailInvalid takes precedence over "VM entry with events
7307 	 * blocked by MOV SS."
7308 	 */
7309 	TEST_ASSERT(!vmcs_clear(orig_vmcs));
7310 	report_prefix_push("no current-VMCS");
7311 	try_vmentry_in_movss_shadow();
7312 	report_prefix_pop();
7313 
7314 	TEST_ASSERT(!make_vmcs_current(orig_vmcs));
7315 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
7316 }
7317 
7318 static void vmx_cr_load_test(void)
7319 {
7320 	unsigned long cr3, cr4, orig_cr3, orig_cr4;
7321 
7322 	orig_cr4 = read_cr4();
7323 	orig_cr3 = read_cr3();
7324 
7325 	if (!this_cpu_has(X86_FEATURE_PCID)) {
7326 		report_skip("PCID not detected");
7327 		return;
7328 	}
7329 	if (!this_cpu_has(X86_FEATURE_MCE)) {
7330 		report_skip("MCE not detected");
7331 		return;
7332 	}
7333 
7334 	TEST_ASSERT(!(orig_cr3 & X86_CR3_PCID_MASK));
7335 
7336 	/* Enable PCID for L1. */
7337 	cr4 = orig_cr4 | X86_CR4_PCIDE;
7338 	cr3 = orig_cr3 | 0x1;
7339 	TEST_ASSERT(!write_cr4_checking(cr4));
7340 	write_cr3(cr3);
7341 
7342 	test_set_guest(v2_null_test_guest);
7343 	vmcs_write(HOST_CR4, cr4);
7344 	vmcs_write(HOST_CR3, cr3);
7345 	enter_guest();
7346 
7347 	/*
7348 	 * No exception is expected.
7349 	 *
7350 	 * NB. KVM loads the last guest write to CR4 into CR4 read
7351 	 *     shadow. In order to trigger an exit to KVM, we can toggle a
7352 	 *     bit that is owned by KVM. We use CR4.MCE, which shall
7353 	 *     have no side effect because normally no guest MCE (e.g., as the
7354 	 *     result of bad memory) would happen during this test.
7355 	 */
7356 	TEST_ASSERT(!write_cr4_checking(cr4 ^ X86_CR4_MCE));
7357 
7358 	/* Cleanup L1 state. */
7359 	write_cr3(orig_cr3);
7360 	TEST_ASSERT(!write_cr4_checking(orig_cr4));
7361 }
7362 
7363 static void vmx_nm_test_guest(void)
7364 {
7365 	write_cr0(read_cr0() | X86_CR0_TS);
7366 	asm volatile("fnop");
7367 }
7368 
7369 static void check_nm_exit(const char *test)
7370 {
7371 	u32 reason = vmcs_read(EXI_REASON);
7372 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
7373 	const u32 expected = INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
7374 		NM_VECTOR;
7375 
7376 	report("%s", reason == VMX_EXC_NMI && intr_info == expected, test);
7377 }
7378 
7379 /*
7380  * This test checks that:
7381  *
7382  * (a) If L2 launches with CR0.TS clear, but later sets CR0.TS, then
7383  *     a subsequent #NM VM-exit is reflected to L1.
7384  *
7385  * (b) If L2 launches with CR0.TS clear and CR0.EM set, then a
7386  *     subsequent #NM VM-exit is reflected to L1.
7387  */
7388 static void vmx_nm_test(void)
7389 {
7390 	unsigned long cr0 = read_cr0();
7391 
7392 	test_set_guest(vmx_nm_test_guest);
7393 
7394 	/*
7395 	 * L1 wants to intercept #NM exceptions encountered in L2.
7396 	 */
7397 	vmcs_write(EXC_BITMAP, 1 << NM_VECTOR);
7398 
7399 	/*
7400 	 * Launch L2 with CR0.TS clear, but don't claim host ownership of
7401 	 * any CR0 bits. L2 will set CR0.TS and then try to execute fnop,
7402 	 * which will raise #NM. L0 should reflect the #NM VM-exit to L1.
7403 	 */
7404 	vmcs_write(CR0_MASK, 0);
7405 	vmcs_write(GUEST_CR0, cr0 & ~X86_CR0_TS);
7406 	enter_guest();
7407 	check_nm_exit("fnop with CR0.TS set in L2 triggers #NM VM-exit to L1");
7408 
7409 	/*
7410 	 * Re-enter L2 at the fnop instruction, with CR0.TS clear but
7411 	 * CR0.EM set. The fnop will still raise #NM, and L0 should
7412 	 * reflect the #NM VM-exit to L1.
7413 	 */
7414 	vmcs_write(GUEST_CR0, (cr0 & ~X86_CR0_TS) | X86_CR0_EM);
7415 	enter_guest();
7416 	check_nm_exit("fnop with CR0.EM set in L2 triggers #NM VM-exit to L1");
7417 
7418 	/*
7419 	 * Re-enter L2 at the fnop instruction, with both CR0.TS and
7420 	 * CR0.EM clear. There will be no #NM, and the L2 guest should
7421 	 * exit normally.
7422 	 */
7423 	vmcs_write(GUEST_CR0, cr0 & ~(X86_CR0_TS | X86_CR0_EM));
7424 	enter_guest();
7425 }
7426 
7427 bool vmx_pending_event_ipi_fired;
7428 static void vmx_pending_event_ipi_isr(isr_regs_t *regs)
7429 {
7430 	vmx_pending_event_ipi_fired = true;
7431 	eoi();
7432 }
7433 
7434 bool vmx_pending_event_guest_run;
7435 static void vmx_pending_event_guest(void)
7436 {
7437 	vmcall();
7438 	vmx_pending_event_guest_run = true;
7439 }
7440 
7441 static void vmx_pending_event_test_core(bool guest_hlt)
7442 {
7443 	int ipi_vector = 0xf1;
7444 
7445 	vmx_pending_event_ipi_fired = false;
7446 	handle_irq(ipi_vector, vmx_pending_event_ipi_isr);
7447 
7448 	vmx_pending_event_guest_run = false;
7449 	test_set_guest(vmx_pending_event_guest);
7450 
7451 	vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT);
7452 
7453 	enter_guest();
7454 	skip_exit_vmcall();
7455 
7456 	if (guest_hlt)
7457 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
7458 
7459 	irq_disable();
7460 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
7461 				   APIC_DM_FIXED | ipi_vector,
7462 				   0);
7463 
7464 	enter_guest();
7465 
7466 	assert_exit_reason(VMX_EXTINT);
7467 	report("Guest did not run before host received IPI",
7468 		   !vmx_pending_event_guest_run);
7469 
7470 	irq_enable();
7471 	asm volatile ("nop");
7472 	irq_disable();
7473 	report("Got pending interrupt after IRQ enabled",
7474 		   vmx_pending_event_ipi_fired);
7475 
7476 	if (guest_hlt)
7477 		vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
7478 
7479 	enter_guest();
7480 	report("Guest finished running when no interrupt",
7481 		   vmx_pending_event_guest_run);
7482 }
7483 
7484 static void vmx_pending_event_test(void)
7485 {
7486 	vmx_pending_event_test_core(false);
7487 }
7488 
7489 static void vmx_pending_event_hlt_test(void)
7490 {
7491 	vmx_pending_event_test_core(true);
7492 }
7493 
7494 static int vmx_window_test_db_count;
7495 
7496 static void vmx_window_test_db_handler(struct ex_regs *regs)
7497 {
7498 	vmx_window_test_db_count++;
7499 }
7500 
7501 static void vmx_nmi_window_test_guest(void)
7502 {
7503 	handle_exception(DB_VECTOR, vmx_window_test_db_handler);
7504 
7505 	asm volatile("vmcall\n\t"
7506 		     "nop\n\t");
7507 
7508 	handle_exception(DB_VECTOR, NULL);
7509 }
7510 
7511 static void verify_nmi_window_exit(u64 rip)
7512 {
7513 	u32 exit_reason = vmcs_read(EXI_REASON);
7514 
7515 	report("Exit reason (%d) is 'NMI window'",
7516 	       exit_reason == VMX_NMI_WINDOW, exit_reason);
7517 	report("RIP (%#lx) is %#lx", vmcs_read(GUEST_RIP) == rip,
7518 	       vmcs_read(GUEST_RIP), rip);
7519 	vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
7520 }
7521 
7522 static void vmx_nmi_window_test(void)
7523 {
7524 	u64 nop_addr;
7525 	void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]);
7526 
7527 	if (!(ctrl_pin_rev.clr & PIN_VIRT_NMI)) {
7528 		report_skip("CPU does not support the \"Virtual NMIs\" VM-execution control.");
7529 		return;
7530 	}
7531 
7532 	if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) {
7533 		report_skip("CPU does not support the \"NMI-window exiting\" VM-execution control.");
7534 		return;
7535 	}
7536 
7537 	vmx_window_test_db_count = 0;
7538 
7539 	report_prefix_push("NMI-window");
7540 	test_set_guest(vmx_nmi_window_test_guest);
7541 	vmcs_set_bits(PIN_CONTROLS, PIN_VIRT_NMI);
7542 	enter_guest();
7543 	skip_exit_vmcall();
7544 	nop_addr = vmcs_read(GUEST_RIP);
7545 
7546 	/*
7547 	 * Ask for "NMI-window exiting," and expect an immediate VM-exit.
7548 	 * RIP will not advance.
7549 	 */
7550 	report_prefix_push("active, no blocking");
7551 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW);
7552 	enter_guest();
7553 	verify_nmi_window_exit(nop_addr);
7554 	report_prefix_pop();
7555 
7556 	/*
7557 	 * Ask for "NMI-window exiting" in a MOV-SS shadow, and expect
7558 	 * a VM-exit on the next instruction after the nop. (The nop
7559 	 * is one byte.)
7560 	 */
7561 	report_prefix_push("active, blocking by MOV-SS");
7562 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
7563 	enter_guest();
7564 	verify_nmi_window_exit(nop_addr + 1);
7565 	report_prefix_pop();
7566 
7567 	/*
7568 	 * Ask for "NMI-window exiting" (with event injection), and
7569 	 * expect a VM-exit after the event is injected. (RIP should
7570 	 * be at the address specified in the IDT entry for #DB.)
7571 	 */
7572 	report_prefix_push("active, no blocking, injecting #DB");
7573 	vmcs_write(ENT_INTR_INFO,
7574 		   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
7575 	enter_guest();
7576 	verify_nmi_window_exit((u64)db_fault_addr);
7577 	report_prefix_pop();
7578 
7579 	/*
7580 	 * Ask for "NMI-window exiting" with NMI blocking, and expect
7581 	 * a VM-exit after the next IRET (i.e. after the #DB handler
7582 	 * returns). So, RIP should be back at one byte past the nop.
7583 	 */
7584 	report_prefix_push("active, blocking by NMI");
7585 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_NMI);
7586 	enter_guest();
7587 	verify_nmi_window_exit(nop_addr + 1);
7588 	report("#DB handler executed once (actual %d times)",
7589 	       vmx_window_test_db_count == 1,
7590 	       vmx_window_test_db_count);
7591 	report_prefix_pop();
7592 
7593 	if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) {
7594 		report_skip("CPU does not support activity state HLT.");
7595 	} else {
7596 		/*
7597 		 * Ask for "NMI-window exiting" when entering activity
7598 		 * state HLT, and expect an immediate VM-exit. RIP is
7599 		 * still one byte past the nop.
7600 		 */
7601 		report_prefix_push("halted, no blocking");
7602 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
7603 		enter_guest();
7604 		verify_nmi_window_exit(nop_addr + 1);
7605 		report_prefix_pop();
7606 
7607 		/*
7608 		 * Ask for "NMI-window exiting" when entering activity
7609 		 * state HLT (with event injection), and expect a
7610 		 * VM-exit after the event is injected. (RIP should be
7611 		 * at the address specified in the IDT entry for #DB.)
7612 		 */
7613 		report_prefix_push("halted, no blocking, injecting #DB");
7614 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
7615 		vmcs_write(ENT_INTR_INFO,
7616 			   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
7617 			   DB_VECTOR);
7618 		enter_guest();
7619 		verify_nmi_window_exit((u64)db_fault_addr);
7620 		report_prefix_pop();
7621 	}
7622 
7623 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW);
7624 	enter_guest();
7625 	report_prefix_pop();
7626 }
7627 
7628 static void vmx_intr_window_test_guest(void)
7629 {
7630 	handle_exception(DB_VECTOR, vmx_window_test_db_handler);
7631 
7632 	/*
7633 	 * The two consecutive STIs are to ensure that only the first
7634 	 * one has a shadow. Note that NOP and STI are one byte
7635 	 * instructions.
7636 	 */
7637 	asm volatile("vmcall\n\t"
7638 		     "nop\n\t"
7639 		     "sti\n\t"
7640 		     "sti\n\t");
7641 
7642 	handle_exception(DB_VECTOR, NULL);
7643 }
7644 
7645 static void verify_intr_window_exit(u64 rip)
7646 {
7647 	u32 exit_reason = vmcs_read(EXI_REASON);
7648 
7649 	report("Exit reason (%d) is 'interrupt window'",
7650 	       exit_reason == VMX_INTR_WINDOW, exit_reason);
7651 	report("RIP (%#lx) is %#lx", vmcs_read(GUEST_RIP) == rip,
7652 	       vmcs_read(GUEST_RIP), rip);
7653 	vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
7654 }
7655 
7656 static void vmx_intr_window_test(void)
7657 {
7658 	u64 vmcall_addr;
7659 	u64 nop_addr;
7660 	unsigned int orig_db_gate_type;
7661 	void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]);
7662 
7663 	if (!(ctrl_cpu_rev[0].clr & CPU_INTR_WINDOW)) {
7664 		report_skip("CPU does not support the \"interrupt-window exiting\" VM-execution control.");
7665 		return;
7666 	}
7667 
7668 	/*
7669 	 * Change the IDT entry for #DB from interrupt gate to trap gate,
7670 	 * so that it won't clear RFLAGS.IF. We don't want interrupts to
7671 	 * be disabled after vectoring a #DB.
7672 	 */
7673 	orig_db_gate_type = boot_idt[DB_VECTOR].type;
7674 	boot_idt[DB_VECTOR].type = 15;
7675 
7676 	report_prefix_push("interrupt-window");
7677 	test_set_guest(vmx_intr_window_test_guest);
7678 	enter_guest();
7679 	assert_exit_reason(VMX_VMCALL);
7680 	vmcall_addr = vmcs_read(GUEST_RIP);
7681 
7682 	/*
7683 	 * Ask for "interrupt-window exiting" with RFLAGS.IF set and
7684 	 * no blocking; expect an immediate VM-exit. Note that we have
7685 	 * not advanced past the vmcall instruction yet, so RIP should
7686 	 * point to the vmcall instruction.
7687 	 */
7688 	report_prefix_push("active, no blocking, RFLAGS.IF=1");
7689 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
7690 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_IF);
7691 	enter_guest();
7692 	verify_intr_window_exit(vmcall_addr);
7693 	report_prefix_pop();
7694 
7695 	/*
7696 	 * Ask for "interrupt-window exiting" (with event injection)
7697 	 * with RFLAGS.IF set and no blocking; expect a VM-exit after
7698 	 * the event is injected. That is, RIP should should be at the
7699 	 * address specified in the IDT entry for #DB.
7700 	 */
7701 	report_prefix_push("active, no blocking, RFLAGS.IF=1, injecting #DB");
7702 	vmcs_write(ENT_INTR_INFO,
7703 		   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
7704 	vmcall_addr = vmcs_read(GUEST_RIP);
7705 	enter_guest();
7706 	verify_intr_window_exit((u64)db_fault_addr);
7707 	report_prefix_pop();
7708 
7709 	/*
7710 	 * Let the L2 guest run through the IRET, back to the VMCALL.
7711 	 * We have to clear the "interrupt-window exiting"
7712 	 * VM-execution control, or it would just keep causing
7713 	 * VM-exits. Then, advance past the VMCALL and set the
7714 	 * "interrupt-window exiting" VM-execution control again.
7715 	 */
7716 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
7717 	enter_guest();
7718 	skip_exit_vmcall();
7719 	nop_addr = vmcs_read(GUEST_RIP);
7720 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
7721 
7722 	/*
7723 	 * Ask for "interrupt-window exiting" in a MOV-SS shadow with
7724 	 * RFLAGS.IF set, and expect a VM-exit on the next
7725 	 * instruction. (NOP is one byte.)
7726 	 */
7727 	report_prefix_push("active, blocking by MOV-SS, RFLAGS.IF=1");
7728 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
7729 	enter_guest();
7730 	verify_intr_window_exit(nop_addr + 1);
7731 	report_prefix_pop();
7732 
7733 	/*
7734 	 * Back up to the NOP and ask for "interrupt-window exiting"
7735 	 * in an STI shadow with RFLAGS.IF set, and expect a VM-exit
7736 	 * on the next instruction. (NOP is one byte.)
7737 	 */
7738 	report_prefix_push("active, blocking by STI, RFLAGS.IF=1");
7739 	vmcs_write(GUEST_RIP, nop_addr);
7740 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_STI);
7741 	enter_guest();
7742 	verify_intr_window_exit(nop_addr + 1);
7743 	report_prefix_pop();
7744 
7745 	/*
7746 	 * Ask for "interrupt-window exiting" with RFLAGS.IF clear,
7747 	 * and expect a VM-exit on the instruction following the STI
7748 	 * shadow. Only the first STI (which is one byte past the NOP)
7749 	 * should have a shadow. The second STI (which is two bytes
7750 	 * past the NOP) has no shadow. Therefore, the interrupt
7751 	 * window opens at three bytes past the NOP.
7752 	 */
7753 	report_prefix_push("active, RFLAGS.IF = 0");
7754 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
7755 	enter_guest();
7756 	verify_intr_window_exit(nop_addr + 3);
7757 	report_prefix_pop();
7758 
7759 	if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) {
7760 		report_skip("CPU does not support activity state HLT.");
7761 	} else {
7762 		/*
7763 		 * Ask for "interrupt-window exiting" when entering
7764 		 * activity state HLT, and expect an immediate
7765 		 * VM-exit. RIP is still three bytes past the nop.
7766 		 */
7767 		report_prefix_push("halted, no blocking");
7768 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
7769 		enter_guest();
7770 		verify_intr_window_exit(nop_addr + 3);
7771 		report_prefix_pop();
7772 
7773 		/*
7774 		 * Ask for "interrupt-window exiting" when entering
7775 		 * activity state HLT (with event injection), and
7776 		 * expect a VM-exit after the event is injected. That
7777 		 * is, RIP should should be at the address specified
7778 		 * in the IDT entry for #DB.
7779 		 */
7780 		report_prefix_push("halted, no blocking, injecting #DB");
7781 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
7782 		vmcs_write(ENT_INTR_INFO,
7783 			   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
7784 			   DB_VECTOR);
7785 		enter_guest();
7786 		verify_intr_window_exit((u64)db_fault_addr);
7787 		report_prefix_pop();
7788 	}
7789 
7790 	boot_idt[DB_VECTOR].type = orig_db_gate_type;
7791 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
7792 	enter_guest();
7793 	report_prefix_pop();
7794 }
7795 
7796 #define GUEST_TSC_OFFSET (1u << 30)
7797 
7798 static u64 guest_tsc;
7799 
7800 static void vmx_store_tsc_test_guest(void)
7801 {
7802 	guest_tsc = rdtsc();
7803 }
7804 
7805 /*
7806  * This test ensures that when IA32_TSC is in the VM-exit MSR-store
7807  * list, the value saved is not subject to the TSC offset that is
7808  * applied to RDTSC/RDTSCP/RDMSR(IA32_TSC) in guest execution.
7809  */
7810 static void vmx_store_tsc_test(void)
7811 {
7812 	struct vmx_msr_entry msr_entry = { .index = MSR_IA32_TSC };
7813 	u64 low, high;
7814 
7815 	if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) {
7816 		report_skip("'Use TSC offsetting' not supported");
7817 		return;
7818 	}
7819 
7820 	test_set_guest(vmx_store_tsc_test_guest);
7821 
7822 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET);
7823 	vmcs_write(EXI_MSR_ST_CNT, 1);
7824 	vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(&msr_entry));
7825 	vmcs_write(TSC_OFFSET, GUEST_TSC_OFFSET);
7826 
7827 	low = rdtsc();
7828 	enter_guest();
7829 	high = rdtsc();
7830 
7831 	report("RDTSC value in the guest (%lu) is in range [%lu, %lu]",
7832 	       low + GUEST_TSC_OFFSET <= guest_tsc &&
7833 	       guest_tsc <= high + GUEST_TSC_OFFSET,
7834 	       guest_tsc, low + GUEST_TSC_OFFSET, high + GUEST_TSC_OFFSET);
7835 	report("IA32_TSC value saved in the VM-exit MSR-store list (%lu) is in range [%lu, %lu]",
7836 	       low <= msr_entry.value && msr_entry.value <= high,
7837 	       msr_entry.value, low, high);
7838 }
7839 
7840 static void vmx_db_test_guest(void)
7841 {
7842 	/*
7843 	 * For a hardware generated single-step #DB.
7844 	 */
7845 	asm volatile("vmcall;"
7846 		     "nop;"
7847 		     ".Lpost_nop:");
7848 	/*
7849 	 * ...in a MOVSS shadow, with pending debug exceptions.
7850 	 */
7851 	asm volatile("vmcall;"
7852 		     "nop;"
7853 		     ".Lpost_movss_nop:");
7854 	/*
7855 	 * For an L0 synthesized single-step #DB. (L0 intercepts WBINVD and
7856 	 * emulates it in software.)
7857 	 */
7858 	asm volatile("vmcall;"
7859 		     "wbinvd;"
7860 		     ".Lpost_wbinvd:");
7861 	/*
7862 	 * ...in a MOVSS shadow, with pending debug exceptions.
7863 	 */
7864 	asm volatile("vmcall;"
7865 		     "wbinvd;"
7866 		     ".Lpost_movss_wbinvd:");
7867 	/*
7868 	 * For a hardware generated single-step #DB in a transactional region.
7869 	 */
7870 	asm volatile("vmcall;"
7871 		     ".Lxbegin: xbegin .Lskip_rtm;"
7872 		     "xend;"
7873 		     ".Lskip_rtm:");
7874 }
7875 
7876 /*
7877  * Clear the pending debug exceptions and RFLAGS.TF and re-enter
7878  * L2. No #DB is delivered and L2 continues to the next point of
7879  * interest.
7880  */
7881 static void dismiss_db(void)
7882 {
7883 	vmcs_write(GUEST_PENDING_DEBUG, 0);
7884 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
7885 	enter_guest();
7886 }
7887 
7888 /*
7889  * Check a variety of VMCS fields relevant to an intercepted #DB exception.
7890  * Then throw away the #DB exception and resume L2.
7891  */
7892 static void check_db_exit(bool xfail_qual, bool xfail_dr6, bool xfail_pdbg,
7893 			  void *expected_rip, u64 expected_exit_qual,
7894 			  u64 expected_dr6)
7895 {
7896 	u32 reason = vmcs_read(EXI_REASON);
7897 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
7898 	u64 exit_qual = vmcs_read(EXI_QUALIFICATION);
7899 	u64 guest_rip = vmcs_read(GUEST_RIP);
7900 	u64 guest_pending_dbg = vmcs_read(GUEST_PENDING_DEBUG);
7901 	u64 dr6 = read_dr6();
7902 	const u32 expected_intr_info = INTR_INFO_VALID_MASK |
7903 		INTR_TYPE_HARD_EXCEPTION | DB_VECTOR;
7904 
7905 	report("Expected #DB VM-exit",
7906 	       reason == VMX_EXC_NMI && intr_info == expected_intr_info);
7907 	report("Expected RIP %p (actual %lx)", (u64)expected_rip == guest_rip,
7908 	       expected_rip, guest_rip);
7909 	report_xfail("Expected pending debug exceptions 0 (actual %lx)",
7910 		     xfail_pdbg, 0 == guest_pending_dbg, guest_pending_dbg);
7911 	report_xfail("Expected exit qualification %lx (actual %lx)", xfail_qual,
7912 		     expected_exit_qual == exit_qual,
7913 		     expected_exit_qual, exit_qual);
7914 	report_xfail("Expected DR6 %lx (actual %lx)", xfail_dr6,
7915 		     expected_dr6 == dr6, expected_dr6, dr6);
7916 	dismiss_db();
7917 }
7918 
7919 /*
7920  * Assuming the guest has just exited on a VMCALL instruction, skip
7921  * over the vmcall, and set the guest's RFLAGS.TF in the VMCS. If
7922  * pending debug exceptions are non-zero, set the VMCS up as if the
7923  * previous instruction was a MOVSS that generated the indicated
7924  * pending debug exceptions. Then enter L2.
7925  */
7926 static void single_step_guest(const char *test_name, u64 starting_dr6,
7927 			      u64 pending_debug_exceptions)
7928 {
7929 	printf("\n%s\n", test_name);
7930 	skip_exit_vmcall();
7931 	write_dr6(starting_dr6);
7932 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF);
7933 	if (pending_debug_exceptions) {
7934 		vmcs_write(GUEST_PENDING_DEBUG, pending_debug_exceptions);
7935 		vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
7936 	}
7937 	enter_guest();
7938 }
7939 
7940 /*
7941  * When L1 intercepts #DB, verify that a single-step trap clears
7942  * pending debug exceptions, populates the exit qualification field
7943  * properly, and that DR6 is not prematurely clobbered. In a
7944  * (simulated) MOVSS shadow, make sure that the pending debug
7945  * exception bits are properly accumulated into the exit qualification
7946  * field.
7947  */
7948 static void vmx_db_test(void)
7949 {
7950 	/*
7951 	 * We are going to set a few arbitrary bits in DR6 to verify that
7952 	 * (a) DR6 is not modified by an intercepted #DB, and
7953 	 * (b) stale bits in DR6 (DR6.BD, in particular) don't leak into
7954          *     the exit qualification field for a subsequent #DB exception.
7955 	 */
7956 	const u64 starting_dr6 = DR6_RESERVED | BIT(13) | DR_TRAP3 | DR_TRAP1;
7957 	extern char post_nop asm(".Lpost_nop");
7958 	extern char post_movss_nop asm(".Lpost_movss_nop");
7959 	extern char post_wbinvd asm(".Lpost_wbinvd");
7960 	extern char post_movss_wbinvd asm(".Lpost_movss_wbinvd");
7961 	extern char xbegin asm(".Lxbegin");
7962 	extern char skip_rtm asm(".Lskip_rtm");
7963 
7964 	/*
7965 	 * L1 wants to intercept #DB exceptions encountered in L2.
7966 	 */
7967 	vmcs_write(EXC_BITMAP, BIT(DB_VECTOR));
7968 
7969 	/*
7970 	 * Start L2 and run it up to the first point of interest.
7971 	 */
7972 	test_set_guest(vmx_db_test_guest);
7973 	enter_guest();
7974 
7975 	/*
7976 	 * Hardware-delivered #DB trap for single-step sets the
7977 	 * standard that L0 has to follow for emulated instructions.
7978 	 */
7979 	single_step_guest("Hardware delivered single-step", starting_dr6, 0);
7980 	check_db_exit(false, false, false, &post_nop, DR_STEP, starting_dr6);
7981 
7982 	/*
7983 	 * Hardware-delivered #DB trap for single-step in MOVSS shadow
7984 	 * also sets the standard that L0 has to follow for emulated
7985 	 * instructions. Here, we establish the VMCS pending debug
7986 	 * exceptions to indicate that the simulated MOVSS triggered a
7987 	 * data breakpoint as well as the single-step trap.
7988 	 */
7989 	single_step_guest("Hardware delivered single-step in MOVSS shadow",
7990 			  starting_dr6, BIT(12) | DR_STEP | DR_TRAP0 );
7991 	check_db_exit(false, false, false, &post_movss_nop, DR_STEP | DR_TRAP0,
7992 		      starting_dr6);
7993 
7994 	/*
7995 	 * L0 synthesized #DB trap for single-step is buggy, because
7996 	 * kvm (a) clobbers DR6 too early, and (b) tries its best to
7997 	 * reconstitute the exit qualification from the prematurely
7998 	 * modified DR6, but fails miserably.
7999 	 */
8000 	single_step_guest("Software synthesized single-step", starting_dr6, 0);
8001 	check_db_exit(true, true, false, &post_wbinvd, DR_STEP, starting_dr6);
8002 
8003 	/*
8004 	 * L0 synthesized #DB trap for single-step in MOVSS shadow is
8005 	 * even worse, because L0 also leaves the pending debug
8006 	 * exceptions in the VMCS instead of accumulating them into
8007 	 * the exit qualification field for the #DB exception.
8008 	 */
8009 	single_step_guest("Software synthesized single-step in MOVSS shadow",
8010 			  starting_dr6, BIT(12) | DR_STEP | DR_TRAP0);
8011 	check_db_exit(true, true, true, &post_movss_wbinvd, DR_STEP | DR_TRAP0,
8012 		      starting_dr6);
8013 
8014 	/*
8015 	 * Optional RTM test for hardware that supports RTM, to
8016 	 * demonstrate that the current volume 3 of the SDM
8017 	 * (325384-067US), table 27-1 is incorrect. Bit 16 of the exit
8018 	 * qualification for debug exceptions is not reserved. It is
8019 	 * set to 1 if a debug exception (#DB) or a breakpoint
8020 	 * exception (#BP) occurs inside an RTM region while advanced
8021 	 * debugging of RTM transactional regions is enabled.
8022 	 */
8023 	if (this_cpu_has(X86_FEATURE_RTM)) {
8024 		vmcs_write(ENT_CONTROLS,
8025 			   vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
8026 		/*
8027 		 * Set DR7.RTM[bit 11] and IA32_DEBUGCTL.RTM[bit 15]
8028 		 * in the guest to enable advanced debugging of RTM
8029 		 * transactional regions.
8030 		 */
8031 		vmcs_write(GUEST_DR7, BIT(11));
8032 		vmcs_write(GUEST_DEBUGCTL, BIT(15));
8033 		single_step_guest("Hardware delivered single-step in "
8034 				  "transactional region", starting_dr6, 0);
8035 		check_db_exit(false, false, false, &xbegin, BIT(16),
8036 			      starting_dr6);
8037 	} else {
8038 		vmcs_write(GUEST_RIP, (u64)&skip_rtm);
8039 		enter_guest();
8040 	}
8041 }
8042 
8043 static void enable_vid(void)
8044 {
8045 	void *virtual_apic_page;
8046 
8047 	assert(cpu_has_apicv());
8048 
8049 	disable_intercept_for_x2apic_msrs();
8050 
8051 	virtual_apic_page = alloc_page();
8052 	vmcs_write(APIC_VIRT_ADDR, (u64)virtual_apic_page);
8053 
8054 	vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT);
8055 
8056 	vmcs_write(EOI_EXIT_BITMAP0, 0x0);
8057 	vmcs_write(EOI_EXIT_BITMAP1, 0x0);
8058 	vmcs_write(EOI_EXIT_BITMAP2, 0x0);
8059 	vmcs_write(EOI_EXIT_BITMAP3, 0x0);
8060 
8061 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY | CPU_TPR_SHADOW);
8062 	vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VINTD | CPU_VIRT_X2APIC);
8063 }
8064 
8065 static void trigger_ioapic_scan_thread(void *data)
8066 {
8067 	/* Wait until other CPU entered L2 */
8068 	while (vmx_get_test_stage() != 1)
8069 		;
8070 
8071 	/* Trigger ioapic scan */
8072 	ioapic_set_redir(0xf, 0x79, TRIGGER_LEVEL);
8073 	vmx_set_test_stage(2);
8074 }
8075 
8076 static void irq_79_handler_guest(isr_regs_t *regs)
8077 {
8078 	eoi();
8079 
8080 	/* L1 expects vmexit on VMX_VMCALL and not VMX_EOI_INDUCED */
8081 	vmcall();
8082 }
8083 
8084 /*
8085  * Constant for num of busy-loop iterations after which
8086  * a timer interrupt should have happened in host
8087  */
8088 #define TIMER_INTERRUPT_DELAY 100000000
8089 
8090 static void vmx_eoi_bitmap_ioapic_scan_test_guest(void)
8091 {
8092 	handle_irq(0x79, irq_79_handler_guest);
8093 	irq_enable();
8094 
8095 	/* Signal to L1 CPU to trigger ioapic scan */
8096 	vmx_set_test_stage(1);
8097 	/* Wait until L1 CPU to trigger ioapic scan */
8098 	while (vmx_get_test_stage() != 2)
8099 		;
8100 
8101 	/*
8102 	 * Wait for L0 timer interrupt to be raised while we run in L2
8103 	 * such that L0 will process the IOAPIC scan request before
8104 	 * resuming L2
8105 	 */
8106 	delay(TIMER_INTERRUPT_DELAY);
8107 
8108 	asm volatile ("int $0x79");
8109 }
8110 
8111 static void vmx_eoi_bitmap_ioapic_scan_test(void)
8112 {
8113 	if (!cpu_has_apicv() || (cpu_count() < 2)) {
8114 		report_skip(__func__);
8115 		return;
8116 	}
8117 
8118 	enable_vid();
8119 
8120 	on_cpu_async(1, trigger_ioapic_scan_thread, NULL);
8121 	test_set_guest(vmx_eoi_bitmap_ioapic_scan_test_guest);
8122 
8123 	/*
8124 	 * Launch L2.
8125 	 * We expect the exit reason to be VMX_VMCALL (and not EOI INDUCED).
8126 	 * In case the reason isn't VMX_VMCALL, the asserion inside
8127 	 * skip_exit_vmcall() will fail.
8128 	 */
8129 	enter_guest();
8130 	skip_exit_vmcall();
8131 
8132 	/* Let L2 finish */
8133 	enter_guest();
8134 	report(__func__, 1);
8135 }
8136 
8137 #define HLT_WITH_RVI_VECTOR		(0xf1)
8138 
8139 bool vmx_hlt_with_rvi_guest_isr_fired;
8140 static void vmx_hlt_with_rvi_guest_isr(isr_regs_t *regs)
8141 {
8142 	vmx_hlt_with_rvi_guest_isr_fired = true;
8143 	eoi();
8144 }
8145 
8146 static void vmx_hlt_with_rvi_guest(void)
8147 {
8148 	handle_irq(HLT_WITH_RVI_VECTOR, vmx_hlt_with_rvi_guest_isr);
8149 
8150 	irq_enable();
8151 	asm volatile ("nop");
8152 
8153 	vmcall();
8154 }
8155 
8156 static void vmx_hlt_with_rvi_test(void)
8157 {
8158 	if (!cpu_has_apicv()) {
8159 		report_skip(__func__);
8160 		return;
8161 	}
8162 
8163 	enable_vid();
8164 
8165 	vmx_hlt_with_rvi_guest_isr_fired = false;
8166 	test_set_guest(vmx_hlt_with_rvi_guest);
8167 
8168 	enter_guest();
8169 	skip_exit_vmcall();
8170 
8171 	vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8172 	vmcs_write(GUEST_INT_STATUS, HLT_WITH_RVI_VECTOR);
8173 	enter_guest();
8174 
8175 	report("Interrupt raised in guest", vmx_hlt_with_rvi_guest_isr_fired);
8176 }
8177 
8178 static void set_irq_line_thread(void *data)
8179 {
8180 	/* Wait until other CPU entered L2 */
8181 	while (vmx_get_test_stage() != 1)
8182 		;
8183 
8184 	/* Set irq-line 0xf to raise vector 0x78 for vCPU 0 */
8185 	ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL);
8186 	vmx_set_test_stage(2);
8187 }
8188 
8189 static bool irq_78_handler_vmcall_before_eoi;
8190 static void irq_78_handler_guest(isr_regs_t *regs)
8191 {
8192 	set_irq_line(0xf, 0);
8193 	if (irq_78_handler_vmcall_before_eoi)
8194 		vmcall();
8195 	eoi();
8196 	vmcall();
8197 }
8198 
8199 static void vmx_apic_passthrough_guest(void)
8200 {
8201 	handle_irq(0x78, irq_78_handler_guest);
8202 	irq_enable();
8203 
8204 	/* If requested, wait for other CPU to trigger ioapic scan */
8205 	if (vmx_get_test_stage() < 1) {
8206 		vmx_set_test_stage(1);
8207 		while (vmx_get_test_stage() != 2)
8208 			;
8209 	}
8210 
8211 	set_irq_line(0xf, 1);
8212 }
8213 
8214 static void vmx_apic_passthrough(bool set_irq_line_from_thread)
8215 {
8216 	if (set_irq_line_from_thread && (cpu_count() < 2)) {
8217 		report_skip(__func__);
8218 		return;
8219 	}
8220 
8221 	/* Test device is required for generating IRQs */
8222 	if (!test_device_enabled()) {
8223 		report_skip(__func__);
8224 		return;
8225 	}
8226 	u64 cpu_ctrl_0 = CPU_SECONDARY;
8227 	u64 cpu_ctrl_1 = 0;
8228 
8229 	disable_intercept_for_x2apic_msrs();
8230 
8231 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
8232 
8233 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0);
8234 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1);
8235 
8236 	if (set_irq_line_from_thread) {
8237 		irq_78_handler_vmcall_before_eoi = false;
8238 		on_cpu_async(1, set_irq_line_thread, NULL);
8239 	} else {
8240 		irq_78_handler_vmcall_before_eoi = true;
8241 		ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL);
8242 		vmx_set_test_stage(2);
8243 	}
8244 	test_set_guest(vmx_apic_passthrough_guest);
8245 
8246 	if (irq_78_handler_vmcall_before_eoi) {
8247 		/* Before EOI remote_irr should still be set */
8248 		enter_guest();
8249 		skip_exit_vmcall();
8250 		TEST_ASSERT_EQ_MSG(1, (int)ioapic_read_redir(0xf).remote_irr,
8251 			"IOAPIC pass-through: remote_irr=1 before EOI");
8252 	}
8253 
8254 	/* After EOI remote_irr should be cleared */
8255 	enter_guest();
8256 	skip_exit_vmcall();
8257 	TEST_ASSERT_EQ_MSG(0, (int)ioapic_read_redir(0xf).remote_irr,
8258 		"IOAPIC pass-through: remote_irr=0 after EOI");
8259 
8260 	/* Let L2 finish */
8261 	enter_guest();
8262 	report(__func__, 1);
8263 }
8264 
8265 static void vmx_apic_passthrough_test(void)
8266 {
8267 	vmx_apic_passthrough(false);
8268 }
8269 
8270 static void vmx_apic_passthrough_thread_test(void)
8271 {
8272 	vmx_apic_passthrough(true);
8273 }
8274 
8275 static u64 init_signal_test_exit_reason;
8276 static bool init_signal_test_thread_continued;
8277 
8278 static void init_signal_test_thread(void *data)
8279 {
8280 	struct vmcs *test_vmcs = data;
8281 
8282 	/* Enter VMX operation (i.e. exec VMXON) */
8283 	u64 *ap_vmxon_region = alloc_page();
8284 	enable_vmx();
8285 	init_vmx(ap_vmxon_region);
8286 	_vmx_on(ap_vmxon_region);
8287 
8288 	/* Signal CPU have entered VMX operation */
8289 	vmx_set_test_stage(1);
8290 
8291 	/* Wait for BSP CPU to send INIT signal */
8292 	while (vmx_get_test_stage() != 2)
8293 		;
8294 
8295 	/*
8296 	 * Signal that we continue as usual as INIT signal
8297 	 * should be blocked while CPU is in VMX operation
8298 	 */
8299 	vmx_set_test_stage(3);
8300 
8301 	/* Wait for signal to enter VMX non-root mode */
8302 	while (vmx_get_test_stage() != 4)
8303 		;
8304 
8305 	/* Enter VMX non-root mode */
8306 	test_set_guest(v2_null_test_guest);
8307 	make_vmcs_current(test_vmcs);
8308 	enter_guest();
8309 	/* Save exit reason for BSP CPU to compare to expected result */
8310 	init_signal_test_exit_reason = vmcs_read(EXI_REASON);
8311 	/* VMCLEAR test-vmcs so it could be loaded by BSP CPU */
8312 	vmcs_clear(test_vmcs);
8313 	launched = false;
8314 	/* Signal that CPU exited to VMX root mode */
8315 	vmx_set_test_stage(5);
8316 
8317 	/* Wait for signal to exit VMX operation */
8318 	while (vmx_get_test_stage() != 6)
8319 		;
8320 
8321 	/* Exit VMX operation (i.e. exec VMXOFF) */
8322 	vmx_off();
8323 
8324 	/*
8325 	 * Exiting VMX operation should result in latched
8326 	 * INIT signal being processed. Therefore, we should
8327 	 * never reach the below code. Thus, signal to BSP
8328 	 * CPU if we have reached here so it is able to
8329 	 * report an issue if it happens.
8330 	 */
8331 	init_signal_test_thread_continued = true;
8332 }
8333 
8334 #define INIT_SIGNAL_TEST_DELAY	100000000ULL
8335 
8336 static void vmx_init_signal_test(void)
8337 {
8338 	struct vmcs *test_vmcs;
8339 
8340 	if (cpu_count() < 2) {
8341 		report_skip(__func__);
8342 		return;
8343 	}
8344 
8345 	/* VMCLEAR test-vmcs so it could be loaded by other CPU */
8346 	vmcs_save(&test_vmcs);
8347 	vmcs_clear(test_vmcs);
8348 
8349 	vmx_set_test_stage(0);
8350 	on_cpu_async(1, init_signal_test_thread, test_vmcs);
8351 
8352 	/* Wait for other CPU to enter VMX operation */
8353 	while (vmx_get_test_stage() != 1)
8354 		;
8355 
8356 	/* Send INIT signal to other CPU */
8357 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT,
8358 				   id_map[1]);
8359 	/* Signal other CPU we have sent INIT signal */
8360 	vmx_set_test_stage(2);
8361 
8362 	/*
8363 	 * Wait reasonable amount of time for INIT signal to
8364 	 * be received on other CPU and verify that other CPU
8365 	 * have proceed as usual to next test stage as INIT
8366 	 * signal should be blocked while other CPU in
8367 	 * VMX operation
8368 	 */
8369 	delay(INIT_SIGNAL_TEST_DELAY);
8370 	report("INIT signal blocked when CPU in VMX operation",
8371 		   vmx_get_test_stage() == 3);
8372 	/* No point to continue if we failed at this point */
8373 	if (vmx_get_test_stage() != 3)
8374 		return;
8375 
8376 	/* Signal other CPU to enter VMX non-root mode */
8377 	init_signal_test_exit_reason = -1ull;
8378 	vmx_set_test_stage(4);
8379 	/*
8380 	 * Wait reasonable amont of time for other CPU
8381 	 * to exit to VMX root mode
8382 	 */
8383 	delay(INIT_SIGNAL_TEST_DELAY);
8384 	if (vmx_get_test_stage() != 5) {
8385 		report("Pending INIT signal didn't result in VMX exit", false);
8386 		return;
8387 	}
8388 	report("INIT signal during VMX non-root mode result in exit-reason %s (%lu)",
8389 			init_signal_test_exit_reason == VMX_INIT,
8390 			exit_reason_description(init_signal_test_exit_reason),
8391 			init_signal_test_exit_reason);
8392 
8393 	/* Run guest to completion */
8394 	make_vmcs_current(test_vmcs);
8395 	enter_guest();
8396 
8397 	/* Signal other CPU to exit VMX operation */
8398 	init_signal_test_thread_continued = false;
8399 	vmx_set_test_stage(6);
8400 
8401 	/*
8402 	 * Wait reasonable amount of time for other CPU
8403 	 * to run after INIT signal was processed
8404 	 */
8405 	delay(INIT_SIGNAL_TEST_DELAY);
8406 	report("INIT signal processed after exit VMX operation",
8407 		   !init_signal_test_thread_continued);
8408 
8409 	/*
8410 	 * TODO: Send SIPI to other CPU to sipi_entry (See x86/cstart64.S)
8411 	 * to re-init it to kvm-unit-tests standard environment.
8412 	 * Somehow (?) verify that SIPI was indeed received.
8413 	 */
8414 }
8415 
8416 enum vmcs_access {
8417 	ACCESS_VMREAD,
8418 	ACCESS_VMWRITE,
8419 	ACCESS_NONE,
8420 };
8421 
8422 struct vmcs_shadow_test_common {
8423 	enum vmcs_access op;
8424 	enum Reason reason;
8425 	u64 field;
8426 	u64 value;
8427 	u64 flags;
8428 	u64 time;
8429 } l1_l2_common;
8430 
8431 static inline u64 vmread_flags(u64 field, u64 *val)
8432 {
8433 	u64 flags;
8434 
8435 	asm volatile ("vmread %2, %1; pushf; pop %0"
8436 		      : "=r" (flags), "=rm" (*val) : "r" (field) : "cc");
8437 	return flags & X86_EFLAGS_ALU;
8438 }
8439 
8440 static inline u64 vmwrite_flags(u64 field, u64 val)
8441 {
8442 	u64 flags;
8443 
8444 	asm volatile ("vmwrite %1, %2; pushf; pop %0"
8445 		      : "=r"(flags) : "rm" (val), "r" (field) : "cc");
8446 	return flags & X86_EFLAGS_ALU;
8447 }
8448 
8449 static void vmx_vmcs_shadow_test_guest(void)
8450 {
8451 	struct vmcs_shadow_test_common *c = &l1_l2_common;
8452 	u64 start;
8453 
8454 	while (c->op != ACCESS_NONE) {
8455 		start = rdtsc();
8456 		switch (c->op) {
8457 		default:
8458 			c->flags = -1ull;
8459 			break;
8460 		case ACCESS_VMREAD:
8461 			c->flags = vmread_flags(c->field, &c->value);
8462 			break;
8463 		case ACCESS_VMWRITE:
8464 			c->flags = vmwrite_flags(c->field, 0);
8465 			break;
8466 		}
8467 		c->time = rdtsc() - start;
8468 		vmcall();
8469 	}
8470 }
8471 
8472 static u64 vmread_from_shadow(u64 field)
8473 {
8474 	struct vmcs *primary;
8475 	struct vmcs *shadow;
8476 	u64 value;
8477 
8478 	TEST_ASSERT(!vmcs_save(&primary));
8479 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
8480 	TEST_ASSERT(!make_vmcs_current(shadow));
8481 	value = vmcs_read(field);
8482 	TEST_ASSERT(!make_vmcs_current(primary));
8483 	return value;
8484 }
8485 
8486 static u64 vmwrite_to_shadow(u64 field, u64 value)
8487 {
8488 	struct vmcs *primary;
8489 	struct vmcs *shadow;
8490 
8491 	TEST_ASSERT(!vmcs_save(&primary));
8492 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
8493 	TEST_ASSERT(!make_vmcs_current(shadow));
8494 	vmcs_write(field, value);
8495 	value = vmcs_read(field);
8496 	TEST_ASSERT(!make_vmcs_current(primary));
8497 	return value;
8498 }
8499 
8500 static void vmcs_shadow_test_access(u8 *bitmap[2], enum vmcs_access access)
8501 {
8502 	struct vmcs_shadow_test_common *c = &l1_l2_common;
8503 
8504 	c->op = access;
8505 	vmcs_write(VMX_INST_ERROR, 0);
8506 	enter_guest();
8507 	c->reason = vmcs_read(EXI_REASON) & 0xffff;
8508 	if (c->reason != VMX_VMCALL) {
8509 		skip_exit_insn();
8510 		enter_guest();
8511 	}
8512 	skip_exit_vmcall();
8513 }
8514 
8515 static void vmcs_shadow_test_field(u8 *bitmap[2], u64 field)
8516 {
8517 	struct vmcs_shadow_test_common *c = &l1_l2_common;
8518 	struct vmcs *shadow;
8519 	u64 value;
8520 	uintptr_t flags[2];
8521 	bool good_shadow;
8522 	u32 vmx_inst_error;
8523 
8524 	report_prefix_pushf("field %lx", field);
8525 	c->field = field;
8526 
8527 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
8528 	if (shadow != (struct vmcs *)-1ull) {
8529 		flags[ACCESS_VMREAD] = vmread_flags(field, &value);
8530 		flags[ACCESS_VMWRITE] = vmwrite_flags(field, value);
8531 		good_shadow = !flags[ACCESS_VMREAD] && !flags[ACCESS_VMWRITE];
8532 	} else {
8533 		/*
8534 		 * When VMCS link pointer is -1ull, VMWRITE/VMREAD on
8535 		 * shadowed-fields should fail with setting RFLAGS.CF.
8536 		 */
8537 		flags[ACCESS_VMREAD] = X86_EFLAGS_CF;
8538 		flags[ACCESS_VMWRITE] = X86_EFLAGS_CF;
8539 		good_shadow = false;
8540 	}
8541 
8542 	/* Intercept both VMREAD and VMWRITE. */
8543 	report_prefix_push("no VMREAD/VMWRITE permission");
8544 	/* VMWRITE/VMREAD done on reserved-bit should always intercept */
8545 	if (!(field >> VMCS_FIELD_RESERVED_SHIFT)) {
8546 		set_bit(field, bitmap[ACCESS_VMREAD]);
8547 		set_bit(field, bitmap[ACCESS_VMWRITE]);
8548 	}
8549 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
8550 	report("not shadowed for VMWRITE", c->reason == VMX_VMWRITE);
8551 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
8552 	report("not shadowed for VMREAD", c->reason == VMX_VMREAD);
8553 	report_prefix_pop();
8554 
8555 	if (field >> VMCS_FIELD_RESERVED_SHIFT)
8556 		goto out;
8557 
8558 	/* Permit shadowed VMREAD. */
8559 	report_prefix_push("VMREAD permission only");
8560 	clear_bit(field, bitmap[ACCESS_VMREAD]);
8561 	set_bit(field, bitmap[ACCESS_VMWRITE]);
8562 	if (good_shadow)
8563 		value = vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
8564 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
8565 	report("not shadowed for VMWRITE", c->reason == VMX_VMWRITE);
8566 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
8567 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
8568 	report("shadowed for VMREAD (in %ld cycles)", c->reason == VMX_VMCALL,
8569 	       c->time);
8570 	report("ALU flags after VMREAD (%lx) are as expected (%lx)",
8571 	       c->flags == flags[ACCESS_VMREAD],
8572 	       c->flags, flags[ACCESS_VMREAD]);
8573 	if (good_shadow)
8574 		report("value read from shadow (%lx) is as expected (%lx)",
8575 		       c->value == value, c->value, value);
8576 	else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD])
8577 		report("VMX_INST_ERROR (%d) is as expected (%d)",
8578 		       vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
8579 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
8580 	report_prefix_pop();
8581 
8582 	/* Permit shadowed VMWRITE. */
8583 	report_prefix_push("VMWRITE permission only");
8584 	set_bit(field, bitmap[ACCESS_VMREAD]);
8585 	clear_bit(field, bitmap[ACCESS_VMWRITE]);
8586 	if (good_shadow)
8587 		vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
8588 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
8589 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
8590 	report("shadowed for VMWRITE (in %ld cycles)", c->reason == VMX_VMCALL,
8591 		c->time);
8592 	report("ALU flags after VMWRITE (%lx) are as expected (%lx)",
8593 	       c->flags == flags[ACCESS_VMREAD],
8594 	       c->flags, flags[ACCESS_VMREAD]);
8595 	if (good_shadow) {
8596 		value = vmread_from_shadow(field);
8597 		report("shadow VMCS value (%lx) is as expected (%lx)",
8598 		       value == 0, value, 0ul);
8599 	} else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) {
8600 		report("VMX_INST_ERROR (%d) is as expected (%d)",
8601 		       vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
8602 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
8603 	}
8604 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
8605 	report("not shadowed for VMREAD", c->reason == VMX_VMREAD);
8606 	report_prefix_pop();
8607 
8608 	/* Permit shadowed VMREAD and VMWRITE. */
8609 	report_prefix_push("VMREAD and VMWRITE permission");
8610 	clear_bit(field, bitmap[ACCESS_VMREAD]);
8611 	clear_bit(field, bitmap[ACCESS_VMWRITE]);
8612 	if (good_shadow)
8613 		vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
8614 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
8615 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
8616 	report("shadowed for VMWRITE (in %ld cycles)", c->reason == VMX_VMCALL,
8617 		c->time);
8618 	report("ALU flags after VMWRITE (%lx) are as expected (%lx)",
8619 	       c->flags == flags[ACCESS_VMREAD],
8620 	       c->flags, flags[ACCESS_VMREAD]);
8621 	if (good_shadow) {
8622 		value = vmread_from_shadow(field);
8623 		report("shadow VMCS value (%lx) is as expected (%lx)",
8624 		       value == 0, value, 0ul);
8625 	} else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) {
8626 		report("VMX_INST_ERROR (%d) is as expected (%d)",
8627 		       vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
8628 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
8629 	}
8630 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
8631 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
8632 	report("shadowed for VMREAD (in %ld cycles)", c->reason == VMX_VMCALL,
8633 	       c->time);
8634 	report("ALU flags after VMREAD (%lx) are as expected (%lx)",
8635 	       c->flags == flags[ACCESS_VMREAD],
8636 	       c->flags, flags[ACCESS_VMREAD]);
8637 	if (good_shadow)
8638 		report("value read from shadow (%lx) is as expected (%lx)",
8639 		       c->value == 0, c->value, 0ul);
8640 	else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD])
8641 		report("VMX_INST_ERROR (%d) is as expected (%d)",
8642 		       vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
8643 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
8644 	report_prefix_pop();
8645 
8646 out:
8647 	report_prefix_pop();
8648 }
8649 
8650 static void vmx_vmcs_shadow_test_body(u8 *bitmap[2])
8651 {
8652 	unsigned base;
8653 	unsigned index;
8654 	unsigned bit;
8655 	unsigned highest_index = rdmsr(MSR_IA32_VMX_VMCS_ENUM);
8656 
8657 	/* Run test on all possible valid VMCS fields */
8658 	for (base = 0;
8659 	     base < (1 << VMCS_FIELD_RESERVED_SHIFT);
8660 	     base += (1 << VMCS_FIELD_TYPE_SHIFT))
8661 		for (index = 0; index <= highest_index; index++)
8662 			vmcs_shadow_test_field(bitmap, base + index);
8663 
8664 	/*
8665 	 * Run tests on some invalid VMCS fields
8666 	 * (Have reserved bit set).
8667 	 */
8668 	for (bit = VMCS_FIELD_RESERVED_SHIFT; bit < VMCS_FIELD_BIT_SIZE; bit++)
8669 		vmcs_shadow_test_field(bitmap, (1ull << bit));
8670 }
8671 
8672 static void vmx_vmcs_shadow_test(void)
8673 {
8674 	u8 *bitmap[2];
8675 	struct vmcs *shadow;
8676 
8677 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) {
8678 		printf("\t'Activate secondary controls' not supported.\n");
8679 		return;
8680 	}
8681 
8682 	if (!(ctrl_cpu_rev[1].clr & CPU_SHADOW_VMCS)) {
8683 		printf("\t'VMCS shadowing' not supported.\n");
8684 		return;
8685 	}
8686 
8687 	if (!(rdmsr(MSR_IA32_VMX_MISC) &
8688 	      MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) {
8689 		printf("\tVMWRITE can't modify VM-exit information fields.\n");
8690 		return;
8691 	}
8692 
8693 	test_set_guest(vmx_vmcs_shadow_test_guest);
8694 
8695 	bitmap[ACCESS_VMREAD] = alloc_page();
8696 	bitmap[ACCESS_VMWRITE] = alloc_page();
8697 
8698 	vmcs_write(VMREAD_BITMAP, virt_to_phys(bitmap[ACCESS_VMREAD]));
8699 	vmcs_write(VMWRITE_BITMAP, virt_to_phys(bitmap[ACCESS_VMWRITE]));
8700 
8701 	shadow = alloc_page();
8702 	shadow->hdr.revision_id = basic.revision;
8703 	shadow->hdr.shadow_vmcs = 1;
8704 	TEST_ASSERT(!vmcs_clear(shadow));
8705 
8706 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_RDTSC);
8707 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY);
8708 	vmcs_set_bits(CPU_EXEC_CTRL1, CPU_SHADOW_VMCS);
8709 
8710 	vmcs_write(VMCS_LINK_PTR, virt_to_phys(shadow));
8711 	report_prefix_push("valid link pointer");
8712 	vmx_vmcs_shadow_test_body(bitmap);
8713 	report_prefix_pop();
8714 
8715 	vmcs_write(VMCS_LINK_PTR, -1ull);
8716 	report_prefix_push("invalid link pointer");
8717 	vmx_vmcs_shadow_test_body(bitmap);
8718 	report_prefix_pop();
8719 
8720 	l1_l2_common.op = ACCESS_NONE;
8721 	enter_guest();
8722 }
8723 
8724 
8725 
8726 static int invalid_msr_init(struct vmcs *vmcs)
8727 {
8728 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
8729 		printf("\tPreemption timer is not supported\n");
8730 		return VMX_TEST_EXIT;
8731 	}
8732 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
8733 	preempt_val = 10000000;
8734 	vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
8735 	preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
8736 
8737 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
8738 		printf("\tSave preemption value is not supported\n");
8739 
8740 	vmcs_write(ENT_MSR_LD_CNT, 1);
8741 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)0x13370000);
8742 
8743 	return VMX_TEST_START;
8744 }
8745 
8746 
8747 static void invalid_msr_main(void)
8748 {
8749 	report("Invalid MSR load", 0);
8750 }
8751 
8752 static int invalid_msr_exit_handler(void)
8753 {
8754 	report("Invalid MSR load", 0);
8755 	print_vmexit_info();
8756 	return VMX_TEST_EXIT;
8757 }
8758 
8759 static int invalid_msr_entry_failure(struct vmentry_failure *failure)
8760 {
8761 	ulong reason;
8762 
8763 	reason = vmcs_read(EXI_REASON);
8764 	report("Invalid MSR load", reason == (0x80000000u | VMX_FAIL_MSR));
8765 	return VMX_TEST_VMEXIT;
8766 }
8767 
8768 /*
8769  * The max number of MSRs in an atomic switch MSR list is:
8770  * (111B + 1) * 512 = 4096
8771  *
8772  * Each list entry consumes:
8773  * 4-byte MSR index + 4 bytes reserved + 8-byte data = 16 bytes
8774  *
8775  * Allocate 128 kB to cover max_msr_list_size (i.e., 64 kB) and then some.
8776  */
8777 static const u32 msr_list_page_order = 5;
8778 
8779 static void atomic_switch_msr_limit_test_guest(void)
8780 {
8781 	vmcall();
8782 }
8783 
8784 static void populate_msr_list(struct vmx_msr_entry *msr_list,
8785 			      size_t byte_capacity, int count)
8786 {
8787 	int i;
8788 
8789 	for (i = 0; i < count; i++) {
8790 		msr_list[i].index = MSR_IA32_TSC;
8791 		msr_list[i].reserved = 0;
8792 		msr_list[i].value = 0x1234567890abcdef;
8793 	}
8794 
8795 	memset(msr_list + count, 0xff,
8796 	       byte_capacity - count * sizeof(*msr_list));
8797 }
8798 
8799 static int max_msr_list_size(void)
8800 {
8801 	u32 vmx_misc = rdmsr(MSR_IA32_VMX_MISC);
8802 	u32 factor = ((vmx_misc & GENMASK(27, 25)) >> 25) + 1;
8803 
8804 	return factor * 512;
8805 }
8806 
8807 static void atomic_switch_msrs_test(int count)
8808 {
8809 	struct vmx_msr_entry *vm_enter_load;
8810         struct vmx_msr_entry *vm_exit_load;
8811         struct vmx_msr_entry *vm_exit_store;
8812 	int max_allowed = max_msr_list_size();
8813 	int byte_capacity = 1ul << (msr_list_page_order + PAGE_SHIFT);
8814 	/* Exceeding the max MSR list size at exit trigers KVM to abort. */
8815 	int exit_count = count > max_allowed ? max_allowed : count;
8816 	int cleanup_count = count > max_allowed ? 2 : 1;
8817 	int i;
8818 
8819 	/*
8820 	 * Check for the IA32_TSC MSR,
8821 	 * available with the "TSC flag" and used to populate the MSR lists.
8822 	 */
8823 	if (!(cpuid(1).d & (1 << 4))) {
8824 		report_skip(__func__);
8825 		return;
8826 	}
8827 
8828 	/* Set L2 guest. */
8829 	test_set_guest(atomic_switch_msr_limit_test_guest);
8830 
8831 	/* Setup atomic MSR switch lists. */
8832 	vm_enter_load = alloc_pages(msr_list_page_order);
8833 	vm_exit_load = alloc_pages(msr_list_page_order);
8834 	vm_exit_store = alloc_pages(msr_list_page_order);
8835 
8836 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)vm_enter_load);
8837 	vmcs_write(EXIT_MSR_LD_ADDR, (u64)vm_exit_load);
8838 	vmcs_write(EXIT_MSR_ST_ADDR, (u64)vm_exit_store);
8839 
8840 	/*
8841 	 * VM-Enter should succeed up to the max number of MSRs per list, and
8842 	 * should not consume junk beyond the last entry.
8843 	 */
8844 	populate_msr_list(vm_enter_load, byte_capacity, count);
8845 	populate_msr_list(vm_exit_load, byte_capacity, exit_count);
8846 	populate_msr_list(vm_exit_store, byte_capacity, exit_count);
8847 
8848 	vmcs_write(ENT_MSR_LD_CNT, count);
8849 	vmcs_write(EXI_MSR_LD_CNT, exit_count);
8850 	vmcs_write(EXI_MSR_ST_CNT, exit_count);
8851 
8852 	if (count <= max_allowed) {
8853 		enter_guest();
8854 		assert_exit_reason(VMX_VMCALL);
8855 		skip_exit_vmcall();
8856 	} else {
8857 		u32 exit_reason;
8858 		u32 exit_reason_want;
8859 		u32 exit_qual;
8860 
8861 		enter_guest_with_invalid_guest_state();
8862 
8863 		exit_reason = vmcs_read(EXI_REASON);
8864 		exit_reason_want = VMX_FAIL_MSR | VMX_ENTRY_FAILURE;
8865 		report("exit_reason, %u, is %u.",
8866 		       exit_reason == exit_reason_want, exit_reason,
8867 		       exit_reason_want);
8868 
8869 		exit_qual = vmcs_read(EXI_QUALIFICATION);
8870 		report("exit_qual, %u, is %u.", exit_qual == max_allowed + 1,
8871 		       exit_qual, max_allowed + 1);
8872 	}
8873 
8874 	/* Cleanup. */
8875 	vmcs_write(ENT_MSR_LD_CNT, 0);
8876 	vmcs_write(EXI_MSR_LD_CNT, 0);
8877 	vmcs_write(EXI_MSR_ST_CNT, 0);
8878 	for (i = 0; i < cleanup_count; i++) {
8879 		enter_guest();
8880 		skip_exit_vmcall();
8881 	}
8882 	free_pages_by_order(vm_enter_load, msr_list_page_order);
8883 	free_pages_by_order(vm_exit_load, msr_list_page_order);
8884 	free_pages_by_order(vm_exit_store, msr_list_page_order);
8885 }
8886 
8887 static void atomic_switch_max_msrs_test(void)
8888 {
8889 	atomic_switch_msrs_test(max_msr_list_size());
8890 }
8891 
8892 static void atomic_switch_overflow_msrs_test(void)
8893 {
8894 	atomic_switch_msrs_test(max_msr_list_size() + 1);
8895 }
8896 
8897 #define TEST(name) { #name, .v2 = name }
8898 
8899 /* name/init/guest_main/exit_handler/syscall_handler/guest_regs */
8900 struct vmx_test vmx_tests[] = {
8901 	{ "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} },
8902 	{ "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} },
8903 	{ "preemption timer", preemption_timer_init, preemption_timer_main,
8904 		preemption_timer_exit_handler, NULL, {0} },
8905 	{ "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main,
8906 		test_ctrl_pat_exit_handler, NULL, {0} },
8907 	{ "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main,
8908 		test_ctrl_efer_exit_handler, NULL, {0} },
8909 	{ "CR shadowing", NULL, cr_shadowing_main,
8910 		cr_shadowing_exit_handler, NULL, {0} },
8911 	{ "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler,
8912 		NULL, {0} },
8913 	{ "instruction intercept", insn_intercept_init, insn_intercept_main,
8914 		insn_intercept_exit_handler, NULL, {0} },
8915 	{ "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} },
8916 	{ "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} },
8917 	{ "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} },
8918 	{ "VPID", vpid_init, vpid_main, vpid_exit_handler, NULL, {0} },
8919 	{ "interrupt", interrupt_init, interrupt_main,
8920 		interrupt_exit_handler, NULL, {0} },
8921 	{ "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler,
8922 		NULL, {0} },
8923 	{ "MSR switch", msr_switch_init, msr_switch_main,
8924 		msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure },
8925 	{ "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} },
8926 	{ "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main,
8927 		disable_rdtscp_exit_handler, NULL, {0} },
8928 	{ "int3", int3_init, int3_guest_main, int3_exit_handler, NULL, {0} },
8929 	{ "into", into_init, into_guest_main, into_exit_handler, NULL, {0} },
8930 	{ "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main,
8931 		exit_monitor_from_l2_handler, NULL, {0} },
8932 	{ "invalid_msr", invalid_msr_init, invalid_msr_main,
8933 		invalid_msr_exit_handler, NULL, {0}, invalid_msr_entry_failure},
8934 	/* Basic V2 tests. */
8935 	TEST(v2_null_test),
8936 	TEST(v2_multiple_entries_test),
8937 	TEST(fixture_test_case1),
8938 	TEST(fixture_test_case2),
8939 	/* Opcode tests. */
8940 	TEST(invvpid_test_v2),
8941 	/* VM-entry tests */
8942 	TEST(vmx_controls_test),
8943 	TEST(vmx_host_state_area_test),
8944 	TEST(vmx_guest_state_area_test),
8945 	TEST(vmentry_movss_shadow_test),
8946 	/* APICv tests */
8947 	TEST(vmx_eoi_bitmap_ioapic_scan_test),
8948 	TEST(vmx_hlt_with_rvi_test),
8949 	TEST(apic_reg_virt_test),
8950 	TEST(virt_x2apic_mode_test),
8951 	/* APIC pass-through tests */
8952 	TEST(vmx_apic_passthrough_test),
8953 	TEST(vmx_apic_passthrough_thread_test),
8954 	TEST(vmx_init_signal_test),
8955 	/* VMCS Shadowing tests */
8956 	TEST(vmx_vmcs_shadow_test),
8957 	/* Regression tests */
8958 	TEST(vmx_cr_load_test),
8959 	TEST(vmx_nm_test),
8960 	TEST(vmx_db_test),
8961 	TEST(vmx_nmi_window_test),
8962 	TEST(vmx_intr_window_test),
8963 	TEST(vmx_pending_event_test),
8964 	TEST(vmx_pending_event_hlt_test),
8965 	TEST(vmx_store_tsc_test),
8966 	/* EPT access tests. */
8967 	TEST(ept_access_test_not_present),
8968 	TEST(ept_access_test_read_only),
8969 	TEST(ept_access_test_write_only),
8970 	TEST(ept_access_test_read_write),
8971 	TEST(ept_access_test_execute_only),
8972 	TEST(ept_access_test_read_execute),
8973 	TEST(ept_access_test_write_execute),
8974 	TEST(ept_access_test_read_write_execute),
8975 	TEST(ept_access_test_reserved_bits),
8976 	TEST(ept_access_test_ignored_bits),
8977 	TEST(ept_access_test_paddr_not_present_ad_disabled),
8978 	TEST(ept_access_test_paddr_not_present_ad_enabled),
8979 	TEST(ept_access_test_paddr_read_only_ad_disabled),
8980 	TEST(ept_access_test_paddr_read_only_ad_enabled),
8981 	TEST(ept_access_test_paddr_read_write),
8982 	TEST(ept_access_test_paddr_read_write_execute),
8983 	TEST(ept_access_test_paddr_read_execute_ad_disabled),
8984 	TEST(ept_access_test_paddr_read_execute_ad_enabled),
8985 	TEST(ept_access_test_paddr_not_present_page_fault),
8986 	TEST(ept_access_test_force_2m_page),
8987 	/* Atomic MSR switch tests. */
8988 	TEST(atomic_switch_max_msrs_test),
8989 	TEST(atomic_switch_overflow_msrs_test),
8990 	{ NULL, NULL, NULL, NULL, NULL, {0} },
8991 };
8992