xref: /kvm-unit-tests/x86/vmx_tests.c (revision 33514fd75a5a9c56b4edf613a259633fc5f26416)
1 /*
2  * All test cases of nested virtualization should be in this file
3  *
4  * Author : Arthur Chunqi Li <yzt356@gmail.com>
5  */
6 #include "vmx.h"
7 #include "msr.h"
8 #include "processor.h"
9 #include "vm.h"
10 #include "pci.h"
11 #include "fwcfg.h"
12 #include "isr.h"
13 #include "desc.h"
14 #include "apic.h"
15 #include "types.h"
16 #include "vmalloc.h"
17 #include "alloc_page.h"
18 #include "smp.h"
19 #include "delay.h"
20 
21 #define NONCANONICAL            0xaaaaaaaaaaaaaaaaull
22 
23 #define VPID_CAP_INVVPID_TYPES_SHIFT 40
24 
25 u64 ia32_pat;
26 u64 ia32_efer;
27 void *io_bitmap_a, *io_bitmap_b;
28 u16 ioport;
29 
30 unsigned long *pml4;
31 u64 eptp;
32 void *data_page1, *data_page2;
33 
34 phys_addr_t pci_physaddr;
35 
36 void *pml_log;
37 #define PML_INDEX 512
38 
39 static inline unsigned ffs(unsigned x)
40 {
41 	int pos = -1;
42 
43 	__asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0"
44 			     : "+r"(pos) : "rm"(x) : "eax");
45 	return pos + 1;
46 }
47 
48 static inline void vmcall(void)
49 {
50 	asm volatile("vmcall");
51 }
52 
53 static void basic_guest_main(void)
54 {
55 	report("Basic VMX test", 1);
56 }
57 
58 static int basic_exit_handler(void)
59 {
60 	report("Basic VMX test", 0);
61 	print_vmexit_info();
62 	return VMX_TEST_EXIT;
63 }
64 
65 static void vmenter_main(void)
66 {
67 	u64 rax;
68 	u64 rsp, resume_rsp;
69 
70 	report("test vmlaunch", 1);
71 
72 	asm volatile(
73 		"mov %%rsp, %0\n\t"
74 		"mov %3, %%rax\n\t"
75 		"vmcall\n\t"
76 		"mov %%rax, %1\n\t"
77 		"mov %%rsp, %2\n\t"
78 		: "=r"(rsp), "=r"(rax), "=r"(resume_rsp)
79 		: "g"(0xABCD));
80 	report("test vmresume", (rax == 0xFFFF) && (rsp == resume_rsp));
81 }
82 
83 static int vmenter_exit_handler(void)
84 {
85 	u64 guest_rip;
86 	ulong reason;
87 
88 	guest_rip = vmcs_read(GUEST_RIP);
89 	reason = vmcs_read(EXI_REASON) & 0xff;
90 	switch (reason) {
91 	case VMX_VMCALL:
92 		if (regs.rax != 0xABCD) {
93 			report("test vmresume", 0);
94 			return VMX_TEST_VMEXIT;
95 		}
96 		regs.rax = 0xFFFF;
97 		vmcs_write(GUEST_RIP, guest_rip + 3);
98 		return VMX_TEST_RESUME;
99 	default:
100 		report("test vmresume", 0);
101 		print_vmexit_info();
102 	}
103 	return VMX_TEST_VMEXIT;
104 }
105 
106 u32 preempt_scale;
107 volatile unsigned long long tsc_val;
108 volatile u32 preempt_val;
109 u64 saved_rip;
110 
111 static int preemption_timer_init(struct vmcs *vmcs)
112 {
113 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
114 		printf("\tPreemption timer is not supported\n");
115 		return VMX_TEST_EXIT;
116 	}
117 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
118 	preempt_val = 10000000;
119 	vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
120 	preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
121 
122 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
123 		printf("\tSave preemption value is not supported\n");
124 
125 	return VMX_TEST_START;
126 }
127 
128 static void preemption_timer_main(void)
129 {
130 	tsc_val = rdtsc();
131 	if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) {
132 		vmx_set_test_stage(0);
133 		vmcall();
134 		if (vmx_get_test_stage() == 1)
135 			vmcall();
136 	}
137 	vmx_set_test_stage(1);
138 	while (vmx_get_test_stage() == 1) {
139 		if (((rdtsc() - tsc_val) >> preempt_scale)
140 				> 10 * preempt_val) {
141 			vmx_set_test_stage(2);
142 			vmcall();
143 		}
144 	}
145 	tsc_val = rdtsc();
146 	asm volatile ("hlt");
147 	vmcall();
148 	vmx_set_test_stage(5);
149 	vmcall();
150 }
151 
152 static int preemption_timer_exit_handler(void)
153 {
154 	bool guest_halted;
155 	u64 guest_rip;
156 	ulong reason;
157 	u32 insn_len;
158 	u32 ctrl_exit;
159 
160 	guest_rip = vmcs_read(GUEST_RIP);
161 	reason = vmcs_read(EXI_REASON) & 0xff;
162 	insn_len = vmcs_read(EXI_INST_LEN);
163 	switch (reason) {
164 	case VMX_PREEMPT:
165 		switch (vmx_get_test_stage()) {
166 		case 1:
167 		case 2:
168 			report("busy-wait for preemption timer",
169 			       ((rdtsc() - tsc_val) >> preempt_scale) >=
170 			       preempt_val);
171 			vmx_set_test_stage(3);
172 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
173 			return VMX_TEST_RESUME;
174 		case 3:
175 			guest_halted =
176 				(vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT);
177 			report("preemption timer during hlt",
178 			       ((rdtsc() - tsc_val) >> preempt_scale) >=
179 			       preempt_val && guest_halted);
180 			vmx_set_test_stage(4);
181 			vmcs_write(PIN_CONTROLS,
182 				   vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
183 			vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
184 			return VMX_TEST_RESUME;
185 		case 4:
186 			report("preemption timer with 0 value",
187 			       saved_rip == guest_rip);
188 			break;
189 		default:
190 			report("Invalid stage.", false);
191 			print_vmexit_info();
192 			break;
193 		}
194 		break;
195 	case VMX_VMCALL:
196 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
197 		switch (vmx_get_test_stage()) {
198 		case 0:
199 			report("Keep preemption value",
200 			       vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val);
201 			vmx_set_test_stage(1);
202 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
203 			ctrl_exit = (vmcs_read(EXI_CONTROLS) |
204 				EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr;
205 			vmcs_write(EXI_CONTROLS, ctrl_exit);
206 			return VMX_TEST_RESUME;
207 		case 1:
208 			report("Save preemption value",
209 			       vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val);
210 			return VMX_TEST_RESUME;
211 		case 2:
212 			report("busy-wait for preemption timer", 0);
213 			vmx_set_test_stage(3);
214 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
215 			return VMX_TEST_RESUME;
216 		case 3:
217 			report("preemption timer during hlt", 0);
218 			vmx_set_test_stage(4);
219 			/* fall through */
220 		case 4:
221 			vmcs_write(PIN_CONTROLS,
222 				   vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
223 			vmcs_write(PREEMPT_TIMER_VALUE, 0);
224 			saved_rip = guest_rip + insn_len;
225 			return VMX_TEST_RESUME;
226 		case 5:
227 			report("preemption timer with 0 value (vmcall stage 5)", 0);
228 			break;
229 		default:
230 			// Should not reach here
231 			report("unexpected stage, %d", false,
232 			       vmx_get_test_stage());
233 			print_vmexit_info();
234 			return VMX_TEST_VMEXIT;
235 		}
236 		break;
237 	default:
238 		report("Unknown exit reason, %ld", false, reason);
239 		print_vmexit_info();
240 	}
241 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
242 	return VMX_TEST_VMEXIT;
243 }
244 
245 static void msr_bmp_init(void)
246 {
247 	void *msr_bitmap;
248 	u32 ctrl_cpu0;
249 
250 	msr_bitmap = alloc_page();
251 	memset(msr_bitmap, 0x0, PAGE_SIZE);
252 	ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
253 	ctrl_cpu0 |= CPU_MSR_BITMAP;
254 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
255 	vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
256 }
257 
258 static void *get_msr_bitmap(void)
259 {
260 	void *msr_bitmap;
261 
262 	if (vmcs_read(CPU_EXEC_CTRL0) & CPU_MSR_BITMAP) {
263 		msr_bitmap = (void *)vmcs_read(MSR_BITMAP);
264 	} else {
265 		msr_bitmap = alloc_page();
266 		memset(msr_bitmap, 0xff, PAGE_SIZE);
267 		vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
268 		vmcs_set_bits(CPU_EXEC_CTRL0, CPU_MSR_BITMAP);
269 	}
270 
271 	return msr_bitmap;
272 }
273 
274 static void disable_intercept_for_x2apic_msrs(void)
275 {
276 	unsigned long *msr_bitmap = (unsigned long *)get_msr_bitmap();
277 	u32 msr;
278 
279 	for (msr = APIC_BASE_MSR;
280 		 msr < (APIC_BASE_MSR+0xff);
281 		 msr += BITS_PER_LONG) {
282 		unsigned int word = msr / BITS_PER_LONG;
283 
284 		msr_bitmap[word] = 0;
285 		msr_bitmap[word + (0x800 / sizeof(long))] = 0;
286 	}
287 }
288 
289 static int test_ctrl_pat_init(struct vmcs *vmcs)
290 {
291 	u64 ctrl_ent;
292 	u64 ctrl_exi;
293 
294 	msr_bmp_init();
295 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) &&
296 	    !(ctrl_exit_rev.clr & EXI_LOAD_PAT) &&
297 	    !(ctrl_enter_rev.clr & ENT_LOAD_PAT)) {
298 		printf("\tSave/load PAT is not supported\n");
299 		return 1;
300 	}
301 
302 	ctrl_ent = vmcs_read(ENT_CONTROLS);
303 	ctrl_exi = vmcs_read(EXI_CONTROLS);
304 	ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT;
305 	ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT);
306 	vmcs_write(ENT_CONTROLS, ctrl_ent);
307 	vmcs_write(EXI_CONTROLS, ctrl_exi);
308 	ia32_pat = rdmsr(MSR_IA32_CR_PAT);
309 	vmcs_write(GUEST_PAT, 0x0);
310 	vmcs_write(HOST_PAT, ia32_pat);
311 	return VMX_TEST_START;
312 }
313 
314 static void test_ctrl_pat_main(void)
315 {
316 	u64 guest_ia32_pat;
317 
318 	guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
319 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT))
320 		printf("\tENT_LOAD_PAT is not supported.\n");
321 	else {
322 		if (guest_ia32_pat != 0) {
323 			report("Entry load PAT", 0);
324 			return;
325 		}
326 	}
327 	wrmsr(MSR_IA32_CR_PAT, 0x6);
328 	vmcall();
329 	guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
330 	if (ctrl_enter_rev.clr & ENT_LOAD_PAT)
331 		report("Entry load PAT", guest_ia32_pat == ia32_pat);
332 }
333 
334 static int test_ctrl_pat_exit_handler(void)
335 {
336 	u64 guest_rip;
337 	ulong reason;
338 	u64 guest_pat;
339 
340 	guest_rip = vmcs_read(GUEST_RIP);
341 	reason = vmcs_read(EXI_REASON) & 0xff;
342 	switch (reason) {
343 	case VMX_VMCALL:
344 		guest_pat = vmcs_read(GUEST_PAT);
345 		if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) {
346 			printf("\tEXI_SAVE_PAT is not supported\n");
347 			vmcs_write(GUEST_PAT, 0x6);
348 		} else {
349 			report("Exit save PAT", guest_pat == 0x6);
350 		}
351 		if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT))
352 			printf("\tEXI_LOAD_PAT is not supported\n");
353 		else
354 			report("Exit load PAT", rdmsr(MSR_IA32_CR_PAT) == ia32_pat);
355 		vmcs_write(GUEST_PAT, ia32_pat);
356 		vmcs_write(GUEST_RIP, guest_rip + 3);
357 		return VMX_TEST_RESUME;
358 	default:
359 		printf("ERROR : Undefined exit reason, reason = %ld.\n", reason);
360 		break;
361 	}
362 	return VMX_TEST_VMEXIT;
363 }
364 
365 static int test_ctrl_efer_init(struct vmcs *vmcs)
366 {
367 	u64 ctrl_ent;
368 	u64 ctrl_exi;
369 
370 	msr_bmp_init();
371 	ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER;
372 	ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER;
373 	vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr);
374 	vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr);
375 	ia32_efer = rdmsr(MSR_EFER);
376 	vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX);
377 	vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX);
378 	return VMX_TEST_START;
379 }
380 
381 static void test_ctrl_efer_main(void)
382 {
383 	u64 guest_ia32_efer;
384 
385 	guest_ia32_efer = rdmsr(MSR_EFER);
386 	if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER))
387 		printf("\tENT_LOAD_EFER is not supported.\n");
388 	else {
389 		if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) {
390 			report("Entry load EFER", 0);
391 			return;
392 		}
393 	}
394 	wrmsr(MSR_EFER, ia32_efer);
395 	vmcall();
396 	guest_ia32_efer = rdmsr(MSR_EFER);
397 	if (ctrl_enter_rev.clr & ENT_LOAD_EFER)
398 		report("Entry load EFER", guest_ia32_efer == ia32_efer);
399 }
400 
401 static int test_ctrl_efer_exit_handler(void)
402 {
403 	u64 guest_rip;
404 	ulong reason;
405 	u64 guest_efer;
406 
407 	guest_rip = vmcs_read(GUEST_RIP);
408 	reason = vmcs_read(EXI_REASON) & 0xff;
409 	switch (reason) {
410 	case VMX_VMCALL:
411 		guest_efer = vmcs_read(GUEST_EFER);
412 		if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) {
413 			printf("\tEXI_SAVE_EFER is not supported\n");
414 			vmcs_write(GUEST_EFER, ia32_efer);
415 		} else {
416 			report("Exit save EFER", guest_efer == ia32_efer);
417 		}
418 		if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) {
419 			printf("\tEXI_LOAD_EFER is not supported\n");
420 			wrmsr(MSR_EFER, ia32_efer ^ EFER_NX);
421 		} else {
422 			report("Exit load EFER", rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX));
423 		}
424 		vmcs_write(GUEST_PAT, ia32_efer);
425 		vmcs_write(GUEST_RIP, guest_rip + 3);
426 		return VMX_TEST_RESUME;
427 	default:
428 		printf("ERROR : Undefined exit reason, reason = %ld.\n", reason);
429 		break;
430 	}
431 	return VMX_TEST_VMEXIT;
432 }
433 
434 u32 guest_cr0, guest_cr4;
435 
436 static void cr_shadowing_main(void)
437 {
438 	u32 cr0, cr4, tmp;
439 
440 	// Test read through
441 	vmx_set_test_stage(0);
442 	guest_cr0 = read_cr0();
443 	if (vmx_get_test_stage() == 1)
444 		report("Read through CR0", 0);
445 	else
446 		vmcall();
447 	vmx_set_test_stage(1);
448 	guest_cr4 = read_cr4();
449 	if (vmx_get_test_stage() == 2)
450 		report("Read through CR4", 0);
451 	else
452 		vmcall();
453 	// Test write through
454 	guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP);
455 	guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE);
456 	vmx_set_test_stage(2);
457 	write_cr0(guest_cr0);
458 	if (vmx_get_test_stage() == 3)
459 		report("Write throuth CR0", 0);
460 	else
461 		vmcall();
462 	vmx_set_test_stage(3);
463 	write_cr4(guest_cr4);
464 	if (vmx_get_test_stage() == 4)
465 		report("Write through CR4", 0);
466 	else
467 		vmcall();
468 	// Test read shadow
469 	vmx_set_test_stage(4);
470 	vmcall();
471 	cr0 = read_cr0();
472 	if (vmx_get_test_stage() != 5)
473 		report("Read shadowing CR0", cr0 == guest_cr0);
474 	vmx_set_test_stage(5);
475 	cr4 = read_cr4();
476 	if (vmx_get_test_stage() != 6)
477 		report("Read shadowing CR4", cr4 == guest_cr4);
478 	// Test write shadow (same value with shadow)
479 	vmx_set_test_stage(6);
480 	write_cr0(guest_cr0);
481 	if (vmx_get_test_stage() == 7)
482 		report("Write shadowing CR0 (same value with shadow)", 0);
483 	else
484 		vmcall();
485 	vmx_set_test_stage(7);
486 	write_cr4(guest_cr4);
487 	if (vmx_get_test_stage() == 8)
488 		report("Write shadowing CR4 (same value with shadow)", 0);
489 	else
490 		vmcall();
491 	// Test write shadow (different value)
492 	vmx_set_test_stage(8);
493 	tmp = guest_cr0 ^ X86_CR0_TS;
494 	asm volatile("mov %0, %%rsi\n\t"
495 		"mov %%rsi, %%cr0\n\t"
496 		::"m"(tmp)
497 		:"rsi", "memory", "cc");
498 	report("Write shadowing different X86_CR0_TS", vmx_get_test_stage() == 9);
499 	vmx_set_test_stage(9);
500 	tmp = guest_cr0 ^ X86_CR0_MP;
501 	asm volatile("mov %0, %%rsi\n\t"
502 		"mov %%rsi, %%cr0\n\t"
503 		::"m"(tmp)
504 		:"rsi", "memory", "cc");
505 	report("Write shadowing different X86_CR0_MP", vmx_get_test_stage() == 10);
506 	vmx_set_test_stage(10);
507 	tmp = guest_cr4 ^ X86_CR4_TSD;
508 	asm volatile("mov %0, %%rsi\n\t"
509 		"mov %%rsi, %%cr4\n\t"
510 		::"m"(tmp)
511 		:"rsi", "memory", "cc");
512 	report("Write shadowing different X86_CR4_TSD", vmx_get_test_stage() == 11);
513 	vmx_set_test_stage(11);
514 	tmp = guest_cr4 ^ X86_CR4_DE;
515 	asm volatile("mov %0, %%rsi\n\t"
516 		"mov %%rsi, %%cr4\n\t"
517 		::"m"(tmp)
518 		:"rsi", "memory", "cc");
519 	report("Write shadowing different X86_CR4_DE", vmx_get_test_stage() == 12);
520 }
521 
522 static int cr_shadowing_exit_handler(void)
523 {
524 	u64 guest_rip;
525 	ulong reason;
526 	u32 insn_len;
527 	u32 exit_qual;
528 
529 	guest_rip = vmcs_read(GUEST_RIP);
530 	reason = vmcs_read(EXI_REASON) & 0xff;
531 	insn_len = vmcs_read(EXI_INST_LEN);
532 	exit_qual = vmcs_read(EXI_QUALIFICATION);
533 	switch (reason) {
534 	case VMX_VMCALL:
535 		switch (vmx_get_test_stage()) {
536 		case 0:
537 			report("Read through CR0", guest_cr0 == vmcs_read(GUEST_CR0));
538 			break;
539 		case 1:
540 			report("Read through CR4", guest_cr4 == vmcs_read(GUEST_CR4));
541 			break;
542 		case 2:
543 			report("Write through CR0", guest_cr0 == vmcs_read(GUEST_CR0));
544 			break;
545 		case 3:
546 			report("Write through CR4", guest_cr4 == vmcs_read(GUEST_CR4));
547 			break;
548 		case 4:
549 			guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP);
550 			guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE);
551 			vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP);
552 			vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP));
553 			vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE);
554 			vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE));
555 			break;
556 		case 6:
557 			report("Write shadowing CR0 (same value)",
558 					guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP)));
559 			break;
560 		case 7:
561 			report("Write shadowing CR4 (same value)",
562 					guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE)));
563 			break;
564 		default:
565 			// Should not reach here
566 			report("unexpected stage, %d", false,
567 			       vmx_get_test_stage());
568 			print_vmexit_info();
569 			return VMX_TEST_VMEXIT;
570 		}
571 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
572 		return VMX_TEST_RESUME;
573 	case VMX_CR:
574 		switch (vmx_get_test_stage()) {
575 		case 4:
576 			report("Read shadowing CR0", 0);
577 			vmx_inc_test_stage();
578 			break;
579 		case 5:
580 			report("Read shadowing CR4", 0);
581 			vmx_inc_test_stage();
582 			break;
583 		case 6:
584 			report("Write shadowing CR0 (same value)", 0);
585 			vmx_inc_test_stage();
586 			break;
587 		case 7:
588 			report("Write shadowing CR4 (same value)", 0);
589 			vmx_inc_test_stage();
590 			break;
591 		case 8:
592 		case 9:
593 			// 0x600 encodes "mov %esi, %cr0"
594 			if (exit_qual == 0x600)
595 				vmx_inc_test_stage();
596 			break;
597 		case 10:
598 		case 11:
599 			// 0x604 encodes "mov %esi, %cr4"
600 			if (exit_qual == 0x604)
601 				vmx_inc_test_stage();
602 			break;
603 		default:
604 			// Should not reach here
605 			report("unexpected stage, %d", false,
606 			       vmx_get_test_stage());
607 			print_vmexit_info();
608 			return VMX_TEST_VMEXIT;
609 		}
610 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
611 		return VMX_TEST_RESUME;
612 	default:
613 		report("Unknown exit reason, %ld", false, reason);
614 		print_vmexit_info();
615 	}
616 	return VMX_TEST_VMEXIT;
617 }
618 
619 static int iobmp_init(struct vmcs *vmcs)
620 {
621 	u32 ctrl_cpu0;
622 
623 	io_bitmap_a = alloc_page();
624 	io_bitmap_b = alloc_page();
625 	memset(io_bitmap_a, 0x0, PAGE_SIZE);
626 	memset(io_bitmap_b, 0x0, PAGE_SIZE);
627 	ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
628 	ctrl_cpu0 |= CPU_IO_BITMAP;
629 	ctrl_cpu0 &= (~CPU_IO);
630 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
631 	vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a);
632 	vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b);
633 	return VMX_TEST_START;
634 }
635 
636 static void iobmp_main(void)
637 {
638 	// stage 0, test IO pass
639 	vmx_set_test_stage(0);
640 	inb(0x5000);
641 	outb(0x0, 0x5000);
642 	report("I/O bitmap - I/O pass", vmx_get_test_stage() == 0);
643 	// test IO width, in/out
644 	((u8 *)io_bitmap_a)[0] = 0xFF;
645 	vmx_set_test_stage(2);
646 	inb(0x0);
647 	report("I/O bitmap - trap in", vmx_get_test_stage() == 3);
648 	vmx_set_test_stage(3);
649 	outw(0x0, 0x0);
650 	report("I/O bitmap - trap out", vmx_get_test_stage() == 4);
651 	vmx_set_test_stage(4);
652 	inl(0x0);
653 	report("I/O bitmap - I/O width, long", vmx_get_test_stage() == 5);
654 	// test low/high IO port
655 	vmx_set_test_stage(5);
656 	((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8));
657 	inb(0x5000);
658 	report("I/O bitmap - I/O port, low part", vmx_get_test_stage() == 6);
659 	vmx_set_test_stage(6);
660 	((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8));
661 	inb(0x9000);
662 	report("I/O bitmap - I/O port, high part", vmx_get_test_stage() == 7);
663 	// test partial pass
664 	vmx_set_test_stage(7);
665 	inl(0x4FFF);
666 	report("I/O bitmap - partial pass", vmx_get_test_stage() == 8);
667 	// test overrun
668 	vmx_set_test_stage(8);
669 	memset(io_bitmap_a, 0x0, PAGE_SIZE);
670 	memset(io_bitmap_b, 0x0, PAGE_SIZE);
671 	inl(0xFFFF);
672 	report("I/O bitmap - overrun", vmx_get_test_stage() == 9);
673 	vmx_set_test_stage(9);
674 	vmcall();
675 	outb(0x0, 0x0);
676 	report("I/O bitmap - ignore unconditional exiting",
677 	       vmx_get_test_stage() == 9);
678 	vmx_set_test_stage(10);
679 	vmcall();
680 	outb(0x0, 0x0);
681 	report("I/O bitmap - unconditional exiting",
682 	       vmx_get_test_stage() == 11);
683 }
684 
685 static int iobmp_exit_handler(void)
686 {
687 	u64 guest_rip;
688 	ulong reason, exit_qual;
689 	u32 insn_len, ctrl_cpu0;
690 
691 	guest_rip = vmcs_read(GUEST_RIP);
692 	reason = vmcs_read(EXI_REASON) & 0xff;
693 	exit_qual = vmcs_read(EXI_QUALIFICATION);
694 	insn_len = vmcs_read(EXI_INST_LEN);
695 	switch (reason) {
696 	case VMX_IO:
697 		switch (vmx_get_test_stage()) {
698 		case 0:
699 		case 1:
700 			vmx_inc_test_stage();
701 			break;
702 		case 2:
703 			report("I/O bitmap - I/O width, byte",
704 					(exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE);
705 			report("I/O bitmap - I/O direction, in", exit_qual & VMX_IO_IN);
706 			vmx_inc_test_stage();
707 			break;
708 		case 3:
709 			report("I/O bitmap - I/O width, word",
710 					(exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD);
711 			report("I/O bitmap - I/O direction, out",
712 					!(exit_qual & VMX_IO_IN));
713 			vmx_inc_test_stage();
714 			break;
715 		case 4:
716 			report("I/O bitmap - I/O width, long",
717 					(exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG);
718 			vmx_inc_test_stage();
719 			break;
720 		case 5:
721 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000)
722 				vmx_inc_test_stage();
723 			break;
724 		case 6:
725 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000)
726 				vmx_inc_test_stage();
727 			break;
728 		case 7:
729 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF)
730 				vmx_inc_test_stage();
731 			break;
732 		case 8:
733 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF)
734 				vmx_inc_test_stage();
735 			break;
736 		case 9:
737 		case 10:
738 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
739 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO);
740 			vmx_inc_test_stage();
741 			break;
742 		default:
743 			// Should not reach here
744 			report("unexpected stage, %d", false,
745 			       vmx_get_test_stage());
746 			print_vmexit_info();
747 			return VMX_TEST_VMEXIT;
748 		}
749 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
750 		return VMX_TEST_RESUME;
751 	case VMX_VMCALL:
752 		switch (vmx_get_test_stage()) {
753 		case 9:
754 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
755 			ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP;
756 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
757 			break;
758 		case 10:
759 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
760 			ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO;
761 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
762 			break;
763 		default:
764 			// Should not reach here
765 			report("unexpected stage, %d", false,
766 			       vmx_get_test_stage());
767 			print_vmexit_info();
768 			return VMX_TEST_VMEXIT;
769 		}
770 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
771 		return VMX_TEST_RESUME;
772 	default:
773 		printf("guest_rip = %#lx\n", guest_rip);
774 		printf("\tERROR : Undefined exit reason, reason = %ld.\n", reason);
775 		break;
776 	}
777 	return VMX_TEST_VMEXIT;
778 }
779 
780 #define INSN_CPU0		0
781 #define INSN_CPU1		1
782 #define INSN_ALWAYS_TRAP	2
783 
784 #define FIELD_EXIT_QUAL		(1 << 0)
785 #define FIELD_INSN_INFO		(1 << 1)
786 
787 asm(
788 	"insn_hlt: hlt;ret\n\t"
789 	"insn_invlpg: invlpg 0x12345678;ret\n\t"
790 	"insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t"
791 	"insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t"
792 	"insn_rdtsc: rdtsc;ret\n\t"
793 	"insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t"
794 	"insn_cr3_store: mov %cr3,%rax;ret\n\t"
795 #ifdef __x86_64__
796 	"insn_cr8_load: xor %eax, %eax; mov %rax,%cr8;ret\n\t"
797 	"insn_cr8_store: mov %cr8,%rax;ret\n\t"
798 #endif
799 	"insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t"
800 	"insn_pause: pause;ret\n\t"
801 	"insn_wbinvd: wbinvd;ret\n\t"
802 	"insn_cpuid: mov $10, %eax; cpuid;ret\n\t"
803 	"insn_invd: invd;ret\n\t"
804 	"insn_sgdt: sgdt gdt64_desc;ret\n\t"
805 	"insn_lgdt: lgdt gdt64_desc;ret\n\t"
806 	"insn_sidt: sidt idt_descr;ret\n\t"
807 	"insn_lidt: lidt idt_descr;ret\n\t"
808 	"insn_sldt: sldt %ax;ret\n\t"
809 	"insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t"
810 	"insn_str: str %ax;ret\n\t"
811 	"insn_rdrand: rdrand %rax;ret\n\t"
812 	"insn_rdseed: rdseed %rax;ret\n\t"
813 );
814 extern void insn_hlt(void);
815 extern void insn_invlpg(void);
816 extern void insn_mwait(void);
817 extern void insn_rdpmc(void);
818 extern void insn_rdtsc(void);
819 extern void insn_cr3_load(void);
820 extern void insn_cr3_store(void);
821 #ifdef __x86_64__
822 extern void insn_cr8_load(void);
823 extern void insn_cr8_store(void);
824 #endif
825 extern void insn_monitor(void);
826 extern void insn_pause(void);
827 extern void insn_wbinvd(void);
828 extern void insn_sgdt(void);
829 extern void insn_lgdt(void);
830 extern void insn_sidt(void);
831 extern void insn_lidt(void);
832 extern void insn_sldt(void);
833 extern void insn_lldt(void);
834 extern void insn_str(void);
835 extern void insn_cpuid(void);
836 extern void insn_invd(void);
837 extern void insn_rdrand(void);
838 extern void insn_rdseed(void);
839 
840 u32 cur_insn;
841 u64 cr3;
842 
843 struct insn_table {
844 	const char *name;
845 	u32 flag;
846 	void (*insn_func)(void);
847 	u32 type;
848 	u32 reason;
849 	ulong exit_qual;
850 	u32 insn_info;
851 	// Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define
852 	// which field need to be tested, reason is always tested
853 	u32 test_field;
854 };
855 
856 /*
857  * Add more test cases of instruction intercept here. Elements in this
858  * table is:
859  *	name/control flag/insn function/type/exit reason/exit qulification/
860  *	instruction info/field to test
861  * The last field defines which fields (exit_qual and insn_info) need to be
862  * tested in exit handler. If set to 0, only "reason" is checked.
863  */
864 static struct insn_table insn_table[] = {
865 	// Flags for Primary Processor-Based VM-Execution Controls
866 	{"HLT",  CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0},
867 	{"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14,
868 		0x12345678, 0, FIELD_EXIT_QUAL},
869 	{"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0},
870 	{"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0},
871 	{"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0},
872 	{"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0,
873 		FIELD_EXIT_QUAL},
874 	{"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0,
875 		FIELD_EXIT_QUAL},
876 #ifdef __x86_64__
877 	{"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0,
878 		FIELD_EXIT_QUAL},
879 	{"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0,
880 		FIELD_EXIT_QUAL},
881 #endif
882 	{"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0},
883 	{"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0},
884 	// Flags for Secondary Processor-Based VM-Execution Controls
885 	{"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0},
886 	{"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0},
887 	{"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0},
888 	{"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0},
889 	{"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0},
890 	{"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0},
891 	{"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0},
892 	{"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0},
893 	/* LTR causes a #GP if done with a busy selector, so it is not tested.  */
894 	{"RDRAND", CPU_RDRAND, insn_rdrand, INSN_CPU1, VMX_RDRAND, 0, 0, 0},
895 	{"RDSEED", CPU_RDSEED, insn_rdseed, INSN_CPU1, VMX_RDSEED, 0, 0, 0},
896 	// Instructions always trap
897 	{"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0},
898 	{"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0},
899 	// Instructions never trap
900 	{NULL},
901 };
902 
903 static int insn_intercept_init(struct vmcs *vmcs)
904 {
905 	u32 ctrl_cpu;
906 
907 	ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY;
908 	ctrl_cpu &= ctrl_cpu_rev[0].clr;
909 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu);
910 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set);
911 	cr3 = read_cr3();
912 	return VMX_TEST_START;
913 }
914 
915 static void insn_intercept_main(void)
916 {
917 	for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
918 		vmx_set_test_stage(cur_insn * 2);
919 		if ((insn_table[cur_insn].type == INSN_CPU0 &&
920 		     !(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) ||
921 		    (insn_table[cur_insn].type == INSN_CPU1 &&
922 		     !(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) {
923 			printf("\tCPU_CTRL%d.CPU_%s is not supported.\n",
924 			       insn_table[cur_insn].type - INSN_CPU0,
925 			       insn_table[cur_insn].name);
926 			continue;
927 		}
928 
929 		if ((insn_table[cur_insn].type == INSN_CPU0 &&
930 		     !(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) ||
931 		    (insn_table[cur_insn].type == INSN_CPU1 &&
932 		     !(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) {
933 			/* skip hlt, it stalls the guest and is tested below */
934 			if (insn_table[cur_insn].insn_func != insn_hlt)
935 				insn_table[cur_insn].insn_func();
936 			report("execute %s", vmx_get_test_stage() == cur_insn * 2,
937 					insn_table[cur_insn].name);
938 		} else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP)
939 			printf("\tCPU_CTRL%d.CPU_%s always traps.\n",
940 			       insn_table[cur_insn].type - INSN_CPU0,
941 			       insn_table[cur_insn].name);
942 
943 		vmcall();
944 
945 		insn_table[cur_insn].insn_func();
946 		report("intercept %s", vmx_get_test_stage() == cur_insn * 2 + 1,
947 				insn_table[cur_insn].name);
948 
949 		vmx_set_test_stage(cur_insn * 2 + 1);
950 		vmcall();
951 	}
952 }
953 
954 static int insn_intercept_exit_handler(void)
955 {
956 	u64 guest_rip;
957 	u32 reason;
958 	ulong exit_qual;
959 	u32 insn_len;
960 	u32 insn_info;
961 	bool pass;
962 
963 	guest_rip = vmcs_read(GUEST_RIP);
964 	reason = vmcs_read(EXI_REASON) & 0xff;
965 	exit_qual = vmcs_read(EXI_QUALIFICATION);
966 	insn_len = vmcs_read(EXI_INST_LEN);
967 	insn_info = vmcs_read(EXI_INST_INFO);
968 
969 	if (reason == VMX_VMCALL) {
970 		u32 val = 0;
971 
972 		if (insn_table[cur_insn].type == INSN_CPU0)
973 			val = vmcs_read(CPU_EXEC_CTRL0);
974 		else if (insn_table[cur_insn].type == INSN_CPU1)
975 			val = vmcs_read(CPU_EXEC_CTRL1);
976 
977 		if (vmx_get_test_stage() & 1)
978 			val &= ~insn_table[cur_insn].flag;
979 		else
980 			val |= insn_table[cur_insn].flag;
981 
982 		if (insn_table[cur_insn].type == INSN_CPU0)
983 			vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set);
984 		else if (insn_table[cur_insn].type == INSN_CPU1)
985 			vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set);
986 	} else {
987 		pass = (cur_insn * 2 == vmx_get_test_stage()) &&
988 			insn_table[cur_insn].reason == reason;
989 		if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL &&
990 		    insn_table[cur_insn].exit_qual != exit_qual)
991 			pass = false;
992 		if (insn_table[cur_insn].test_field & FIELD_INSN_INFO &&
993 		    insn_table[cur_insn].insn_info != insn_info)
994 			pass = false;
995 		if (pass)
996 			vmx_inc_test_stage();
997 	}
998 	vmcs_write(GUEST_RIP, guest_rip + insn_len);
999 	return VMX_TEST_RESUME;
1000 }
1001 
1002 
1003 /* Enables EPT and sets up the identity map. */
1004 static int setup_ept(bool enable_ad)
1005 {
1006 	unsigned long end_of_memory;
1007 	u32 ctrl_cpu[2];
1008 
1009 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1010 	    !(ctrl_cpu_rev[1].clr & CPU_EPT)) {
1011 		printf("\tEPT is not supported");
1012 		return 1;
1013 	}
1014 
1015 
1016 	if (!(ept_vpid.val & EPT_CAP_UC) &&
1017 			!(ept_vpid.val & EPT_CAP_WB)) {
1018 		printf("\tEPT paging-structure memory type "
1019 				"UC&WB are not supported\n");
1020 		return 1;
1021 	}
1022 	if (ept_vpid.val & EPT_CAP_UC)
1023 		eptp = EPT_MEM_TYPE_UC;
1024 	else
1025 		eptp = EPT_MEM_TYPE_WB;
1026 	if (!(ept_vpid.val & EPT_CAP_PWL4)) {
1027 		printf("\tPWL4 is not supported\n");
1028 		return 1;
1029 	}
1030 	ctrl_cpu[0] = vmcs_read(CPU_EXEC_CTRL0);
1031 	ctrl_cpu[1] = vmcs_read(CPU_EXEC_CTRL1);
1032 	ctrl_cpu[0] = (ctrl_cpu[0] | CPU_SECONDARY)
1033 		& ctrl_cpu_rev[0].clr;
1034 	ctrl_cpu[1] = (ctrl_cpu[1] | CPU_EPT)
1035 		& ctrl_cpu_rev[1].clr;
1036 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu[0]);
1037 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu[1]);
1038 	eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT);
1039 	pml4 = alloc_page();
1040 	memset(pml4, 0, PAGE_SIZE);
1041 	eptp |= virt_to_phys(pml4);
1042 	if (enable_ad)
1043 		eptp |= EPTP_AD_FLAG;
1044 	vmcs_write(EPTP, eptp);
1045 	end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE);
1046 	if (end_of_memory < (1ul << 32))
1047 		end_of_memory = (1ul << 32);
1048 	/* Cannot use large EPT pages if we need to track EPT
1049 	 * accessed/dirty bits at 4K granularity.
1050 	 */
1051 	setup_ept_range(pml4, 0, end_of_memory, 0,
1052 			!enable_ad && ept_2m_supported(),
1053 			EPT_WA | EPT_RA | EPT_EA);
1054 	return 0;
1055 }
1056 
1057 static void ept_enable_ad_bits(void)
1058 {
1059 	eptp |= EPTP_AD_FLAG;
1060 	vmcs_write(EPTP, eptp);
1061 }
1062 
1063 static void ept_disable_ad_bits(void)
1064 {
1065 	eptp &= ~EPTP_AD_FLAG;
1066 	vmcs_write(EPTP, eptp);
1067 }
1068 
1069 static void ept_enable_ad_bits_or_skip_test(void)
1070 {
1071 	if (!ept_ad_bits_supported())
1072 		test_skip("EPT AD bits not supported.");
1073 	ept_enable_ad_bits();
1074 }
1075 
1076 static int apic_version;
1077 
1078 static int ept_init_common(bool have_ad)
1079 {
1080 	int ret;
1081 	struct pci_dev pcidev;
1082 
1083 	if (setup_ept(have_ad))
1084 		return VMX_TEST_EXIT;
1085 	data_page1 = alloc_page();
1086 	data_page2 = alloc_page();
1087 	memset(data_page1, 0x0, PAGE_SIZE);
1088 	memset(data_page2, 0x0, PAGE_SIZE);
1089 	*((u32 *)data_page1) = MAGIC_VAL_1;
1090 	*((u32 *)data_page2) = MAGIC_VAL_2;
1091 	install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2,
1092 			EPT_RA | EPT_WA | EPT_EA);
1093 
1094 	apic_version = apic_read(APIC_LVR);
1095 
1096 	ret = pci_find_dev(PCI_VENDOR_ID_REDHAT, PCI_DEVICE_ID_REDHAT_TEST);
1097 	if (ret != PCIDEVADDR_INVALID) {
1098 		pci_dev_init(&pcidev, ret);
1099 		pci_physaddr = pcidev.resource[PCI_TESTDEV_BAR_MEM];
1100 	}
1101 
1102 	return VMX_TEST_START;
1103 }
1104 
1105 static int ept_init(struct vmcs *vmcs)
1106 {
1107 	return ept_init_common(false);
1108 }
1109 
1110 static void ept_common(void)
1111 {
1112 	vmx_set_test_stage(0);
1113 	if (*((u32 *)data_page2) != MAGIC_VAL_1 ||
1114 			*((u32 *)data_page1) != MAGIC_VAL_1)
1115 		report("EPT basic framework - read", 0);
1116 	else {
1117 		*((u32 *)data_page2) = MAGIC_VAL_3;
1118 		vmcall();
1119 		if (vmx_get_test_stage() == 1) {
1120 			if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
1121 					*((u32 *)data_page2) == MAGIC_VAL_2)
1122 				report("EPT basic framework", 1);
1123 			else
1124 				report("EPT basic framework - remap", 1);
1125 		}
1126 	}
1127 	// Test EPT Misconfigurations
1128 	vmx_set_test_stage(1);
1129 	vmcall();
1130 	*((u32 *)data_page1) = MAGIC_VAL_1;
1131 	if (vmx_get_test_stage() != 2) {
1132 		report("EPT misconfigurations", 0);
1133 		goto t1;
1134 	}
1135 	vmx_set_test_stage(2);
1136 	vmcall();
1137 	*((u32 *)data_page1) = MAGIC_VAL_1;
1138 	report("EPT misconfigurations", vmx_get_test_stage() == 3);
1139 t1:
1140 	// Test EPT violation
1141 	vmx_set_test_stage(3);
1142 	vmcall();
1143 	*((u32 *)data_page1) = MAGIC_VAL_1;
1144 	report("EPT violation - page permission", vmx_get_test_stage() == 4);
1145 	// Violation caused by EPT paging structure
1146 	vmx_set_test_stage(4);
1147 	vmcall();
1148 	*((u32 *)data_page1) = MAGIC_VAL_2;
1149 	report("EPT violation - paging structure", vmx_get_test_stage() == 5);
1150 
1151 	// MMIO Read/Write
1152 	vmx_set_test_stage(5);
1153 	vmcall();
1154 
1155 	*(u32 volatile *)pci_physaddr;
1156 	report("MMIO EPT violation - read", vmx_get_test_stage() == 6);
1157 
1158 	*(u32 volatile *)pci_physaddr = MAGIC_VAL_1;
1159 	report("MMIO EPT violation - write", vmx_get_test_stage() == 7);
1160 }
1161 
1162 static void ept_main(void)
1163 {
1164 	ept_common();
1165 
1166 	// Test EPT access to L1 MMIO
1167 	vmx_set_test_stage(7);
1168 	report("EPT - MMIO access", *((u32 *)0xfee00030UL) == apic_version);
1169 
1170 	// Test invalid operand for INVEPT
1171 	vmcall();
1172 	report("EPT - unsupported INVEPT", vmx_get_test_stage() == 8);
1173 }
1174 
1175 static bool invept_test(int type, u64 eptp)
1176 {
1177 	bool ret, supported;
1178 
1179 	supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type);
1180 	ret = invept(type, eptp);
1181 
1182 	if (ret == !supported)
1183 		return false;
1184 
1185 	if (!supported)
1186 		printf("WARNING: unsupported invept passed!\n");
1187 	else
1188 		printf("WARNING: invept failed!\n");
1189 
1190 	return true;
1191 }
1192 
1193 static int pml_exit_handler(void)
1194 {
1195 	u16 index, count;
1196 	ulong reason = vmcs_read(EXI_REASON) & 0xff;
1197 	u64 *pmlbuf = pml_log;
1198 	u64 guest_rip = vmcs_read(GUEST_RIP);;
1199 	u64 guest_cr3 = vmcs_read(GUEST_CR3);
1200 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1201 
1202 	switch (reason) {
1203 	case VMX_VMCALL:
1204 		switch (vmx_get_test_stage()) {
1205 		case 0:
1206 			index = vmcs_read(GUEST_PML_INDEX);
1207 			for (count = index + 1; count < PML_INDEX; count++) {
1208 				if (pmlbuf[count] == (u64)data_page2) {
1209 					vmx_inc_test_stage();
1210 					clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1211 					break;
1212 				}
1213 			}
1214 			break;
1215 		case 1:
1216 			index = vmcs_read(GUEST_PML_INDEX);
1217 			/* Keep clearing the dirty bit till a overflow */
1218 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1219 			break;
1220 		default:
1221 			report("unexpected stage, %d.", false,
1222 			       vmx_get_test_stage());
1223 			print_vmexit_info();
1224 			return VMX_TEST_VMEXIT;
1225 		}
1226 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1227 		return VMX_TEST_RESUME;
1228 	case VMX_PML_FULL:
1229 		vmx_inc_test_stage();
1230 		vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
1231 		return VMX_TEST_RESUME;
1232 	default:
1233 		report("Unknown exit reason, %ld", false, reason);
1234 		print_vmexit_info();
1235 	}
1236 	return VMX_TEST_VMEXIT;
1237 }
1238 
1239 static int ept_exit_handler_common(bool have_ad)
1240 {
1241 	u64 guest_rip;
1242 	u64 guest_cr3;
1243 	ulong reason;
1244 	u32 insn_len;
1245 	u32 exit_qual;
1246 	static unsigned long data_page1_pte, data_page1_pte_pte, memaddr_pte;
1247 
1248 	guest_rip = vmcs_read(GUEST_RIP);
1249 	guest_cr3 = vmcs_read(GUEST_CR3);
1250 	reason = vmcs_read(EXI_REASON) & 0xff;
1251 	insn_len = vmcs_read(EXI_INST_LEN);
1252 	exit_qual = vmcs_read(EXI_QUALIFICATION);
1253 	switch (reason) {
1254 	case VMX_VMCALL:
1255 		switch (vmx_get_test_stage()) {
1256 		case 0:
1257 			check_ept_ad(pml4, guest_cr3,
1258 				     (unsigned long)data_page1,
1259 				     have_ad ? EPT_ACCESS_FLAG : 0,
1260 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1261 			check_ept_ad(pml4, guest_cr3,
1262 				     (unsigned long)data_page2,
1263 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0,
1264 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1265 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1266 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1267 			if (have_ad)
1268 				ept_sync(INVEPT_SINGLE, eptp);;
1269 			if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
1270 					*((u32 *)data_page2) == MAGIC_VAL_2) {
1271 				vmx_inc_test_stage();
1272 				install_ept(pml4, (unsigned long)data_page2,
1273 						(unsigned long)data_page2,
1274 						EPT_RA | EPT_WA | EPT_EA);
1275 			} else
1276 				report("EPT basic framework - write", 0);
1277 			break;
1278 		case 1:
1279 			install_ept(pml4, (unsigned long)data_page1,
1280  				(unsigned long)data_page1, EPT_WA);
1281 			ept_sync(INVEPT_SINGLE, eptp);
1282 			break;
1283 		case 2:
1284 			install_ept(pml4, (unsigned long)data_page1,
1285  				(unsigned long)data_page1,
1286  				EPT_RA | EPT_WA | EPT_EA |
1287  				(2 << EPT_MEM_TYPE_SHIFT));
1288 			ept_sync(INVEPT_SINGLE, eptp);
1289 			break;
1290 		case 3:
1291 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1292 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1,
1293 						1, &data_page1_pte));
1294 			set_ept_pte(pml4, (unsigned long)data_page1,
1295 				1, data_page1_pte & ~EPT_PRESENT);
1296 			ept_sync(INVEPT_SINGLE, eptp);
1297 			break;
1298 		case 4:
1299 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1,
1300 						2, &data_page1_pte));
1301 			data_page1_pte &= PAGE_MASK;
1302 			TEST_ASSERT(get_ept_pte(pml4, data_page1_pte,
1303 						2, &data_page1_pte_pte));
1304 			set_ept_pte(pml4, data_page1_pte, 2,
1305 				data_page1_pte_pte & ~EPT_PRESENT);
1306 			ept_sync(INVEPT_SINGLE, eptp);
1307 			break;
1308 		case 5:
1309 			install_ept(pml4, (unsigned long)pci_physaddr,
1310 				(unsigned long)pci_physaddr, 0);
1311 			ept_sync(INVEPT_SINGLE, eptp);
1312 			break;
1313 		case 7:
1314 			if (!invept_test(0, eptp))
1315 				vmx_inc_test_stage();
1316 			break;
1317 		// Should not reach here
1318 		default:
1319 			report("ERROR - unexpected stage, %d.", false,
1320 			       vmx_get_test_stage());
1321 			print_vmexit_info();
1322 			return VMX_TEST_VMEXIT;
1323 		}
1324 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1325 		return VMX_TEST_RESUME;
1326 	case VMX_EPT_MISCONFIG:
1327 		switch (vmx_get_test_stage()) {
1328 		case 1:
1329 		case 2:
1330 			vmx_inc_test_stage();
1331 			install_ept(pml4, (unsigned long)data_page1,
1332  				(unsigned long)data_page1,
1333  				EPT_RA | EPT_WA | EPT_EA);
1334 			ept_sync(INVEPT_SINGLE, eptp);
1335 			break;
1336 		// Should not reach here
1337 		default:
1338 			report("ERROR - unexpected stage, %d.", false,
1339 			       vmx_get_test_stage());
1340 			print_vmexit_info();
1341 			return VMX_TEST_VMEXIT;
1342 		}
1343 		return VMX_TEST_RESUME;
1344 	case VMX_EPT_VIOLATION:
1345 		switch(vmx_get_test_stage()) {
1346 		case 3:
1347 			check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
1348 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1349 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1350 			if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD |
1351 					EPT_VLT_PADDR))
1352 				vmx_inc_test_stage();
1353 			set_ept_pte(pml4, (unsigned long)data_page1,
1354 				1, data_page1_pte | (EPT_PRESENT));
1355 			ept_sync(INVEPT_SINGLE, eptp);
1356 			break;
1357 		case 4:
1358 			check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
1359 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1360 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1361 			if (exit_qual == (EPT_VLT_RD |
1362 					  (have_ad ? EPT_VLT_WR : 0) |
1363 					  EPT_VLT_LADDR_VLD))
1364 				vmx_inc_test_stage();
1365 			set_ept_pte(pml4, data_page1_pte, 2,
1366 				data_page1_pte_pte | (EPT_PRESENT));
1367 			ept_sync(INVEPT_SINGLE, eptp);
1368 			break;
1369 		case 5:
1370 			if (exit_qual & EPT_VLT_RD)
1371 				vmx_inc_test_stage();
1372 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr,
1373 						1, &memaddr_pte));
1374 			set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA);
1375 			ept_sync(INVEPT_SINGLE, eptp);
1376 			break;
1377 		case 6:
1378 			if (exit_qual & EPT_VLT_WR)
1379 				vmx_inc_test_stage();
1380 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr,
1381 						1, &memaddr_pte));
1382 			set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA | EPT_WA);
1383 			ept_sync(INVEPT_SINGLE, eptp);
1384 			break;
1385 		default:
1386 			// Should not reach here
1387 			report("ERROR : unexpected stage, %d", false,
1388 			       vmx_get_test_stage());
1389 			print_vmexit_info();
1390 			return VMX_TEST_VMEXIT;
1391 		}
1392 		return VMX_TEST_RESUME;
1393 	default:
1394 		report("Unknown exit reason, %ld", false, reason);
1395 		print_vmexit_info();
1396 	}
1397 	return VMX_TEST_VMEXIT;
1398 }
1399 
1400 static int ept_exit_handler(void)
1401 {
1402 	return ept_exit_handler_common(false);
1403 }
1404 
1405 static int eptad_init(struct vmcs *vmcs)
1406 {
1407 	int r = ept_init_common(true);
1408 
1409 	if (r == VMX_TEST_EXIT)
1410 		return r;
1411 
1412 	if ((rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & EPT_CAP_AD_FLAG) == 0) {
1413 		printf("\tEPT A/D bits are not supported");
1414 		return VMX_TEST_EXIT;
1415 	}
1416 
1417 	return r;
1418 }
1419 
1420 static int pml_init(struct vmcs *vmcs)
1421 {
1422 	u32 ctrl_cpu;
1423 	int r = eptad_init(vmcs);
1424 
1425 	if (r == VMX_TEST_EXIT)
1426 		return r;
1427 
1428 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1429 		!(ctrl_cpu_rev[1].clr & CPU_PML)) {
1430 		printf("\tPML is not supported");
1431 		return VMX_TEST_EXIT;
1432 	}
1433 
1434 	pml_log = alloc_page();
1435 	memset(pml_log, 0x0, PAGE_SIZE);
1436 	vmcs_write(PMLADDR, (u64)pml_log);
1437 	vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
1438 
1439 	ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML;
1440 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu);
1441 
1442 	return VMX_TEST_START;
1443 }
1444 
1445 static void pml_main(void)
1446 {
1447 	int count = 0;
1448 
1449 	vmx_set_test_stage(0);
1450 	*((u32 *)data_page2) = 0x1;
1451 	vmcall();
1452 	report("PML - Dirty GPA Logging", vmx_get_test_stage() == 1);
1453 
1454 	while (vmx_get_test_stage() == 1) {
1455 		vmcall();
1456 		*((u32 *)data_page2) = 0x1;
1457 		if (count++ > PML_INDEX)
1458 			break;
1459 	}
1460 	report("PML Full Event", vmx_get_test_stage() == 2);
1461 }
1462 
1463 static void eptad_main(void)
1464 {
1465 	ept_common();
1466 }
1467 
1468 static int eptad_exit_handler(void)
1469 {
1470 	return ept_exit_handler_common(true);
1471 }
1472 
1473 static bool invvpid_test(int type, u16 vpid)
1474 {
1475 	bool ret, supported;
1476 
1477 	supported = ept_vpid.val &
1478 		(VPID_CAP_INVVPID_ADDR >> INVVPID_ADDR << type);
1479 	ret = invvpid(type, vpid, 0);
1480 
1481 	if (ret == !supported)
1482 		return false;
1483 
1484 	if (!supported)
1485 		printf("WARNING: unsupported invvpid passed!\n");
1486 	else
1487 		printf("WARNING: invvpid failed!\n");
1488 
1489 	return true;
1490 }
1491 
1492 static int vpid_init(struct vmcs *vmcs)
1493 {
1494 	u32 ctrl_cpu1;
1495 
1496 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1497 		!(ctrl_cpu_rev[1].clr & CPU_VPID)) {
1498 		printf("\tVPID is not supported");
1499 		return VMX_TEST_EXIT;
1500 	}
1501 
1502 	ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
1503 	ctrl_cpu1 |= CPU_VPID;
1504 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
1505 	return VMX_TEST_START;
1506 }
1507 
1508 static void vpid_main(void)
1509 {
1510 	vmx_set_test_stage(0);
1511 	vmcall();
1512 	report("INVVPID SINGLE ADDRESS", vmx_get_test_stage() == 1);
1513 	vmx_set_test_stage(2);
1514 	vmcall();
1515 	report("INVVPID SINGLE", vmx_get_test_stage() == 3);
1516 	vmx_set_test_stage(4);
1517 	vmcall();
1518 	report("INVVPID ALL", vmx_get_test_stage() == 5);
1519 }
1520 
1521 static int vpid_exit_handler(void)
1522 {
1523 	u64 guest_rip;
1524 	ulong reason;
1525 	u32 insn_len;
1526 
1527 	guest_rip = vmcs_read(GUEST_RIP);
1528 	reason = vmcs_read(EXI_REASON) & 0xff;
1529 	insn_len = vmcs_read(EXI_INST_LEN);
1530 
1531 	switch (reason) {
1532 	case VMX_VMCALL:
1533 		switch(vmx_get_test_stage()) {
1534 		case 0:
1535 			if (!invvpid_test(INVVPID_ADDR, 1))
1536 				vmx_inc_test_stage();
1537 			break;
1538 		case 2:
1539 			if (!invvpid_test(INVVPID_CONTEXT_GLOBAL, 1))
1540 				vmx_inc_test_stage();
1541 			break;
1542 		case 4:
1543 			if (!invvpid_test(INVVPID_ALL, 1))
1544 				vmx_inc_test_stage();
1545 			break;
1546 		default:
1547 			report("ERROR: unexpected stage, %d", false,
1548 					vmx_get_test_stage());
1549 			print_vmexit_info();
1550 			return VMX_TEST_VMEXIT;
1551 		}
1552 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1553 		return VMX_TEST_RESUME;
1554 	default:
1555 		report("Unknown exit reason, %ld", false, reason);
1556 		print_vmexit_info();
1557 	}
1558 	return VMX_TEST_VMEXIT;
1559 }
1560 
1561 #define TIMER_VECTOR	222
1562 
1563 static volatile bool timer_fired;
1564 
1565 static void timer_isr(isr_regs_t *regs)
1566 {
1567 	timer_fired = true;
1568 	apic_write(APIC_EOI, 0);
1569 }
1570 
1571 static int interrupt_init(struct vmcs *vmcs)
1572 {
1573 	msr_bmp_init();
1574 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
1575 	handle_irq(TIMER_VECTOR, timer_isr);
1576 	return VMX_TEST_START;
1577 }
1578 
1579 static void interrupt_main(void)
1580 {
1581 	long long start, loops;
1582 
1583 	vmx_set_test_stage(0);
1584 
1585 	apic_write(APIC_LVTT, TIMER_VECTOR);
1586 	irq_enable();
1587 
1588 	apic_write(APIC_TMICT, 1);
1589 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1590 		asm volatile ("nop");
1591 	report("direct interrupt while running guest", timer_fired);
1592 
1593 	apic_write(APIC_TMICT, 0);
1594 	irq_disable();
1595 	vmcall();
1596 	timer_fired = false;
1597 	apic_write(APIC_TMICT, 1);
1598 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1599 		asm volatile ("nop");
1600 	report("intercepted interrupt while running guest", timer_fired);
1601 
1602 	irq_enable();
1603 	apic_write(APIC_TMICT, 0);
1604 	irq_disable();
1605 	vmcall();
1606 	timer_fired = false;
1607 	start = rdtsc();
1608 	apic_write(APIC_TMICT, 1000000);
1609 
1610 	asm volatile ("sti; hlt");
1611 
1612 	report("direct interrupt + hlt",
1613 	       rdtsc() - start > 1000000 && timer_fired);
1614 
1615 	apic_write(APIC_TMICT, 0);
1616 	irq_disable();
1617 	vmcall();
1618 	timer_fired = false;
1619 	start = rdtsc();
1620 	apic_write(APIC_TMICT, 1000000);
1621 
1622 	asm volatile ("sti; hlt");
1623 
1624 	report("intercepted interrupt + hlt",
1625 	       rdtsc() - start > 10000 && timer_fired);
1626 
1627 	apic_write(APIC_TMICT, 0);
1628 	irq_disable();
1629 	vmcall();
1630 	timer_fired = false;
1631 	start = rdtsc();
1632 	apic_write(APIC_TMICT, 1000000);
1633 
1634 	irq_enable();
1635 	asm volatile ("nop");
1636 	vmcall();
1637 
1638 	report("direct interrupt + activity state hlt",
1639 	       rdtsc() - start > 10000 && timer_fired);
1640 
1641 	apic_write(APIC_TMICT, 0);
1642 	irq_disable();
1643 	vmcall();
1644 	timer_fired = false;
1645 	start = rdtsc();
1646 	apic_write(APIC_TMICT, 1000000);
1647 
1648 	irq_enable();
1649 	asm volatile ("nop");
1650 	vmcall();
1651 
1652 	report("intercepted interrupt + activity state hlt",
1653 	       rdtsc() - start > 10000 && timer_fired);
1654 
1655 	apic_write(APIC_TMICT, 0);
1656 	irq_disable();
1657 	vmx_set_test_stage(7);
1658 	vmcall();
1659 	timer_fired = false;
1660 	apic_write(APIC_TMICT, 1);
1661 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1662 		asm volatile ("nop");
1663 	report("running a guest with interrupt acknowledgement set", timer_fired);
1664 
1665 	apic_write(APIC_TMICT, 0);
1666 	irq_enable();
1667 	timer_fired = false;
1668 	vmcall();
1669 	report("Inject an event to a halted guest", timer_fired);
1670 }
1671 
1672 static int interrupt_exit_handler(void)
1673 {
1674 	u64 guest_rip = vmcs_read(GUEST_RIP);
1675 	ulong reason = vmcs_read(EXI_REASON) & 0xff;
1676 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1677 
1678 	switch (reason) {
1679 	case VMX_VMCALL:
1680 		switch (vmx_get_test_stage()) {
1681 		case 0:
1682 		case 2:
1683 		case 5:
1684 			vmcs_write(PIN_CONTROLS,
1685 				   vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
1686 			break;
1687 		case 7:
1688 			vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA);
1689 			vmcs_write(PIN_CONTROLS,
1690 				   vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
1691 			break;
1692 		case 1:
1693 		case 3:
1694 			vmcs_write(PIN_CONTROLS,
1695 				   vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
1696 			break;
1697 		case 4:
1698 		case 6:
1699 			vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
1700 			break;
1701 
1702 		case 8:
1703 			vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
1704 			vmcs_write(ENT_INTR_INFO,
1705 				   TIMER_VECTOR |
1706 				   (VMX_INTR_TYPE_EXT_INTR << INTR_INFO_INTR_TYPE_SHIFT) |
1707 				   INTR_INFO_VALID_MASK);
1708 			break;
1709 		}
1710 		vmx_inc_test_stage();
1711 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1712 		return VMX_TEST_RESUME;
1713 	case VMX_EXTINT:
1714 		if (vmcs_read(EXI_CONTROLS) & EXI_INTA) {
1715 			int vector = vmcs_read(EXI_INTR_INFO) & 0xff;
1716 			handle_external_interrupt(vector);
1717 		} else {
1718 			irq_enable();
1719 			asm volatile ("nop");
1720 			irq_disable();
1721 		}
1722 		if (vmx_get_test_stage() >= 2)
1723 			vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
1724 		return VMX_TEST_RESUME;
1725 	default:
1726 		report("Unknown exit reason, %ld", false, reason);
1727 		print_vmexit_info();
1728 	}
1729 
1730 	return VMX_TEST_VMEXIT;
1731 }
1732 
1733 static int dbgctls_init(struct vmcs *vmcs)
1734 {
1735 	u64 dr7 = 0x402;
1736 	u64 zero = 0;
1737 
1738 	msr_bmp_init();
1739 	asm volatile(
1740 		"mov %0,%%dr0\n\t"
1741 		"mov %0,%%dr1\n\t"
1742 		"mov %0,%%dr2\n\t"
1743 		"mov %1,%%dr7\n\t"
1744 		: : "r" (zero), "r" (dr7));
1745 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
1746 	vmcs_write(GUEST_DR7, 0x404);
1747 	vmcs_write(GUEST_DEBUGCTL, 0x2);
1748 
1749 	vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
1750 	vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS);
1751 
1752 	return VMX_TEST_START;
1753 }
1754 
1755 static void dbgctls_main(void)
1756 {
1757 	u64 dr7, debugctl;
1758 
1759 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1760 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1761 	/* Commented out: KVM does not support DEBUGCTL so far */
1762 	(void)debugctl;
1763 	report("Load debug controls", dr7 == 0x404 /* && debugctl == 0x2 */);
1764 
1765 	dr7 = 0x408;
1766 	asm volatile("mov %0,%%dr7" : : "r" (dr7));
1767 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
1768 
1769 	vmx_set_test_stage(0);
1770 	vmcall();
1771 	report("Save debug controls", vmx_get_test_stage() == 1);
1772 
1773 	if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS ||
1774 	    ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) {
1775 		printf("\tDebug controls are always loaded/saved\n");
1776 		return;
1777 	}
1778 	vmx_set_test_stage(2);
1779 	vmcall();
1780 
1781 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1782 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1783 	/* Commented out: KVM does not support DEBUGCTL so far */
1784 	(void)debugctl;
1785 	report("Guest=host debug controls", dr7 == 0x402 /* && debugctl == 0x1 */);
1786 
1787 	dr7 = 0x408;
1788 	asm volatile("mov %0,%%dr7" : : "r" (dr7));
1789 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
1790 
1791 	vmx_set_test_stage(3);
1792 	vmcall();
1793 	report("Don't save debug controls", vmx_get_test_stage() == 4);
1794 }
1795 
1796 static int dbgctls_exit_handler(void)
1797 {
1798 	unsigned int reason = vmcs_read(EXI_REASON) & 0xff;
1799 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1800 	u64 guest_rip = vmcs_read(GUEST_RIP);
1801 	u64 dr7, debugctl;
1802 
1803 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1804 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1805 
1806 	switch (reason) {
1807 	case VMX_VMCALL:
1808 		switch (vmx_get_test_stage()) {
1809 		case 0:
1810 			if (dr7 == 0x400 && debugctl == 0 &&
1811 			    vmcs_read(GUEST_DR7) == 0x408 /* &&
1812 			    Commented out: KVM does not support DEBUGCTL so far
1813 			    vmcs_read(GUEST_DEBUGCTL) == 0x3 */)
1814 				vmx_inc_test_stage();
1815 			break;
1816 		case 2:
1817 			dr7 = 0x402;
1818 			asm volatile("mov %0,%%dr7" : : "r" (dr7));
1819 			wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
1820 			vmcs_write(GUEST_DR7, 0x404);
1821 			vmcs_write(GUEST_DEBUGCTL, 0x2);
1822 
1823 			vmcs_write(ENT_CONTROLS,
1824 				vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS);
1825 			vmcs_write(EXI_CONTROLS,
1826 				vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS);
1827 			break;
1828 		case 3:
1829 			if (dr7 == 0x400 && debugctl == 0 &&
1830 			    vmcs_read(GUEST_DR7) == 0x404 /* &&
1831 			    Commented out: KVM does not support DEBUGCTL so far
1832 			    vmcs_read(GUEST_DEBUGCTL) == 0x2 */)
1833 				vmx_inc_test_stage();
1834 			break;
1835 		}
1836 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1837 		return VMX_TEST_RESUME;
1838 	default:
1839 		report("Unknown exit reason, %d", false, reason);
1840 		print_vmexit_info();
1841 	}
1842 	return VMX_TEST_VMEXIT;
1843 }
1844 
1845 struct vmx_msr_entry {
1846 	u32 index;
1847 	u32 reserved;
1848 	u64 value;
1849 } __attribute__((packed));
1850 
1851 #define MSR_MAGIC 0x31415926
1852 struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load;
1853 
1854 static int msr_switch_init(struct vmcs *vmcs)
1855 {
1856 	msr_bmp_init();
1857 	exit_msr_store = alloc_page();
1858 	exit_msr_load = alloc_page();
1859 	entry_msr_load = alloc_page();
1860 	memset(exit_msr_store, 0, PAGE_SIZE);
1861 	memset(exit_msr_load, 0, PAGE_SIZE);
1862 	memset(entry_msr_load, 0, PAGE_SIZE);
1863 	entry_msr_load[0].index = MSR_KERNEL_GS_BASE;
1864 	entry_msr_load[0].value = MSR_MAGIC;
1865 
1866 	vmx_set_test_stage(1);
1867 	vmcs_write(ENT_MSR_LD_CNT, 1);
1868 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load);
1869 	vmcs_write(EXI_MSR_ST_CNT, 1);
1870 	vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store);
1871 	vmcs_write(EXI_MSR_LD_CNT, 1);
1872 	vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load);
1873 	return VMX_TEST_START;
1874 }
1875 
1876 static void msr_switch_main(void)
1877 {
1878 	if (vmx_get_test_stage() == 1) {
1879 		report("VM entry MSR load",
1880 			rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC);
1881 		vmx_set_test_stage(2);
1882 		wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1);
1883 		exit_msr_store[0].index = MSR_KERNEL_GS_BASE;
1884 		exit_msr_load[0].index = MSR_KERNEL_GS_BASE;
1885 		exit_msr_load[0].value = MSR_MAGIC + 2;
1886 	}
1887 	vmcall();
1888 }
1889 
1890 static int msr_switch_exit_handler(void)
1891 {
1892 	ulong reason;
1893 
1894 	reason = vmcs_read(EXI_REASON);
1895 	if (reason == VMX_VMCALL && vmx_get_test_stage() == 2) {
1896 		report("VM exit MSR store",
1897 			exit_msr_store[0].value == MSR_MAGIC + 1);
1898 		report("VM exit MSR load",
1899 			rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2);
1900 		vmx_set_test_stage(3);
1901 		entry_msr_load[0].index = MSR_FS_BASE;
1902 		return VMX_TEST_RESUME;
1903 	}
1904 	printf("ERROR %s: unexpected stage=%u or reason=%lu\n",
1905 		__func__, vmx_get_test_stage(), reason);
1906 	return VMX_TEST_EXIT;
1907 }
1908 
1909 static int msr_switch_entry_failure(struct vmentry_failure *failure)
1910 {
1911 	ulong reason;
1912 
1913 	if (failure->early) {
1914 		printf("ERROR %s: early exit\n", __func__);
1915 		return VMX_TEST_EXIT;
1916 	}
1917 
1918 	reason = vmcs_read(EXI_REASON);
1919 	if (reason == (VMX_ENTRY_FAILURE | VMX_FAIL_MSR) &&
1920 	    vmx_get_test_stage() == 3) {
1921 		report("VM entry MSR load: try to load FS_BASE",
1922 			vmcs_read(EXI_QUALIFICATION) == 1);
1923 		return VMX_TEST_VMEXIT;
1924 	}
1925 	printf("ERROR %s: unexpected stage=%u or reason=%lu\n",
1926 		__func__, vmx_get_test_stage(), reason);
1927 	return VMX_TEST_EXIT;
1928 }
1929 
1930 static int vmmcall_init(struct vmcs *vmcs)
1931 {
1932 	vmcs_write(EXC_BITMAP, 1 << UD_VECTOR);
1933 	return VMX_TEST_START;
1934 }
1935 
1936 static void vmmcall_main(void)
1937 {
1938 	asm volatile(
1939 		"mov $0xABCD, %%rax\n\t"
1940 		"vmmcall\n\t"
1941 		::: "rax");
1942 
1943 	report("VMMCALL", 0);
1944 }
1945 
1946 static int vmmcall_exit_handler(void)
1947 {
1948 	ulong reason;
1949 
1950 	reason = vmcs_read(EXI_REASON);
1951 	switch (reason) {
1952 	case VMX_VMCALL:
1953 		printf("here\n");
1954 		report("VMMCALL triggers #UD", 0);
1955 		break;
1956 	case VMX_EXC_NMI:
1957 		report("VMMCALL triggers #UD",
1958 		       (vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR);
1959 		break;
1960 	default:
1961 		report("Unknown exit reason, %ld", false, reason);
1962 		print_vmexit_info();
1963 	}
1964 
1965 	return VMX_TEST_VMEXIT;
1966 }
1967 
1968 static int disable_rdtscp_init(struct vmcs *vmcs)
1969 {
1970 	u32 ctrl_cpu1;
1971 
1972 	if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) {
1973 		ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
1974 		ctrl_cpu1 &= ~CPU_RDTSCP;
1975 		vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
1976 	}
1977 
1978 	return VMX_TEST_START;
1979 }
1980 
1981 static void disable_rdtscp_ud_handler(struct ex_regs *regs)
1982 {
1983 	switch (vmx_get_test_stage()) {
1984 	case 0:
1985 		report("RDTSCP triggers #UD", true);
1986 		vmx_inc_test_stage();
1987 		regs->rip += 3;
1988 		break;
1989 	case 2:
1990 		report("RDPID triggers #UD", true);
1991 		vmx_inc_test_stage();
1992 		regs->rip += 4;
1993 		break;
1994 	}
1995 	return;
1996 
1997 }
1998 
1999 static void disable_rdtscp_main(void)
2000 {
2001 	/* Test that #UD is properly injected in L2.  */
2002 	handle_exception(UD_VECTOR, disable_rdtscp_ud_handler);
2003 
2004 	vmx_set_test_stage(0);
2005 	asm volatile("rdtscp" : : : "eax", "ecx", "edx");
2006 	vmcall();
2007 	asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax");
2008 
2009 	handle_exception(UD_VECTOR, 0);
2010 	vmcall();
2011 }
2012 
2013 static int disable_rdtscp_exit_handler(void)
2014 {
2015 	unsigned int reason = vmcs_read(EXI_REASON) & 0xff;
2016 
2017 	switch (reason) {
2018 	case VMX_VMCALL:
2019 		switch (vmx_get_test_stage()) {
2020 		case 0:
2021 			report("RDTSCP triggers #UD", false);
2022 			vmx_inc_test_stage();
2023 			/* fallthrough */
2024 		case 1:
2025 			vmx_inc_test_stage();
2026 			vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3);
2027 			return VMX_TEST_RESUME;
2028 		case 2:
2029 			report("RDPID triggers #UD", false);
2030 			break;
2031 		}
2032 		break;
2033 
2034 	default:
2035 		report("Unknown exit reason, %d", false, reason);
2036 		print_vmexit_info();
2037 	}
2038 	return VMX_TEST_VMEXIT;
2039 }
2040 
2041 static int int3_init(struct vmcs *vmcs)
2042 {
2043 	vmcs_write(EXC_BITMAP, ~0u);
2044 	return VMX_TEST_START;
2045 }
2046 
2047 static void int3_guest_main(void)
2048 {
2049 	asm volatile ("int3");
2050 }
2051 
2052 static int int3_exit_handler(void)
2053 {
2054 	u32 reason = vmcs_read(EXI_REASON);
2055 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
2056 
2057 	report("L1 intercepts #BP", reason == VMX_EXC_NMI &&
2058 	       (intr_info & INTR_INFO_VALID_MASK) &&
2059 	       (intr_info & INTR_INFO_VECTOR_MASK) == BP_VECTOR &&
2060 	       ((intr_info & INTR_INFO_INTR_TYPE_MASK) >>
2061 		INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION);
2062 
2063 	return VMX_TEST_VMEXIT;
2064 }
2065 
2066 static int into_init(struct vmcs *vmcs)
2067 {
2068 	vmcs_write(EXC_BITMAP, ~0u);
2069 	return VMX_TEST_START;
2070 }
2071 
2072 static void into_guest_main(void)
2073 {
2074 	struct far_pointer32 fp = {
2075 		.offset = (uintptr_t)&&into,
2076 		.selector = KERNEL_CS32,
2077 	};
2078 	register uintptr_t rsp asm("rsp");
2079 
2080 	if (fp.offset != (uintptr_t)&&into) {
2081 		printf("Code address too high.\n");
2082 		return;
2083 	}
2084 	if ((u32)rsp != rsp) {
2085 		printf("Stack address too high.\n");
2086 		return;
2087 	}
2088 
2089 	asm goto ("lcall *%0" : : "m" (fp) : "rax" : into);
2090 	return;
2091 into:
2092 	asm volatile (".code32;"
2093 		      "movl $0x7fffffff, %eax;"
2094 		      "addl %eax, %eax;"
2095 		      "into;"
2096 		      "lret;"
2097 		      ".code64");
2098 	__builtin_unreachable();
2099 }
2100 
2101 static int into_exit_handler(void)
2102 {
2103 	u32 reason = vmcs_read(EXI_REASON);
2104 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
2105 
2106 	report("L1 intercepts #OF", reason == VMX_EXC_NMI &&
2107 	       (intr_info & INTR_INFO_VALID_MASK) &&
2108 	       (intr_info & INTR_INFO_VECTOR_MASK) == OF_VECTOR &&
2109 	       ((intr_info & INTR_INFO_INTR_TYPE_MASK) >>
2110 		INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION);
2111 
2112 	return VMX_TEST_VMEXIT;
2113 }
2114 
2115 static void exit_monitor_from_l2_main(void)
2116 {
2117 	printf("Calling exit(0) from l2...\n");
2118 	exit(0);
2119 }
2120 
2121 static int exit_monitor_from_l2_handler(void)
2122 {
2123 	report("The guest should have killed the VMM", false);
2124 	return VMX_TEST_EXIT;
2125 }
2126 
2127 static void assert_exit_reason(u64 expected)
2128 {
2129 	u64 actual = vmcs_read(EXI_REASON);
2130 
2131 	TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.",
2132 			   exit_reason_description(expected),
2133 			   exit_reason_description(actual));
2134 }
2135 
2136 static void skip_exit_insn(void)
2137 {
2138 	u64 guest_rip = vmcs_read(GUEST_RIP);
2139 	u32 insn_len = vmcs_read(EXI_INST_LEN);
2140 	vmcs_write(GUEST_RIP, guest_rip + insn_len);
2141 }
2142 
2143 static void skip_exit_vmcall(void)
2144 {
2145 	assert_exit_reason(VMX_VMCALL);
2146 	skip_exit_insn();
2147 }
2148 
2149 static void v2_null_test_guest(void)
2150 {
2151 }
2152 
2153 static void v2_null_test(void)
2154 {
2155 	test_set_guest(v2_null_test_guest);
2156 	enter_guest();
2157 	report(__func__, 1);
2158 }
2159 
2160 static void v2_multiple_entries_test_guest(void)
2161 {
2162 	vmx_set_test_stage(1);
2163 	vmcall();
2164 	vmx_set_test_stage(2);
2165 }
2166 
2167 static void v2_multiple_entries_test(void)
2168 {
2169 	test_set_guest(v2_multiple_entries_test_guest);
2170 	enter_guest();
2171 	TEST_ASSERT_EQ(vmx_get_test_stage(), 1);
2172 	skip_exit_vmcall();
2173 	enter_guest();
2174 	TEST_ASSERT_EQ(vmx_get_test_stage(), 2);
2175 	report(__func__, 1);
2176 }
2177 
2178 static int fixture_test_data = 1;
2179 
2180 static void fixture_test_teardown(void *data)
2181 {
2182 	*((int *) data) = 1;
2183 }
2184 
2185 static void fixture_test_guest(void)
2186 {
2187 	fixture_test_data++;
2188 }
2189 
2190 
2191 static void fixture_test_setup(void)
2192 {
2193 	TEST_ASSERT_EQ_MSG(1, fixture_test_data,
2194 			   "fixture_test_teardown didn't run?!");
2195 	fixture_test_data = 2;
2196 	test_add_teardown(fixture_test_teardown, &fixture_test_data);
2197 	test_set_guest(fixture_test_guest);
2198 }
2199 
2200 static void fixture_test_case1(void)
2201 {
2202 	fixture_test_setup();
2203 	TEST_ASSERT_EQ(2, fixture_test_data);
2204 	enter_guest();
2205 	TEST_ASSERT_EQ(3, fixture_test_data);
2206 	report(__func__, 1);
2207 }
2208 
2209 static void fixture_test_case2(void)
2210 {
2211 	fixture_test_setup();
2212 	TEST_ASSERT_EQ(2, fixture_test_data);
2213 	enter_guest();
2214 	TEST_ASSERT_EQ(3, fixture_test_data);
2215 	report(__func__, 1);
2216 }
2217 
2218 enum ept_access_op {
2219 	OP_READ,
2220 	OP_WRITE,
2221 	OP_EXEC,
2222 	OP_FLUSH_TLB,
2223 	OP_EXIT,
2224 };
2225 
2226 static struct ept_access_test_data {
2227 	unsigned long gpa;
2228 	unsigned long *gva;
2229 	unsigned long hpa;
2230 	unsigned long *hva;
2231 	enum ept_access_op op;
2232 } ept_access_test_data;
2233 
2234 extern unsigned char ret42_start;
2235 extern unsigned char ret42_end;
2236 
2237 /* Returns 42. */
2238 asm(
2239 	".align 64\n"
2240 	"ret42_start:\n"
2241 	"mov $42, %eax\n"
2242 	"ret\n"
2243 	"ret42_end:\n"
2244 );
2245 
2246 static void
2247 diagnose_ept_violation_qual(u64 expected, u64 actual)
2248 {
2249 
2250 #define DIAGNOSE(flag)							\
2251 do {									\
2252 	if ((expected & flag) != (actual & flag))			\
2253 		printf(#flag " %sexpected\n",				\
2254 		       (expected & flag) ? "" : "un");			\
2255 } while (0)
2256 
2257 	DIAGNOSE(EPT_VLT_RD);
2258 	DIAGNOSE(EPT_VLT_WR);
2259 	DIAGNOSE(EPT_VLT_FETCH);
2260 	DIAGNOSE(EPT_VLT_PERM_RD);
2261 	DIAGNOSE(EPT_VLT_PERM_WR);
2262 	DIAGNOSE(EPT_VLT_PERM_EX);
2263 	DIAGNOSE(EPT_VLT_LADDR_VLD);
2264 	DIAGNOSE(EPT_VLT_PADDR);
2265 
2266 #undef DIAGNOSE
2267 }
2268 
2269 static void do_ept_access_op(enum ept_access_op op)
2270 {
2271 	ept_access_test_data.op = op;
2272 	enter_guest();
2273 }
2274 
2275 /*
2276  * Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only
2277  * needed by tests that modify guest PTEs.
2278  */
2279 static void ept_access_test_guest_flush_tlb(void)
2280 {
2281 	do_ept_access_op(OP_FLUSH_TLB);
2282 	skip_exit_vmcall();
2283 }
2284 
2285 /*
2286  * Modifies the EPT entry at @level in the mapping of @gpa. First clears the
2287  * bits in @clear then sets the bits in @set. @mkhuge transforms the entry into
2288  * a huge page.
2289  */
2290 static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level,
2291 				 unsigned long clear, unsigned long set)
2292 {
2293 	struct ept_access_test_data *data = &ept_access_test_data;
2294 	unsigned long orig_pte;
2295 	unsigned long pte;
2296 
2297 	/* Screw with the mapping at the requested level. */
2298 	TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte));
2299 	pte = orig_pte;
2300 	if (mkhuge)
2301 		pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE;
2302 	else
2303 		pte = orig_pte;
2304 	pte = (pte & ~clear) | set;
2305 	set_ept_pte(pml4, gpa, level, pte);
2306 	ept_sync(INVEPT_SINGLE, eptp);
2307 
2308 	return orig_pte;
2309 }
2310 
2311 static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte)
2312 {
2313 	set_ept_pte(pml4, gpa, level, orig_pte);
2314 }
2315 
2316 static void do_ept_violation(bool leaf, enum ept_access_op op,
2317 			     u64 expected_qual, u64 expected_paddr)
2318 {
2319 	u64 qual;
2320 
2321 	/* Try the access and observe the violation. */
2322 	do_ept_access_op(op);
2323 
2324 	assert_exit_reason(VMX_EPT_VIOLATION);
2325 
2326 	qual = vmcs_read(EXI_QUALIFICATION);
2327 
2328 	diagnose_ept_violation_qual(expected_qual, qual);
2329 	TEST_EXPECT_EQ(expected_qual, qual);
2330 
2331 	#if 0
2332 	/* Disable for now otherwise every test will fail */
2333 	TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
2334 		       (unsigned long) (
2335 			       op == OP_EXEC ? data->gva + 1 : data->gva));
2336 	#endif
2337 	/*
2338 	 * TODO: tests that probe expected_paddr in pages other than the one at
2339 	 * the beginning of the 1g region.
2340 	 */
2341 	TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr);
2342 }
2343 
2344 static void
2345 ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear,
2346 			      unsigned long set, enum ept_access_op op,
2347 			      u64 expected_qual)
2348 {
2349 	struct ept_access_test_data *data = &ept_access_test_data;
2350 	unsigned long orig_pte;
2351 
2352 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2353 
2354 	do_ept_violation(level == 1 || mkhuge, op, expected_qual,
2355 			 op == OP_EXEC ? data->gpa + sizeof(unsigned long) :
2356 					 data->gpa);
2357 
2358 	/* Fix the violation and resume the op loop. */
2359 	ept_untwiddle(data->gpa, level, orig_pte);
2360 	enter_guest();
2361 	skip_exit_vmcall();
2362 }
2363 
2364 static void
2365 ept_violation_at_level(int level, unsigned long clear, unsigned long set,
2366 		       enum ept_access_op op, u64 expected_qual)
2367 {
2368 	ept_violation_at_level_mkhuge(false, level, clear, set, op,
2369 				      expected_qual);
2370 	if (ept_huge_pages_supported(level))
2371 		ept_violation_at_level_mkhuge(true, level, clear, set, op,
2372 					      expected_qual);
2373 }
2374 
2375 static void ept_violation(unsigned long clear, unsigned long set,
2376 			  enum ept_access_op op, u64 expected_qual)
2377 {
2378 	ept_violation_at_level(1, clear, set, op, expected_qual);
2379 	ept_violation_at_level(2, clear, set, op, expected_qual);
2380 	ept_violation_at_level(3, clear, set, op, expected_qual);
2381 	ept_violation_at_level(4, clear, set, op, expected_qual);
2382 }
2383 
2384 static void ept_access_violation(unsigned long access, enum ept_access_op op,
2385 				       u64 expected_qual)
2386 {
2387 	ept_violation(EPT_PRESENT, access, op,
2388 		      expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2389 }
2390 
2391 /*
2392  * For translations that don't involve a GVA, that is physical address (paddr)
2393  * accesses, EPT violations don't set the flag EPT_VLT_PADDR.  For a typical
2394  * guest memory access, the hardware does GVA -> GPA -> HPA.  However, certain
2395  * translations don't involve GVAs, such as when the hardware does the guest
2396  * page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU
2397  * might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides
2398  * on isn't present in the EPT, then the EPT violation will be for GPA_2 and
2399  * the EPT_VLT_PADDR bit will be clear in the exit qualification.
2400  *
2401  * Note that paddr violations can also be triggered by loading PAE page tables
2402  * with wonky addresses. We don't test that yet.
2403  *
2404  * This function modifies the EPT entry that maps the GPA that the guest page
2405  * table entry mapping ept_access_data.gva resides on.
2406  *
2407  *	@ept_access	EPT permissions to set. Other permissions are cleared.
2408  *
2409  *	@pte_ad		Set the A/D bits on the guest PTE accordingly.
2410  *
2411  *	@op		Guest operation to perform with ept_access_data.gva.
2412  *
2413  *	@expect_violation
2414  *			Is a violation expected during the paddr access?
2415  *
2416  *	@expected_qual	Expected qualification for the EPT violation.
2417  *			EPT_VLT_PADDR should be clear.
2418  */
2419 static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad,
2420 			     enum ept_access_op op, bool expect_violation,
2421 			     u64 expected_qual)
2422 {
2423 	struct ept_access_test_data *data = &ept_access_test_data;
2424 	unsigned long *ptep;
2425 	unsigned long gpa;
2426 	unsigned long orig_epte;
2427 
2428 	/* Modify the guest PTE mapping data->gva according to @pte_ad.  */
2429 	ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1);
2430 	TEST_ASSERT(ptep);
2431 	TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa);
2432 	*ptep = (*ptep & ~PT_AD_MASK) | pte_ad;
2433 	ept_access_test_guest_flush_tlb();
2434 
2435 	/*
2436 	 * Now modify the access bits on the EPT entry for the GPA that the
2437 	 * guest PTE resides on. Note that by modifying a single EPT entry,
2438 	 * we're potentially affecting 512 guest PTEs. However, we've carefully
2439 	 * constructed our test such that those other 511 PTEs aren't used by
2440 	 * the guest: data->gva is at the beginning of a 1G huge page, thus the
2441 	 * PTE we're modifying is at the beginning of a 4K page and the
2442 	 * following 511 entires are also under our control (and not touched by
2443 	 * the guest).
2444 	 */
2445 	gpa = virt_to_phys(ptep);
2446 	TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0);
2447 	/*
2448 	 * Make sure the guest page table page is mapped with a 4K EPT entry,
2449 	 * otherwise our level=1 twiddling below will fail. We use the
2450 	 * identity map (gpa = gpa) since page tables are shared with the host.
2451 	 */
2452 	install_ept(pml4, gpa, gpa, EPT_PRESENT);
2453 	orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1,
2454 				/*clear=*/EPT_PRESENT, /*set=*/ept_access);
2455 
2456 	if (expect_violation) {
2457 		do_ept_violation(/*leaf=*/true, op,
2458 				 expected_qual | EPT_VLT_LADDR_VLD, gpa);
2459 		ept_untwiddle(gpa, /*level=*/1, orig_epte);
2460 		do_ept_access_op(op);
2461 	} else {
2462 		do_ept_access_op(op);
2463 		ept_untwiddle(gpa, /*level=*/1, orig_epte);
2464 	}
2465 
2466 	TEST_ASSERT(*ptep & PT_ACCESSED_MASK);
2467 	if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE)
2468 		TEST_ASSERT(*ptep & PT_DIRTY_MASK);
2469 
2470 	skip_exit_vmcall();
2471 }
2472 
2473 static void ept_access_allowed_paddr(unsigned long ept_access,
2474 				     unsigned long pte_ad,
2475 				     enum ept_access_op op)
2476 {
2477 	ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false,
2478 			 /*expected_qual=*/-1);
2479 }
2480 
2481 static void ept_access_violation_paddr(unsigned long ept_access,
2482 				       unsigned long pte_ad,
2483 				       enum ept_access_op op,
2484 				       u64 expected_qual)
2485 {
2486 	ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true,
2487 			 expected_qual);
2488 }
2489 
2490 
2491 static void ept_allowed_at_level_mkhuge(bool mkhuge, int level,
2492 					unsigned long clear,
2493 					unsigned long set,
2494 					enum ept_access_op op)
2495 {
2496 	struct ept_access_test_data *data = &ept_access_test_data;
2497 	unsigned long orig_pte;
2498 
2499 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2500 
2501 	/* No violation. Should proceed to vmcall. */
2502 	do_ept_access_op(op);
2503 	skip_exit_vmcall();
2504 
2505 	ept_untwiddle(data->gpa, level, orig_pte);
2506 }
2507 
2508 static void ept_allowed_at_level(int level, unsigned long clear,
2509 				 unsigned long set, enum ept_access_op op)
2510 {
2511 	ept_allowed_at_level_mkhuge(false, level, clear, set, op);
2512 	if (ept_huge_pages_supported(level))
2513 		ept_allowed_at_level_mkhuge(true, level, clear, set, op);
2514 }
2515 
2516 static void ept_allowed(unsigned long clear, unsigned long set,
2517 			enum ept_access_op op)
2518 {
2519 	ept_allowed_at_level(1, clear, set, op);
2520 	ept_allowed_at_level(2, clear, set, op);
2521 	ept_allowed_at_level(3, clear, set, op);
2522 	ept_allowed_at_level(4, clear, set, op);
2523 }
2524 
2525 static void ept_ignored_bit(int bit)
2526 {
2527 	/* Set the bit. */
2528 	ept_allowed(0, 1ul << bit, OP_READ);
2529 	ept_allowed(0, 1ul << bit, OP_WRITE);
2530 	ept_allowed(0, 1ul << bit, OP_EXEC);
2531 
2532 	/* Clear the bit. */
2533 	ept_allowed(1ul << bit, 0, OP_READ);
2534 	ept_allowed(1ul << bit, 0, OP_WRITE);
2535 	ept_allowed(1ul << bit, 0, OP_EXEC);
2536 }
2537 
2538 static void ept_access_allowed(unsigned long access, enum ept_access_op op)
2539 {
2540 	ept_allowed(EPT_PRESENT, access, op);
2541 }
2542 
2543 
2544 static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level,
2545 					     unsigned long clear,
2546 					     unsigned long set,
2547 					     enum ept_access_op op)
2548 {
2549 	struct ept_access_test_data *data = &ept_access_test_data;
2550 	unsigned long orig_pte;
2551 
2552 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2553 
2554 	do_ept_access_op(op);
2555 	assert_exit_reason(VMX_EPT_MISCONFIG);
2556 
2557 	/* Intel 27.2.1, "For all other VM exits, this field is cleared." */
2558 	#if 0
2559 	/* broken: */
2560 	TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0);
2561 	#endif
2562 	#if 0
2563 	/*
2564 	 * broken:
2565 	 * According to description of exit qual for EPT violation,
2566 	 * EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid.
2567 	 * However, I can't find anything that says GUEST_LINEAR_ADDRESS ought
2568 	 * to be set for msiconfig.
2569 	 */
2570 	TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
2571 		       (unsigned long) (
2572 			       op == OP_EXEC ? data->gva + 1 : data->gva));
2573 	#endif
2574 
2575 	/* Fix the violation and resume the op loop. */
2576 	ept_untwiddle(data->gpa, level, orig_pte);
2577 	enter_guest();
2578 	skip_exit_vmcall();
2579 }
2580 
2581 static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level,
2582 					  unsigned long clear,
2583 					  unsigned long set)
2584 {
2585 	/* The op shouldn't matter (read, write, exec), so try them all! */
2586 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ);
2587 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE);
2588 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC);
2589 }
2590 
2591 static void ept_misconfig_at_level(int level, unsigned long clear,
2592 				   unsigned long set)
2593 {
2594 	ept_misconfig_at_level_mkhuge(false, level, clear, set);
2595 	if (ept_huge_pages_supported(level))
2596 		ept_misconfig_at_level_mkhuge(true, level, clear, set);
2597 }
2598 
2599 static void ept_misconfig(unsigned long clear, unsigned long set)
2600 {
2601 	ept_misconfig_at_level(1, clear, set);
2602 	ept_misconfig_at_level(2, clear, set);
2603 	ept_misconfig_at_level(3, clear, set);
2604 	ept_misconfig_at_level(4, clear, set);
2605 }
2606 
2607 static void ept_access_misconfig(unsigned long access)
2608 {
2609 	ept_misconfig(EPT_PRESENT, access);
2610 }
2611 
2612 static void ept_reserved_bit_at_level_nohuge(int level, int bit)
2613 {
2614 	/* Setting the bit causes a misconfig. */
2615 	ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit);
2616 
2617 	/* Making the entry non-present turns reserved bits into ignored. */
2618 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2619 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2620 }
2621 
2622 static void ept_reserved_bit_at_level_huge(int level, int bit)
2623 {
2624 	/* Setting the bit causes a misconfig. */
2625 	ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit);
2626 
2627 	/* Making the entry non-present turns reserved bits into ignored. */
2628 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2629 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2630 }
2631 
2632 static void ept_reserved_bit_at_level(int level, int bit)
2633 {
2634 	/* Setting the bit causes a misconfig. */
2635 	ept_misconfig_at_level(level, 0, 1ul << bit);
2636 
2637 	/* Making the entry non-present turns reserved bits into ignored. */
2638 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2639 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2640 }
2641 
2642 static void ept_reserved_bit(int bit)
2643 {
2644 	ept_reserved_bit_at_level(1, bit);
2645 	ept_reserved_bit_at_level(2, bit);
2646 	ept_reserved_bit_at_level(3, bit);
2647 	ept_reserved_bit_at_level(4, bit);
2648 }
2649 
2650 #define PAGE_2M_ORDER 9
2651 #define PAGE_1G_ORDER 18
2652 
2653 static void *get_1g_page(void)
2654 {
2655 	static void *alloc;
2656 
2657 	if (!alloc)
2658 		alloc = alloc_pages(PAGE_1G_ORDER);
2659 	return alloc;
2660 }
2661 
2662 static void ept_access_test_teardown(void *unused)
2663 {
2664 	/* Exit the guest cleanly. */
2665 	do_ept_access_op(OP_EXIT);
2666 }
2667 
2668 static void ept_access_test_guest(void)
2669 {
2670 	struct ept_access_test_data *data = &ept_access_test_data;
2671 	int (*code)(void) = (int (*)(void)) &data->gva[1];
2672 
2673 	while (true) {
2674 		switch (data->op) {
2675 		case OP_READ:
2676 			TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1);
2677 			break;
2678 		case OP_WRITE:
2679 			*data->gva = MAGIC_VAL_2;
2680 			TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2);
2681 			*data->gva = MAGIC_VAL_1;
2682 			break;
2683 		case OP_EXEC:
2684 			TEST_ASSERT_EQ(42, code());
2685 			break;
2686 		case OP_FLUSH_TLB:
2687 			write_cr3(read_cr3());
2688 			break;
2689 		case OP_EXIT:
2690 			return;
2691 		default:
2692 			TEST_ASSERT_MSG(false, "Unknown op %d", data->op);
2693 		}
2694 		vmcall();
2695 	}
2696 }
2697 
2698 static void ept_access_test_setup(void)
2699 {
2700 	struct ept_access_test_data *data = &ept_access_test_data;
2701 	unsigned long npages = 1ul << PAGE_1G_ORDER;
2702 	unsigned long size = npages * PAGE_SIZE;
2703 	unsigned long *page_table = current_page_table();
2704 	unsigned long pte;
2705 
2706 	if (setup_ept(false))
2707 		test_skip("EPT not supported");
2708 
2709 	/* We use data->gpa = 1 << 39 so that test data has a separate pml4 entry */
2710 	if (cpuid_maxphyaddr() < 40)
2711 		test_skip("Test needs MAXPHYADDR >= 40");
2712 
2713 	test_set_guest(ept_access_test_guest);
2714 	test_add_teardown(ept_access_test_teardown, NULL);
2715 
2716 	data->hva = get_1g_page();
2717 	TEST_ASSERT(data->hva);
2718 	data->hpa = virt_to_phys(data->hva);
2719 
2720 	data->gpa = 1ul << 39;
2721 	data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2),
2722 				   size);
2723 	TEST_ASSERT(!any_present_pages(page_table, data->gva, size));
2724 	install_pages(page_table, data->gpa, size, data->gva);
2725 
2726 	/*
2727 	 * Make sure nothing's mapped here so the tests that screw with the
2728 	 * pml4 entry don't inadvertently break something.
2729 	 */
2730 	TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0);
2731 	TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0);
2732 	install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT);
2733 
2734 	data->hva[0] = MAGIC_VAL_1;
2735 	memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start);
2736 }
2737 
2738 static void ept_access_test_not_present(void)
2739 {
2740 	ept_access_test_setup();
2741 	/* --- */
2742 	ept_access_violation(0, OP_READ, EPT_VLT_RD);
2743 	ept_access_violation(0, OP_WRITE, EPT_VLT_WR);
2744 	ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH);
2745 }
2746 
2747 static void ept_access_test_read_only(void)
2748 {
2749 	ept_access_test_setup();
2750 
2751 	/* r-- */
2752 	ept_access_allowed(EPT_RA, OP_READ);
2753 	ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD);
2754 	ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD);
2755 }
2756 
2757 static void ept_access_test_write_only(void)
2758 {
2759 	ept_access_test_setup();
2760 	/* -w- */
2761 	ept_access_misconfig(EPT_WA);
2762 }
2763 
2764 static void ept_access_test_read_write(void)
2765 {
2766 	ept_access_test_setup();
2767 	/* rw- */
2768 	ept_access_allowed(EPT_RA | EPT_WA, OP_READ);
2769 	ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE);
2770 	ept_access_violation(EPT_RA | EPT_WA, OP_EXEC,
2771 			   EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR);
2772 }
2773 
2774 
2775 static void ept_access_test_execute_only(void)
2776 {
2777 	ept_access_test_setup();
2778 	/* --x */
2779 	if (ept_execute_only_supported()) {
2780 		ept_access_violation(EPT_EA, OP_READ,
2781 				     EPT_VLT_RD | EPT_VLT_PERM_EX);
2782 		ept_access_violation(EPT_EA, OP_WRITE,
2783 				     EPT_VLT_WR | EPT_VLT_PERM_EX);
2784 		ept_access_allowed(EPT_EA, OP_EXEC);
2785 	} else {
2786 		ept_access_misconfig(EPT_EA);
2787 	}
2788 }
2789 
2790 static void ept_access_test_read_execute(void)
2791 {
2792 	ept_access_test_setup();
2793 	/* r-x */
2794 	ept_access_allowed(EPT_RA | EPT_EA, OP_READ);
2795 	ept_access_violation(EPT_RA | EPT_EA, OP_WRITE,
2796 			   EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX);
2797 	ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC);
2798 }
2799 
2800 static void ept_access_test_write_execute(void)
2801 {
2802 	ept_access_test_setup();
2803 	/* -wx */
2804 	ept_access_misconfig(EPT_WA | EPT_EA);
2805 }
2806 
2807 static void ept_access_test_read_write_execute(void)
2808 {
2809 	ept_access_test_setup();
2810 	/* rwx */
2811 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ);
2812 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE);
2813 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC);
2814 }
2815 
2816 static void ept_access_test_reserved_bits(void)
2817 {
2818 	int i;
2819 	int maxphyaddr;
2820 
2821 	ept_access_test_setup();
2822 
2823 	/* Reserved bits above maxphyaddr. */
2824 	maxphyaddr = cpuid_maxphyaddr();
2825 	for (i = maxphyaddr; i <= 51; i++) {
2826 		report_prefix_pushf("reserved_bit=%d", i);
2827 		ept_reserved_bit(i);
2828 		report_prefix_pop();
2829 	}
2830 
2831 	/* Level-specific reserved bits. */
2832 	ept_reserved_bit_at_level_nohuge(2, 3);
2833 	ept_reserved_bit_at_level_nohuge(2, 4);
2834 	ept_reserved_bit_at_level_nohuge(2, 5);
2835 	ept_reserved_bit_at_level_nohuge(2, 6);
2836 	/* 2M alignment. */
2837 	for (i = 12; i < 20; i++) {
2838 		report_prefix_pushf("reserved_bit=%d", i);
2839 		ept_reserved_bit_at_level_huge(2, i);
2840 		report_prefix_pop();
2841 	}
2842 	ept_reserved_bit_at_level_nohuge(3, 3);
2843 	ept_reserved_bit_at_level_nohuge(3, 4);
2844 	ept_reserved_bit_at_level_nohuge(3, 5);
2845 	ept_reserved_bit_at_level_nohuge(3, 6);
2846 	/* 1G alignment. */
2847 	for (i = 12; i < 29; i++) {
2848 		report_prefix_pushf("reserved_bit=%d", i);
2849 		ept_reserved_bit_at_level_huge(3, i);
2850 		report_prefix_pop();
2851 	}
2852 	ept_reserved_bit_at_level(4, 3);
2853 	ept_reserved_bit_at_level(4, 4);
2854 	ept_reserved_bit_at_level(4, 5);
2855 	ept_reserved_bit_at_level(4, 6);
2856 	ept_reserved_bit_at_level(4, 7);
2857 }
2858 
2859 static void ept_access_test_ignored_bits(void)
2860 {
2861 	ept_access_test_setup();
2862 	/*
2863 	 * Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as
2864 	 * far as translation is concerned even if AD bits are enabled in the
2865 	 * EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution
2866 	 * control is 0.
2867 	 */
2868 	ept_ignored_bit(8);
2869 	ept_ignored_bit(9);
2870 	ept_ignored_bit(10);
2871 	ept_ignored_bit(11);
2872 	ept_ignored_bit(52);
2873 	ept_ignored_bit(53);
2874 	ept_ignored_bit(54);
2875 	ept_ignored_bit(55);
2876 	ept_ignored_bit(56);
2877 	ept_ignored_bit(57);
2878 	ept_ignored_bit(58);
2879 	ept_ignored_bit(59);
2880 	ept_ignored_bit(60);
2881 	ept_ignored_bit(61);
2882 	ept_ignored_bit(62);
2883 	ept_ignored_bit(63);
2884 }
2885 
2886 static void ept_access_test_paddr_not_present_ad_disabled(void)
2887 {
2888 	ept_access_test_setup();
2889 	ept_disable_ad_bits();
2890 
2891 	ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD);
2892 	ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD);
2893 	ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD);
2894 }
2895 
2896 static void ept_access_test_paddr_not_present_ad_enabled(void)
2897 {
2898 	u64 qual = EPT_VLT_RD | EPT_VLT_WR;
2899 
2900 	ept_access_test_setup();
2901 	ept_enable_ad_bits_or_skip_test();
2902 
2903 	ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual);
2904 	ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual);
2905 	ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual);
2906 }
2907 
2908 static void ept_access_test_paddr_read_only_ad_disabled(void)
2909 {
2910 	/*
2911 	 * When EPT AD bits are disabled, all accesses to guest paging
2912 	 * structures are reported separately as a read and (after
2913 	 * translation of the GPA to host physical address) a read+write
2914 	 * if the A/D bits have to be set.
2915 	 */
2916 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
2917 
2918 	ept_access_test_setup();
2919 	ept_disable_ad_bits();
2920 
2921 	/* Can't update A bit, so all accesses fail. */
2922 	ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
2923 	ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
2924 	ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
2925 	/* AD bits disabled, so only writes try to update the D bit. */
2926 	ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ);
2927 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
2928 	ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC);
2929 	/* Both A and D already set, so read-only is OK. */
2930 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ);
2931 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE);
2932 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC);
2933 }
2934 
2935 static void ept_access_test_paddr_read_only_ad_enabled(void)
2936 {
2937 	/*
2938 	 * When EPT AD bits are enabled, all accesses to guest paging
2939 	 * structures are considered writes as far as EPT translation
2940 	 * is concerned.
2941 	 */
2942 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
2943 
2944 	ept_access_test_setup();
2945 	ept_enable_ad_bits_or_skip_test();
2946 
2947 	ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
2948 	ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
2949 	ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
2950 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual);
2951 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
2952 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual);
2953 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual);
2954 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual);
2955 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual);
2956 }
2957 
2958 static void ept_access_test_paddr_read_write(void)
2959 {
2960 	ept_access_test_setup();
2961 	/* Read-write access to paging structure. */
2962 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ);
2963 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE);
2964 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC);
2965 }
2966 
2967 static void ept_access_test_paddr_read_write_execute(void)
2968 {
2969 	ept_access_test_setup();
2970 	/* RWX access to paging structure. */
2971 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ);
2972 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE);
2973 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC);
2974 }
2975 
2976 static void ept_access_test_paddr_read_execute_ad_disabled(void)
2977 {
2978   	/*
2979 	 * When EPT AD bits are disabled, all accesses to guest paging
2980 	 * structures are reported separately as a read and (after
2981 	 * translation of the GPA to host physical address) a read+write
2982 	 * if the A/D bits have to be set.
2983 	 */
2984 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
2985 
2986 	ept_access_test_setup();
2987 	ept_disable_ad_bits();
2988 
2989 	/* Can't update A bit, so all accesses fail. */
2990 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
2991 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
2992 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
2993 	/* AD bits disabled, so only writes try to update the D bit. */
2994 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ);
2995 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
2996 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC);
2997 	/* Both A and D already set, so read-only is OK. */
2998 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ);
2999 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE);
3000 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC);
3001 }
3002 
3003 static void ept_access_test_paddr_read_execute_ad_enabled(void)
3004 {
3005 	/*
3006 	 * When EPT AD bits are enabled, all accesses to guest paging
3007 	 * structures are considered writes as far as EPT translation
3008 	 * is concerned.
3009 	 */
3010 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
3011 
3012 	ept_access_test_setup();
3013 	ept_enable_ad_bits_or_skip_test();
3014 
3015 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
3016 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
3017 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
3018 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual);
3019 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
3020 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual);
3021 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual);
3022 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual);
3023 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual);
3024 }
3025 
3026 static void ept_access_test_paddr_not_present_page_fault(void)
3027 {
3028 	ept_access_test_setup();
3029 	/*
3030 	 * TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is
3031 	 * page is read-only in EPT but GVA is also mapped read only in PT.
3032 	 * Thus guest page fault before host takes EPT violation for trying to
3033 	 * update A bit.
3034 	 */
3035 }
3036 
3037 static void ept_access_test_force_2m_page(void)
3038 {
3039 	ept_access_test_setup();
3040 
3041 	TEST_ASSERT_EQ(ept_2m_supported(), true);
3042 	ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ);
3043 	ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE,
3044 				      EPT_VLT_WR | EPT_VLT_PERM_RD |
3045 				      EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
3046 	ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA);
3047 }
3048 
3049 static bool invvpid_valid(u64 type, u64 vpid, u64 gla)
3050 {
3051 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3052 
3053 	TEST_ASSERT(msr & VPID_CAP_INVVPID);
3054 
3055 	if (type < INVVPID_ADDR || type > INVVPID_CONTEXT_LOCAL)
3056 		return false;
3057 
3058 	if (!(msr & (1ull << (type + VPID_CAP_INVVPID_TYPES_SHIFT))))
3059 		return false;
3060 
3061 	if (vpid >> 16)
3062 		return false;
3063 
3064 	if (type != INVVPID_ALL && !vpid)
3065 		return false;
3066 
3067 	if (type == INVVPID_ADDR && !is_canonical(gla))
3068 		return false;
3069 
3070 	return true;
3071 }
3072 
3073 static void try_invvpid(u64 type, u64 vpid, u64 gla)
3074 {
3075 	int rc;
3076 	bool valid = invvpid_valid(type, vpid, gla);
3077 	u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT
3078 		: VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID;
3079 	/*
3080 	 * Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so
3081 	 * that we can tell if it is updated by INVVPID.
3082 	 */
3083 	vmcs_read(~0);
3084 	rc = invvpid(type, vpid, gla);
3085 	report("INVVPID type %ld VPID %lx GLA %lx %s",
3086 	       !rc == valid, type, vpid, gla,
3087 	       valid ? "passes" : "fails");
3088 	report("After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)",
3089 	       vmcs_read(VMX_INST_ERROR) == expected,
3090 	       rc ? "failed" : "successful",
3091 	       expected, vmcs_read(VMX_INST_ERROR));
3092 }
3093 
3094 static void ds_invvpid(void *data)
3095 {
3096 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3097 	u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
3098 
3099 	TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
3100 	asm volatile("invvpid %0, %1"
3101 		     :
3102 		     : "m"(*(struct invvpid_operand *)data),
3103 		       "r"(type));
3104 }
3105 
3106 /*
3107  * The SS override is ignored in 64-bit mode, so we use an addressing
3108  * mode with %rsp as the base register to generate an implicit SS
3109  * reference.
3110  */
3111 static void ss_invvpid(void *data)
3112 {
3113 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3114 	u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
3115 
3116 	TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
3117 	asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1"
3118 		     : "+r"(data)
3119 		     : "r"(type));
3120 }
3121 
3122 static void invvpid_test_gp(void)
3123 {
3124 	bool fault;
3125 
3126 	fault = test_for_exception(GP_VECTOR, &ds_invvpid,
3127 				   (void *)NONCANONICAL);
3128 	report("INVVPID with non-canonical DS operand raises #GP", fault);
3129 }
3130 
3131 static void invvpid_test_ss(void)
3132 {
3133 	bool fault;
3134 
3135 	fault = test_for_exception(SS_VECTOR, &ss_invvpid,
3136 				   (void *)NONCANONICAL);
3137 	report("INVVPID with non-canonical SS operand raises #SS", fault);
3138 }
3139 
3140 static void invvpid_test_pf(void)
3141 {
3142 	void *vpage = alloc_vpage();
3143 	bool fault;
3144 
3145 	fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage);
3146 	report("INVVPID with unmapped operand raises #PF", fault);
3147 }
3148 
3149 static void try_compat_invvpid(void *unused)
3150 {
3151 	struct far_pointer32 fp = {
3152 		.offset = (uintptr_t)&&invvpid,
3153 		.selector = KERNEL_CS32,
3154 	};
3155 	register uintptr_t rsp asm("rsp");
3156 
3157 	TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid,
3158 			"Code address too high.");
3159 	TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high.");
3160 
3161 	asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid);
3162 	return;
3163 invvpid:
3164 	asm volatile (".code32;"
3165 		      "invvpid (%eax), %eax;"
3166 		      "lret;"
3167 		      ".code64");
3168 	__builtin_unreachable();
3169 }
3170 
3171 static void invvpid_test_compatibility_mode(void)
3172 {
3173 	bool fault;
3174 
3175 	fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL);
3176 	report("Compatibility mode INVVPID raises #UD", fault);
3177 }
3178 
3179 static void invvpid_test_not_in_vmx_operation(void)
3180 {
3181 	bool fault;
3182 
3183 	TEST_ASSERT(!vmx_off());
3184 	fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL);
3185 	report("INVVPID outside of VMX operation raises #UD", fault);
3186 	TEST_ASSERT(!vmx_on());
3187 }
3188 
3189 /*
3190  * This does not test real-address mode, virtual-8086 mode, protected mode,
3191  * or CPL > 0.
3192  */
3193 static void invvpid_test_v2(void)
3194 {
3195 	u64 msr;
3196 	int i;
3197 	unsigned types = 0;
3198 	unsigned type;
3199 
3200 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
3201 	    !(ctrl_cpu_rev[1].clr & CPU_VPID))
3202 		test_skip("VPID not supported");
3203 
3204 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3205 
3206 	if (!(msr & VPID_CAP_INVVPID))
3207 		test_skip("INVVPID not supported.\n");
3208 
3209 	if (msr & VPID_CAP_INVVPID_ADDR)
3210 		types |= 1u << INVVPID_ADDR;
3211 	if (msr & VPID_CAP_INVVPID_CXTGLB)
3212 		types |= 1u << INVVPID_CONTEXT_GLOBAL;
3213 	if (msr & VPID_CAP_INVVPID_ALL)
3214 		types |= 1u << INVVPID_ALL;
3215 	if (msr & VPID_CAP_INVVPID_CXTLOC)
3216 		types |= 1u << INVVPID_CONTEXT_LOCAL;
3217 
3218 	if (!types)
3219 		test_skip("No INVVPID types supported.\n");
3220 
3221 	for (i = -127; i < 128; i++)
3222 		try_invvpid(i, 0xffff, 0);
3223 
3224 	/*
3225 	 * VPID must not be more than 16 bits.
3226 	 */
3227 	for (i = 0; i < 64; i++)
3228 		for (type = 0; type < 4; type++)
3229 			if (types & (1u << type))
3230 				try_invvpid(type, 1ul << i, 0);
3231 
3232 	/*
3233 	 * VPID must not be zero, except for "all contexts."
3234 	 */
3235 	for (type = 0; type < 4; type++)
3236 		if (types & (1u << type))
3237 			try_invvpid(type, 0, 0);
3238 
3239 	/*
3240 	 * The gla operand is only validated for single-address INVVPID.
3241 	 */
3242 	if (types & (1u << INVVPID_ADDR))
3243 		try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL);
3244 
3245 	invvpid_test_gp();
3246 	invvpid_test_ss();
3247 	invvpid_test_pf();
3248 	invvpid_test_compatibility_mode();
3249 	invvpid_test_not_in_vmx_operation();
3250 }
3251 
3252 /*
3253  * Test for early VMLAUNCH failure. Returns true if VMLAUNCH makes it
3254  * at least as far as the guest-state checks. Returns false if the
3255  * VMLAUNCH fails early and execution falls through to the next
3256  * instruction.
3257  */
3258 static bool vmlaunch_succeeds(void)
3259 {
3260 	/*
3261 	 * Indirectly set VMX_INST_ERR to 12 ("VMREAD/VMWRITE from/to
3262 	 * unsupported VMCS component"). The caller can then check
3263 	 * to see if a failed VM-entry sets VMX_INST_ERR as expected.
3264 	 */
3265 	vmcs_write(~0u, 0);
3266 
3267 	vmcs_write(HOST_RIP, (uintptr_t)&&success);
3268 	__asm__ __volatile__ goto ("vmwrite %%rsp, %0; vmlaunch"
3269 				   :
3270 				   : "r" ((u64)HOST_RSP)
3271 				   : "cc", "memory"
3272 				   : success);
3273 	return false;
3274 success:
3275 	TEST_ASSERT(vmcs_read(EXI_REASON) ==
3276 		    (VMX_FAIL_STATE | VMX_ENTRY_FAILURE));
3277 	return true;
3278 }
3279 
3280 /*
3281  * Try to launch the current VMCS.
3282  */
3283 static void test_vmx_controls(bool controls_valid, bool xfail)
3284 {
3285 	bool success = vmlaunch_succeeds();
3286 	u32 vmx_inst_err;
3287 
3288 	report_xfail("vmlaunch %s", xfail, success == controls_valid,
3289 		     controls_valid ? "succeeds" : "fails");
3290 	if (!success) {
3291 		vmx_inst_err = vmcs_read(VMX_INST_ERROR);
3292 		report("VMX inst error is %d (actual %d)",
3293 		       vmx_inst_err == VMXERR_ENTRY_INVALID_CONTROL_FIELD,
3294 		       VMXERR_ENTRY_INVALID_CONTROL_FIELD, vmx_inst_err);
3295 	}
3296 }
3297 
3298 /*
3299  * Test a particular value of a VM-execution control bit, if the value
3300  * is required or if the value is zero.
3301  */
3302 static void test_rsvd_ctl_bit_value(const char *name, union vmx_ctrl_msr msr,
3303 				    enum Encoding encoding, unsigned bit,
3304 				    unsigned val)
3305 {
3306 	u32 mask = 1u << bit;
3307 	bool expected;
3308 	u32 controls;
3309 
3310 	if (msr.set & mask)
3311 		TEST_ASSERT(msr.clr & mask);
3312 
3313 	/*
3314 	 * We can't arbitrarily turn on a control bit, because it may
3315 	 * introduce dependencies on other VMCS fields. So, we only
3316 	 * test turning on bits that have a required setting.
3317 	 */
3318 	if (val && (msr.clr & mask) && !(msr.set & mask))
3319 		return;
3320 
3321 	report_prefix_pushf("%s %s bit %d",
3322 			    val ? "Set" : "Clear", name, bit);
3323 
3324 	controls = vmcs_read(encoding);
3325 	if (val) {
3326 		vmcs_write(encoding, msr.set | mask);
3327 		expected = (msr.clr & mask);
3328 	} else {
3329 		vmcs_write(encoding, msr.set & ~mask);
3330 		expected = !(msr.set & mask);
3331 	}
3332 	test_vmx_controls(expected, false);
3333 	vmcs_write(encoding, controls);
3334 	report_prefix_pop();
3335 }
3336 
3337 /*
3338  * Test reserved values of a VM-execution control bit, based on the
3339  * allowed bit settings from the corresponding VMX capability MSR.
3340  */
3341 static void test_rsvd_ctl_bit(const char *name, union vmx_ctrl_msr msr,
3342 			      enum Encoding encoding, unsigned bit)
3343 {
3344 	test_rsvd_ctl_bit_value(name, msr, encoding, bit, 0);
3345 	test_rsvd_ctl_bit_value(name, msr, encoding, bit, 1);
3346 }
3347 
3348 /*
3349  * Reserved bits in the pin-based VM-execution controls must be set
3350  * properly. Software may consult the VMX capability MSRs to determine
3351  * the proper settings.
3352  * [Intel SDM]
3353  */
3354 static void test_pin_based_ctls(void)
3355 {
3356 	unsigned bit;
3357 
3358 	printf("%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PIN" :
3359 	       "MSR_IA32_VMX_PINBASED_CTLS", ctrl_pin_rev.val);
3360 	for (bit = 0; bit < 32; bit++)
3361 		test_rsvd_ctl_bit("pin-based controls",
3362 				  ctrl_pin_rev, PIN_CONTROLS, bit);
3363 }
3364 
3365 /*
3366  * Reserved bits in the primary processor-based VM-execution controls
3367  * must be set properly. Software may consult the VMX capability MSRs
3368  * to determine the proper settings.
3369  * [Intel SDM]
3370  */
3371 static void test_primary_processor_based_ctls(void)
3372 {
3373 	unsigned bit;
3374 
3375 	printf("\n%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PROC" :
3376 	       "MSR_IA32_VMX_PROCBASED_CTLS", ctrl_cpu_rev[0].val);
3377 	for (bit = 0; bit < 32; bit++)
3378 		test_rsvd_ctl_bit("primary processor-based controls",
3379 				  ctrl_cpu_rev[0], CPU_EXEC_CTRL0, bit);
3380 }
3381 
3382 /*
3383  * If the "activate secondary controls" primary processor-based
3384  * VM-execution control is 1, reserved bits in the secondary
3385  * processor-based VM-execution controls must be cleared. Software may
3386  * consult the VMX capability MSRs to determine which bits are
3387  * reserved.
3388  * If the "activate secondary controls" primary processor-based
3389  * VM-execution control is 0 (or if the processor does not support the
3390  * 1-setting of that control), no checks are performed on the
3391  * secondary processor-based VM-execution controls.
3392  * [Intel SDM]
3393  */
3394 static void test_secondary_processor_based_ctls(void)
3395 {
3396 	u32 primary;
3397 	u32 secondary;
3398 	unsigned bit;
3399 
3400 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY))
3401 		return;
3402 
3403 	primary = vmcs_read(CPU_EXEC_CTRL0);
3404 	secondary = vmcs_read(CPU_EXEC_CTRL1);
3405 
3406 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3407 	printf("\nMSR_IA32_VMX_PROCBASED_CTLS2: %lx\n", ctrl_cpu_rev[1].val);
3408 	for (bit = 0; bit < 32; bit++)
3409 		test_rsvd_ctl_bit("secondary processor-based controls",
3410 				  ctrl_cpu_rev[1], CPU_EXEC_CTRL1, bit);
3411 
3412 	/*
3413 	 * When the "activate secondary controls" VM-execution control
3414 	 * is clear, there are no checks on the secondary controls.
3415 	 */
3416 	vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
3417 	vmcs_write(CPU_EXEC_CTRL1, ~0);
3418 	report("Secondary processor-based controls ignored",
3419 	       vmlaunch_succeeds());
3420 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3421 	vmcs_write(CPU_EXEC_CTRL0, primary);
3422 }
3423 
3424 static void try_cr3_target_count(unsigned i, unsigned max)
3425 {
3426 	report_prefix_pushf("CR3 target count 0x%x", i);
3427 	vmcs_write(CR3_TARGET_COUNT, i);
3428 	test_vmx_controls(i <= max, false);
3429 	report_prefix_pop();
3430 }
3431 
3432 /*
3433  * The CR3-target count must not be greater than 4. Future processors
3434  * may support a different number of CR3-target values. Software
3435  * should read the VMX capability MSR IA32_VMX_MISC to determine the
3436  * number of values supported.
3437  * [Intel SDM]
3438  */
3439 static void test_cr3_targets(void)
3440 {
3441 	unsigned supported_targets = (rdmsr(MSR_IA32_VMX_MISC) >> 16) & 0x1ff;
3442 	u32 cr3_targets = vmcs_read(CR3_TARGET_COUNT);
3443 	unsigned i;
3444 
3445 	printf("\nSupported CR3 targets: %d\n", supported_targets);
3446 	TEST_ASSERT(supported_targets <= 256);
3447 
3448 	try_cr3_target_count(-1u, supported_targets);
3449 	try_cr3_target_count(0x80000000, supported_targets);
3450 	try_cr3_target_count(0x7fffffff, supported_targets);
3451 	for (i = 0; i <= supported_targets + 1; i++)
3452 		try_cr3_target_count(i, supported_targets);
3453 	vmcs_write(CR3_TARGET_COUNT, cr3_targets);
3454 }
3455 
3456 /*
3457  * Test a particular address setting for a physical page reference in
3458  * the VMCS.
3459  */
3460 static void test_vmcs_page_addr(const char *name,
3461 				enum Encoding encoding,
3462 				bool ignored,
3463 				bool xfail_beyond_mapped_ram,
3464 				u64 addr)
3465 {
3466 	bool xfail =
3467 		(xfail_beyond_mapped_ram &&
3468 		 addr > fwcfg_get_u64(FW_CFG_RAM_SIZE) - PAGE_SIZE &&
3469 		 addr < (1ul << cpuid_maxphyaddr()));
3470 
3471 	report_prefix_pushf("%s = %lx", name, addr);
3472 	vmcs_write(encoding, addr);
3473 	test_vmx_controls(ignored || (IS_ALIGNED(addr, PAGE_SIZE) &&
3474 				  addr < (1ul << cpuid_maxphyaddr())),
3475 			  xfail);
3476 	report_prefix_pop();
3477 	xfail = false;
3478 }
3479 
3480 /*
3481  * Test interesting values for a physical page reference in the VMCS.
3482  */
3483 static void test_vmcs_page_values(const char *name,
3484 				  enum Encoding encoding,
3485 				  bool ignored,
3486 				  bool xfail_beyond_mapped_ram)
3487 {
3488 	unsigned i;
3489 	u64 orig_val = vmcs_read(encoding);
3490 
3491 	for (i = 0; i < 64; i++)
3492 		test_vmcs_page_addr(name, encoding, ignored,
3493 				    xfail_beyond_mapped_ram, 1ul << i);
3494 
3495 	test_vmcs_page_addr(name, encoding, ignored,
3496 			    xfail_beyond_mapped_ram, PAGE_SIZE - 1);
3497 	test_vmcs_page_addr(name, encoding, ignored,
3498 			    xfail_beyond_mapped_ram, PAGE_SIZE);
3499 	test_vmcs_page_addr(name, encoding, ignored,
3500 			    xfail_beyond_mapped_ram,
3501 			    (1ul << cpuid_maxphyaddr()) - PAGE_SIZE);
3502 	test_vmcs_page_addr(name, encoding, ignored,
3503 			    xfail_beyond_mapped_ram,
3504 			    -1ul);
3505 
3506 	vmcs_write(encoding, orig_val);
3507 }
3508 
3509 /*
3510  * Test a physical page reference in the VMCS, when the corresponding
3511  * feature is enabled and when the corresponding feature is disabled.
3512  */
3513 static void test_vmcs_page_reference(u32 control_bit, enum Encoding field,
3514 				     const char *field_name,
3515 				     const char *control_name,
3516 				     bool xfail_beyond_mapped_ram,
3517 				     bool control_primary)
3518 {
3519 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
3520 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
3521 	u64 page_addr;
3522 
3523 	if (control_primary) {
3524 		if (!(ctrl_cpu_rev[0].clr & control_bit))
3525 			return;
3526 	} else {
3527 		if (!(ctrl_cpu_rev[1].clr & control_bit))
3528 			return;
3529 	}
3530 
3531 	page_addr = vmcs_read(field);
3532 
3533 	report_prefix_pushf("%s enabled", control_name);
3534 	if (control_primary) {
3535 		vmcs_write(CPU_EXEC_CTRL0, primary | control_bit);
3536 	} else {
3537 		vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3538 		vmcs_write(CPU_EXEC_CTRL1, secondary | control_bit);
3539 	}
3540 	test_vmcs_page_values(field_name, field, false, xfail_beyond_mapped_ram);
3541 	report_prefix_pop();
3542 
3543 	report_prefix_pushf("%s disabled", control_name);
3544 	if (control_primary) {
3545 		vmcs_write(CPU_EXEC_CTRL0, primary & ~control_bit);
3546 	} else {
3547 		vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
3548 		vmcs_write(CPU_EXEC_CTRL1, secondary & ~control_bit);
3549 	}
3550 	test_vmcs_page_values(field_name, field, true, false);
3551 	report_prefix_pop();
3552 
3553 	vmcs_write(field, page_addr);
3554 	vmcs_write(CPU_EXEC_CTRL0, primary);
3555 }
3556 
3557 /*
3558  * If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of
3559  * each I/O-bitmap address must be 0. Neither address should set any
3560  * bits beyond the processor's physical-address width.
3561  * [Intel SDM]
3562  */
3563 static void test_io_bitmaps(void)
3564 {
3565 	test_vmcs_page_reference(CPU_IO_BITMAP, IO_BITMAP_A,
3566 				 "I/O bitmap A", "Use I/O bitmaps", false,
3567 				 true);
3568 	test_vmcs_page_reference(CPU_IO_BITMAP, IO_BITMAP_B,
3569 				 "I/O bitmap B", "Use I/O bitmaps", false,
3570 				 true);
3571 }
3572 
3573 /*
3574  * If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of
3575  * the MSR-bitmap address must be 0. The address should not set any
3576  * bits beyond the processor's physical-address width.
3577  * [Intel SDM]
3578  */
3579 static void test_msr_bitmap(void)
3580 {
3581 	test_vmcs_page_reference(CPU_MSR_BITMAP, MSR_BITMAP,
3582 				 "MSR bitmap", "Use MSR bitmaps", false,
3583 				 true);
3584 }
3585 
3586 /*
3587  * If the "use TPR shadow" VM-execution control is 1, the virtual-APIC
3588  * address must satisfy the following checks:
3589  * - Bits 11:0 of the address must be 0.
3590  * - The address should not set any bits beyond the processor's
3591  *   physical-address width.
3592  * [Intel SDM]
3593  */
3594 static void test_apic_virt_addr(void)
3595 {
3596 	test_vmcs_page_reference(CPU_TPR_SHADOW, APIC_VIRT_ADDR,
3597 				 "virtual-APIC address", "Use TPR shadow",
3598 				 true, true);
3599 }
3600 
3601 /*
3602  * If the "virtualize APIC-accesses" VM-execution control is 1, the
3603  * APIC-access address must satisfy the following checks:
3604  *  - Bits 11:0 of the address must be 0.
3605  *  - The address should not set any bits beyond the processor's
3606  *    physical-address width.
3607  * [Intel SDM]
3608  */
3609 static void test_apic_access_addr(void)
3610 {
3611 	void *apic_access_page = alloc_page();
3612 
3613 	vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_page));
3614 
3615 	test_vmcs_page_reference(CPU_VIRT_APIC_ACCESSES, APIC_ACCS_ADDR,
3616 				 "APIC-access address",
3617 				 "virtualize APIC-accesses", false, false);
3618 }
3619 
3620 static bool set_bit_pattern(u8 mask, u32 *secondary)
3621 {
3622 	u8 i;
3623 	bool flag = false;
3624 	u32 test_bits[3] = {
3625 		CPU_VIRT_X2APIC,
3626 		CPU_APIC_REG_VIRT,
3627 		CPU_VINTD
3628 	};
3629 
3630         for (i = 0; i < ARRAY_SIZE(test_bits); i++) {
3631 		if ((mask & (1u << i)) &&
3632 		    (ctrl_cpu_rev[1].clr & test_bits[i])) {
3633 			*secondary |= test_bits[i];
3634 			flag = true;
3635 		}
3636 	}
3637 
3638 	return (flag);
3639 }
3640 
3641 /*
3642  * If the "use TPR shadow" VM-execution control is 0, the following
3643  * VM-execution controls must also be 0:
3644  * 	- virtualize x2APIC mode
3645  *	- APIC-register virtualization
3646  *	- virtual-interrupt delivery
3647  *    [Intel SDM]
3648  *
3649  * 2. If the "virtualize x2APIC mode" VM-execution control is 1, the
3650  *    "virtualize APIC accesses" VM-execution control must be 0.
3651  *    [Intel SDM]
3652  */
3653 static void test_apic_virtual_ctls(void)
3654 {
3655 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3656 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3657 	u32 primary = saved_primary;
3658 	u32 secondary = saved_secondary;
3659 	bool ctrl = false;
3660 	char str[10] = "disabled";
3661 	u8 i = 0, j;
3662 
3663 	/*
3664 	 * First test
3665 	 */
3666 	if (!((ctrl_cpu_rev[0].clr & (CPU_SECONDARY | CPU_TPR_SHADOW)) ==
3667 	    (CPU_SECONDARY | CPU_TPR_SHADOW)))
3668 		return;
3669 
3670 	primary |= CPU_SECONDARY;
3671 	primary &= ~CPU_TPR_SHADOW;
3672 	vmcs_write(CPU_EXEC_CTRL0, primary);
3673 
3674 	while (1) {
3675 		for (j = 1; j < 8; j++) {
3676 			secondary &= ~(CPU_VIRT_X2APIC | CPU_APIC_REG_VIRT | CPU_VINTD);
3677 			if (primary & CPU_TPR_SHADOW) {
3678 				ctrl = true;
3679 			} else {
3680 				if (! set_bit_pattern(j, &secondary))
3681 					ctrl = true;
3682 				else
3683 					ctrl = false;
3684 			}
3685 
3686 			vmcs_write(CPU_EXEC_CTRL1, secondary);
3687 			report_prefix_pushf("Use TPR shadow %s, virtualize x2APIC mode %s, APIC-register virtualization %s, virtual-interrupt delivery %s",
3688 				str, (secondary & CPU_VIRT_X2APIC) ? "enabled" : "disabled", (secondary & CPU_APIC_REG_VIRT) ? "enabled" : "disabled", (secondary & CPU_VINTD) ? "enabled" : "disabled");
3689 			test_vmx_controls(ctrl, false);
3690 			report_prefix_pop();
3691 		}
3692 
3693 		if (i == 1)
3694 			break;
3695 		i++;
3696 
3697 		primary |= CPU_TPR_SHADOW;
3698 		vmcs_write(CPU_EXEC_CTRL0, primary);
3699 		strcpy(str, "enabled");
3700 	}
3701 
3702 	/*
3703 	 * Second test
3704 	 */
3705 	u32 apic_virt_ctls = (CPU_VIRT_X2APIC | CPU_VIRT_APIC_ACCESSES);
3706 
3707 	primary = saved_primary;
3708 	secondary = saved_secondary;
3709 	if (!((ctrl_cpu_rev[1].clr & apic_virt_ctls) == apic_virt_ctls))
3710 		return;
3711 
3712 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3713 	secondary &= ~CPU_VIRT_APIC_ACCESSES;
3714 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_X2APIC);
3715 	report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access disabled");
3716 	test_vmx_controls(true, false);
3717 	report_prefix_pop();
3718 
3719 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_APIC_ACCESSES);
3720 	report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access enabled");
3721 	test_vmx_controls(true, false);
3722 	report_prefix_pop();
3723 
3724 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_X2APIC);
3725 	report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access enabled");
3726 	test_vmx_controls(false, false);
3727 	report_prefix_pop();
3728 
3729 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_APIC_ACCESSES);
3730 	report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access disabled");
3731 	test_vmx_controls(true, false);
3732 	report_prefix_pop();
3733 
3734 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
3735 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
3736 }
3737 
3738 /*
3739  * If the "virtual-interrupt delivery" VM-execution control is 1, the
3740  * "external-interrupt exiting" VM-execution control must be 1.
3741  * [Intel SDM]
3742  */
3743 static void test_virtual_intr_ctls(void)
3744 {
3745 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3746 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3747 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
3748 	u32 primary = saved_primary;
3749 	u32 secondary = saved_secondary;
3750 	u32 pin = saved_pin;
3751 
3752 	if (!((ctrl_cpu_rev[1].clr & CPU_VINTD) &&
3753 	    (ctrl_pin_rev.clr & PIN_EXTINT)))
3754 		return;
3755 
3756 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW);
3757 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VINTD);
3758 	vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT);
3759 	report_prefix_pushf("Virtualize interrupt-delivery disabled; external-interrupt exiting disabled");
3760 	test_vmx_controls(true, false);
3761 	report_prefix_pop();
3762 
3763 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VINTD);
3764 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled");
3765 	test_vmx_controls(false, false);
3766 	report_prefix_pop();
3767 
3768 	vmcs_write(PIN_CONTROLS, pin | PIN_EXTINT);
3769 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting enabled");
3770 	test_vmx_controls(true, false);
3771 	report_prefix_pop();
3772 
3773 	vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT);
3774 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled");
3775 	test_vmx_controls(false, false);
3776 	report_prefix_pop();
3777 
3778 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
3779 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
3780 	vmcs_write(PIN_CONTROLS, saved_pin);
3781 }
3782 
3783 static void test_pi_desc_addr(u64 addr, bool ctrl)
3784 {
3785 	vmcs_write(POSTED_INTR_DESC_ADDR, addr);
3786 	report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-descriptor-address 0x%lx", addr);
3787 	test_vmx_controls(ctrl, false);
3788 	report_prefix_pop();
3789 }
3790 
3791 /*
3792  * If the “process posted interrupts†VM-execution control is 1, the
3793  * following must be true:
3794  *
3795  *	- The “virtual-interrupt delivery†VM-execution control is 1.
3796  *	- The “acknowledge interrupt on exit†VM-exit control is 1.
3797  *	- The posted-interrupt notification vector has a value in the
3798  *	- range 0–255 (bits 15:8 are all 0).
3799  *	- Bits 5:0 of the posted-interrupt descriptor address are all 0.
3800  *	- The posted-interrupt descriptor address does not set any bits
3801  *	  beyond the processor's physical-address width.
3802  * [Intel SDM]
3803  */
3804 static void test_posted_intr(void)
3805 {
3806 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3807 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3808 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
3809 	u32 exit_ctl_saved = vmcs_read(EXI_CONTROLS);
3810 	u32 primary = saved_primary;
3811 	u32 secondary = saved_secondary;
3812 	u32 pin = saved_pin;
3813 	u32 exit_ctl = exit_ctl_saved;
3814 	u16 vec;
3815 	int i;
3816 
3817 	if (!((ctrl_pin_rev.clr & PIN_POST_INTR) &&
3818 	    (ctrl_cpu_rev[1].clr & CPU_VINTD) &&
3819 	    (ctrl_exit_rev.clr & EXI_INTA)))
3820 		return;
3821 
3822 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW);
3823 
3824 	/*
3825 	 * Test virtual-interrupt-delivery and acknowledge-interrupt-on-exit
3826 	 */
3827 	pin |= PIN_POST_INTR;
3828 	vmcs_write(PIN_CONTROLS, pin);
3829 	secondary &= ~CPU_VINTD;
3830 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3831 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled");
3832 	test_vmx_controls(false, false);
3833 	report_prefix_pop();
3834 
3835 	secondary |= CPU_VINTD;
3836 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3837 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled");
3838 	test_vmx_controls(false, false);
3839 	report_prefix_pop();
3840 
3841 	exit_ctl &= ~EXI_INTA;
3842 	vmcs_write(EXI_CONTROLS, exit_ctl);
3843 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit disabled");
3844 	test_vmx_controls(false, false);
3845 	report_prefix_pop();
3846 
3847 	exit_ctl |= EXI_INTA;
3848 	vmcs_write(EXI_CONTROLS, exit_ctl);
3849 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled");
3850 	test_vmx_controls(true, false);
3851 	report_prefix_pop();
3852 
3853 	secondary &= ~CPU_VINTD;
3854 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3855 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled; acknowledge-interrupt-on-exit enabled");
3856 	test_vmx_controls(false, false);
3857 	report_prefix_pop();
3858 
3859 	secondary |= CPU_VINTD;
3860 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3861 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled");
3862 	test_vmx_controls(true, false);
3863 	report_prefix_pop();
3864 
3865 	/*
3866 	 * Test posted-interrupt notification vector
3867 	 */
3868 	for (i = 0; i < 8; i++) {
3869 		vec = (1ul << i);
3870 		vmcs_write(PINV, vec);
3871 		report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
3872 		test_vmx_controls(true, false);
3873 		report_prefix_pop();
3874 	}
3875 	for (i = 8; i < 16; i++) {
3876 		vec = (1ul << i);
3877 		vmcs_write(PINV, vec);
3878 		report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
3879 		test_vmx_controls(false, false);
3880 		report_prefix_pop();
3881 	}
3882 
3883 	vec &= ~(0xff << 8);
3884 	vmcs_write(PINV, vec);
3885 	report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
3886 	test_vmx_controls(true, false);
3887 	report_prefix_pop();
3888 
3889 	/*
3890 	 * Test posted-interrupt descriptor addresss
3891 	 */
3892 	for (i = 0; i < 6; i++) {
3893 		test_pi_desc_addr(1ul << i, false);
3894 	}
3895 
3896 	test_pi_desc_addr(0xf0, false);
3897 	test_pi_desc_addr(0xff, false);
3898 	test_pi_desc_addr(0x0f, false);
3899 	test_pi_desc_addr(0x8000, true);
3900 	test_pi_desc_addr(0x00, true);
3901 	test_pi_desc_addr(0xc000, true);
3902 
3903 	test_vmcs_page_values("process-posted interrupts", POSTED_INTR_DESC_ADDR, false, false);
3904 
3905 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
3906 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
3907 	vmcs_write(PIN_CONTROLS, saved_pin);
3908 }
3909 
3910 static void test_apic_ctls(void)
3911 {
3912 	test_apic_virt_addr();
3913 	test_apic_access_addr();
3914 	test_apic_virtual_ctls();
3915 	test_virtual_intr_ctls();
3916 	test_posted_intr();
3917 }
3918 
3919 /*
3920  * If the “enable VPID†VM-execution control is 1, the value of the
3921  * of the VPID VM-execution control field must not be 0000H.
3922  * [Intel SDM]
3923  */
3924 static void test_vpid(void)
3925 {
3926 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3927 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3928 	u16 vpid = 0x0000;
3929 	int i;
3930 
3931 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
3932 	    (ctrl_cpu_rev[1].clr & CPU_VPID))) {
3933 		test_skip("Secondary controls and/or VPID not supported");
3934 		return;
3935 	}
3936 
3937 	vmcs_write(CPU_EXEC_CTRL0, saved_primary | CPU_SECONDARY);
3938 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary & ~CPU_VPID);
3939 	vmcs_write(VPID, vpid);
3940 	report_prefix_pushf("VPID disabled; VPID value %x", vpid);
3941 	test_vmx_controls(true, false);
3942 	report_prefix_pop();
3943 
3944 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary | CPU_VPID);
3945 	report_prefix_pushf("VPID enabled; VPID value %x", vpid);
3946 	test_vmx_controls(false, false);
3947 	report_prefix_pop();
3948 
3949 	for (i = 0; i < 16; i++) {
3950 		vpid = (short)1 << i;;
3951 		vmcs_write(VPID, vpid);
3952 		report_prefix_pushf("VPID enabled; VPID value %x", vpid);
3953 		test_vmx_controls(true, false);
3954 		report_prefix_pop();
3955 	}
3956 
3957 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
3958 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
3959 }
3960 
3961 static void set_vtpr(unsigned vtpr)
3962 {
3963 	*(u32 *)phys_to_virt(vmcs_read(APIC_VIRT_ADDR) + APIC_TASKPRI) = vtpr;
3964 }
3965 
3966 static void try_tpr_threshold_and_vtpr(unsigned threshold, unsigned vtpr)
3967 {
3968 	bool valid = true;
3969 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
3970 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
3971 
3972 	if ((primary & CPU_TPR_SHADOW) &&
3973 	    (!(primary & CPU_SECONDARY) ||
3974 	     !(secondary & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES))))
3975 		valid = (threshold & 0xf) <= ((vtpr >> 4) & 0xf);
3976 
3977 	set_vtpr(vtpr);
3978 	report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0x%x",
3979 	    threshold, (vtpr >> 4) & 0xf);
3980 	test_vmx_controls(valid, false);
3981 	report_prefix_pop();
3982 }
3983 
3984 static void test_invalid_event_injection(void)
3985 {
3986 	u32 ent_intr_info_save = vmcs_read(ENT_INTR_INFO);
3987 	u32 ent_intr_error_save = vmcs_read(ENT_INTR_ERROR);
3988 	u32 ent_inst_len_save = vmcs_read(ENT_INST_LEN);
3989 	u32 primary_save = vmcs_read(CPU_EXEC_CTRL0);
3990 	u32 secondary_save = vmcs_read(CPU_EXEC_CTRL1);
3991 	u64 guest_cr0_save = vmcs_read(GUEST_CR0);
3992 	u32 ent_intr_info_base = INTR_INFO_VALID_MASK;
3993 	u32 ent_intr_info, ent_intr_err, ent_intr_len;
3994 	u32 cnt;
3995 
3996 	/* Setup */
3997 	report_prefix_push("invalid event injection");
3998 	vmcs_write(ENT_INTR_ERROR, 0x00000000);
3999 	vmcs_write(ENT_INST_LEN, 0x00000001);
4000 
4001 	/* The field’s interruption type is not set to a reserved value. */
4002 	ent_intr_info = ent_intr_info_base | INTR_TYPE_RESERVED | DE_VECTOR;
4003 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4004 			    "RESERVED interruption type invalid [-]",
4005 			    ent_intr_info);
4006 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4007 	test_vmx_controls(false, false);
4008 	report_prefix_pop();
4009 
4010 	ent_intr_info = ent_intr_info_base | INTR_TYPE_EXT_INTR |
4011 			DE_VECTOR;
4012 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4013 			    "RESERVED interruption type invalid [+]",
4014 			    ent_intr_info);
4015 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4016 	test_vmx_controls(true, false);
4017 	report_prefix_pop();
4018 
4019 	/* If the interruption type is other event, the vector is 0. */
4020 	ent_intr_info = ent_intr_info_base | INTR_TYPE_OTHER_EVENT | DB_VECTOR;
4021 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4022 			    "(OTHER EVENT && vector != 0) invalid [-]",
4023 			    ent_intr_info);
4024 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4025 	test_vmx_controls(false, false);
4026 	report_prefix_pop();
4027 
4028 	/* If the interruption type is NMI, the vector is 2 (negative case). */
4029 	ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | DE_VECTOR;
4030 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4031 			    "(NMI && vector != 2) invalid [-]", ent_intr_info);
4032 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4033 	test_vmx_controls(false, false);
4034 	report_prefix_pop();
4035 
4036 	/* If the interruption type is NMI, the vector is 2 (positive case). */
4037 	ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | NMI_VECTOR;
4038 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4039 			    "(NMI && vector == 2) valid [+]", ent_intr_info);
4040 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4041 	test_vmx_controls(true, false);
4042 	report_prefix_pop();
4043 
4044 	/*
4045 	 * If the interruption type
4046 	 * is HW exception, the vector is at most 31.
4047 	 */
4048 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 0x20;
4049 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4050 			    "(HW exception && vector > 31) invalid [-]",
4051 			    ent_intr_info);
4052 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4053 	test_vmx_controls(false, false);
4054 	report_prefix_pop();
4055 
4056 	/*
4057 	 * deliver-error-code is 1 iff either
4058 	 * (a) the "unrestricted guest" VM-execution control is 0
4059 	 * (b) CR0.PE is set.
4060 	 */
4061 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION |
4062 			GP_VECTOR;
4063 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4064 			    "error code <-> (!URG || prot_mode) [-]",
4065 			    ent_intr_info);
4066 	disable_unrestricted_guest();
4067 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4068 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4069 	test_vmx_controls(false, false);
4070 	report_prefix_pop();
4071 
4072 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4073 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4074 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4075 			    "error code <-> (!URG || prot_mode) [+]",
4076 			    ent_intr_info);
4077 	disable_unrestricted_guest();
4078 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4079 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4080 	test_vmx_controls(true, false);
4081 	report_prefix_pop();
4082 
4083 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4084 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4085 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4086 			    "error code <-> (!URG || prot_mode) [-]",
4087 			    ent_intr_info);
4088 	enable_unrestricted_guest();
4089 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4090 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4091 	test_vmx_controls(false, false);
4092 	report_prefix_pop();
4093 
4094 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION |
4095 			GP_VECTOR;
4096 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4097 			    "error code <-> (!URG || prot_mode) [-]",
4098 			    ent_intr_info);
4099 	vmcs_write(GUEST_CR0, guest_cr0_save | X86_CR0_PE);
4100 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4101 	test_vmx_controls(false, false);
4102 	report_prefix_pop();
4103 
4104 	/* deliver-error-code is 1 iff the interruption type is HW exception */
4105 	report_prefix_push("error code <-> HW exception");
4106 	for (cnt = 0; cnt < 8; cnt++) {
4107 		u32 exception_type_mask = cnt << 8;
4108 		u32 deliver_error_code_mask =
4109 			exception_type_mask != INTR_TYPE_HARD_EXCEPTION ?
4110 			INTR_INFO_DELIVER_CODE_MASK : 0;
4111 
4112 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4113 				exception_type_mask | GP_VECTOR;
4114 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4115 				    ent_intr_info);
4116 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4117 		test_vmx_controls(false, false);
4118 		report_prefix_pop();
4119 	}
4120 	report_prefix_pop();
4121 
4122 	/*
4123 	 * deliver-error-code is 1 iff the the vector
4124 	 * indicates an exception that would normally deliver an error code
4125 	 */
4126 	report_prefix_push("error code <-> vector delivers error code");
4127 	for (cnt = 0; cnt < 32; cnt++) {
4128 		bool has_error_code = false;
4129 		u32 deliver_error_code_mask;
4130 
4131 		switch (cnt) {
4132 		case DF_VECTOR:
4133 		case TS_VECTOR:
4134 		case NP_VECTOR:
4135 		case SS_VECTOR:
4136 		case GP_VECTOR:
4137 		case PF_VECTOR:
4138 		case AC_VECTOR:
4139 			has_error_code = true;
4140 		}
4141 
4142 		/* Negative case */
4143 		deliver_error_code_mask = has_error_code ?
4144 						0 :
4145 						INTR_INFO_DELIVER_CODE_MASK;
4146 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4147 				INTR_TYPE_HARD_EXCEPTION | cnt;
4148 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4149 				    ent_intr_info);
4150 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4151 		test_vmx_controls(false, false);
4152 		report_prefix_pop();
4153 
4154 		/* Positive case */
4155 		deliver_error_code_mask = has_error_code ?
4156 						INTR_INFO_DELIVER_CODE_MASK :
4157 						0;
4158 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4159 				INTR_TYPE_HARD_EXCEPTION | cnt;
4160 		report_prefix_pushf("VM-entry intr info=0x%x [+]",
4161 				    ent_intr_info);
4162 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4163 		test_vmx_controls(true, false);
4164 		report_prefix_pop();
4165 	}
4166 	report_prefix_pop();
4167 
4168 	/* Reserved bits in the field (30:12) are 0. */
4169 	report_prefix_push("reserved bits clear");
4170 	for (cnt = 12; cnt <= 30; cnt++) {
4171 		ent_intr_info = ent_intr_info_base |
4172 				INTR_INFO_DELIVER_CODE_MASK |
4173 				INTR_TYPE_HARD_EXCEPTION | GP_VECTOR |
4174 				(1U << cnt);
4175 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4176 				    ent_intr_info);
4177 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4178 		test_vmx_controls(false, false);
4179 		report_prefix_pop();
4180 	}
4181 	report_prefix_pop();
4182 
4183 	/*
4184 	 * If deliver-error-code is 1
4185 	 * bits 31:15 of the VM-entry exception error-code field are 0.
4186 	 */
4187 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4188 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4189 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4190 			    "VM-entry exception error code[31:15] clear",
4191 			    ent_intr_info);
4192 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4193 	for (cnt = 15; cnt <= 31; cnt++) {
4194 		ent_intr_err = 1U << cnt;
4195 		report_prefix_pushf("VM-entry intr error=0x%x [-]",
4196 				    ent_intr_err);
4197 		vmcs_write(ENT_INTR_ERROR, ent_intr_err);
4198 		test_vmx_controls(false, false);
4199 		report_prefix_pop();
4200 	}
4201 	vmcs_write(ENT_INTR_ERROR, 0x00000000);
4202 	report_prefix_pop();
4203 
4204 	/*
4205 	 * If the interruption type is software interrupt, software exception,
4206 	 * or privileged software exception, the VM-entry instruction-length
4207 	 * field is in the range 0–15.
4208 	 */
4209 
4210 	for (cnt = 0; cnt < 3; cnt++) {
4211 		switch (cnt) {
4212 		case 0:
4213 			ent_intr_info = ent_intr_info_base |
4214 					INTR_TYPE_SOFT_INTR;
4215 			break;
4216 		case 1:
4217 			ent_intr_info = ent_intr_info_base |
4218 					INTR_TYPE_SOFT_EXCEPTION;
4219 			break;
4220 		case 2:
4221 			ent_intr_info = ent_intr_info_base |
4222 					INTR_TYPE_PRIV_SW_EXCEPTION;
4223 			break;
4224 		}
4225 		report_prefix_pushf("%s, VM-entry intr info=0x%x",
4226 				    "VM-entry instruction-length check",
4227 				    ent_intr_info);
4228 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4229 
4230 		/* Instruction length set to -1 (0xFFFFFFFF) should fail */
4231 		ent_intr_len = -1;
4232 		report_prefix_pushf("VM-entry intr length = 0x%x [-]",
4233 				    ent_intr_len);
4234 		vmcs_write(ENT_INST_LEN, ent_intr_len);
4235 		test_vmx_controls(false, false);
4236 		report_prefix_pop();
4237 
4238 		/* Instruction length set to 16 should fail */
4239 		ent_intr_len = 0x00000010;
4240 		report_prefix_pushf("VM-entry intr length = 0x%x [-]",
4241 				    ent_intr_len);
4242 		vmcs_write(ENT_INST_LEN, 0x00000010);
4243 		test_vmx_controls(false, false);
4244 		report_prefix_pop();
4245 
4246 		report_prefix_pop();
4247 	}
4248 
4249 	/* Cleanup */
4250 	vmcs_write(ENT_INTR_INFO, ent_intr_info_save);
4251 	vmcs_write(ENT_INTR_ERROR, ent_intr_error_save);
4252 	vmcs_write(ENT_INST_LEN, ent_inst_len_save);
4253 	vmcs_write(CPU_EXEC_CTRL0, primary_save);
4254 	vmcs_write(CPU_EXEC_CTRL1, secondary_save);
4255 	vmcs_write(GUEST_CR0, guest_cr0_save);
4256 	report_prefix_pop();
4257 }
4258 
4259 /*
4260  * Test interesting vTPR values for a given TPR threshold.
4261  */
4262 static void test_vtpr_values(unsigned threshold)
4263 {
4264 	try_tpr_threshold_and_vtpr(threshold, (threshold - 1) << 4);
4265 	try_tpr_threshold_and_vtpr(threshold, threshold << 4);
4266 	try_tpr_threshold_and_vtpr(threshold, (threshold + 1) << 4);
4267 }
4268 
4269 static void try_tpr_threshold(unsigned threshold)
4270 {
4271 	bool valid = true;
4272 
4273 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4274 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4275 
4276 	if ((primary & CPU_TPR_SHADOW) && !((primary & CPU_SECONDARY) &&
4277 	    (secondary & CPU_VINTD)))
4278 		valid = !(threshold >> 4);
4279 
4280 	set_vtpr(-1);
4281 	vmcs_write(TPR_THRESHOLD, threshold);
4282 	report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0xf", threshold);
4283 	test_vmx_controls(valid, false);
4284 	report_prefix_pop();
4285 
4286 	if (valid)
4287 		test_vtpr_values(threshold);
4288 }
4289 
4290 /*
4291  * Test interesting TPR threshold values.
4292  */
4293 static void test_tpr_threshold_values(void)
4294 {
4295 	unsigned i;
4296 
4297 	for (i = 0; i < 0x10; i++)
4298 		try_tpr_threshold(i);
4299 	for (i = 4; i < 32; i++)
4300 		try_tpr_threshold(1u << i);
4301 	try_tpr_threshold(-1u);
4302 	try_tpr_threshold(0x7fffffff);
4303 }
4304 
4305 /*
4306  * This test covers the following two VM entry checks:
4307  *
4308  *      i) If the "use TPR shadow" VM-execution control is 1 and the
4309  *         "virtual-interrupt delivery" VM-execution control is 0, bits
4310  *         31:4 of the TPR threshold VM-execution control field must
4311 	   be 0.
4312  *         [Intel SDM]
4313  *
4314  *      ii) If the "use TPR shadow" VM-execution control is 1, the
4315  *          "virtual-interrupt delivery" VM-execution control is 0
4316  *          and the "virtualize APIC accesses" VM-execution control
4317  *          is 0, the value of bits 3:0 of the TPR threshold VM-execution
4318  *          control field must not be greater than the value of bits
4319  *          7:4 of VTPR.
4320  *          [Intel SDM]
4321  */
4322 static void test_tpr_threshold(void)
4323 {
4324 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4325 	void *virtual_apic_page;
4326 
4327 	if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW))
4328 		return;
4329 
4330 	virtual_apic_page = alloc_page();
4331 	memset(virtual_apic_page, 0xff, PAGE_SIZE);
4332 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
4333 
4334 	vmcs_write(CPU_EXEC_CTRL0, primary & ~(CPU_TPR_SHADOW | CPU_SECONDARY));
4335 	report_prefix_pushf("Use TPR shadow disabled, secondary controls disabled");
4336 	test_tpr_threshold_values();
4337 	report_prefix_pop();
4338 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_TPR_SHADOW);
4339 	report_prefix_pushf("Use TPR shadow enabled, secondary controls disabled");
4340 	test_tpr_threshold_values();
4341 	report_prefix_pop();
4342 
4343 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4344 	    (ctrl_cpu_rev[1].clr & (CPU_VINTD  | CPU_VIRT_APIC_ACCESSES)))) {
4345 		vmcs_write(CPU_EXEC_CTRL0, primary);
4346 		return;
4347 	}
4348 
4349 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4350 
4351 	if (ctrl_cpu_rev[1].clr & CPU_VINTD) {
4352 		vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD);
4353 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled");
4354 		test_tpr_threshold_values();
4355 		report_prefix_pop();
4356 
4357 		vmcs_write(CPU_EXEC_CTRL0,
4358 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4359 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled");
4360 		test_tpr_threshold_values();
4361 		report_prefix_pop();
4362 	}
4363 
4364 	if (ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES) {
4365 		vmcs_write(CPU_EXEC_CTRL0,
4366 			   vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY);
4367 		vmcs_write(CPU_EXEC_CTRL1, CPU_VIRT_APIC_ACCESSES);
4368 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4369 		test_tpr_threshold_values();
4370 		report_prefix_pop();
4371 
4372 		vmcs_write(CPU_EXEC_CTRL0,
4373 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4374 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4375 		test_tpr_threshold_values();
4376 		report_prefix_pop();
4377 	}
4378 
4379 	if ((ctrl_cpu_rev[1].clr &
4380 	     (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) ==
4381 	    (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) {
4382 		vmcs_write(CPU_EXEC_CTRL0,
4383 			   vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY);
4384 		vmcs_write(CPU_EXEC_CTRL1,
4385 			   CPU_VINTD | CPU_VIRT_APIC_ACCESSES);
4386 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4387 		test_tpr_threshold_values();
4388 		report_prefix_pop();
4389 
4390 		vmcs_write(CPU_EXEC_CTRL0,
4391 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4392 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4393 		test_tpr_threshold_values();
4394 		report_prefix_pop();
4395 	}
4396 
4397 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4398 	vmcs_write(CPU_EXEC_CTRL0, primary);
4399 }
4400 
4401 /*
4402  * This test verifies the following two vmentry checks:
4403  *
4404  *  If the "NMI exiting" VM-execution control is 0, "Virtual NMIs"
4405  *  VM-execution control must be 0.
4406  *  [Intel SDM]
4407  *
4408  *  If the “virtual NMIs” VM-execution control is 0, the “NMI-window
4409  *  exiting” VM-execution control must be 0.
4410  *  [Intel SDM]
4411  */
4412 static void test_nmi_ctrls(void)
4413 {
4414 	u32 pin_ctrls, cpu_ctrls0, test_pin_ctrls, test_cpu_ctrls0;
4415 
4416 	if ((ctrl_pin_rev.clr & (PIN_NMI | PIN_VIRT_NMI)) !=
4417 	    (PIN_NMI | PIN_VIRT_NMI)) {
4418 		test_skip("NMI exiting and Virtual NMIs are not supported !");
4419 		return;
4420 	}
4421 
4422 	/* Save the controls so that we can restore them after our tests */
4423 	pin_ctrls = vmcs_read(PIN_CONTROLS);
4424 	cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0);
4425 
4426 	test_pin_ctrls = pin_ctrls & ~(PIN_NMI | PIN_VIRT_NMI);
4427 	test_cpu_ctrls0 = cpu_ctrls0 & ~CPU_NMI_WINDOW;
4428 
4429 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4430 	report_prefix_pushf("NMI-exiting disabled, virtual-NMIs disabled");
4431 	test_vmx_controls(true, false);
4432 	report_prefix_pop();
4433 
4434 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_VIRT_NMI);
4435 	report_prefix_pushf("NMI-exiting disabled, virtual-NMIs enabled");
4436 	test_vmx_controls(false, false);
4437 	report_prefix_pop();
4438 
4439 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4440 	report_prefix_pushf("NMI-exiting enabled, virtual-NMIs enabled");
4441 	test_vmx_controls(true, false);
4442 	report_prefix_pop();
4443 
4444 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_NMI);
4445 	report_prefix_pushf("NMI-exiting enabled, virtual-NMIs disabled");
4446 	test_vmx_controls(true, false);
4447 	report_prefix_pop();
4448 
4449 	if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) {
4450 		report_info("NMI-window exiting is not supported, skipping...");
4451 		goto done;
4452 	}
4453 
4454 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4455 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW);
4456 	report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting enabled");
4457 	test_vmx_controls(false, false);
4458 	report_prefix_pop();
4459 
4460 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4461 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0);
4462 	report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting disabled");
4463 	test_vmx_controls(true, false);
4464 	report_prefix_pop();
4465 
4466 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4467 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW);
4468 	report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting enabled");
4469 	test_vmx_controls(true, false);
4470 	report_prefix_pop();
4471 
4472 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4473 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0);
4474 	report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting disabled");
4475 	test_vmx_controls(true, false);
4476 	report_prefix_pop();
4477 
4478 	/* Restore the controls to their original values */
4479 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0);
4480 done:
4481 	vmcs_write(PIN_CONTROLS, pin_ctrls);
4482 }
4483 
4484 static void test_eptp_ad_bit(u64 eptp, bool ctrl)
4485 {
4486 	vmcs_write(EPTP, eptp);
4487 	report_prefix_pushf("Enable-EPT enabled; EPT accessed and dirty flag %s",
4488 	    (eptp & EPTP_AD_FLAG) ? "1": "0");
4489 	test_vmx_controls(ctrl, false);
4490 	report_prefix_pop();
4491 
4492 }
4493 /*
4494  * If the “enable EPT†VM-execution control is 1, the EPTP VM-execution
4495  * control field must satisfy the following checks:
4496  *
4497  *   —  The EPT memory type (bits 2:0) must be a value supported by the
4498  *	processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR.
4499  *   —  Bits 5:3 (1 less than the EPT page-walk length) must be 3,
4500  *	indicating an EPT page-walk length of 4.
4501  *   —  Bit 6 (enable bit for accessed and dirty flags for EPT) must be
4502  *	0 if bit 21 of the IA32_VMX_EPT_VPID_CAP MSR is read as 0,
4503  *	indicating that the processor does not support accessed and dirty
4504  *	dirty flags for EPT.
4505  *   —  Reserved bits 11:7 and 63:N (where N is the processor’s
4506  *	physical-address width) must all be 0.
4507  *
4508  *  [Intel SDM]
4509  */
4510 static void test_eptp(void)
4511 {
4512 	u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0);
4513 	u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1);
4514 	u64 eptp_saved = vmcs_read(EPTP);
4515 	u32 primary = primary_saved;
4516 	u32 secondary = secondary_saved;
4517 	u64 msr, eptp = eptp_saved;
4518 	bool un_cache = false;
4519 	bool wr_bk = false;
4520 	bool ctrl;
4521 	u32 i, maxphysaddr;
4522 	u64 j, resv_bits_mask = 0;
4523 
4524 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4525 	    (ctrl_cpu_rev[1].clr & CPU_EPT))) {
4526 		test_skip("\"CPU secondary\" and/or \"enable EPT\" execution controls are not supported !");
4527 		return;
4528 	}
4529 
4530 	/*
4531 	 * Memory type (bits 2:0)
4532 	 */
4533 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
4534 	if (msr & EPT_CAP_UC)
4535 		un_cache = true;
4536 	if (msr & EPT_CAP_WB)
4537 		wr_bk = true;
4538 
4539 	primary |= CPU_SECONDARY;
4540 	vmcs_write(CPU_EXEC_CTRL0, primary);
4541 	secondary |= CPU_EPT;
4542 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4543 	eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4544 	    (3ul << EPTP_PG_WALK_LEN_SHIFT);
4545 	vmcs_write(EPTP, eptp);
4546 
4547 	for (i = 0; i < 8; i++) {
4548 		if (i == 0) {
4549 			if (un_cache) {
4550 				report_info("EPT paging structure memory-type is Un-cacheable\n");
4551 				ctrl = true;
4552 			} else {
4553 				ctrl = false;
4554 			}
4555 		} else if (i == 6) {
4556 			if (wr_bk) {
4557 				report_info("EPT paging structure memory-type is Write-back\n");
4558 				ctrl = true;
4559 			} else {
4560 				ctrl = false;
4561 			}
4562 		} else {
4563 			ctrl = false;
4564 		}
4565 
4566 		eptp = (eptp & ~EPT_MEM_TYPE_MASK) | i;
4567 		vmcs_write(EPTP, eptp);
4568 		report_prefix_pushf("Enable-EPT enabled; EPT memory type %lu",
4569 		    eptp & EPT_MEM_TYPE_MASK);
4570 		test_vmx_controls(ctrl, false);
4571 		report_prefix_pop();
4572 	}
4573 
4574 	eptp = (eptp & ~EPT_MEM_TYPE_MASK) | 6ul;
4575 
4576 	/*
4577 	 * Page walk length (bits 5:3)
4578 	 */
4579 	for (i = 0; i < 8; i++) {
4580 		eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4581 		    (i << EPTP_PG_WALK_LEN_SHIFT);
4582 		if (i == 3)
4583 			ctrl = true;
4584 		else
4585 			ctrl = false;
4586 
4587 		vmcs_write(EPTP, eptp);
4588 		report_prefix_pushf("Enable-EPT enabled; EPT page walk length %lu",
4589 		    eptp & EPTP_PG_WALK_LEN_MASK);
4590 		test_vmx_controls(ctrl, false);
4591 		report_prefix_pop();
4592 	}
4593 
4594 	eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4595 	    3ul << EPTP_PG_WALK_LEN_SHIFT;
4596 
4597 	/*
4598 	 * Accessed and dirty flag (bit 6)
4599 	 */
4600 	if (msr & EPT_CAP_AD_FLAG) {
4601 		report_info("Processor supports accessed and dirty flag");
4602 		eptp &= ~EPTP_AD_FLAG;
4603 		test_eptp_ad_bit(eptp, true);
4604 
4605 		eptp |= EPTP_AD_FLAG;
4606 		test_eptp_ad_bit(eptp, true);
4607 	} else {
4608 		report_info("Processor does not supports accessed and dirty flag");
4609 		eptp &= ~EPTP_AD_FLAG;
4610 		test_eptp_ad_bit(eptp, true);
4611 
4612 		eptp |= EPTP_AD_FLAG;
4613 		test_eptp_ad_bit(eptp, false);
4614 	}
4615 
4616 	/*
4617 	 * Reserved bits [11:7] and [63:N]
4618 	 */
4619 	for (i = 0; i < 32; i++) {
4620 		if (i  == 0)
4621 			ctrl = true;
4622 		else
4623 			ctrl = false;
4624 
4625 		eptp = (eptp &
4626 		    ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)) |
4627 		    (i << EPTP_RESERV_BITS_SHIFT);
4628 		vmcs_write(EPTP, eptp);
4629 		report_prefix_pushf("Enable-EPT enabled; reserved bits [11:7] %lu",
4630 		    (eptp >> EPTP_RESERV_BITS_SHIFT) &
4631 		    EPTP_RESERV_BITS_MASK);
4632 		test_vmx_controls(ctrl, false);
4633 		report_prefix_pop();
4634 	}
4635 
4636 	eptp = (eptp & ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT));
4637 
4638 	maxphysaddr = cpuid_maxphyaddr();
4639 	for (i = 0; i < (63 - maxphysaddr + 1); i++) {
4640 		resv_bits_mask |= 1ul << i;
4641 	}
4642 
4643 	for (j = 0; j < (63 - maxphysaddr + 1); j++) {
4644 		if (j  == 0)
4645 			ctrl = true;
4646 		else
4647 			ctrl = false;
4648 
4649 		eptp = (eptp & ~(resv_bits_mask << maxphysaddr)) |
4650 		    (j << maxphysaddr);
4651 		vmcs_write(EPTP, eptp);
4652 		report_prefix_pushf("Enable-EPT enabled; reserved bits [63:N] %lu",
4653 		    (eptp >> maxphysaddr) & resv_bits_mask);
4654 		test_vmx_controls(ctrl, false);
4655 		report_prefix_pop();
4656 	}
4657 
4658 	vmcs_write(CPU_EXEC_CTRL0, primary_saved);
4659 	vmcs_write(CPU_EXEC_CTRL1, secondary_saved);
4660 	vmcs_write(EPTP, eptp_saved);
4661 }
4662 
4663 /*
4664  * Check that the virtual CPU checks all of the VMX controls as
4665  * documented in the Intel SDM.
4666  */
4667 static void vmx_controls_test(void)
4668 {
4669 	/*
4670 	 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will
4671 	 * fail due to invalid guest state, should we make it that
4672 	 * far.
4673 	 */
4674 	vmcs_write(GUEST_RFLAGS, 0);
4675 
4676 	test_pin_based_ctls();
4677 	test_primary_processor_based_ctls();
4678 	test_secondary_processor_based_ctls();
4679 	test_cr3_targets();
4680 	test_io_bitmaps();
4681 	test_msr_bitmap();
4682 	test_apic_ctls();
4683 	test_tpr_threshold();
4684 	test_nmi_ctrls();
4685 	test_invalid_event_injection();
4686 	test_vpid();
4687 	test_eptp();
4688 }
4689 
4690 static bool valid_vmcs_for_vmentry(void)
4691 {
4692 	struct vmcs *current_vmcs = NULL;
4693 
4694 	if (vmcs_save(&current_vmcs))
4695 		return false;
4696 
4697 	return current_vmcs && !current_vmcs->hdr.shadow_vmcs;
4698 }
4699 
4700 static void try_vmentry_in_movss_shadow(void)
4701 {
4702 	u32 vm_inst_err;
4703 	u32 flags;
4704 	bool early_failure = false;
4705 	u32 expected_flags = X86_EFLAGS_FIXED;
4706 	bool valid_vmcs = valid_vmcs_for_vmentry();
4707 
4708 	expected_flags |= valid_vmcs ? X86_EFLAGS_ZF : X86_EFLAGS_CF;
4709 
4710 	/*
4711 	 * Indirectly set VM_INST_ERR to 12 ("VMREAD/VMWRITE from/to
4712 	 * unsupported VMCS component").
4713 	 */
4714 	vmcs_write(~0u, 0);
4715 
4716 	__asm__ __volatile__ ("mov %[host_rsp], %%edx;"
4717 			      "vmwrite %%rsp, %%rdx;"
4718 			      "mov 0f, %%rax;"
4719 			      "mov %[host_rip], %%edx;"
4720 			      "vmwrite %%rax, %%rdx;"
4721 			      "mov $-1, %%ah;"
4722 			      "sahf;"
4723 			      "mov %%ss, %%ax;"
4724 			      "mov %%ax, %%ss;"
4725 			      "vmlaunch;"
4726 			      "mov $1, %[early_failure];"
4727 			      "0: lahf;"
4728 			      "movzbl %%ah, %[flags]"
4729 			      : [early_failure] "+r" (early_failure),
4730 				[flags] "=&a" (flags)
4731 			      : [host_rsp] "i" (HOST_RSP),
4732 				[host_rip] "i" (HOST_RIP)
4733 			      : "rdx", "cc", "memory");
4734 	vm_inst_err = vmcs_read(VMX_INST_ERROR);
4735 
4736 	report("Early VM-entry failure", early_failure);
4737 	report("RFLAGS[8:0] is %x (actual %x)", flags == expected_flags,
4738 	       expected_flags, flags);
4739 	if (valid_vmcs)
4740 		report("VM-instruction error is %d (actual %d)",
4741 		       vm_inst_err == VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS,
4742 		       VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, vm_inst_err);
4743 }
4744 
4745 static void vmentry_movss_shadow_test(void)
4746 {
4747 	struct vmcs *orig_vmcs;
4748 
4749 	TEST_ASSERT(!vmcs_save(&orig_vmcs));
4750 
4751 	/*
4752 	 * Set the launched flag on the current VMCS to verify the correct
4753 	 * error priority, below.
4754 	 */
4755 	test_set_guest(v2_null_test_guest);
4756 	enter_guest();
4757 
4758 	/*
4759 	 * With bit 1 of the guest's RFLAGS clear, VM-entry should
4760 	 * fail due to invalid guest state (if we make it that far).
4761 	 */
4762 	vmcs_write(GUEST_RFLAGS, 0);
4763 
4764 	/*
4765 	 * "VM entry with events blocked by MOV SS" takes precedence over
4766 	 * "VMLAUNCH with non-clear VMCS."
4767 	 */
4768 	report_prefix_push("valid current-VMCS");
4769 	try_vmentry_in_movss_shadow();
4770 	report_prefix_pop();
4771 
4772 	/*
4773 	 * VMfailInvalid takes precedence over "VM entry with events
4774 	 * blocked by MOV SS."
4775 	 */
4776 	TEST_ASSERT(!vmcs_clear(orig_vmcs));
4777 	report_prefix_push("no current-VMCS");
4778 	try_vmentry_in_movss_shadow();
4779 	report_prefix_pop();
4780 
4781 	TEST_ASSERT(!make_vmcs_current(orig_vmcs));
4782 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
4783 }
4784 
4785 #define X86_FEATURE_PCID       (1 << 17)
4786 #define X86_FEATURE_MCE        (1 << 7)
4787 
4788 static int write_cr4_checking(unsigned long val)
4789 {
4790 	asm volatile(ASM_TRY("1f")
4791 		     "mov %0, %%cr4\n\t"
4792 		     "1:": : "r" (val));
4793 	return exception_vector();
4794 }
4795 
4796 static void vmx_cr_load_test(void)
4797 {
4798 	struct cpuid _cpuid = cpuid(1);
4799 	unsigned long cr4 = read_cr4(), cr3 = read_cr3();
4800 
4801 	if (!(_cpuid.c & X86_FEATURE_PCID)) {
4802 		report_skip("PCID not detected");
4803 		return;
4804 	}
4805 	if (!(_cpuid.d & X86_FEATURE_MCE)) {
4806 		report_skip("MCE not detected");
4807 		return;
4808 	}
4809 
4810 	TEST_ASSERT(!(cr4 & (X86_CR4_PCIDE | X86_CR4_MCE)));
4811 	TEST_ASSERT(!(cr3 & X86_CR3_PCID_MASK));
4812 
4813 	/* Enable PCID for L1. */
4814 	cr4 |= X86_CR4_PCIDE;
4815 	cr3 |= 0x1;
4816 	TEST_ASSERT(!write_cr4_checking(cr4));
4817 	write_cr3(cr3);
4818 
4819 	test_set_guest(v2_null_test_guest);
4820 	vmcs_write(HOST_CR4, cr4);
4821 	vmcs_write(HOST_CR3, cr3);
4822 	enter_guest();
4823 
4824 	/*
4825 	 * No exception is expected.
4826 	 *
4827 	 * NB. KVM loads the last guest write to CR4 into CR4 read
4828 	 *     shadow. In order to trigger an exit to KVM, we can set a
4829 	 *     bit that was zero in the above CR4 write and is owned by
4830 	 *     KVM. We choose to set CR4.MCE, which shall have no side
4831 	 *     effect because normally no guest MCE (e.g., as the result
4832 	 *     of bad memory) would happen during this test.
4833 	 */
4834 	TEST_ASSERT(!write_cr4_checking(cr4 | X86_CR4_MCE));
4835 
4836 	/* Cleanup L1 state: disable PCID. */
4837 	write_cr3(cr3 & ~X86_CR3_PCID_MASK);
4838 	TEST_ASSERT(!write_cr4_checking(cr4 & ~X86_CR4_PCIDE));
4839 }
4840 
4841 bool vmx_pending_event_ipi_fired;
4842 static void vmx_pending_event_ipi_isr(isr_regs_t *regs)
4843 {
4844 	vmx_pending_event_ipi_fired = true;
4845 	eoi();
4846 }
4847 
4848 bool vmx_pending_event_guest_run;
4849 static void vmx_pending_event_guest(void)
4850 {
4851 	vmcall();
4852 	vmx_pending_event_guest_run = true;
4853 }
4854 
4855 static void vmx_pending_event_test_core(bool guest_hlt)
4856 {
4857 	int ipi_vector = 0xf1;
4858 
4859 	vmx_pending_event_ipi_fired = false;
4860 	handle_irq(ipi_vector, vmx_pending_event_ipi_isr);
4861 
4862 	vmx_pending_event_guest_run = false;
4863 	test_set_guest(vmx_pending_event_guest);
4864 
4865 	vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT);
4866 
4867 	enter_guest();
4868 	skip_exit_vmcall();
4869 
4870 	if (guest_hlt)
4871 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
4872 
4873 	irq_disable();
4874 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
4875 				   APIC_DM_FIXED | ipi_vector,
4876 				   0);
4877 
4878 	enter_guest();
4879 
4880 	assert_exit_reason(VMX_EXTINT);
4881 	report("Guest did not run before host received IPI",
4882 		   !vmx_pending_event_guest_run);
4883 
4884 	irq_enable();
4885 	asm volatile ("nop");
4886 	irq_disable();
4887 	report("Got pending interrupt after IRQ enabled",
4888 		   vmx_pending_event_ipi_fired);
4889 
4890 	if (guest_hlt)
4891 		vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
4892 
4893 	enter_guest();
4894 	report("Guest finished running when no interrupt",
4895 		   vmx_pending_event_guest_run);
4896 }
4897 
4898 static void vmx_pending_event_test(void)
4899 {
4900 	vmx_pending_event_test_core(false);
4901 }
4902 
4903 static void vmx_pending_event_hlt_test(void)
4904 {
4905 	vmx_pending_event_test_core(true);
4906 }
4907 
4908 static bool cpu_has_apicv(void)
4909 {
4910 	return ((ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT) &&
4911 		(ctrl_cpu_rev[1].clr & CPU_VINTD) &&
4912 		(ctrl_pin_rev.clr & PIN_POST_INTR));
4913 }
4914 
4915 static void enable_vid(void)
4916 {
4917 	void *virtual_apic_page;
4918 
4919 	assert(cpu_has_apicv());
4920 
4921 	disable_intercept_for_x2apic_msrs();
4922 
4923 	virtual_apic_page = alloc_page();
4924 	vmcs_write(APIC_VIRT_ADDR, (u64)virtual_apic_page);
4925 
4926 	vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT);
4927 
4928 	vmcs_write(EOI_EXIT_BITMAP0, 0x0);
4929 	vmcs_write(EOI_EXIT_BITMAP1, 0x0);
4930 	vmcs_write(EOI_EXIT_BITMAP2, 0x0);
4931 	vmcs_write(EOI_EXIT_BITMAP3, 0x0);
4932 
4933 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY | CPU_TPR_SHADOW);
4934 	vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VINTD | CPU_VIRT_X2APIC);
4935 }
4936 
4937 static void trigger_ioapic_scan_thread(void *data)
4938 {
4939 	/* Wait until other CPU entered L2 */
4940 	while (vmx_get_test_stage() != 1)
4941 		;
4942 
4943 	/* Trigger ioapic scan */
4944 	ioapic_set_redir(0xf, 0x79, TRIGGER_LEVEL);
4945 	vmx_set_test_stage(2);
4946 }
4947 
4948 static void irq_79_handler_guest(isr_regs_t *regs)
4949 {
4950 	eoi();
4951 
4952 	/* L1 expects vmexit on VMX_VMCALL and not VMX_EOI_INDUCED */
4953 	vmcall();
4954 }
4955 
4956 /*
4957  * Constant for num of busy-loop iterations after which
4958  * a timer interrupt should have happened in host
4959  */
4960 #define TIMER_INTERRUPT_DELAY 100000000
4961 
4962 static void vmx_eoi_bitmap_ioapic_scan_test_guest(void)
4963 {
4964 	handle_irq(0x79, irq_79_handler_guest);
4965 	irq_enable();
4966 
4967 	/* Signal to L1 CPU to trigger ioapic scan */
4968 	vmx_set_test_stage(1);
4969 	/* Wait until L1 CPU to trigger ioapic scan */
4970 	while (vmx_get_test_stage() != 2)
4971 		;
4972 
4973 	/*
4974 	 * Wait for L0 timer interrupt to be raised while we run in L2
4975 	 * such that L0 will process the IOAPIC scan request before
4976 	 * resuming L2
4977 	 */
4978 	delay(TIMER_INTERRUPT_DELAY);
4979 
4980 	asm volatile ("int $0x79");
4981 }
4982 
4983 static void vmx_eoi_bitmap_ioapic_scan_test(void)
4984 {
4985 	if (!cpu_has_apicv() || (cpu_count() < 2)) {
4986 		report_skip(__func__);
4987 		return;
4988 	}
4989 
4990 	enable_vid();
4991 
4992 	on_cpu_async(1, trigger_ioapic_scan_thread, NULL);
4993 	test_set_guest(vmx_eoi_bitmap_ioapic_scan_test_guest);
4994 
4995 	/*
4996 	 * Launch L2.
4997 	 * We expect the exit reason to be VMX_VMCALL (and not EOI INDUCED).
4998 	 * In case the reason isn't VMX_VMCALL, the asserion inside
4999 	 * skip_exit_vmcall() will fail.
5000 	 */
5001 	enter_guest();
5002 	skip_exit_vmcall();
5003 
5004 	/* Let L2 finish */
5005 	enter_guest();
5006 	report(__func__, 1);
5007 }
5008 
5009 static void set_irq_line_thread(void *data)
5010 {
5011 	/* Wait until other CPU entered L2 */
5012 	while (vmx_get_test_stage() != 1)
5013 		;
5014 
5015 	/* Set irq-line 0xf to raise vector 0x78 for vCPU 0 */
5016 	ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL);
5017 	vmx_set_test_stage(2);
5018 }
5019 
5020 static bool irq_78_handler_vmcall_before_eoi;
5021 static void irq_78_handler_guest(isr_regs_t *regs)
5022 {
5023 	set_irq_line(0xf, 0);
5024 	if (irq_78_handler_vmcall_before_eoi)
5025 		vmcall();
5026 	eoi();
5027 	vmcall();
5028 }
5029 
5030 static void vmx_apic_passthrough_guest(void)
5031 {
5032 	handle_irq(0x78, irq_78_handler_guest);
5033 	irq_enable();
5034 
5035 	/* If requested, wait for other CPU to trigger ioapic scan */
5036 	if (vmx_get_test_stage() < 1) {
5037 		vmx_set_test_stage(1);
5038 		while (vmx_get_test_stage() != 2)
5039 			;
5040 	}
5041 
5042 	set_irq_line(0xf, 1);
5043 }
5044 
5045 static void vmx_apic_passthrough(bool set_irq_line_from_thread)
5046 {
5047 	if (set_irq_line_from_thread && (cpu_count() < 2)) {
5048 		report_skip(__func__);
5049 		return;
5050 	}
5051 
5052 	u64 cpu_ctrl_0 = CPU_SECONDARY;
5053 	u64 cpu_ctrl_1 = 0;
5054 
5055 	disable_intercept_for_x2apic_msrs();
5056 
5057 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
5058 
5059 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0);
5060 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1);
5061 
5062 	if (set_irq_line_from_thread) {
5063 		irq_78_handler_vmcall_before_eoi = false;
5064 		on_cpu_async(1, set_irq_line_thread, NULL);
5065 	} else {
5066 		irq_78_handler_vmcall_before_eoi = true;
5067 		ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL);
5068 		vmx_set_test_stage(2);
5069 	}
5070 	test_set_guest(vmx_apic_passthrough_guest);
5071 
5072 	if (irq_78_handler_vmcall_before_eoi) {
5073 		/* Before EOI remote_irr should still be set */
5074 		enter_guest();
5075 		skip_exit_vmcall();
5076 		TEST_ASSERT_EQ_MSG(1, (int)ioapic_read_redir(0xf).remote_irr,
5077 			"IOAPIC pass-through: remote_irr=1 before EOI");
5078 	}
5079 
5080 	/* After EOI remote_irr should be cleared */
5081 	enter_guest();
5082 	skip_exit_vmcall();
5083 	TEST_ASSERT_EQ_MSG(0, (int)ioapic_read_redir(0xf).remote_irr,
5084 		"IOAPIC pass-through: remote_irr=0 after EOI");
5085 
5086 	/* Let L2 finish */
5087 	enter_guest();
5088 	report(__func__, 1);
5089 }
5090 
5091 static void vmx_apic_passthrough_test(void)
5092 {
5093 	vmx_apic_passthrough(false);
5094 }
5095 
5096 static void vmx_apic_passthrough_thread_test(void)
5097 {
5098 	vmx_apic_passthrough(true);
5099 }
5100 
5101 enum vmcs_access {
5102 	ACCESS_VMREAD,
5103 	ACCESS_VMWRITE,
5104 	ACCESS_NONE,
5105 };
5106 
5107 struct vmcs_shadow_test_common {
5108 	enum vmcs_access op;
5109 	enum Reason reason;
5110 	u64 field;
5111 	u64 value;
5112 	u64 flags;
5113 	u64 time;
5114 } l1_l2_common;
5115 
5116 static inline u64 vmread_flags(u64 field, u64 *val)
5117 {
5118 	u64 flags;
5119 
5120 	asm volatile ("vmread %2, %1; pushf; pop %0"
5121 		      : "=r" (flags), "=rm" (*val) : "r" (field) : "cc");
5122 	return flags & X86_EFLAGS_ALU;
5123 }
5124 
5125 static inline u64 vmwrite_flags(u64 field, u64 val)
5126 {
5127 	u64 flags;
5128 
5129 	asm volatile ("vmwrite %1, %2; pushf; pop %0"
5130 		      : "=r"(flags) : "rm" (val), "r" (field) : "cc");
5131 	return flags & X86_EFLAGS_ALU;
5132 }
5133 
5134 static void vmx_vmcs_shadow_test_guest(void)
5135 {
5136 	struct vmcs_shadow_test_common *c = &l1_l2_common;
5137 	u64 start;
5138 
5139 	while (c->op != ACCESS_NONE) {
5140 		start = rdtsc();
5141 		switch (c->op) {
5142 		default:
5143 			c->flags = -1ull;
5144 			break;
5145 		case ACCESS_VMREAD:
5146 			c->flags = vmread_flags(c->field, &c->value);
5147 			break;
5148 		case ACCESS_VMWRITE:
5149 			c->flags = vmwrite_flags(c->field, 0);
5150 			break;
5151 		}
5152 		c->time = rdtsc() - start;
5153 		vmcall();
5154 	}
5155 }
5156 
5157 static u64 vmread_from_shadow(u64 field)
5158 {
5159 	struct vmcs *primary;
5160 	struct vmcs *shadow;
5161 	u64 value;
5162 
5163 	TEST_ASSERT(!vmcs_save(&primary));
5164 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
5165 	TEST_ASSERT(!make_vmcs_current(shadow));
5166 	value = vmcs_read(field);
5167 	TEST_ASSERT(!make_vmcs_current(primary));
5168 	return value;
5169 }
5170 
5171 static u64 vmwrite_to_shadow(u64 field, u64 value)
5172 {
5173 	struct vmcs *primary;
5174 	struct vmcs *shadow;
5175 
5176 	TEST_ASSERT(!vmcs_save(&primary));
5177 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
5178 	TEST_ASSERT(!make_vmcs_current(shadow));
5179 	vmcs_write(field, value);
5180 	value = vmcs_read(field);
5181 	TEST_ASSERT(!make_vmcs_current(primary));
5182 	return value;
5183 }
5184 
5185 static void vmcs_shadow_test_access(u8 *bitmap[2], enum vmcs_access access)
5186 {
5187 	struct vmcs_shadow_test_common *c = &l1_l2_common;
5188 
5189 	c->op = access;
5190 	vmcs_write(VMX_INST_ERROR, 0);
5191 	enter_guest();
5192 	c->reason = vmcs_read(EXI_REASON) & 0xffff;
5193 	if (c->reason != VMX_VMCALL) {
5194 		skip_exit_insn();
5195 		enter_guest();
5196 	}
5197 	skip_exit_vmcall();
5198 }
5199 
5200 static void vmcs_shadow_test_field(u8 *bitmap[2], u64 field)
5201 {
5202 	struct vmcs_shadow_test_common *c = &l1_l2_common;
5203 	struct vmcs *shadow;
5204 	u64 value;
5205 	uintptr_t flags[2];
5206 	bool good_shadow;
5207 	u32 vmx_inst_error;
5208 
5209 	report_prefix_pushf("field %lx", field);
5210 	c->field = field;
5211 
5212 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
5213 	if (shadow != (struct vmcs *)-1ull) {
5214 		flags[ACCESS_VMREAD] = vmread_flags(field, &value);
5215 		flags[ACCESS_VMWRITE] = vmwrite_flags(field, value);
5216 		good_shadow = !flags[ACCESS_VMREAD] && !flags[ACCESS_VMWRITE];
5217 	} else {
5218 		/*
5219 		 * When VMCS link pointer is -1ull, VMWRITE/VMREAD on
5220 		 * shadowed-fields should fail with setting RFLAGS.CF.
5221 		 */
5222 		flags[ACCESS_VMREAD] = X86_EFLAGS_CF;
5223 		flags[ACCESS_VMWRITE] = X86_EFLAGS_CF;
5224 		good_shadow = false;
5225 	}
5226 
5227 	/* Intercept both VMREAD and VMWRITE. */
5228 	report_prefix_push("no VMREAD/VMWRITE permission");
5229 	/* VMWRITE/VMREAD done on reserved-bit should always intercept */
5230 	if (!(field >> VMCS_FIELD_RESERVED_SHIFT)) {
5231 		set_bit(field, bitmap[ACCESS_VMREAD]);
5232 		set_bit(field, bitmap[ACCESS_VMWRITE]);
5233 	}
5234 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
5235 	report("not shadowed for VMWRITE", c->reason == VMX_VMWRITE);
5236 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
5237 	report("not shadowed for VMREAD", c->reason == VMX_VMREAD);
5238 	report_prefix_pop();
5239 
5240 	if (field >> VMCS_FIELD_RESERVED_SHIFT)
5241 		goto out;
5242 
5243 	/* Permit shadowed VMREAD. */
5244 	report_prefix_push("VMREAD permission only");
5245 	clear_bit(field, bitmap[ACCESS_VMREAD]);
5246 	set_bit(field, bitmap[ACCESS_VMWRITE]);
5247 	if (good_shadow)
5248 		value = vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
5249 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
5250 	report("not shadowed for VMWRITE", c->reason == VMX_VMWRITE);
5251 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
5252 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
5253 	report("shadowed for VMREAD (in %ld cycles)", c->reason == VMX_VMCALL,
5254 	       c->time);
5255 	report("ALU flags after VMREAD (%lx) are as expected (%lx)",
5256 	       c->flags == flags[ACCESS_VMREAD],
5257 	       c->flags, flags[ACCESS_VMREAD]);
5258 	if (good_shadow)
5259 		report("value read from shadow (%lx) is as expected (%lx)",
5260 		       c->value == value, c->value, value);
5261 	else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD])
5262 		report("VMX_INST_ERROR (%d) is as expected (%d)",
5263 		       vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
5264 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5265 	report_prefix_pop();
5266 
5267 	/* Permit shadowed VMWRITE. */
5268 	report_prefix_push("VMWRITE permission only");
5269 	set_bit(field, bitmap[ACCESS_VMREAD]);
5270 	clear_bit(field, bitmap[ACCESS_VMWRITE]);
5271 	if (good_shadow)
5272 		vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
5273 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
5274 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
5275 	report("shadowed for VMWRITE (in %ld cycles)", c->reason == VMX_VMCALL,
5276 		c->time);
5277 	report("ALU flags after VMWRITE (%lx) are as expected (%lx)",
5278 	       c->flags == flags[ACCESS_VMREAD],
5279 	       c->flags, flags[ACCESS_VMREAD]);
5280 	if (good_shadow) {
5281 		value = vmread_from_shadow(field);
5282 		report("shadow VMCS value (%lx) is as expected (%lx)",
5283 		       value == 0, value, 0ul);
5284 	} else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) {
5285 		report("VMX_INST_ERROR (%d) is as expected (%d)",
5286 		       vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
5287 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5288 	}
5289 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
5290 	report("not shadowed for VMREAD", c->reason == VMX_VMREAD);
5291 	report_prefix_pop();
5292 
5293 	/* Permit shadowed VMREAD and VMWRITE. */
5294 	report_prefix_push("VMREAD and VMWRITE permission");
5295 	clear_bit(field, bitmap[ACCESS_VMREAD]);
5296 	clear_bit(field, bitmap[ACCESS_VMWRITE]);
5297 	if (good_shadow)
5298 		vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
5299 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
5300 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
5301 	report("shadowed for VMWRITE (in %ld cycles)", c->reason == VMX_VMCALL,
5302 		c->time);
5303 	report("ALU flags after VMWRITE (%lx) are as expected (%lx)",
5304 	       c->flags == flags[ACCESS_VMREAD],
5305 	       c->flags, flags[ACCESS_VMREAD]);
5306 	if (good_shadow) {
5307 		value = vmread_from_shadow(field);
5308 		report("shadow VMCS value (%lx) is as expected (%lx)",
5309 		       value == 0, value, 0ul);
5310 	} else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) {
5311 		report("VMX_INST_ERROR (%d) is as expected (%d)",
5312 		       vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
5313 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5314 	}
5315 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
5316 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
5317 	report("shadowed for VMREAD (in %ld cycles)", c->reason == VMX_VMCALL,
5318 	       c->time);
5319 	report("ALU flags after VMREAD (%lx) are as expected (%lx)",
5320 	       c->flags == flags[ACCESS_VMREAD],
5321 	       c->flags, flags[ACCESS_VMREAD]);
5322 	if (good_shadow)
5323 		report("value read from shadow (%lx) is as expected (%lx)",
5324 		       c->value == 0, c->value, 0ul);
5325 	else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD])
5326 		report("VMX_INST_ERROR (%d) is as expected (%d)",
5327 		       vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
5328 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5329 	report_prefix_pop();
5330 
5331 out:
5332 	report_prefix_pop();
5333 }
5334 
5335 static void vmx_vmcs_shadow_test_body(u8 *bitmap[2])
5336 {
5337 	unsigned base;
5338 	unsigned index;
5339 	unsigned bit;
5340 	unsigned highest_index = rdmsr(MSR_IA32_VMX_VMCS_ENUM);
5341 
5342 	/* Run test on all possible valid VMCS fields */
5343 	for (base = 0;
5344 	     base < (1 << VMCS_FIELD_RESERVED_SHIFT);
5345 	     base += (1 << VMCS_FIELD_TYPE_SHIFT))
5346 		for (index = 0; index <= highest_index; index++)
5347 			vmcs_shadow_test_field(bitmap, base + index);
5348 
5349 	/*
5350 	 * Run tests on some invalid VMCS fields
5351 	 * (Have reserved bit set).
5352 	 */
5353 	for (bit = VMCS_FIELD_RESERVED_SHIFT; bit < VMCS_FIELD_BIT_SIZE; bit++)
5354 		vmcs_shadow_test_field(bitmap, (1ull << bit));
5355 }
5356 
5357 static void vmx_vmcs_shadow_test(void)
5358 {
5359 	u8 *bitmap[2];
5360 	struct vmcs *shadow;
5361 
5362 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) {
5363 		printf("\t'Activate secondary controls' not supported.\n");
5364 		return;
5365 	}
5366 
5367 	if (!(ctrl_cpu_rev[1].clr & CPU_SHADOW_VMCS)) {
5368 		printf("\t'VMCS shadowing' not supported.\n");
5369 		return;
5370 	}
5371 
5372 	if (!(rdmsr(MSR_IA32_VMX_MISC) &
5373 	      MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) {
5374 		printf("\tVMWRITE can't modify VM-exit information fields.\n");
5375 		return;
5376 	}
5377 
5378 	test_set_guest(vmx_vmcs_shadow_test_guest);
5379 
5380 	bitmap[ACCESS_VMREAD] = alloc_page();
5381 	bitmap[ACCESS_VMWRITE] = alloc_page();
5382 
5383 	vmcs_write(VMREAD_BITMAP, virt_to_phys(bitmap[ACCESS_VMREAD]));
5384 	vmcs_write(VMWRITE_BITMAP, virt_to_phys(bitmap[ACCESS_VMWRITE]));
5385 
5386 	shadow = alloc_page();
5387 	shadow->hdr.revision_id = basic.revision;
5388 	shadow->hdr.shadow_vmcs = 1;
5389 	TEST_ASSERT(!vmcs_clear(shadow));
5390 
5391 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_RDTSC);
5392 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY);
5393 	vmcs_set_bits(CPU_EXEC_CTRL1, CPU_SHADOW_VMCS);
5394 
5395 	vmcs_write(VMCS_LINK_PTR, virt_to_phys(shadow));
5396 	report_prefix_push("valid link pointer");
5397 	vmx_vmcs_shadow_test_body(bitmap);
5398 	report_prefix_pop();
5399 
5400 	vmcs_write(VMCS_LINK_PTR, -1ull);
5401 	report_prefix_push("invalid link pointer");
5402 	vmx_vmcs_shadow_test_body(bitmap);
5403 	report_prefix_pop();
5404 
5405 	l1_l2_common.op = ACCESS_NONE;
5406 	enter_guest();
5407 }
5408 
5409 #define TEST(name) { #name, .v2 = name }
5410 
5411 /* name/init/guest_main/exit_handler/syscall_handler/guest_regs */
5412 struct vmx_test vmx_tests[] = {
5413 	{ "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} },
5414 	{ "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} },
5415 	{ "preemption timer", preemption_timer_init, preemption_timer_main,
5416 		preemption_timer_exit_handler, NULL, {0} },
5417 	{ "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main,
5418 		test_ctrl_pat_exit_handler, NULL, {0} },
5419 	{ "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main,
5420 		test_ctrl_efer_exit_handler, NULL, {0} },
5421 	{ "CR shadowing", NULL, cr_shadowing_main,
5422 		cr_shadowing_exit_handler, NULL, {0} },
5423 	{ "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler,
5424 		NULL, {0} },
5425 	{ "instruction intercept", insn_intercept_init, insn_intercept_main,
5426 		insn_intercept_exit_handler, NULL, {0} },
5427 	{ "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} },
5428 	{ "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} },
5429 	{ "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} },
5430 	{ "VPID", vpid_init, vpid_main, vpid_exit_handler, NULL, {0} },
5431 	{ "interrupt", interrupt_init, interrupt_main,
5432 		interrupt_exit_handler, NULL, {0} },
5433 	{ "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler,
5434 		NULL, {0} },
5435 	{ "MSR switch", msr_switch_init, msr_switch_main,
5436 		msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure },
5437 	{ "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} },
5438 	{ "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main,
5439 		disable_rdtscp_exit_handler, NULL, {0} },
5440 	{ "int3", int3_init, int3_guest_main, int3_exit_handler, NULL, {0} },
5441 	{ "into", into_init, into_guest_main, into_exit_handler, NULL, {0} },
5442 	{ "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main,
5443 		exit_monitor_from_l2_handler, NULL, {0} },
5444 	/* Basic V2 tests. */
5445 	TEST(v2_null_test),
5446 	TEST(v2_multiple_entries_test),
5447 	TEST(fixture_test_case1),
5448 	TEST(fixture_test_case2),
5449 	/* Opcode tests. */
5450 	TEST(invvpid_test_v2),
5451 	/* VM-entry tests */
5452 	TEST(vmx_controls_test),
5453 	TEST(vmentry_movss_shadow_test),
5454 	/* APICv tests */
5455 	TEST(vmx_eoi_bitmap_ioapic_scan_test),
5456 	/* APIC pass-through tests */
5457 	TEST(vmx_apic_passthrough_test),
5458 	TEST(vmx_apic_passthrough_thread_test),
5459 	/* VMCS Shadowing tests */
5460 	TEST(vmx_vmcs_shadow_test),
5461 	/* Regression tests */
5462 	TEST(vmx_cr_load_test),
5463 	TEST(vmx_pending_event_test),
5464 	TEST(vmx_pending_event_hlt_test),
5465 	/* EPT access tests. */
5466 	TEST(ept_access_test_not_present),
5467 	TEST(ept_access_test_read_only),
5468 	TEST(ept_access_test_write_only),
5469 	TEST(ept_access_test_read_write),
5470 	TEST(ept_access_test_execute_only),
5471 	TEST(ept_access_test_read_execute),
5472 	TEST(ept_access_test_write_execute),
5473 	TEST(ept_access_test_read_write_execute),
5474 	TEST(ept_access_test_reserved_bits),
5475 	TEST(ept_access_test_ignored_bits),
5476 	TEST(ept_access_test_paddr_not_present_ad_disabled),
5477 	TEST(ept_access_test_paddr_not_present_ad_enabled),
5478 	TEST(ept_access_test_paddr_read_only_ad_disabled),
5479 	TEST(ept_access_test_paddr_read_only_ad_enabled),
5480 	TEST(ept_access_test_paddr_read_write),
5481 	TEST(ept_access_test_paddr_read_write_execute),
5482 	TEST(ept_access_test_paddr_read_execute_ad_disabled),
5483 	TEST(ept_access_test_paddr_read_execute_ad_enabled),
5484 	TEST(ept_access_test_paddr_not_present_page_fault),
5485 	TEST(ept_access_test_force_2m_page),
5486 	{ NULL, NULL, NULL, NULL, NULL, {0} },
5487 };
5488