1 /* 2 * All test cases of nested virtualization should be in this file 3 * 4 * Author : Arthur Chunqi Li <yzt356@gmail.com> 5 */ 6 7 #include <asm/debugreg.h> 8 9 #include "vmx.h" 10 #include "msr.h" 11 #include "processor.h" 12 #include "vm.h" 13 #include "pci.h" 14 #include "fwcfg.h" 15 #include "isr.h" 16 #include "desc.h" 17 #include "apic.h" 18 #include "types.h" 19 #include "vmalloc.h" 20 #include "alloc_page.h" 21 #include "smp.h" 22 #include "delay.h" 23 24 #define NONCANONICAL 0xaaaaaaaaaaaaaaaaull 25 26 #define VPID_CAP_INVVPID_TYPES_SHIFT 40 27 28 u64 ia32_pat; 29 u64 ia32_efer; 30 void *io_bitmap_a, *io_bitmap_b; 31 u16 ioport; 32 33 unsigned long *pml4; 34 u64 eptp; 35 void *data_page1, *data_page2; 36 37 phys_addr_t pci_physaddr; 38 39 void *pml_log; 40 #define PML_INDEX 512 41 42 static inline unsigned ffs(unsigned x) 43 { 44 int pos = -1; 45 46 __asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0" 47 : "+r"(pos) : "rm"(x) : "eax"); 48 return pos + 1; 49 } 50 51 static inline void vmcall(void) 52 { 53 asm volatile("vmcall"); 54 } 55 56 static void basic_guest_main(void) 57 { 58 report("Basic VMX test", 1); 59 } 60 61 static int basic_exit_handler(void) 62 { 63 report("Basic VMX test", 0); 64 print_vmexit_info(); 65 return VMX_TEST_EXIT; 66 } 67 68 static void vmenter_main(void) 69 { 70 u64 rax; 71 u64 rsp, resume_rsp; 72 73 report("test vmlaunch", 1); 74 75 asm volatile( 76 "mov %%rsp, %0\n\t" 77 "mov %3, %%rax\n\t" 78 "vmcall\n\t" 79 "mov %%rax, %1\n\t" 80 "mov %%rsp, %2\n\t" 81 : "=r"(rsp), "=r"(rax), "=r"(resume_rsp) 82 : "g"(0xABCD)); 83 report("test vmresume", (rax == 0xFFFF) && (rsp == resume_rsp)); 84 } 85 86 static int vmenter_exit_handler(void) 87 { 88 u64 guest_rip; 89 ulong reason; 90 91 guest_rip = vmcs_read(GUEST_RIP); 92 reason = vmcs_read(EXI_REASON) & 0xff; 93 switch (reason) { 94 case VMX_VMCALL: 95 if (regs.rax != 0xABCD) { 96 report("test vmresume", 0); 97 return VMX_TEST_VMEXIT; 98 } 99 regs.rax = 0xFFFF; 100 vmcs_write(GUEST_RIP, guest_rip + 3); 101 return VMX_TEST_RESUME; 102 default: 103 report("test vmresume", 0); 104 print_vmexit_info(); 105 } 106 return VMX_TEST_VMEXIT; 107 } 108 109 u32 preempt_scale; 110 volatile unsigned long long tsc_val; 111 volatile u32 preempt_val; 112 u64 saved_rip; 113 114 static int preemption_timer_init(struct vmcs *vmcs) 115 { 116 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 117 printf("\tPreemption timer is not supported\n"); 118 return VMX_TEST_EXIT; 119 } 120 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); 121 preempt_val = 10000000; 122 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 123 preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F; 124 125 if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT)) 126 printf("\tSave preemption value is not supported\n"); 127 128 return VMX_TEST_START; 129 } 130 131 static void preemption_timer_main(void) 132 { 133 tsc_val = rdtsc(); 134 if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) { 135 vmx_set_test_stage(0); 136 vmcall(); 137 if (vmx_get_test_stage() == 1) 138 vmcall(); 139 } 140 vmx_set_test_stage(1); 141 while (vmx_get_test_stage() == 1) { 142 if (((rdtsc() - tsc_val) >> preempt_scale) 143 > 10 * preempt_val) { 144 vmx_set_test_stage(2); 145 vmcall(); 146 } 147 } 148 tsc_val = rdtsc(); 149 asm volatile ("hlt"); 150 vmcall(); 151 vmx_set_test_stage(5); 152 vmcall(); 153 } 154 155 static int preemption_timer_exit_handler(void) 156 { 157 bool guest_halted; 158 u64 guest_rip; 159 ulong reason; 160 u32 insn_len; 161 u32 ctrl_exit; 162 163 guest_rip = vmcs_read(GUEST_RIP); 164 reason = vmcs_read(EXI_REASON) & 0xff; 165 insn_len = vmcs_read(EXI_INST_LEN); 166 switch (reason) { 167 case VMX_PREEMPT: 168 switch (vmx_get_test_stage()) { 169 case 1: 170 case 2: 171 report("busy-wait for preemption timer", 172 ((rdtsc() - tsc_val) >> preempt_scale) >= 173 preempt_val); 174 vmx_set_test_stage(3); 175 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 176 return VMX_TEST_RESUME; 177 case 3: 178 guest_halted = 179 (vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT); 180 report("preemption timer during hlt", 181 ((rdtsc() - tsc_val) >> preempt_scale) >= 182 preempt_val && guest_halted); 183 vmx_set_test_stage(4); 184 vmcs_write(PIN_CONTROLS, 185 vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT); 186 vmcs_write(EXI_CONTROLS, 187 vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_PREEMPT); 188 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 189 return VMX_TEST_RESUME; 190 case 4: 191 report("preemption timer with 0 value", 192 saved_rip == guest_rip); 193 break; 194 default: 195 report("Invalid stage.", false); 196 print_vmexit_info(); 197 break; 198 } 199 break; 200 case VMX_VMCALL: 201 vmcs_write(GUEST_RIP, guest_rip + insn_len); 202 switch (vmx_get_test_stage()) { 203 case 0: 204 report("Keep preemption value", 205 vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val); 206 vmx_set_test_stage(1); 207 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 208 ctrl_exit = (vmcs_read(EXI_CONTROLS) | 209 EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr; 210 vmcs_write(EXI_CONTROLS, ctrl_exit); 211 return VMX_TEST_RESUME; 212 case 1: 213 report("Save preemption value", 214 vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val); 215 return VMX_TEST_RESUME; 216 case 2: 217 report("busy-wait for preemption timer", 0); 218 vmx_set_test_stage(3); 219 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 220 return VMX_TEST_RESUME; 221 case 3: 222 report("preemption timer during hlt", 0); 223 vmx_set_test_stage(4); 224 /* fall through */ 225 case 4: 226 vmcs_write(PIN_CONTROLS, 227 vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); 228 vmcs_write(PREEMPT_TIMER_VALUE, 0); 229 saved_rip = guest_rip + insn_len; 230 return VMX_TEST_RESUME; 231 case 5: 232 report("preemption timer with 0 value (vmcall stage 5)", 0); 233 break; 234 default: 235 // Should not reach here 236 report("unexpected stage, %d", false, 237 vmx_get_test_stage()); 238 print_vmexit_info(); 239 return VMX_TEST_VMEXIT; 240 } 241 break; 242 default: 243 report("Unknown exit reason, %ld", false, reason); 244 print_vmexit_info(); 245 } 246 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT); 247 return VMX_TEST_VMEXIT; 248 } 249 250 static void msr_bmp_init(void) 251 { 252 void *msr_bitmap; 253 u32 ctrl_cpu0; 254 255 msr_bitmap = alloc_page(); 256 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 257 ctrl_cpu0 |= CPU_MSR_BITMAP; 258 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); 259 vmcs_write(MSR_BITMAP, (u64)msr_bitmap); 260 } 261 262 static void *get_msr_bitmap(void) 263 { 264 void *msr_bitmap; 265 266 if (vmcs_read(CPU_EXEC_CTRL0) & CPU_MSR_BITMAP) { 267 msr_bitmap = (void *)vmcs_read(MSR_BITMAP); 268 } else { 269 msr_bitmap = alloc_page(); 270 memset(msr_bitmap, 0xff, PAGE_SIZE); 271 vmcs_write(MSR_BITMAP, (u64)msr_bitmap); 272 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_MSR_BITMAP); 273 } 274 275 return msr_bitmap; 276 } 277 278 static void disable_intercept_for_x2apic_msrs(void) 279 { 280 unsigned long *msr_bitmap = (unsigned long *)get_msr_bitmap(); 281 u32 msr; 282 283 for (msr = APIC_BASE_MSR; 284 msr < (APIC_BASE_MSR+0xff); 285 msr += BITS_PER_LONG) { 286 unsigned int word = msr / BITS_PER_LONG; 287 288 msr_bitmap[word] = 0; 289 msr_bitmap[word + (0x800 / sizeof(long))] = 0; 290 } 291 } 292 293 static int test_ctrl_pat_init(struct vmcs *vmcs) 294 { 295 u64 ctrl_ent; 296 u64 ctrl_exi; 297 298 msr_bmp_init(); 299 if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) && 300 !(ctrl_exit_rev.clr & EXI_LOAD_PAT) && 301 !(ctrl_enter_rev.clr & ENT_LOAD_PAT)) { 302 printf("\tSave/load PAT is not supported\n"); 303 return 1; 304 } 305 306 ctrl_ent = vmcs_read(ENT_CONTROLS); 307 ctrl_exi = vmcs_read(EXI_CONTROLS); 308 ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT; 309 ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT); 310 vmcs_write(ENT_CONTROLS, ctrl_ent); 311 vmcs_write(EXI_CONTROLS, ctrl_exi); 312 ia32_pat = rdmsr(MSR_IA32_CR_PAT); 313 vmcs_write(GUEST_PAT, 0x0); 314 vmcs_write(HOST_PAT, ia32_pat); 315 return VMX_TEST_START; 316 } 317 318 static void test_ctrl_pat_main(void) 319 { 320 u64 guest_ia32_pat; 321 322 guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT); 323 if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) 324 printf("\tENT_LOAD_PAT is not supported.\n"); 325 else { 326 if (guest_ia32_pat != 0) { 327 report("Entry load PAT", 0); 328 return; 329 } 330 } 331 wrmsr(MSR_IA32_CR_PAT, 0x6); 332 vmcall(); 333 guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT); 334 if (ctrl_enter_rev.clr & ENT_LOAD_PAT) 335 report("Entry load PAT", guest_ia32_pat == ia32_pat); 336 } 337 338 static int test_ctrl_pat_exit_handler(void) 339 { 340 u64 guest_rip; 341 ulong reason; 342 u64 guest_pat; 343 344 guest_rip = vmcs_read(GUEST_RIP); 345 reason = vmcs_read(EXI_REASON) & 0xff; 346 switch (reason) { 347 case VMX_VMCALL: 348 guest_pat = vmcs_read(GUEST_PAT); 349 if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) { 350 printf("\tEXI_SAVE_PAT is not supported\n"); 351 vmcs_write(GUEST_PAT, 0x6); 352 } else { 353 report("Exit save PAT", guest_pat == 0x6); 354 } 355 if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) 356 printf("\tEXI_LOAD_PAT is not supported\n"); 357 else 358 report("Exit load PAT", rdmsr(MSR_IA32_CR_PAT) == ia32_pat); 359 vmcs_write(GUEST_PAT, ia32_pat); 360 vmcs_write(GUEST_RIP, guest_rip + 3); 361 return VMX_TEST_RESUME; 362 default: 363 printf("ERROR : Undefined exit reason, reason = %ld.\n", reason); 364 break; 365 } 366 return VMX_TEST_VMEXIT; 367 } 368 369 static int test_ctrl_efer_init(struct vmcs *vmcs) 370 { 371 u64 ctrl_ent; 372 u64 ctrl_exi; 373 374 msr_bmp_init(); 375 ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER; 376 ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER; 377 vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr); 378 vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr); 379 ia32_efer = rdmsr(MSR_EFER); 380 vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX); 381 vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX); 382 return VMX_TEST_START; 383 } 384 385 static void test_ctrl_efer_main(void) 386 { 387 u64 guest_ia32_efer; 388 389 guest_ia32_efer = rdmsr(MSR_EFER); 390 if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) 391 printf("\tENT_LOAD_EFER is not supported.\n"); 392 else { 393 if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) { 394 report("Entry load EFER", 0); 395 return; 396 } 397 } 398 wrmsr(MSR_EFER, ia32_efer); 399 vmcall(); 400 guest_ia32_efer = rdmsr(MSR_EFER); 401 if (ctrl_enter_rev.clr & ENT_LOAD_EFER) 402 report("Entry load EFER", guest_ia32_efer == ia32_efer); 403 } 404 405 static int test_ctrl_efer_exit_handler(void) 406 { 407 u64 guest_rip; 408 ulong reason; 409 u64 guest_efer; 410 411 guest_rip = vmcs_read(GUEST_RIP); 412 reason = vmcs_read(EXI_REASON) & 0xff; 413 switch (reason) { 414 case VMX_VMCALL: 415 guest_efer = vmcs_read(GUEST_EFER); 416 if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) { 417 printf("\tEXI_SAVE_EFER is not supported\n"); 418 vmcs_write(GUEST_EFER, ia32_efer); 419 } else { 420 report("Exit save EFER", guest_efer == ia32_efer); 421 } 422 if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) { 423 printf("\tEXI_LOAD_EFER is not supported\n"); 424 wrmsr(MSR_EFER, ia32_efer ^ EFER_NX); 425 } else { 426 report("Exit load EFER", rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX)); 427 } 428 vmcs_write(GUEST_PAT, ia32_efer); 429 vmcs_write(GUEST_RIP, guest_rip + 3); 430 return VMX_TEST_RESUME; 431 default: 432 printf("ERROR : Undefined exit reason, reason = %ld.\n", reason); 433 break; 434 } 435 return VMX_TEST_VMEXIT; 436 } 437 438 u32 guest_cr0, guest_cr4; 439 440 static void cr_shadowing_main(void) 441 { 442 u32 cr0, cr4, tmp; 443 444 // Test read through 445 vmx_set_test_stage(0); 446 guest_cr0 = read_cr0(); 447 if (vmx_get_test_stage() == 1) 448 report("Read through CR0", 0); 449 else 450 vmcall(); 451 vmx_set_test_stage(1); 452 guest_cr4 = read_cr4(); 453 if (vmx_get_test_stage() == 2) 454 report("Read through CR4", 0); 455 else 456 vmcall(); 457 // Test write through 458 guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP); 459 guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE); 460 vmx_set_test_stage(2); 461 write_cr0(guest_cr0); 462 if (vmx_get_test_stage() == 3) 463 report("Write throuth CR0", 0); 464 else 465 vmcall(); 466 vmx_set_test_stage(3); 467 write_cr4(guest_cr4); 468 if (vmx_get_test_stage() == 4) 469 report("Write through CR4", 0); 470 else 471 vmcall(); 472 // Test read shadow 473 vmx_set_test_stage(4); 474 vmcall(); 475 cr0 = read_cr0(); 476 if (vmx_get_test_stage() != 5) 477 report("Read shadowing CR0", cr0 == guest_cr0); 478 vmx_set_test_stage(5); 479 cr4 = read_cr4(); 480 if (vmx_get_test_stage() != 6) 481 report("Read shadowing CR4", cr4 == guest_cr4); 482 // Test write shadow (same value with shadow) 483 vmx_set_test_stage(6); 484 write_cr0(guest_cr0); 485 if (vmx_get_test_stage() == 7) 486 report("Write shadowing CR0 (same value with shadow)", 0); 487 else 488 vmcall(); 489 vmx_set_test_stage(7); 490 write_cr4(guest_cr4); 491 if (vmx_get_test_stage() == 8) 492 report("Write shadowing CR4 (same value with shadow)", 0); 493 else 494 vmcall(); 495 // Test write shadow (different value) 496 vmx_set_test_stage(8); 497 tmp = guest_cr0 ^ X86_CR0_TS; 498 asm volatile("mov %0, %%rsi\n\t" 499 "mov %%rsi, %%cr0\n\t" 500 ::"m"(tmp) 501 :"rsi", "memory", "cc"); 502 report("Write shadowing different X86_CR0_TS", vmx_get_test_stage() == 9); 503 vmx_set_test_stage(9); 504 tmp = guest_cr0 ^ X86_CR0_MP; 505 asm volatile("mov %0, %%rsi\n\t" 506 "mov %%rsi, %%cr0\n\t" 507 ::"m"(tmp) 508 :"rsi", "memory", "cc"); 509 report("Write shadowing different X86_CR0_MP", vmx_get_test_stage() == 10); 510 vmx_set_test_stage(10); 511 tmp = guest_cr4 ^ X86_CR4_TSD; 512 asm volatile("mov %0, %%rsi\n\t" 513 "mov %%rsi, %%cr4\n\t" 514 ::"m"(tmp) 515 :"rsi", "memory", "cc"); 516 report("Write shadowing different X86_CR4_TSD", vmx_get_test_stage() == 11); 517 vmx_set_test_stage(11); 518 tmp = guest_cr4 ^ X86_CR4_DE; 519 asm volatile("mov %0, %%rsi\n\t" 520 "mov %%rsi, %%cr4\n\t" 521 ::"m"(tmp) 522 :"rsi", "memory", "cc"); 523 report("Write shadowing different X86_CR4_DE", vmx_get_test_stage() == 12); 524 } 525 526 static int cr_shadowing_exit_handler(void) 527 { 528 u64 guest_rip; 529 ulong reason; 530 u32 insn_len; 531 u32 exit_qual; 532 533 guest_rip = vmcs_read(GUEST_RIP); 534 reason = vmcs_read(EXI_REASON) & 0xff; 535 insn_len = vmcs_read(EXI_INST_LEN); 536 exit_qual = vmcs_read(EXI_QUALIFICATION); 537 switch (reason) { 538 case VMX_VMCALL: 539 switch (vmx_get_test_stage()) { 540 case 0: 541 report("Read through CR0", guest_cr0 == vmcs_read(GUEST_CR0)); 542 break; 543 case 1: 544 report("Read through CR4", guest_cr4 == vmcs_read(GUEST_CR4)); 545 break; 546 case 2: 547 report("Write through CR0", guest_cr0 == vmcs_read(GUEST_CR0)); 548 break; 549 case 3: 550 report("Write through CR4", guest_cr4 == vmcs_read(GUEST_CR4)); 551 break; 552 case 4: 553 guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP); 554 guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE); 555 vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP); 556 vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP)); 557 vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE); 558 vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE)); 559 break; 560 case 6: 561 report("Write shadowing CR0 (same value)", 562 guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP))); 563 break; 564 case 7: 565 report("Write shadowing CR4 (same value)", 566 guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE))); 567 break; 568 default: 569 // Should not reach here 570 report("unexpected stage, %d", false, 571 vmx_get_test_stage()); 572 print_vmexit_info(); 573 return VMX_TEST_VMEXIT; 574 } 575 vmcs_write(GUEST_RIP, guest_rip + insn_len); 576 return VMX_TEST_RESUME; 577 case VMX_CR: 578 switch (vmx_get_test_stage()) { 579 case 4: 580 report("Read shadowing CR0", 0); 581 vmx_inc_test_stage(); 582 break; 583 case 5: 584 report("Read shadowing CR4", 0); 585 vmx_inc_test_stage(); 586 break; 587 case 6: 588 report("Write shadowing CR0 (same value)", 0); 589 vmx_inc_test_stage(); 590 break; 591 case 7: 592 report("Write shadowing CR4 (same value)", 0); 593 vmx_inc_test_stage(); 594 break; 595 case 8: 596 case 9: 597 // 0x600 encodes "mov %esi, %cr0" 598 if (exit_qual == 0x600) 599 vmx_inc_test_stage(); 600 break; 601 case 10: 602 case 11: 603 // 0x604 encodes "mov %esi, %cr4" 604 if (exit_qual == 0x604) 605 vmx_inc_test_stage(); 606 break; 607 default: 608 // Should not reach here 609 report("unexpected stage, %d", false, 610 vmx_get_test_stage()); 611 print_vmexit_info(); 612 return VMX_TEST_VMEXIT; 613 } 614 vmcs_write(GUEST_RIP, guest_rip + insn_len); 615 return VMX_TEST_RESUME; 616 default: 617 report("Unknown exit reason, %ld", false, reason); 618 print_vmexit_info(); 619 } 620 return VMX_TEST_VMEXIT; 621 } 622 623 static int iobmp_init(struct vmcs *vmcs) 624 { 625 u32 ctrl_cpu0; 626 627 io_bitmap_a = alloc_page(); 628 io_bitmap_b = alloc_page(); 629 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 630 ctrl_cpu0 |= CPU_IO_BITMAP; 631 ctrl_cpu0 &= (~CPU_IO); 632 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); 633 vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a); 634 vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b); 635 return VMX_TEST_START; 636 } 637 638 static void iobmp_main(void) 639 { 640 // stage 0, test IO pass 641 vmx_set_test_stage(0); 642 inb(0x5000); 643 outb(0x0, 0x5000); 644 report("I/O bitmap - I/O pass", vmx_get_test_stage() == 0); 645 // test IO width, in/out 646 ((u8 *)io_bitmap_a)[0] = 0xFF; 647 vmx_set_test_stage(2); 648 inb(0x0); 649 report("I/O bitmap - trap in", vmx_get_test_stage() == 3); 650 vmx_set_test_stage(3); 651 outw(0x0, 0x0); 652 report("I/O bitmap - trap out", vmx_get_test_stage() == 4); 653 vmx_set_test_stage(4); 654 inl(0x0); 655 report("I/O bitmap - I/O width, long", vmx_get_test_stage() == 5); 656 // test low/high IO port 657 vmx_set_test_stage(5); 658 ((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8)); 659 inb(0x5000); 660 report("I/O bitmap - I/O port, low part", vmx_get_test_stage() == 6); 661 vmx_set_test_stage(6); 662 ((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8)); 663 inb(0x9000); 664 report("I/O bitmap - I/O port, high part", vmx_get_test_stage() == 7); 665 // test partial pass 666 vmx_set_test_stage(7); 667 inl(0x4FFF); 668 report("I/O bitmap - partial pass", vmx_get_test_stage() == 8); 669 // test overrun 670 vmx_set_test_stage(8); 671 memset(io_bitmap_a, 0x0, PAGE_SIZE); 672 memset(io_bitmap_b, 0x0, PAGE_SIZE); 673 inl(0xFFFF); 674 report("I/O bitmap - overrun", vmx_get_test_stage() == 9); 675 vmx_set_test_stage(9); 676 vmcall(); 677 outb(0x0, 0x0); 678 report("I/O bitmap - ignore unconditional exiting", 679 vmx_get_test_stage() == 9); 680 vmx_set_test_stage(10); 681 vmcall(); 682 outb(0x0, 0x0); 683 report("I/O bitmap - unconditional exiting", 684 vmx_get_test_stage() == 11); 685 } 686 687 static int iobmp_exit_handler(void) 688 { 689 u64 guest_rip; 690 ulong reason, exit_qual; 691 u32 insn_len, ctrl_cpu0; 692 693 guest_rip = vmcs_read(GUEST_RIP); 694 reason = vmcs_read(EXI_REASON) & 0xff; 695 exit_qual = vmcs_read(EXI_QUALIFICATION); 696 insn_len = vmcs_read(EXI_INST_LEN); 697 switch (reason) { 698 case VMX_IO: 699 switch (vmx_get_test_stage()) { 700 case 0: 701 case 1: 702 vmx_inc_test_stage(); 703 break; 704 case 2: 705 report("I/O bitmap - I/O width, byte", 706 (exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE); 707 report("I/O bitmap - I/O direction, in", exit_qual & VMX_IO_IN); 708 vmx_inc_test_stage(); 709 break; 710 case 3: 711 report("I/O bitmap - I/O width, word", 712 (exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD); 713 report("I/O bitmap - I/O direction, out", 714 !(exit_qual & VMX_IO_IN)); 715 vmx_inc_test_stage(); 716 break; 717 case 4: 718 report("I/O bitmap - I/O width, long", 719 (exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG); 720 vmx_inc_test_stage(); 721 break; 722 case 5: 723 if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000) 724 vmx_inc_test_stage(); 725 break; 726 case 6: 727 if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000) 728 vmx_inc_test_stage(); 729 break; 730 case 7: 731 if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF) 732 vmx_inc_test_stage(); 733 break; 734 case 8: 735 if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF) 736 vmx_inc_test_stage(); 737 break; 738 case 9: 739 case 10: 740 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 741 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO); 742 vmx_inc_test_stage(); 743 break; 744 default: 745 // Should not reach here 746 report("unexpected stage, %d", false, 747 vmx_get_test_stage()); 748 print_vmexit_info(); 749 return VMX_TEST_VMEXIT; 750 } 751 vmcs_write(GUEST_RIP, guest_rip + insn_len); 752 return VMX_TEST_RESUME; 753 case VMX_VMCALL: 754 switch (vmx_get_test_stage()) { 755 case 9: 756 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 757 ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP; 758 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); 759 break; 760 case 10: 761 ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); 762 ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO; 763 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); 764 break; 765 default: 766 // Should not reach here 767 report("unexpected stage, %d", false, 768 vmx_get_test_stage()); 769 print_vmexit_info(); 770 return VMX_TEST_VMEXIT; 771 } 772 vmcs_write(GUEST_RIP, guest_rip + insn_len); 773 return VMX_TEST_RESUME; 774 default: 775 printf("guest_rip = %#lx\n", guest_rip); 776 printf("\tERROR : Undefined exit reason, reason = %ld.\n", reason); 777 break; 778 } 779 return VMX_TEST_VMEXIT; 780 } 781 782 #define INSN_CPU0 0 783 #define INSN_CPU1 1 784 #define INSN_ALWAYS_TRAP 2 785 786 #define FIELD_EXIT_QUAL (1 << 0) 787 #define FIELD_INSN_INFO (1 << 1) 788 789 asm( 790 "insn_hlt: hlt;ret\n\t" 791 "insn_invlpg: invlpg 0x12345678;ret\n\t" 792 "insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t" 793 "insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t" 794 "insn_rdtsc: rdtsc;ret\n\t" 795 "insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t" 796 "insn_cr3_store: mov %cr3,%rax;ret\n\t" 797 #ifdef __x86_64__ 798 "insn_cr8_load: xor %eax, %eax; mov %rax,%cr8;ret\n\t" 799 "insn_cr8_store: mov %cr8,%rax;ret\n\t" 800 #endif 801 "insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t" 802 "insn_pause: pause;ret\n\t" 803 "insn_wbinvd: wbinvd;ret\n\t" 804 "insn_cpuid: mov $10, %eax; cpuid;ret\n\t" 805 "insn_invd: invd;ret\n\t" 806 "insn_sgdt: sgdt gdt64_desc;ret\n\t" 807 "insn_lgdt: lgdt gdt64_desc;ret\n\t" 808 "insn_sidt: sidt idt_descr;ret\n\t" 809 "insn_lidt: lidt idt_descr;ret\n\t" 810 "insn_sldt: sldt %ax;ret\n\t" 811 "insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t" 812 "insn_str: str %ax;ret\n\t" 813 "insn_rdrand: rdrand %rax;ret\n\t" 814 "insn_rdseed: rdseed %rax;ret\n\t" 815 ); 816 extern void insn_hlt(void); 817 extern void insn_invlpg(void); 818 extern void insn_mwait(void); 819 extern void insn_rdpmc(void); 820 extern void insn_rdtsc(void); 821 extern void insn_cr3_load(void); 822 extern void insn_cr3_store(void); 823 #ifdef __x86_64__ 824 extern void insn_cr8_load(void); 825 extern void insn_cr8_store(void); 826 #endif 827 extern void insn_monitor(void); 828 extern void insn_pause(void); 829 extern void insn_wbinvd(void); 830 extern void insn_sgdt(void); 831 extern void insn_lgdt(void); 832 extern void insn_sidt(void); 833 extern void insn_lidt(void); 834 extern void insn_sldt(void); 835 extern void insn_lldt(void); 836 extern void insn_str(void); 837 extern void insn_cpuid(void); 838 extern void insn_invd(void); 839 extern void insn_rdrand(void); 840 extern void insn_rdseed(void); 841 842 u32 cur_insn; 843 u64 cr3; 844 845 #define X86_FEATURE_MONITOR (1 << 3) 846 #define X86_FEATURE_MCE (1 << 7) 847 #define X86_FEATURE_PCID (1 << 17) 848 849 typedef bool (*supported_fn)(void); 850 851 static bool monitor_supported(void) 852 { 853 return cpuid(1).c & X86_FEATURE_MONITOR; 854 } 855 856 struct insn_table { 857 const char *name; 858 u32 flag; 859 void (*insn_func)(void); 860 u32 type; 861 u32 reason; 862 ulong exit_qual; 863 u32 insn_info; 864 // Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define 865 // which field need to be tested, reason is always tested 866 u32 test_field; 867 const supported_fn supported_fn; 868 u8 disabled; 869 }; 870 871 /* 872 * Add more test cases of instruction intercept here. Elements in this 873 * table is: 874 * name/control flag/insn function/type/exit reason/exit qulification/ 875 * instruction info/field to test 876 * The last field defines which fields (exit_qual and insn_info) need to be 877 * tested in exit handler. If set to 0, only "reason" is checked. 878 */ 879 static struct insn_table insn_table[] = { 880 // Flags for Primary Processor-Based VM-Execution Controls 881 {"HLT", CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0}, 882 {"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14, 883 0x12345678, 0, FIELD_EXIT_QUAL}, 884 {"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0, &monitor_supported}, 885 {"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0}, 886 {"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0}, 887 {"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0, 888 FIELD_EXIT_QUAL}, 889 {"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0, 890 FIELD_EXIT_QUAL}, 891 #ifdef __x86_64__ 892 {"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0, 893 FIELD_EXIT_QUAL}, 894 {"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0, 895 FIELD_EXIT_QUAL}, 896 #endif 897 {"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0, &monitor_supported}, 898 {"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0}, 899 // Flags for Secondary Processor-Based VM-Execution Controls 900 {"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0}, 901 {"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0}, 902 {"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0}, 903 {"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0}, 904 {"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0}, 905 {"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0}, 906 {"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0}, 907 {"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0}, 908 /* LTR causes a #GP if done with a busy selector, so it is not tested. */ 909 {"RDRAND", CPU_RDRAND, insn_rdrand, INSN_CPU1, VMX_RDRAND, 0, 0, 0}, 910 {"RDSEED", CPU_RDSEED, insn_rdseed, INSN_CPU1, VMX_RDSEED, 0, 0, 0}, 911 // Instructions always trap 912 {"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0}, 913 {"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0}, 914 // Instructions never trap 915 {NULL}, 916 }; 917 918 static int insn_intercept_init(struct vmcs *vmcs) 919 { 920 u32 ctrl_cpu, cur_insn; 921 922 ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY; 923 ctrl_cpu &= ctrl_cpu_rev[0].clr; 924 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu); 925 vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set); 926 cr3 = read_cr3(); 927 928 for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) { 929 if (insn_table[cur_insn].supported_fn == NULL) 930 continue; 931 insn_table[cur_insn].disabled = !insn_table[cur_insn].supported_fn(); 932 } 933 return VMX_TEST_START; 934 } 935 936 static void insn_intercept_main(void) 937 { 938 for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) { 939 vmx_set_test_stage(cur_insn * 2); 940 if ((insn_table[cur_insn].type == INSN_CPU0 && 941 !(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) || 942 (insn_table[cur_insn].type == INSN_CPU1 && 943 !(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) { 944 printf("\tCPU_CTRL%d.CPU_%s is not supported.\n", 945 insn_table[cur_insn].type - INSN_CPU0, 946 insn_table[cur_insn].name); 947 continue; 948 } 949 950 if (insn_table[cur_insn].disabled) { 951 printf("\tFeature required for %s is not supported.\n", 952 insn_table[cur_insn].name); 953 continue; 954 } 955 956 if ((insn_table[cur_insn].type == INSN_CPU0 && 957 !(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) || 958 (insn_table[cur_insn].type == INSN_CPU1 && 959 !(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) { 960 /* skip hlt, it stalls the guest and is tested below */ 961 if (insn_table[cur_insn].insn_func != insn_hlt) 962 insn_table[cur_insn].insn_func(); 963 report("execute %s", vmx_get_test_stage() == cur_insn * 2, 964 insn_table[cur_insn].name); 965 } else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP) 966 printf("\tCPU_CTRL%d.CPU_%s always traps.\n", 967 insn_table[cur_insn].type - INSN_CPU0, 968 insn_table[cur_insn].name); 969 970 vmcall(); 971 972 insn_table[cur_insn].insn_func(); 973 report("intercept %s", vmx_get_test_stage() == cur_insn * 2 + 1, 974 insn_table[cur_insn].name); 975 976 vmx_set_test_stage(cur_insn * 2 + 1); 977 vmcall(); 978 } 979 } 980 981 static int insn_intercept_exit_handler(void) 982 { 983 u64 guest_rip; 984 u32 reason; 985 ulong exit_qual; 986 u32 insn_len; 987 u32 insn_info; 988 bool pass; 989 990 guest_rip = vmcs_read(GUEST_RIP); 991 reason = vmcs_read(EXI_REASON) & 0xff; 992 exit_qual = vmcs_read(EXI_QUALIFICATION); 993 insn_len = vmcs_read(EXI_INST_LEN); 994 insn_info = vmcs_read(EXI_INST_INFO); 995 996 if (reason == VMX_VMCALL) { 997 u32 val = 0; 998 999 if (insn_table[cur_insn].type == INSN_CPU0) 1000 val = vmcs_read(CPU_EXEC_CTRL0); 1001 else if (insn_table[cur_insn].type == INSN_CPU1) 1002 val = vmcs_read(CPU_EXEC_CTRL1); 1003 1004 if (vmx_get_test_stage() & 1) 1005 val &= ~insn_table[cur_insn].flag; 1006 else 1007 val |= insn_table[cur_insn].flag; 1008 1009 if (insn_table[cur_insn].type == INSN_CPU0) 1010 vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set); 1011 else if (insn_table[cur_insn].type == INSN_CPU1) 1012 vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set); 1013 } else { 1014 pass = (cur_insn * 2 == vmx_get_test_stage()) && 1015 insn_table[cur_insn].reason == reason; 1016 if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL && 1017 insn_table[cur_insn].exit_qual != exit_qual) 1018 pass = false; 1019 if (insn_table[cur_insn].test_field & FIELD_INSN_INFO && 1020 insn_table[cur_insn].insn_info != insn_info) 1021 pass = false; 1022 if (pass) 1023 vmx_inc_test_stage(); 1024 } 1025 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1026 return VMX_TEST_RESUME; 1027 } 1028 1029 /** 1030 * __setup_ept - Setup the VMCS fields to enable Extended Page Tables (EPT) 1031 * @hpa: Host physical address of the top-level, a.k.a. root, EPT table 1032 * @enable_ad: Whether or not to enable Access/Dirty bits for EPT entries 1033 * 1034 * Returns 0 on success, 1 on failure. 1035 * 1036 * Note that @hpa doesn't need to point at actual memory if VM-Launch is 1037 * expected to fail, e.g. setup_dummy_ept() arbitrarily passes '0' to satisfy 1038 * the various EPTP consistency checks, but doesn't ensure backing for HPA '0'. 1039 */ 1040 static int __setup_ept(u64 hpa, bool enable_ad) 1041 { 1042 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 1043 !(ctrl_cpu_rev[1].clr & CPU_EPT)) { 1044 printf("\tEPT is not supported"); 1045 return 1; 1046 } 1047 if (!(ept_vpid.val & EPT_CAP_WB)) { 1048 printf("WB memtype for EPT walks not supported\n"); 1049 return 1; 1050 } 1051 if (!(ept_vpid.val & EPT_CAP_PWL4)) { 1052 printf("\tPWL4 is not supported\n"); 1053 return 1; 1054 } 1055 1056 eptp = EPT_MEM_TYPE_WB; 1057 eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT); 1058 eptp |= hpa; 1059 if (enable_ad) 1060 eptp |= EPTP_AD_FLAG; 1061 1062 vmcs_write(EPTP, eptp); 1063 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0)| CPU_SECONDARY); 1064 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1)| CPU_EPT); 1065 1066 return 0; 1067 } 1068 1069 /** 1070 * setup_ept - Enable Extended Page Tables (EPT) and setup an identity map 1071 * @enable_ad: Whether or not to enable Access/Dirty bits for EPT entries 1072 * 1073 * Returns 0 on success, 1 on failure. 1074 * 1075 * This is the "real" function for setting up EPT tables, i.e. use this for 1076 * tests that need to run code in the guest with EPT enabled. 1077 */ 1078 static int setup_ept(bool enable_ad) 1079 { 1080 unsigned long end_of_memory; 1081 1082 pml4 = alloc_page(); 1083 1084 if (__setup_ept(virt_to_phys(pml4), enable_ad)) 1085 return 1; 1086 1087 end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE); 1088 if (end_of_memory < (1ul << 32)) 1089 end_of_memory = (1ul << 32); 1090 /* Cannot use large EPT pages if we need to track EPT 1091 * accessed/dirty bits at 4K granularity. 1092 */ 1093 setup_ept_range(pml4, 0, end_of_memory, 0, 1094 !enable_ad && ept_2m_supported(), 1095 EPT_WA | EPT_RA | EPT_EA); 1096 return 0; 1097 } 1098 1099 /** 1100 * setup_dummy_ept - Enable Extended Page Tables (EPT) with a dummy root HPA 1101 * 1102 * Setup EPT using a semi-arbitrary dummy root HPA. This function is intended 1103 * for use by tests that need EPT enabled to verify dependent VMCS controls 1104 * but never expect to fully enter the guest, i.e. don't need setup the actual 1105 * EPT tables. 1106 */ 1107 static void setup_dummy_ept(void) 1108 { 1109 if (__setup_ept(0, false)) 1110 report_abort("EPT setup unexpectedly failed"); 1111 } 1112 1113 static int enable_unrestricted_guest(void) 1114 { 1115 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 1116 !(ctrl_cpu_rev[1].clr & CPU_URG) || 1117 !(ctrl_cpu_rev[1].clr & CPU_EPT)) 1118 return 1; 1119 1120 setup_dummy_ept(); 1121 1122 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); 1123 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG); 1124 1125 return 0; 1126 } 1127 1128 static void ept_enable_ad_bits(void) 1129 { 1130 eptp |= EPTP_AD_FLAG; 1131 vmcs_write(EPTP, eptp); 1132 } 1133 1134 static void ept_disable_ad_bits(void) 1135 { 1136 eptp &= ~EPTP_AD_FLAG; 1137 vmcs_write(EPTP, eptp); 1138 } 1139 1140 static void ept_enable_ad_bits_or_skip_test(void) 1141 { 1142 if (!ept_ad_bits_supported()) 1143 test_skip("EPT AD bits not supported."); 1144 ept_enable_ad_bits(); 1145 } 1146 1147 static int apic_version; 1148 1149 static int ept_init_common(bool have_ad) 1150 { 1151 int ret; 1152 struct pci_dev pcidev; 1153 1154 if (setup_ept(have_ad)) 1155 return VMX_TEST_EXIT; 1156 data_page1 = alloc_page(); 1157 data_page2 = alloc_page(); 1158 *((u32 *)data_page1) = MAGIC_VAL_1; 1159 *((u32 *)data_page2) = MAGIC_VAL_2; 1160 install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2, 1161 EPT_RA | EPT_WA | EPT_EA); 1162 1163 apic_version = apic_read(APIC_LVR); 1164 1165 ret = pci_find_dev(PCI_VENDOR_ID_REDHAT, PCI_DEVICE_ID_REDHAT_TEST); 1166 if (ret != PCIDEVADDR_INVALID) { 1167 pci_dev_init(&pcidev, ret); 1168 pci_physaddr = pcidev.resource[PCI_TESTDEV_BAR_MEM]; 1169 } 1170 1171 return VMX_TEST_START; 1172 } 1173 1174 static int ept_init(struct vmcs *vmcs) 1175 { 1176 return ept_init_common(false); 1177 } 1178 1179 static void ept_common(void) 1180 { 1181 vmx_set_test_stage(0); 1182 if (*((u32 *)data_page2) != MAGIC_VAL_1 || 1183 *((u32 *)data_page1) != MAGIC_VAL_1) 1184 report("EPT basic framework - read", 0); 1185 else { 1186 *((u32 *)data_page2) = MAGIC_VAL_3; 1187 vmcall(); 1188 if (vmx_get_test_stage() == 1) { 1189 if (*((u32 *)data_page1) == MAGIC_VAL_3 && 1190 *((u32 *)data_page2) == MAGIC_VAL_2) 1191 report("EPT basic framework", 1); 1192 else 1193 report("EPT basic framework - remap", 1); 1194 } 1195 } 1196 // Test EPT Misconfigurations 1197 vmx_set_test_stage(1); 1198 vmcall(); 1199 *((u32 *)data_page1) = MAGIC_VAL_1; 1200 if (vmx_get_test_stage() != 2) { 1201 report("EPT misconfigurations", 0); 1202 goto t1; 1203 } 1204 vmx_set_test_stage(2); 1205 vmcall(); 1206 *((u32 *)data_page1) = MAGIC_VAL_1; 1207 report("EPT misconfigurations", vmx_get_test_stage() == 3); 1208 t1: 1209 // Test EPT violation 1210 vmx_set_test_stage(3); 1211 vmcall(); 1212 *((u32 *)data_page1) = MAGIC_VAL_1; 1213 report("EPT violation - page permission", vmx_get_test_stage() == 4); 1214 // Violation caused by EPT paging structure 1215 vmx_set_test_stage(4); 1216 vmcall(); 1217 *((u32 *)data_page1) = MAGIC_VAL_2; 1218 report("EPT violation - paging structure", vmx_get_test_stage() == 5); 1219 1220 // MMIO Read/Write 1221 vmx_set_test_stage(5); 1222 vmcall(); 1223 1224 *(u32 volatile *)pci_physaddr; 1225 report("MMIO EPT violation - read", vmx_get_test_stage() == 6); 1226 1227 *(u32 volatile *)pci_physaddr = MAGIC_VAL_1; 1228 report("MMIO EPT violation - write", vmx_get_test_stage() == 7); 1229 } 1230 1231 static void ept_main(void) 1232 { 1233 ept_common(); 1234 1235 // Test EPT access to L1 MMIO 1236 vmx_set_test_stage(7); 1237 report("EPT - MMIO access", *((u32 *)0xfee00030UL) == apic_version); 1238 1239 // Test invalid operand for INVEPT 1240 vmcall(); 1241 report("EPT - unsupported INVEPT", vmx_get_test_stage() == 8); 1242 } 1243 1244 static bool invept_test(int type, u64 eptp) 1245 { 1246 bool ret, supported; 1247 1248 supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type); 1249 ret = invept(type, eptp); 1250 1251 if (ret == !supported) 1252 return false; 1253 1254 if (!supported) 1255 printf("WARNING: unsupported invept passed!\n"); 1256 else 1257 printf("WARNING: invept failed!\n"); 1258 1259 return true; 1260 } 1261 1262 static int pml_exit_handler(void) 1263 { 1264 u16 index, count; 1265 ulong reason = vmcs_read(EXI_REASON) & 0xff; 1266 u64 *pmlbuf = pml_log; 1267 u64 guest_rip = vmcs_read(GUEST_RIP);; 1268 u64 guest_cr3 = vmcs_read(GUEST_CR3); 1269 u32 insn_len = vmcs_read(EXI_INST_LEN); 1270 1271 switch (reason) { 1272 case VMX_VMCALL: 1273 switch (vmx_get_test_stage()) { 1274 case 0: 1275 index = vmcs_read(GUEST_PML_INDEX); 1276 for (count = index + 1; count < PML_INDEX; count++) { 1277 if (pmlbuf[count] == (u64)data_page2) { 1278 vmx_inc_test_stage(); 1279 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); 1280 break; 1281 } 1282 } 1283 break; 1284 case 1: 1285 index = vmcs_read(GUEST_PML_INDEX); 1286 /* Keep clearing the dirty bit till a overflow */ 1287 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); 1288 break; 1289 default: 1290 report("unexpected stage, %d.", false, 1291 vmx_get_test_stage()); 1292 print_vmexit_info(); 1293 return VMX_TEST_VMEXIT; 1294 } 1295 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1296 return VMX_TEST_RESUME; 1297 case VMX_PML_FULL: 1298 vmx_inc_test_stage(); 1299 vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1); 1300 return VMX_TEST_RESUME; 1301 default: 1302 report("Unknown exit reason, %ld", false, reason); 1303 print_vmexit_info(); 1304 } 1305 return VMX_TEST_VMEXIT; 1306 } 1307 1308 static int ept_exit_handler_common(bool have_ad) 1309 { 1310 u64 guest_rip; 1311 u64 guest_cr3; 1312 ulong reason; 1313 u32 insn_len; 1314 u32 exit_qual; 1315 static unsigned long data_page1_pte, data_page1_pte_pte, memaddr_pte; 1316 1317 guest_rip = vmcs_read(GUEST_RIP); 1318 guest_cr3 = vmcs_read(GUEST_CR3); 1319 reason = vmcs_read(EXI_REASON) & 0xff; 1320 insn_len = vmcs_read(EXI_INST_LEN); 1321 exit_qual = vmcs_read(EXI_QUALIFICATION); 1322 switch (reason) { 1323 case VMX_VMCALL: 1324 switch (vmx_get_test_stage()) { 1325 case 0: 1326 check_ept_ad(pml4, guest_cr3, 1327 (unsigned long)data_page1, 1328 have_ad ? EPT_ACCESS_FLAG : 0, 1329 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); 1330 check_ept_ad(pml4, guest_cr3, 1331 (unsigned long)data_page2, 1332 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0, 1333 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); 1334 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); 1335 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); 1336 if (have_ad) 1337 ept_sync(INVEPT_SINGLE, eptp);; 1338 if (*((u32 *)data_page1) == MAGIC_VAL_3 && 1339 *((u32 *)data_page2) == MAGIC_VAL_2) { 1340 vmx_inc_test_stage(); 1341 install_ept(pml4, (unsigned long)data_page2, 1342 (unsigned long)data_page2, 1343 EPT_RA | EPT_WA | EPT_EA); 1344 } else 1345 report("EPT basic framework - write", 0); 1346 break; 1347 case 1: 1348 install_ept(pml4, (unsigned long)data_page1, 1349 (unsigned long)data_page1, EPT_WA); 1350 ept_sync(INVEPT_SINGLE, eptp); 1351 break; 1352 case 2: 1353 install_ept(pml4, (unsigned long)data_page1, 1354 (unsigned long)data_page1, 1355 EPT_RA | EPT_WA | EPT_EA | 1356 (2 << EPT_MEM_TYPE_SHIFT)); 1357 ept_sync(INVEPT_SINGLE, eptp); 1358 break; 1359 case 3: 1360 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); 1361 TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1, 1362 1, &data_page1_pte)); 1363 set_ept_pte(pml4, (unsigned long)data_page1, 1364 1, data_page1_pte & ~EPT_PRESENT); 1365 ept_sync(INVEPT_SINGLE, eptp); 1366 break; 1367 case 4: 1368 TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1, 1369 2, &data_page1_pte)); 1370 data_page1_pte &= PAGE_MASK; 1371 TEST_ASSERT(get_ept_pte(pml4, data_page1_pte, 1372 2, &data_page1_pte_pte)); 1373 set_ept_pte(pml4, data_page1_pte, 2, 1374 data_page1_pte_pte & ~EPT_PRESENT); 1375 ept_sync(INVEPT_SINGLE, eptp); 1376 break; 1377 case 5: 1378 install_ept(pml4, (unsigned long)pci_physaddr, 1379 (unsigned long)pci_physaddr, 0); 1380 ept_sync(INVEPT_SINGLE, eptp); 1381 break; 1382 case 7: 1383 if (!invept_test(0, eptp)) 1384 vmx_inc_test_stage(); 1385 break; 1386 // Should not reach here 1387 default: 1388 report("ERROR - unexpected stage, %d.", false, 1389 vmx_get_test_stage()); 1390 print_vmexit_info(); 1391 return VMX_TEST_VMEXIT; 1392 } 1393 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1394 return VMX_TEST_RESUME; 1395 case VMX_EPT_MISCONFIG: 1396 switch (vmx_get_test_stage()) { 1397 case 1: 1398 case 2: 1399 vmx_inc_test_stage(); 1400 install_ept(pml4, (unsigned long)data_page1, 1401 (unsigned long)data_page1, 1402 EPT_RA | EPT_WA | EPT_EA); 1403 ept_sync(INVEPT_SINGLE, eptp); 1404 break; 1405 // Should not reach here 1406 default: 1407 report("ERROR - unexpected stage, %d.", false, 1408 vmx_get_test_stage()); 1409 print_vmexit_info(); 1410 return VMX_TEST_VMEXIT; 1411 } 1412 return VMX_TEST_RESUME; 1413 case VMX_EPT_VIOLATION: 1414 switch(vmx_get_test_stage()) { 1415 case 3: 1416 check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0, 1417 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); 1418 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); 1419 if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD | 1420 EPT_VLT_PADDR)) 1421 vmx_inc_test_stage(); 1422 set_ept_pte(pml4, (unsigned long)data_page1, 1423 1, data_page1_pte | (EPT_PRESENT)); 1424 ept_sync(INVEPT_SINGLE, eptp); 1425 break; 1426 case 4: 1427 check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0, 1428 have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); 1429 clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); 1430 if (exit_qual == (EPT_VLT_RD | 1431 (have_ad ? EPT_VLT_WR : 0) | 1432 EPT_VLT_LADDR_VLD)) 1433 vmx_inc_test_stage(); 1434 set_ept_pte(pml4, data_page1_pte, 2, 1435 data_page1_pte_pte | (EPT_PRESENT)); 1436 ept_sync(INVEPT_SINGLE, eptp); 1437 break; 1438 case 5: 1439 if (exit_qual & EPT_VLT_RD) 1440 vmx_inc_test_stage(); 1441 TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr, 1442 1, &memaddr_pte)); 1443 set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA); 1444 ept_sync(INVEPT_SINGLE, eptp); 1445 break; 1446 case 6: 1447 if (exit_qual & EPT_VLT_WR) 1448 vmx_inc_test_stage(); 1449 TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr, 1450 1, &memaddr_pte)); 1451 set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA | EPT_WA); 1452 ept_sync(INVEPT_SINGLE, eptp); 1453 break; 1454 default: 1455 // Should not reach here 1456 report("ERROR : unexpected stage, %d", false, 1457 vmx_get_test_stage()); 1458 print_vmexit_info(); 1459 return VMX_TEST_VMEXIT; 1460 } 1461 return VMX_TEST_RESUME; 1462 default: 1463 report("Unknown exit reason, %ld", false, reason); 1464 print_vmexit_info(); 1465 } 1466 return VMX_TEST_VMEXIT; 1467 } 1468 1469 static int ept_exit_handler(void) 1470 { 1471 return ept_exit_handler_common(false); 1472 } 1473 1474 static int eptad_init(struct vmcs *vmcs) 1475 { 1476 int r = ept_init_common(true); 1477 1478 if (r == VMX_TEST_EXIT) 1479 return r; 1480 1481 if ((rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & EPT_CAP_AD_FLAG) == 0) { 1482 printf("\tEPT A/D bits are not supported"); 1483 return VMX_TEST_EXIT; 1484 } 1485 1486 return r; 1487 } 1488 1489 static int pml_init(struct vmcs *vmcs) 1490 { 1491 u32 ctrl_cpu; 1492 int r = eptad_init(vmcs); 1493 1494 if (r == VMX_TEST_EXIT) 1495 return r; 1496 1497 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 1498 !(ctrl_cpu_rev[1].clr & CPU_PML)) { 1499 printf("\tPML is not supported"); 1500 return VMX_TEST_EXIT; 1501 } 1502 1503 pml_log = alloc_page(); 1504 vmcs_write(PMLADDR, (u64)pml_log); 1505 vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1); 1506 1507 ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML; 1508 vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu); 1509 1510 return VMX_TEST_START; 1511 } 1512 1513 static void pml_main(void) 1514 { 1515 int count = 0; 1516 1517 vmx_set_test_stage(0); 1518 *((u32 *)data_page2) = 0x1; 1519 vmcall(); 1520 report("PML - Dirty GPA Logging", vmx_get_test_stage() == 1); 1521 1522 while (vmx_get_test_stage() == 1) { 1523 vmcall(); 1524 *((u32 *)data_page2) = 0x1; 1525 if (count++ > PML_INDEX) 1526 break; 1527 } 1528 report("PML Full Event", vmx_get_test_stage() == 2); 1529 } 1530 1531 static void eptad_main(void) 1532 { 1533 ept_common(); 1534 } 1535 1536 static int eptad_exit_handler(void) 1537 { 1538 return ept_exit_handler_common(true); 1539 } 1540 1541 static bool invvpid_test(int type, u16 vpid) 1542 { 1543 bool ret, supported; 1544 1545 supported = ept_vpid.val & 1546 (VPID_CAP_INVVPID_ADDR >> INVVPID_ADDR << type); 1547 ret = invvpid(type, vpid, 0); 1548 1549 if (ret == !supported) 1550 return false; 1551 1552 if (!supported) 1553 printf("WARNING: unsupported invvpid passed!\n"); 1554 else 1555 printf("WARNING: invvpid failed!\n"); 1556 1557 return true; 1558 } 1559 1560 static int vpid_init(struct vmcs *vmcs) 1561 { 1562 u32 ctrl_cpu1; 1563 1564 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 1565 !(ctrl_cpu_rev[1].clr & CPU_VPID)) { 1566 printf("\tVPID is not supported"); 1567 return VMX_TEST_EXIT; 1568 } 1569 1570 ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1); 1571 ctrl_cpu1 |= CPU_VPID; 1572 vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1); 1573 return VMX_TEST_START; 1574 } 1575 1576 static void vpid_main(void) 1577 { 1578 vmx_set_test_stage(0); 1579 vmcall(); 1580 report("INVVPID SINGLE ADDRESS", vmx_get_test_stage() == 1); 1581 vmx_set_test_stage(2); 1582 vmcall(); 1583 report("INVVPID SINGLE", vmx_get_test_stage() == 3); 1584 vmx_set_test_stage(4); 1585 vmcall(); 1586 report("INVVPID ALL", vmx_get_test_stage() == 5); 1587 } 1588 1589 static int vpid_exit_handler(void) 1590 { 1591 u64 guest_rip; 1592 ulong reason; 1593 u32 insn_len; 1594 1595 guest_rip = vmcs_read(GUEST_RIP); 1596 reason = vmcs_read(EXI_REASON) & 0xff; 1597 insn_len = vmcs_read(EXI_INST_LEN); 1598 1599 switch (reason) { 1600 case VMX_VMCALL: 1601 switch(vmx_get_test_stage()) { 1602 case 0: 1603 if (!invvpid_test(INVVPID_ADDR, 1)) 1604 vmx_inc_test_stage(); 1605 break; 1606 case 2: 1607 if (!invvpid_test(INVVPID_CONTEXT_GLOBAL, 1)) 1608 vmx_inc_test_stage(); 1609 break; 1610 case 4: 1611 if (!invvpid_test(INVVPID_ALL, 1)) 1612 vmx_inc_test_stage(); 1613 break; 1614 default: 1615 report("ERROR: unexpected stage, %d", false, 1616 vmx_get_test_stage()); 1617 print_vmexit_info(); 1618 return VMX_TEST_VMEXIT; 1619 } 1620 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1621 return VMX_TEST_RESUME; 1622 default: 1623 report("Unknown exit reason, %ld", false, reason); 1624 print_vmexit_info(); 1625 } 1626 return VMX_TEST_VMEXIT; 1627 } 1628 1629 #define TIMER_VECTOR 222 1630 1631 static volatile bool timer_fired; 1632 1633 static void timer_isr(isr_regs_t *regs) 1634 { 1635 timer_fired = true; 1636 apic_write(APIC_EOI, 0); 1637 } 1638 1639 static int interrupt_init(struct vmcs *vmcs) 1640 { 1641 msr_bmp_init(); 1642 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 1643 handle_irq(TIMER_VECTOR, timer_isr); 1644 return VMX_TEST_START; 1645 } 1646 1647 static void interrupt_main(void) 1648 { 1649 long long start, loops; 1650 1651 vmx_set_test_stage(0); 1652 1653 apic_write(APIC_LVTT, TIMER_VECTOR); 1654 irq_enable(); 1655 1656 apic_write(APIC_TMICT, 1); 1657 for (loops = 0; loops < 10000000 && !timer_fired; loops++) 1658 asm volatile ("nop"); 1659 report("direct interrupt while running guest", timer_fired); 1660 1661 apic_write(APIC_TMICT, 0); 1662 irq_disable(); 1663 vmcall(); 1664 timer_fired = false; 1665 apic_write(APIC_TMICT, 1); 1666 for (loops = 0; loops < 10000000 && !timer_fired; loops++) 1667 asm volatile ("nop"); 1668 report("intercepted interrupt while running guest", timer_fired); 1669 1670 irq_enable(); 1671 apic_write(APIC_TMICT, 0); 1672 irq_disable(); 1673 vmcall(); 1674 timer_fired = false; 1675 start = rdtsc(); 1676 apic_write(APIC_TMICT, 1000000); 1677 1678 asm volatile ("sti; hlt"); 1679 1680 report("direct interrupt + hlt", 1681 rdtsc() - start > 1000000 && timer_fired); 1682 1683 apic_write(APIC_TMICT, 0); 1684 irq_disable(); 1685 vmcall(); 1686 timer_fired = false; 1687 start = rdtsc(); 1688 apic_write(APIC_TMICT, 1000000); 1689 1690 asm volatile ("sti; hlt"); 1691 1692 report("intercepted interrupt + hlt", 1693 rdtsc() - start > 10000 && timer_fired); 1694 1695 apic_write(APIC_TMICT, 0); 1696 irq_disable(); 1697 vmcall(); 1698 timer_fired = false; 1699 start = rdtsc(); 1700 apic_write(APIC_TMICT, 1000000); 1701 1702 irq_enable(); 1703 asm volatile ("nop"); 1704 vmcall(); 1705 1706 report("direct interrupt + activity state hlt", 1707 rdtsc() - start > 10000 && timer_fired); 1708 1709 apic_write(APIC_TMICT, 0); 1710 irq_disable(); 1711 vmcall(); 1712 timer_fired = false; 1713 start = rdtsc(); 1714 apic_write(APIC_TMICT, 1000000); 1715 1716 irq_enable(); 1717 asm volatile ("nop"); 1718 vmcall(); 1719 1720 report("intercepted interrupt + activity state hlt", 1721 rdtsc() - start > 10000 && timer_fired); 1722 1723 apic_write(APIC_TMICT, 0); 1724 irq_disable(); 1725 vmx_set_test_stage(7); 1726 vmcall(); 1727 timer_fired = false; 1728 apic_write(APIC_TMICT, 1); 1729 for (loops = 0; loops < 10000000 && !timer_fired; loops++) 1730 asm volatile ("nop"); 1731 report("running a guest with interrupt acknowledgement set", timer_fired); 1732 1733 apic_write(APIC_TMICT, 0); 1734 irq_enable(); 1735 timer_fired = false; 1736 vmcall(); 1737 report("Inject an event to a halted guest", timer_fired); 1738 } 1739 1740 static int interrupt_exit_handler(void) 1741 { 1742 u64 guest_rip = vmcs_read(GUEST_RIP); 1743 ulong reason = vmcs_read(EXI_REASON) & 0xff; 1744 u32 insn_len = vmcs_read(EXI_INST_LEN); 1745 1746 switch (reason) { 1747 case VMX_VMCALL: 1748 switch (vmx_get_test_stage()) { 1749 case 0: 1750 case 2: 1751 case 5: 1752 vmcs_write(PIN_CONTROLS, 1753 vmcs_read(PIN_CONTROLS) | PIN_EXTINT); 1754 break; 1755 case 7: 1756 vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA); 1757 vmcs_write(PIN_CONTROLS, 1758 vmcs_read(PIN_CONTROLS) | PIN_EXTINT); 1759 break; 1760 case 1: 1761 case 3: 1762 vmcs_write(PIN_CONTROLS, 1763 vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 1764 break; 1765 case 4: 1766 case 6: 1767 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 1768 break; 1769 1770 case 8: 1771 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 1772 vmcs_write(ENT_INTR_INFO, 1773 TIMER_VECTOR | 1774 (VMX_INTR_TYPE_EXT_INTR << INTR_INFO_INTR_TYPE_SHIFT) | 1775 INTR_INFO_VALID_MASK); 1776 break; 1777 } 1778 vmx_inc_test_stage(); 1779 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1780 return VMX_TEST_RESUME; 1781 case VMX_EXTINT: 1782 if (vmcs_read(EXI_CONTROLS) & EXI_INTA) { 1783 int vector = vmcs_read(EXI_INTR_INFO) & 0xff; 1784 handle_external_interrupt(vector); 1785 } else { 1786 irq_enable(); 1787 asm volatile ("nop"); 1788 irq_disable(); 1789 } 1790 if (vmx_get_test_stage() >= 2) 1791 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 1792 return VMX_TEST_RESUME; 1793 default: 1794 report("Unknown exit reason, %ld", false, reason); 1795 print_vmexit_info(); 1796 } 1797 1798 return VMX_TEST_VMEXIT; 1799 } 1800 1801 static int dbgctls_init(struct vmcs *vmcs) 1802 { 1803 u64 dr7 = 0x402; 1804 u64 zero = 0; 1805 1806 msr_bmp_init(); 1807 asm volatile( 1808 "mov %0,%%dr0\n\t" 1809 "mov %0,%%dr1\n\t" 1810 "mov %0,%%dr2\n\t" 1811 "mov %1,%%dr7\n\t" 1812 : : "r" (zero), "r" (dr7)); 1813 wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1); 1814 vmcs_write(GUEST_DR7, 0x404); 1815 vmcs_write(GUEST_DEBUGCTL, 0x2); 1816 1817 vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS); 1818 vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS); 1819 1820 return VMX_TEST_START; 1821 } 1822 1823 static void dbgctls_main(void) 1824 { 1825 u64 dr7, debugctl; 1826 1827 asm volatile("mov %%dr7,%0" : "=r" (dr7)); 1828 debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); 1829 /* Commented out: KVM does not support DEBUGCTL so far */ 1830 (void)debugctl; 1831 report("Load debug controls", dr7 == 0x404 /* && debugctl == 0x2 */); 1832 1833 dr7 = 0x408; 1834 asm volatile("mov %0,%%dr7" : : "r" (dr7)); 1835 wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3); 1836 1837 vmx_set_test_stage(0); 1838 vmcall(); 1839 report("Save debug controls", vmx_get_test_stage() == 1); 1840 1841 if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS || 1842 ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) { 1843 printf("\tDebug controls are always loaded/saved\n"); 1844 return; 1845 } 1846 vmx_set_test_stage(2); 1847 vmcall(); 1848 1849 asm volatile("mov %%dr7,%0" : "=r" (dr7)); 1850 debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); 1851 /* Commented out: KVM does not support DEBUGCTL so far */ 1852 (void)debugctl; 1853 report("Guest=host debug controls", dr7 == 0x402 /* && debugctl == 0x1 */); 1854 1855 dr7 = 0x408; 1856 asm volatile("mov %0,%%dr7" : : "r" (dr7)); 1857 wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3); 1858 1859 vmx_set_test_stage(3); 1860 vmcall(); 1861 report("Don't save debug controls", vmx_get_test_stage() == 4); 1862 } 1863 1864 static int dbgctls_exit_handler(void) 1865 { 1866 unsigned int reason = vmcs_read(EXI_REASON) & 0xff; 1867 u32 insn_len = vmcs_read(EXI_INST_LEN); 1868 u64 guest_rip = vmcs_read(GUEST_RIP); 1869 u64 dr7, debugctl; 1870 1871 asm volatile("mov %%dr7,%0" : "=r" (dr7)); 1872 debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); 1873 1874 switch (reason) { 1875 case VMX_VMCALL: 1876 switch (vmx_get_test_stage()) { 1877 case 0: 1878 if (dr7 == 0x400 && debugctl == 0 && 1879 vmcs_read(GUEST_DR7) == 0x408 /* && 1880 Commented out: KVM does not support DEBUGCTL so far 1881 vmcs_read(GUEST_DEBUGCTL) == 0x3 */) 1882 vmx_inc_test_stage(); 1883 break; 1884 case 2: 1885 dr7 = 0x402; 1886 asm volatile("mov %0,%%dr7" : : "r" (dr7)); 1887 wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1); 1888 vmcs_write(GUEST_DR7, 0x404); 1889 vmcs_write(GUEST_DEBUGCTL, 0x2); 1890 1891 vmcs_write(ENT_CONTROLS, 1892 vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS); 1893 vmcs_write(EXI_CONTROLS, 1894 vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS); 1895 break; 1896 case 3: 1897 if (dr7 == 0x400 && debugctl == 0 && 1898 vmcs_read(GUEST_DR7) == 0x404 /* && 1899 Commented out: KVM does not support DEBUGCTL so far 1900 vmcs_read(GUEST_DEBUGCTL) == 0x2 */) 1901 vmx_inc_test_stage(); 1902 break; 1903 } 1904 vmcs_write(GUEST_RIP, guest_rip + insn_len); 1905 return VMX_TEST_RESUME; 1906 default: 1907 report("Unknown exit reason, %d", false, reason); 1908 print_vmexit_info(); 1909 } 1910 return VMX_TEST_VMEXIT; 1911 } 1912 1913 struct vmx_msr_entry { 1914 u32 index; 1915 u32 reserved; 1916 u64 value; 1917 } __attribute__((packed)); 1918 1919 #define MSR_MAGIC 0x31415926 1920 struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load; 1921 1922 static int msr_switch_init(struct vmcs *vmcs) 1923 { 1924 msr_bmp_init(); 1925 exit_msr_store = alloc_page(); 1926 exit_msr_load = alloc_page(); 1927 entry_msr_load = alloc_page(); 1928 entry_msr_load[0].index = MSR_KERNEL_GS_BASE; 1929 entry_msr_load[0].value = MSR_MAGIC; 1930 1931 vmx_set_test_stage(1); 1932 vmcs_write(ENT_MSR_LD_CNT, 1); 1933 vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load); 1934 vmcs_write(EXI_MSR_ST_CNT, 1); 1935 vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store); 1936 vmcs_write(EXI_MSR_LD_CNT, 1); 1937 vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load); 1938 return VMX_TEST_START; 1939 } 1940 1941 static void msr_switch_main(void) 1942 { 1943 if (vmx_get_test_stage() == 1) { 1944 report("VM entry MSR load", 1945 rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC); 1946 vmx_set_test_stage(2); 1947 wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1); 1948 exit_msr_store[0].index = MSR_KERNEL_GS_BASE; 1949 exit_msr_load[0].index = MSR_KERNEL_GS_BASE; 1950 exit_msr_load[0].value = MSR_MAGIC + 2; 1951 } 1952 vmcall(); 1953 } 1954 1955 static int msr_switch_exit_handler(void) 1956 { 1957 ulong reason; 1958 1959 reason = vmcs_read(EXI_REASON); 1960 if (reason == VMX_VMCALL && vmx_get_test_stage() == 2) { 1961 report("VM exit MSR store", 1962 exit_msr_store[0].value == MSR_MAGIC + 1); 1963 report("VM exit MSR load", 1964 rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2); 1965 vmx_set_test_stage(3); 1966 entry_msr_load[0].index = MSR_FS_BASE; 1967 return VMX_TEST_RESUME; 1968 } 1969 printf("ERROR %s: unexpected stage=%u or reason=%lu\n", 1970 __func__, vmx_get_test_stage(), reason); 1971 return VMX_TEST_EXIT; 1972 } 1973 1974 static int msr_switch_entry_failure(struct vmentry_failure *failure) 1975 { 1976 ulong reason; 1977 1978 if (failure->early) { 1979 printf("ERROR %s: early exit\n", __func__); 1980 return VMX_TEST_EXIT; 1981 } 1982 1983 reason = vmcs_read(EXI_REASON); 1984 if (reason == (VMX_ENTRY_FAILURE | VMX_FAIL_MSR) && 1985 vmx_get_test_stage() == 3) { 1986 report("VM entry MSR load: try to load FS_BASE", 1987 vmcs_read(EXI_QUALIFICATION) == 1); 1988 return VMX_TEST_VMEXIT; 1989 } 1990 printf("ERROR %s: unexpected stage=%u or reason=%lu\n", 1991 __func__, vmx_get_test_stage(), reason); 1992 return VMX_TEST_EXIT; 1993 } 1994 1995 static int vmmcall_init(struct vmcs *vmcs) 1996 { 1997 vmcs_write(EXC_BITMAP, 1 << UD_VECTOR); 1998 return VMX_TEST_START; 1999 } 2000 2001 static void vmmcall_main(void) 2002 { 2003 asm volatile( 2004 "mov $0xABCD, %%rax\n\t" 2005 "vmmcall\n\t" 2006 ::: "rax"); 2007 2008 report("VMMCALL", 0); 2009 } 2010 2011 static int vmmcall_exit_handler(void) 2012 { 2013 ulong reason; 2014 2015 reason = vmcs_read(EXI_REASON); 2016 switch (reason) { 2017 case VMX_VMCALL: 2018 printf("here\n"); 2019 report("VMMCALL triggers #UD", 0); 2020 break; 2021 case VMX_EXC_NMI: 2022 report("VMMCALL triggers #UD", 2023 (vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR); 2024 break; 2025 default: 2026 report("Unknown exit reason, %ld", false, reason); 2027 print_vmexit_info(); 2028 } 2029 2030 return VMX_TEST_VMEXIT; 2031 } 2032 2033 static int disable_rdtscp_init(struct vmcs *vmcs) 2034 { 2035 u32 ctrl_cpu1; 2036 2037 if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) { 2038 ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1); 2039 ctrl_cpu1 &= ~CPU_RDTSCP; 2040 vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1); 2041 } 2042 2043 return VMX_TEST_START; 2044 } 2045 2046 static void disable_rdtscp_ud_handler(struct ex_regs *regs) 2047 { 2048 switch (vmx_get_test_stage()) { 2049 case 0: 2050 report("RDTSCP triggers #UD", true); 2051 vmx_inc_test_stage(); 2052 regs->rip += 3; 2053 break; 2054 case 2: 2055 report("RDPID triggers #UD", true); 2056 vmx_inc_test_stage(); 2057 regs->rip += 4; 2058 break; 2059 } 2060 return; 2061 2062 } 2063 2064 static void disable_rdtscp_main(void) 2065 { 2066 /* Test that #UD is properly injected in L2. */ 2067 handle_exception(UD_VECTOR, disable_rdtscp_ud_handler); 2068 2069 vmx_set_test_stage(0); 2070 asm volatile("rdtscp" : : : "eax", "ecx", "edx"); 2071 vmcall(); 2072 asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax"); 2073 2074 handle_exception(UD_VECTOR, 0); 2075 vmcall(); 2076 } 2077 2078 static int disable_rdtscp_exit_handler(void) 2079 { 2080 unsigned int reason = vmcs_read(EXI_REASON) & 0xff; 2081 2082 switch (reason) { 2083 case VMX_VMCALL: 2084 switch (vmx_get_test_stage()) { 2085 case 0: 2086 report("RDTSCP triggers #UD", false); 2087 vmx_inc_test_stage(); 2088 /* fallthrough */ 2089 case 1: 2090 vmx_inc_test_stage(); 2091 vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3); 2092 return VMX_TEST_RESUME; 2093 case 2: 2094 report("RDPID triggers #UD", false); 2095 break; 2096 } 2097 break; 2098 2099 default: 2100 report("Unknown exit reason, %d", false, reason); 2101 print_vmexit_info(); 2102 } 2103 return VMX_TEST_VMEXIT; 2104 } 2105 2106 static int int3_init(struct vmcs *vmcs) 2107 { 2108 vmcs_write(EXC_BITMAP, ~0u); 2109 return VMX_TEST_START; 2110 } 2111 2112 static void int3_guest_main(void) 2113 { 2114 asm volatile ("int3"); 2115 } 2116 2117 static int int3_exit_handler(void) 2118 { 2119 u32 reason = vmcs_read(EXI_REASON); 2120 u32 intr_info = vmcs_read(EXI_INTR_INFO); 2121 2122 report("L1 intercepts #BP", reason == VMX_EXC_NMI && 2123 (intr_info & INTR_INFO_VALID_MASK) && 2124 (intr_info & INTR_INFO_VECTOR_MASK) == BP_VECTOR && 2125 ((intr_info & INTR_INFO_INTR_TYPE_MASK) >> 2126 INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION); 2127 2128 return VMX_TEST_VMEXIT; 2129 } 2130 2131 static int into_init(struct vmcs *vmcs) 2132 { 2133 vmcs_write(EXC_BITMAP, ~0u); 2134 return VMX_TEST_START; 2135 } 2136 2137 static void into_guest_main(void) 2138 { 2139 struct far_pointer32 fp = { 2140 .offset = (uintptr_t)&&into, 2141 .selector = KERNEL_CS32, 2142 }; 2143 register uintptr_t rsp asm("rsp"); 2144 2145 if (fp.offset != (uintptr_t)&&into) { 2146 printf("Code address too high.\n"); 2147 return; 2148 } 2149 if ((u32)rsp != rsp) { 2150 printf("Stack address too high.\n"); 2151 return; 2152 } 2153 2154 asm goto ("lcall *%0" : : "m" (fp) : "rax" : into); 2155 return; 2156 into: 2157 asm volatile (".code32;" 2158 "movl $0x7fffffff, %eax;" 2159 "addl %eax, %eax;" 2160 "into;" 2161 "lret;" 2162 ".code64"); 2163 __builtin_unreachable(); 2164 } 2165 2166 static int into_exit_handler(void) 2167 { 2168 u32 reason = vmcs_read(EXI_REASON); 2169 u32 intr_info = vmcs_read(EXI_INTR_INFO); 2170 2171 report("L1 intercepts #OF", reason == VMX_EXC_NMI && 2172 (intr_info & INTR_INFO_VALID_MASK) && 2173 (intr_info & INTR_INFO_VECTOR_MASK) == OF_VECTOR && 2174 ((intr_info & INTR_INFO_INTR_TYPE_MASK) >> 2175 INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION); 2176 2177 return VMX_TEST_VMEXIT; 2178 } 2179 2180 static void exit_monitor_from_l2_main(void) 2181 { 2182 printf("Calling exit(0) from l2...\n"); 2183 exit(0); 2184 } 2185 2186 static int exit_monitor_from_l2_handler(void) 2187 { 2188 report("The guest should have killed the VMM", false); 2189 return VMX_TEST_EXIT; 2190 } 2191 2192 static void assert_exit_reason(u64 expected) 2193 { 2194 u64 actual = vmcs_read(EXI_REASON); 2195 2196 TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.", 2197 exit_reason_description(expected), 2198 exit_reason_description(actual)); 2199 } 2200 2201 static void skip_exit_insn(void) 2202 { 2203 u64 guest_rip = vmcs_read(GUEST_RIP); 2204 u32 insn_len = vmcs_read(EXI_INST_LEN); 2205 vmcs_write(GUEST_RIP, guest_rip + insn_len); 2206 } 2207 2208 static void skip_exit_vmcall(void) 2209 { 2210 assert_exit_reason(VMX_VMCALL); 2211 skip_exit_insn(); 2212 } 2213 2214 static void v2_null_test_guest(void) 2215 { 2216 } 2217 2218 static void v2_null_test(void) 2219 { 2220 test_set_guest(v2_null_test_guest); 2221 enter_guest(); 2222 report(__func__, 1); 2223 } 2224 2225 static void v2_multiple_entries_test_guest(void) 2226 { 2227 vmx_set_test_stage(1); 2228 vmcall(); 2229 vmx_set_test_stage(2); 2230 } 2231 2232 static void v2_multiple_entries_test(void) 2233 { 2234 test_set_guest(v2_multiple_entries_test_guest); 2235 enter_guest(); 2236 TEST_ASSERT_EQ(vmx_get_test_stage(), 1); 2237 skip_exit_vmcall(); 2238 enter_guest(); 2239 TEST_ASSERT_EQ(vmx_get_test_stage(), 2); 2240 report(__func__, 1); 2241 } 2242 2243 static int fixture_test_data = 1; 2244 2245 static void fixture_test_teardown(void *data) 2246 { 2247 *((int *) data) = 1; 2248 } 2249 2250 static void fixture_test_guest(void) 2251 { 2252 fixture_test_data++; 2253 } 2254 2255 2256 static void fixture_test_setup(void) 2257 { 2258 TEST_ASSERT_EQ_MSG(1, fixture_test_data, 2259 "fixture_test_teardown didn't run?!"); 2260 fixture_test_data = 2; 2261 test_add_teardown(fixture_test_teardown, &fixture_test_data); 2262 test_set_guest(fixture_test_guest); 2263 } 2264 2265 static void fixture_test_case1(void) 2266 { 2267 fixture_test_setup(); 2268 TEST_ASSERT_EQ(2, fixture_test_data); 2269 enter_guest(); 2270 TEST_ASSERT_EQ(3, fixture_test_data); 2271 report(__func__, 1); 2272 } 2273 2274 static void fixture_test_case2(void) 2275 { 2276 fixture_test_setup(); 2277 TEST_ASSERT_EQ(2, fixture_test_data); 2278 enter_guest(); 2279 TEST_ASSERT_EQ(3, fixture_test_data); 2280 report(__func__, 1); 2281 } 2282 2283 enum ept_access_op { 2284 OP_READ, 2285 OP_WRITE, 2286 OP_EXEC, 2287 OP_FLUSH_TLB, 2288 OP_EXIT, 2289 }; 2290 2291 static struct ept_access_test_data { 2292 unsigned long gpa; 2293 unsigned long *gva; 2294 unsigned long hpa; 2295 unsigned long *hva; 2296 enum ept_access_op op; 2297 } ept_access_test_data; 2298 2299 extern unsigned char ret42_start; 2300 extern unsigned char ret42_end; 2301 2302 /* Returns 42. */ 2303 asm( 2304 ".align 64\n" 2305 "ret42_start:\n" 2306 "mov $42, %eax\n" 2307 "ret\n" 2308 "ret42_end:\n" 2309 ); 2310 2311 static void 2312 diagnose_ept_violation_qual(u64 expected, u64 actual) 2313 { 2314 2315 #define DIAGNOSE(flag) \ 2316 do { \ 2317 if ((expected & flag) != (actual & flag)) \ 2318 printf(#flag " %sexpected\n", \ 2319 (expected & flag) ? "" : "un"); \ 2320 } while (0) 2321 2322 DIAGNOSE(EPT_VLT_RD); 2323 DIAGNOSE(EPT_VLT_WR); 2324 DIAGNOSE(EPT_VLT_FETCH); 2325 DIAGNOSE(EPT_VLT_PERM_RD); 2326 DIAGNOSE(EPT_VLT_PERM_WR); 2327 DIAGNOSE(EPT_VLT_PERM_EX); 2328 DIAGNOSE(EPT_VLT_LADDR_VLD); 2329 DIAGNOSE(EPT_VLT_PADDR); 2330 2331 #undef DIAGNOSE 2332 } 2333 2334 static void do_ept_access_op(enum ept_access_op op) 2335 { 2336 ept_access_test_data.op = op; 2337 enter_guest(); 2338 } 2339 2340 /* 2341 * Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only 2342 * needed by tests that modify guest PTEs. 2343 */ 2344 static void ept_access_test_guest_flush_tlb(void) 2345 { 2346 do_ept_access_op(OP_FLUSH_TLB); 2347 skip_exit_vmcall(); 2348 } 2349 2350 /* 2351 * Modifies the EPT entry at @level in the mapping of @gpa. First clears the 2352 * bits in @clear then sets the bits in @set. @mkhuge transforms the entry into 2353 * a huge page. 2354 */ 2355 static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level, 2356 unsigned long clear, unsigned long set) 2357 { 2358 struct ept_access_test_data *data = &ept_access_test_data; 2359 unsigned long orig_pte; 2360 unsigned long pte; 2361 2362 /* Screw with the mapping at the requested level. */ 2363 TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte)); 2364 pte = orig_pte; 2365 if (mkhuge) 2366 pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE; 2367 else 2368 pte = orig_pte; 2369 pte = (pte & ~clear) | set; 2370 set_ept_pte(pml4, gpa, level, pte); 2371 ept_sync(INVEPT_SINGLE, eptp); 2372 2373 return orig_pte; 2374 } 2375 2376 static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte) 2377 { 2378 set_ept_pte(pml4, gpa, level, orig_pte); 2379 } 2380 2381 static void do_ept_violation(bool leaf, enum ept_access_op op, 2382 u64 expected_qual, u64 expected_paddr) 2383 { 2384 u64 qual; 2385 2386 /* Try the access and observe the violation. */ 2387 do_ept_access_op(op); 2388 2389 assert_exit_reason(VMX_EPT_VIOLATION); 2390 2391 qual = vmcs_read(EXI_QUALIFICATION); 2392 2393 /* Mask undefined bits (which may later be defined in certain cases). */ 2394 qual &= ~(EPT_VLT_GUEST_USER | EPT_VLT_GUEST_RW | EPT_VLT_GUEST_EX | 2395 EPT_VLT_PERM_USER_EX); 2396 2397 diagnose_ept_violation_qual(expected_qual, qual); 2398 TEST_EXPECT_EQ(expected_qual, qual); 2399 2400 #if 0 2401 /* Disable for now otherwise every test will fail */ 2402 TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS), 2403 (unsigned long) ( 2404 op == OP_EXEC ? data->gva + 1 : data->gva)); 2405 #endif 2406 /* 2407 * TODO: tests that probe expected_paddr in pages other than the one at 2408 * the beginning of the 1g region. 2409 */ 2410 TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr); 2411 } 2412 2413 static void 2414 ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear, 2415 unsigned long set, enum ept_access_op op, 2416 u64 expected_qual) 2417 { 2418 struct ept_access_test_data *data = &ept_access_test_data; 2419 unsigned long orig_pte; 2420 2421 orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); 2422 2423 do_ept_violation(level == 1 || mkhuge, op, expected_qual, 2424 op == OP_EXEC ? data->gpa + sizeof(unsigned long) : 2425 data->gpa); 2426 2427 /* Fix the violation and resume the op loop. */ 2428 ept_untwiddle(data->gpa, level, orig_pte); 2429 enter_guest(); 2430 skip_exit_vmcall(); 2431 } 2432 2433 static void 2434 ept_violation_at_level(int level, unsigned long clear, unsigned long set, 2435 enum ept_access_op op, u64 expected_qual) 2436 { 2437 ept_violation_at_level_mkhuge(false, level, clear, set, op, 2438 expected_qual); 2439 if (ept_huge_pages_supported(level)) 2440 ept_violation_at_level_mkhuge(true, level, clear, set, op, 2441 expected_qual); 2442 } 2443 2444 static void ept_violation(unsigned long clear, unsigned long set, 2445 enum ept_access_op op, u64 expected_qual) 2446 { 2447 ept_violation_at_level(1, clear, set, op, expected_qual); 2448 ept_violation_at_level(2, clear, set, op, expected_qual); 2449 ept_violation_at_level(3, clear, set, op, expected_qual); 2450 ept_violation_at_level(4, clear, set, op, expected_qual); 2451 } 2452 2453 static void ept_access_violation(unsigned long access, enum ept_access_op op, 2454 u64 expected_qual) 2455 { 2456 ept_violation(EPT_PRESENT, access, op, 2457 expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 2458 } 2459 2460 /* 2461 * For translations that don't involve a GVA, that is physical address (paddr) 2462 * accesses, EPT violations don't set the flag EPT_VLT_PADDR. For a typical 2463 * guest memory access, the hardware does GVA -> GPA -> HPA. However, certain 2464 * translations don't involve GVAs, such as when the hardware does the guest 2465 * page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU 2466 * might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides 2467 * on isn't present in the EPT, then the EPT violation will be for GPA_2 and 2468 * the EPT_VLT_PADDR bit will be clear in the exit qualification. 2469 * 2470 * Note that paddr violations can also be triggered by loading PAE page tables 2471 * with wonky addresses. We don't test that yet. 2472 * 2473 * This function modifies the EPT entry that maps the GPA that the guest page 2474 * table entry mapping ept_access_data.gva resides on. 2475 * 2476 * @ept_access EPT permissions to set. Other permissions are cleared. 2477 * 2478 * @pte_ad Set the A/D bits on the guest PTE accordingly. 2479 * 2480 * @op Guest operation to perform with ept_access_data.gva. 2481 * 2482 * @expect_violation 2483 * Is a violation expected during the paddr access? 2484 * 2485 * @expected_qual Expected qualification for the EPT violation. 2486 * EPT_VLT_PADDR should be clear. 2487 */ 2488 static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad, 2489 enum ept_access_op op, bool expect_violation, 2490 u64 expected_qual) 2491 { 2492 struct ept_access_test_data *data = &ept_access_test_data; 2493 unsigned long *ptep; 2494 unsigned long gpa; 2495 unsigned long orig_epte; 2496 2497 /* Modify the guest PTE mapping data->gva according to @pte_ad. */ 2498 ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1); 2499 TEST_ASSERT(ptep); 2500 TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa); 2501 *ptep = (*ptep & ~PT_AD_MASK) | pte_ad; 2502 ept_access_test_guest_flush_tlb(); 2503 2504 /* 2505 * Now modify the access bits on the EPT entry for the GPA that the 2506 * guest PTE resides on. Note that by modifying a single EPT entry, 2507 * we're potentially affecting 512 guest PTEs. However, we've carefully 2508 * constructed our test such that those other 511 PTEs aren't used by 2509 * the guest: data->gva is at the beginning of a 1G huge page, thus the 2510 * PTE we're modifying is at the beginning of a 4K page and the 2511 * following 511 entires are also under our control (and not touched by 2512 * the guest). 2513 */ 2514 gpa = virt_to_phys(ptep); 2515 TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0); 2516 /* 2517 * Make sure the guest page table page is mapped with a 4K EPT entry, 2518 * otherwise our level=1 twiddling below will fail. We use the 2519 * identity map (gpa = gpa) since page tables are shared with the host. 2520 */ 2521 install_ept(pml4, gpa, gpa, EPT_PRESENT); 2522 orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1, 2523 /*clear=*/EPT_PRESENT, /*set=*/ept_access); 2524 2525 if (expect_violation) { 2526 do_ept_violation(/*leaf=*/true, op, 2527 expected_qual | EPT_VLT_LADDR_VLD, gpa); 2528 ept_untwiddle(gpa, /*level=*/1, orig_epte); 2529 do_ept_access_op(op); 2530 } else { 2531 do_ept_access_op(op); 2532 ept_untwiddle(gpa, /*level=*/1, orig_epte); 2533 } 2534 2535 TEST_ASSERT(*ptep & PT_ACCESSED_MASK); 2536 if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE) 2537 TEST_ASSERT(*ptep & PT_DIRTY_MASK); 2538 2539 skip_exit_vmcall(); 2540 } 2541 2542 static void ept_access_allowed_paddr(unsigned long ept_access, 2543 unsigned long pte_ad, 2544 enum ept_access_op op) 2545 { 2546 ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false, 2547 /*expected_qual=*/-1); 2548 } 2549 2550 static void ept_access_violation_paddr(unsigned long ept_access, 2551 unsigned long pte_ad, 2552 enum ept_access_op op, 2553 u64 expected_qual) 2554 { 2555 ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true, 2556 expected_qual); 2557 } 2558 2559 2560 static void ept_allowed_at_level_mkhuge(bool mkhuge, int level, 2561 unsigned long clear, 2562 unsigned long set, 2563 enum ept_access_op op) 2564 { 2565 struct ept_access_test_data *data = &ept_access_test_data; 2566 unsigned long orig_pte; 2567 2568 orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); 2569 2570 /* No violation. Should proceed to vmcall. */ 2571 do_ept_access_op(op); 2572 skip_exit_vmcall(); 2573 2574 ept_untwiddle(data->gpa, level, orig_pte); 2575 } 2576 2577 static void ept_allowed_at_level(int level, unsigned long clear, 2578 unsigned long set, enum ept_access_op op) 2579 { 2580 ept_allowed_at_level_mkhuge(false, level, clear, set, op); 2581 if (ept_huge_pages_supported(level)) 2582 ept_allowed_at_level_mkhuge(true, level, clear, set, op); 2583 } 2584 2585 static void ept_allowed(unsigned long clear, unsigned long set, 2586 enum ept_access_op op) 2587 { 2588 ept_allowed_at_level(1, clear, set, op); 2589 ept_allowed_at_level(2, clear, set, op); 2590 ept_allowed_at_level(3, clear, set, op); 2591 ept_allowed_at_level(4, clear, set, op); 2592 } 2593 2594 static void ept_ignored_bit(int bit) 2595 { 2596 /* Set the bit. */ 2597 ept_allowed(0, 1ul << bit, OP_READ); 2598 ept_allowed(0, 1ul << bit, OP_WRITE); 2599 ept_allowed(0, 1ul << bit, OP_EXEC); 2600 2601 /* Clear the bit. */ 2602 ept_allowed(1ul << bit, 0, OP_READ); 2603 ept_allowed(1ul << bit, 0, OP_WRITE); 2604 ept_allowed(1ul << bit, 0, OP_EXEC); 2605 } 2606 2607 static void ept_access_allowed(unsigned long access, enum ept_access_op op) 2608 { 2609 ept_allowed(EPT_PRESENT, access, op); 2610 } 2611 2612 2613 static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level, 2614 unsigned long clear, 2615 unsigned long set, 2616 enum ept_access_op op) 2617 { 2618 struct ept_access_test_data *data = &ept_access_test_data; 2619 unsigned long orig_pte; 2620 2621 orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); 2622 2623 do_ept_access_op(op); 2624 assert_exit_reason(VMX_EPT_MISCONFIG); 2625 2626 /* Intel 27.2.1, "For all other VM exits, this field is cleared." */ 2627 #if 0 2628 /* broken: */ 2629 TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0); 2630 #endif 2631 #if 0 2632 /* 2633 * broken: 2634 * According to description of exit qual for EPT violation, 2635 * EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid. 2636 * However, I can't find anything that says GUEST_LINEAR_ADDRESS ought 2637 * to be set for msiconfig. 2638 */ 2639 TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS), 2640 (unsigned long) ( 2641 op == OP_EXEC ? data->gva + 1 : data->gva)); 2642 #endif 2643 2644 /* Fix the violation and resume the op loop. */ 2645 ept_untwiddle(data->gpa, level, orig_pte); 2646 enter_guest(); 2647 skip_exit_vmcall(); 2648 } 2649 2650 static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level, 2651 unsigned long clear, 2652 unsigned long set) 2653 { 2654 /* The op shouldn't matter (read, write, exec), so try them all! */ 2655 ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ); 2656 ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE); 2657 ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC); 2658 } 2659 2660 static void ept_misconfig_at_level(int level, unsigned long clear, 2661 unsigned long set) 2662 { 2663 ept_misconfig_at_level_mkhuge(false, level, clear, set); 2664 if (ept_huge_pages_supported(level)) 2665 ept_misconfig_at_level_mkhuge(true, level, clear, set); 2666 } 2667 2668 static void ept_misconfig(unsigned long clear, unsigned long set) 2669 { 2670 ept_misconfig_at_level(1, clear, set); 2671 ept_misconfig_at_level(2, clear, set); 2672 ept_misconfig_at_level(3, clear, set); 2673 ept_misconfig_at_level(4, clear, set); 2674 } 2675 2676 static void ept_access_misconfig(unsigned long access) 2677 { 2678 ept_misconfig(EPT_PRESENT, access); 2679 } 2680 2681 static void ept_reserved_bit_at_level_nohuge(int level, int bit) 2682 { 2683 /* Setting the bit causes a misconfig. */ 2684 ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit); 2685 2686 /* Making the entry non-present turns reserved bits into ignored. */ 2687 ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, 2688 EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 2689 } 2690 2691 static void ept_reserved_bit_at_level_huge(int level, int bit) 2692 { 2693 /* Setting the bit causes a misconfig. */ 2694 ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit); 2695 2696 /* Making the entry non-present turns reserved bits into ignored. */ 2697 ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, 2698 EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 2699 } 2700 2701 static void ept_reserved_bit_at_level(int level, int bit) 2702 { 2703 /* Setting the bit causes a misconfig. */ 2704 ept_misconfig_at_level(level, 0, 1ul << bit); 2705 2706 /* Making the entry non-present turns reserved bits into ignored. */ 2707 ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, 2708 EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 2709 } 2710 2711 static void ept_reserved_bit(int bit) 2712 { 2713 ept_reserved_bit_at_level(1, bit); 2714 ept_reserved_bit_at_level(2, bit); 2715 ept_reserved_bit_at_level(3, bit); 2716 ept_reserved_bit_at_level(4, bit); 2717 } 2718 2719 #define PAGE_2M_ORDER 9 2720 #define PAGE_1G_ORDER 18 2721 2722 static void *get_1g_page(void) 2723 { 2724 static void *alloc; 2725 2726 if (!alloc) 2727 alloc = alloc_pages(PAGE_1G_ORDER); 2728 return alloc; 2729 } 2730 2731 static void ept_access_test_teardown(void *unused) 2732 { 2733 /* Exit the guest cleanly. */ 2734 do_ept_access_op(OP_EXIT); 2735 } 2736 2737 static void ept_access_test_guest(void) 2738 { 2739 struct ept_access_test_data *data = &ept_access_test_data; 2740 int (*code)(void) = (int (*)(void)) &data->gva[1]; 2741 2742 while (true) { 2743 switch (data->op) { 2744 case OP_READ: 2745 TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1); 2746 break; 2747 case OP_WRITE: 2748 *data->gva = MAGIC_VAL_2; 2749 TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2); 2750 *data->gva = MAGIC_VAL_1; 2751 break; 2752 case OP_EXEC: 2753 TEST_ASSERT_EQ(42, code()); 2754 break; 2755 case OP_FLUSH_TLB: 2756 write_cr3(read_cr3()); 2757 break; 2758 case OP_EXIT: 2759 return; 2760 default: 2761 TEST_ASSERT_MSG(false, "Unknown op %d", data->op); 2762 } 2763 vmcall(); 2764 } 2765 } 2766 2767 static void ept_access_test_setup(void) 2768 { 2769 struct ept_access_test_data *data = &ept_access_test_data; 2770 unsigned long npages = 1ul << PAGE_1G_ORDER; 2771 unsigned long size = npages * PAGE_SIZE; 2772 unsigned long *page_table = current_page_table(); 2773 unsigned long pte; 2774 2775 if (setup_ept(false)) 2776 test_skip("EPT not supported"); 2777 2778 /* We use data->gpa = 1 << 39 so that test data has a separate pml4 entry */ 2779 if (cpuid_maxphyaddr() < 40) 2780 test_skip("Test needs MAXPHYADDR >= 40"); 2781 2782 test_set_guest(ept_access_test_guest); 2783 test_add_teardown(ept_access_test_teardown, NULL); 2784 2785 data->hva = get_1g_page(); 2786 TEST_ASSERT(data->hva); 2787 data->hpa = virt_to_phys(data->hva); 2788 2789 data->gpa = 1ul << 39; 2790 data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2), 2791 size); 2792 TEST_ASSERT(!any_present_pages(page_table, data->gva, size)); 2793 install_pages(page_table, data->gpa, size, data->gva); 2794 2795 /* 2796 * Make sure nothing's mapped here so the tests that screw with the 2797 * pml4 entry don't inadvertently break something. 2798 */ 2799 TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0); 2800 TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0); 2801 install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT); 2802 2803 data->hva[0] = MAGIC_VAL_1; 2804 memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start); 2805 } 2806 2807 static void ept_access_test_not_present(void) 2808 { 2809 ept_access_test_setup(); 2810 /* --- */ 2811 ept_access_violation(0, OP_READ, EPT_VLT_RD); 2812 ept_access_violation(0, OP_WRITE, EPT_VLT_WR); 2813 ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH); 2814 } 2815 2816 static void ept_access_test_read_only(void) 2817 { 2818 ept_access_test_setup(); 2819 2820 /* r-- */ 2821 ept_access_allowed(EPT_RA, OP_READ); 2822 ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD); 2823 ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD); 2824 } 2825 2826 static void ept_access_test_write_only(void) 2827 { 2828 ept_access_test_setup(); 2829 /* -w- */ 2830 ept_access_misconfig(EPT_WA); 2831 } 2832 2833 static void ept_access_test_read_write(void) 2834 { 2835 ept_access_test_setup(); 2836 /* rw- */ 2837 ept_access_allowed(EPT_RA | EPT_WA, OP_READ); 2838 ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE); 2839 ept_access_violation(EPT_RA | EPT_WA, OP_EXEC, 2840 EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR); 2841 } 2842 2843 2844 static void ept_access_test_execute_only(void) 2845 { 2846 ept_access_test_setup(); 2847 /* --x */ 2848 if (ept_execute_only_supported()) { 2849 ept_access_violation(EPT_EA, OP_READ, 2850 EPT_VLT_RD | EPT_VLT_PERM_EX); 2851 ept_access_violation(EPT_EA, OP_WRITE, 2852 EPT_VLT_WR | EPT_VLT_PERM_EX); 2853 ept_access_allowed(EPT_EA, OP_EXEC); 2854 } else { 2855 ept_access_misconfig(EPT_EA); 2856 } 2857 } 2858 2859 static void ept_access_test_read_execute(void) 2860 { 2861 ept_access_test_setup(); 2862 /* r-x */ 2863 ept_access_allowed(EPT_RA | EPT_EA, OP_READ); 2864 ept_access_violation(EPT_RA | EPT_EA, OP_WRITE, 2865 EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX); 2866 ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC); 2867 } 2868 2869 static void ept_access_test_write_execute(void) 2870 { 2871 ept_access_test_setup(); 2872 /* -wx */ 2873 ept_access_misconfig(EPT_WA | EPT_EA); 2874 } 2875 2876 static void ept_access_test_read_write_execute(void) 2877 { 2878 ept_access_test_setup(); 2879 /* rwx */ 2880 ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ); 2881 ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE); 2882 ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC); 2883 } 2884 2885 static void ept_access_test_reserved_bits(void) 2886 { 2887 int i; 2888 int maxphyaddr; 2889 2890 ept_access_test_setup(); 2891 2892 /* Reserved bits above maxphyaddr. */ 2893 maxphyaddr = cpuid_maxphyaddr(); 2894 for (i = maxphyaddr; i <= 51; i++) { 2895 report_prefix_pushf("reserved_bit=%d", i); 2896 ept_reserved_bit(i); 2897 report_prefix_pop(); 2898 } 2899 2900 /* Level-specific reserved bits. */ 2901 ept_reserved_bit_at_level_nohuge(2, 3); 2902 ept_reserved_bit_at_level_nohuge(2, 4); 2903 ept_reserved_bit_at_level_nohuge(2, 5); 2904 ept_reserved_bit_at_level_nohuge(2, 6); 2905 /* 2M alignment. */ 2906 for (i = 12; i < 20; i++) { 2907 report_prefix_pushf("reserved_bit=%d", i); 2908 ept_reserved_bit_at_level_huge(2, i); 2909 report_prefix_pop(); 2910 } 2911 ept_reserved_bit_at_level_nohuge(3, 3); 2912 ept_reserved_bit_at_level_nohuge(3, 4); 2913 ept_reserved_bit_at_level_nohuge(3, 5); 2914 ept_reserved_bit_at_level_nohuge(3, 6); 2915 /* 1G alignment. */ 2916 for (i = 12; i < 29; i++) { 2917 report_prefix_pushf("reserved_bit=%d", i); 2918 ept_reserved_bit_at_level_huge(3, i); 2919 report_prefix_pop(); 2920 } 2921 ept_reserved_bit_at_level(4, 3); 2922 ept_reserved_bit_at_level(4, 4); 2923 ept_reserved_bit_at_level(4, 5); 2924 ept_reserved_bit_at_level(4, 6); 2925 ept_reserved_bit_at_level(4, 7); 2926 } 2927 2928 static void ept_access_test_ignored_bits(void) 2929 { 2930 ept_access_test_setup(); 2931 /* 2932 * Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as 2933 * far as translation is concerned even if AD bits are enabled in the 2934 * EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution 2935 * control is 0. 2936 */ 2937 ept_ignored_bit(8); 2938 ept_ignored_bit(9); 2939 ept_ignored_bit(10); 2940 ept_ignored_bit(11); 2941 ept_ignored_bit(52); 2942 ept_ignored_bit(53); 2943 ept_ignored_bit(54); 2944 ept_ignored_bit(55); 2945 ept_ignored_bit(56); 2946 ept_ignored_bit(57); 2947 ept_ignored_bit(58); 2948 ept_ignored_bit(59); 2949 ept_ignored_bit(60); 2950 ept_ignored_bit(61); 2951 ept_ignored_bit(62); 2952 ept_ignored_bit(63); 2953 } 2954 2955 static void ept_access_test_paddr_not_present_ad_disabled(void) 2956 { 2957 ept_access_test_setup(); 2958 ept_disable_ad_bits(); 2959 2960 ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD); 2961 ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD); 2962 ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD); 2963 } 2964 2965 static void ept_access_test_paddr_not_present_ad_enabled(void) 2966 { 2967 u64 qual = EPT_VLT_RD | EPT_VLT_WR; 2968 2969 ept_access_test_setup(); 2970 ept_enable_ad_bits_or_skip_test(); 2971 2972 ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual); 2973 ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual); 2974 ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual); 2975 } 2976 2977 static void ept_access_test_paddr_read_only_ad_disabled(void) 2978 { 2979 /* 2980 * When EPT AD bits are disabled, all accesses to guest paging 2981 * structures are reported separately as a read and (after 2982 * translation of the GPA to host physical address) a read+write 2983 * if the A/D bits have to be set. 2984 */ 2985 u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD; 2986 2987 ept_access_test_setup(); 2988 ept_disable_ad_bits(); 2989 2990 /* Can't update A bit, so all accesses fail. */ 2991 ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual); 2992 ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual); 2993 ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual); 2994 /* AD bits disabled, so only writes try to update the D bit. */ 2995 ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ); 2996 ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual); 2997 ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC); 2998 /* Both A and D already set, so read-only is OK. */ 2999 ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ); 3000 ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE); 3001 ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC); 3002 } 3003 3004 static void ept_access_test_paddr_read_only_ad_enabled(void) 3005 { 3006 /* 3007 * When EPT AD bits are enabled, all accesses to guest paging 3008 * structures are considered writes as far as EPT translation 3009 * is concerned. 3010 */ 3011 u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD; 3012 3013 ept_access_test_setup(); 3014 ept_enable_ad_bits_or_skip_test(); 3015 3016 ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual); 3017 ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual); 3018 ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual); 3019 ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual); 3020 ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual); 3021 ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual); 3022 ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual); 3023 ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual); 3024 ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual); 3025 } 3026 3027 static void ept_access_test_paddr_read_write(void) 3028 { 3029 ept_access_test_setup(); 3030 /* Read-write access to paging structure. */ 3031 ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ); 3032 ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE); 3033 ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC); 3034 } 3035 3036 static void ept_access_test_paddr_read_write_execute(void) 3037 { 3038 ept_access_test_setup(); 3039 /* RWX access to paging structure. */ 3040 ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ); 3041 ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE); 3042 ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC); 3043 } 3044 3045 static void ept_access_test_paddr_read_execute_ad_disabled(void) 3046 { 3047 /* 3048 * When EPT AD bits are disabled, all accesses to guest paging 3049 * structures are reported separately as a read and (after 3050 * translation of the GPA to host physical address) a read+write 3051 * if the A/D bits have to be set. 3052 */ 3053 u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX; 3054 3055 ept_access_test_setup(); 3056 ept_disable_ad_bits(); 3057 3058 /* Can't update A bit, so all accesses fail. */ 3059 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual); 3060 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual); 3061 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual); 3062 /* AD bits disabled, so only writes try to update the D bit. */ 3063 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ); 3064 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual); 3065 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC); 3066 /* Both A and D already set, so read-only is OK. */ 3067 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ); 3068 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE); 3069 ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC); 3070 } 3071 3072 static void ept_access_test_paddr_read_execute_ad_enabled(void) 3073 { 3074 /* 3075 * When EPT AD bits are enabled, all accesses to guest paging 3076 * structures are considered writes as far as EPT translation 3077 * is concerned. 3078 */ 3079 u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX; 3080 3081 ept_access_test_setup(); 3082 ept_enable_ad_bits_or_skip_test(); 3083 3084 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual); 3085 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual); 3086 ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual); 3087 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual); 3088 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual); 3089 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual); 3090 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual); 3091 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual); 3092 ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual); 3093 } 3094 3095 static void ept_access_test_paddr_not_present_page_fault(void) 3096 { 3097 ept_access_test_setup(); 3098 /* 3099 * TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is 3100 * page is read-only in EPT but GVA is also mapped read only in PT. 3101 * Thus guest page fault before host takes EPT violation for trying to 3102 * update A bit. 3103 */ 3104 } 3105 3106 static void ept_access_test_force_2m_page(void) 3107 { 3108 ept_access_test_setup(); 3109 3110 TEST_ASSERT_EQ(ept_2m_supported(), true); 3111 ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ); 3112 ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE, 3113 EPT_VLT_WR | EPT_VLT_PERM_RD | 3114 EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); 3115 ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA); 3116 } 3117 3118 static bool invvpid_valid(u64 type, u64 vpid, u64 gla) 3119 { 3120 u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); 3121 3122 TEST_ASSERT(msr & VPID_CAP_INVVPID); 3123 3124 if (type < INVVPID_ADDR || type > INVVPID_CONTEXT_LOCAL) 3125 return false; 3126 3127 if (!(msr & (1ull << (type + VPID_CAP_INVVPID_TYPES_SHIFT)))) 3128 return false; 3129 3130 if (vpid >> 16) 3131 return false; 3132 3133 if (type != INVVPID_ALL && !vpid) 3134 return false; 3135 3136 if (type == INVVPID_ADDR && !is_canonical(gla)) 3137 return false; 3138 3139 return true; 3140 } 3141 3142 static void try_invvpid(u64 type, u64 vpid, u64 gla) 3143 { 3144 int rc; 3145 bool valid = invvpid_valid(type, vpid, gla); 3146 u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT 3147 : VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID; 3148 /* 3149 * Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so 3150 * that we can tell if it is updated by INVVPID. 3151 */ 3152 vmcs_read(~0); 3153 rc = invvpid(type, vpid, gla); 3154 report("INVVPID type %ld VPID %lx GLA %lx %s", 3155 !rc == valid, type, vpid, gla, 3156 valid ? "passes" : "fails"); 3157 report("After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)", 3158 vmcs_read(VMX_INST_ERROR) == expected, 3159 rc ? "failed" : "successful", 3160 expected, vmcs_read(VMX_INST_ERROR)); 3161 } 3162 3163 static void ds_invvpid(void *data) 3164 { 3165 u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); 3166 u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1; 3167 3168 TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL); 3169 asm volatile("invvpid %0, %1" 3170 : 3171 : "m"(*(struct invvpid_operand *)data), 3172 "r"(type)); 3173 } 3174 3175 /* 3176 * The SS override is ignored in 64-bit mode, so we use an addressing 3177 * mode with %rsp as the base register to generate an implicit SS 3178 * reference. 3179 */ 3180 static void ss_invvpid(void *data) 3181 { 3182 u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); 3183 u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1; 3184 3185 TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL); 3186 asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1" 3187 : "+r"(data) 3188 : "r"(type)); 3189 } 3190 3191 static void invvpid_test_gp(void) 3192 { 3193 bool fault; 3194 3195 fault = test_for_exception(GP_VECTOR, &ds_invvpid, 3196 (void *)NONCANONICAL); 3197 report("INVVPID with non-canonical DS operand raises #GP", fault); 3198 } 3199 3200 static void invvpid_test_ss(void) 3201 { 3202 bool fault; 3203 3204 fault = test_for_exception(SS_VECTOR, &ss_invvpid, 3205 (void *)NONCANONICAL); 3206 report("INVVPID with non-canonical SS operand raises #SS", fault); 3207 } 3208 3209 static void invvpid_test_pf(void) 3210 { 3211 void *vpage = alloc_vpage(); 3212 bool fault; 3213 3214 fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage); 3215 report("INVVPID with unmapped operand raises #PF", fault); 3216 } 3217 3218 static void try_compat_invvpid(void *unused) 3219 { 3220 struct far_pointer32 fp = { 3221 .offset = (uintptr_t)&&invvpid, 3222 .selector = KERNEL_CS32, 3223 }; 3224 register uintptr_t rsp asm("rsp"); 3225 3226 TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid, 3227 "Code address too high."); 3228 TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high."); 3229 3230 asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid); 3231 return; 3232 invvpid: 3233 asm volatile (".code32;" 3234 "invvpid (%eax), %eax;" 3235 "lret;" 3236 ".code64"); 3237 __builtin_unreachable(); 3238 } 3239 3240 static void invvpid_test_compatibility_mode(void) 3241 { 3242 bool fault; 3243 3244 fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL); 3245 report("Compatibility mode INVVPID raises #UD", fault); 3246 } 3247 3248 static void invvpid_test_not_in_vmx_operation(void) 3249 { 3250 bool fault; 3251 3252 TEST_ASSERT(!vmx_off()); 3253 fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL); 3254 report("INVVPID outside of VMX operation raises #UD", fault); 3255 TEST_ASSERT(!vmx_on()); 3256 } 3257 3258 /* 3259 * This does not test real-address mode, virtual-8086 mode, protected mode, 3260 * or CPL > 0. 3261 */ 3262 static void invvpid_test_v2(void) 3263 { 3264 u64 msr; 3265 int i; 3266 unsigned types = 0; 3267 unsigned type; 3268 3269 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 3270 !(ctrl_cpu_rev[1].clr & CPU_VPID)) 3271 test_skip("VPID not supported"); 3272 3273 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); 3274 3275 if (!(msr & VPID_CAP_INVVPID)) 3276 test_skip("INVVPID not supported.\n"); 3277 3278 if (msr & VPID_CAP_INVVPID_ADDR) 3279 types |= 1u << INVVPID_ADDR; 3280 if (msr & VPID_CAP_INVVPID_CXTGLB) 3281 types |= 1u << INVVPID_CONTEXT_GLOBAL; 3282 if (msr & VPID_CAP_INVVPID_ALL) 3283 types |= 1u << INVVPID_ALL; 3284 if (msr & VPID_CAP_INVVPID_CXTLOC) 3285 types |= 1u << INVVPID_CONTEXT_LOCAL; 3286 3287 if (!types) 3288 test_skip("No INVVPID types supported.\n"); 3289 3290 for (i = -127; i < 128; i++) 3291 try_invvpid(i, 0xffff, 0); 3292 3293 /* 3294 * VPID must not be more than 16 bits. 3295 */ 3296 for (i = 0; i < 64; i++) 3297 for (type = 0; type < 4; type++) 3298 if (types & (1u << type)) 3299 try_invvpid(type, 1ul << i, 0); 3300 3301 /* 3302 * VPID must not be zero, except for "all contexts." 3303 */ 3304 for (type = 0; type < 4; type++) 3305 if (types & (1u << type)) 3306 try_invvpid(type, 0, 0); 3307 3308 /* 3309 * The gla operand is only validated for single-address INVVPID. 3310 */ 3311 if (types & (1u << INVVPID_ADDR)) 3312 try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL); 3313 3314 invvpid_test_gp(); 3315 invvpid_test_ss(); 3316 invvpid_test_pf(); 3317 invvpid_test_compatibility_mode(); 3318 invvpid_test_not_in_vmx_operation(); 3319 } 3320 3321 /* 3322 * Test for early VMLAUNCH failure. Returns true if VMLAUNCH makes it 3323 * at least as far as the guest-state checks. Returns false if the 3324 * VMLAUNCH fails early and execution falls through to the next 3325 * instruction. 3326 */ 3327 static bool vmlaunch_succeeds(void) 3328 { 3329 u32 exit_reason; 3330 3331 /* 3332 * Indirectly set VMX_INST_ERR to 12 ("VMREAD/VMWRITE from/to 3333 * unsupported VMCS component"). The caller can then check 3334 * to see if a failed VM-entry sets VMX_INST_ERR as expected. 3335 */ 3336 vmcs_write(~0u, 0); 3337 3338 vmcs_write(HOST_RIP, (uintptr_t)&&success); 3339 __asm__ __volatile__ goto ("vmwrite %%rsp, %0; vmlaunch" 3340 : 3341 : "r" ((u64)HOST_RSP) 3342 : "cc", "memory" 3343 : success); 3344 return false; 3345 success: 3346 exit_reason = vmcs_read(EXI_REASON); 3347 TEST_ASSERT(exit_reason == (VMX_FAIL_STATE | VMX_ENTRY_FAILURE) || 3348 exit_reason == (VMX_FAIL_MSR | VMX_ENTRY_FAILURE)); 3349 return true; 3350 } 3351 3352 /* 3353 * Try to launch the current VMCS. 3354 */ 3355 static void test_vmx_vmlaunch(u32 xerror, bool xfail) 3356 { 3357 bool success = vmlaunch_succeeds(); 3358 u32 vmx_inst_err; 3359 3360 report_xfail("vmlaunch %s", xfail, success == !xerror, 3361 !xerror ? "succeeds" : "fails"); 3362 if (!success && xerror) { 3363 vmx_inst_err = vmcs_read(VMX_INST_ERROR); 3364 report("VMX inst error is %d (actual %d)", 3365 vmx_inst_err == xerror, xerror, vmx_inst_err); 3366 } 3367 } 3368 3369 static void test_vmx_invalid_controls(bool xfail) 3370 { 3371 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_CONTROL_FIELD, xfail); 3372 } 3373 3374 static void test_vmx_valid_controls(bool xfail) 3375 { 3376 test_vmx_vmlaunch(0, xfail); 3377 } 3378 3379 /* 3380 * Test a particular value of a VM-execution control bit, if the value 3381 * is required or if the value is zero. 3382 */ 3383 static void test_rsvd_ctl_bit_value(const char *name, union vmx_ctrl_msr msr, 3384 enum Encoding encoding, unsigned bit, 3385 unsigned val) 3386 { 3387 u32 mask = 1u << bit; 3388 bool expected; 3389 u32 controls; 3390 3391 if (msr.set & mask) 3392 TEST_ASSERT(msr.clr & mask); 3393 3394 /* 3395 * We can't arbitrarily turn on a control bit, because it may 3396 * introduce dependencies on other VMCS fields. So, we only 3397 * test turning on bits that have a required setting. 3398 */ 3399 if (val && (msr.clr & mask) && !(msr.set & mask)) 3400 return; 3401 3402 report_prefix_pushf("%s %s bit %d", 3403 val ? "Set" : "Clear", name, bit); 3404 3405 controls = vmcs_read(encoding); 3406 if (val) { 3407 vmcs_write(encoding, msr.set | mask); 3408 expected = (msr.clr & mask); 3409 } else { 3410 vmcs_write(encoding, msr.set & ~mask); 3411 expected = !(msr.set & mask); 3412 } 3413 if (expected) 3414 test_vmx_valid_controls(false); 3415 else 3416 test_vmx_invalid_controls(false); 3417 vmcs_write(encoding, controls); 3418 report_prefix_pop(); 3419 } 3420 3421 /* 3422 * Test reserved values of a VM-execution control bit, based on the 3423 * allowed bit settings from the corresponding VMX capability MSR. 3424 */ 3425 static void test_rsvd_ctl_bit(const char *name, union vmx_ctrl_msr msr, 3426 enum Encoding encoding, unsigned bit) 3427 { 3428 test_rsvd_ctl_bit_value(name, msr, encoding, bit, 0); 3429 test_rsvd_ctl_bit_value(name, msr, encoding, bit, 1); 3430 } 3431 3432 /* 3433 * Reserved bits in the pin-based VM-execution controls must be set 3434 * properly. Software may consult the VMX capability MSRs to determine 3435 * the proper settings. 3436 * [Intel SDM] 3437 */ 3438 static void test_pin_based_ctls(void) 3439 { 3440 unsigned bit; 3441 3442 printf("%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PIN" : 3443 "MSR_IA32_VMX_PINBASED_CTLS", ctrl_pin_rev.val); 3444 for (bit = 0; bit < 32; bit++) 3445 test_rsvd_ctl_bit("pin-based controls", 3446 ctrl_pin_rev, PIN_CONTROLS, bit); 3447 } 3448 3449 /* 3450 * Reserved bits in the primary processor-based VM-execution controls 3451 * must be set properly. Software may consult the VMX capability MSRs 3452 * to determine the proper settings. 3453 * [Intel SDM] 3454 */ 3455 static void test_primary_processor_based_ctls(void) 3456 { 3457 unsigned bit; 3458 3459 printf("\n%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PROC" : 3460 "MSR_IA32_VMX_PROCBASED_CTLS", ctrl_cpu_rev[0].val); 3461 for (bit = 0; bit < 32; bit++) 3462 test_rsvd_ctl_bit("primary processor-based controls", 3463 ctrl_cpu_rev[0], CPU_EXEC_CTRL0, bit); 3464 } 3465 3466 /* 3467 * If the "activate secondary controls" primary processor-based 3468 * VM-execution control is 1, reserved bits in the secondary 3469 * processor-based VM-execution controls must be cleared. Software may 3470 * consult the VMX capability MSRs to determine which bits are 3471 * reserved. 3472 * If the "activate secondary controls" primary processor-based 3473 * VM-execution control is 0 (or if the processor does not support the 3474 * 1-setting of that control), no checks are performed on the 3475 * secondary processor-based VM-execution controls. 3476 * [Intel SDM] 3477 */ 3478 static void test_secondary_processor_based_ctls(void) 3479 { 3480 u32 primary; 3481 u32 secondary; 3482 unsigned bit; 3483 3484 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) 3485 return; 3486 3487 primary = vmcs_read(CPU_EXEC_CTRL0); 3488 secondary = vmcs_read(CPU_EXEC_CTRL1); 3489 3490 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); 3491 printf("\nMSR_IA32_VMX_PROCBASED_CTLS2: %lx\n", ctrl_cpu_rev[1].val); 3492 for (bit = 0; bit < 32; bit++) 3493 test_rsvd_ctl_bit("secondary processor-based controls", 3494 ctrl_cpu_rev[1], CPU_EXEC_CTRL1, bit); 3495 3496 /* 3497 * When the "activate secondary controls" VM-execution control 3498 * is clear, there are no checks on the secondary controls. 3499 */ 3500 vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY); 3501 vmcs_write(CPU_EXEC_CTRL1, ~0); 3502 report("Secondary processor-based controls ignored", 3503 vmlaunch_succeeds()); 3504 vmcs_write(CPU_EXEC_CTRL1, secondary); 3505 vmcs_write(CPU_EXEC_CTRL0, primary); 3506 } 3507 3508 static void try_cr3_target_count(unsigned i, unsigned max) 3509 { 3510 report_prefix_pushf("CR3 target count 0x%x", i); 3511 vmcs_write(CR3_TARGET_COUNT, i); 3512 if (i <= max) 3513 test_vmx_valid_controls(false); 3514 else 3515 test_vmx_invalid_controls(false); 3516 report_prefix_pop(); 3517 } 3518 3519 /* 3520 * The CR3-target count must not be greater than 4. Future processors 3521 * may support a different number of CR3-target values. Software 3522 * should read the VMX capability MSR IA32_VMX_MISC to determine the 3523 * number of values supported. 3524 * [Intel SDM] 3525 */ 3526 static void test_cr3_targets(void) 3527 { 3528 unsigned supported_targets = (rdmsr(MSR_IA32_VMX_MISC) >> 16) & 0x1ff; 3529 u32 cr3_targets = vmcs_read(CR3_TARGET_COUNT); 3530 unsigned i; 3531 3532 printf("\nSupported CR3 targets: %d\n", supported_targets); 3533 TEST_ASSERT(supported_targets <= 256); 3534 3535 try_cr3_target_count(-1u, supported_targets); 3536 try_cr3_target_count(0x80000000, supported_targets); 3537 try_cr3_target_count(0x7fffffff, supported_targets); 3538 for (i = 0; i <= supported_targets + 1; i++) 3539 try_cr3_target_count(i, supported_targets); 3540 vmcs_write(CR3_TARGET_COUNT, cr3_targets); 3541 } 3542 3543 /* 3544 * Test a particular address setting in the VMCS 3545 */ 3546 static void test_vmcs_addr(const char *name, 3547 enum Encoding encoding, 3548 u64 align, 3549 bool ignored, 3550 bool xfail_beyond_mapped_ram, 3551 u64 addr) 3552 { 3553 bool xfail = 3554 (xfail_beyond_mapped_ram && 3555 addr > fwcfg_get_u64(FW_CFG_RAM_SIZE) - align && 3556 addr < (1ul << cpuid_maxphyaddr())); 3557 3558 report_prefix_pushf("%s = %lx", name, addr); 3559 vmcs_write(encoding, addr); 3560 if (ignored || (IS_ALIGNED(addr, align) && 3561 addr < (1ul << cpuid_maxphyaddr()))) 3562 test_vmx_valid_controls(xfail); 3563 else 3564 test_vmx_invalid_controls(xfail); 3565 report_prefix_pop(); 3566 xfail = false; 3567 } 3568 3569 /* 3570 * Test interesting values for a VMCS address 3571 */ 3572 static void test_vmcs_addr_values(const char *name, 3573 enum Encoding encoding, 3574 u64 align, 3575 bool ignored, 3576 bool xfail_beyond_mapped_ram, 3577 u32 bit_start, u32 bit_end) 3578 { 3579 unsigned i; 3580 u64 orig_val = vmcs_read(encoding); 3581 3582 for (i = bit_start; i <= bit_end; i++) 3583 test_vmcs_addr(name, encoding, align, ignored, 3584 xfail_beyond_mapped_ram, 1ul << i); 3585 3586 test_vmcs_addr(name, encoding, align, ignored, 3587 xfail_beyond_mapped_ram, PAGE_SIZE - 1); 3588 test_vmcs_addr(name, encoding, align, ignored, 3589 xfail_beyond_mapped_ram, PAGE_SIZE); 3590 test_vmcs_addr(name, encoding, align, ignored, 3591 xfail_beyond_mapped_ram, 3592 (1ul << cpuid_maxphyaddr()) - PAGE_SIZE); 3593 test_vmcs_addr(name, encoding, align, ignored, 3594 xfail_beyond_mapped_ram, -1ul); 3595 3596 vmcs_write(encoding, orig_val); 3597 } 3598 3599 /* 3600 * Test a physical address reference in the VMCS, when the corresponding 3601 * feature is enabled and when the corresponding feature is disabled. 3602 */ 3603 static void test_vmcs_addr_reference(u32 control_bit, enum Encoding field, 3604 const char *field_name, 3605 const char *control_name, u64 align, 3606 bool xfail_beyond_mapped_ram, 3607 bool control_primary) 3608 { 3609 u32 primary = vmcs_read(CPU_EXEC_CTRL0); 3610 u32 secondary = vmcs_read(CPU_EXEC_CTRL1); 3611 u64 page_addr; 3612 3613 if (control_primary) { 3614 if (!(ctrl_cpu_rev[0].clr & control_bit)) 3615 return; 3616 } else { 3617 if (!(ctrl_cpu_rev[1].clr & control_bit)) 3618 return; 3619 } 3620 3621 page_addr = vmcs_read(field); 3622 3623 report_prefix_pushf("%s enabled", control_name); 3624 if (control_primary) { 3625 vmcs_write(CPU_EXEC_CTRL0, primary | control_bit); 3626 } else { 3627 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); 3628 vmcs_write(CPU_EXEC_CTRL1, secondary | control_bit); 3629 } 3630 3631 test_vmcs_addr_values(field_name, field, align, false, 3632 xfail_beyond_mapped_ram, 0, 63); 3633 report_prefix_pop(); 3634 3635 report_prefix_pushf("%s disabled", control_name); 3636 if (control_primary) { 3637 vmcs_write(CPU_EXEC_CTRL0, primary & ~control_bit); 3638 } else { 3639 vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY); 3640 vmcs_write(CPU_EXEC_CTRL1, secondary & ~control_bit); 3641 } 3642 3643 test_vmcs_addr_values(field_name, field, align, true, false, 0, 63); 3644 report_prefix_pop(); 3645 3646 vmcs_write(field, page_addr); 3647 vmcs_write(CPU_EXEC_CTRL0, primary); 3648 vmcs_write(CPU_EXEC_CTRL1, secondary); 3649 } 3650 3651 /* 3652 * If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of 3653 * each I/O-bitmap address must be 0. Neither address should set any 3654 * bits beyond the processor's physical-address width. 3655 * [Intel SDM] 3656 */ 3657 static void test_io_bitmaps(void) 3658 { 3659 test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_A, 3660 "I/O bitmap A", "Use I/O bitmaps", 3661 PAGE_SIZE, false, true); 3662 test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_B, 3663 "I/O bitmap B", "Use I/O bitmaps", 3664 PAGE_SIZE, false, true); 3665 } 3666 3667 /* 3668 * If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of 3669 * the MSR-bitmap address must be 0. The address should not set any 3670 * bits beyond the processor's physical-address width. 3671 * [Intel SDM] 3672 */ 3673 static void test_msr_bitmap(void) 3674 { 3675 test_vmcs_addr_reference(CPU_MSR_BITMAP, MSR_BITMAP, 3676 "MSR bitmap", "Use MSR bitmaps", 3677 PAGE_SIZE, false, true); 3678 } 3679 3680 /* 3681 * If the "use TPR shadow" VM-execution control is 1, the virtual-APIC 3682 * address must satisfy the following checks: 3683 * - Bits 11:0 of the address must be 0. 3684 * - The address should not set any bits beyond the processor's 3685 * physical-address width. 3686 * [Intel SDM] 3687 */ 3688 static void test_apic_virt_addr(void) 3689 { 3690 /* 3691 * Ensure the processor will never use the virtual-APIC page, since 3692 * we will point it to invalid RAM. Otherwise KVM is puzzled about 3693 * what we're trying to achieve and fails vmentry. 3694 */ 3695 u32 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0); 3696 vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0 | CPU_CR8_LOAD | CPU_CR8_STORE); 3697 test_vmcs_addr_reference(CPU_TPR_SHADOW, APIC_VIRT_ADDR, 3698 "virtual-APIC address", "Use TPR shadow", 3699 PAGE_SIZE, false, true); 3700 vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0); 3701 } 3702 3703 /* 3704 * If the "virtualize APIC-accesses" VM-execution control is 1, the 3705 * APIC-access address must satisfy the following checks: 3706 * - Bits 11:0 of the address must be 0. 3707 * - The address should not set any bits beyond the processor's 3708 * physical-address width. 3709 * [Intel SDM] 3710 */ 3711 static void test_apic_access_addr(void) 3712 { 3713 void *apic_access_page = alloc_page(); 3714 3715 vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_page)); 3716 3717 test_vmcs_addr_reference(CPU_VIRT_APIC_ACCESSES, APIC_ACCS_ADDR, 3718 "APIC-access address", 3719 "virtualize APIC-accesses", PAGE_SIZE, 3720 false, false); 3721 } 3722 3723 static bool set_bit_pattern(u8 mask, u32 *secondary) 3724 { 3725 u8 i; 3726 bool flag = false; 3727 u32 test_bits[3] = { 3728 CPU_VIRT_X2APIC, 3729 CPU_APIC_REG_VIRT, 3730 CPU_VINTD 3731 }; 3732 3733 for (i = 0; i < ARRAY_SIZE(test_bits); i++) { 3734 if ((mask & (1u << i)) && 3735 (ctrl_cpu_rev[1].clr & test_bits[i])) { 3736 *secondary |= test_bits[i]; 3737 flag = true; 3738 } 3739 } 3740 3741 return (flag); 3742 } 3743 3744 /* 3745 * If the "use TPR shadow" VM-execution control is 0, the following 3746 * VM-execution controls must also be 0: 3747 * - virtualize x2APIC mode 3748 * - APIC-register virtualization 3749 * - virtual-interrupt delivery 3750 * [Intel SDM] 3751 * 3752 * 2. If the "virtualize x2APIC mode" VM-execution control is 1, the 3753 * "virtualize APIC accesses" VM-execution control must be 0. 3754 * [Intel SDM] 3755 */ 3756 static void test_apic_virtual_ctls(void) 3757 { 3758 u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); 3759 u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); 3760 u32 primary = saved_primary; 3761 u32 secondary = saved_secondary; 3762 bool ctrl = false; 3763 char str[10] = "disabled"; 3764 u8 i = 0, j; 3765 3766 /* 3767 * First test 3768 */ 3769 if (!((ctrl_cpu_rev[0].clr & (CPU_SECONDARY | CPU_TPR_SHADOW)) == 3770 (CPU_SECONDARY | CPU_TPR_SHADOW))) 3771 return; 3772 3773 primary |= CPU_SECONDARY; 3774 primary &= ~CPU_TPR_SHADOW; 3775 vmcs_write(CPU_EXEC_CTRL0, primary); 3776 3777 while (1) { 3778 for (j = 1; j < 8; j++) { 3779 secondary &= ~(CPU_VIRT_X2APIC | CPU_APIC_REG_VIRT | CPU_VINTD); 3780 if (primary & CPU_TPR_SHADOW) { 3781 ctrl = true; 3782 } else { 3783 if (! set_bit_pattern(j, &secondary)) 3784 ctrl = true; 3785 else 3786 ctrl = false; 3787 } 3788 3789 vmcs_write(CPU_EXEC_CTRL1, secondary); 3790 report_prefix_pushf("Use TPR shadow %s, virtualize x2APIC mode %s, APIC-register virtualization %s, virtual-interrupt delivery %s", 3791 str, (secondary & CPU_VIRT_X2APIC) ? "enabled" : "disabled", (secondary & CPU_APIC_REG_VIRT) ? "enabled" : "disabled", (secondary & CPU_VINTD) ? "enabled" : "disabled"); 3792 if (ctrl) 3793 test_vmx_valid_controls(false); 3794 else 3795 test_vmx_invalid_controls(false); 3796 report_prefix_pop(); 3797 } 3798 3799 if (i == 1) 3800 break; 3801 i++; 3802 3803 primary |= CPU_TPR_SHADOW; 3804 vmcs_write(CPU_EXEC_CTRL0, primary); 3805 strcpy(str, "enabled"); 3806 } 3807 3808 /* 3809 * Second test 3810 */ 3811 u32 apic_virt_ctls = (CPU_VIRT_X2APIC | CPU_VIRT_APIC_ACCESSES); 3812 3813 primary = saved_primary; 3814 secondary = saved_secondary; 3815 if (!((ctrl_cpu_rev[1].clr & apic_virt_ctls) == apic_virt_ctls)) 3816 return; 3817 3818 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); 3819 secondary &= ~CPU_VIRT_APIC_ACCESSES; 3820 vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_X2APIC); 3821 report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access disabled"); 3822 test_vmx_valid_controls(false); 3823 report_prefix_pop(); 3824 3825 vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_APIC_ACCESSES); 3826 report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access enabled"); 3827 test_vmx_valid_controls(false); 3828 report_prefix_pop(); 3829 3830 vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_X2APIC); 3831 report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access enabled"); 3832 test_vmx_invalid_controls(false); 3833 report_prefix_pop(); 3834 3835 vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_APIC_ACCESSES); 3836 report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access disabled"); 3837 test_vmx_valid_controls(false); 3838 report_prefix_pop(); 3839 3840 vmcs_write(CPU_EXEC_CTRL0, saved_primary); 3841 vmcs_write(CPU_EXEC_CTRL1, saved_secondary); 3842 } 3843 3844 /* 3845 * If the "virtual-interrupt delivery" VM-execution control is 1, the 3846 * "external-interrupt exiting" VM-execution control must be 1. 3847 * [Intel SDM] 3848 */ 3849 static void test_virtual_intr_ctls(void) 3850 { 3851 u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); 3852 u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); 3853 u32 saved_pin = vmcs_read(PIN_CONTROLS); 3854 u32 primary = saved_primary; 3855 u32 secondary = saved_secondary; 3856 u32 pin = saved_pin; 3857 3858 if (!((ctrl_cpu_rev[1].clr & CPU_VINTD) && 3859 (ctrl_pin_rev.clr & PIN_EXTINT))) 3860 return; 3861 3862 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW); 3863 vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VINTD); 3864 vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT); 3865 report_prefix_pushf("Virtualize interrupt-delivery disabled; external-interrupt exiting disabled"); 3866 test_vmx_valid_controls(false); 3867 report_prefix_pop(); 3868 3869 vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VINTD); 3870 report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled"); 3871 test_vmx_invalid_controls(false); 3872 report_prefix_pop(); 3873 3874 vmcs_write(PIN_CONTROLS, pin | PIN_EXTINT); 3875 report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting enabled"); 3876 test_vmx_valid_controls(false); 3877 report_prefix_pop(); 3878 3879 vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT); 3880 report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled"); 3881 test_vmx_invalid_controls(false); 3882 report_prefix_pop(); 3883 3884 vmcs_write(CPU_EXEC_CTRL0, saved_primary); 3885 vmcs_write(CPU_EXEC_CTRL1, saved_secondary); 3886 vmcs_write(PIN_CONTROLS, saved_pin); 3887 } 3888 3889 static void test_pi_desc_addr(u64 addr, bool ctrl) 3890 { 3891 vmcs_write(POSTED_INTR_DESC_ADDR, addr); 3892 report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-descriptor-address 0x%lx", addr); 3893 if (ctrl) 3894 test_vmx_valid_controls(false); 3895 else 3896 test_vmx_invalid_controls(false); 3897 report_prefix_pop(); 3898 } 3899 3900 /* 3901 * If the “process posted interrupts†VM-execution control is 1, the 3902 * following must be true: 3903 * 3904 * - The “virtual-interrupt delivery†VM-execution control is 1. 3905 * - The “acknowledge interrupt on exit†VM-exit control is 1. 3906 * - The posted-interrupt notification vector has a value in the 3907 * - range 0–255 (bits 15:8 are all 0). 3908 * - Bits 5:0 of the posted-interrupt descriptor address are all 0. 3909 * - The posted-interrupt descriptor address does not set any bits 3910 * beyond the processor's physical-address width. 3911 * [Intel SDM] 3912 */ 3913 static void test_posted_intr(void) 3914 { 3915 u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); 3916 u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); 3917 u32 saved_pin = vmcs_read(PIN_CONTROLS); 3918 u32 exit_ctl_saved = vmcs_read(EXI_CONTROLS); 3919 u32 primary = saved_primary; 3920 u32 secondary = saved_secondary; 3921 u32 pin = saved_pin; 3922 u32 exit_ctl = exit_ctl_saved; 3923 u16 vec; 3924 int i; 3925 3926 if (!((ctrl_pin_rev.clr & PIN_POST_INTR) && 3927 (ctrl_cpu_rev[1].clr & CPU_VINTD) && 3928 (ctrl_exit_rev.clr & EXI_INTA))) 3929 return; 3930 3931 vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW); 3932 3933 /* 3934 * Test virtual-interrupt-delivery and acknowledge-interrupt-on-exit 3935 */ 3936 pin |= PIN_POST_INTR; 3937 vmcs_write(PIN_CONTROLS, pin); 3938 secondary &= ~CPU_VINTD; 3939 vmcs_write(CPU_EXEC_CTRL1, secondary); 3940 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled"); 3941 test_vmx_invalid_controls(false); 3942 report_prefix_pop(); 3943 3944 secondary |= CPU_VINTD; 3945 vmcs_write(CPU_EXEC_CTRL1, secondary); 3946 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled"); 3947 test_vmx_invalid_controls(false); 3948 report_prefix_pop(); 3949 3950 exit_ctl &= ~EXI_INTA; 3951 vmcs_write(EXI_CONTROLS, exit_ctl); 3952 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit disabled"); 3953 test_vmx_invalid_controls(false); 3954 report_prefix_pop(); 3955 3956 exit_ctl |= EXI_INTA; 3957 vmcs_write(EXI_CONTROLS, exit_ctl); 3958 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled"); 3959 test_vmx_valid_controls(false); 3960 report_prefix_pop(); 3961 3962 secondary &= ~CPU_VINTD; 3963 vmcs_write(CPU_EXEC_CTRL1, secondary); 3964 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled; acknowledge-interrupt-on-exit enabled"); 3965 test_vmx_invalid_controls(false); 3966 report_prefix_pop(); 3967 3968 secondary |= CPU_VINTD; 3969 vmcs_write(CPU_EXEC_CTRL1, secondary); 3970 report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled"); 3971 test_vmx_valid_controls(false); 3972 report_prefix_pop(); 3973 3974 /* 3975 * Test posted-interrupt notification vector 3976 */ 3977 for (i = 0; i < 8; i++) { 3978 vec = (1ul << i); 3979 vmcs_write(PINV, vec); 3980 report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); 3981 test_vmx_valid_controls(false); 3982 report_prefix_pop(); 3983 } 3984 for (i = 8; i < 16; i++) { 3985 vec = (1ul << i); 3986 vmcs_write(PINV, vec); 3987 report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); 3988 test_vmx_invalid_controls(false); 3989 report_prefix_pop(); 3990 } 3991 3992 vec &= ~(0xff << 8); 3993 vmcs_write(PINV, vec); 3994 report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); 3995 test_vmx_valid_controls(false); 3996 report_prefix_pop(); 3997 3998 /* 3999 * Test posted-interrupt descriptor addresss 4000 */ 4001 for (i = 0; i < 6; i++) { 4002 test_pi_desc_addr(1ul << i, false); 4003 } 4004 4005 test_pi_desc_addr(0xf0, false); 4006 test_pi_desc_addr(0xff, false); 4007 test_pi_desc_addr(0x0f, false); 4008 test_pi_desc_addr(0x8000, true); 4009 test_pi_desc_addr(0x00, true); 4010 test_pi_desc_addr(0xc000, true); 4011 4012 test_vmcs_addr_values("process-posted interrupts", 4013 POSTED_INTR_DESC_ADDR, 64, 4014 false, false, 0, 63); 4015 4016 vmcs_write(CPU_EXEC_CTRL0, saved_primary); 4017 vmcs_write(CPU_EXEC_CTRL1, saved_secondary); 4018 vmcs_write(PIN_CONTROLS, saved_pin); 4019 } 4020 4021 static void test_apic_ctls(void) 4022 { 4023 test_apic_virt_addr(); 4024 test_apic_access_addr(); 4025 test_apic_virtual_ctls(); 4026 test_virtual_intr_ctls(); 4027 test_posted_intr(); 4028 } 4029 4030 /* 4031 * If the “enable VPID†VM-execution control is 1, the value of the 4032 * of the VPID VM-execution control field must not be 0000H. 4033 * [Intel SDM] 4034 */ 4035 static void test_vpid(void) 4036 { 4037 u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); 4038 u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); 4039 u16 vpid = 0x0000; 4040 int i; 4041 4042 if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && 4043 (ctrl_cpu_rev[1].clr & CPU_VPID))) { 4044 test_skip("Secondary controls and/or VPID not supported"); 4045 return; 4046 } 4047 4048 vmcs_write(CPU_EXEC_CTRL0, saved_primary | CPU_SECONDARY); 4049 vmcs_write(CPU_EXEC_CTRL1, saved_secondary & ~CPU_VPID); 4050 vmcs_write(VPID, vpid); 4051 report_prefix_pushf("VPID disabled; VPID value %x", vpid); 4052 test_vmx_valid_controls(false); 4053 report_prefix_pop(); 4054 4055 vmcs_write(CPU_EXEC_CTRL1, saved_secondary | CPU_VPID); 4056 report_prefix_pushf("VPID enabled; VPID value %x", vpid); 4057 test_vmx_invalid_controls(false); 4058 report_prefix_pop(); 4059 4060 for (i = 0; i < 16; i++) { 4061 vpid = (short)1 << i;; 4062 vmcs_write(VPID, vpid); 4063 report_prefix_pushf("VPID enabled; VPID value %x", vpid); 4064 test_vmx_valid_controls(false); 4065 report_prefix_pop(); 4066 } 4067 4068 vmcs_write(CPU_EXEC_CTRL0, saved_primary); 4069 vmcs_write(CPU_EXEC_CTRL1, saved_secondary); 4070 } 4071 4072 static void set_vtpr(unsigned vtpr) 4073 { 4074 *(u32 *)phys_to_virt(vmcs_read(APIC_VIRT_ADDR) + APIC_TASKPRI) = vtpr; 4075 } 4076 4077 static void try_tpr_threshold_and_vtpr(unsigned threshold, unsigned vtpr) 4078 { 4079 bool valid = true; 4080 u32 primary = vmcs_read(CPU_EXEC_CTRL0); 4081 u32 secondary = vmcs_read(CPU_EXEC_CTRL1); 4082 4083 if ((primary & CPU_TPR_SHADOW) && 4084 (!(primary & CPU_SECONDARY) || 4085 !(secondary & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)))) 4086 valid = (threshold & 0xf) <= ((vtpr >> 4) & 0xf); 4087 4088 set_vtpr(vtpr); 4089 report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0x%x", 4090 threshold, (vtpr >> 4) & 0xf); 4091 if (valid) 4092 test_vmx_valid_controls(false); 4093 else 4094 test_vmx_invalid_controls(false); 4095 report_prefix_pop(); 4096 } 4097 4098 static void test_invalid_event_injection(void) 4099 { 4100 u32 ent_intr_info_save = vmcs_read(ENT_INTR_INFO); 4101 u32 ent_intr_error_save = vmcs_read(ENT_INTR_ERROR); 4102 u32 ent_inst_len_save = vmcs_read(ENT_INST_LEN); 4103 u32 primary_save = vmcs_read(CPU_EXEC_CTRL0); 4104 u32 secondary_save = vmcs_read(CPU_EXEC_CTRL1); 4105 u64 guest_cr0_save = vmcs_read(GUEST_CR0); 4106 u32 ent_intr_info_base = INTR_INFO_VALID_MASK; 4107 u32 ent_intr_info, ent_intr_err, ent_intr_len; 4108 u32 cnt; 4109 4110 /* Setup */ 4111 report_prefix_push("invalid event injection"); 4112 vmcs_write(ENT_INTR_ERROR, 0x00000000); 4113 vmcs_write(ENT_INST_LEN, 0x00000001); 4114 4115 /* The field’s interruption type is not set to a reserved value. */ 4116 ent_intr_info = ent_intr_info_base | INTR_TYPE_RESERVED | DE_VECTOR; 4117 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4118 "RESERVED interruption type invalid [-]", 4119 ent_intr_info); 4120 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4121 test_vmx_invalid_controls(false); 4122 report_prefix_pop(); 4123 4124 ent_intr_info = ent_intr_info_base | INTR_TYPE_EXT_INTR | 4125 DE_VECTOR; 4126 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4127 "RESERVED interruption type invalid [+]", 4128 ent_intr_info); 4129 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4130 test_vmx_valid_controls(false); 4131 report_prefix_pop(); 4132 4133 /* If the interruption type is other event, the vector is 0. */ 4134 ent_intr_info = ent_intr_info_base | INTR_TYPE_OTHER_EVENT | DB_VECTOR; 4135 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4136 "(OTHER EVENT && vector != 0) invalid [-]", 4137 ent_intr_info); 4138 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4139 test_vmx_invalid_controls(false); 4140 report_prefix_pop(); 4141 4142 /* If the interruption type is NMI, the vector is 2 (negative case). */ 4143 ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | DE_VECTOR; 4144 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4145 "(NMI && vector != 2) invalid [-]", ent_intr_info); 4146 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4147 test_vmx_invalid_controls(false); 4148 report_prefix_pop(); 4149 4150 /* If the interruption type is NMI, the vector is 2 (positive case). */ 4151 ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | NMI_VECTOR; 4152 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4153 "(NMI && vector == 2) valid [+]", ent_intr_info); 4154 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4155 test_vmx_valid_controls(false); 4156 report_prefix_pop(); 4157 4158 /* 4159 * If the interruption type 4160 * is HW exception, the vector is at most 31. 4161 */ 4162 ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 0x20; 4163 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4164 "(HW exception && vector > 31) invalid [-]", 4165 ent_intr_info); 4166 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4167 test_vmx_invalid_controls(false); 4168 report_prefix_pop(); 4169 4170 /* 4171 * deliver-error-code is 1 iff either 4172 * (a) the "unrestricted guest" VM-execution control is 0 4173 * (b) CR0.PE is set. 4174 */ 4175 4176 /* Assert that unrestricted guest is disabled or unsupported */ 4177 assert(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || 4178 !(secondary_save & CPU_URG)); 4179 4180 ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 4181 GP_VECTOR; 4182 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4183 "error code <-> (!URG || prot_mode) [-]", 4184 ent_intr_info); 4185 vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); 4186 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4187 test_vmx_invalid_controls(false); 4188 report_prefix_pop(); 4189 4190 ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | 4191 INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; 4192 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4193 "error code <-> (!URG || prot_mode) [+]", 4194 ent_intr_info); 4195 vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); 4196 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4197 test_vmx_valid_controls(false); 4198 report_prefix_pop(); 4199 4200 if (enable_unrestricted_guest()) 4201 goto skip_unrestricted_guest; 4202 4203 ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | 4204 INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; 4205 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4206 "error code <-> (!URG || prot_mode) [-]", 4207 ent_intr_info); 4208 vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); 4209 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4210 test_vmx_invalid_controls(false); 4211 report_prefix_pop(); 4212 4213 ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 4214 GP_VECTOR; 4215 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4216 "error code <-> (!URG || prot_mode) [-]", 4217 ent_intr_info); 4218 vmcs_write(GUEST_CR0, guest_cr0_save | X86_CR0_PE); 4219 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4220 test_vmx_invalid_controls(false); 4221 report_prefix_pop(); 4222 4223 vmcs_write(CPU_EXEC_CTRL1, secondary_save); 4224 vmcs_write(CPU_EXEC_CTRL0, primary_save); 4225 4226 skip_unrestricted_guest: 4227 vmcs_write(GUEST_CR0, guest_cr0_save); 4228 4229 /* deliver-error-code is 1 iff the interruption type is HW exception */ 4230 report_prefix_push("error code <-> HW exception"); 4231 for (cnt = 0; cnt < 8; cnt++) { 4232 u32 exception_type_mask = cnt << 8; 4233 u32 deliver_error_code_mask = 4234 exception_type_mask != INTR_TYPE_HARD_EXCEPTION ? 4235 INTR_INFO_DELIVER_CODE_MASK : 0; 4236 4237 ent_intr_info = ent_intr_info_base | deliver_error_code_mask | 4238 exception_type_mask | GP_VECTOR; 4239 report_prefix_pushf("VM-entry intr info=0x%x [-]", 4240 ent_intr_info); 4241 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4242 test_vmx_invalid_controls(false); 4243 report_prefix_pop(); 4244 } 4245 report_prefix_pop(); 4246 4247 /* 4248 * deliver-error-code is 1 iff the the vector 4249 * indicates an exception that would normally deliver an error code 4250 */ 4251 report_prefix_push("error code <-> vector delivers error code"); 4252 for (cnt = 0; cnt < 32; cnt++) { 4253 bool has_error_code = false; 4254 u32 deliver_error_code_mask; 4255 4256 switch (cnt) { 4257 case DF_VECTOR: 4258 case TS_VECTOR: 4259 case NP_VECTOR: 4260 case SS_VECTOR: 4261 case GP_VECTOR: 4262 case PF_VECTOR: 4263 case AC_VECTOR: 4264 has_error_code = true; 4265 } 4266 4267 /* Negative case */ 4268 deliver_error_code_mask = has_error_code ? 4269 0 : 4270 INTR_INFO_DELIVER_CODE_MASK; 4271 ent_intr_info = ent_intr_info_base | deliver_error_code_mask | 4272 INTR_TYPE_HARD_EXCEPTION | cnt; 4273 report_prefix_pushf("VM-entry intr info=0x%x [-]", 4274 ent_intr_info); 4275 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4276 test_vmx_invalid_controls(false); 4277 report_prefix_pop(); 4278 4279 /* Positive case */ 4280 deliver_error_code_mask = has_error_code ? 4281 INTR_INFO_DELIVER_CODE_MASK : 4282 0; 4283 ent_intr_info = ent_intr_info_base | deliver_error_code_mask | 4284 INTR_TYPE_HARD_EXCEPTION | cnt; 4285 report_prefix_pushf("VM-entry intr info=0x%x [+]", 4286 ent_intr_info); 4287 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4288 test_vmx_valid_controls(false); 4289 report_prefix_pop(); 4290 } 4291 report_prefix_pop(); 4292 4293 /* Reserved bits in the field (30:12) are 0. */ 4294 report_prefix_push("reserved bits clear"); 4295 for (cnt = 12; cnt <= 30; cnt++) { 4296 ent_intr_info = ent_intr_info_base | 4297 INTR_INFO_DELIVER_CODE_MASK | 4298 INTR_TYPE_HARD_EXCEPTION | GP_VECTOR | 4299 (1U << cnt); 4300 report_prefix_pushf("VM-entry intr info=0x%x [-]", 4301 ent_intr_info); 4302 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4303 test_vmx_invalid_controls(false); 4304 report_prefix_pop(); 4305 } 4306 report_prefix_pop(); 4307 4308 /* 4309 * If deliver-error-code is 1 4310 * bits 31:15 of the VM-entry exception error-code field are 0. 4311 */ 4312 ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | 4313 INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; 4314 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4315 "VM-entry exception error code[31:15] clear", 4316 ent_intr_info); 4317 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4318 for (cnt = 15; cnt <= 31; cnt++) { 4319 ent_intr_err = 1U << cnt; 4320 report_prefix_pushf("VM-entry intr error=0x%x [-]", 4321 ent_intr_err); 4322 vmcs_write(ENT_INTR_ERROR, ent_intr_err); 4323 test_vmx_invalid_controls(false); 4324 report_prefix_pop(); 4325 } 4326 vmcs_write(ENT_INTR_ERROR, 0x00000000); 4327 report_prefix_pop(); 4328 4329 /* 4330 * If the interruption type is software interrupt, software exception, 4331 * or privileged software exception, the VM-entry instruction-length 4332 * field is in the range 0–15. 4333 */ 4334 4335 for (cnt = 0; cnt < 3; cnt++) { 4336 switch (cnt) { 4337 case 0: 4338 ent_intr_info = ent_intr_info_base | 4339 INTR_TYPE_SOFT_INTR; 4340 break; 4341 case 1: 4342 ent_intr_info = ent_intr_info_base | 4343 INTR_TYPE_SOFT_EXCEPTION; 4344 break; 4345 case 2: 4346 ent_intr_info = ent_intr_info_base | 4347 INTR_TYPE_PRIV_SW_EXCEPTION; 4348 break; 4349 } 4350 report_prefix_pushf("%s, VM-entry intr info=0x%x", 4351 "VM-entry instruction-length check", 4352 ent_intr_info); 4353 vmcs_write(ENT_INTR_INFO, ent_intr_info); 4354 4355 /* Instruction length set to -1 (0xFFFFFFFF) should fail */ 4356 ent_intr_len = -1; 4357 report_prefix_pushf("VM-entry intr length = 0x%x [-]", 4358 ent_intr_len); 4359 vmcs_write(ENT_INST_LEN, ent_intr_len); 4360 test_vmx_invalid_controls(false); 4361 report_prefix_pop(); 4362 4363 /* Instruction length set to 16 should fail */ 4364 ent_intr_len = 0x00000010; 4365 report_prefix_pushf("VM-entry intr length = 0x%x [-]", 4366 ent_intr_len); 4367 vmcs_write(ENT_INST_LEN, 0x00000010); 4368 test_vmx_invalid_controls(false); 4369 report_prefix_pop(); 4370 4371 report_prefix_pop(); 4372 } 4373 4374 /* Cleanup */ 4375 vmcs_write(ENT_INTR_INFO, ent_intr_info_save); 4376 vmcs_write(ENT_INTR_ERROR, ent_intr_error_save); 4377 vmcs_write(ENT_INST_LEN, ent_inst_len_save); 4378 vmcs_write(CPU_EXEC_CTRL0, primary_save); 4379 vmcs_write(CPU_EXEC_CTRL1, secondary_save); 4380 vmcs_write(GUEST_CR0, guest_cr0_save); 4381 report_prefix_pop(); 4382 } 4383 4384 /* 4385 * Test interesting vTPR values for a given TPR threshold. 4386 */ 4387 static void test_vtpr_values(unsigned threshold) 4388 { 4389 try_tpr_threshold_and_vtpr(threshold, (threshold - 1) << 4); 4390 try_tpr_threshold_and_vtpr(threshold, threshold << 4); 4391 try_tpr_threshold_and_vtpr(threshold, (threshold + 1) << 4); 4392 } 4393 4394 static void try_tpr_threshold(unsigned threshold) 4395 { 4396 bool valid = true; 4397 4398 u32 primary = vmcs_read(CPU_EXEC_CTRL0); 4399 u32 secondary = vmcs_read(CPU_EXEC_CTRL1); 4400 4401 if ((primary & CPU_TPR_SHADOW) && !((primary & CPU_SECONDARY) && 4402 (secondary & CPU_VINTD))) 4403 valid = !(threshold >> 4); 4404 4405 set_vtpr(-1); 4406 vmcs_write(TPR_THRESHOLD, threshold); 4407 report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0xf", threshold); 4408 if (valid) 4409 test_vmx_valid_controls(false); 4410 else 4411 test_vmx_invalid_controls(false); 4412 report_prefix_pop(); 4413 4414 if (valid) 4415 test_vtpr_values(threshold); 4416 } 4417 4418 /* 4419 * Test interesting TPR threshold values. 4420 */ 4421 static void test_tpr_threshold_values(void) 4422 { 4423 unsigned i; 4424 4425 for (i = 0; i < 0x10; i++) 4426 try_tpr_threshold(i); 4427 for (i = 4; i < 32; i++) 4428 try_tpr_threshold(1u << i); 4429 try_tpr_threshold(-1u); 4430 try_tpr_threshold(0x7fffffff); 4431 } 4432 4433 /* 4434 * This test covers the following two VM entry checks: 4435 * 4436 * i) If the "use TPR shadow" VM-execution control is 1 and the 4437 * "virtual-interrupt delivery" VM-execution control is 0, bits 4438 * 31:4 of the TPR threshold VM-execution control field must 4439 be 0. 4440 * [Intel SDM] 4441 * 4442 * ii) If the "use TPR shadow" VM-execution control is 1, the 4443 * "virtual-interrupt delivery" VM-execution control is 0 4444 * and the "virtualize APIC accesses" VM-execution control 4445 * is 0, the value of bits 3:0 of the TPR threshold VM-execution 4446 * control field must not be greater than the value of bits 4447 * 7:4 of VTPR. 4448 * [Intel SDM] 4449 */ 4450 static void test_tpr_threshold(void) 4451 { 4452 u32 primary = vmcs_read(CPU_EXEC_CTRL0); 4453 u64 apic_virt_addr = vmcs_read(APIC_VIRT_ADDR); 4454 u64 threshold = vmcs_read(TPR_THRESHOLD); 4455 void *virtual_apic_page; 4456 4457 if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) 4458 return; 4459 4460 virtual_apic_page = alloc_page(); 4461 memset(virtual_apic_page, 0xff, PAGE_SIZE); 4462 vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); 4463 4464 vmcs_write(CPU_EXEC_CTRL0, primary & ~(CPU_TPR_SHADOW | CPU_SECONDARY)); 4465 report_prefix_pushf("Use TPR shadow disabled, secondary controls disabled"); 4466 test_tpr_threshold_values(); 4467 report_prefix_pop(); 4468 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_TPR_SHADOW); 4469 report_prefix_pushf("Use TPR shadow enabled, secondary controls disabled"); 4470 test_tpr_threshold_values(); 4471 report_prefix_pop(); 4472 4473 if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && 4474 (ctrl_cpu_rev[1].clr & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)))) 4475 goto out; 4476 u32 secondary = vmcs_read(CPU_EXEC_CTRL1); 4477 4478 if (ctrl_cpu_rev[1].clr & CPU_VINTD) { 4479 vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD); 4480 report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled"); 4481 test_tpr_threshold_values(); 4482 report_prefix_pop(); 4483 4484 vmcs_write(CPU_EXEC_CTRL0, 4485 vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); 4486 report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled"); 4487 test_tpr_threshold_values(); 4488 report_prefix_pop(); 4489 } 4490 4491 if (ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES) { 4492 vmcs_write(CPU_EXEC_CTRL0, 4493 vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY); 4494 vmcs_write(CPU_EXEC_CTRL1, CPU_VIRT_APIC_ACCESSES); 4495 report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); 4496 test_tpr_threshold_values(); 4497 report_prefix_pop(); 4498 4499 vmcs_write(CPU_EXEC_CTRL0, 4500 vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); 4501 report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); 4502 test_tpr_threshold_values(); 4503 report_prefix_pop(); 4504 } 4505 4506 if ((ctrl_cpu_rev[1].clr & 4507 (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) == 4508 (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) { 4509 vmcs_write(CPU_EXEC_CTRL0, 4510 vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY); 4511 vmcs_write(CPU_EXEC_CTRL1, 4512 CPU_VINTD | CPU_VIRT_APIC_ACCESSES); 4513 report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); 4514 test_tpr_threshold_values(); 4515 report_prefix_pop(); 4516 4517 vmcs_write(CPU_EXEC_CTRL0, 4518 vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); 4519 report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); 4520 test_tpr_threshold_values(); 4521 report_prefix_pop(); 4522 } 4523 4524 vmcs_write(CPU_EXEC_CTRL1, secondary); 4525 out: 4526 vmcs_write(TPR_THRESHOLD, threshold); 4527 vmcs_write(APIC_VIRT_ADDR, apic_virt_addr); 4528 vmcs_write(CPU_EXEC_CTRL0, primary); 4529 } 4530 4531 /* 4532 * This test verifies the following two vmentry checks: 4533 * 4534 * If the "NMI exiting" VM-execution control is 0, "Virtual NMIs" 4535 * VM-execution control must be 0. 4536 * [Intel SDM] 4537 * 4538 * If the “virtual NMIs” VM-execution control is 0, the “NMI-window 4539 * exiting” VM-execution control must be 0. 4540 * [Intel SDM] 4541 */ 4542 static void test_nmi_ctrls(void) 4543 { 4544 u32 pin_ctrls, cpu_ctrls0, test_pin_ctrls, test_cpu_ctrls0; 4545 4546 if ((ctrl_pin_rev.clr & (PIN_NMI | PIN_VIRT_NMI)) != 4547 (PIN_NMI | PIN_VIRT_NMI)) { 4548 test_skip("NMI exiting and Virtual NMIs are not supported !"); 4549 return; 4550 } 4551 4552 /* Save the controls so that we can restore them after our tests */ 4553 pin_ctrls = vmcs_read(PIN_CONTROLS); 4554 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0); 4555 4556 test_pin_ctrls = pin_ctrls & ~(PIN_NMI | PIN_VIRT_NMI); 4557 test_cpu_ctrls0 = cpu_ctrls0 & ~CPU_NMI_WINDOW; 4558 4559 vmcs_write(PIN_CONTROLS, test_pin_ctrls); 4560 report_prefix_pushf("NMI-exiting disabled, virtual-NMIs disabled"); 4561 test_vmx_valid_controls(false); 4562 report_prefix_pop(); 4563 4564 vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_VIRT_NMI); 4565 report_prefix_pushf("NMI-exiting disabled, virtual-NMIs enabled"); 4566 test_vmx_invalid_controls(false); 4567 report_prefix_pop(); 4568 4569 vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); 4570 report_prefix_pushf("NMI-exiting enabled, virtual-NMIs enabled"); 4571 test_vmx_valid_controls(false); 4572 report_prefix_pop(); 4573 4574 vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_NMI); 4575 report_prefix_pushf("NMI-exiting enabled, virtual-NMIs disabled"); 4576 test_vmx_valid_controls(false); 4577 report_prefix_pop(); 4578 4579 if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) { 4580 report_info("NMI-window exiting is not supported, skipping..."); 4581 goto done; 4582 } 4583 4584 vmcs_write(PIN_CONTROLS, test_pin_ctrls); 4585 vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW); 4586 report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting enabled"); 4587 test_vmx_invalid_controls(false); 4588 report_prefix_pop(); 4589 4590 vmcs_write(PIN_CONTROLS, test_pin_ctrls); 4591 vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0); 4592 report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting disabled"); 4593 test_vmx_valid_controls(false); 4594 report_prefix_pop(); 4595 4596 vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); 4597 vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW); 4598 report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting enabled"); 4599 test_vmx_valid_controls(false); 4600 report_prefix_pop(); 4601 4602 vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); 4603 vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0); 4604 report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting disabled"); 4605 test_vmx_valid_controls(false); 4606 report_prefix_pop(); 4607 4608 /* Restore the controls to their original values */ 4609 vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0); 4610 done: 4611 vmcs_write(PIN_CONTROLS, pin_ctrls); 4612 } 4613 4614 static void test_eptp_ad_bit(u64 eptp, bool ctrl) 4615 { 4616 vmcs_write(EPTP, eptp); 4617 report_prefix_pushf("Enable-EPT enabled; EPT accessed and dirty flag %s", 4618 (eptp & EPTP_AD_FLAG) ? "1": "0"); 4619 if (ctrl) 4620 test_vmx_valid_controls(false); 4621 else 4622 test_vmx_invalid_controls(false); 4623 report_prefix_pop(); 4624 4625 } 4626 4627 /* 4628 * 1. If the "enable EPT" VM-execution control is 1, the "EPTP VM-execution" 4629 * control field must satisfy the following checks: 4630 * 4631 * - The EPT memory type (bits 2:0) must be a value supported by the 4632 * processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR. 4633 * - Bits 5:3 (1 less than the EPT page-walk length) must be 3, 4634 * indicating an EPT page-walk length of 4. 4635 * - Bit 6 (enable bit for accessed and dirty flags for EPT) must be 4636 * 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP MSR is read as 0, 4637 * indicating that the processor does not support accessed and dirty 4638 * dirty flags for EPT. 4639 * - Reserved bits 11:7 and 63:N (where N is the processor's 4640 * physical-address width) must all be 0. 4641 * 4642 * 2. If the "unrestricted guest" VM-execution control is 1, the 4643 * "enable EPT" VM-execution control must also be 1. 4644 */ 4645 static void test_ept_eptp(void) 4646 { 4647 u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0); 4648 u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1); 4649 u64 eptp_saved = vmcs_read(EPTP); 4650 u32 primary = primary_saved; 4651 u32 secondary = secondary_saved; 4652 u64 msr, eptp = eptp_saved; 4653 bool un_cache = false; 4654 bool wr_bk = false; 4655 bool ctrl; 4656 u32 i, maxphysaddr; 4657 u64 j, resv_bits_mask = 0; 4658 4659 if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && 4660 (ctrl_cpu_rev[1].clr & CPU_EPT))) { 4661 test_skip("\"CPU secondary\" and/or \"enable EPT\" execution controls are not supported !"); 4662 return; 4663 } 4664 4665 /* 4666 * Memory type (bits 2:0) 4667 */ 4668 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); 4669 if (msr & EPT_CAP_UC) 4670 un_cache = true; 4671 if (msr & EPT_CAP_WB) 4672 wr_bk = true; 4673 4674 primary |= CPU_SECONDARY; 4675 vmcs_write(CPU_EXEC_CTRL0, primary); 4676 secondary |= CPU_EPT; 4677 vmcs_write(CPU_EXEC_CTRL1, secondary); 4678 eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) | 4679 (3ul << EPTP_PG_WALK_LEN_SHIFT); 4680 vmcs_write(EPTP, eptp); 4681 4682 for (i = 0; i < 8; i++) { 4683 if (i == 0) { 4684 if (un_cache) { 4685 report_info("EPT paging structure memory-type is Un-cacheable\n"); 4686 ctrl = true; 4687 } else { 4688 ctrl = false; 4689 } 4690 } else if (i == 6) { 4691 if (wr_bk) { 4692 report_info("EPT paging structure memory-type is Write-back\n"); 4693 ctrl = true; 4694 } else { 4695 ctrl = false; 4696 } 4697 } else { 4698 ctrl = false; 4699 } 4700 4701 eptp = (eptp & ~EPT_MEM_TYPE_MASK) | i; 4702 vmcs_write(EPTP, eptp); 4703 report_prefix_pushf("Enable-EPT enabled; EPT memory type %lu", 4704 eptp & EPT_MEM_TYPE_MASK); 4705 if (ctrl) 4706 test_vmx_valid_controls(false); 4707 else 4708 test_vmx_invalid_controls(false); 4709 report_prefix_pop(); 4710 } 4711 4712 eptp = (eptp & ~EPT_MEM_TYPE_MASK) | 6ul; 4713 4714 /* 4715 * Page walk length (bits 5:3) 4716 */ 4717 for (i = 0; i < 8; i++) { 4718 eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) | 4719 (i << EPTP_PG_WALK_LEN_SHIFT); 4720 if (i == 3) 4721 ctrl = true; 4722 else 4723 ctrl = false; 4724 4725 vmcs_write(EPTP, eptp); 4726 report_prefix_pushf("Enable-EPT enabled; EPT page walk length %lu", 4727 eptp & EPTP_PG_WALK_LEN_MASK); 4728 if (ctrl) 4729 test_vmx_valid_controls(false); 4730 else 4731 test_vmx_invalid_controls(false); 4732 report_prefix_pop(); 4733 } 4734 4735 eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) | 4736 3ul << EPTP_PG_WALK_LEN_SHIFT; 4737 4738 /* 4739 * Accessed and dirty flag (bit 6) 4740 */ 4741 if (msr & EPT_CAP_AD_FLAG) { 4742 report_info("Processor supports accessed and dirty flag"); 4743 eptp &= ~EPTP_AD_FLAG; 4744 test_eptp_ad_bit(eptp, true); 4745 4746 eptp |= EPTP_AD_FLAG; 4747 test_eptp_ad_bit(eptp, true); 4748 } else { 4749 report_info("Processor does not supports accessed and dirty flag"); 4750 eptp &= ~EPTP_AD_FLAG; 4751 test_eptp_ad_bit(eptp, true); 4752 4753 eptp |= EPTP_AD_FLAG; 4754 test_eptp_ad_bit(eptp, false); 4755 } 4756 4757 /* 4758 * Reserved bits [11:7] and [63:N] 4759 */ 4760 for (i = 0; i < 32; i++) { 4761 eptp = (eptp & 4762 ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)) | 4763 (i << EPTP_RESERV_BITS_SHIFT); 4764 vmcs_write(EPTP, eptp); 4765 report_prefix_pushf("Enable-EPT enabled; reserved bits [11:7] %lu", 4766 (eptp >> EPTP_RESERV_BITS_SHIFT) & 4767 EPTP_RESERV_BITS_MASK); 4768 if (i == 0) 4769 test_vmx_valid_controls(false); 4770 else 4771 test_vmx_invalid_controls(false); 4772 report_prefix_pop(); 4773 } 4774 4775 eptp = (eptp & ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)); 4776 4777 maxphysaddr = cpuid_maxphyaddr(); 4778 for (i = 0; i < (63 - maxphysaddr + 1); i++) { 4779 resv_bits_mask |= 1ul << i; 4780 } 4781 4782 for (j = maxphysaddr - 1; j <= 63; j++) { 4783 eptp = (eptp & ~(resv_bits_mask << maxphysaddr)) | 4784 (j < maxphysaddr ? 0 : 1ul << j); 4785 vmcs_write(EPTP, eptp); 4786 report_prefix_pushf("Enable-EPT enabled; reserved bits [63:N] %lu", 4787 (eptp >> maxphysaddr) & resv_bits_mask); 4788 if (j < maxphysaddr) 4789 test_vmx_valid_controls(false); 4790 else 4791 test_vmx_invalid_controls(false); 4792 report_prefix_pop(); 4793 } 4794 4795 secondary &= ~(CPU_EPT | CPU_URG); 4796 vmcs_write(CPU_EXEC_CTRL1, secondary); 4797 report_prefix_pushf("Enable-EPT disabled, unrestricted-guest disabled"); 4798 test_vmx_valid_controls(false); 4799 report_prefix_pop(); 4800 4801 secondary |= CPU_URG; 4802 vmcs_write(CPU_EXEC_CTRL1, secondary); 4803 report_prefix_pushf("Enable-EPT disabled, unrestricted-guest enabled"); 4804 test_vmx_invalid_controls(false); 4805 report_prefix_pop(); 4806 4807 secondary |= CPU_EPT; 4808 setup_dummy_ept(); 4809 report_prefix_pushf("Enable-EPT enabled, unrestricted-guest enabled"); 4810 test_vmx_valid_controls(false); 4811 report_prefix_pop(); 4812 4813 secondary &= ~CPU_URG; 4814 vmcs_write(CPU_EXEC_CTRL1, secondary); 4815 report_prefix_pushf("Enable-EPT enabled, unrestricted-guest disabled"); 4816 test_vmx_valid_controls(false); 4817 report_prefix_pop(); 4818 4819 vmcs_write(CPU_EXEC_CTRL0, primary_saved); 4820 vmcs_write(CPU_EXEC_CTRL1, secondary_saved); 4821 vmcs_write(EPTP, eptp_saved); 4822 } 4823 4824 /* 4825 * If the 'enable PML' VM-execution control is 1, the 'enable EPT' 4826 * VM-execution control must also be 1. In addition, the PML address 4827 * must satisfy the following checks: 4828 * 4829 * * Bits 11:0 of the address must be 0. 4830 * * The address should not set any bits beyond the processor's 4831 * physical-address width. 4832 * 4833 * [Intel SDM] 4834 */ 4835 static void test_pml(void) 4836 { 4837 u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0); 4838 u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1); 4839 u32 primary = primary_saved; 4840 u32 secondary = secondary_saved; 4841 4842 if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && 4843 (ctrl_cpu_rev[1].clr & CPU_EPT) && (ctrl_cpu_rev[1].clr & CPU_PML))) { 4844 test_skip("\"Secondary execution\" control or \"enable EPT\" control or \"enable PML\" control is not supported !"); 4845 return; 4846 } 4847 4848 primary |= CPU_SECONDARY; 4849 vmcs_write(CPU_EXEC_CTRL0, primary); 4850 secondary &= ~(CPU_PML | CPU_EPT); 4851 vmcs_write(CPU_EXEC_CTRL1, secondary); 4852 report_prefix_pushf("enable-PML disabled, enable-EPT disabled"); 4853 test_vmx_valid_controls(false); 4854 report_prefix_pop(); 4855 4856 secondary |= CPU_PML; 4857 vmcs_write(CPU_EXEC_CTRL1, secondary); 4858 report_prefix_pushf("enable-PML enabled, enable-EPT disabled"); 4859 test_vmx_invalid_controls(false); 4860 report_prefix_pop(); 4861 4862 secondary |= CPU_EPT; 4863 setup_dummy_ept(); 4864 report_prefix_pushf("enable-PML enabled, enable-EPT enabled"); 4865 test_vmx_valid_controls(false); 4866 report_prefix_pop(); 4867 4868 secondary &= ~CPU_PML; 4869 vmcs_write(CPU_EXEC_CTRL1, secondary); 4870 report_prefix_pushf("enable-PML disabled, enable EPT enabled"); 4871 test_vmx_valid_controls(false); 4872 report_prefix_pop(); 4873 4874 test_vmcs_addr_reference(CPU_PML, PMLADDR, "PML address", "PML", 4875 PAGE_SIZE, false, false); 4876 4877 vmcs_write(CPU_EXEC_CTRL0, primary_saved); 4878 vmcs_write(CPU_EXEC_CTRL1, secondary_saved); 4879 } 4880 4881 /* 4882 * If the "activate VMX-preemption timer" VM-execution control is 0, the 4883 * the "save VMX-preemption timer value" VM-exit control must also be 0. 4884 * 4885 * [Intel SDM] 4886 */ 4887 static void test_vmx_preemption_timer(void) 4888 { 4889 u32 saved_pin = vmcs_read(PIN_CONTROLS); 4890 u32 saved_exit = vmcs_read(EXI_CONTROLS); 4891 u32 pin = saved_pin; 4892 u32 exit = saved_exit; 4893 4894 if (!((ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) || 4895 (ctrl_pin_rev.clr & PIN_PREEMPT))) { 4896 printf("\"Save-VMX-preemption-timer\" control and/or \"Enable-VMX-preemption-timer\" control is not supported\n"); 4897 return; 4898 } 4899 4900 pin |= PIN_PREEMPT; 4901 vmcs_write(PIN_CONTROLS, pin); 4902 exit &= ~EXI_SAVE_PREEMPT; 4903 vmcs_write(EXI_CONTROLS, exit); 4904 report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer disabled"); 4905 test_vmx_valid_controls(false); 4906 report_prefix_pop(); 4907 4908 exit |= EXI_SAVE_PREEMPT; 4909 vmcs_write(EXI_CONTROLS, exit); 4910 report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer enabled"); 4911 test_vmx_valid_controls(false); 4912 report_prefix_pop(); 4913 4914 pin &= ~PIN_PREEMPT; 4915 vmcs_write(PIN_CONTROLS, pin); 4916 report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer enabled"); 4917 test_vmx_invalid_controls(false); 4918 report_prefix_pop(); 4919 4920 exit &= ~EXI_SAVE_PREEMPT; 4921 vmcs_write(EXI_CONTROLS, exit); 4922 report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer disabled"); 4923 test_vmx_valid_controls(false); 4924 report_prefix_pop(); 4925 4926 vmcs_write(PIN_CONTROLS, saved_pin); 4927 vmcs_write(EXI_CONTROLS, saved_exit); 4928 } 4929 4930 /* 4931 * Tests for VM-execution control fields 4932 */ 4933 static void test_vm_execution_ctls(void) 4934 { 4935 test_pin_based_ctls(); 4936 test_primary_processor_based_ctls(); 4937 test_secondary_processor_based_ctls(); 4938 test_cr3_targets(); 4939 test_io_bitmaps(); 4940 test_msr_bitmap(); 4941 test_apic_ctls(); 4942 test_tpr_threshold(); 4943 test_nmi_ctrls(); 4944 test_pml(); 4945 test_vpid(); 4946 test_ept_eptp(); 4947 test_vmx_preemption_timer(); 4948 } 4949 4950 /* 4951 * The following checks are performed for the VM-entry MSR-load address if 4952 * the VM-entry MSR-load count field is non-zero: 4953 * 4954 * - The lower 4 bits of the VM-entry MSR-load address must be 0. 4955 * The address should not set any bits beyond the processor’s 4956 * physical-address width. 4957 * 4958 * - The address of the last byte in the VM-entry MSR-load area 4959 * should not set any bits beyond the processor’s physical-address 4960 * width. The address of this last byte is VM-entry MSR-load address 4961 * + (MSR count * 16) - 1. (The arithmetic used for the computation 4962 * uses more bits than the processor’s physical-address width.) 4963 * 4964 * 4965 * [Intel SDM] 4966 */ 4967 static void test_entry_msr_load(void) 4968 { 4969 entry_msr_load = alloc_page(); 4970 u64 tmp; 4971 u32 entry_msr_ld_cnt = 1; 4972 int i; 4973 u32 addr_len = 64; 4974 4975 vmcs_write(ENT_MSR_LD_CNT, entry_msr_ld_cnt); 4976 4977 /* Check first 4 bits of VM-entry MSR-load address */ 4978 for (i = 0; i < 4; i++) { 4979 tmp = (u64)entry_msr_load | 1ull << i; 4980 vmcs_write(ENTER_MSR_LD_ADDR, tmp); 4981 report_prefix_pushf("VM-entry MSR-load addr [4:0] %lx", 4982 tmp & 0xf); 4983 test_vmx_invalid_controls(false); 4984 report_prefix_pop(); 4985 } 4986 4987 if (basic.val & (1ul << 48)) 4988 addr_len = 32; 4989 4990 test_vmcs_addr_values("VM-entry-MSR-load address", 4991 ENTER_MSR_LD_ADDR, 16, false, false, 4992 4, addr_len - 1); 4993 4994 /* 4995 * Check last byte of VM-entry MSR-load address 4996 */ 4997 entry_msr_load = (struct vmx_msr_entry *)((u64)entry_msr_load & ~0xf); 4998 4999 for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len); 5000 i < 64; i++) { 5001 tmp = ((u64)entry_msr_load + entry_msr_ld_cnt * 16 - 1) | 5002 1ul << i; 5003 vmcs_write(ENTER_MSR_LD_ADDR, 5004 tmp - (entry_msr_ld_cnt * 16 - 1)); 5005 test_vmx_invalid_controls(false); 5006 } 5007 5008 vmcs_write(ENT_MSR_LD_CNT, 2); 5009 vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 16); 5010 test_vmx_invalid_controls(false); 5011 vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 32); 5012 test_vmx_valid_controls(false); 5013 vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 48); 5014 test_vmx_valid_controls(false); 5015 } 5016 5017 static void guest_state_test_main(void) 5018 { 5019 while (1) { 5020 if (vmx_get_test_stage() != 2) 5021 vmcall(); 5022 else 5023 break; 5024 } 5025 5026 asm volatile("fnop"); 5027 } 5028 5029 static void report_guest_state_test(const char *test, u32 xreason, 5030 u64 field, const char * field_name) 5031 { 5032 u32 reason = vmcs_read(EXI_REASON); 5033 u64 guest_rip; 5034 u32 insn_len; 5035 5036 report("%s, %s %lx", reason == xreason, test, field_name, field); 5037 5038 guest_rip = vmcs_read(GUEST_RIP); 5039 insn_len = vmcs_read(EXI_INST_LEN); 5040 if (! (reason & 0x80000021)) 5041 vmcs_write(GUEST_RIP, guest_rip + insn_len); 5042 } 5043 5044 /* 5045 * Tests for VM-entry control fields 5046 */ 5047 static void test_vm_entry_ctls(void) 5048 { 5049 test_invalid_event_injection(); 5050 test_entry_msr_load(); 5051 } 5052 5053 /* 5054 * The following checks are performed for the VM-exit MSR-store address if 5055 * the VM-exit MSR-store count field is non-zero: 5056 * 5057 * - The lower 4 bits of the VM-exit MSR-store address must be 0. 5058 * The address should not set any bits beyond the processor’s 5059 * physical-address width. 5060 * 5061 * - The address of the last byte in the VM-exit MSR-store area 5062 * should not set any bits beyond the processor’s physical-address 5063 * width. The address of this last byte is VM-exit MSR-store address 5064 * + (MSR count * 16) - 1. (The arithmetic used for the computation 5065 * uses more bits than the processor’s physical-address width.) 5066 * 5067 * If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits 5068 * in the range 63:32. 5069 * 5070 * [Intel SDM] 5071 */ 5072 static void test_exit_msr_store(void) 5073 { 5074 exit_msr_store = alloc_page(); 5075 u64 tmp; 5076 u32 exit_msr_st_cnt = 1; 5077 int i; 5078 u32 addr_len = 64; 5079 5080 vmcs_write(EXI_MSR_ST_CNT, exit_msr_st_cnt); 5081 5082 /* Check first 4 bits of VM-exit MSR-store address */ 5083 for (i = 0; i < 4; i++) { 5084 tmp = (u64)exit_msr_store | 1ull << i; 5085 vmcs_write(EXIT_MSR_ST_ADDR, tmp); 5086 report_prefix_pushf("VM-exit MSR-store addr [4:0] %lx", 5087 tmp & 0xf); 5088 test_vmx_invalid_controls(false); 5089 report_prefix_pop(); 5090 } 5091 5092 if (basic.val & (1ul << 48)) 5093 addr_len = 32; 5094 5095 test_vmcs_addr_values("VM-exit-MSR-store address", 5096 EXIT_MSR_ST_ADDR, 16, false, false, 5097 4, addr_len - 1); 5098 5099 /* 5100 * Check last byte of VM-exit MSR-store address 5101 */ 5102 exit_msr_store = (struct vmx_msr_entry *)((u64)exit_msr_store & ~0xf); 5103 5104 for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len); 5105 i < 64; i++) { 5106 tmp = ((u64)exit_msr_store + exit_msr_st_cnt * 16 - 1) | 5107 1ul << i; 5108 vmcs_write(EXIT_MSR_ST_ADDR, 5109 tmp - (exit_msr_st_cnt * 16 - 1)); 5110 test_vmx_invalid_controls(false); 5111 } 5112 5113 vmcs_write(EXI_MSR_ST_CNT, 2); 5114 vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 16); 5115 test_vmx_invalid_controls(false); 5116 vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 32); 5117 test_vmx_valid_controls(false); 5118 vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 48); 5119 test_vmx_valid_controls(false); 5120 } 5121 5122 /* 5123 * Tests for VM-exit controls 5124 */ 5125 static void test_vm_exit_ctls(void) 5126 { 5127 test_exit_msr_store(); 5128 } 5129 5130 /* 5131 * Check that the virtual CPU checks all of the VMX controls as 5132 * documented in the Intel SDM. 5133 */ 5134 static void vmx_controls_test(void) 5135 { 5136 /* 5137 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will 5138 * fail due to invalid guest state, should we make it that 5139 * far. 5140 */ 5141 vmcs_write(GUEST_RFLAGS, 0); 5142 5143 test_vm_execution_ctls(); 5144 test_vm_exit_ctls(); 5145 test_vm_entry_ctls(); 5146 } 5147 5148 struct apic_reg_virt_config { 5149 bool apic_register_virtualization; 5150 bool use_tpr_shadow; 5151 bool virtualize_apic_accesses; 5152 bool virtualize_x2apic_mode; 5153 bool activate_secondary_controls; 5154 }; 5155 5156 struct apic_reg_test { 5157 const char *name; 5158 struct apic_reg_virt_config apic_reg_virt_config; 5159 }; 5160 5161 struct apic_reg_virt_expectation { 5162 enum Reason rd_exit_reason; 5163 enum Reason wr_exit_reason; 5164 u32 val; 5165 u32 (*virt_fn)(u32); 5166 5167 /* 5168 * If false, accessing the APIC access address from L2 is treated as a 5169 * normal memory operation, rather than triggering virtualization. 5170 */ 5171 bool virtualize_apic_accesses; 5172 }; 5173 5174 static u32 apic_virt_identity(u32 val) 5175 { 5176 return val; 5177 } 5178 5179 static u32 apic_virt_nibble1(u32 val) 5180 { 5181 return val & 0xf0; 5182 } 5183 5184 static u32 apic_virt_byte3(u32 val) 5185 { 5186 return val & (0xff << 24); 5187 } 5188 5189 static bool apic_reg_virt_exit_expectation( 5190 u32 reg, struct apic_reg_virt_config *config, 5191 struct apic_reg_virt_expectation *expectation) 5192 { 5193 /* Good configs, where some L2 APIC accesses are virtualized. */ 5194 bool virtualize_apic_accesses_only = 5195 config->virtualize_apic_accesses && 5196 !config->use_tpr_shadow && 5197 !config->apic_register_virtualization && 5198 !config->virtualize_x2apic_mode && 5199 config->activate_secondary_controls; 5200 bool virtualize_apic_accesses_and_use_tpr_shadow = 5201 config->virtualize_apic_accesses && 5202 config->use_tpr_shadow && 5203 !config->apic_register_virtualization && 5204 !config->virtualize_x2apic_mode && 5205 config->activate_secondary_controls; 5206 bool apic_register_virtualization = 5207 config->virtualize_apic_accesses && 5208 config->use_tpr_shadow && 5209 config->apic_register_virtualization && 5210 !config->virtualize_x2apic_mode && 5211 config->activate_secondary_controls; 5212 5213 expectation->val = MAGIC_VAL_1; 5214 expectation->virt_fn = apic_virt_identity; 5215 expectation->virtualize_apic_accesses = 5216 config->virtualize_apic_accesses && 5217 config->activate_secondary_controls; 5218 if (virtualize_apic_accesses_only) { 5219 expectation->rd_exit_reason = VMX_APIC_ACCESS; 5220 expectation->wr_exit_reason = VMX_APIC_ACCESS; 5221 } else if (virtualize_apic_accesses_and_use_tpr_shadow) { 5222 switch (reg) { 5223 case APIC_TASKPRI: 5224 expectation->rd_exit_reason = VMX_VMCALL; 5225 expectation->wr_exit_reason = VMX_VMCALL; 5226 expectation->virt_fn = apic_virt_nibble1; 5227 break; 5228 default: 5229 expectation->rd_exit_reason = VMX_APIC_ACCESS; 5230 expectation->wr_exit_reason = VMX_APIC_ACCESS; 5231 } 5232 } else if (apic_register_virtualization) { 5233 expectation->rd_exit_reason = VMX_VMCALL; 5234 5235 switch (reg) { 5236 case APIC_ID: 5237 case APIC_EOI: 5238 case APIC_LDR: 5239 case APIC_DFR: 5240 case APIC_SPIV: 5241 case APIC_ESR: 5242 case APIC_ICR: 5243 case APIC_LVTT: 5244 case APIC_LVTTHMR: 5245 case APIC_LVTPC: 5246 case APIC_LVT0: 5247 case APIC_LVT1: 5248 case APIC_LVTERR: 5249 case APIC_TMICT: 5250 case APIC_TDCR: 5251 expectation->wr_exit_reason = VMX_APIC_WRITE; 5252 break; 5253 case APIC_LVR: 5254 case APIC_ISR ... APIC_ISR + 0x70: 5255 case APIC_TMR ... APIC_TMR + 0x70: 5256 case APIC_IRR ... APIC_IRR + 0x70: 5257 expectation->wr_exit_reason = VMX_APIC_ACCESS; 5258 break; 5259 case APIC_TASKPRI: 5260 expectation->wr_exit_reason = VMX_VMCALL; 5261 expectation->virt_fn = apic_virt_nibble1; 5262 break; 5263 case APIC_ICR2: 5264 expectation->wr_exit_reason = VMX_VMCALL; 5265 expectation->virt_fn = apic_virt_byte3; 5266 break; 5267 default: 5268 expectation->rd_exit_reason = VMX_APIC_ACCESS; 5269 expectation->wr_exit_reason = VMX_APIC_ACCESS; 5270 } 5271 } else if (!expectation->virtualize_apic_accesses) { 5272 /* 5273 * No APIC registers are directly virtualized. This includes 5274 * VTPR, which can be virtualized through MOV to/from CR8 via 5275 * the use TPR shadow control, but not through directly 5276 * accessing VTPR. 5277 */ 5278 expectation->rd_exit_reason = VMX_VMCALL; 5279 expectation->wr_exit_reason = VMX_VMCALL; 5280 } else { 5281 printf("Cannot parse APIC register virtualization config:\n" 5282 "\tvirtualize_apic_accesses: %d\n" 5283 "\tuse_tpr_shadow: %d\n" 5284 "\tapic_register_virtualization: %d\n" 5285 "\tvirtualize_x2apic_mode: %d\n" 5286 "\tactivate_secondary_controls: %d\n", 5287 config->virtualize_apic_accesses, 5288 config->use_tpr_shadow, 5289 config->apic_register_virtualization, 5290 config->virtualize_x2apic_mode, 5291 config->activate_secondary_controls); 5292 5293 return false; 5294 } 5295 5296 return true; 5297 } 5298 5299 struct apic_reg_test apic_reg_tests[] = { 5300 /* Good configs, where some L2 APIC accesses are virtualized. */ 5301 { 5302 .name = "Virtualize APIC accesses", 5303 .apic_reg_virt_config = { 5304 .virtualize_apic_accesses = true, 5305 .use_tpr_shadow = false, 5306 .apic_register_virtualization = false, 5307 .virtualize_x2apic_mode = false, 5308 .activate_secondary_controls = true, 5309 }, 5310 }, 5311 { 5312 .name = "Virtualize APIC accesses + Use TPR shadow", 5313 .apic_reg_virt_config = { 5314 .virtualize_apic_accesses = true, 5315 .use_tpr_shadow = true, 5316 .apic_register_virtualization = false, 5317 .virtualize_x2apic_mode = false, 5318 .activate_secondary_controls = true, 5319 }, 5320 }, 5321 { 5322 .name = "APIC-register virtualization", 5323 .apic_reg_virt_config = { 5324 .virtualize_apic_accesses = true, 5325 .use_tpr_shadow = true, 5326 .apic_register_virtualization = true, 5327 .virtualize_x2apic_mode = false, 5328 .activate_secondary_controls = true, 5329 }, 5330 }, 5331 5332 /* 5333 * Test that the secondary processor-based VM-execution controls are 5334 * correctly ignored when "activate secondary controls" is disabled. 5335 */ 5336 { 5337 .name = "Activate secondary controls off", 5338 .apic_reg_virt_config = { 5339 .virtualize_apic_accesses = true, 5340 .use_tpr_shadow = false, 5341 .apic_register_virtualization = true, 5342 .virtualize_x2apic_mode = true, 5343 .activate_secondary_controls = false, 5344 }, 5345 }, 5346 { 5347 .name = "Activate secondary controls off + Use TPR shadow", 5348 .apic_reg_virt_config = { 5349 .virtualize_apic_accesses = true, 5350 .use_tpr_shadow = true, 5351 .apic_register_virtualization = true, 5352 .virtualize_x2apic_mode = true, 5353 .activate_secondary_controls = false, 5354 }, 5355 }, 5356 5357 /* 5358 * Test that the APIC access address is treated like an arbitrary memory 5359 * address when "virtualize APIC accesses" is disabled. 5360 */ 5361 { 5362 .name = "Virtualize APIC accesses off + Use TPR shadow", 5363 .apic_reg_virt_config = { 5364 .virtualize_apic_accesses = false, 5365 .use_tpr_shadow = true, 5366 .apic_register_virtualization = true, 5367 .virtualize_x2apic_mode = true, 5368 .activate_secondary_controls = true, 5369 }, 5370 }, 5371 5372 /* 5373 * Test that VM entry fails due to invalid controls when 5374 * "APIC-register virtualization" is enabled while "use TPR shadow" is 5375 * disabled. 5376 */ 5377 { 5378 .name = "APIC-register virtualization + Use TPR shadow off", 5379 .apic_reg_virt_config = { 5380 .virtualize_apic_accesses = true, 5381 .use_tpr_shadow = false, 5382 .apic_register_virtualization = true, 5383 .virtualize_x2apic_mode = false, 5384 .activate_secondary_controls = true, 5385 }, 5386 }, 5387 5388 /* 5389 * Test that VM entry fails due to invalid controls when 5390 * "Virtualize x2APIC mode" is enabled while "use TPR shadow" is 5391 * disabled. 5392 */ 5393 { 5394 .name = "Virtualize x2APIC mode + Use TPR shadow off", 5395 .apic_reg_virt_config = { 5396 .virtualize_apic_accesses = false, 5397 .use_tpr_shadow = false, 5398 .apic_register_virtualization = false, 5399 .virtualize_x2apic_mode = true, 5400 .activate_secondary_controls = true, 5401 }, 5402 }, 5403 { 5404 .name = "Virtualize x2APIC mode + Use TPR shadow off v2", 5405 .apic_reg_virt_config = { 5406 .virtualize_apic_accesses = false, 5407 .use_tpr_shadow = false, 5408 .apic_register_virtualization = true, 5409 .virtualize_x2apic_mode = true, 5410 .activate_secondary_controls = true, 5411 }, 5412 }, 5413 5414 /* 5415 * Test that VM entry fails due to invalid controls when 5416 * "virtualize x2APIC mode" is enabled while "virtualize APIC accesses" 5417 * is enabled. 5418 */ 5419 { 5420 .name = "Virtualize x2APIC mode + Virtualize APIC accesses", 5421 .apic_reg_virt_config = { 5422 .virtualize_apic_accesses = true, 5423 .use_tpr_shadow = true, 5424 .apic_register_virtualization = false, 5425 .virtualize_x2apic_mode = true, 5426 .activate_secondary_controls = true, 5427 }, 5428 }, 5429 { 5430 .name = "Virtualize x2APIC mode + Virtualize APIC accesses v2", 5431 .apic_reg_virt_config = { 5432 .virtualize_apic_accesses = true, 5433 .use_tpr_shadow = true, 5434 .apic_register_virtualization = true, 5435 .virtualize_x2apic_mode = true, 5436 .activate_secondary_controls = true, 5437 }, 5438 }, 5439 }; 5440 5441 enum Apic_op { 5442 APIC_OP_XAPIC_RD, 5443 APIC_OP_XAPIC_WR, 5444 TERMINATE, 5445 }; 5446 5447 static u32 vmx_xapic_read(u32 *apic_access_address, u32 reg) 5448 { 5449 return *(volatile u32 *)((uintptr_t)apic_access_address + reg); 5450 } 5451 5452 static void vmx_xapic_write(u32 *apic_access_address, u32 reg, u32 val) 5453 { 5454 *(volatile u32 *)((uintptr_t)apic_access_address + reg) = val; 5455 } 5456 5457 struct apic_reg_virt_guest_args { 5458 enum Apic_op op; 5459 u32 *apic_access_address; 5460 u32 reg; 5461 u32 val; 5462 bool check_rd; 5463 u32 (*virt_fn)(u32); 5464 } apic_reg_virt_guest_args; 5465 5466 static void apic_reg_virt_guest(void) 5467 { 5468 volatile struct apic_reg_virt_guest_args *args = 5469 &apic_reg_virt_guest_args; 5470 5471 for (;;) { 5472 enum Apic_op op = args->op; 5473 u32 *apic_access_address = args->apic_access_address; 5474 u32 reg = args->reg; 5475 u32 val = args->val; 5476 bool check_rd = args->check_rd; 5477 u32 (*virt_fn)(u32) = args->virt_fn; 5478 5479 if (op == TERMINATE) 5480 break; 5481 5482 if (op == APIC_OP_XAPIC_RD) { 5483 u32 ret = vmx_xapic_read(apic_access_address, reg); 5484 5485 if (check_rd) { 5486 u32 want = virt_fn(val); 5487 u32 got = virt_fn(ret); 5488 5489 report("read 0x%x, expected 0x%x.", 5490 got == want, got, want); 5491 } 5492 } else if (op == APIC_OP_XAPIC_WR) { 5493 vmx_xapic_write(apic_access_address, reg, val); 5494 } 5495 5496 /* 5497 * The L1 should always execute a vmcall after it's done testing 5498 * an individual APIC operation. This helps to validate that the 5499 * L1 and L2 are in sync with each other, as expected. 5500 */ 5501 vmcall(); 5502 } 5503 } 5504 5505 static void test_xapic_rd( 5506 u32 reg, struct apic_reg_virt_expectation *expectation, 5507 u32 *apic_access_address, u32 *virtual_apic_page) 5508 { 5509 u32 val = expectation->val; 5510 u32 exit_reason_want = expectation->rd_exit_reason; 5511 struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; 5512 5513 report_prefix_pushf("xapic - reading 0x%03x", reg); 5514 5515 /* Configure guest to do an xapic read */ 5516 args->op = APIC_OP_XAPIC_RD; 5517 args->apic_access_address = apic_access_address; 5518 args->reg = reg; 5519 args->val = val; 5520 args->check_rd = exit_reason_want == VMX_VMCALL; 5521 args->virt_fn = expectation->virt_fn; 5522 5523 /* Setup virtual APIC page */ 5524 if (!expectation->virtualize_apic_accesses) { 5525 apic_access_address[apic_reg_index(reg)] = val; 5526 virtual_apic_page[apic_reg_index(reg)] = 0; 5527 } else if (exit_reason_want == VMX_VMCALL) { 5528 apic_access_address[apic_reg_index(reg)] = 0; 5529 virtual_apic_page[apic_reg_index(reg)] = val; 5530 } 5531 5532 /* Enter guest */ 5533 enter_guest(); 5534 5535 /* 5536 * Validate the behavior and 5537 * pass a magic value back to the guest. 5538 */ 5539 if (exit_reason_want == VMX_APIC_ACCESS) { 5540 u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff; 5541 5542 assert_exit_reason(exit_reason_want); 5543 report("got APIC access exit @ page offset 0x%03x, want 0x%03x", 5544 apic_page_offset == reg, apic_page_offset, reg); 5545 skip_exit_insn(); 5546 5547 /* Reenter guest so it can consume/check rcx and exit again. */ 5548 enter_guest(); 5549 } else if (exit_reason_want != VMX_VMCALL) { 5550 report("Oops, bad exit expectation: %u.", false, 5551 exit_reason_want); 5552 } 5553 5554 skip_exit_vmcall(); 5555 report_prefix_pop(); 5556 } 5557 5558 static void test_xapic_wr( 5559 u32 reg, struct apic_reg_virt_expectation *expectation, 5560 u32 *apic_access_address, u32 *virtual_apic_page) 5561 { 5562 u32 val = expectation->val; 5563 u32 exit_reason_want = expectation->wr_exit_reason; 5564 struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; 5565 bool virtualized = 5566 expectation->virtualize_apic_accesses && 5567 (exit_reason_want == VMX_APIC_WRITE || 5568 exit_reason_want == VMX_VMCALL); 5569 bool checked = false; 5570 5571 report_prefix_pushf("xapic - writing 0x%x to 0x%03x", val, reg); 5572 5573 /* Configure guest to do an xapic read */ 5574 args->op = APIC_OP_XAPIC_WR; 5575 args->apic_access_address = apic_access_address; 5576 args->reg = reg; 5577 args->val = val; 5578 5579 /* Setup virtual APIC page */ 5580 if (virtualized || !expectation->virtualize_apic_accesses) { 5581 apic_access_address[apic_reg_index(reg)] = 0; 5582 virtual_apic_page[apic_reg_index(reg)] = 0; 5583 } 5584 5585 /* Enter guest */ 5586 enter_guest(); 5587 5588 /* 5589 * Validate the behavior and 5590 * pass a magic value back to the guest. 5591 */ 5592 if (exit_reason_want == VMX_APIC_ACCESS) { 5593 u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff; 5594 5595 assert_exit_reason(exit_reason_want); 5596 report("got APIC access exit @ page offset 0x%03x, want 0x%03x", 5597 apic_page_offset == reg, apic_page_offset, reg); 5598 skip_exit_insn(); 5599 5600 /* Reenter guest so it can consume/check rcx and exit again. */ 5601 enter_guest(); 5602 } else if (exit_reason_want == VMX_APIC_WRITE) { 5603 assert_exit_reason(exit_reason_want); 5604 report("got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%x", 5605 virtual_apic_page[apic_reg_index(reg)] == val, 5606 apic_reg_index(reg), 5607 virtual_apic_page[apic_reg_index(reg)], val); 5608 checked = true; 5609 5610 /* Reenter guest so it can consume/check rcx and exit again. */ 5611 enter_guest(); 5612 } else if (exit_reason_want != VMX_VMCALL) { 5613 report("Oops, bad exit expectation: %u.", false, 5614 exit_reason_want); 5615 } 5616 5617 assert_exit_reason(VMX_VMCALL); 5618 if (virtualized && !checked) { 5619 u32 want = expectation->virt_fn(val); 5620 u32 got = virtual_apic_page[apic_reg_index(reg)]; 5621 got = expectation->virt_fn(got); 5622 5623 report("exitless write; val is 0x%x, want 0x%x", 5624 got == want, got, want); 5625 } else if (!expectation->virtualize_apic_accesses && !checked) { 5626 u32 got = apic_access_address[apic_reg_index(reg)]; 5627 5628 report("non-virtualized write; val is 0x%x, want 0x%x", 5629 got == val, got, val); 5630 } else if (!expectation->virtualize_apic_accesses && checked) { 5631 report("Non-virtualized write was prematurely checked!", false); 5632 } 5633 5634 skip_exit_vmcall(); 5635 report_prefix_pop(); 5636 } 5637 5638 enum Config_type { 5639 CONFIG_TYPE_GOOD, 5640 CONFIG_TYPE_UNSUPPORTED, 5641 CONFIG_TYPE_VMENTRY_FAILS_EARLY, 5642 }; 5643 5644 static enum Config_type configure_apic_reg_virt_test( 5645 struct apic_reg_virt_config *apic_reg_virt_config) 5646 { 5647 u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 5648 u32 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); 5649 /* Configs where L2 entry fails early, due to invalid controls. */ 5650 bool use_tpr_shadow_incorrectly_off = 5651 !apic_reg_virt_config->use_tpr_shadow && 5652 (apic_reg_virt_config->apic_register_virtualization || 5653 apic_reg_virt_config->virtualize_x2apic_mode) && 5654 apic_reg_virt_config->activate_secondary_controls; 5655 bool virtualize_apic_accesses_incorrectly_on = 5656 apic_reg_virt_config->virtualize_apic_accesses && 5657 apic_reg_virt_config->virtualize_x2apic_mode && 5658 apic_reg_virt_config->activate_secondary_controls; 5659 bool vmentry_fails_early = 5660 use_tpr_shadow_incorrectly_off || 5661 virtualize_apic_accesses_incorrectly_on; 5662 5663 if (apic_reg_virt_config->activate_secondary_controls) { 5664 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) { 5665 printf("VM-execution control \"activate secondary controls\" NOT supported.\n"); 5666 return CONFIG_TYPE_UNSUPPORTED; 5667 } 5668 cpu_exec_ctrl0 |= CPU_SECONDARY; 5669 } else { 5670 cpu_exec_ctrl0 &= ~CPU_SECONDARY; 5671 } 5672 5673 if (apic_reg_virt_config->virtualize_apic_accesses) { 5674 if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES)) { 5675 printf("VM-execution control \"virtualize APIC accesses\" NOT supported.\n"); 5676 return CONFIG_TYPE_UNSUPPORTED; 5677 } 5678 cpu_exec_ctrl1 |= CPU_VIRT_APIC_ACCESSES; 5679 } else { 5680 cpu_exec_ctrl1 &= ~CPU_VIRT_APIC_ACCESSES; 5681 } 5682 5683 if (apic_reg_virt_config->use_tpr_shadow) { 5684 if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) { 5685 printf("VM-execution control \"use TPR shadow\" NOT supported.\n"); 5686 return CONFIG_TYPE_UNSUPPORTED; 5687 } 5688 cpu_exec_ctrl0 |= CPU_TPR_SHADOW; 5689 } else { 5690 cpu_exec_ctrl0 &= ~CPU_TPR_SHADOW; 5691 } 5692 5693 if (apic_reg_virt_config->apic_register_virtualization) { 5694 if (!(ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT)) { 5695 printf("VM-execution control \"APIC-register virtualization\" NOT supported.\n"); 5696 return CONFIG_TYPE_UNSUPPORTED; 5697 } 5698 cpu_exec_ctrl1 |= CPU_APIC_REG_VIRT; 5699 } else { 5700 cpu_exec_ctrl1 &= ~CPU_APIC_REG_VIRT; 5701 } 5702 5703 if (apic_reg_virt_config->virtualize_x2apic_mode) { 5704 if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_X2APIC)) { 5705 printf("VM-execution control \"virtualize x2APIC mode\" NOT supported.\n"); 5706 return CONFIG_TYPE_UNSUPPORTED; 5707 } 5708 cpu_exec_ctrl1 |= CPU_VIRT_X2APIC; 5709 } else { 5710 cpu_exec_ctrl1 &= ~CPU_VIRT_X2APIC; 5711 } 5712 5713 vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); 5714 vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); 5715 5716 if (vmentry_fails_early) 5717 return CONFIG_TYPE_VMENTRY_FAILS_EARLY; 5718 5719 return CONFIG_TYPE_GOOD; 5720 } 5721 5722 static bool cpu_has_apicv(void) 5723 { 5724 return ((ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT) && 5725 (ctrl_cpu_rev[1].clr & CPU_VINTD) && 5726 (ctrl_pin_rev.clr & PIN_POST_INTR)); 5727 } 5728 5729 /* Validates APIC register access across valid virtualization configurations. */ 5730 static void apic_reg_virt_test(void) 5731 { 5732 u32 *apic_access_address; 5733 u32 *virtual_apic_page; 5734 u64 control; 5735 u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 5736 u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); 5737 int i; 5738 struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; 5739 5740 if (!cpu_has_apicv()) { 5741 report_skip(__func__); 5742 return; 5743 } 5744 5745 control = cpu_exec_ctrl1; 5746 control &= ~CPU_VINTD; 5747 vmcs_write(CPU_EXEC_CTRL1, control); 5748 5749 test_set_guest(apic_reg_virt_guest); 5750 5751 /* 5752 * From the SDM: The 1-setting of the "virtualize APIC accesses" 5753 * VM-execution is guaranteed to apply only if translations to the 5754 * APIC-access address use a 4-KByte page. 5755 */ 5756 apic_access_address = alloc_page(); 5757 force_4k_page(apic_access_address); 5758 vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_address)); 5759 5760 virtual_apic_page = alloc_page(); 5761 vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); 5762 5763 for (i = 0; i < ARRAY_SIZE(apic_reg_tests); i++) { 5764 struct apic_reg_test *apic_reg_test = &apic_reg_tests[i]; 5765 struct apic_reg_virt_config *apic_reg_virt_config = 5766 &apic_reg_test->apic_reg_virt_config; 5767 enum Config_type config_type; 5768 u32 reg; 5769 5770 printf("--- %s test ---\n", apic_reg_test->name); 5771 config_type = 5772 configure_apic_reg_virt_test(apic_reg_virt_config); 5773 if (config_type == CONFIG_TYPE_UNSUPPORTED) { 5774 printf("Skip because of missing features.\n"); 5775 continue; 5776 } 5777 5778 if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) { 5779 enter_guest_with_bad_controls(); 5780 continue; 5781 } 5782 5783 for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) { 5784 struct apic_reg_virt_expectation expectation = {}; 5785 bool ok; 5786 5787 ok = apic_reg_virt_exit_expectation( 5788 reg, apic_reg_virt_config, &expectation); 5789 if (!ok) { 5790 report("Malformed test.", false); 5791 break; 5792 } 5793 5794 test_xapic_rd(reg, &expectation, apic_access_address, 5795 virtual_apic_page); 5796 test_xapic_wr(reg, &expectation, apic_access_address, 5797 virtual_apic_page); 5798 } 5799 } 5800 5801 /* Terminate the guest */ 5802 vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); 5803 vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); 5804 args->op = TERMINATE; 5805 enter_guest(); 5806 assert_exit_reason(VMX_VMCALL); 5807 } 5808 5809 struct virt_x2apic_mode_config { 5810 struct apic_reg_virt_config apic_reg_virt_config; 5811 bool virtual_interrupt_delivery; 5812 bool use_msr_bitmaps; 5813 bool disable_x2apic_msr_intercepts; 5814 bool disable_x2apic; 5815 }; 5816 5817 struct virt_x2apic_mode_test_case { 5818 const char *name; 5819 struct virt_x2apic_mode_config virt_x2apic_mode_config; 5820 }; 5821 5822 enum Virt_x2apic_mode_behavior_type { 5823 X2APIC_ACCESS_VIRTUALIZED, 5824 X2APIC_ACCESS_PASSED_THROUGH, 5825 X2APIC_ACCESS_TRIGGERS_GP, 5826 }; 5827 5828 struct virt_x2apic_mode_expectation { 5829 enum Reason rd_exit_reason; 5830 enum Reason wr_exit_reason; 5831 5832 /* 5833 * RDMSR and WRMSR handle 64-bit values. However, except for ICR, all of 5834 * the x2APIC registers are 32 bits. Notice: 5835 * 1. vmx_x2apic_read() clears the upper 32 bits for 32-bit registers. 5836 * 2. vmx_x2apic_write() expects the val arg to be well-formed. 5837 */ 5838 u64 rd_val; 5839 u64 wr_val; 5840 5841 /* 5842 * Compares input to virtualized output; 5843 * 1st arg is pointer to return expected virtualization output. 5844 */ 5845 u64 (*virt_fn)(u64); 5846 5847 enum Virt_x2apic_mode_behavior_type rd_behavior; 5848 enum Virt_x2apic_mode_behavior_type wr_behavior; 5849 bool wr_only; 5850 }; 5851 5852 static u64 virt_x2apic_mode_identity(u64 val) 5853 { 5854 return val; 5855 } 5856 5857 static u64 virt_x2apic_mode_nibble1(u64 val) 5858 { 5859 return val & 0xf0; 5860 } 5861 5862 static void virt_x2apic_mode_rd_expectation( 5863 u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic, 5864 bool apic_register_virtualization, bool virtual_interrupt_delivery, 5865 struct virt_x2apic_mode_expectation *expectation) 5866 { 5867 bool readable = 5868 !x2apic_reg_reserved(reg) && 5869 reg != APIC_EOI && 5870 reg != APIC_CMCI; 5871 5872 expectation->rd_exit_reason = VMX_VMCALL; 5873 expectation->virt_fn = virt_x2apic_mode_identity; 5874 if (virt_x2apic_mode_on && apic_register_virtualization) { 5875 expectation->rd_val = MAGIC_VAL_1; 5876 if (reg == APIC_PROCPRI && virtual_interrupt_delivery) 5877 expectation->virt_fn = virt_x2apic_mode_nibble1; 5878 else if (reg == APIC_TASKPRI) 5879 expectation->virt_fn = virt_x2apic_mode_nibble1; 5880 expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED; 5881 } else if (virt_x2apic_mode_on && !apic_register_virtualization && 5882 reg == APIC_TASKPRI) { 5883 expectation->rd_val = MAGIC_VAL_1; 5884 expectation->virt_fn = virt_x2apic_mode_nibble1; 5885 expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED; 5886 } else if (!disable_x2apic && readable) { 5887 expectation->rd_val = apic_read(reg); 5888 expectation->rd_behavior = X2APIC_ACCESS_PASSED_THROUGH; 5889 } else { 5890 expectation->rd_behavior = X2APIC_ACCESS_TRIGGERS_GP; 5891 } 5892 } 5893 5894 /* 5895 * get_x2apic_wr_val() creates an innocuous write value for an x2APIC register. 5896 * 5897 * For writable registers, get_x2apic_wr_val() deposits the write value into the 5898 * val pointer arg and returns true. For non-writable registers, val is not 5899 * modified and get_x2apic_wr_val() returns false. 5900 * 5901 * CMCI, including the LVT CMCI register, is disabled by default. Thus, 5902 * get_x2apic_wr_val() treats this register as non-writable. 5903 */ 5904 static bool get_x2apic_wr_val(u32 reg, u64 *val) 5905 { 5906 switch (reg) { 5907 case APIC_TASKPRI: 5908 /* Bits 31:8 are reserved. */ 5909 *val &= 0xff; 5910 break; 5911 case APIC_EOI: 5912 case APIC_ESR: 5913 case APIC_TMICT: 5914 /* 5915 * EOI, ESR: WRMSR of a non-zero value causes #GP(0). 5916 * TMICT: A write of 0 to the initial-count register effectively 5917 * stops the local APIC timer, in both one-shot and 5918 * periodic mode. 5919 */ 5920 *val = 0; 5921 break; 5922 case APIC_SPIV: 5923 case APIC_LVTT: 5924 case APIC_LVTTHMR: 5925 case APIC_LVTPC: 5926 case APIC_LVT0: 5927 case APIC_LVT1: 5928 case APIC_LVTERR: 5929 case APIC_TDCR: 5930 /* 5931 * To avoid writing a 1 to a reserved bit or causing some other 5932 * unintended side effect, read the current value and use it as 5933 * the write value. 5934 */ 5935 *val = apic_read(reg); 5936 break; 5937 case APIC_ICR: 5938 *val = 0x40000 | 0xf1; 5939 break; 5940 case APIC_SELF_IPI: 5941 /* 5942 * With special processing (i.e., virtualize x2APIC mode + 5943 * virtual interrupt delivery), writing zero causes an 5944 * APIC-write VM exit. We plan to add a test for enabling 5945 * "virtual-interrupt delivery" in VMCS12, and that's where we 5946 * will test a self IPI with special processing. 5947 */ 5948 *val = 0x0; 5949 break; 5950 default: 5951 return false; 5952 } 5953 5954 return true; 5955 } 5956 5957 static bool special_processing_applies(u32 reg, u64 *val, 5958 bool virt_int_delivery) 5959 { 5960 bool special_processing = 5961 (reg == APIC_TASKPRI) || 5962 (virt_int_delivery && 5963 (reg == APIC_EOI || reg == APIC_SELF_IPI)); 5964 5965 if (special_processing) { 5966 TEST_ASSERT(get_x2apic_wr_val(reg, val)); 5967 return true; 5968 } 5969 5970 return false; 5971 } 5972 5973 static void virt_x2apic_mode_wr_expectation( 5974 u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic, 5975 bool virt_int_delivery, 5976 struct virt_x2apic_mode_expectation *expectation) 5977 { 5978 expectation->wr_exit_reason = VMX_VMCALL; 5979 expectation->wr_val = MAGIC_VAL_1; 5980 expectation->wr_only = false; 5981 5982 if (virt_x2apic_mode_on && 5983 special_processing_applies(reg, &expectation->wr_val, 5984 virt_int_delivery)) { 5985 expectation->wr_behavior = X2APIC_ACCESS_VIRTUALIZED; 5986 if (reg == APIC_SELF_IPI) 5987 expectation->wr_exit_reason = VMX_APIC_WRITE; 5988 } else if (!disable_x2apic && 5989 get_x2apic_wr_val(reg, &expectation->wr_val)) { 5990 expectation->wr_behavior = X2APIC_ACCESS_PASSED_THROUGH; 5991 if (reg == APIC_EOI || reg == APIC_SELF_IPI) 5992 expectation->wr_only = true; 5993 if (reg == APIC_ICR) 5994 expectation->wr_exit_reason = VMX_EXTINT; 5995 } else { 5996 expectation->wr_behavior = X2APIC_ACCESS_TRIGGERS_GP; 5997 /* 5998 * Writing 1 to a reserved bit triggers a #GP. 5999 * Thus, set the write value to 0, which seems 6000 * the most likely to detect a missed #GP. 6001 */ 6002 expectation->wr_val = 0; 6003 } 6004 } 6005 6006 static void virt_x2apic_mode_exit_expectation( 6007 u32 reg, struct virt_x2apic_mode_config *config, 6008 struct virt_x2apic_mode_expectation *expectation) 6009 { 6010 struct apic_reg_virt_config *base_config = 6011 &config->apic_reg_virt_config; 6012 bool virt_x2apic_mode_on = 6013 base_config->virtualize_x2apic_mode && 6014 config->use_msr_bitmaps && 6015 config->disable_x2apic_msr_intercepts && 6016 base_config->activate_secondary_controls; 6017 6018 virt_x2apic_mode_wr_expectation( 6019 reg, virt_x2apic_mode_on, config->disable_x2apic, 6020 config->virtual_interrupt_delivery, expectation); 6021 virt_x2apic_mode_rd_expectation( 6022 reg, virt_x2apic_mode_on, config->disable_x2apic, 6023 base_config->apic_register_virtualization, 6024 config->virtual_interrupt_delivery, expectation); 6025 } 6026 6027 struct virt_x2apic_mode_test_case virt_x2apic_mode_tests[] = { 6028 /* 6029 * Baseline "virtualize x2APIC mode" configuration: 6030 * - virtualize x2APIC mode 6031 * - virtual-interrupt delivery 6032 * - APIC-register virtualization 6033 * - x2APIC MSR intercepts disabled 6034 * 6035 * Reads come from virtual APIC page, special processing applies to 6036 * VTPR, EOI, and SELF IPI, and all other writes pass through to L1 6037 * APIC. 6038 */ 6039 { 6040 .name = "Baseline", 6041 .virt_x2apic_mode_config = { 6042 .virtual_interrupt_delivery = true, 6043 .use_msr_bitmaps = true, 6044 .disable_x2apic_msr_intercepts = true, 6045 .disable_x2apic = false, 6046 .apic_reg_virt_config = { 6047 .apic_register_virtualization = true, 6048 .use_tpr_shadow = true, 6049 .virtualize_apic_accesses = false, 6050 .virtualize_x2apic_mode = true, 6051 .activate_secondary_controls = true, 6052 }, 6053 }, 6054 }, 6055 { 6056 .name = "Baseline w/ x2apic disabled", 6057 .virt_x2apic_mode_config = { 6058 .virtual_interrupt_delivery = true, 6059 .use_msr_bitmaps = true, 6060 .disable_x2apic_msr_intercepts = true, 6061 .disable_x2apic = true, 6062 .apic_reg_virt_config = { 6063 .apic_register_virtualization = true, 6064 .use_tpr_shadow = true, 6065 .virtualize_apic_accesses = false, 6066 .virtualize_x2apic_mode = true, 6067 .activate_secondary_controls = true, 6068 }, 6069 }, 6070 }, 6071 6072 /* 6073 * Baseline, minus virtual-interrupt delivery. Reads come from virtual 6074 * APIC page, special processing applies to VTPR, and all other writes 6075 * pass through to L1 APIC. 6076 */ 6077 { 6078 .name = "Baseline - virtual interrupt delivery", 6079 .virt_x2apic_mode_config = { 6080 .virtual_interrupt_delivery = false, 6081 .use_msr_bitmaps = true, 6082 .disable_x2apic_msr_intercepts = true, 6083 .disable_x2apic = false, 6084 .apic_reg_virt_config = { 6085 .apic_register_virtualization = true, 6086 .use_tpr_shadow = true, 6087 .virtualize_apic_accesses = false, 6088 .virtualize_x2apic_mode = true, 6089 .activate_secondary_controls = true, 6090 }, 6091 }, 6092 }, 6093 6094 /* 6095 * Baseline, minus APIC-register virtualization. x2APIC reads pass 6096 * through to L1's APIC, unless reading VTPR 6097 */ 6098 { 6099 .name = "Virtualize x2APIC mode, no APIC reg virt", 6100 .virt_x2apic_mode_config = { 6101 .virtual_interrupt_delivery = true, 6102 .use_msr_bitmaps = true, 6103 .disable_x2apic_msr_intercepts = true, 6104 .disable_x2apic = false, 6105 .apic_reg_virt_config = { 6106 .apic_register_virtualization = false, 6107 .use_tpr_shadow = true, 6108 .virtualize_apic_accesses = false, 6109 .virtualize_x2apic_mode = true, 6110 .activate_secondary_controls = true, 6111 }, 6112 }, 6113 }, 6114 { 6115 .name = "Virtualize x2APIC mode, no APIC reg virt, x2APIC off", 6116 .virt_x2apic_mode_config = { 6117 .virtual_interrupt_delivery = true, 6118 .use_msr_bitmaps = true, 6119 .disable_x2apic_msr_intercepts = true, 6120 .disable_x2apic = true, 6121 .apic_reg_virt_config = { 6122 .apic_register_virtualization = false, 6123 .use_tpr_shadow = true, 6124 .virtualize_apic_accesses = false, 6125 .virtualize_x2apic_mode = true, 6126 .activate_secondary_controls = true, 6127 }, 6128 }, 6129 }, 6130 6131 /* 6132 * Enable "virtualize x2APIC mode" and "APIC-register virtualization", 6133 * and disable intercepts for the x2APIC MSRs, but fail to enable 6134 * "activate secondary controls" (i.e. L2 gets access to L1's x2APIC 6135 * MSRs). 6136 */ 6137 { 6138 .name = "Fail to enable activate secondary controls", 6139 .virt_x2apic_mode_config = { 6140 .virtual_interrupt_delivery = true, 6141 .use_msr_bitmaps = true, 6142 .disable_x2apic_msr_intercepts = true, 6143 .disable_x2apic = false, 6144 .apic_reg_virt_config = { 6145 .apic_register_virtualization = true, 6146 .use_tpr_shadow = true, 6147 .virtualize_apic_accesses = false, 6148 .virtualize_x2apic_mode = true, 6149 .activate_secondary_controls = false, 6150 }, 6151 }, 6152 }, 6153 6154 /* 6155 * Enable "APIC-register virtualization" and enable "activate secondary 6156 * controls" and disable intercepts for the x2APIC MSRs, but do not 6157 * enable the "virtualize x2APIC mode" VM-execution control (i.e. L2 6158 * gets access to L1's x2APIC MSRs). 6159 */ 6160 { 6161 .name = "Fail to enable virtualize x2APIC mode", 6162 .virt_x2apic_mode_config = { 6163 .virtual_interrupt_delivery = true, 6164 .use_msr_bitmaps = true, 6165 .disable_x2apic_msr_intercepts = true, 6166 .disable_x2apic = false, 6167 .apic_reg_virt_config = { 6168 .apic_register_virtualization = true, 6169 .use_tpr_shadow = true, 6170 .virtualize_apic_accesses = false, 6171 .virtualize_x2apic_mode = false, 6172 .activate_secondary_controls = true, 6173 }, 6174 }, 6175 }, 6176 6177 /* 6178 * Disable "Virtualize x2APIC mode", disable x2APIC MSR intercepts, and 6179 * enable "APIC-register virtualization" --> L2 gets L1's x2APIC MSRs. 6180 */ 6181 { 6182 .name = "Baseline", 6183 .virt_x2apic_mode_config = { 6184 .virtual_interrupt_delivery = true, 6185 .use_msr_bitmaps = true, 6186 .disable_x2apic_msr_intercepts = true, 6187 .disable_x2apic = false, 6188 .apic_reg_virt_config = { 6189 .apic_register_virtualization = true, 6190 .use_tpr_shadow = true, 6191 .virtualize_apic_accesses = false, 6192 .virtualize_x2apic_mode = false, 6193 .activate_secondary_controls = true, 6194 }, 6195 }, 6196 }, 6197 }; 6198 6199 enum X2apic_op { 6200 X2APIC_OP_RD, 6201 X2APIC_OP_WR, 6202 X2APIC_TERMINATE, 6203 }; 6204 6205 static u64 vmx_x2apic_read(u32 reg) 6206 { 6207 u32 msr_addr = x2apic_msr(reg); 6208 u64 val; 6209 6210 val = rdmsr(msr_addr); 6211 6212 return val; 6213 } 6214 6215 static void vmx_x2apic_write(u32 reg, u64 val) 6216 { 6217 u32 msr_addr = x2apic_msr(reg); 6218 6219 wrmsr(msr_addr, val); 6220 } 6221 6222 struct virt_x2apic_mode_guest_args { 6223 enum X2apic_op op; 6224 u32 reg; 6225 u64 val; 6226 bool should_gp; 6227 u64 (*virt_fn)(u64); 6228 } virt_x2apic_mode_guest_args; 6229 6230 static volatile bool handle_x2apic_gp_ran; 6231 static volatile u32 handle_x2apic_gp_insn_len; 6232 static void handle_x2apic_gp(struct ex_regs *regs) 6233 { 6234 handle_x2apic_gp_ran = true; 6235 regs->rip += handle_x2apic_gp_insn_len; 6236 } 6237 6238 static handler setup_x2apic_gp_handler(void) 6239 { 6240 handler old_handler; 6241 6242 old_handler = handle_exception(GP_VECTOR, handle_x2apic_gp); 6243 /* RDMSR and WRMSR are both 2 bytes, assuming no prefixes. */ 6244 handle_x2apic_gp_insn_len = 2; 6245 6246 return old_handler; 6247 } 6248 6249 static void teardown_x2apic_gp_handler(handler old_handler) 6250 { 6251 handle_exception(GP_VECTOR, old_handler); 6252 6253 /* 6254 * Defensively reset instruction length, so that if the handler is 6255 * incorrectly used, it will loop infinitely, rather than run off into 6256 * la la land. 6257 */ 6258 handle_x2apic_gp_insn_len = 0; 6259 handle_x2apic_gp_ran = false; 6260 } 6261 6262 static void virt_x2apic_mode_guest(void) 6263 { 6264 volatile struct virt_x2apic_mode_guest_args *args = 6265 &virt_x2apic_mode_guest_args; 6266 6267 for (;;) { 6268 enum X2apic_op op = args->op; 6269 u32 reg = args->reg; 6270 u64 val = args->val; 6271 bool should_gp = args->should_gp; 6272 u64 (*virt_fn)(u64) = args->virt_fn; 6273 handler old_handler; 6274 6275 if (op == X2APIC_TERMINATE) 6276 break; 6277 6278 if (should_gp) { 6279 TEST_ASSERT(!handle_x2apic_gp_ran); 6280 old_handler = setup_x2apic_gp_handler(); 6281 } 6282 6283 if (op == X2APIC_OP_RD) { 6284 u64 ret = vmx_x2apic_read(reg); 6285 6286 if (!should_gp) { 6287 u64 want = virt_fn(val); 6288 u64 got = virt_fn(ret); 6289 6290 report("APIC read; got 0x%lx, want 0x%lx.", 6291 got == want, got, want); 6292 } 6293 } else if (op == X2APIC_OP_WR) { 6294 vmx_x2apic_write(reg, val); 6295 } 6296 6297 if (should_gp) { 6298 report("x2APIC op triggered GP.", 6299 handle_x2apic_gp_ran); 6300 teardown_x2apic_gp_handler(old_handler); 6301 } 6302 6303 /* 6304 * The L1 should always execute a vmcall after it's done testing 6305 * an individual APIC operation. This helps to validate that the 6306 * L1 and L2 are in sync with each other, as expected. 6307 */ 6308 vmcall(); 6309 } 6310 } 6311 6312 static void test_x2apic_rd( 6313 u32 reg, struct virt_x2apic_mode_expectation *expectation, 6314 u32 *virtual_apic_page) 6315 { 6316 u64 val = expectation->rd_val; 6317 u32 exit_reason_want = expectation->rd_exit_reason; 6318 struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; 6319 6320 report_prefix_pushf("x2apic - reading 0x%03x", reg); 6321 6322 /* Configure guest to do an x2apic read */ 6323 args->op = X2APIC_OP_RD; 6324 args->reg = reg; 6325 args->val = val; 6326 args->should_gp = expectation->rd_behavior == X2APIC_ACCESS_TRIGGERS_GP; 6327 args->virt_fn = expectation->virt_fn; 6328 6329 /* Setup virtual APIC page */ 6330 if (expectation->rd_behavior == X2APIC_ACCESS_VIRTUALIZED) 6331 virtual_apic_page[apic_reg_index(reg)] = (u32)val; 6332 6333 /* Enter guest */ 6334 enter_guest(); 6335 6336 if (exit_reason_want != VMX_VMCALL) { 6337 report("Oops, bad exit expectation: %u.", false, 6338 exit_reason_want); 6339 } 6340 6341 skip_exit_vmcall(); 6342 report_prefix_pop(); 6343 } 6344 6345 static volatile bool handle_x2apic_ipi_ran; 6346 static void handle_x2apic_ipi(isr_regs_t *regs) 6347 { 6348 handle_x2apic_ipi_ran = true; 6349 eoi(); 6350 } 6351 6352 static void test_x2apic_wr( 6353 u32 reg, struct virt_x2apic_mode_expectation *expectation, 6354 u32 *virtual_apic_page) 6355 { 6356 u64 val = expectation->wr_val; 6357 u32 exit_reason_want = expectation->wr_exit_reason; 6358 struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; 6359 int ipi_vector = 0xf1; 6360 u32 restore_val = 0; 6361 6362 report_prefix_pushf("x2apic - writing 0x%lx to 0x%03x", val, reg); 6363 6364 /* Configure guest to do an x2apic read */ 6365 args->op = X2APIC_OP_WR; 6366 args->reg = reg; 6367 args->val = val; 6368 args->should_gp = expectation->wr_behavior == X2APIC_ACCESS_TRIGGERS_GP; 6369 6370 /* Setup virtual APIC page */ 6371 if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) 6372 virtual_apic_page[apic_reg_index(reg)] = 0; 6373 if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH && !expectation->wr_only) 6374 restore_val = apic_read(reg); 6375 6376 /* Setup IPI handler */ 6377 handle_x2apic_ipi_ran = false; 6378 handle_irq(ipi_vector, handle_x2apic_ipi); 6379 6380 /* Enter guest */ 6381 enter_guest(); 6382 6383 /* 6384 * Validate the behavior and 6385 * pass a magic value back to the guest. 6386 */ 6387 if (exit_reason_want == VMX_EXTINT) { 6388 assert_exit_reason(exit_reason_want); 6389 6390 /* Clear the external interrupt. */ 6391 irq_enable(); 6392 asm volatile ("nop"); 6393 irq_disable(); 6394 report("Got pending interrupt after IRQ enabled.", 6395 handle_x2apic_ipi_ran); 6396 6397 enter_guest(); 6398 } else if (exit_reason_want == VMX_APIC_WRITE) { 6399 assert_exit_reason(exit_reason_want); 6400 report("got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%lx", 6401 virtual_apic_page[apic_reg_index(reg)] == val, 6402 apic_reg_index(reg), 6403 virtual_apic_page[apic_reg_index(reg)], val); 6404 6405 /* Reenter guest so it can consume/check rcx and exit again. */ 6406 enter_guest(); 6407 } else if (exit_reason_want != VMX_VMCALL) { 6408 report("Oops, bad exit expectation: %u.", false, 6409 exit_reason_want); 6410 } 6411 6412 assert_exit_reason(VMX_VMCALL); 6413 if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) { 6414 u64 want = val; 6415 u32 got = virtual_apic_page[apic_reg_index(reg)]; 6416 6417 report("x2APIC write; got 0x%x, want 0x%lx", 6418 got == want, got, want); 6419 } else if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH) { 6420 if (!expectation->wr_only) { 6421 u32 got = apic_read(reg); 6422 bool ok; 6423 6424 /* 6425 * When L1's TPR is passed through to L2, the lower 6426 * nibble can be lost. For example, if L2 executes 6427 * WRMSR(0x808, 0x78), then, L1 might read 0x70. 6428 * 6429 * Here's how the lower nibble can get lost: 6430 * 1. L2 executes WRMSR(0x808, 0x78). 6431 * 2. L2 exits to L0 with a WRMSR exit. 6432 * 3. L0 emulates WRMSR, by writing L1's TPR. 6433 * 4. L0 re-enters L2. 6434 * 5. L2 exits to L0 (reason doesn't matter). 6435 * 6. L0 reflects L2's exit to L1. 6436 * 7. Before entering L1, L0 exits to user-space 6437 * (e.g., to satisfy TPR access reporting). 6438 * 8. User-space executes KVM_SET_REGS ioctl, which 6439 * clears the lower nibble of L1's TPR. 6440 */ 6441 if (reg == APIC_TASKPRI) { 6442 got = apic_virt_nibble1(got); 6443 val = apic_virt_nibble1(val); 6444 } 6445 6446 ok = got == val; 6447 report("non-virtualized write; val is 0x%x, want 0x%lx", 6448 ok, got, val); 6449 apic_write(reg, restore_val); 6450 } else { 6451 report("non-virtualized and write-only OK", true); 6452 } 6453 } 6454 skip_exit_insn(); 6455 6456 report_prefix_pop(); 6457 } 6458 6459 static enum Config_type configure_virt_x2apic_mode_test( 6460 struct virt_x2apic_mode_config *virt_x2apic_mode_config, 6461 u8 *msr_bitmap_page) 6462 { 6463 int msr; 6464 u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 6465 u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); 6466 6467 /* x2apic-specific VMCS config */ 6468 if (virt_x2apic_mode_config->use_msr_bitmaps) { 6469 /* virt_x2apic_mode_test() checks for MSR bitmaps support */ 6470 cpu_exec_ctrl0 |= CPU_MSR_BITMAP; 6471 } else { 6472 cpu_exec_ctrl0 &= ~CPU_MSR_BITMAP; 6473 } 6474 6475 if (virt_x2apic_mode_config->virtual_interrupt_delivery) { 6476 if (!(ctrl_cpu_rev[1].clr & CPU_VINTD)) { 6477 report_skip("VM-execution control \"virtual-interrupt delivery\" NOT supported.\n"); 6478 return CONFIG_TYPE_UNSUPPORTED; 6479 } 6480 cpu_exec_ctrl1 |= CPU_VINTD; 6481 } else { 6482 cpu_exec_ctrl1 &= ~CPU_VINTD; 6483 } 6484 6485 vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); 6486 vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); 6487 6488 /* x2APIC MSR intercepts are usually off for "Virtualize x2APIC mode" */ 6489 for (msr = 0x800; msr <= 0x8ff; msr++) { 6490 if (virt_x2apic_mode_config->disable_x2apic_msr_intercepts) { 6491 clear_bit(msr, msr_bitmap_page + 0x000); 6492 clear_bit(msr, msr_bitmap_page + 0x800); 6493 } else { 6494 set_bit(msr, msr_bitmap_page + 0x000); 6495 set_bit(msr, msr_bitmap_page + 0x800); 6496 } 6497 } 6498 6499 /* x2APIC mode can impact virtualization */ 6500 reset_apic(); 6501 if (!virt_x2apic_mode_config->disable_x2apic) 6502 enable_x2apic(); 6503 6504 return configure_apic_reg_virt_test( 6505 &virt_x2apic_mode_config->apic_reg_virt_config); 6506 } 6507 6508 static void virt_x2apic_mode_test(void) 6509 { 6510 u32 *virtual_apic_page; 6511 u8 *msr_bitmap_page; 6512 u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); 6513 u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); 6514 int i; 6515 struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; 6516 6517 if (!cpu_has_apicv()) { 6518 report_skip(__func__); 6519 return; 6520 } 6521 6522 /* 6523 * This is to exercise an issue in KVM's logic to merge L0's and L1's 6524 * MSR bitmaps. Previously, an L1 could get at L0's x2APIC MSRs by 6525 * writing the IA32_SPEC_CTRL MSR or the IA32_PRED_CMD MSRs. KVM would 6526 * then proceed to manipulate the MSR bitmaps, as if VMCS12 had the 6527 * "Virtualize x2APIC mod" control set, even when it didn't. 6528 */ 6529 if (has_spec_ctrl()) 6530 wrmsr(MSR_IA32_SPEC_CTRL, 1); 6531 6532 /* 6533 * Check that VMCS12 supports: 6534 * - "Virtual-APIC address", indicated by "use TPR shadow" 6535 * - "MSR-bitmap address", indicated by "use MSR bitmaps" 6536 */ 6537 if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) { 6538 report_skip("VM-execution control \"use TPR shadow\" NOT supported.\n"); 6539 return; 6540 } else if (!(ctrl_cpu_rev[0].clr & CPU_MSR_BITMAP)) { 6541 report_skip("VM-execution control \"use MSR bitmaps\" NOT supported.\n"); 6542 return; 6543 } 6544 6545 test_set_guest(virt_x2apic_mode_guest); 6546 6547 virtual_apic_page = alloc_page(); 6548 vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); 6549 6550 msr_bitmap_page = alloc_page(); 6551 memset(msr_bitmap_page, 0xff, PAGE_SIZE); 6552 vmcs_write(MSR_BITMAP, virt_to_phys(msr_bitmap_page)); 6553 6554 for (i = 0; i < ARRAY_SIZE(virt_x2apic_mode_tests); i++) { 6555 struct virt_x2apic_mode_test_case *virt_x2apic_mode_test_case = 6556 &virt_x2apic_mode_tests[i]; 6557 struct virt_x2apic_mode_config *virt_x2apic_mode_config = 6558 &virt_x2apic_mode_test_case->virt_x2apic_mode_config; 6559 enum Config_type config_type; 6560 u32 reg; 6561 6562 printf("--- %s test ---\n", virt_x2apic_mode_test_case->name); 6563 config_type = 6564 configure_virt_x2apic_mode_test(virt_x2apic_mode_config, 6565 msr_bitmap_page); 6566 if (config_type == CONFIG_TYPE_UNSUPPORTED) { 6567 report_skip("Skip because of missing features.\n"); 6568 continue; 6569 } else if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) { 6570 enter_guest_with_bad_controls(); 6571 continue; 6572 } 6573 6574 for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) { 6575 struct virt_x2apic_mode_expectation expectation; 6576 6577 virt_x2apic_mode_exit_expectation( 6578 reg, virt_x2apic_mode_config, &expectation); 6579 6580 test_x2apic_rd(reg, &expectation, virtual_apic_page); 6581 test_x2apic_wr(reg, &expectation, virtual_apic_page); 6582 } 6583 } 6584 6585 6586 /* Terminate the guest */ 6587 vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); 6588 vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); 6589 args->op = X2APIC_TERMINATE; 6590 enter_guest(); 6591 assert_exit_reason(VMX_VMCALL); 6592 } 6593 6594 /* 6595 * On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP 6596 * field and the IA32_SYSENTER_EIP field must each contain a canonical 6597 * address. 6598 * 6599 * [Intel SDM] 6600 */ 6601 static void test_sysenter_field(u32 field, const char *name) 6602 { 6603 u64 addr_saved = vmcs_read(field); 6604 6605 vmcs_write(field, NONCANONICAL); 6606 report_prefix_pushf("%s non-canonical", name); 6607 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD, false); 6608 report_prefix_pop(); 6609 6610 vmcs_write(field, 0xffffffff); 6611 report_prefix_pushf("%s canonical", name); 6612 test_vmx_vmlaunch(0, false); 6613 report_prefix_pop(); 6614 6615 vmcs_write(field, addr_saved); 6616 } 6617 6618 static void test_ctl_reg(const char *cr_name, u64 cr, u64 fixed0, u64 fixed1) 6619 { 6620 u64 val; 6621 u64 cr_saved = vmcs_read(cr); 6622 int i; 6623 6624 val = fixed0 & fixed1; 6625 if (cr == HOST_CR4) 6626 vmcs_write(cr, val | X86_CR4_PAE); 6627 else 6628 vmcs_write(cr, val); 6629 report_prefix_pushf("%s %lx", cr_name, val); 6630 if (val == fixed0) 6631 test_vmx_vmlaunch(0, false); 6632 else 6633 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD, 6634 false); 6635 report_prefix_pop(); 6636 6637 for (i = 0; i < 64; i++) { 6638 6639 /* Set a bit when the corresponding bit in fixed1 is 0 */ 6640 if ((fixed1 & (1ull << i)) == 0) { 6641 if (cr == HOST_CR4 && ((1ull << i) & X86_CR4_SMEP || 6642 (1ull << i) & X86_CR4_SMAP)) 6643 continue; 6644 6645 vmcs_write(cr, cr_saved | (1ull << i)); 6646 report_prefix_pushf("%s %llx", cr_name, 6647 cr_saved | (1ull << i)); 6648 test_vmx_vmlaunch( 6649 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD, 6650 false); 6651 report_prefix_pop(); 6652 } 6653 6654 /* Unset a bit when the corresponding bit in fixed0 is 1 */ 6655 if (fixed0 & (1ull << i)) { 6656 vmcs_write(cr, cr_saved & ~(1ull << i)); 6657 report_prefix_pushf("%s %llx", cr_name, 6658 cr_saved & ~(1ull << i)); 6659 test_vmx_vmlaunch( 6660 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD, 6661 false); 6662 report_prefix_pop(); 6663 } 6664 } 6665 6666 vmcs_write(cr, cr_saved); 6667 } 6668 6669 /* 6670 * 1. The CR0 field must not set any bit to a value not supported in VMX 6671 * operation. 6672 * 2. The CR4 field must not set any bit to a value not supported in VMX 6673 * operation. 6674 * 3. On processors that support Intel 64 architecture, the CR3 field must 6675 * be such that bits 63:52 and bits in the range 51:32 beyond the 6676 * processor’s physical-address width must be 0. 6677 * 6678 * [Intel SDM] 6679 */ 6680 static void test_host_ctl_regs(void) 6681 { 6682 u64 fixed0, fixed1, cr3, cr3_saved; 6683 int i; 6684 6685 /* Test CR0 */ 6686 fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0); 6687 fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1); 6688 test_ctl_reg("HOST_CR0", HOST_CR0, fixed0, fixed1); 6689 6690 /* Test CR4 */ 6691 fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0); 6692 fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1) & 6693 ~(X86_CR4_SMEP | X86_CR4_SMAP); 6694 test_ctl_reg("HOST_CR4", HOST_CR4, fixed0, fixed1); 6695 6696 /* Test CR3 */ 6697 cr3_saved = vmcs_read(HOST_CR3); 6698 for (i = cpuid_maxphyaddr(); i < 64; i++) { 6699 cr3 = cr3_saved | (1ul << i); 6700 vmcs_write(HOST_CR3, cr3); 6701 report_prefix_pushf("HOST_CR3 %lx", cr3); 6702 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD, 6703 false); 6704 report_prefix_pop(); 6705 } 6706 6707 vmcs_write(HOST_CR3, cr3_saved); 6708 } 6709 6710 static void test_efer_bit(u32 fld, const char * fld_name, u32 ctrl_fld, 6711 u64 ctrl_bit, u64 efer_bit, 6712 const char *efer_bit_name) 6713 { 6714 u64 efer_saved = vmcs_read(fld); 6715 u32 ctrl_saved = vmcs_read(ctrl_fld); 6716 u64 host_addr_size = ctrl_saved & EXI_HOST_64; 6717 u64 efer; 6718 6719 vmcs_write(ctrl_fld, ctrl_saved & ~ctrl_bit); 6720 efer = efer_saved & ~efer_bit; 6721 vmcs_write(fld, efer); 6722 report_prefix_pushf("%s bit turned off, %s %lx", efer_bit_name, 6723 fld_name, efer); 6724 test_vmx_vmlaunch(0, false); 6725 report_prefix_pop(); 6726 6727 efer = efer_saved | efer_bit; 6728 vmcs_write(fld, efer); 6729 report_prefix_pushf("%s bit turned on, %s %lx", efer_bit_name, 6730 fld_name, efer); 6731 test_vmx_vmlaunch(0, false); 6732 report_prefix_pop(); 6733 6734 vmcs_write(ctrl_fld, ctrl_saved | ctrl_bit); 6735 efer = efer_saved & ~efer_bit; 6736 vmcs_write(fld, efer); 6737 report_prefix_pushf("%s bit turned off, %s %lx", efer_bit_name, 6738 fld_name, efer); 6739 if (host_addr_size) 6740 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD, 6741 false); 6742 else 6743 test_vmx_vmlaunch(0, false); 6744 report_prefix_pop(); 6745 6746 efer = efer_saved | efer_bit; 6747 vmcs_write(fld, efer); 6748 report_prefix_pushf("%s bit turned on, %s %lx", efer_bit_name, 6749 fld_name, efer); 6750 if (host_addr_size) 6751 test_vmx_vmlaunch(0, false); 6752 else 6753 test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD, 6754 false); 6755 report_prefix_pop(); 6756 6757 vmcs_write(ctrl_fld, ctrl_saved); 6758 vmcs_write(fld, efer_saved); 6759 } 6760 6761 static void test_efer(u32 fld, const char * fld_name, u32 ctrl_fld, 6762 u64 ctrl_bit) 6763 { 6764 u64 efer_saved = vmcs_read(fld); 6765 u32 ctrl_saved = vmcs_read(ctrl_fld); 6766 u64 efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 6767 u64 i; 6768 u64 efer; 6769 6770 if (cpu_has_efer_nx()) 6771 efer_reserved_bits &= ~EFER_NX; 6772 6773 /* 6774 * Check reserved bits 6775 */ 6776 vmcs_write(ctrl_fld, ctrl_saved & ~ctrl_bit); 6777 for (i = 0; i < 64; i++) { 6778 if ((1ull << i) & efer_reserved_bits) { 6779 efer = efer_saved | (1ull << i); 6780 vmcs_write(fld, efer); 6781 report_prefix_pushf("%s %lx", fld_name, efer); 6782 test_vmx_vmlaunch(0, false); 6783 report_prefix_pop(); 6784 } 6785 } 6786 6787 vmcs_write(ctrl_fld, ctrl_saved | ctrl_bit); 6788 for (i = 0; i < 64; i++) { 6789 if ((1ull << i) & efer_reserved_bits) { 6790 efer = efer_saved | (1ull << i); 6791 vmcs_write(fld, efer); 6792 report_prefix_pushf("%s %lx", fld_name, efer); 6793 test_vmx_vmlaunch( 6794 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD, 6795 false); 6796 report_prefix_pop(); 6797 } 6798 } 6799 6800 vmcs_write(ctrl_fld, ctrl_saved); 6801 vmcs_write(fld, efer_saved); 6802 6803 /* 6804 * Check LMA and LME bits 6805 */ 6806 test_efer_bit(fld, fld_name, ctrl_fld, ctrl_bit, EFER_LMA, 6807 "EFER_LMA"); 6808 test_efer_bit(fld, fld_name, ctrl_fld, ctrl_bit, EFER_LME, 6809 "EFER_LME"); 6810 } 6811 6812 /* 6813 * If the “load IA32_EFER†VM-exit control is 1, bits reserved in the 6814 * IA32_EFER MSR must be 0 in the field for that register. In addition, 6815 * the values of the LMA and LME bits in the field must each be that of 6816 * the “host address-space size†VM-exit control. 6817 * 6818 * [Intel SDM] 6819 */ 6820 static void test_host_efer(void) 6821 { 6822 if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) { 6823 printf("\"Load-IA32-EFER\" exit control not supported\n"); 6824 return; 6825 } 6826 6827 test_efer(HOST_EFER, "HOST_EFER", EXI_CONTROLS, EXI_LOAD_EFER); 6828 } 6829 6830 /* 6831 * PAT values higher than 8 are uninteresting since they're likely lumped 6832 * in with "8". We only test values above 8 one bit at a time, 6833 * in order to reduce the number of VM-Entries and keep the runtime reasonable. 6834 */ 6835 #define PAT_VAL_LIMIT 8 6836 6837 static void test_pat(u32 field, const char * field_name, u32 ctrl_field, 6838 u64 ctrl_bit) 6839 { 6840 u32 ctrl_saved = vmcs_read(ctrl_field); 6841 u64 pat_saved = vmcs_read(field); 6842 u64 i, val; 6843 u32 j; 6844 int error; 6845 6846 vmcs_clear_bits(ctrl_field, ctrl_bit); 6847 if (field == GUEST_PAT) { 6848 vmx_set_test_stage(1); 6849 test_set_guest(guest_state_test_main); 6850 } 6851 6852 for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) { 6853 /* Test PAT0..PAT7 fields */ 6854 for (j = 0; j < (i ? 8 : 1); j++) { 6855 val = i << j * 8; 6856 vmcs_write(field, val); 6857 if (field == HOST_PAT) { 6858 report_prefix_pushf("%s %lx", field_name, val); 6859 test_vmx_vmlaunch(0, false); 6860 report_prefix_pop(); 6861 6862 } else { // GUEST_PAT 6863 enter_guest(); 6864 report_guest_state_test("ENT_LOAD_PAT enabled", 6865 VMX_VMCALL, val, 6866 "GUEST_PAT"); 6867 } 6868 } 6869 } 6870 6871 vmcs_set_bits(ctrl_field, ctrl_bit); 6872 for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) { 6873 /* Test PAT0..PAT7 fields */ 6874 for (j = 0; j < (i ? 8 : 1); j++) { 6875 val = i << j * 8; 6876 vmcs_write(field, val); 6877 6878 if (field == HOST_PAT) { 6879 report_prefix_pushf("%s %lx", field_name, val); 6880 if (i == 0x2 || i == 0x3 || i >= 0x8) 6881 error = 6882 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; 6883 else 6884 error = 0; 6885 6886 test_vmx_vmlaunch(error, false); 6887 report_prefix_pop(); 6888 6889 } else { // GUEST_PAT 6890 if (i == 0x2 || i == 0x3 || i >= 0x8) { 6891 enter_guest_with_invalid_guest_state(); 6892 report_guest_state_test("ENT_LOAD_PAT " 6893 "enabled", 6894 VMX_FAIL_STATE | VMX_ENTRY_FAILURE, 6895 val, 6896 "GUEST_PAT"); 6897 } else { 6898 enter_guest(); 6899 report_guest_state_test("ENT_LOAD_PAT " 6900 "enabled", 6901 VMX_VMCALL, 6902 val, 6903 "GUEST_PAT"); 6904 } 6905 } 6906 6907 } 6908 } 6909 6910 if (field == GUEST_PAT) { 6911 /* 6912 * Let the guest finish execution 6913 */ 6914 vmx_set_test_stage(2); 6915 vmcs_write(field, pat_saved); 6916 enter_guest(); 6917 } 6918 6919 vmcs_write(ctrl_field, ctrl_saved); 6920 vmcs_write(field, pat_saved); 6921 } 6922 6923 /* 6924 * If the "load IA32_PAT" VM-exit control is 1, the value of the field 6925 * for the IA32_PAT MSR must be one that could be written by WRMSR 6926 * without fault at CPL 0. Specifically, each of the 8 bytes in the 6927 * field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 6928 * 6 (WB), or 7 (UC-). 6929 * 6930 * [Intel SDM] 6931 */ 6932 static void test_load_host_pat(void) 6933 { 6934 /* 6935 * "load IA32_PAT" VM-exit control 6936 */ 6937 if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) { 6938 printf("\"Load-IA32-PAT\" exit control not supported\n"); 6939 return; 6940 } 6941 6942 test_pat(HOST_PAT, "HOST_PAT", EXI_CONTROLS, EXI_LOAD_PAT); 6943 } 6944 6945 /* 6946 * Check that the virtual CPU checks the VMX Host State Area as 6947 * documented in the Intel SDM. 6948 */ 6949 static void vmx_host_state_area_test(void) 6950 { 6951 /* 6952 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will 6953 * fail due to invalid guest state, should we make it that 6954 * far. 6955 */ 6956 vmcs_write(GUEST_RFLAGS, 0); 6957 6958 test_host_ctl_regs(); 6959 6960 test_sysenter_field(HOST_SYSENTER_ESP, "HOST_SYSENTER_ESP"); 6961 test_sysenter_field(HOST_SYSENTER_EIP, "HOST_SYSENTER_EIP"); 6962 6963 test_host_efer(); 6964 test_load_host_pat(); 6965 } 6966 6967 /* 6968 * If the "load IA32_PAT" VM-entry control is 1, the value of the field 6969 * for the IA32_PAT MSR must be one that could be written by WRMSR 6970 * without fault at CPL 0. Specifically, each of the 8 bytes in the 6971 * field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 6972 * 6 (WB), or 7 (UC-). 6973 * 6974 * [Intel SDM] 6975 */ 6976 static void test_load_guest_pat(void) 6977 { 6978 /* 6979 * "load IA32_PAT" VM-entry control 6980 */ 6981 if (!(ctrl_exit_rev.clr & ENT_LOAD_PAT)) { 6982 printf("\"Load-IA32-PAT\" entry control not supported\n"); 6983 return; 6984 } 6985 6986 test_pat(GUEST_PAT, "GUEST_PAT", ENT_CONTROLS, ENT_LOAD_PAT); 6987 } 6988 6989 /* 6990 * Check that the virtual CPU checks the VMX Guest State Area as 6991 * documented in the Intel SDM. 6992 */ 6993 static void vmx_guest_state_area_test(void) 6994 { 6995 test_load_guest_pat(); 6996 } 6997 6998 static bool valid_vmcs_for_vmentry(void) 6999 { 7000 struct vmcs *current_vmcs = NULL; 7001 7002 if (vmcs_save(¤t_vmcs)) 7003 return false; 7004 7005 return current_vmcs && !current_vmcs->hdr.shadow_vmcs; 7006 } 7007 7008 static void try_vmentry_in_movss_shadow(void) 7009 { 7010 u32 vm_inst_err; 7011 u32 flags; 7012 bool early_failure = false; 7013 u32 expected_flags = X86_EFLAGS_FIXED; 7014 bool valid_vmcs = valid_vmcs_for_vmentry(); 7015 7016 expected_flags |= valid_vmcs ? X86_EFLAGS_ZF : X86_EFLAGS_CF; 7017 7018 /* 7019 * Indirectly set VM_INST_ERR to 12 ("VMREAD/VMWRITE from/to 7020 * unsupported VMCS component"). 7021 */ 7022 vmcs_write(~0u, 0); 7023 7024 __asm__ __volatile__ ("mov %[host_rsp], %%edx;" 7025 "vmwrite %%rsp, %%rdx;" 7026 "mov 0f, %%rax;" 7027 "mov %[host_rip], %%edx;" 7028 "vmwrite %%rax, %%rdx;" 7029 "mov $-1, %%ah;" 7030 "sahf;" 7031 "mov %%ss, %%ax;" 7032 "mov %%ax, %%ss;" 7033 "vmlaunch;" 7034 "mov $1, %[early_failure];" 7035 "0: lahf;" 7036 "movzbl %%ah, %[flags]" 7037 : [early_failure] "+r" (early_failure), 7038 [flags] "=&a" (flags) 7039 : [host_rsp] "i" (HOST_RSP), 7040 [host_rip] "i" (HOST_RIP) 7041 : "rdx", "cc", "memory"); 7042 vm_inst_err = vmcs_read(VMX_INST_ERROR); 7043 7044 report("Early VM-entry failure", early_failure); 7045 report("RFLAGS[8:0] is %x (actual %x)", flags == expected_flags, 7046 expected_flags, flags); 7047 if (valid_vmcs) 7048 report("VM-instruction error is %d (actual %d)", 7049 vm_inst_err == VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, 7050 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, vm_inst_err); 7051 } 7052 7053 static void vmentry_movss_shadow_test(void) 7054 { 7055 struct vmcs *orig_vmcs; 7056 7057 TEST_ASSERT(!vmcs_save(&orig_vmcs)); 7058 7059 /* 7060 * Set the launched flag on the current VMCS to verify the correct 7061 * error priority, below. 7062 */ 7063 test_set_guest(v2_null_test_guest); 7064 enter_guest(); 7065 7066 /* 7067 * With bit 1 of the guest's RFLAGS clear, VM-entry should 7068 * fail due to invalid guest state (if we make it that far). 7069 */ 7070 vmcs_write(GUEST_RFLAGS, 0); 7071 7072 /* 7073 * "VM entry with events blocked by MOV SS" takes precedence over 7074 * "VMLAUNCH with non-clear VMCS." 7075 */ 7076 report_prefix_push("valid current-VMCS"); 7077 try_vmentry_in_movss_shadow(); 7078 report_prefix_pop(); 7079 7080 /* 7081 * VMfailInvalid takes precedence over "VM entry with events 7082 * blocked by MOV SS." 7083 */ 7084 TEST_ASSERT(!vmcs_clear(orig_vmcs)); 7085 report_prefix_push("no current-VMCS"); 7086 try_vmentry_in_movss_shadow(); 7087 report_prefix_pop(); 7088 7089 TEST_ASSERT(!make_vmcs_current(orig_vmcs)); 7090 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); 7091 } 7092 7093 static int write_cr4_checking(unsigned long val) 7094 { 7095 asm volatile(ASM_TRY("1f") 7096 "mov %0, %%cr4\n\t" 7097 "1:": : "r" (val)); 7098 return exception_vector(); 7099 } 7100 7101 static void vmx_cr_load_test(void) 7102 { 7103 struct cpuid _cpuid = cpuid(1); 7104 unsigned long cr4 = read_cr4(), cr3 = read_cr3(); 7105 7106 if (!(_cpuid.c & X86_FEATURE_PCID)) { 7107 report_skip("PCID not detected"); 7108 return; 7109 } 7110 if (!(_cpuid.d & X86_FEATURE_MCE)) { 7111 report_skip("MCE not detected"); 7112 return; 7113 } 7114 7115 TEST_ASSERT(!(cr4 & (X86_CR4_PCIDE | X86_CR4_MCE))); 7116 TEST_ASSERT(!(cr3 & X86_CR3_PCID_MASK)); 7117 7118 /* Enable PCID for L1. */ 7119 cr4 |= X86_CR4_PCIDE; 7120 cr3 |= 0x1; 7121 TEST_ASSERT(!write_cr4_checking(cr4)); 7122 write_cr3(cr3); 7123 7124 test_set_guest(v2_null_test_guest); 7125 vmcs_write(HOST_CR4, cr4); 7126 vmcs_write(HOST_CR3, cr3); 7127 enter_guest(); 7128 7129 /* 7130 * No exception is expected. 7131 * 7132 * NB. KVM loads the last guest write to CR4 into CR4 read 7133 * shadow. In order to trigger an exit to KVM, we can set a 7134 * bit that was zero in the above CR4 write and is owned by 7135 * KVM. We choose to set CR4.MCE, which shall have no side 7136 * effect because normally no guest MCE (e.g., as the result 7137 * of bad memory) would happen during this test. 7138 */ 7139 TEST_ASSERT(!write_cr4_checking(cr4 | X86_CR4_MCE)); 7140 7141 /* Cleanup L1 state: disable PCID. */ 7142 write_cr3(cr3 & ~X86_CR3_PCID_MASK); 7143 TEST_ASSERT(!write_cr4_checking(cr4 & ~X86_CR4_PCIDE)); 7144 } 7145 7146 static void vmx_nm_test_guest(void) 7147 { 7148 write_cr0(read_cr0() | X86_CR0_TS); 7149 asm volatile("fnop"); 7150 } 7151 7152 static void check_nm_exit(const char *test) 7153 { 7154 u32 reason = vmcs_read(EXI_REASON); 7155 u32 intr_info = vmcs_read(EXI_INTR_INFO); 7156 const u32 expected = INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | 7157 NM_VECTOR; 7158 7159 report("%s", reason == VMX_EXC_NMI && intr_info == expected, test); 7160 } 7161 7162 /* 7163 * This test checks that: 7164 * 7165 * (a) If L2 launches with CR0.TS clear, but later sets CR0.TS, then 7166 * a subsequent #NM VM-exit is reflected to L1. 7167 * 7168 * (b) If L2 launches with CR0.TS clear and CR0.EM set, then a 7169 * subsequent #NM VM-exit is reflected to L1. 7170 */ 7171 static void vmx_nm_test(void) 7172 { 7173 unsigned long cr0 = read_cr0(); 7174 7175 test_set_guest(vmx_nm_test_guest); 7176 7177 /* 7178 * L1 wants to intercept #NM exceptions encountered in L2. 7179 */ 7180 vmcs_write(EXC_BITMAP, 1 << NM_VECTOR); 7181 7182 /* 7183 * Launch L2 with CR0.TS clear, but don't claim host ownership of 7184 * any CR0 bits. L2 will set CR0.TS and then try to execute fnop, 7185 * which will raise #NM. L0 should reflect the #NM VM-exit to L1. 7186 */ 7187 vmcs_write(CR0_MASK, 0); 7188 vmcs_write(GUEST_CR0, cr0 & ~X86_CR0_TS); 7189 enter_guest(); 7190 check_nm_exit("fnop with CR0.TS set in L2 triggers #NM VM-exit to L1"); 7191 7192 /* 7193 * Re-enter L2 at the fnop instruction, with CR0.TS clear but 7194 * CR0.EM set. The fnop will still raise #NM, and L0 should 7195 * reflect the #NM VM-exit to L1. 7196 */ 7197 vmcs_write(GUEST_CR0, (cr0 & ~X86_CR0_TS) | X86_CR0_EM); 7198 enter_guest(); 7199 check_nm_exit("fnop with CR0.EM set in L2 triggers #NM VM-exit to L1"); 7200 7201 /* 7202 * Re-enter L2 at the fnop instruction, with both CR0.TS and 7203 * CR0.EM clear. There will be no #NM, and the L2 guest should 7204 * exit normally. 7205 */ 7206 vmcs_write(GUEST_CR0, cr0 & ~(X86_CR0_TS | X86_CR0_EM)); 7207 enter_guest(); 7208 } 7209 7210 bool vmx_pending_event_ipi_fired; 7211 static void vmx_pending_event_ipi_isr(isr_regs_t *regs) 7212 { 7213 vmx_pending_event_ipi_fired = true; 7214 eoi(); 7215 } 7216 7217 bool vmx_pending_event_guest_run; 7218 static void vmx_pending_event_guest(void) 7219 { 7220 vmcall(); 7221 vmx_pending_event_guest_run = true; 7222 } 7223 7224 static void vmx_pending_event_test_core(bool guest_hlt) 7225 { 7226 int ipi_vector = 0xf1; 7227 7228 vmx_pending_event_ipi_fired = false; 7229 handle_irq(ipi_vector, vmx_pending_event_ipi_isr); 7230 7231 vmx_pending_event_guest_run = false; 7232 test_set_guest(vmx_pending_event_guest); 7233 7234 vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT); 7235 7236 enter_guest(); 7237 skip_exit_vmcall(); 7238 7239 if (guest_hlt) 7240 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 7241 7242 irq_disable(); 7243 apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | 7244 APIC_DM_FIXED | ipi_vector, 7245 0); 7246 7247 enter_guest(); 7248 7249 assert_exit_reason(VMX_EXTINT); 7250 report("Guest did not run before host received IPI", 7251 !vmx_pending_event_guest_run); 7252 7253 irq_enable(); 7254 asm volatile ("nop"); 7255 irq_disable(); 7256 report("Got pending interrupt after IRQ enabled", 7257 vmx_pending_event_ipi_fired); 7258 7259 if (guest_hlt) 7260 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 7261 7262 enter_guest(); 7263 report("Guest finished running when no interrupt", 7264 vmx_pending_event_guest_run); 7265 } 7266 7267 static void vmx_pending_event_test(void) 7268 { 7269 vmx_pending_event_test_core(false); 7270 } 7271 7272 static void vmx_pending_event_hlt_test(void) 7273 { 7274 vmx_pending_event_test_core(true); 7275 } 7276 7277 static int vmx_window_test_db_count; 7278 7279 static void vmx_window_test_db_handler(struct ex_regs *regs) 7280 { 7281 vmx_window_test_db_count++; 7282 } 7283 7284 static void vmx_nmi_window_test_guest(void) 7285 { 7286 handle_exception(DB_VECTOR, vmx_window_test_db_handler); 7287 7288 asm volatile("vmcall\n\t" 7289 "nop\n\t"); 7290 7291 handle_exception(DB_VECTOR, NULL); 7292 } 7293 7294 static void verify_nmi_window_exit(u64 rip) 7295 { 7296 u32 exit_reason = vmcs_read(EXI_REASON); 7297 7298 report("Exit reason (%d) is 'NMI window'", 7299 exit_reason == VMX_NMI_WINDOW, exit_reason); 7300 report("RIP (%#lx) is %#lx", vmcs_read(GUEST_RIP) == rip, 7301 vmcs_read(GUEST_RIP), rip); 7302 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 7303 } 7304 7305 static void vmx_nmi_window_test(void) 7306 { 7307 u64 nop_addr; 7308 void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]); 7309 7310 if (!(ctrl_pin_rev.clr & PIN_VIRT_NMI)) { 7311 report_skip("CPU does not support the \"Virtual NMIs\" VM-execution control."); 7312 return; 7313 } 7314 7315 if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) { 7316 report_skip("CPU does not support the \"NMI-window exiting\" VM-execution control."); 7317 return; 7318 } 7319 7320 vmx_window_test_db_count = 0; 7321 7322 report_prefix_push("NMI-window"); 7323 test_set_guest(vmx_nmi_window_test_guest); 7324 vmcs_set_bits(PIN_CONTROLS, PIN_VIRT_NMI); 7325 enter_guest(); 7326 skip_exit_vmcall(); 7327 nop_addr = vmcs_read(GUEST_RIP); 7328 7329 /* 7330 * Ask for "NMI-window exiting," and expect an immediate VM-exit. 7331 * RIP will not advance. 7332 */ 7333 report_prefix_push("active, no blocking"); 7334 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW); 7335 enter_guest(); 7336 verify_nmi_window_exit(nop_addr); 7337 report_prefix_pop(); 7338 7339 /* 7340 * Ask for "NMI-window exiting" in a MOV-SS shadow, and expect 7341 * a VM-exit on the next instruction after the nop. (The nop 7342 * is one byte.) 7343 */ 7344 report_prefix_push("active, blocking by MOV-SS"); 7345 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); 7346 enter_guest(); 7347 verify_nmi_window_exit(nop_addr + 1); 7348 report_prefix_pop(); 7349 7350 /* 7351 * Ask for "NMI-window exiting" (with event injection), and 7352 * expect a VM-exit after the event is injected. (RIP should 7353 * be at the address specified in the IDT entry for #DB.) 7354 */ 7355 report_prefix_push("active, no blocking, injecting #DB"); 7356 vmcs_write(ENT_INTR_INFO, 7357 INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); 7358 enter_guest(); 7359 verify_nmi_window_exit((u64)db_fault_addr); 7360 report_prefix_pop(); 7361 7362 /* 7363 * Ask for "NMI-window exiting" with NMI blocking, and expect 7364 * a VM-exit after the next IRET (i.e. after the #DB handler 7365 * returns). So, RIP should be back at one byte past the nop. 7366 */ 7367 report_prefix_push("active, blocking by NMI"); 7368 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_NMI); 7369 enter_guest(); 7370 verify_nmi_window_exit(nop_addr + 1); 7371 report("#DB handler executed once (actual %d times)", 7372 vmx_window_test_db_count == 1, 7373 vmx_window_test_db_count); 7374 report_prefix_pop(); 7375 7376 if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) { 7377 report_skip("CPU does not support activity state HLT."); 7378 } else { 7379 /* 7380 * Ask for "NMI-window exiting" when entering activity 7381 * state HLT, and expect an immediate VM-exit. RIP is 7382 * still one byte past the nop. 7383 */ 7384 report_prefix_push("halted, no blocking"); 7385 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 7386 enter_guest(); 7387 verify_nmi_window_exit(nop_addr + 1); 7388 report_prefix_pop(); 7389 7390 /* 7391 * Ask for "NMI-window exiting" when entering activity 7392 * state HLT (with event injection), and expect a 7393 * VM-exit after the event is injected. (RIP should be 7394 * at the address specified in the IDT entry for #DB.) 7395 */ 7396 report_prefix_push("halted, no blocking, injecting #DB"); 7397 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 7398 vmcs_write(ENT_INTR_INFO, 7399 INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | 7400 DB_VECTOR); 7401 enter_guest(); 7402 verify_nmi_window_exit((u64)db_fault_addr); 7403 report_prefix_pop(); 7404 } 7405 7406 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW); 7407 enter_guest(); 7408 report_prefix_pop(); 7409 } 7410 7411 static void vmx_intr_window_test_guest(void) 7412 { 7413 handle_exception(DB_VECTOR, vmx_window_test_db_handler); 7414 7415 /* 7416 * The two consecutive STIs are to ensure that only the first 7417 * one has a shadow. Note that NOP and STI are one byte 7418 * instructions. 7419 */ 7420 asm volatile("vmcall\n\t" 7421 "nop\n\t" 7422 "sti\n\t" 7423 "sti\n\t"); 7424 7425 handle_exception(DB_VECTOR, NULL); 7426 } 7427 7428 static void verify_intr_window_exit(u64 rip) 7429 { 7430 u32 exit_reason = vmcs_read(EXI_REASON); 7431 7432 report("Exit reason (%d) is 'interrupt window'", 7433 exit_reason == VMX_INTR_WINDOW, exit_reason); 7434 report("RIP (%#lx) is %#lx", vmcs_read(GUEST_RIP) == rip, 7435 vmcs_read(GUEST_RIP), rip); 7436 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 7437 } 7438 7439 static void vmx_intr_window_test(void) 7440 { 7441 u64 vmcall_addr; 7442 u64 nop_addr; 7443 unsigned int orig_db_gate_type; 7444 void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]); 7445 7446 if (!(ctrl_cpu_rev[0].clr & CPU_INTR_WINDOW)) { 7447 report_skip("CPU does not support the \"interrupt-window exiting\" VM-execution control."); 7448 return; 7449 } 7450 7451 /* 7452 * Change the IDT entry for #DB from interrupt gate to trap gate, 7453 * so that it won't clear RFLAGS.IF. We don't want interrupts to 7454 * be disabled after vectoring a #DB. 7455 */ 7456 orig_db_gate_type = boot_idt[DB_VECTOR].type; 7457 boot_idt[DB_VECTOR].type = 15; 7458 7459 report_prefix_push("interrupt-window"); 7460 test_set_guest(vmx_intr_window_test_guest); 7461 enter_guest(); 7462 assert_exit_reason(VMX_VMCALL); 7463 vmcall_addr = vmcs_read(GUEST_RIP); 7464 7465 /* 7466 * Ask for "interrupt-window exiting" with RFLAGS.IF set and 7467 * no blocking; expect an immediate VM-exit. Note that we have 7468 * not advanced past the vmcall instruction yet, so RIP should 7469 * point to the vmcall instruction. 7470 */ 7471 report_prefix_push("active, no blocking, RFLAGS.IF=1"); 7472 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); 7473 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_IF); 7474 enter_guest(); 7475 verify_intr_window_exit(vmcall_addr); 7476 report_prefix_pop(); 7477 7478 /* 7479 * Ask for "interrupt-window exiting" (with event injection) 7480 * with RFLAGS.IF set and no blocking; expect a VM-exit after 7481 * the event is injected. That is, RIP should should be at the 7482 * address specified in the IDT entry for #DB. 7483 */ 7484 report_prefix_push("active, no blocking, RFLAGS.IF=1, injecting #DB"); 7485 vmcs_write(ENT_INTR_INFO, 7486 INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); 7487 vmcall_addr = vmcs_read(GUEST_RIP); 7488 enter_guest(); 7489 verify_intr_window_exit((u64)db_fault_addr); 7490 report_prefix_pop(); 7491 7492 /* 7493 * Let the L2 guest run through the IRET, back to the VMCALL. 7494 * We have to clear the "interrupt-window exiting" 7495 * VM-execution control, or it would just keep causing 7496 * VM-exits. Then, advance past the VMCALL and set the 7497 * "interrupt-window exiting" VM-execution control again. 7498 */ 7499 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); 7500 enter_guest(); 7501 skip_exit_vmcall(); 7502 nop_addr = vmcs_read(GUEST_RIP); 7503 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); 7504 7505 /* 7506 * Ask for "interrupt-window exiting" in a MOV-SS shadow with 7507 * RFLAGS.IF set, and expect a VM-exit on the next 7508 * instruction. (NOP is one byte.) 7509 */ 7510 report_prefix_push("active, blocking by MOV-SS, RFLAGS.IF=1"); 7511 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); 7512 enter_guest(); 7513 verify_intr_window_exit(nop_addr + 1); 7514 report_prefix_pop(); 7515 7516 /* 7517 * Back up to the NOP and ask for "interrupt-window exiting" 7518 * in an STI shadow with RFLAGS.IF set, and expect a VM-exit 7519 * on the next instruction. (NOP is one byte.) 7520 */ 7521 report_prefix_push("active, blocking by STI, RFLAGS.IF=1"); 7522 vmcs_write(GUEST_RIP, nop_addr); 7523 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_STI); 7524 enter_guest(); 7525 verify_intr_window_exit(nop_addr + 1); 7526 report_prefix_pop(); 7527 7528 /* 7529 * Ask for "interrupt-window exiting" with RFLAGS.IF clear, 7530 * and expect a VM-exit on the instruction following the STI 7531 * shadow. Only the first STI (which is one byte past the NOP) 7532 * should have a shadow. The second STI (which is two bytes 7533 * past the NOP) has no shadow. Therefore, the interrupt 7534 * window opens at three bytes past the NOP. 7535 */ 7536 report_prefix_push("active, RFLAGS.IF = 0"); 7537 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); 7538 enter_guest(); 7539 verify_intr_window_exit(nop_addr + 3); 7540 report_prefix_pop(); 7541 7542 if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) { 7543 report_skip("CPU does not support activity state HLT."); 7544 } else { 7545 /* 7546 * Ask for "interrupt-window exiting" when entering 7547 * activity state HLT, and expect an immediate 7548 * VM-exit. RIP is still three bytes past the nop. 7549 */ 7550 report_prefix_push("halted, no blocking"); 7551 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 7552 enter_guest(); 7553 verify_intr_window_exit(nop_addr + 3); 7554 report_prefix_pop(); 7555 7556 /* 7557 * Ask for "interrupt-window exiting" when entering 7558 * activity state HLT (with event injection), and 7559 * expect a VM-exit after the event is injected. That 7560 * is, RIP should should be at the address specified 7561 * in the IDT entry for #DB. 7562 */ 7563 report_prefix_push("halted, no blocking, injecting #DB"); 7564 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 7565 vmcs_write(ENT_INTR_INFO, 7566 INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | 7567 DB_VECTOR); 7568 enter_guest(); 7569 verify_intr_window_exit((u64)db_fault_addr); 7570 report_prefix_pop(); 7571 } 7572 7573 boot_idt[DB_VECTOR].type = orig_db_gate_type; 7574 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); 7575 enter_guest(); 7576 report_prefix_pop(); 7577 } 7578 7579 #define GUEST_TSC_OFFSET (1u << 30) 7580 7581 static u64 guest_tsc; 7582 7583 static void vmx_store_tsc_test_guest(void) 7584 { 7585 guest_tsc = rdtsc(); 7586 } 7587 7588 /* 7589 * This test ensures that when IA32_TSC is in the VM-exit MSR-store 7590 * list, the value saved is not subject to the TSC offset that is 7591 * applied to RDTSC/RDTSCP/RDMSR(IA32_TSC) in guest execution. 7592 */ 7593 static void vmx_store_tsc_test(void) 7594 { 7595 struct vmx_msr_entry msr_entry = { .index = MSR_IA32_TSC }; 7596 u64 low, high; 7597 7598 if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) { 7599 report_skip("'Use TSC offsetting' not supported"); 7600 return; 7601 } 7602 7603 test_set_guest(vmx_store_tsc_test_guest); 7604 7605 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET); 7606 vmcs_write(EXI_MSR_ST_CNT, 1); 7607 vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(&msr_entry)); 7608 vmcs_write(TSC_OFFSET, GUEST_TSC_OFFSET); 7609 7610 low = rdtsc(); 7611 enter_guest(); 7612 high = rdtsc(); 7613 7614 report("RDTSC value in the guest (%lu) is in range [%lu, %lu]", 7615 low + GUEST_TSC_OFFSET <= guest_tsc && 7616 guest_tsc <= high + GUEST_TSC_OFFSET, 7617 guest_tsc, low + GUEST_TSC_OFFSET, high + GUEST_TSC_OFFSET); 7618 report("IA32_TSC value saved in the VM-exit MSR-store list (%lu) is in range [%lu, %lu]", 7619 low <= msr_entry.value && msr_entry.value <= high, 7620 msr_entry.value, low, high); 7621 } 7622 7623 static void vmx_db_test_guest(void) 7624 { 7625 /* 7626 * For a hardware generated single-step #DB. 7627 */ 7628 asm volatile("vmcall;" 7629 "nop;" 7630 ".Lpost_nop:"); 7631 /* 7632 * ...in a MOVSS shadow, with pending debug exceptions. 7633 */ 7634 asm volatile("vmcall;" 7635 "nop;" 7636 ".Lpost_movss_nop:"); 7637 /* 7638 * For an L0 synthesized single-step #DB. (L0 intercepts WBINVD and 7639 * emulates it in software.) 7640 */ 7641 asm volatile("vmcall;" 7642 "wbinvd;" 7643 ".Lpost_wbinvd:"); 7644 /* 7645 * ...in a MOVSS shadow, with pending debug exceptions. 7646 */ 7647 asm volatile("vmcall;" 7648 "wbinvd;" 7649 ".Lpost_movss_wbinvd:"); 7650 /* 7651 * For a hardware generated single-step #DB in a transactional region. 7652 */ 7653 asm volatile("vmcall;" 7654 ".Lxbegin: xbegin .Lskip_rtm;" 7655 "xend;" 7656 ".Lskip_rtm:"); 7657 } 7658 7659 /* 7660 * Clear the pending debug exceptions and RFLAGS.TF and re-enter 7661 * L2. No #DB is delivered and L2 continues to the next point of 7662 * interest. 7663 */ 7664 static void dismiss_db(void) 7665 { 7666 vmcs_write(GUEST_PENDING_DEBUG, 0); 7667 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); 7668 enter_guest(); 7669 } 7670 7671 /* 7672 * Check a variety of VMCS fields relevant to an intercepted #DB exception. 7673 * Then throw away the #DB exception and resume L2. 7674 */ 7675 static void check_db_exit(bool xfail_qual, bool xfail_dr6, bool xfail_pdbg, 7676 void *expected_rip, u64 expected_exit_qual, 7677 u64 expected_dr6) 7678 { 7679 u32 reason = vmcs_read(EXI_REASON); 7680 u32 intr_info = vmcs_read(EXI_INTR_INFO); 7681 u64 exit_qual = vmcs_read(EXI_QUALIFICATION); 7682 u64 guest_rip = vmcs_read(GUEST_RIP); 7683 u64 guest_pending_dbg = vmcs_read(GUEST_PENDING_DEBUG); 7684 u64 dr6 = read_dr6(); 7685 const u32 expected_intr_info = INTR_INFO_VALID_MASK | 7686 INTR_TYPE_HARD_EXCEPTION | DB_VECTOR; 7687 7688 report("Expected #DB VM-exit", 7689 reason == VMX_EXC_NMI && intr_info == expected_intr_info); 7690 report("Expected RIP %p (actual %lx)", (u64)expected_rip == guest_rip, 7691 expected_rip, guest_rip); 7692 report_xfail("Expected pending debug exceptions 0 (actual %lx)", 7693 xfail_pdbg, 0 == guest_pending_dbg, guest_pending_dbg); 7694 report_xfail("Expected exit qualification %lx (actual %lx)", xfail_qual, 7695 expected_exit_qual == exit_qual, 7696 expected_exit_qual, exit_qual); 7697 report_xfail("Expected DR6 %lx (actual %lx)", xfail_dr6, 7698 expected_dr6 == dr6, expected_dr6, dr6); 7699 dismiss_db(); 7700 } 7701 7702 /* 7703 * Assuming the guest has just exited on a VMCALL instruction, skip 7704 * over the vmcall, and set the guest's RFLAGS.TF in the VMCS. If 7705 * pending debug exceptions are non-zero, set the VMCS up as if the 7706 * previous instruction was a MOVSS that generated the indicated 7707 * pending debug exceptions. Then enter L2. 7708 */ 7709 static void single_step_guest(const char *test_name, u64 starting_dr6, 7710 u64 pending_debug_exceptions) 7711 { 7712 printf("\n%s\n", test_name); 7713 skip_exit_vmcall(); 7714 write_dr6(starting_dr6); 7715 vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF); 7716 if (pending_debug_exceptions) { 7717 vmcs_write(GUEST_PENDING_DEBUG, pending_debug_exceptions); 7718 vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); 7719 } 7720 enter_guest(); 7721 } 7722 7723 /* 7724 * When L1 intercepts #DB, verify that a single-step trap clears 7725 * pending debug exceptions, populates the exit qualification field 7726 * properly, and that DR6 is not prematurely clobbered. In a 7727 * (simulated) MOVSS shadow, make sure that the pending debug 7728 * exception bits are properly accumulated into the exit qualification 7729 * field. 7730 */ 7731 static void vmx_db_test(void) 7732 { 7733 /* 7734 * We are going to set a few arbitrary bits in DR6 to verify that 7735 * (a) DR6 is not modified by an intercepted #DB, and 7736 * (b) stale bits in DR6 (DR6.BD, in particular) don't leak into 7737 * the exit qualification field for a subsequent #DB exception. 7738 */ 7739 const u64 starting_dr6 = DR6_RESERVED | BIT(13) | DR_TRAP3 | DR_TRAP1; 7740 extern char post_nop asm(".Lpost_nop"); 7741 extern char post_movss_nop asm(".Lpost_movss_nop"); 7742 extern char post_wbinvd asm(".Lpost_wbinvd"); 7743 extern char post_movss_wbinvd asm(".Lpost_movss_wbinvd"); 7744 extern char xbegin asm(".Lxbegin"); 7745 extern char skip_rtm asm(".Lskip_rtm"); 7746 7747 /* 7748 * L1 wants to intercept #DB exceptions encountered in L2. 7749 */ 7750 vmcs_write(EXC_BITMAP, BIT(DB_VECTOR)); 7751 7752 /* 7753 * Start L2 and run it up to the first point of interest. 7754 */ 7755 test_set_guest(vmx_db_test_guest); 7756 enter_guest(); 7757 7758 /* 7759 * Hardware-delivered #DB trap for single-step sets the 7760 * standard that L0 has to follow for emulated instructions. 7761 */ 7762 single_step_guest("Hardware delivered single-step", starting_dr6, 0); 7763 check_db_exit(false, false, false, &post_nop, DR_STEP, starting_dr6); 7764 7765 /* 7766 * Hardware-delivered #DB trap for single-step in MOVSS shadow 7767 * also sets the standard that L0 has to follow for emulated 7768 * instructions. Here, we establish the VMCS pending debug 7769 * exceptions to indicate that the simulated MOVSS triggered a 7770 * data breakpoint as well as the single-step trap. 7771 */ 7772 single_step_guest("Hardware delivered single-step in MOVSS shadow", 7773 starting_dr6, BIT(12) | DR_STEP | DR_TRAP0 ); 7774 check_db_exit(false, false, false, &post_movss_nop, DR_STEP | DR_TRAP0, 7775 starting_dr6); 7776 7777 /* 7778 * L0 synthesized #DB trap for single-step is buggy, because 7779 * kvm (a) clobbers DR6 too early, and (b) tries its best to 7780 * reconstitute the exit qualification from the prematurely 7781 * modified DR6, but fails miserably. 7782 */ 7783 single_step_guest("Software synthesized single-step", starting_dr6, 0); 7784 check_db_exit(true, true, false, &post_wbinvd, DR_STEP, starting_dr6); 7785 7786 /* 7787 * L0 synthesized #DB trap for single-step in MOVSS shadow is 7788 * even worse, because L0 also leaves the pending debug 7789 * exceptions in the VMCS instead of accumulating them into 7790 * the exit qualification field for the #DB exception. 7791 */ 7792 single_step_guest("Software synthesized single-step in MOVSS shadow", 7793 starting_dr6, BIT(12) | DR_STEP | DR_TRAP0); 7794 check_db_exit(true, true, true, &post_movss_wbinvd, DR_STEP | DR_TRAP0, 7795 starting_dr6); 7796 7797 /* 7798 * Optional RTM test for hardware that supports RTM, to 7799 * demonstrate that the current volume 3 of the SDM 7800 * (325384-067US), table 27-1 is incorrect. Bit 16 of the exit 7801 * qualification for debug exceptions is not reserved. It is 7802 * set to 1 if a debug exception (#DB) or a breakpoint 7803 * exception (#BP) occurs inside an RTM region while advanced 7804 * debugging of RTM transactional regions is enabled. 7805 */ 7806 if (cpuid(7).b & BIT(11)) { 7807 vmcs_write(ENT_CONTROLS, 7808 vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS); 7809 /* 7810 * Set DR7.RTM[bit 11] and IA32_DEBUGCTL.RTM[bit 15] 7811 * in the guest to enable advanced debugging of RTM 7812 * transactional regions. 7813 */ 7814 vmcs_write(GUEST_DR7, BIT(11)); 7815 vmcs_write(GUEST_DEBUGCTL, BIT(15)); 7816 single_step_guest("Hardware delivered single-step in " 7817 "transactional region", starting_dr6, 0); 7818 check_db_exit(false, false, false, &xbegin, BIT(16), 7819 starting_dr6); 7820 } else { 7821 vmcs_write(GUEST_RIP, (u64)&skip_rtm); 7822 enter_guest(); 7823 } 7824 } 7825 7826 static void enable_vid(void) 7827 { 7828 void *virtual_apic_page; 7829 7830 assert(cpu_has_apicv()); 7831 7832 disable_intercept_for_x2apic_msrs(); 7833 7834 virtual_apic_page = alloc_page(); 7835 vmcs_write(APIC_VIRT_ADDR, (u64)virtual_apic_page); 7836 7837 vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT); 7838 7839 vmcs_write(EOI_EXIT_BITMAP0, 0x0); 7840 vmcs_write(EOI_EXIT_BITMAP1, 0x0); 7841 vmcs_write(EOI_EXIT_BITMAP2, 0x0); 7842 vmcs_write(EOI_EXIT_BITMAP3, 0x0); 7843 7844 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY | CPU_TPR_SHADOW); 7845 vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VINTD | CPU_VIRT_X2APIC); 7846 } 7847 7848 static void trigger_ioapic_scan_thread(void *data) 7849 { 7850 /* Wait until other CPU entered L2 */ 7851 while (vmx_get_test_stage() != 1) 7852 ; 7853 7854 /* Trigger ioapic scan */ 7855 ioapic_set_redir(0xf, 0x79, TRIGGER_LEVEL); 7856 vmx_set_test_stage(2); 7857 } 7858 7859 static void irq_79_handler_guest(isr_regs_t *regs) 7860 { 7861 eoi(); 7862 7863 /* L1 expects vmexit on VMX_VMCALL and not VMX_EOI_INDUCED */ 7864 vmcall(); 7865 } 7866 7867 /* 7868 * Constant for num of busy-loop iterations after which 7869 * a timer interrupt should have happened in host 7870 */ 7871 #define TIMER_INTERRUPT_DELAY 100000000 7872 7873 static void vmx_eoi_bitmap_ioapic_scan_test_guest(void) 7874 { 7875 handle_irq(0x79, irq_79_handler_guest); 7876 irq_enable(); 7877 7878 /* Signal to L1 CPU to trigger ioapic scan */ 7879 vmx_set_test_stage(1); 7880 /* Wait until L1 CPU to trigger ioapic scan */ 7881 while (vmx_get_test_stage() != 2) 7882 ; 7883 7884 /* 7885 * Wait for L0 timer interrupt to be raised while we run in L2 7886 * such that L0 will process the IOAPIC scan request before 7887 * resuming L2 7888 */ 7889 delay(TIMER_INTERRUPT_DELAY); 7890 7891 asm volatile ("int $0x79"); 7892 } 7893 7894 static void vmx_eoi_bitmap_ioapic_scan_test(void) 7895 { 7896 if (!cpu_has_apicv() || (cpu_count() < 2)) { 7897 report_skip(__func__); 7898 return; 7899 } 7900 7901 enable_vid(); 7902 7903 on_cpu_async(1, trigger_ioapic_scan_thread, NULL); 7904 test_set_guest(vmx_eoi_bitmap_ioapic_scan_test_guest); 7905 7906 /* 7907 * Launch L2. 7908 * We expect the exit reason to be VMX_VMCALL (and not EOI INDUCED). 7909 * In case the reason isn't VMX_VMCALL, the asserion inside 7910 * skip_exit_vmcall() will fail. 7911 */ 7912 enter_guest(); 7913 skip_exit_vmcall(); 7914 7915 /* Let L2 finish */ 7916 enter_guest(); 7917 report(__func__, 1); 7918 } 7919 7920 #define HLT_WITH_RVI_VECTOR (0xf1) 7921 7922 bool vmx_hlt_with_rvi_guest_isr_fired; 7923 static void vmx_hlt_with_rvi_guest_isr(isr_regs_t *regs) 7924 { 7925 vmx_hlt_with_rvi_guest_isr_fired = true; 7926 eoi(); 7927 } 7928 7929 static void vmx_hlt_with_rvi_guest(void) 7930 { 7931 handle_irq(HLT_WITH_RVI_VECTOR, vmx_hlt_with_rvi_guest_isr); 7932 7933 irq_enable(); 7934 asm volatile ("nop"); 7935 7936 vmcall(); 7937 } 7938 7939 static void vmx_hlt_with_rvi_test(void) 7940 { 7941 if (!cpu_has_apicv()) { 7942 report_skip(__func__); 7943 return; 7944 } 7945 7946 enable_vid(); 7947 7948 vmx_hlt_with_rvi_guest_isr_fired = false; 7949 test_set_guest(vmx_hlt_with_rvi_guest); 7950 7951 enter_guest(); 7952 skip_exit_vmcall(); 7953 7954 vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); 7955 vmcs_write(GUEST_INT_STATUS, HLT_WITH_RVI_VECTOR); 7956 enter_guest(); 7957 7958 report("Interrupt raised in guest", vmx_hlt_with_rvi_guest_isr_fired); 7959 } 7960 7961 static void set_irq_line_thread(void *data) 7962 { 7963 /* Wait until other CPU entered L2 */ 7964 while (vmx_get_test_stage() != 1) 7965 ; 7966 7967 /* Set irq-line 0xf to raise vector 0x78 for vCPU 0 */ 7968 ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL); 7969 vmx_set_test_stage(2); 7970 } 7971 7972 static bool irq_78_handler_vmcall_before_eoi; 7973 static void irq_78_handler_guest(isr_regs_t *regs) 7974 { 7975 set_irq_line(0xf, 0); 7976 if (irq_78_handler_vmcall_before_eoi) 7977 vmcall(); 7978 eoi(); 7979 vmcall(); 7980 } 7981 7982 static void vmx_apic_passthrough_guest(void) 7983 { 7984 handle_irq(0x78, irq_78_handler_guest); 7985 irq_enable(); 7986 7987 /* If requested, wait for other CPU to trigger ioapic scan */ 7988 if (vmx_get_test_stage() < 1) { 7989 vmx_set_test_stage(1); 7990 while (vmx_get_test_stage() != 2) 7991 ; 7992 } 7993 7994 set_irq_line(0xf, 1); 7995 } 7996 7997 static void vmx_apic_passthrough(bool set_irq_line_from_thread) 7998 { 7999 if (set_irq_line_from_thread && (cpu_count() < 2)) { 8000 report_skip(__func__); 8001 return; 8002 } 8003 8004 u64 cpu_ctrl_0 = CPU_SECONDARY; 8005 u64 cpu_ctrl_1 = 0; 8006 8007 disable_intercept_for_x2apic_msrs(); 8008 8009 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); 8010 8011 vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0); 8012 vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1); 8013 8014 if (set_irq_line_from_thread) { 8015 irq_78_handler_vmcall_before_eoi = false; 8016 on_cpu_async(1, set_irq_line_thread, NULL); 8017 } else { 8018 irq_78_handler_vmcall_before_eoi = true; 8019 ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL); 8020 vmx_set_test_stage(2); 8021 } 8022 test_set_guest(vmx_apic_passthrough_guest); 8023 8024 if (irq_78_handler_vmcall_before_eoi) { 8025 /* Before EOI remote_irr should still be set */ 8026 enter_guest(); 8027 skip_exit_vmcall(); 8028 TEST_ASSERT_EQ_MSG(1, (int)ioapic_read_redir(0xf).remote_irr, 8029 "IOAPIC pass-through: remote_irr=1 before EOI"); 8030 } 8031 8032 /* After EOI remote_irr should be cleared */ 8033 enter_guest(); 8034 skip_exit_vmcall(); 8035 TEST_ASSERT_EQ_MSG(0, (int)ioapic_read_redir(0xf).remote_irr, 8036 "IOAPIC pass-through: remote_irr=0 after EOI"); 8037 8038 /* Let L2 finish */ 8039 enter_guest(); 8040 report(__func__, 1); 8041 } 8042 8043 static void vmx_apic_passthrough_test(void) 8044 { 8045 vmx_apic_passthrough(false); 8046 } 8047 8048 static void vmx_apic_passthrough_thread_test(void) 8049 { 8050 vmx_apic_passthrough(true); 8051 } 8052 8053 enum vmcs_access { 8054 ACCESS_VMREAD, 8055 ACCESS_VMWRITE, 8056 ACCESS_NONE, 8057 }; 8058 8059 struct vmcs_shadow_test_common { 8060 enum vmcs_access op; 8061 enum Reason reason; 8062 u64 field; 8063 u64 value; 8064 u64 flags; 8065 u64 time; 8066 } l1_l2_common; 8067 8068 static inline u64 vmread_flags(u64 field, u64 *val) 8069 { 8070 u64 flags; 8071 8072 asm volatile ("vmread %2, %1; pushf; pop %0" 8073 : "=r" (flags), "=rm" (*val) : "r" (field) : "cc"); 8074 return flags & X86_EFLAGS_ALU; 8075 } 8076 8077 static inline u64 vmwrite_flags(u64 field, u64 val) 8078 { 8079 u64 flags; 8080 8081 asm volatile ("vmwrite %1, %2; pushf; pop %0" 8082 : "=r"(flags) : "rm" (val), "r" (field) : "cc"); 8083 return flags & X86_EFLAGS_ALU; 8084 } 8085 8086 static void vmx_vmcs_shadow_test_guest(void) 8087 { 8088 struct vmcs_shadow_test_common *c = &l1_l2_common; 8089 u64 start; 8090 8091 while (c->op != ACCESS_NONE) { 8092 start = rdtsc(); 8093 switch (c->op) { 8094 default: 8095 c->flags = -1ull; 8096 break; 8097 case ACCESS_VMREAD: 8098 c->flags = vmread_flags(c->field, &c->value); 8099 break; 8100 case ACCESS_VMWRITE: 8101 c->flags = vmwrite_flags(c->field, 0); 8102 break; 8103 } 8104 c->time = rdtsc() - start; 8105 vmcall(); 8106 } 8107 } 8108 8109 static u64 vmread_from_shadow(u64 field) 8110 { 8111 struct vmcs *primary; 8112 struct vmcs *shadow; 8113 u64 value; 8114 8115 TEST_ASSERT(!vmcs_save(&primary)); 8116 shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); 8117 TEST_ASSERT(!make_vmcs_current(shadow)); 8118 value = vmcs_read(field); 8119 TEST_ASSERT(!make_vmcs_current(primary)); 8120 return value; 8121 } 8122 8123 static u64 vmwrite_to_shadow(u64 field, u64 value) 8124 { 8125 struct vmcs *primary; 8126 struct vmcs *shadow; 8127 8128 TEST_ASSERT(!vmcs_save(&primary)); 8129 shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); 8130 TEST_ASSERT(!make_vmcs_current(shadow)); 8131 vmcs_write(field, value); 8132 value = vmcs_read(field); 8133 TEST_ASSERT(!make_vmcs_current(primary)); 8134 return value; 8135 } 8136 8137 static void vmcs_shadow_test_access(u8 *bitmap[2], enum vmcs_access access) 8138 { 8139 struct vmcs_shadow_test_common *c = &l1_l2_common; 8140 8141 c->op = access; 8142 vmcs_write(VMX_INST_ERROR, 0); 8143 enter_guest(); 8144 c->reason = vmcs_read(EXI_REASON) & 0xffff; 8145 if (c->reason != VMX_VMCALL) { 8146 skip_exit_insn(); 8147 enter_guest(); 8148 } 8149 skip_exit_vmcall(); 8150 } 8151 8152 static void vmcs_shadow_test_field(u8 *bitmap[2], u64 field) 8153 { 8154 struct vmcs_shadow_test_common *c = &l1_l2_common; 8155 struct vmcs *shadow; 8156 u64 value; 8157 uintptr_t flags[2]; 8158 bool good_shadow; 8159 u32 vmx_inst_error; 8160 8161 report_prefix_pushf("field %lx", field); 8162 c->field = field; 8163 8164 shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); 8165 if (shadow != (struct vmcs *)-1ull) { 8166 flags[ACCESS_VMREAD] = vmread_flags(field, &value); 8167 flags[ACCESS_VMWRITE] = vmwrite_flags(field, value); 8168 good_shadow = !flags[ACCESS_VMREAD] && !flags[ACCESS_VMWRITE]; 8169 } else { 8170 /* 8171 * When VMCS link pointer is -1ull, VMWRITE/VMREAD on 8172 * shadowed-fields should fail with setting RFLAGS.CF. 8173 */ 8174 flags[ACCESS_VMREAD] = X86_EFLAGS_CF; 8175 flags[ACCESS_VMWRITE] = X86_EFLAGS_CF; 8176 good_shadow = false; 8177 } 8178 8179 /* Intercept both VMREAD and VMWRITE. */ 8180 report_prefix_push("no VMREAD/VMWRITE permission"); 8181 /* VMWRITE/VMREAD done on reserved-bit should always intercept */ 8182 if (!(field >> VMCS_FIELD_RESERVED_SHIFT)) { 8183 set_bit(field, bitmap[ACCESS_VMREAD]); 8184 set_bit(field, bitmap[ACCESS_VMWRITE]); 8185 } 8186 vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); 8187 report("not shadowed for VMWRITE", c->reason == VMX_VMWRITE); 8188 vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); 8189 report("not shadowed for VMREAD", c->reason == VMX_VMREAD); 8190 report_prefix_pop(); 8191 8192 if (field >> VMCS_FIELD_RESERVED_SHIFT) 8193 goto out; 8194 8195 /* Permit shadowed VMREAD. */ 8196 report_prefix_push("VMREAD permission only"); 8197 clear_bit(field, bitmap[ACCESS_VMREAD]); 8198 set_bit(field, bitmap[ACCESS_VMWRITE]); 8199 if (good_shadow) 8200 value = vmwrite_to_shadow(field, MAGIC_VAL_1 + field); 8201 vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); 8202 report("not shadowed for VMWRITE", c->reason == VMX_VMWRITE); 8203 vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); 8204 vmx_inst_error = vmcs_read(VMX_INST_ERROR); 8205 report("shadowed for VMREAD (in %ld cycles)", c->reason == VMX_VMCALL, 8206 c->time); 8207 report("ALU flags after VMREAD (%lx) are as expected (%lx)", 8208 c->flags == flags[ACCESS_VMREAD], 8209 c->flags, flags[ACCESS_VMREAD]); 8210 if (good_shadow) 8211 report("value read from shadow (%lx) is as expected (%lx)", 8212 c->value == value, c->value, value); 8213 else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD]) 8214 report("VMX_INST_ERROR (%d) is as expected (%d)", 8215 vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, 8216 vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 8217 report_prefix_pop(); 8218 8219 /* Permit shadowed VMWRITE. */ 8220 report_prefix_push("VMWRITE permission only"); 8221 set_bit(field, bitmap[ACCESS_VMREAD]); 8222 clear_bit(field, bitmap[ACCESS_VMWRITE]); 8223 if (good_shadow) 8224 vmwrite_to_shadow(field, MAGIC_VAL_1 + field); 8225 vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); 8226 vmx_inst_error = vmcs_read(VMX_INST_ERROR); 8227 report("shadowed for VMWRITE (in %ld cycles)", c->reason == VMX_VMCALL, 8228 c->time); 8229 report("ALU flags after VMWRITE (%lx) are as expected (%lx)", 8230 c->flags == flags[ACCESS_VMREAD], 8231 c->flags, flags[ACCESS_VMREAD]); 8232 if (good_shadow) { 8233 value = vmread_from_shadow(field); 8234 report("shadow VMCS value (%lx) is as expected (%lx)", 8235 value == 0, value, 0ul); 8236 } else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) { 8237 report("VMX_INST_ERROR (%d) is as expected (%d)", 8238 vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, 8239 vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 8240 } 8241 vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); 8242 report("not shadowed for VMREAD", c->reason == VMX_VMREAD); 8243 report_prefix_pop(); 8244 8245 /* Permit shadowed VMREAD and VMWRITE. */ 8246 report_prefix_push("VMREAD and VMWRITE permission"); 8247 clear_bit(field, bitmap[ACCESS_VMREAD]); 8248 clear_bit(field, bitmap[ACCESS_VMWRITE]); 8249 if (good_shadow) 8250 vmwrite_to_shadow(field, MAGIC_VAL_1 + field); 8251 vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); 8252 vmx_inst_error = vmcs_read(VMX_INST_ERROR); 8253 report("shadowed for VMWRITE (in %ld cycles)", c->reason == VMX_VMCALL, 8254 c->time); 8255 report("ALU flags after VMWRITE (%lx) are as expected (%lx)", 8256 c->flags == flags[ACCESS_VMREAD], 8257 c->flags, flags[ACCESS_VMREAD]); 8258 if (good_shadow) { 8259 value = vmread_from_shadow(field); 8260 report("shadow VMCS value (%lx) is as expected (%lx)", 8261 value == 0, value, 0ul); 8262 } else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) { 8263 report("VMX_INST_ERROR (%d) is as expected (%d)", 8264 vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, 8265 vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 8266 } 8267 vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); 8268 vmx_inst_error = vmcs_read(VMX_INST_ERROR); 8269 report("shadowed for VMREAD (in %ld cycles)", c->reason == VMX_VMCALL, 8270 c->time); 8271 report("ALU flags after VMREAD (%lx) are as expected (%lx)", 8272 c->flags == flags[ACCESS_VMREAD], 8273 c->flags, flags[ACCESS_VMREAD]); 8274 if (good_shadow) 8275 report("value read from shadow (%lx) is as expected (%lx)", 8276 c->value == 0, c->value, 0ul); 8277 else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD]) 8278 report("VMX_INST_ERROR (%d) is as expected (%d)", 8279 vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, 8280 vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 8281 report_prefix_pop(); 8282 8283 out: 8284 report_prefix_pop(); 8285 } 8286 8287 static void vmx_vmcs_shadow_test_body(u8 *bitmap[2]) 8288 { 8289 unsigned base; 8290 unsigned index; 8291 unsigned bit; 8292 unsigned highest_index = rdmsr(MSR_IA32_VMX_VMCS_ENUM); 8293 8294 /* Run test on all possible valid VMCS fields */ 8295 for (base = 0; 8296 base < (1 << VMCS_FIELD_RESERVED_SHIFT); 8297 base += (1 << VMCS_FIELD_TYPE_SHIFT)) 8298 for (index = 0; index <= highest_index; index++) 8299 vmcs_shadow_test_field(bitmap, base + index); 8300 8301 /* 8302 * Run tests on some invalid VMCS fields 8303 * (Have reserved bit set). 8304 */ 8305 for (bit = VMCS_FIELD_RESERVED_SHIFT; bit < VMCS_FIELD_BIT_SIZE; bit++) 8306 vmcs_shadow_test_field(bitmap, (1ull << bit)); 8307 } 8308 8309 static void vmx_vmcs_shadow_test(void) 8310 { 8311 u8 *bitmap[2]; 8312 struct vmcs *shadow; 8313 8314 if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) { 8315 printf("\t'Activate secondary controls' not supported.\n"); 8316 return; 8317 } 8318 8319 if (!(ctrl_cpu_rev[1].clr & CPU_SHADOW_VMCS)) { 8320 printf("\t'VMCS shadowing' not supported.\n"); 8321 return; 8322 } 8323 8324 if (!(rdmsr(MSR_IA32_VMX_MISC) & 8325 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) { 8326 printf("\tVMWRITE can't modify VM-exit information fields.\n"); 8327 return; 8328 } 8329 8330 test_set_guest(vmx_vmcs_shadow_test_guest); 8331 8332 bitmap[ACCESS_VMREAD] = alloc_page(); 8333 bitmap[ACCESS_VMWRITE] = alloc_page(); 8334 8335 vmcs_write(VMREAD_BITMAP, virt_to_phys(bitmap[ACCESS_VMREAD])); 8336 vmcs_write(VMWRITE_BITMAP, virt_to_phys(bitmap[ACCESS_VMWRITE])); 8337 8338 shadow = alloc_page(); 8339 shadow->hdr.revision_id = basic.revision; 8340 shadow->hdr.shadow_vmcs = 1; 8341 TEST_ASSERT(!vmcs_clear(shadow)); 8342 8343 vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_RDTSC); 8344 vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY); 8345 vmcs_set_bits(CPU_EXEC_CTRL1, CPU_SHADOW_VMCS); 8346 8347 vmcs_write(VMCS_LINK_PTR, virt_to_phys(shadow)); 8348 report_prefix_push("valid link pointer"); 8349 vmx_vmcs_shadow_test_body(bitmap); 8350 report_prefix_pop(); 8351 8352 vmcs_write(VMCS_LINK_PTR, -1ull); 8353 report_prefix_push("invalid link pointer"); 8354 vmx_vmcs_shadow_test_body(bitmap); 8355 report_prefix_pop(); 8356 8357 l1_l2_common.op = ACCESS_NONE; 8358 enter_guest(); 8359 } 8360 8361 8362 8363 static int invalid_msr_init(struct vmcs *vmcs) 8364 { 8365 if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { 8366 printf("\tPreemption timer is not supported\n"); 8367 return VMX_TEST_EXIT; 8368 } 8369 vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); 8370 preempt_val = 10000000; 8371 vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); 8372 preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F; 8373 8374 if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT)) 8375 printf("\tSave preemption value is not supported\n"); 8376 8377 vmcs_write(ENT_MSR_LD_CNT, 1); 8378 vmcs_write(ENTER_MSR_LD_ADDR, (u64)0x13370000); 8379 8380 return VMX_TEST_START; 8381 } 8382 8383 8384 static void invalid_msr_main(void) 8385 { 8386 report("Invalid MSR load", 0); 8387 } 8388 8389 static int invalid_msr_exit_handler(void) 8390 { 8391 report("Invalid MSR load", 0); 8392 print_vmexit_info(); 8393 return VMX_TEST_EXIT; 8394 } 8395 8396 static int invalid_msr_entry_failure(struct vmentry_failure *failure) 8397 { 8398 ulong reason; 8399 8400 reason = vmcs_read(EXI_REASON); 8401 report("Invalid MSR load", reason == (0x80000000u | VMX_FAIL_MSR)); 8402 return VMX_TEST_VMEXIT; 8403 } 8404 8405 8406 #define TEST(name) { #name, .v2 = name } 8407 8408 /* name/init/guest_main/exit_handler/syscall_handler/guest_regs */ 8409 struct vmx_test vmx_tests[] = { 8410 { "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} }, 8411 { "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} }, 8412 { "preemption timer", preemption_timer_init, preemption_timer_main, 8413 preemption_timer_exit_handler, NULL, {0} }, 8414 { "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main, 8415 test_ctrl_pat_exit_handler, NULL, {0} }, 8416 { "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main, 8417 test_ctrl_efer_exit_handler, NULL, {0} }, 8418 { "CR shadowing", NULL, cr_shadowing_main, 8419 cr_shadowing_exit_handler, NULL, {0} }, 8420 { "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler, 8421 NULL, {0} }, 8422 { "instruction intercept", insn_intercept_init, insn_intercept_main, 8423 insn_intercept_exit_handler, NULL, {0} }, 8424 { "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} }, 8425 { "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} }, 8426 { "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} }, 8427 { "VPID", vpid_init, vpid_main, vpid_exit_handler, NULL, {0} }, 8428 { "interrupt", interrupt_init, interrupt_main, 8429 interrupt_exit_handler, NULL, {0} }, 8430 { "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler, 8431 NULL, {0} }, 8432 { "MSR switch", msr_switch_init, msr_switch_main, 8433 msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure }, 8434 { "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} }, 8435 { "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main, 8436 disable_rdtscp_exit_handler, NULL, {0} }, 8437 { "int3", int3_init, int3_guest_main, int3_exit_handler, NULL, {0} }, 8438 { "into", into_init, into_guest_main, into_exit_handler, NULL, {0} }, 8439 { "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main, 8440 exit_monitor_from_l2_handler, NULL, {0} }, 8441 { "invalid_msr", invalid_msr_init, invalid_msr_main, 8442 invalid_msr_exit_handler, NULL, {0}, invalid_msr_entry_failure}, 8443 /* Basic V2 tests. */ 8444 TEST(v2_null_test), 8445 TEST(v2_multiple_entries_test), 8446 TEST(fixture_test_case1), 8447 TEST(fixture_test_case2), 8448 /* Opcode tests. */ 8449 TEST(invvpid_test_v2), 8450 /* VM-entry tests */ 8451 TEST(vmx_controls_test), 8452 TEST(vmx_host_state_area_test), 8453 TEST(vmx_guest_state_area_test), 8454 TEST(vmentry_movss_shadow_test), 8455 /* APICv tests */ 8456 TEST(vmx_eoi_bitmap_ioapic_scan_test), 8457 TEST(vmx_hlt_with_rvi_test), 8458 TEST(apic_reg_virt_test), 8459 TEST(virt_x2apic_mode_test), 8460 /* APIC pass-through tests */ 8461 TEST(vmx_apic_passthrough_test), 8462 TEST(vmx_apic_passthrough_thread_test), 8463 /* VMCS Shadowing tests */ 8464 TEST(vmx_vmcs_shadow_test), 8465 /* Regression tests */ 8466 TEST(vmx_cr_load_test), 8467 TEST(vmx_nm_test), 8468 TEST(vmx_db_test), 8469 TEST(vmx_nmi_window_test), 8470 TEST(vmx_intr_window_test), 8471 TEST(vmx_pending_event_test), 8472 TEST(vmx_pending_event_hlt_test), 8473 TEST(vmx_store_tsc_test), 8474 /* EPT access tests. */ 8475 TEST(ept_access_test_not_present), 8476 TEST(ept_access_test_read_only), 8477 TEST(ept_access_test_write_only), 8478 TEST(ept_access_test_read_write), 8479 TEST(ept_access_test_execute_only), 8480 TEST(ept_access_test_read_execute), 8481 TEST(ept_access_test_write_execute), 8482 TEST(ept_access_test_read_write_execute), 8483 TEST(ept_access_test_reserved_bits), 8484 TEST(ept_access_test_ignored_bits), 8485 TEST(ept_access_test_paddr_not_present_ad_disabled), 8486 TEST(ept_access_test_paddr_not_present_ad_enabled), 8487 TEST(ept_access_test_paddr_read_only_ad_disabled), 8488 TEST(ept_access_test_paddr_read_only_ad_enabled), 8489 TEST(ept_access_test_paddr_read_write), 8490 TEST(ept_access_test_paddr_read_write_execute), 8491 TEST(ept_access_test_paddr_read_execute_ad_disabled), 8492 TEST(ept_access_test_paddr_read_execute_ad_enabled), 8493 TEST(ept_access_test_paddr_not_present_page_fault), 8494 TEST(ept_access_test_force_2m_page), 8495 { NULL, NULL, NULL, NULL, NULL, {0} }, 8496 }; 8497