xref: /kvm-unit-tests/x86/vmx_tests.c (revision 22d36c304adec07cd50bc7f7ff3995eb0b36f403)
1 /*
2  * All test cases of nested virtualization should be in this file
3  *
4  * Author : Arthur Chunqi Li <yzt356@gmail.com>
5  */
6 
7 #include <asm/debugreg.h>
8 
9 #include "vmx.h"
10 #include "msr.h"
11 #include "processor.h"
12 #include "vm.h"
13 #include "pci.h"
14 #include "fwcfg.h"
15 #include "isr.h"
16 #include "desc.h"
17 #include "apic.h"
18 #include "types.h"
19 #include "vmalloc.h"
20 #include "alloc_page.h"
21 #include "smp.h"
22 #include "delay.h"
23 #include "access.h"
24 
25 #define VPID_CAP_INVVPID_TYPES_SHIFT 40
26 
27 u64 ia32_pat;
28 u64 ia32_efer;
29 void *io_bitmap_a, *io_bitmap_b;
30 u16 ioport;
31 
32 unsigned long *pml4;
33 u64 eptp;
34 void *data_page1, *data_page2;
35 
36 phys_addr_t pci_physaddr;
37 
38 void *pml_log;
39 #define PML_INDEX 512
40 
41 static inline unsigned ffs(unsigned x)
42 {
43 	int pos = -1;
44 
45 	__asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0"
46 			     : "+r"(pos) : "rm"(x) : "eax");
47 	return pos + 1;
48 }
49 
50 static inline void vmcall(void)
51 {
52 	asm volatile("vmcall");
53 }
54 
55 static void basic_guest_main(void)
56 {
57 	report_pass("Basic VMX test");
58 }
59 
60 static int basic_exit_handler(union exit_reason exit_reason)
61 {
62 	report_fail("Basic VMX test");
63 	print_vmexit_info(exit_reason);
64 	return VMX_TEST_EXIT;
65 }
66 
67 static void vmenter_main(void)
68 {
69 	u64 rax;
70 	u64 rsp, resume_rsp;
71 
72 	report_pass("test vmlaunch");
73 
74 	asm volatile(
75 		"mov %%rsp, %0\n\t"
76 		"mov %3, %%rax\n\t"
77 		"vmcall\n\t"
78 		"mov %%rax, %1\n\t"
79 		"mov %%rsp, %2\n\t"
80 		: "=r"(rsp), "=r"(rax), "=r"(resume_rsp)
81 		: "g"(0xABCD));
82 	report((rax == 0xFFFF) && (rsp == resume_rsp), "test vmresume");
83 }
84 
85 static int vmenter_exit_handler(union exit_reason exit_reason)
86 {
87 	u64 guest_rip = vmcs_read(GUEST_RIP);
88 
89 	switch (exit_reason.basic) {
90 	case VMX_VMCALL:
91 		if (regs.rax != 0xABCD) {
92 			report_fail("test vmresume");
93 			return VMX_TEST_VMEXIT;
94 		}
95 		regs.rax = 0xFFFF;
96 		vmcs_write(GUEST_RIP, guest_rip + 3);
97 		return VMX_TEST_RESUME;
98 	default:
99 		report_fail("test vmresume");
100 		print_vmexit_info(exit_reason);
101 	}
102 	return VMX_TEST_VMEXIT;
103 }
104 
105 u32 preempt_scale;
106 volatile unsigned long long tsc_val;
107 volatile u32 preempt_val;
108 u64 saved_rip;
109 
110 static int preemption_timer_init(struct vmcs *vmcs)
111 {
112 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
113 		printf("\tPreemption timer is not supported\n");
114 		return VMX_TEST_EXIT;
115 	}
116 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
117 	preempt_val = 10000000;
118 	vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
119 	preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
120 
121 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
122 		printf("\tSave preemption value is not supported\n");
123 
124 	return VMX_TEST_START;
125 }
126 
127 static void preemption_timer_main(void)
128 {
129 	tsc_val = rdtsc();
130 	if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) {
131 		vmx_set_test_stage(0);
132 		vmcall();
133 		if (vmx_get_test_stage() == 1)
134 			vmcall();
135 	}
136 	vmx_set_test_stage(1);
137 	while (vmx_get_test_stage() == 1) {
138 		if (((rdtsc() - tsc_val) >> preempt_scale)
139 				> 10 * preempt_val) {
140 			vmx_set_test_stage(2);
141 			vmcall();
142 		}
143 	}
144 	tsc_val = rdtsc();
145 	asm volatile ("hlt");
146 	vmcall();
147 	vmx_set_test_stage(5);
148 	vmcall();
149 }
150 
151 static int preemption_timer_exit_handler(union exit_reason exit_reason)
152 {
153 	bool guest_halted;
154 	u64 guest_rip;
155 	u32 insn_len;
156 	u32 ctrl_exit;
157 
158 	guest_rip = vmcs_read(GUEST_RIP);
159 	insn_len = vmcs_read(EXI_INST_LEN);
160 	switch (exit_reason.basic) {
161 	case VMX_PREEMPT:
162 		switch (vmx_get_test_stage()) {
163 		case 1:
164 		case 2:
165 			report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val,
166 			       "busy-wait for preemption timer");
167 			vmx_set_test_stage(3);
168 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
169 			return VMX_TEST_RESUME;
170 		case 3:
171 			guest_halted =
172 				(vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT);
173 			report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val
174 			        && guest_halted,
175 			       "preemption timer during hlt");
176 			vmx_set_test_stage(4);
177 			vmcs_write(PIN_CONTROLS,
178 				   vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
179 			vmcs_write(EXI_CONTROLS,
180 				   vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_PREEMPT);
181 			vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
182 			return VMX_TEST_RESUME;
183 		case 4:
184 			report(saved_rip == guest_rip,
185 			       "preemption timer with 0 value");
186 			break;
187 		default:
188 			report_fail("Invalid stage.");
189 			print_vmexit_info(exit_reason);
190 			break;
191 		}
192 		break;
193 	case VMX_VMCALL:
194 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
195 		switch (vmx_get_test_stage()) {
196 		case 0:
197 			report(vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val,
198 			       "Keep preemption value");
199 			vmx_set_test_stage(1);
200 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
201 			ctrl_exit = (vmcs_read(EXI_CONTROLS) |
202 				EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr;
203 			vmcs_write(EXI_CONTROLS, ctrl_exit);
204 			return VMX_TEST_RESUME;
205 		case 1:
206 			report(vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val,
207 			       "Save preemption value");
208 			return VMX_TEST_RESUME;
209 		case 2:
210 			report_fail("busy-wait for preemption timer");
211 			vmx_set_test_stage(3);
212 			vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
213 			return VMX_TEST_RESUME;
214 		case 3:
215 			report_fail("preemption timer during hlt");
216 			vmx_set_test_stage(4);
217 			/* fall through */
218 		case 4:
219 			vmcs_write(PIN_CONTROLS,
220 				   vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
221 			vmcs_write(PREEMPT_TIMER_VALUE, 0);
222 			saved_rip = guest_rip + insn_len;
223 			return VMX_TEST_RESUME;
224 		case 5:
225 			report_fail("preemption timer with 0 value (vmcall stage 5)");
226 			break;
227 		default:
228 			// Should not reach here
229 			report_fail("unexpected stage, %d",
230 				    vmx_get_test_stage());
231 			print_vmexit_info(exit_reason);
232 			return VMX_TEST_VMEXIT;
233 		}
234 		break;
235 	default:
236 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
237 		print_vmexit_info(exit_reason);
238 	}
239 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
240 	return VMX_TEST_VMEXIT;
241 }
242 
243 static void msr_bmp_init(void)
244 {
245 	void *msr_bitmap;
246 	u32 ctrl_cpu0;
247 
248 	msr_bitmap = alloc_page();
249 	ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
250 	ctrl_cpu0 |= CPU_MSR_BITMAP;
251 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
252 	vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
253 }
254 
255 static void *get_msr_bitmap(void)
256 {
257 	void *msr_bitmap;
258 
259 	if (vmcs_read(CPU_EXEC_CTRL0) & CPU_MSR_BITMAP) {
260 		msr_bitmap = (void *)vmcs_read(MSR_BITMAP);
261 	} else {
262 		msr_bitmap = alloc_page();
263 		memset(msr_bitmap, 0xff, PAGE_SIZE);
264 		vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
265 		vmcs_set_bits(CPU_EXEC_CTRL0, CPU_MSR_BITMAP);
266 	}
267 
268 	return msr_bitmap;
269 }
270 
271 static void disable_intercept_for_x2apic_msrs(void)
272 {
273 	unsigned long *msr_bitmap = (unsigned long *)get_msr_bitmap();
274 	u32 msr;
275 
276 	for (msr = APIC_BASE_MSR;
277 		 msr < (APIC_BASE_MSR+0xff);
278 		 msr += BITS_PER_LONG) {
279 		unsigned int word = msr / BITS_PER_LONG;
280 
281 		msr_bitmap[word] = 0;
282 		msr_bitmap[word + (0x800 / sizeof(long))] = 0;
283 	}
284 }
285 
286 static int test_ctrl_pat_init(struct vmcs *vmcs)
287 {
288 	u64 ctrl_ent;
289 	u64 ctrl_exi;
290 
291 	msr_bmp_init();
292 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) &&
293 	    !(ctrl_exit_rev.clr & EXI_LOAD_PAT) &&
294 	    !(ctrl_enter_rev.clr & ENT_LOAD_PAT)) {
295 		printf("\tSave/load PAT is not supported\n");
296 		return 1;
297 	}
298 
299 	ctrl_ent = vmcs_read(ENT_CONTROLS);
300 	ctrl_exi = vmcs_read(EXI_CONTROLS);
301 	ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT;
302 	ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT);
303 	vmcs_write(ENT_CONTROLS, ctrl_ent);
304 	vmcs_write(EXI_CONTROLS, ctrl_exi);
305 	ia32_pat = rdmsr(MSR_IA32_CR_PAT);
306 	vmcs_write(GUEST_PAT, 0x0);
307 	vmcs_write(HOST_PAT, ia32_pat);
308 	return VMX_TEST_START;
309 }
310 
311 static void test_ctrl_pat_main(void)
312 {
313 	u64 guest_ia32_pat;
314 
315 	guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
316 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT))
317 		printf("\tENT_LOAD_PAT is not supported.\n");
318 	else {
319 		if (guest_ia32_pat != 0) {
320 			report_fail("Entry load PAT");
321 			return;
322 		}
323 	}
324 	wrmsr(MSR_IA32_CR_PAT, 0x6);
325 	vmcall();
326 	guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
327 	if (ctrl_enter_rev.clr & ENT_LOAD_PAT)
328 		report(guest_ia32_pat == ia32_pat, "Entry load PAT");
329 }
330 
331 static int test_ctrl_pat_exit_handler(union exit_reason exit_reason)
332 {
333 	u64 guest_rip;
334 	u64 guest_pat;
335 
336 	guest_rip = vmcs_read(GUEST_RIP);
337 	switch (exit_reason.basic) {
338 	case VMX_VMCALL:
339 		guest_pat = vmcs_read(GUEST_PAT);
340 		if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) {
341 			printf("\tEXI_SAVE_PAT is not supported\n");
342 			vmcs_write(GUEST_PAT, 0x6);
343 		} else {
344 			report(guest_pat == 0x6, "Exit save PAT");
345 		}
346 		if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT))
347 			printf("\tEXI_LOAD_PAT is not supported\n");
348 		else
349 			report(rdmsr(MSR_IA32_CR_PAT) == ia32_pat,
350 			       "Exit load PAT");
351 		vmcs_write(GUEST_PAT, ia32_pat);
352 		vmcs_write(GUEST_RIP, guest_rip + 3);
353 		return VMX_TEST_RESUME;
354 	default:
355 		printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full);
356 		break;
357 	}
358 	return VMX_TEST_VMEXIT;
359 }
360 
361 static int test_ctrl_efer_init(struct vmcs *vmcs)
362 {
363 	u64 ctrl_ent;
364 	u64 ctrl_exi;
365 
366 	msr_bmp_init();
367 	ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER;
368 	ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER;
369 	vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr);
370 	vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr);
371 	ia32_efer = rdmsr(MSR_EFER);
372 	vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX);
373 	vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX);
374 	return VMX_TEST_START;
375 }
376 
377 static void test_ctrl_efer_main(void)
378 {
379 	u64 guest_ia32_efer;
380 
381 	guest_ia32_efer = rdmsr(MSR_EFER);
382 	if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER))
383 		printf("\tENT_LOAD_EFER is not supported.\n");
384 	else {
385 		if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) {
386 			report_fail("Entry load EFER");
387 			return;
388 		}
389 	}
390 	wrmsr(MSR_EFER, ia32_efer);
391 	vmcall();
392 	guest_ia32_efer = rdmsr(MSR_EFER);
393 	if (ctrl_enter_rev.clr & ENT_LOAD_EFER)
394 		report(guest_ia32_efer == ia32_efer, "Entry load EFER");
395 }
396 
397 static int test_ctrl_efer_exit_handler(union exit_reason exit_reason)
398 {
399 	u64 guest_rip;
400 	u64 guest_efer;
401 
402 	guest_rip = vmcs_read(GUEST_RIP);
403 	switch (exit_reason.basic) {
404 	case VMX_VMCALL:
405 		guest_efer = vmcs_read(GUEST_EFER);
406 		if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) {
407 			printf("\tEXI_SAVE_EFER is not supported\n");
408 			vmcs_write(GUEST_EFER, ia32_efer);
409 		} else {
410 			report(guest_efer == ia32_efer, "Exit save EFER");
411 		}
412 		if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) {
413 			printf("\tEXI_LOAD_EFER is not supported\n");
414 			wrmsr(MSR_EFER, ia32_efer ^ EFER_NX);
415 		} else {
416 			report(rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX),
417 			       "Exit load EFER");
418 		}
419 		vmcs_write(GUEST_PAT, ia32_efer);
420 		vmcs_write(GUEST_RIP, guest_rip + 3);
421 		return VMX_TEST_RESUME;
422 	default:
423 		printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full);
424 		break;
425 	}
426 	return VMX_TEST_VMEXIT;
427 }
428 
429 u32 guest_cr0, guest_cr4;
430 
431 static void cr_shadowing_main(void)
432 {
433 	u32 cr0, cr4, tmp;
434 
435 	// Test read through
436 	vmx_set_test_stage(0);
437 	guest_cr0 = read_cr0();
438 	if (vmx_get_test_stage() == 1)
439 		report_fail("Read through CR0");
440 	else
441 		vmcall();
442 	vmx_set_test_stage(1);
443 	guest_cr4 = read_cr4();
444 	if (vmx_get_test_stage() == 2)
445 		report_fail("Read through CR4");
446 	else
447 		vmcall();
448 	// Test write through
449 	guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP);
450 	guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE);
451 	vmx_set_test_stage(2);
452 	write_cr0(guest_cr0);
453 	if (vmx_get_test_stage() == 3)
454 		report_fail("Write throuth CR0");
455 	else
456 		vmcall();
457 	vmx_set_test_stage(3);
458 	write_cr4(guest_cr4);
459 	if (vmx_get_test_stage() == 4)
460 		report_fail("Write through CR4");
461 	else
462 		vmcall();
463 	// Test read shadow
464 	vmx_set_test_stage(4);
465 	vmcall();
466 	cr0 = read_cr0();
467 	if (vmx_get_test_stage() != 5)
468 		report(cr0 == guest_cr0, "Read shadowing CR0");
469 	vmx_set_test_stage(5);
470 	cr4 = read_cr4();
471 	if (vmx_get_test_stage() != 6)
472 		report(cr4 == guest_cr4, "Read shadowing CR4");
473 	// Test write shadow (same value with shadow)
474 	vmx_set_test_stage(6);
475 	write_cr0(guest_cr0);
476 	if (vmx_get_test_stage() == 7)
477 		report_fail("Write shadowing CR0 (same value with shadow)");
478 	else
479 		vmcall();
480 	vmx_set_test_stage(7);
481 	write_cr4(guest_cr4);
482 	if (vmx_get_test_stage() == 8)
483 		report_fail("Write shadowing CR4 (same value with shadow)");
484 	else
485 		vmcall();
486 	// Test write shadow (different value)
487 	vmx_set_test_stage(8);
488 	tmp = guest_cr0 ^ X86_CR0_TS;
489 	asm volatile("mov %0, %%rsi\n\t"
490 		"mov %%rsi, %%cr0\n\t"
491 		::"m"(tmp)
492 		:"rsi", "memory", "cc");
493 	report(vmx_get_test_stage() == 9,
494 	       "Write shadowing different X86_CR0_TS");
495 	vmx_set_test_stage(9);
496 	tmp = guest_cr0 ^ X86_CR0_MP;
497 	asm volatile("mov %0, %%rsi\n\t"
498 		"mov %%rsi, %%cr0\n\t"
499 		::"m"(tmp)
500 		:"rsi", "memory", "cc");
501 	report(vmx_get_test_stage() == 10,
502 	       "Write shadowing different X86_CR0_MP");
503 	vmx_set_test_stage(10);
504 	tmp = guest_cr4 ^ X86_CR4_TSD;
505 	asm volatile("mov %0, %%rsi\n\t"
506 		"mov %%rsi, %%cr4\n\t"
507 		::"m"(tmp)
508 		:"rsi", "memory", "cc");
509 	report(vmx_get_test_stage() == 11,
510 	       "Write shadowing different X86_CR4_TSD");
511 	vmx_set_test_stage(11);
512 	tmp = guest_cr4 ^ X86_CR4_DE;
513 	asm volatile("mov %0, %%rsi\n\t"
514 		"mov %%rsi, %%cr4\n\t"
515 		::"m"(tmp)
516 		:"rsi", "memory", "cc");
517 	report(vmx_get_test_stage() == 12,
518 	       "Write shadowing different X86_CR4_DE");
519 }
520 
521 static int cr_shadowing_exit_handler(union exit_reason exit_reason)
522 {
523 	u64 guest_rip;
524 	u32 insn_len;
525 	u32 exit_qual;
526 
527 	guest_rip = vmcs_read(GUEST_RIP);
528 	insn_len = vmcs_read(EXI_INST_LEN);
529 	exit_qual = vmcs_read(EXI_QUALIFICATION);
530 	switch (exit_reason.basic) {
531 	case VMX_VMCALL:
532 		switch (vmx_get_test_stage()) {
533 		case 0:
534 			report(guest_cr0 == vmcs_read(GUEST_CR0),
535 			       "Read through CR0");
536 			break;
537 		case 1:
538 			report(guest_cr4 == vmcs_read(GUEST_CR4),
539 			       "Read through CR4");
540 			break;
541 		case 2:
542 			report(guest_cr0 == vmcs_read(GUEST_CR0),
543 			       "Write through CR0");
544 			break;
545 		case 3:
546 			report(guest_cr4 == vmcs_read(GUEST_CR4),
547 			       "Write through CR4");
548 			break;
549 		case 4:
550 			guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP);
551 			guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE);
552 			vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP);
553 			vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP));
554 			vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE);
555 			vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE));
556 			break;
557 		case 6:
558 			report(guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP)),
559 			       "Write shadowing CR0 (same value)");
560 			break;
561 		case 7:
562 			report(guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE)),
563 			       "Write shadowing CR4 (same value)");
564 			break;
565 		default:
566 			// Should not reach here
567 			report_fail("unexpected stage, %d",
568 				    vmx_get_test_stage());
569 			print_vmexit_info(exit_reason);
570 			return VMX_TEST_VMEXIT;
571 		}
572 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
573 		return VMX_TEST_RESUME;
574 	case VMX_CR:
575 		switch (vmx_get_test_stage()) {
576 		case 4:
577 			report_fail("Read shadowing CR0");
578 			vmx_inc_test_stage();
579 			break;
580 		case 5:
581 			report_fail("Read shadowing CR4");
582 			vmx_inc_test_stage();
583 			break;
584 		case 6:
585 			report_fail("Write shadowing CR0 (same value)");
586 			vmx_inc_test_stage();
587 			break;
588 		case 7:
589 			report_fail("Write shadowing CR4 (same value)");
590 			vmx_inc_test_stage();
591 			break;
592 		case 8:
593 		case 9:
594 			// 0x600 encodes "mov %esi, %cr0"
595 			if (exit_qual == 0x600)
596 				vmx_inc_test_stage();
597 			break;
598 		case 10:
599 		case 11:
600 			// 0x604 encodes "mov %esi, %cr4"
601 			if (exit_qual == 0x604)
602 				vmx_inc_test_stage();
603 			break;
604 		default:
605 			// Should not reach here
606 			report_fail("unexpected stage, %d",
607 				    vmx_get_test_stage());
608 			print_vmexit_info(exit_reason);
609 			return VMX_TEST_VMEXIT;
610 		}
611 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
612 		return VMX_TEST_RESUME;
613 	default:
614 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
615 		print_vmexit_info(exit_reason);
616 	}
617 	return VMX_TEST_VMEXIT;
618 }
619 
620 static int iobmp_init(struct vmcs *vmcs)
621 {
622 	u32 ctrl_cpu0;
623 
624 	io_bitmap_a = alloc_page();
625 	io_bitmap_b = alloc_page();
626 	ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
627 	ctrl_cpu0 |= CPU_IO_BITMAP;
628 	ctrl_cpu0 &= (~CPU_IO);
629 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
630 	vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a);
631 	vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b);
632 	return VMX_TEST_START;
633 }
634 
635 static void iobmp_main(void)
636 {
637 	// stage 0, test IO pass
638 	vmx_set_test_stage(0);
639 	inb(0x5000);
640 	outb(0x0, 0x5000);
641 	report(vmx_get_test_stage() == 0, "I/O bitmap - I/O pass");
642 	// test IO width, in/out
643 	((u8 *)io_bitmap_a)[0] = 0xFF;
644 	vmx_set_test_stage(2);
645 	inb(0x0);
646 	report(vmx_get_test_stage() == 3, "I/O bitmap - trap in");
647 	vmx_set_test_stage(3);
648 	outw(0x0, 0x0);
649 	report(vmx_get_test_stage() == 4, "I/O bitmap - trap out");
650 	vmx_set_test_stage(4);
651 	inl(0x0);
652 	report(vmx_get_test_stage() == 5, "I/O bitmap - I/O width, long");
653 	// test low/high IO port
654 	vmx_set_test_stage(5);
655 	((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8));
656 	inb(0x5000);
657 	report(vmx_get_test_stage() == 6, "I/O bitmap - I/O port, low part");
658 	vmx_set_test_stage(6);
659 	((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8));
660 	inb(0x9000);
661 	report(vmx_get_test_stage() == 7, "I/O bitmap - I/O port, high part");
662 	// test partial pass
663 	vmx_set_test_stage(7);
664 	inl(0x4FFF);
665 	report(vmx_get_test_stage() == 8, "I/O bitmap - partial pass");
666 	// test overrun
667 	vmx_set_test_stage(8);
668 	memset(io_bitmap_a, 0x0, PAGE_SIZE);
669 	memset(io_bitmap_b, 0x0, PAGE_SIZE);
670 	inl(0xFFFF);
671 	report(vmx_get_test_stage() == 9, "I/O bitmap - overrun");
672 	vmx_set_test_stage(9);
673 	vmcall();
674 	outb(0x0, 0x0);
675 	report(vmx_get_test_stage() == 9,
676 	       "I/O bitmap - ignore unconditional exiting");
677 	vmx_set_test_stage(10);
678 	vmcall();
679 	outb(0x0, 0x0);
680 	report(vmx_get_test_stage() == 11,
681 	       "I/O bitmap - unconditional exiting");
682 }
683 
684 static int iobmp_exit_handler(union exit_reason exit_reason)
685 {
686 	u64 guest_rip;
687 	ulong exit_qual;
688 	u32 insn_len, ctrl_cpu0;
689 
690 	guest_rip = vmcs_read(GUEST_RIP);
691 	exit_qual = vmcs_read(EXI_QUALIFICATION);
692 	insn_len = vmcs_read(EXI_INST_LEN);
693 	switch (exit_reason.basic) {
694 	case VMX_IO:
695 		switch (vmx_get_test_stage()) {
696 		case 0:
697 		case 1:
698 			vmx_inc_test_stage();
699 			break;
700 		case 2:
701 			report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE,
702 			       "I/O bitmap - I/O width, byte");
703 			report(exit_qual & VMX_IO_IN,
704 			       "I/O bitmap - I/O direction, in");
705 			vmx_inc_test_stage();
706 			break;
707 		case 3:
708 			report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD,
709 			       "I/O bitmap - I/O width, word");
710 			report(!(exit_qual & VMX_IO_IN),
711 			       "I/O bitmap - I/O direction, out");
712 			vmx_inc_test_stage();
713 			break;
714 		case 4:
715 			report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG,
716 			       "I/O bitmap - I/O width, long");
717 			vmx_inc_test_stage();
718 			break;
719 		case 5:
720 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000)
721 				vmx_inc_test_stage();
722 			break;
723 		case 6:
724 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000)
725 				vmx_inc_test_stage();
726 			break;
727 		case 7:
728 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF)
729 				vmx_inc_test_stage();
730 			break;
731 		case 8:
732 			if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF)
733 				vmx_inc_test_stage();
734 			break;
735 		case 9:
736 		case 10:
737 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
738 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO);
739 			vmx_inc_test_stage();
740 			break;
741 		default:
742 			// Should not reach here
743 			report_fail("unexpected stage, %d",
744 				    vmx_get_test_stage());
745 			print_vmexit_info(exit_reason);
746 			return VMX_TEST_VMEXIT;
747 		}
748 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
749 		return VMX_TEST_RESUME;
750 	case VMX_VMCALL:
751 		switch (vmx_get_test_stage()) {
752 		case 9:
753 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
754 			ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP;
755 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
756 			break;
757 		case 10:
758 			ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
759 			ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO;
760 			vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
761 			break;
762 		default:
763 			// Should not reach here
764 			report_fail("unexpected stage, %d",
765 				    vmx_get_test_stage());
766 			print_vmexit_info(exit_reason);
767 			return VMX_TEST_VMEXIT;
768 		}
769 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
770 		return VMX_TEST_RESUME;
771 	default:
772 		printf("guest_rip = %#lx\n", guest_rip);
773 		printf("\tERROR : Unknown exit reason, 0x%x\n", exit_reason.full);
774 		break;
775 	}
776 	return VMX_TEST_VMEXIT;
777 }
778 
779 #define INSN_CPU0		0
780 #define INSN_CPU1		1
781 #define INSN_ALWAYS_TRAP	2
782 
783 #define FIELD_EXIT_QUAL		(1 << 0)
784 #define FIELD_INSN_INFO		(1 << 1)
785 
786 asm(
787 	"insn_hlt: hlt;ret\n\t"
788 	"insn_invlpg: invlpg 0x12345678;ret\n\t"
789 	"insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t"
790 	"insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t"
791 	"insn_rdtsc: rdtsc;ret\n\t"
792 	"insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t"
793 	"insn_cr3_store: mov %cr3,%rax;ret\n\t"
794 	"insn_cr8_load: xor %eax, %eax; mov %rax,%cr8;ret\n\t"
795 	"insn_cr8_store: mov %cr8,%rax;ret\n\t"
796 	"insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t"
797 	"insn_pause: pause;ret\n\t"
798 	"insn_wbinvd: wbinvd;ret\n\t"
799 	"insn_cpuid: mov $10, %eax; cpuid;ret\n\t"
800 	"insn_invd: invd;ret\n\t"
801 	"insn_sgdt: sgdt gdt_descr;ret\n\t"
802 	"insn_lgdt: lgdt gdt_descr;ret\n\t"
803 	"insn_sidt: sidt idt_descr;ret\n\t"
804 	"insn_lidt: lidt idt_descr;ret\n\t"
805 	"insn_sldt: sldt %ax;ret\n\t"
806 	"insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t"
807 	"insn_str: str %ax;ret\n\t"
808 	"insn_rdrand: rdrand %rax;ret\n\t"
809 	"insn_rdseed: rdseed %rax;ret\n\t"
810 );
811 extern void insn_hlt(void);
812 extern void insn_invlpg(void);
813 extern void insn_mwait(void);
814 extern void insn_rdpmc(void);
815 extern void insn_rdtsc(void);
816 extern void insn_cr3_load(void);
817 extern void insn_cr3_store(void);
818 extern void insn_cr8_load(void);
819 extern void insn_cr8_store(void);
820 extern void insn_monitor(void);
821 extern void insn_pause(void);
822 extern void insn_wbinvd(void);
823 extern void insn_sgdt(void);
824 extern void insn_lgdt(void);
825 extern void insn_sidt(void);
826 extern void insn_lidt(void);
827 extern void insn_sldt(void);
828 extern void insn_lldt(void);
829 extern void insn_str(void);
830 extern void insn_cpuid(void);
831 extern void insn_invd(void);
832 extern void insn_rdrand(void);
833 extern void insn_rdseed(void);
834 
835 u32 cur_insn;
836 u64 cr3;
837 
838 #define X86_FEATURE_MONITOR	(1 << 3)
839 
840 typedef bool (*supported_fn)(void);
841 
842 static bool monitor_supported(void)
843 {
844 	return this_cpu_has(X86_FEATURE_MWAIT);
845 }
846 
847 struct insn_table {
848 	const char *name;
849 	u32 flag;
850 	void (*insn_func)(void);
851 	u32 type;
852 	u32 reason;
853 	ulong exit_qual;
854 	u32 insn_info;
855 	// Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define
856 	// which field need to be tested, reason is always tested
857 	u32 test_field;
858 	const supported_fn supported_fn;
859 	u8 disabled;
860 };
861 
862 /*
863  * Add more test cases of instruction intercept here. Elements in this
864  * table is:
865  *	name/control flag/insn function/type/exit reason/exit qulification/
866  *	instruction info/field to test
867  * The last field defines which fields (exit_qual and insn_info) need to be
868  * tested in exit handler. If set to 0, only "reason" is checked.
869  */
870 static struct insn_table insn_table[] = {
871 	// Flags for Primary Processor-Based VM-Execution Controls
872 	{"HLT",  CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0},
873 	{"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14,
874 		0x12345678, 0, FIELD_EXIT_QUAL},
875 	{"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0, &monitor_supported},
876 	{"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0},
877 	{"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0},
878 	{"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0,
879 		FIELD_EXIT_QUAL},
880 	{"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0,
881 		FIELD_EXIT_QUAL},
882 	{"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0,
883 		FIELD_EXIT_QUAL},
884 	{"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0,
885 		FIELD_EXIT_QUAL},
886 	{"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0, &monitor_supported},
887 	{"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0},
888 	// Flags for Secondary Processor-Based VM-Execution Controls
889 	{"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0},
890 	{"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0},
891 	{"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0},
892 	{"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0},
893 	{"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0},
894 	{"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0},
895 	{"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0},
896 	{"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0},
897 	/* LTR causes a #GP if done with a busy selector, so it is not tested.  */
898 	{"RDRAND", CPU_RDRAND, insn_rdrand, INSN_CPU1, VMX_RDRAND, 0, 0, 0},
899 	{"RDSEED", CPU_RDSEED, insn_rdseed, INSN_CPU1, VMX_RDSEED, 0, 0, 0},
900 	// Instructions always trap
901 	{"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0},
902 	{"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0},
903 	// Instructions never trap
904 	{NULL},
905 };
906 
907 static int insn_intercept_init(struct vmcs *vmcs)
908 {
909 	u32 ctrl_cpu, cur_insn;
910 
911 	ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY;
912 	ctrl_cpu &= ctrl_cpu_rev[0].clr;
913 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu);
914 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set);
915 	cr3 = read_cr3();
916 
917 	for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
918 		if (insn_table[cur_insn].supported_fn == NULL)
919 			continue;
920 		insn_table[cur_insn].disabled = !insn_table[cur_insn].supported_fn();
921 	}
922 	return VMX_TEST_START;
923 }
924 
925 static void insn_intercept_main(void)
926 {
927 	for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
928 		vmx_set_test_stage(cur_insn * 2);
929 		if ((insn_table[cur_insn].type == INSN_CPU0 &&
930 		     !(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) ||
931 		    (insn_table[cur_insn].type == INSN_CPU1 &&
932 		     !(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) {
933 			printf("\tCPU_CTRL%d.CPU_%s is not supported.\n",
934 			       insn_table[cur_insn].type - INSN_CPU0,
935 			       insn_table[cur_insn].name);
936 			continue;
937 		}
938 
939 		if (insn_table[cur_insn].disabled) {
940 			printf("\tFeature required for %s is not supported.\n",
941 			       insn_table[cur_insn].name);
942 			continue;
943 		}
944 
945 		if ((insn_table[cur_insn].type == INSN_CPU0 &&
946 		     !(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) ||
947 		    (insn_table[cur_insn].type == INSN_CPU1 &&
948 		     !(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) {
949 			/* skip hlt, it stalls the guest and is tested below */
950 			if (insn_table[cur_insn].insn_func != insn_hlt)
951 				insn_table[cur_insn].insn_func();
952 			report(vmx_get_test_stage() == cur_insn * 2,
953 					"execute %s",
954 					insn_table[cur_insn].name);
955 		} else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP)
956 			printf("\tCPU_CTRL%d.CPU_%s always traps.\n",
957 			       insn_table[cur_insn].type - INSN_CPU0,
958 			       insn_table[cur_insn].name);
959 
960 		vmcall();
961 
962 		insn_table[cur_insn].insn_func();
963 		report(vmx_get_test_stage() == cur_insn * 2 + 1,
964 				"intercept %s",
965 				insn_table[cur_insn].name);
966 
967 		vmx_set_test_stage(cur_insn * 2 + 1);
968 		vmcall();
969 	}
970 }
971 
972 static int insn_intercept_exit_handler(union exit_reason exit_reason)
973 {
974 	u64 guest_rip;
975 	ulong exit_qual;
976 	u32 insn_len;
977 	u32 insn_info;
978 	bool pass;
979 
980 	guest_rip = vmcs_read(GUEST_RIP);
981 	exit_qual = vmcs_read(EXI_QUALIFICATION);
982 	insn_len = vmcs_read(EXI_INST_LEN);
983 	insn_info = vmcs_read(EXI_INST_INFO);
984 
985 	if (exit_reason.basic == VMX_VMCALL) {
986 		u32 val = 0;
987 
988 		if (insn_table[cur_insn].type == INSN_CPU0)
989 			val = vmcs_read(CPU_EXEC_CTRL0);
990 		else if (insn_table[cur_insn].type == INSN_CPU1)
991 			val = vmcs_read(CPU_EXEC_CTRL1);
992 
993 		if (vmx_get_test_stage() & 1)
994 			val &= ~insn_table[cur_insn].flag;
995 		else
996 			val |= insn_table[cur_insn].flag;
997 
998 		if (insn_table[cur_insn].type == INSN_CPU0)
999 			vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set);
1000 		else if (insn_table[cur_insn].type == INSN_CPU1)
1001 			vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set);
1002 	} else {
1003 		pass = (cur_insn * 2 == vmx_get_test_stage()) &&
1004 			insn_table[cur_insn].reason == exit_reason.full;
1005 		if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL &&
1006 		    insn_table[cur_insn].exit_qual != exit_qual)
1007 			pass = false;
1008 		if (insn_table[cur_insn].test_field & FIELD_INSN_INFO &&
1009 		    insn_table[cur_insn].insn_info != insn_info)
1010 			pass = false;
1011 		if (pass)
1012 			vmx_inc_test_stage();
1013 	}
1014 	vmcs_write(GUEST_RIP, guest_rip + insn_len);
1015 	return VMX_TEST_RESUME;
1016 }
1017 
1018 /**
1019  * __setup_ept - Setup the VMCS fields to enable Extended Page Tables (EPT)
1020  * @hpa:	Host physical address of the top-level, a.k.a. root, EPT table
1021  * @enable_ad:	Whether or not to enable Access/Dirty bits for EPT entries
1022  *
1023  * Returns 0 on success, 1 on failure.
1024  *
1025  * Note that @hpa doesn't need to point at actual memory if VM-Launch is
1026  * expected to fail, e.g. setup_dummy_ept() arbitrarily passes '0' to satisfy
1027  * the various EPTP consistency checks, but doesn't ensure backing for HPA '0'.
1028  */
1029 static int __setup_ept(u64 hpa, bool enable_ad)
1030 {
1031 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1032 	    !(ctrl_cpu_rev[1].clr & CPU_EPT)) {
1033 		printf("\tEPT is not supported\n");
1034 		return 1;
1035 	}
1036 	if (!(ept_vpid.val & EPT_CAP_WB)) {
1037 		printf("\tWB memtype for EPT walks not supported\n");
1038 		return 1;
1039 	}
1040 	if (!(ept_vpid.val & EPT_CAP_PWL4)) {
1041 		printf("\tPWL4 is not supported\n");
1042 		return 1;
1043 	}
1044 
1045 	eptp = EPT_MEM_TYPE_WB;
1046 	eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT);
1047 	eptp |= hpa;
1048 	if (enable_ad)
1049 		eptp |= EPTP_AD_FLAG;
1050 
1051 	vmcs_write(EPTP, eptp);
1052 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0)| CPU_SECONDARY);
1053 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1)| CPU_EPT);
1054 
1055 	return 0;
1056 }
1057 
1058 /**
1059  * setup_ept - Enable Extended Page Tables (EPT) and setup an identity map
1060  * @enable_ad:	Whether or not to enable Access/Dirty bits for EPT entries
1061  *
1062  * Returns 0 on success, 1 on failure.
1063  *
1064  * This is the "real" function for setting up EPT tables, i.e. use this for
1065  * tests that need to run code in the guest with EPT enabled.
1066  */
1067 static int setup_ept(bool enable_ad)
1068 {
1069 	unsigned long end_of_memory;
1070 
1071 	pml4 = alloc_page();
1072 
1073 	if (__setup_ept(virt_to_phys(pml4), enable_ad))
1074 		return 1;
1075 
1076 	end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE);
1077 	if (end_of_memory < (1ul << 32))
1078 		end_of_memory = (1ul << 32);
1079 	/* Cannot use large EPT pages if we need to track EPT
1080 	 * accessed/dirty bits at 4K granularity.
1081 	 */
1082 	setup_ept_range(pml4, 0, end_of_memory, 0,
1083 			!enable_ad && ept_2m_supported(),
1084 			EPT_WA | EPT_RA | EPT_EA);
1085 	return 0;
1086 }
1087 
1088 /**
1089  * setup_dummy_ept - Enable Extended Page Tables (EPT) with a dummy root HPA
1090  *
1091  * Setup EPT using a semi-arbitrary dummy root HPA.  This function is intended
1092  * for use by tests that need EPT enabled to verify dependent VMCS controls
1093  * but never expect to fully enter the guest, i.e. don't need setup the actual
1094  * EPT tables.
1095  */
1096 static void setup_dummy_ept(void)
1097 {
1098 	if (__setup_ept(0, false))
1099 		report_abort("EPT setup unexpectedly failed");
1100 }
1101 
1102 static int enable_unrestricted_guest(bool need_valid_ept)
1103 {
1104 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1105 	    !(ctrl_cpu_rev[1].clr & CPU_URG) ||
1106 	    !(ctrl_cpu_rev[1].clr & CPU_EPT))
1107 		return 1;
1108 
1109 	if (need_valid_ept)
1110 		setup_ept(false);
1111 	else
1112 		setup_dummy_ept();
1113 
1114 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
1115 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG);
1116 
1117 	return 0;
1118 }
1119 
1120 static void ept_enable_ad_bits(void)
1121 {
1122 	eptp |= EPTP_AD_FLAG;
1123 	vmcs_write(EPTP, eptp);
1124 }
1125 
1126 static void ept_disable_ad_bits(void)
1127 {
1128 	eptp &= ~EPTP_AD_FLAG;
1129 	vmcs_write(EPTP, eptp);
1130 }
1131 
1132 static int ept_ad_enabled(void)
1133 {
1134 	return eptp & EPTP_AD_FLAG;
1135 }
1136 
1137 static void ept_enable_ad_bits_or_skip_test(void)
1138 {
1139 	if (!ept_ad_bits_supported())
1140 		test_skip("EPT AD bits not supported.");
1141 	ept_enable_ad_bits();
1142 }
1143 
1144 static int apic_version;
1145 
1146 static int ept_init_common(bool have_ad)
1147 {
1148 	int ret;
1149 	struct pci_dev pcidev;
1150 
1151 	/* INVEPT is required by the EPT violation handler. */
1152 	if (!is_invept_type_supported(INVEPT_SINGLE))
1153 		return VMX_TEST_EXIT;
1154 
1155 	if (setup_ept(have_ad))
1156 		return VMX_TEST_EXIT;
1157 
1158 	data_page1 = alloc_page();
1159 	data_page2 = alloc_page();
1160 	*((u32 *)data_page1) = MAGIC_VAL_1;
1161 	*((u32 *)data_page2) = MAGIC_VAL_2;
1162 	install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2,
1163 			EPT_RA | EPT_WA | EPT_EA);
1164 
1165 	apic_version = apic_read(APIC_LVR);
1166 
1167 	ret = pci_find_dev(PCI_VENDOR_ID_REDHAT, PCI_DEVICE_ID_REDHAT_TEST);
1168 	if (ret != PCIDEVADDR_INVALID) {
1169 		pci_dev_init(&pcidev, ret);
1170 		pci_physaddr = pcidev.resource[PCI_TESTDEV_BAR_MEM];
1171 	}
1172 
1173 	return VMX_TEST_START;
1174 }
1175 
1176 static int ept_init(struct vmcs *vmcs)
1177 {
1178 	return ept_init_common(false);
1179 }
1180 
1181 static void ept_common(void)
1182 {
1183 	vmx_set_test_stage(0);
1184 	if (*((u32 *)data_page2) != MAGIC_VAL_1 ||
1185 			*((u32 *)data_page1) != MAGIC_VAL_1)
1186 		report_fail("EPT basic framework - read");
1187 	else {
1188 		*((u32 *)data_page2) = MAGIC_VAL_3;
1189 		vmcall();
1190 		if (vmx_get_test_stage() == 1) {
1191 			if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
1192 					*((u32 *)data_page2) == MAGIC_VAL_2)
1193 				report_pass("EPT basic framework");
1194 			else
1195 				report_pass("EPT basic framework - remap");
1196 		}
1197 	}
1198 	// Test EPT Misconfigurations
1199 	vmx_set_test_stage(1);
1200 	vmcall();
1201 	*((u32 *)data_page1) = MAGIC_VAL_1;
1202 	if (vmx_get_test_stage() != 2) {
1203 		report_fail("EPT misconfigurations");
1204 		goto t1;
1205 	}
1206 	vmx_set_test_stage(2);
1207 	vmcall();
1208 	*((u32 *)data_page1) = MAGIC_VAL_1;
1209 	report(vmx_get_test_stage() == 3, "EPT misconfigurations");
1210 t1:
1211 	// Test EPT violation
1212 	vmx_set_test_stage(3);
1213 	vmcall();
1214 	*((u32 *)data_page1) = MAGIC_VAL_1;
1215 	report(vmx_get_test_stage() == 4, "EPT violation - page permission");
1216 	// Violation caused by EPT paging structure
1217 	vmx_set_test_stage(4);
1218 	vmcall();
1219 	*((u32 *)data_page1) = MAGIC_VAL_2;
1220 	report(vmx_get_test_stage() == 5, "EPT violation - paging structure");
1221 
1222 	// MMIO Read/Write
1223 	vmx_set_test_stage(5);
1224 	vmcall();
1225 
1226 	*(u32 volatile *)pci_physaddr;
1227 	report(vmx_get_test_stage() == 6, "MMIO EPT violation - read");
1228 
1229 	*(u32 volatile *)pci_physaddr = MAGIC_VAL_1;
1230 	report(vmx_get_test_stage() == 7, "MMIO EPT violation - write");
1231 }
1232 
1233 static void ept_main(void)
1234 {
1235 	ept_common();
1236 
1237 	// Test EPT access to L1 MMIO
1238 	vmx_set_test_stage(7);
1239 	report(*((u32 *)0xfee00030UL) == apic_version, "EPT - MMIO access");
1240 
1241 	// Test invalid operand for INVEPT
1242 	vmcall();
1243 	report(vmx_get_test_stage() == 8, "EPT - unsupported INVEPT");
1244 }
1245 
1246 static bool invept_test(int type, u64 eptp)
1247 {
1248 	bool ret, supported;
1249 
1250 	supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type);
1251 	ret = __invept(type, eptp);
1252 
1253 	if (ret == !supported)
1254 		return false;
1255 
1256 	if (!supported)
1257 		printf("WARNING: unsupported invept passed!\n");
1258 	else
1259 		printf("WARNING: invept failed!\n");
1260 
1261 	return true;
1262 }
1263 
1264 static int pml_exit_handler(union exit_reason exit_reason)
1265 {
1266 	u16 index, count;
1267 	u64 *pmlbuf = pml_log;
1268 	u64 guest_rip = vmcs_read(GUEST_RIP);;
1269 	u64 guest_cr3 = vmcs_read(GUEST_CR3);
1270 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1271 
1272 	switch (exit_reason.basic) {
1273 	case VMX_VMCALL:
1274 		switch (vmx_get_test_stage()) {
1275 		case 0:
1276 			index = vmcs_read(GUEST_PML_INDEX);
1277 			for (count = index + 1; count < PML_INDEX; count++) {
1278 				if (pmlbuf[count] == (u64)data_page2) {
1279 					vmx_inc_test_stage();
1280 					clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1281 					break;
1282 				}
1283 			}
1284 			break;
1285 		case 1:
1286 			index = vmcs_read(GUEST_PML_INDEX);
1287 			/* Keep clearing the dirty bit till a overflow */
1288 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1289 			break;
1290 		default:
1291 			report_fail("unexpected stage, %d.",
1292 			       vmx_get_test_stage());
1293 			print_vmexit_info(exit_reason);
1294 			return VMX_TEST_VMEXIT;
1295 		}
1296 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1297 		return VMX_TEST_RESUME;
1298 	case VMX_PML_FULL:
1299 		vmx_inc_test_stage();
1300 		vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
1301 		return VMX_TEST_RESUME;
1302 	default:
1303 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
1304 		print_vmexit_info(exit_reason);
1305 	}
1306 	return VMX_TEST_VMEXIT;
1307 }
1308 
1309 static int ept_exit_handler_common(union exit_reason exit_reason, bool have_ad)
1310 {
1311 	u64 guest_rip;
1312 	u64 guest_cr3;
1313 	u32 insn_len;
1314 	u32 exit_qual;
1315 	static unsigned long data_page1_pte, data_page1_pte_pte, memaddr_pte,
1316 			     guest_pte_addr;
1317 
1318 	guest_rip = vmcs_read(GUEST_RIP);
1319 	guest_cr3 = vmcs_read(GUEST_CR3);
1320 	insn_len = vmcs_read(EXI_INST_LEN);
1321 	exit_qual = vmcs_read(EXI_QUALIFICATION);
1322 	pteval_t *ptep;
1323 	switch (exit_reason.basic) {
1324 	case VMX_VMCALL:
1325 		switch (vmx_get_test_stage()) {
1326 		case 0:
1327 			check_ept_ad(pml4, guest_cr3,
1328 				     (unsigned long)data_page1,
1329 				     have_ad ? EPT_ACCESS_FLAG : 0,
1330 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1331 			check_ept_ad(pml4, guest_cr3,
1332 				     (unsigned long)data_page2,
1333 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0,
1334 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1335 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1336 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
1337 			if (have_ad)
1338 				ept_sync(INVEPT_SINGLE, eptp);;
1339 			if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
1340 					*((u32 *)data_page2) == MAGIC_VAL_2) {
1341 				vmx_inc_test_stage();
1342 				install_ept(pml4, (unsigned long)data_page2,
1343 						(unsigned long)data_page2,
1344 						EPT_RA | EPT_WA | EPT_EA);
1345 			} else
1346 				report_fail("EPT basic framework - write");
1347 			break;
1348 		case 1:
1349 			install_ept(pml4, (unsigned long)data_page1,
1350  				(unsigned long)data_page1, EPT_WA);
1351 			ept_sync(INVEPT_SINGLE, eptp);
1352 			break;
1353 		case 2:
1354 			install_ept(pml4, (unsigned long)data_page1,
1355  				(unsigned long)data_page1,
1356  				EPT_RA | EPT_WA | EPT_EA |
1357  				(2 << EPT_MEM_TYPE_SHIFT));
1358 			ept_sync(INVEPT_SINGLE, eptp);
1359 			break;
1360 		case 3:
1361 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1362 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1,
1363 						1, &data_page1_pte));
1364 			set_ept_pte(pml4, (unsigned long)data_page1,
1365 				1, data_page1_pte & ~EPT_PRESENT);
1366 			ept_sync(INVEPT_SINGLE, eptp);
1367 			break;
1368 		case 4:
1369 			ptep = get_pte_level((pgd_t *)guest_cr3, data_page1, /*level=*/2);
1370 			guest_pte_addr = virt_to_phys(ptep) & PAGE_MASK;
1371 
1372 			TEST_ASSERT(get_ept_pte(pml4, guest_pte_addr, 2, &data_page1_pte_pte));
1373 			set_ept_pte(pml4, guest_pte_addr, 2,
1374 				data_page1_pte_pte & ~EPT_PRESENT);
1375 			ept_sync(INVEPT_SINGLE, eptp);
1376 			break;
1377 		case 5:
1378 			install_ept(pml4, (unsigned long)pci_physaddr,
1379 				(unsigned long)pci_physaddr, 0);
1380 			ept_sync(INVEPT_SINGLE, eptp);
1381 			break;
1382 		case 7:
1383 			if (!invept_test(0, eptp))
1384 				vmx_inc_test_stage();
1385 			break;
1386 		// Should not reach here
1387 		default:
1388 			report_fail("ERROR - unexpected stage, %d.",
1389 			       vmx_get_test_stage());
1390 			print_vmexit_info(exit_reason);
1391 			return VMX_TEST_VMEXIT;
1392 		}
1393 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1394 		return VMX_TEST_RESUME;
1395 	case VMX_EPT_MISCONFIG:
1396 		switch (vmx_get_test_stage()) {
1397 		case 1:
1398 		case 2:
1399 			vmx_inc_test_stage();
1400 			install_ept(pml4, (unsigned long)data_page1,
1401  				(unsigned long)data_page1,
1402  				EPT_RA | EPT_WA | EPT_EA);
1403 			ept_sync(INVEPT_SINGLE, eptp);
1404 			break;
1405 		// Should not reach here
1406 		default:
1407 			report_fail("ERROR - unexpected stage, %d.",
1408 			       vmx_get_test_stage());
1409 			print_vmexit_info(exit_reason);
1410 			return VMX_TEST_VMEXIT;
1411 		}
1412 		return VMX_TEST_RESUME;
1413 	case VMX_EPT_VIOLATION:
1414 		/*
1415 		 * Exit-qualifications are masked not to account for advanced
1416 		 * VM-exit information. Once KVM supports this feature, this
1417 		 * masking should be removed.
1418 		 */
1419 		exit_qual &= ~EPT_VLT_GUEST_MASK;
1420 
1421 		switch(vmx_get_test_stage()) {
1422 		case 3:
1423 			check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
1424 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1425 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1426 			if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD |
1427 					EPT_VLT_PADDR))
1428 				vmx_inc_test_stage();
1429 			set_ept_pte(pml4, (unsigned long)data_page1,
1430 				1, data_page1_pte | (EPT_PRESENT));
1431 			ept_sync(INVEPT_SINGLE, eptp);
1432 			break;
1433 		case 4:
1434 			check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
1435 				     have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
1436 			clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
1437 			if (exit_qual == (EPT_VLT_RD |
1438 					  (have_ad ? EPT_VLT_WR : 0) |
1439 					  EPT_VLT_LADDR_VLD))
1440 				vmx_inc_test_stage();
1441 			set_ept_pte(pml4, guest_pte_addr, 2,
1442 				data_page1_pte_pte | (EPT_PRESENT));
1443 			ept_sync(INVEPT_SINGLE, eptp);
1444 			break;
1445 		case 5:
1446 			if (exit_qual & EPT_VLT_RD)
1447 				vmx_inc_test_stage();
1448 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr,
1449 						1, &memaddr_pte));
1450 			set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA);
1451 			ept_sync(INVEPT_SINGLE, eptp);
1452 			break;
1453 		case 6:
1454 			if (exit_qual & EPT_VLT_WR)
1455 				vmx_inc_test_stage();
1456 			TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr,
1457 						1, &memaddr_pte));
1458 			set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA | EPT_WA);
1459 			ept_sync(INVEPT_SINGLE, eptp);
1460 			break;
1461 		default:
1462 			// Should not reach here
1463 			report_fail("ERROR : unexpected stage, %d",
1464 			       vmx_get_test_stage());
1465 			print_vmexit_info(exit_reason);
1466 			return VMX_TEST_VMEXIT;
1467 		}
1468 		return VMX_TEST_RESUME;
1469 	default:
1470 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
1471 		print_vmexit_info(exit_reason);
1472 	}
1473 	return VMX_TEST_VMEXIT;
1474 }
1475 
1476 static int ept_exit_handler(union exit_reason exit_reason)
1477 {
1478 	return ept_exit_handler_common(exit_reason, false);
1479 }
1480 
1481 static int eptad_init(struct vmcs *vmcs)
1482 {
1483 	int r = ept_init_common(true);
1484 
1485 	if (r == VMX_TEST_EXIT)
1486 		return r;
1487 
1488 	if ((rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & EPT_CAP_AD_FLAG) == 0) {
1489 		printf("\tEPT A/D bits are not supported");
1490 		return VMX_TEST_EXIT;
1491 	}
1492 
1493 	return r;
1494 }
1495 
1496 static int pml_init(struct vmcs *vmcs)
1497 {
1498 	u32 ctrl_cpu;
1499 	int r = eptad_init(vmcs);
1500 
1501 	if (r == VMX_TEST_EXIT)
1502 		return r;
1503 
1504 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1505 		!(ctrl_cpu_rev[1].clr & CPU_PML)) {
1506 		printf("\tPML is not supported");
1507 		return VMX_TEST_EXIT;
1508 	}
1509 
1510 	pml_log = alloc_page();
1511 	vmcs_write(PMLADDR, (u64)pml_log);
1512 	vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
1513 
1514 	ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML;
1515 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu);
1516 
1517 	return VMX_TEST_START;
1518 }
1519 
1520 static void pml_main(void)
1521 {
1522 	int count = 0;
1523 
1524 	vmx_set_test_stage(0);
1525 	*((u32 *)data_page2) = 0x1;
1526 	vmcall();
1527 	report(vmx_get_test_stage() == 1, "PML - Dirty GPA Logging");
1528 
1529 	while (vmx_get_test_stage() == 1) {
1530 		vmcall();
1531 		*((u32 *)data_page2) = 0x1;
1532 		if (count++ > PML_INDEX)
1533 			break;
1534 	}
1535 	report(vmx_get_test_stage() == 2, "PML Full Event");
1536 }
1537 
1538 static void eptad_main(void)
1539 {
1540 	ept_common();
1541 }
1542 
1543 static int eptad_exit_handler(union exit_reason exit_reason)
1544 {
1545 	return ept_exit_handler_common(exit_reason, true);
1546 }
1547 
1548 static bool invvpid_test(int type, u16 vpid)
1549 {
1550 	bool ret, supported;
1551 
1552 	supported = ept_vpid.val &
1553 		(VPID_CAP_INVVPID_ADDR >> INVVPID_ADDR << type);
1554 	ret = __invvpid(type, vpid, 0);
1555 
1556 	if (ret == !supported)
1557 		return false;
1558 
1559 	if (!supported)
1560 		printf("WARNING: unsupported invvpid passed!\n");
1561 	else
1562 		printf("WARNING: invvpid failed!\n");
1563 
1564 	return true;
1565 }
1566 
1567 static int vpid_init(struct vmcs *vmcs)
1568 {
1569 	u32 ctrl_cpu1;
1570 
1571 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
1572 		!(ctrl_cpu_rev[1].clr & CPU_VPID)) {
1573 		printf("\tVPID is not supported");
1574 		return VMX_TEST_EXIT;
1575 	}
1576 
1577 	ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
1578 	ctrl_cpu1 |= CPU_VPID;
1579 	vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
1580 	return VMX_TEST_START;
1581 }
1582 
1583 static void vpid_main(void)
1584 {
1585 	vmx_set_test_stage(0);
1586 	vmcall();
1587 	report(vmx_get_test_stage() == 1, "INVVPID SINGLE ADDRESS");
1588 	vmx_set_test_stage(2);
1589 	vmcall();
1590 	report(vmx_get_test_stage() == 3, "INVVPID SINGLE");
1591 	vmx_set_test_stage(4);
1592 	vmcall();
1593 	report(vmx_get_test_stage() == 5, "INVVPID ALL");
1594 }
1595 
1596 static int vpid_exit_handler(union exit_reason exit_reason)
1597 {
1598 	u64 guest_rip;
1599 	u32 insn_len;
1600 
1601 	guest_rip = vmcs_read(GUEST_RIP);
1602 	insn_len = vmcs_read(EXI_INST_LEN);
1603 
1604 	switch (exit_reason.basic) {
1605 	case VMX_VMCALL:
1606 		switch(vmx_get_test_stage()) {
1607 		case 0:
1608 			if (!invvpid_test(INVVPID_ADDR, 1))
1609 				vmx_inc_test_stage();
1610 			break;
1611 		case 2:
1612 			if (!invvpid_test(INVVPID_CONTEXT_GLOBAL, 1))
1613 				vmx_inc_test_stage();
1614 			break;
1615 		case 4:
1616 			if (!invvpid_test(INVVPID_ALL, 1))
1617 				vmx_inc_test_stage();
1618 			break;
1619 		default:
1620 			report_fail("ERROR: unexpected stage, %d",
1621 					vmx_get_test_stage());
1622 			print_vmexit_info(exit_reason);
1623 			return VMX_TEST_VMEXIT;
1624 		}
1625 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1626 		return VMX_TEST_RESUME;
1627 	default:
1628 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
1629 		print_vmexit_info(exit_reason);
1630 	}
1631 	return VMX_TEST_VMEXIT;
1632 }
1633 
1634 #define TIMER_VECTOR	222
1635 
1636 static volatile bool timer_fired;
1637 
1638 static void timer_isr(isr_regs_t *regs)
1639 {
1640 	timer_fired = true;
1641 	apic_write(APIC_EOI, 0);
1642 }
1643 
1644 static int interrupt_init(struct vmcs *vmcs)
1645 {
1646 	msr_bmp_init();
1647 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
1648 	handle_irq(TIMER_VECTOR, timer_isr);
1649 	return VMX_TEST_START;
1650 }
1651 
1652 static void interrupt_main(void)
1653 {
1654 	long long start, loops;
1655 
1656 	vmx_set_test_stage(0);
1657 
1658 	apic_write(APIC_LVTT, TIMER_VECTOR);
1659 	irq_enable();
1660 
1661 	apic_write(APIC_TMICT, 1);
1662 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1663 		asm volatile ("nop");
1664 	report(timer_fired, "direct interrupt while running guest");
1665 
1666 	apic_write(APIC_TMICT, 0);
1667 	irq_disable();
1668 	vmcall();
1669 	timer_fired = false;
1670 	apic_write(APIC_TMICT, 1);
1671 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1672 		asm volatile ("nop");
1673 	report(timer_fired, "intercepted interrupt while running guest");
1674 
1675 	irq_enable();
1676 	apic_write(APIC_TMICT, 0);
1677 	irq_disable();
1678 	vmcall();
1679 	timer_fired = false;
1680 	start = rdtsc();
1681 	apic_write(APIC_TMICT, 1000000);
1682 
1683 	safe_halt();
1684 
1685 	report(rdtsc() - start > 1000000 && timer_fired,
1686 	       "direct interrupt + hlt");
1687 
1688 	apic_write(APIC_TMICT, 0);
1689 	irq_disable();
1690 	vmcall();
1691 	timer_fired = false;
1692 	start = rdtsc();
1693 	apic_write(APIC_TMICT, 1000000);
1694 
1695 	safe_halt();
1696 
1697 	report(rdtsc() - start > 10000 && timer_fired,
1698 	       "intercepted interrupt + hlt");
1699 
1700 	apic_write(APIC_TMICT, 0);
1701 	irq_disable();
1702 	vmcall();
1703 	timer_fired = false;
1704 	start = rdtsc();
1705 	apic_write(APIC_TMICT, 1000000);
1706 
1707 	irq_enable();
1708 	asm volatile ("nop");
1709 	vmcall();
1710 
1711 	report(rdtsc() - start > 10000 && timer_fired,
1712 	       "direct interrupt + activity state hlt");
1713 
1714 	apic_write(APIC_TMICT, 0);
1715 	irq_disable();
1716 	vmcall();
1717 	timer_fired = false;
1718 	start = rdtsc();
1719 	apic_write(APIC_TMICT, 1000000);
1720 
1721 	irq_enable();
1722 	asm volatile ("nop");
1723 	vmcall();
1724 
1725 	report(rdtsc() - start > 10000 && timer_fired,
1726 	       "intercepted interrupt + activity state hlt");
1727 
1728 	apic_write(APIC_TMICT, 0);
1729 	irq_disable();
1730 	vmx_set_test_stage(7);
1731 	vmcall();
1732 	timer_fired = false;
1733 	apic_write(APIC_TMICT, 1);
1734 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1735 		asm volatile ("nop");
1736 	report(timer_fired,
1737 	       "running a guest with interrupt acknowledgement set");
1738 
1739 	apic_write(APIC_TMICT, 0);
1740 	irq_enable();
1741 	timer_fired = false;
1742 	vmcall();
1743 	report(timer_fired, "Inject an event to a halted guest");
1744 }
1745 
1746 static int interrupt_exit_handler(union exit_reason exit_reason)
1747 {
1748 	u64 guest_rip = vmcs_read(GUEST_RIP);
1749 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1750 
1751 	switch (exit_reason.basic) {
1752 	case VMX_VMCALL:
1753 		switch (vmx_get_test_stage()) {
1754 		case 0:
1755 		case 2:
1756 		case 5:
1757 			vmcs_write(PIN_CONTROLS,
1758 				   vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
1759 			break;
1760 		case 7:
1761 			vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA);
1762 			vmcs_write(PIN_CONTROLS,
1763 				   vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
1764 			break;
1765 		case 1:
1766 		case 3:
1767 			vmcs_write(PIN_CONTROLS,
1768 				   vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
1769 			break;
1770 		case 4:
1771 		case 6:
1772 			vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
1773 			break;
1774 
1775 		case 8:
1776 			vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
1777 			vmcs_write(ENT_INTR_INFO,
1778 				   TIMER_VECTOR |
1779 				   (VMX_INTR_TYPE_EXT_INTR << INTR_INFO_INTR_TYPE_SHIFT) |
1780 				   INTR_INFO_VALID_MASK);
1781 			break;
1782 		}
1783 		vmx_inc_test_stage();
1784 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
1785 		return VMX_TEST_RESUME;
1786 	case VMX_EXTINT:
1787 		if (vmcs_read(EXI_CONTROLS) & EXI_INTA) {
1788 			int vector = vmcs_read(EXI_INTR_INFO) & 0xff;
1789 			handle_external_interrupt(vector);
1790 		} else {
1791 			irq_enable();
1792 			asm volatile ("nop");
1793 			irq_disable();
1794 		}
1795 		if (vmx_get_test_stage() >= 2)
1796 			vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
1797 		return VMX_TEST_RESUME;
1798 	default:
1799 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
1800 		print_vmexit_info(exit_reason);
1801 	}
1802 
1803 	return VMX_TEST_VMEXIT;
1804 }
1805 
1806 
1807 static volatile int nmi_fired;
1808 
1809 #define NMI_DELAY 100000000ULL
1810 
1811 static void nmi_isr(isr_regs_t *regs)
1812 {
1813 	nmi_fired = true;
1814 }
1815 
1816 static int nmi_hlt_init(struct vmcs *vmcs)
1817 {
1818 	msr_bmp_init();
1819 	handle_irq(NMI_VECTOR, nmi_isr);
1820 	vmcs_write(PIN_CONTROLS,
1821 		   vmcs_read(PIN_CONTROLS) & ~PIN_NMI);
1822 	vmcs_write(PIN_CONTROLS,
1823 		   vmcs_read(PIN_CONTROLS) & ~PIN_VIRT_NMI);
1824 	return VMX_TEST_START;
1825 }
1826 
1827 static void nmi_message_thread(void *data)
1828 {
1829     while (vmx_get_test_stage() != 1)
1830         pause();
1831 
1832     delay(NMI_DELAY);
1833     apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]);
1834 
1835     while (vmx_get_test_stage() != 2)
1836         pause();
1837 
1838     delay(NMI_DELAY);
1839     apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]);
1840 }
1841 
1842 static void nmi_hlt_main(void)
1843 {
1844     long long start;
1845 
1846     if (cpu_count() < 2) {
1847         report_skip(__func__);
1848         vmx_set_test_stage(-1);
1849         return;
1850     }
1851 
1852     vmx_set_test_stage(0);
1853     on_cpu_async(1, nmi_message_thread, NULL);
1854     start = rdtsc();
1855     vmx_set_test_stage(1);
1856     asm volatile ("hlt");
1857     report((rdtsc() - start > NMI_DELAY) && nmi_fired,
1858             "direct NMI + hlt");
1859     if (!nmi_fired)
1860         vmx_set_test_stage(-1);
1861     nmi_fired = false;
1862 
1863     vmcall();
1864 
1865     start = rdtsc();
1866     vmx_set_test_stage(2);
1867     asm volatile ("hlt");
1868     report((rdtsc() - start > NMI_DELAY) && !nmi_fired,
1869             "intercepted NMI + hlt");
1870     if (nmi_fired) {
1871         report(!nmi_fired, "intercepted NMI was dispatched");
1872         vmx_set_test_stage(-1);
1873         return;
1874     }
1875     vmx_set_test_stage(3);
1876 }
1877 
1878 static int nmi_hlt_exit_handler(union exit_reason exit_reason)
1879 {
1880     u64 guest_rip = vmcs_read(GUEST_RIP);
1881     u32 insn_len = vmcs_read(EXI_INST_LEN);
1882 
1883     switch (vmx_get_test_stage()) {
1884     case 1:
1885         if (exit_reason.basic != VMX_VMCALL) {
1886             report_fail("VMEXIT not due to vmcall. Exit reason 0x%x",
1887                         exit_reason.full);
1888             print_vmexit_info(exit_reason);
1889             return VMX_TEST_VMEXIT;
1890         }
1891 
1892         vmcs_write(PIN_CONTROLS,
1893                vmcs_read(PIN_CONTROLS) | PIN_NMI);
1894         vmcs_write(PIN_CONTROLS,
1895                vmcs_read(PIN_CONTROLS) | PIN_VIRT_NMI);
1896         vmcs_write(GUEST_RIP, guest_rip + insn_len);
1897         break;
1898 
1899     case 2:
1900         if (exit_reason.basic != VMX_EXC_NMI) {
1901             report_fail("VMEXIT not due to NMI intercept. Exit reason 0x%x",
1902                         exit_reason.full);
1903             print_vmexit_info(exit_reason);
1904             return VMX_TEST_VMEXIT;
1905         }
1906         report_pass("NMI intercept while running guest");
1907         vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
1908         break;
1909 
1910     case 3:
1911         break;
1912 
1913     default:
1914         return VMX_TEST_VMEXIT;
1915     }
1916 
1917     if (vmx_get_test_stage() == 3)
1918         return VMX_TEST_VMEXIT;
1919 
1920     return VMX_TEST_RESUME;
1921 }
1922 
1923 
1924 static int dbgctls_init(struct vmcs *vmcs)
1925 {
1926 	u64 dr7 = 0x402;
1927 	u64 zero = 0;
1928 
1929 	msr_bmp_init();
1930 	asm volatile(
1931 		"mov %0,%%dr0\n\t"
1932 		"mov %0,%%dr1\n\t"
1933 		"mov %0,%%dr2\n\t"
1934 		"mov %1,%%dr7\n\t"
1935 		: : "r" (zero), "r" (dr7));
1936 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
1937 	vmcs_write(GUEST_DR7, 0x404);
1938 	vmcs_write(GUEST_DEBUGCTL, 0x2);
1939 
1940 	vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
1941 	vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS);
1942 
1943 	return VMX_TEST_START;
1944 }
1945 
1946 static void dbgctls_main(void)
1947 {
1948 	u64 dr7, debugctl;
1949 
1950 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1951 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1952 	/* Commented out: KVM does not support DEBUGCTL so far */
1953 	(void)debugctl;
1954 	report(dr7 == 0x404, "Load debug controls" /* && debugctl == 0x2 */);
1955 
1956 	dr7 = 0x408;
1957 	asm volatile("mov %0,%%dr7" : : "r" (dr7));
1958 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
1959 
1960 	vmx_set_test_stage(0);
1961 	vmcall();
1962 	report(vmx_get_test_stage() == 1, "Save debug controls");
1963 
1964 	if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS ||
1965 	    ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) {
1966 		printf("\tDebug controls are always loaded/saved\n");
1967 		return;
1968 	}
1969 	vmx_set_test_stage(2);
1970 	vmcall();
1971 
1972 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1973 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1974 	/* Commented out: KVM does not support DEBUGCTL so far */
1975 	(void)debugctl;
1976 	report(dr7 == 0x402,
1977 	       "Guest=host debug controls" /* && debugctl == 0x1 */);
1978 
1979 	dr7 = 0x408;
1980 	asm volatile("mov %0,%%dr7" : : "r" (dr7));
1981 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
1982 
1983 	vmx_set_test_stage(3);
1984 	vmcall();
1985 	report(vmx_get_test_stage() == 4, "Don't save debug controls");
1986 }
1987 
1988 static int dbgctls_exit_handler(union exit_reason exit_reason)
1989 {
1990 	u32 insn_len = vmcs_read(EXI_INST_LEN);
1991 	u64 guest_rip = vmcs_read(GUEST_RIP);
1992 	u64 dr7, debugctl;
1993 
1994 	asm volatile("mov %%dr7,%0" : "=r" (dr7));
1995 	debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
1996 
1997 	switch (exit_reason.basic) {
1998 	case VMX_VMCALL:
1999 		switch (vmx_get_test_stage()) {
2000 		case 0:
2001 			if (dr7 == 0x400 && debugctl == 0 &&
2002 			    vmcs_read(GUEST_DR7) == 0x408 /* &&
2003 			    Commented out: KVM does not support DEBUGCTL so far
2004 			    vmcs_read(GUEST_DEBUGCTL) == 0x3 */)
2005 				vmx_inc_test_stage();
2006 			break;
2007 		case 2:
2008 			dr7 = 0x402;
2009 			asm volatile("mov %0,%%dr7" : : "r" (dr7));
2010 			wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
2011 			vmcs_write(GUEST_DR7, 0x404);
2012 			vmcs_write(GUEST_DEBUGCTL, 0x2);
2013 
2014 			vmcs_write(ENT_CONTROLS,
2015 				vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS);
2016 			vmcs_write(EXI_CONTROLS,
2017 				vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS);
2018 			break;
2019 		case 3:
2020 			if (dr7 == 0x400 && debugctl == 0 &&
2021 			    vmcs_read(GUEST_DR7) == 0x404 /* &&
2022 			    Commented out: KVM does not support DEBUGCTL so far
2023 			    vmcs_read(GUEST_DEBUGCTL) == 0x2 */)
2024 				vmx_inc_test_stage();
2025 			break;
2026 		}
2027 		vmcs_write(GUEST_RIP, guest_rip + insn_len);
2028 		return VMX_TEST_RESUME;
2029 	default:
2030 		report_fail("Unknown exit reason, %d", exit_reason.full);
2031 		print_vmexit_info(exit_reason);
2032 	}
2033 	return VMX_TEST_VMEXIT;
2034 }
2035 
2036 struct vmx_msr_entry {
2037 	u32 index;
2038 	u32 reserved;
2039 	u64 value;
2040 } __attribute__((packed));
2041 
2042 #define MSR_MAGIC 0x31415926
2043 struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load;
2044 
2045 static int msr_switch_init(struct vmcs *vmcs)
2046 {
2047 	msr_bmp_init();
2048 	exit_msr_store = alloc_page();
2049 	exit_msr_load = alloc_page();
2050 	entry_msr_load = alloc_page();
2051 	entry_msr_load[0].index = MSR_KERNEL_GS_BASE;
2052 	entry_msr_load[0].value = MSR_MAGIC;
2053 
2054 	vmx_set_test_stage(1);
2055 	vmcs_write(ENT_MSR_LD_CNT, 1);
2056 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load);
2057 	vmcs_write(EXI_MSR_ST_CNT, 1);
2058 	vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store);
2059 	vmcs_write(EXI_MSR_LD_CNT, 1);
2060 	vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load);
2061 	return VMX_TEST_START;
2062 }
2063 
2064 static void msr_switch_main(void)
2065 {
2066 	if (vmx_get_test_stage() == 1) {
2067 		report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC,
2068 		       "VM entry MSR load");
2069 		vmx_set_test_stage(2);
2070 		wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1);
2071 		exit_msr_store[0].index = MSR_KERNEL_GS_BASE;
2072 		exit_msr_load[0].index = MSR_KERNEL_GS_BASE;
2073 		exit_msr_load[0].value = MSR_MAGIC + 2;
2074 	}
2075 	vmcall();
2076 }
2077 
2078 static int msr_switch_exit_handler(union exit_reason exit_reason)
2079 {
2080 	if (exit_reason.basic == VMX_VMCALL && vmx_get_test_stage() == 2) {
2081 		report(exit_msr_store[0].value == MSR_MAGIC + 1,
2082 		       "VM exit MSR store");
2083 		report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2,
2084 		       "VM exit MSR load");
2085 		vmx_set_test_stage(3);
2086 		entry_msr_load[0].index = MSR_FS_BASE;
2087 		return VMX_TEST_RESUME;
2088 	}
2089 	printf("ERROR %s: unexpected stage=%u or reason=0x%x\n",
2090 		__func__, vmx_get_test_stage(), exit_reason.full);
2091 	return VMX_TEST_EXIT;
2092 }
2093 
2094 static int msr_switch_entry_failure(struct vmentry_result *result)
2095 {
2096 	if (result->vm_fail) {
2097 		printf("ERROR %s: VM-Fail on %s\n", __func__, result->instr);
2098 		return VMX_TEST_EXIT;
2099 	}
2100 
2101 	if (result->exit_reason.failed_vmentry &&
2102 	    result->exit_reason.basic == VMX_FAIL_MSR &&
2103 	    vmx_get_test_stage() == 3) {
2104 		report(vmcs_read(EXI_QUALIFICATION) == 1,
2105 		       "VM entry MSR load: try to load FS_BASE");
2106 		return VMX_TEST_VMEXIT;
2107 	}
2108 	printf("ERROR %s: unexpected stage=%u or reason=%x\n",
2109 		__func__, vmx_get_test_stage(), result->exit_reason.full);
2110 	return VMX_TEST_EXIT;
2111 }
2112 
2113 static int vmmcall_init(struct vmcs *vmcs)
2114 {
2115 	vmcs_write(EXC_BITMAP, 1 << UD_VECTOR);
2116 	return VMX_TEST_START;
2117 }
2118 
2119 static void vmmcall_main(void)
2120 {
2121 	asm volatile(
2122 		"mov $0xABCD, %%rax\n\t"
2123 		"vmmcall\n\t"
2124 		::: "rax");
2125 
2126 	report_fail("VMMCALL");
2127 }
2128 
2129 static int vmmcall_exit_handler(union exit_reason exit_reason)
2130 {
2131 	switch (exit_reason.basic) {
2132 	case VMX_VMCALL:
2133 		printf("here\n");
2134 		report_fail("VMMCALL triggers #UD");
2135 		break;
2136 	case VMX_EXC_NMI:
2137 		report((vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR,
2138 		       "VMMCALL triggers #UD");
2139 		break;
2140 	default:
2141 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
2142 		print_vmexit_info(exit_reason);
2143 	}
2144 
2145 	return VMX_TEST_VMEXIT;
2146 }
2147 
2148 static int disable_rdtscp_init(struct vmcs *vmcs)
2149 {
2150 	u32 ctrl_cpu1;
2151 
2152 	if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) {
2153 		ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
2154 		ctrl_cpu1 &= ~CPU_RDTSCP;
2155 		vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
2156 	}
2157 
2158 	return VMX_TEST_START;
2159 }
2160 
2161 static void disable_rdtscp_ud_handler(struct ex_regs *regs)
2162 {
2163 	switch (vmx_get_test_stage()) {
2164 	case 0:
2165 		report_pass("RDTSCP triggers #UD");
2166 		vmx_inc_test_stage();
2167 		regs->rip += 3;
2168 		break;
2169 	case 2:
2170 		report_pass("RDPID triggers #UD");
2171 		vmx_inc_test_stage();
2172 		regs->rip += 4;
2173 		break;
2174 	}
2175 	return;
2176 
2177 }
2178 
2179 static void disable_rdtscp_main(void)
2180 {
2181 	/* Test that #UD is properly injected in L2.  */
2182 	handle_exception(UD_VECTOR, disable_rdtscp_ud_handler);
2183 
2184 	vmx_set_test_stage(0);
2185 	asm volatile("rdtscp" : : : "eax", "ecx", "edx");
2186 	vmcall();
2187 	asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax");
2188 
2189 	handle_exception(UD_VECTOR, 0);
2190 	vmcall();
2191 }
2192 
2193 static int disable_rdtscp_exit_handler(union exit_reason exit_reason)
2194 {
2195 	switch (exit_reason.basic) {
2196 	case VMX_VMCALL:
2197 		switch (vmx_get_test_stage()) {
2198 		case 0:
2199 			report_fail("RDTSCP triggers #UD");
2200 			vmx_inc_test_stage();
2201 			/* fallthrough */
2202 		case 1:
2203 			vmx_inc_test_stage();
2204 			vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3);
2205 			return VMX_TEST_RESUME;
2206 		case 2:
2207 			report_fail("RDPID triggers #UD");
2208 			break;
2209 		}
2210 		break;
2211 
2212 	default:
2213 		report_fail("Unknown exit reason, 0x%x", exit_reason.full);
2214 		print_vmexit_info(exit_reason);
2215 	}
2216 	return VMX_TEST_VMEXIT;
2217 }
2218 
2219 static int int3_init(struct vmcs *vmcs)
2220 {
2221 	vmcs_write(EXC_BITMAP, ~0u);
2222 	return VMX_TEST_START;
2223 }
2224 
2225 static void int3_guest_main(void)
2226 {
2227 	asm volatile ("int3");
2228 }
2229 
2230 static int int3_exit_handler(union exit_reason exit_reason)
2231 {
2232 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
2233 
2234 	report(exit_reason.basic == VMX_EXC_NMI &&
2235 	       (intr_info & INTR_INFO_VALID_MASK) &&
2236 	       (intr_info & INTR_INFO_VECTOR_MASK) == BP_VECTOR &&
2237 	       ((intr_info & INTR_INFO_INTR_TYPE_MASK) >>
2238 	        INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION,
2239 	       "L1 intercepts #BP");
2240 
2241 	return VMX_TEST_VMEXIT;
2242 }
2243 
2244 static int into_init(struct vmcs *vmcs)
2245 {
2246 	vmcs_write(EXC_BITMAP, ~0u);
2247 	return VMX_TEST_START;
2248 }
2249 
2250 static void into_guest_main(void)
2251 {
2252 	struct far_pointer32 fp = {
2253 		.offset = (uintptr_t)&&into,
2254 		.selector = KERNEL_CS32,
2255 	};
2256 	uintptr_t rsp;
2257 
2258 	asm volatile ("mov %%rsp, %0" : "=r"(rsp));
2259 
2260 	if (fp.offset != (uintptr_t)&&into) {
2261 		printf("Code address too high.\n");
2262 		return;
2263 	}
2264 	if ((u32)rsp != rsp) {
2265 		printf("Stack address too high.\n");
2266 		return;
2267 	}
2268 
2269 	asm goto ("lcall *%0" : : "m" (fp) : "rax" : into);
2270 	return;
2271 into:
2272 	asm volatile (".code32;"
2273 		      "movl $0x7fffffff, %eax;"
2274 		      "addl %eax, %eax;"
2275 		      "into;"
2276 		      "lret;"
2277 		      ".code64");
2278 	__builtin_unreachable();
2279 }
2280 
2281 static int into_exit_handler(union exit_reason exit_reason)
2282 {
2283 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
2284 
2285 	report(exit_reason.basic == VMX_EXC_NMI &&
2286 	       (intr_info & INTR_INFO_VALID_MASK) &&
2287 	       (intr_info & INTR_INFO_VECTOR_MASK) == OF_VECTOR &&
2288 	       ((intr_info & INTR_INFO_INTR_TYPE_MASK) >>
2289 	        INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION,
2290 	       "L1 intercepts #OF");
2291 
2292 	return VMX_TEST_VMEXIT;
2293 }
2294 
2295 static void exit_monitor_from_l2_main(void)
2296 {
2297 	printf("Calling exit(0) from l2...\n");
2298 	exit(0);
2299 }
2300 
2301 static int exit_monitor_from_l2_handler(union exit_reason exit_reason)
2302 {
2303 	report_fail("The guest should have killed the VMM");
2304 	return VMX_TEST_EXIT;
2305 }
2306 
2307 static void assert_exit_reason(u64 expected)
2308 {
2309 	u64 actual = vmcs_read(EXI_REASON);
2310 
2311 	TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.",
2312 			   exit_reason_description(expected),
2313 			   exit_reason_description(actual));
2314 }
2315 
2316 static void skip_exit_insn(void)
2317 {
2318 	u64 guest_rip = vmcs_read(GUEST_RIP);
2319 	u32 insn_len = vmcs_read(EXI_INST_LEN);
2320 	vmcs_write(GUEST_RIP, guest_rip + insn_len);
2321 }
2322 
2323 static void skip_exit_vmcall(void)
2324 {
2325 	assert_exit_reason(VMX_VMCALL);
2326 	skip_exit_insn();
2327 }
2328 
2329 static void v2_null_test_guest(void)
2330 {
2331 }
2332 
2333 static void v2_null_test(void)
2334 {
2335 	test_set_guest(v2_null_test_guest);
2336 	enter_guest();
2337 	report_pass(__func__);
2338 }
2339 
2340 static void v2_multiple_entries_test_guest(void)
2341 {
2342 	vmx_set_test_stage(1);
2343 	vmcall();
2344 	vmx_set_test_stage(2);
2345 }
2346 
2347 static void v2_multiple_entries_test(void)
2348 {
2349 	test_set_guest(v2_multiple_entries_test_guest);
2350 	enter_guest();
2351 	TEST_ASSERT_EQ(vmx_get_test_stage(), 1);
2352 	skip_exit_vmcall();
2353 	enter_guest();
2354 	TEST_ASSERT_EQ(vmx_get_test_stage(), 2);
2355 	report_pass(__func__);
2356 }
2357 
2358 static int fixture_test_data = 1;
2359 
2360 static void fixture_test_teardown(void *data)
2361 {
2362 	*((int *) data) = 1;
2363 }
2364 
2365 static void fixture_test_guest(void)
2366 {
2367 	fixture_test_data++;
2368 }
2369 
2370 
2371 static void fixture_test_setup(void)
2372 {
2373 	TEST_ASSERT_EQ_MSG(1, fixture_test_data,
2374 			   "fixture_test_teardown didn't run?!");
2375 	fixture_test_data = 2;
2376 	test_add_teardown(fixture_test_teardown, &fixture_test_data);
2377 	test_set_guest(fixture_test_guest);
2378 }
2379 
2380 static void fixture_test_case1(void)
2381 {
2382 	fixture_test_setup();
2383 	TEST_ASSERT_EQ(2, fixture_test_data);
2384 	enter_guest();
2385 	TEST_ASSERT_EQ(3, fixture_test_data);
2386 	report_pass(__func__);
2387 }
2388 
2389 static void fixture_test_case2(void)
2390 {
2391 	fixture_test_setup();
2392 	TEST_ASSERT_EQ(2, fixture_test_data);
2393 	enter_guest();
2394 	TEST_ASSERT_EQ(3, fixture_test_data);
2395 	report_pass(__func__);
2396 }
2397 
2398 enum ept_access_op {
2399 	OP_READ,
2400 	OP_WRITE,
2401 	OP_EXEC,
2402 	OP_FLUSH_TLB,
2403 	OP_EXIT,
2404 };
2405 
2406 static struct ept_access_test_data {
2407 	unsigned long gpa;
2408 	unsigned long *gva;
2409 	unsigned long hpa;
2410 	unsigned long *hva;
2411 	enum ept_access_op op;
2412 } ept_access_test_data;
2413 
2414 extern unsigned char ret42_start;
2415 extern unsigned char ret42_end;
2416 
2417 /* Returns 42. */
2418 asm(
2419 	".align 64\n"
2420 	"ret42_start:\n"
2421 	"mov $42, %eax\n"
2422 	"ret\n"
2423 	"ret42_end:\n"
2424 );
2425 
2426 static void
2427 diagnose_ept_violation_qual(u64 expected, u64 actual)
2428 {
2429 
2430 #define DIAGNOSE(flag)							\
2431 do {									\
2432 	if ((expected & flag) != (actual & flag))			\
2433 		printf(#flag " %sexpected\n",				\
2434 		       (expected & flag) ? "" : "un");			\
2435 } while (0)
2436 
2437 	DIAGNOSE(EPT_VLT_RD);
2438 	DIAGNOSE(EPT_VLT_WR);
2439 	DIAGNOSE(EPT_VLT_FETCH);
2440 	DIAGNOSE(EPT_VLT_PERM_RD);
2441 	DIAGNOSE(EPT_VLT_PERM_WR);
2442 	DIAGNOSE(EPT_VLT_PERM_EX);
2443 	DIAGNOSE(EPT_VLT_LADDR_VLD);
2444 	DIAGNOSE(EPT_VLT_PADDR);
2445 
2446 #undef DIAGNOSE
2447 }
2448 
2449 static void do_ept_access_op(enum ept_access_op op)
2450 {
2451 	ept_access_test_data.op = op;
2452 	enter_guest();
2453 }
2454 
2455 /*
2456  * Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only
2457  * needed by tests that modify guest PTEs.
2458  */
2459 static void ept_access_test_guest_flush_tlb(void)
2460 {
2461 	do_ept_access_op(OP_FLUSH_TLB);
2462 	skip_exit_vmcall();
2463 }
2464 
2465 /*
2466  * Modifies the EPT entry at @level in the mapping of @gpa. First clears the
2467  * bits in @clear then sets the bits in @set. @mkhuge transforms the entry into
2468  * a huge page.
2469  */
2470 static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level,
2471 				 unsigned long clear, unsigned long set)
2472 {
2473 	struct ept_access_test_data *data = &ept_access_test_data;
2474 	unsigned long orig_pte;
2475 	unsigned long pte;
2476 
2477 	/* Screw with the mapping at the requested level. */
2478 	TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte));
2479 	pte = orig_pte;
2480 	if (mkhuge)
2481 		pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE;
2482 	else
2483 		pte = orig_pte;
2484 	pte = (pte & ~clear) | set;
2485 	set_ept_pte(pml4, gpa, level, pte);
2486 	ept_sync(INVEPT_SINGLE, eptp);
2487 
2488 	return orig_pte;
2489 }
2490 
2491 static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte)
2492 {
2493 	set_ept_pte(pml4, gpa, level, orig_pte);
2494 	ept_sync(INVEPT_SINGLE, eptp);
2495 }
2496 
2497 static void do_ept_violation(bool leaf, enum ept_access_op op,
2498 			     u64 expected_qual, u64 expected_paddr)
2499 {
2500 	u64 qual;
2501 
2502 	/* Try the access and observe the violation. */
2503 	do_ept_access_op(op);
2504 
2505 	assert_exit_reason(VMX_EPT_VIOLATION);
2506 
2507 	qual = vmcs_read(EXI_QUALIFICATION);
2508 
2509 	/* Mask undefined bits (which may later be defined in certain cases). */
2510 	qual &= ~(EPT_VLT_GUEST_USER | EPT_VLT_GUEST_RW | EPT_VLT_GUEST_EX |
2511 		 EPT_VLT_PERM_USER_EX);
2512 
2513 	diagnose_ept_violation_qual(expected_qual, qual);
2514 	TEST_EXPECT_EQ(expected_qual, qual);
2515 
2516 	#if 0
2517 	/* Disable for now otherwise every test will fail */
2518 	TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
2519 		       (unsigned long) (
2520 			       op == OP_EXEC ? data->gva + 1 : data->gva));
2521 	#endif
2522 	/*
2523 	 * TODO: tests that probe expected_paddr in pages other than the one at
2524 	 * the beginning of the 1g region.
2525 	 */
2526 	TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr);
2527 }
2528 
2529 static void
2530 ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear,
2531 			      unsigned long set, enum ept_access_op op,
2532 			      u64 expected_qual)
2533 {
2534 	struct ept_access_test_data *data = &ept_access_test_data;
2535 	unsigned long orig_pte;
2536 
2537 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2538 
2539 	do_ept_violation(level == 1 || mkhuge, op, expected_qual,
2540 			 op == OP_EXEC ? data->gpa + sizeof(unsigned long) :
2541 					 data->gpa);
2542 
2543 	/* Fix the violation and resume the op loop. */
2544 	ept_untwiddle(data->gpa, level, orig_pte);
2545 	enter_guest();
2546 	skip_exit_vmcall();
2547 }
2548 
2549 static void
2550 ept_violation_at_level(int level, unsigned long clear, unsigned long set,
2551 		       enum ept_access_op op, u64 expected_qual)
2552 {
2553 	ept_violation_at_level_mkhuge(false, level, clear, set, op,
2554 				      expected_qual);
2555 	if (ept_huge_pages_supported(level))
2556 		ept_violation_at_level_mkhuge(true, level, clear, set, op,
2557 					      expected_qual);
2558 }
2559 
2560 static void ept_violation(unsigned long clear, unsigned long set,
2561 			  enum ept_access_op op, u64 expected_qual)
2562 {
2563 	ept_violation_at_level(1, clear, set, op, expected_qual);
2564 	ept_violation_at_level(2, clear, set, op, expected_qual);
2565 	ept_violation_at_level(3, clear, set, op, expected_qual);
2566 	ept_violation_at_level(4, clear, set, op, expected_qual);
2567 }
2568 
2569 static void ept_access_violation(unsigned long access, enum ept_access_op op,
2570 				       u64 expected_qual)
2571 {
2572 	ept_violation(EPT_PRESENT, access, op,
2573 		      expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2574 }
2575 
2576 /*
2577  * For translations that don't involve a GVA, that is physical address (paddr)
2578  * accesses, EPT violations don't set the flag EPT_VLT_PADDR.  For a typical
2579  * guest memory access, the hardware does GVA -> GPA -> HPA.  However, certain
2580  * translations don't involve GVAs, such as when the hardware does the guest
2581  * page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU
2582  * might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides
2583  * on isn't present in the EPT, then the EPT violation will be for GPA_2 and
2584  * the EPT_VLT_PADDR bit will be clear in the exit qualification.
2585  *
2586  * Note that paddr violations can also be triggered by loading PAE page tables
2587  * with wonky addresses. We don't test that yet.
2588  *
2589  * This function modifies the EPT entry that maps the GPA that the guest page
2590  * table entry mapping ept_access_test_data.gva resides on.
2591  *
2592  *	@ept_access	EPT permissions to set. Other permissions are cleared.
2593  *
2594  *	@pte_ad		Set the A/D bits on the guest PTE accordingly.
2595  *
2596  *	@op		Guest operation to perform with
2597  *			ept_access_test_data.gva.
2598  *
2599  *	@expect_violation
2600  *			Is a violation expected during the paddr access?
2601  *
2602  *	@expected_qual	Expected qualification for the EPT violation.
2603  *			EPT_VLT_PADDR should be clear.
2604  */
2605 static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad,
2606 			     enum ept_access_op op, bool expect_violation,
2607 			     u64 expected_qual)
2608 {
2609 	struct ept_access_test_data *data = &ept_access_test_data;
2610 	unsigned long *ptep;
2611 	unsigned long gpa;
2612 	unsigned long orig_epte;
2613 	unsigned long epte;
2614 	int i;
2615 
2616 	/* Modify the guest PTE mapping data->gva according to @pte_ad.  */
2617 	ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1);
2618 	TEST_ASSERT(ptep);
2619 	TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa);
2620 	*ptep = (*ptep & ~PT_AD_MASK) | pte_ad;
2621 	ept_access_test_guest_flush_tlb();
2622 
2623 	/*
2624 	 * Now modify the access bits on the EPT entry for the GPA that the
2625 	 * guest PTE resides on. Note that by modifying a single EPT entry,
2626 	 * we're potentially affecting 512 guest PTEs. However, we've carefully
2627 	 * constructed our test such that those other 511 PTEs aren't used by
2628 	 * the guest: data->gva is at the beginning of a 1G huge page, thus the
2629 	 * PTE we're modifying is at the beginning of a 4K page and the
2630 	 * following 511 entires are also under our control (and not touched by
2631 	 * the guest).
2632 	 */
2633 	gpa = virt_to_phys(ptep);
2634 	TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0);
2635 	/*
2636 	 * Make sure the guest page table page is mapped with a 4K EPT entry,
2637 	 * otherwise our level=1 twiddling below will fail. We use the
2638 	 * identity map (gpa = gpa) since page tables are shared with the host.
2639 	 */
2640 	install_ept(pml4, gpa, gpa, EPT_PRESENT);
2641 	orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1,
2642 				/*clear=*/EPT_PRESENT, /*set=*/ept_access);
2643 
2644 	if (expect_violation) {
2645 		do_ept_violation(/*leaf=*/true, op,
2646 				 expected_qual | EPT_VLT_LADDR_VLD, gpa);
2647 		ept_untwiddle(gpa, /*level=*/1, orig_epte);
2648 		do_ept_access_op(op);
2649 	} else {
2650 		do_ept_access_op(op);
2651 		if (ept_ad_enabled()) {
2652 			for (i = EPT_PAGE_LEVEL; i > 0; i--) {
2653 				TEST_ASSERT(get_ept_pte(pml4, gpa, i, &epte));
2654 				TEST_ASSERT(epte & EPT_ACCESS_FLAG);
2655 				if (i == 1)
2656 					TEST_ASSERT(epte & EPT_DIRTY_FLAG);
2657 				else
2658 					TEST_ASSERT_EQ(epte & EPT_DIRTY_FLAG, 0);
2659 			}
2660 		}
2661 
2662 		ept_untwiddle(gpa, /*level=*/1, orig_epte);
2663 	}
2664 
2665 	TEST_ASSERT(*ptep & PT_ACCESSED_MASK);
2666 	if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE)
2667 		TEST_ASSERT(*ptep & PT_DIRTY_MASK);
2668 
2669 	skip_exit_vmcall();
2670 }
2671 
2672 static void ept_access_allowed_paddr(unsigned long ept_access,
2673 				     unsigned long pte_ad,
2674 				     enum ept_access_op op)
2675 {
2676 	ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false,
2677 			 /*expected_qual=*/-1);
2678 }
2679 
2680 static void ept_access_violation_paddr(unsigned long ept_access,
2681 				       unsigned long pte_ad,
2682 				       enum ept_access_op op,
2683 				       u64 expected_qual)
2684 {
2685 	ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true,
2686 			 expected_qual);
2687 }
2688 
2689 
2690 static void ept_allowed_at_level_mkhuge(bool mkhuge, int level,
2691 					unsigned long clear,
2692 					unsigned long set,
2693 					enum ept_access_op op)
2694 {
2695 	struct ept_access_test_data *data = &ept_access_test_data;
2696 	unsigned long orig_pte;
2697 
2698 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2699 
2700 	/* No violation. Should proceed to vmcall. */
2701 	do_ept_access_op(op);
2702 	skip_exit_vmcall();
2703 
2704 	ept_untwiddle(data->gpa, level, orig_pte);
2705 }
2706 
2707 static void ept_allowed_at_level(int level, unsigned long clear,
2708 				 unsigned long set, enum ept_access_op op)
2709 {
2710 	ept_allowed_at_level_mkhuge(false, level, clear, set, op);
2711 	if (ept_huge_pages_supported(level))
2712 		ept_allowed_at_level_mkhuge(true, level, clear, set, op);
2713 }
2714 
2715 static void ept_allowed(unsigned long clear, unsigned long set,
2716 			enum ept_access_op op)
2717 {
2718 	ept_allowed_at_level(1, clear, set, op);
2719 	ept_allowed_at_level(2, clear, set, op);
2720 	ept_allowed_at_level(3, clear, set, op);
2721 	ept_allowed_at_level(4, clear, set, op);
2722 }
2723 
2724 static void ept_ignored_bit(int bit)
2725 {
2726 	/* Set the bit. */
2727 	ept_allowed(0, 1ul << bit, OP_READ);
2728 	ept_allowed(0, 1ul << bit, OP_WRITE);
2729 	ept_allowed(0, 1ul << bit, OP_EXEC);
2730 
2731 	/* Clear the bit. */
2732 	ept_allowed(1ul << bit, 0, OP_READ);
2733 	ept_allowed(1ul << bit, 0, OP_WRITE);
2734 	ept_allowed(1ul << bit, 0, OP_EXEC);
2735 }
2736 
2737 static void ept_access_allowed(unsigned long access, enum ept_access_op op)
2738 {
2739 	ept_allowed(EPT_PRESENT, access, op);
2740 }
2741 
2742 
2743 static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level,
2744 					     unsigned long clear,
2745 					     unsigned long set,
2746 					     enum ept_access_op op)
2747 {
2748 	struct ept_access_test_data *data = &ept_access_test_data;
2749 	unsigned long orig_pte;
2750 
2751 	orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
2752 
2753 	do_ept_access_op(op);
2754 	assert_exit_reason(VMX_EPT_MISCONFIG);
2755 
2756 	/* Intel 27.2.1, "For all other VM exits, this field is cleared." */
2757 	#if 0
2758 	/* broken: */
2759 	TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0);
2760 	#endif
2761 	#if 0
2762 	/*
2763 	 * broken:
2764 	 * According to description of exit qual for EPT violation,
2765 	 * EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid.
2766 	 * However, I can't find anything that says GUEST_LINEAR_ADDRESS ought
2767 	 * to be set for msiconfig.
2768 	 */
2769 	TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
2770 		       (unsigned long) (
2771 			       op == OP_EXEC ? data->gva + 1 : data->gva));
2772 	#endif
2773 
2774 	/* Fix the violation and resume the op loop. */
2775 	ept_untwiddle(data->gpa, level, orig_pte);
2776 	enter_guest();
2777 	skip_exit_vmcall();
2778 }
2779 
2780 static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level,
2781 					  unsigned long clear,
2782 					  unsigned long set)
2783 {
2784 	/* The op shouldn't matter (read, write, exec), so try them all! */
2785 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ);
2786 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE);
2787 	ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC);
2788 }
2789 
2790 static void ept_misconfig_at_level(int level, unsigned long clear,
2791 				   unsigned long set)
2792 {
2793 	ept_misconfig_at_level_mkhuge(false, level, clear, set);
2794 	if (ept_huge_pages_supported(level))
2795 		ept_misconfig_at_level_mkhuge(true, level, clear, set);
2796 }
2797 
2798 static void ept_misconfig(unsigned long clear, unsigned long set)
2799 {
2800 	ept_misconfig_at_level(1, clear, set);
2801 	ept_misconfig_at_level(2, clear, set);
2802 	ept_misconfig_at_level(3, clear, set);
2803 	ept_misconfig_at_level(4, clear, set);
2804 }
2805 
2806 static void ept_access_misconfig(unsigned long access)
2807 {
2808 	ept_misconfig(EPT_PRESENT, access);
2809 }
2810 
2811 static void ept_reserved_bit_at_level_nohuge(int level, int bit)
2812 {
2813 	/* Setting the bit causes a misconfig. */
2814 	ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit);
2815 
2816 	/* Making the entry non-present turns reserved bits into ignored. */
2817 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2818 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2819 }
2820 
2821 static void ept_reserved_bit_at_level_huge(int level, int bit)
2822 {
2823 	/* Setting the bit causes a misconfig. */
2824 	ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit);
2825 
2826 	/* Making the entry non-present turns reserved bits into ignored. */
2827 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2828 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2829 }
2830 
2831 static void ept_reserved_bit_at_level(int level, int bit)
2832 {
2833 	/* Setting the bit causes a misconfig. */
2834 	ept_misconfig_at_level(level, 0, 1ul << bit);
2835 
2836 	/* Making the entry non-present turns reserved bits into ignored. */
2837 	ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
2838 			       EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
2839 }
2840 
2841 static void ept_reserved_bit(int bit)
2842 {
2843 	ept_reserved_bit_at_level(1, bit);
2844 	ept_reserved_bit_at_level(2, bit);
2845 	ept_reserved_bit_at_level(3, bit);
2846 	ept_reserved_bit_at_level(4, bit);
2847 }
2848 
2849 #define PAGE_2M_ORDER 9
2850 #define PAGE_1G_ORDER 18
2851 
2852 static void *get_1g_page(void)
2853 {
2854 	static void *alloc;
2855 
2856 	if (!alloc)
2857 		alloc = alloc_pages(PAGE_1G_ORDER);
2858 	return alloc;
2859 }
2860 
2861 static void ept_access_test_teardown(void *unused)
2862 {
2863 	/* Exit the guest cleanly. */
2864 	do_ept_access_op(OP_EXIT);
2865 }
2866 
2867 static void ept_access_test_guest(void)
2868 {
2869 	struct ept_access_test_data *data = &ept_access_test_data;
2870 	int (*code)(void) = (int (*)(void)) &data->gva[1];
2871 
2872 	while (true) {
2873 		switch (data->op) {
2874 		case OP_READ:
2875 			TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1);
2876 			break;
2877 		case OP_WRITE:
2878 			*data->gva = MAGIC_VAL_2;
2879 			TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2);
2880 			*data->gva = MAGIC_VAL_1;
2881 			break;
2882 		case OP_EXEC:
2883 			TEST_ASSERT_EQ(42, code());
2884 			break;
2885 		case OP_FLUSH_TLB:
2886 			write_cr3(read_cr3());
2887 			break;
2888 		case OP_EXIT:
2889 			return;
2890 		default:
2891 			TEST_ASSERT_MSG(false, "Unknown op %d", data->op);
2892 		}
2893 		vmcall();
2894 	}
2895 }
2896 
2897 static void ept_access_test_setup(void)
2898 {
2899 	struct ept_access_test_data *data = &ept_access_test_data;
2900 	unsigned long npages = 1ul << PAGE_1G_ORDER;
2901 	unsigned long size = npages * PAGE_SIZE;
2902 	unsigned long *page_table = current_page_table();
2903 	unsigned long pte;
2904 
2905 	if (setup_ept(false))
2906 		test_skip("EPT not supported");
2907 
2908 	/* We use data->gpa = 1 << 39 so that test data has a separate pml4 entry */
2909 	if (cpuid_maxphyaddr() < 40)
2910 		test_skip("Test needs MAXPHYADDR >= 40");
2911 
2912 	test_set_guest(ept_access_test_guest);
2913 	test_add_teardown(ept_access_test_teardown, NULL);
2914 
2915 	data->hva = get_1g_page();
2916 	TEST_ASSERT(data->hva);
2917 	data->hpa = virt_to_phys(data->hva);
2918 
2919 	data->gpa = 1ul << 39;
2920 	data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2),
2921 				   size);
2922 	TEST_ASSERT(!any_present_pages(page_table, data->gva, size));
2923 	install_pages(page_table, data->gpa, size, data->gva);
2924 
2925 	/*
2926 	 * Make sure nothing's mapped here so the tests that screw with the
2927 	 * pml4 entry don't inadvertently break something.
2928 	 */
2929 	TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0);
2930 	TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0);
2931 	install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT);
2932 
2933 	data->hva[0] = MAGIC_VAL_1;
2934 	memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start);
2935 }
2936 
2937 static void ept_access_test_not_present(void)
2938 {
2939 	ept_access_test_setup();
2940 	/* --- */
2941 	ept_access_violation(0, OP_READ, EPT_VLT_RD);
2942 	ept_access_violation(0, OP_WRITE, EPT_VLT_WR);
2943 	ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH);
2944 }
2945 
2946 static void ept_access_test_read_only(void)
2947 {
2948 	ept_access_test_setup();
2949 
2950 	/* r-- */
2951 	ept_access_allowed(EPT_RA, OP_READ);
2952 	ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD);
2953 	ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD);
2954 }
2955 
2956 static void ept_access_test_write_only(void)
2957 {
2958 	ept_access_test_setup();
2959 	/* -w- */
2960 	ept_access_misconfig(EPT_WA);
2961 }
2962 
2963 static void ept_access_test_read_write(void)
2964 {
2965 	ept_access_test_setup();
2966 	/* rw- */
2967 	ept_access_allowed(EPT_RA | EPT_WA, OP_READ);
2968 	ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE);
2969 	ept_access_violation(EPT_RA | EPT_WA, OP_EXEC,
2970 			   EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR);
2971 }
2972 
2973 
2974 static void ept_access_test_execute_only(void)
2975 {
2976 	ept_access_test_setup();
2977 	/* --x */
2978 	if (ept_execute_only_supported()) {
2979 		ept_access_violation(EPT_EA, OP_READ,
2980 				     EPT_VLT_RD | EPT_VLT_PERM_EX);
2981 		ept_access_violation(EPT_EA, OP_WRITE,
2982 				     EPT_VLT_WR | EPT_VLT_PERM_EX);
2983 		ept_access_allowed(EPT_EA, OP_EXEC);
2984 	} else {
2985 		ept_access_misconfig(EPT_EA);
2986 	}
2987 }
2988 
2989 static void ept_access_test_read_execute(void)
2990 {
2991 	ept_access_test_setup();
2992 	/* r-x */
2993 	ept_access_allowed(EPT_RA | EPT_EA, OP_READ);
2994 	ept_access_violation(EPT_RA | EPT_EA, OP_WRITE,
2995 			   EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX);
2996 	ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC);
2997 }
2998 
2999 static void ept_access_test_write_execute(void)
3000 {
3001 	ept_access_test_setup();
3002 	/* -wx */
3003 	ept_access_misconfig(EPT_WA | EPT_EA);
3004 }
3005 
3006 static void ept_access_test_read_write_execute(void)
3007 {
3008 	ept_access_test_setup();
3009 	/* rwx */
3010 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ);
3011 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE);
3012 	ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC);
3013 }
3014 
3015 static void ept_access_test_reserved_bits(void)
3016 {
3017 	int i;
3018 	int maxphyaddr;
3019 
3020 	ept_access_test_setup();
3021 
3022 	/* Reserved bits above maxphyaddr. */
3023 	maxphyaddr = cpuid_maxphyaddr();
3024 	for (i = maxphyaddr; i <= 51; i++) {
3025 		report_prefix_pushf("reserved_bit=%d", i);
3026 		ept_reserved_bit(i);
3027 		report_prefix_pop();
3028 	}
3029 
3030 	/* Level-specific reserved bits. */
3031 	ept_reserved_bit_at_level_nohuge(2, 3);
3032 	ept_reserved_bit_at_level_nohuge(2, 4);
3033 	ept_reserved_bit_at_level_nohuge(2, 5);
3034 	ept_reserved_bit_at_level_nohuge(2, 6);
3035 	/* 2M alignment. */
3036 	for (i = 12; i < 20; i++) {
3037 		report_prefix_pushf("reserved_bit=%d", i);
3038 		ept_reserved_bit_at_level_huge(2, i);
3039 		report_prefix_pop();
3040 	}
3041 	ept_reserved_bit_at_level_nohuge(3, 3);
3042 	ept_reserved_bit_at_level_nohuge(3, 4);
3043 	ept_reserved_bit_at_level_nohuge(3, 5);
3044 	ept_reserved_bit_at_level_nohuge(3, 6);
3045 	/* 1G alignment. */
3046 	for (i = 12; i < 29; i++) {
3047 		report_prefix_pushf("reserved_bit=%d", i);
3048 		ept_reserved_bit_at_level_huge(3, i);
3049 		report_prefix_pop();
3050 	}
3051 	ept_reserved_bit_at_level(4, 3);
3052 	ept_reserved_bit_at_level(4, 4);
3053 	ept_reserved_bit_at_level(4, 5);
3054 	ept_reserved_bit_at_level(4, 6);
3055 	ept_reserved_bit_at_level(4, 7);
3056 }
3057 
3058 static void ept_access_test_ignored_bits(void)
3059 {
3060 	ept_access_test_setup();
3061 	/*
3062 	 * Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as
3063 	 * far as translation is concerned even if AD bits are enabled in the
3064 	 * EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution
3065 	 * control is 0.
3066 	 */
3067 	ept_ignored_bit(8);
3068 	ept_ignored_bit(9);
3069 	ept_ignored_bit(10);
3070 	ept_ignored_bit(11);
3071 	ept_ignored_bit(52);
3072 	ept_ignored_bit(53);
3073 	ept_ignored_bit(54);
3074 	ept_ignored_bit(55);
3075 	ept_ignored_bit(56);
3076 	ept_ignored_bit(57);
3077 	ept_ignored_bit(58);
3078 	ept_ignored_bit(59);
3079 	ept_ignored_bit(60);
3080 	ept_ignored_bit(61);
3081 	ept_ignored_bit(62);
3082 	ept_ignored_bit(63);
3083 }
3084 
3085 static void ept_access_test_paddr_not_present_ad_disabled(void)
3086 {
3087 	ept_access_test_setup();
3088 	ept_disable_ad_bits();
3089 
3090 	ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD);
3091 	ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD);
3092 	ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD);
3093 }
3094 
3095 static void ept_access_test_paddr_not_present_ad_enabled(void)
3096 {
3097 	u64 qual = EPT_VLT_RD | EPT_VLT_WR;
3098 
3099 	ept_access_test_setup();
3100 	ept_enable_ad_bits_or_skip_test();
3101 
3102 	ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual);
3103 	ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual);
3104 	ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual);
3105 }
3106 
3107 static void ept_access_test_paddr_read_only_ad_disabled(void)
3108 {
3109 	/*
3110 	 * When EPT AD bits are disabled, all accesses to guest paging
3111 	 * structures are reported separately as a read and (after
3112 	 * translation of the GPA to host physical address) a read+write
3113 	 * if the A/D bits have to be set.
3114 	 */
3115 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
3116 
3117 	ept_access_test_setup();
3118 	ept_disable_ad_bits();
3119 
3120 	/* Can't update A bit, so all accesses fail. */
3121 	ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
3122 	ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
3123 	ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
3124 	/* AD bits disabled, so only writes try to update the D bit. */
3125 	ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ);
3126 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
3127 	ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC);
3128 	/* Both A and D already set, so read-only is OK. */
3129 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ);
3130 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE);
3131 	ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC);
3132 }
3133 
3134 static void ept_access_test_paddr_read_only_ad_enabled(void)
3135 {
3136 	/*
3137 	 * When EPT AD bits are enabled, all accesses to guest paging
3138 	 * structures are considered writes as far as EPT translation
3139 	 * is concerned.
3140 	 */
3141 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
3142 
3143 	ept_access_test_setup();
3144 	ept_enable_ad_bits_or_skip_test();
3145 
3146 	ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
3147 	ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
3148 	ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
3149 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual);
3150 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
3151 	ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual);
3152 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual);
3153 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual);
3154 	ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual);
3155 }
3156 
3157 static void ept_access_test_paddr_read_write(void)
3158 {
3159 	ept_access_test_setup();
3160 	/* Read-write access to paging structure. */
3161 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ);
3162 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE);
3163 	ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC);
3164 }
3165 
3166 static void ept_access_test_paddr_read_write_execute(void)
3167 {
3168 	ept_access_test_setup();
3169 	/* RWX access to paging structure. */
3170 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ);
3171 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE);
3172 	ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC);
3173 }
3174 
3175 static void ept_access_test_paddr_read_execute_ad_disabled(void)
3176 {
3177   	/*
3178 	 * When EPT AD bits are disabled, all accesses to guest paging
3179 	 * structures are reported separately as a read and (after
3180 	 * translation of the GPA to host physical address) a read+write
3181 	 * if the A/D bits have to be set.
3182 	 */
3183 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
3184 
3185 	ept_access_test_setup();
3186 	ept_disable_ad_bits();
3187 
3188 	/* Can't update A bit, so all accesses fail. */
3189 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
3190 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
3191 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
3192 	/* AD bits disabled, so only writes try to update the D bit. */
3193 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ);
3194 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
3195 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC);
3196 	/* Both A and D already set, so read-only is OK. */
3197 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ);
3198 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE);
3199 	ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC);
3200 }
3201 
3202 static void ept_access_test_paddr_read_execute_ad_enabled(void)
3203 {
3204 	/*
3205 	 * When EPT AD bits are enabled, all accesses to guest paging
3206 	 * structures are considered writes as far as EPT translation
3207 	 * is concerned.
3208 	 */
3209 	u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
3210 
3211 	ept_access_test_setup();
3212 	ept_enable_ad_bits_or_skip_test();
3213 
3214 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
3215 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
3216 	ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
3217 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual);
3218 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
3219 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual);
3220 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual);
3221 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual);
3222 	ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual);
3223 }
3224 
3225 static void ept_access_test_paddr_not_present_page_fault(void)
3226 {
3227 	ept_access_test_setup();
3228 	/*
3229 	 * TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is
3230 	 * page is read-only in EPT but GVA is also mapped read only in PT.
3231 	 * Thus guest page fault before host takes EPT violation for trying to
3232 	 * update A bit.
3233 	 */
3234 }
3235 
3236 static void ept_access_test_force_2m_page(void)
3237 {
3238 	ept_access_test_setup();
3239 
3240 	TEST_ASSERT_EQ(ept_2m_supported(), true);
3241 	ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ);
3242 	ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE,
3243 				      EPT_VLT_WR | EPT_VLT_PERM_RD |
3244 				      EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
3245 	ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA);
3246 }
3247 
3248 static bool invvpid_valid(u64 type, u64 vpid, u64 gla)
3249 {
3250 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3251 
3252 	TEST_ASSERT(msr & VPID_CAP_INVVPID);
3253 
3254 	if (type < INVVPID_ADDR || type > INVVPID_CONTEXT_LOCAL)
3255 		return false;
3256 
3257 	if (!(msr & (1ull << (type + VPID_CAP_INVVPID_TYPES_SHIFT))))
3258 		return false;
3259 
3260 	if (vpid >> 16)
3261 		return false;
3262 
3263 	if (type != INVVPID_ALL && !vpid)
3264 		return false;
3265 
3266 	if (type == INVVPID_ADDR && !is_canonical(gla))
3267 		return false;
3268 
3269 	return true;
3270 }
3271 
3272 static void try_invvpid(u64 type, u64 vpid, u64 gla)
3273 {
3274 	int rc;
3275 	bool valid = invvpid_valid(type, vpid, gla);
3276 	u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT
3277 		: VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID;
3278 	/*
3279 	 * Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so
3280 	 * that we can tell if it is updated by INVVPID.
3281 	 */
3282 	vmcs_read(~0);
3283 	rc = __invvpid(type, vpid, gla);
3284 	report(!rc == valid, "INVVPID type %ld VPID %lx GLA %lx %s", type,
3285 	       vpid, gla,
3286 	       valid ? "passes" : "fails");
3287 	report(vmcs_read(VMX_INST_ERROR) == expected,
3288 	       "After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)",
3289 	       rc ? "failed" : "successful",
3290 	       expected, vmcs_read(VMX_INST_ERROR));
3291 }
3292 
3293 static void ds_invvpid(void *data)
3294 {
3295 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3296 	u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
3297 
3298 	TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
3299 	asm volatile("invvpid %0, %1"
3300 		     :
3301 		     : "m"(*(struct invvpid_operand *)data),
3302 		       "r"(type));
3303 }
3304 
3305 /*
3306  * The SS override is ignored in 64-bit mode, so we use an addressing
3307  * mode with %rsp as the base register to generate an implicit SS
3308  * reference.
3309  */
3310 static void ss_invvpid(void *data)
3311 {
3312 	u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3313 	u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
3314 
3315 	TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
3316 	asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1"
3317 		     : "+r"(data)
3318 		     : "r"(type));
3319 }
3320 
3321 static void invvpid_test_gp(void)
3322 {
3323 	bool fault;
3324 
3325 	fault = test_for_exception(GP_VECTOR, &ds_invvpid,
3326 				   (void *)NONCANONICAL);
3327 	report(fault, "INVVPID with non-canonical DS operand raises #GP");
3328 }
3329 
3330 static void invvpid_test_ss(void)
3331 {
3332 	bool fault;
3333 
3334 	fault = test_for_exception(SS_VECTOR, &ss_invvpid,
3335 				   (void *)NONCANONICAL);
3336 	report(fault, "INVVPID with non-canonical SS operand raises #SS");
3337 }
3338 
3339 static void invvpid_test_pf(void)
3340 {
3341 	void *vpage = alloc_vpage();
3342 	bool fault;
3343 
3344 	fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage);
3345 	report(fault, "INVVPID with unmapped operand raises #PF");
3346 }
3347 
3348 static void try_compat_invvpid(void *unused)
3349 {
3350 	struct far_pointer32 fp = {
3351 		.offset = (uintptr_t)&&invvpid,
3352 		.selector = KERNEL_CS32,
3353 	};
3354 	uintptr_t rsp;
3355 
3356 	asm volatile ("mov %%rsp, %0" : "=r"(rsp));
3357 
3358 	TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid,
3359 			"Code address too high.");
3360 	TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high.");
3361 
3362 	asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid);
3363 	return;
3364 invvpid:
3365 	asm volatile (".code32;"
3366 		      "invvpid (%eax), %eax;"
3367 		      "lret;"
3368 		      ".code64");
3369 	__builtin_unreachable();
3370 }
3371 
3372 static void invvpid_test_compatibility_mode(void)
3373 {
3374 	bool fault;
3375 
3376 	fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL);
3377 	report(fault, "Compatibility mode INVVPID raises #UD");
3378 }
3379 
3380 static void invvpid_test_not_in_vmx_operation(void)
3381 {
3382 	bool fault;
3383 
3384 	TEST_ASSERT(!vmx_off());
3385 	fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL);
3386 	report(fault, "INVVPID outside of VMX operation raises #UD");
3387 	TEST_ASSERT(!vmx_on());
3388 }
3389 
3390 /*
3391  * This does not test real-address mode, virtual-8086 mode, protected mode,
3392  * or CPL > 0.
3393  */
3394 static void invvpid_test_v2(void)
3395 {
3396 	u64 msr;
3397 	int i;
3398 	unsigned types = 0;
3399 	unsigned type;
3400 
3401 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
3402 	    !(ctrl_cpu_rev[1].clr & CPU_VPID))
3403 		test_skip("VPID not supported");
3404 
3405 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3406 
3407 	if (!(msr & VPID_CAP_INVVPID))
3408 		test_skip("INVVPID not supported.\n");
3409 
3410 	if (msr & VPID_CAP_INVVPID_ADDR)
3411 		types |= 1u << INVVPID_ADDR;
3412 	if (msr & VPID_CAP_INVVPID_CXTGLB)
3413 		types |= 1u << INVVPID_CONTEXT_GLOBAL;
3414 	if (msr & VPID_CAP_INVVPID_ALL)
3415 		types |= 1u << INVVPID_ALL;
3416 	if (msr & VPID_CAP_INVVPID_CXTLOC)
3417 		types |= 1u << INVVPID_CONTEXT_LOCAL;
3418 
3419 	if (!types)
3420 		test_skip("No INVVPID types supported.\n");
3421 
3422 	for (i = -127; i < 128; i++)
3423 		try_invvpid(i, 0xffff, 0);
3424 
3425 	/*
3426 	 * VPID must not be more than 16 bits.
3427 	 */
3428 	for (i = 0; i < 64; i++)
3429 		for (type = 0; type < 4; type++)
3430 			if (types & (1u << type))
3431 				try_invvpid(type, 1ul << i, 0);
3432 
3433 	/*
3434 	 * VPID must not be zero, except for "all contexts."
3435 	 */
3436 	for (type = 0; type < 4; type++)
3437 		if (types & (1u << type))
3438 			try_invvpid(type, 0, 0);
3439 
3440 	/*
3441 	 * The gla operand is only validated for single-address INVVPID.
3442 	 */
3443 	if (types & (1u << INVVPID_ADDR))
3444 		try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL);
3445 
3446 	invvpid_test_gp();
3447 	invvpid_test_ss();
3448 	invvpid_test_pf();
3449 	invvpid_test_compatibility_mode();
3450 	invvpid_test_not_in_vmx_operation();
3451 }
3452 
3453 /*
3454  * Test for early VMLAUNCH failure. Returns true if VMLAUNCH makes it
3455  * at least as far as the guest-state checks. Returns false if the
3456  * VMLAUNCH fails early and execution falls through to the next
3457  * instruction.
3458  */
3459 static bool vmlaunch_succeeds(void)
3460 {
3461 	u32 exit_reason;
3462 
3463 	/*
3464 	 * Indirectly set VMX_INST_ERR to 12 ("VMREAD/VMWRITE from/to
3465 	 * unsupported VMCS component"). The caller can then check
3466 	 * to see if a failed VM-entry sets VMX_INST_ERR as expected.
3467 	 */
3468 	vmcs_write(~0u, 0);
3469 
3470 	vmcs_write(HOST_RIP, (uintptr_t)&&success);
3471 	__asm__ __volatile__ goto ("vmwrite %%rsp, %0; vmlaunch"
3472 				   :
3473 				   : "r" ((u64)HOST_RSP)
3474 				   : "cc", "memory"
3475 				   : success);
3476 	return false;
3477 success:
3478 	exit_reason = vmcs_read(EXI_REASON);
3479 	TEST_ASSERT(exit_reason == (VMX_FAIL_STATE | VMX_ENTRY_FAILURE) ||
3480 		    exit_reason == (VMX_FAIL_MSR | VMX_ENTRY_FAILURE));
3481 	return true;
3482 }
3483 
3484 /*
3485  * Try to launch the current VMCS.
3486  */
3487 static void test_vmx_vmlaunch(u32 xerror)
3488 {
3489 	bool success = vmlaunch_succeeds();
3490 	u32 vmx_inst_err;
3491 
3492 	report(success == !xerror, "vmlaunch %s",
3493 	       !xerror ? "succeeds" : "fails");
3494 	if (!success && xerror) {
3495 		vmx_inst_err = vmcs_read(VMX_INST_ERROR);
3496 		report(vmx_inst_err == xerror,
3497 		       "VMX inst error is %d (actual %d)", xerror,
3498 		       vmx_inst_err);
3499 	}
3500 }
3501 
3502 /*
3503  * Try to launch the current VMCS, and expect one of two possible
3504  * errors (or success) codes.
3505  */
3506 static void test_vmx_vmlaunch2(u32 xerror1, u32 xerror2)
3507 {
3508 	bool success = vmlaunch_succeeds();
3509 	u32 vmx_inst_err;
3510 
3511 	if (!xerror1 == !xerror2)
3512 		report(success == !xerror1, "vmlaunch %s",
3513 		       !xerror1 ? "succeeds" : "fails");
3514 
3515 	if (!success && (xerror1 || xerror2)) {
3516 		vmx_inst_err = vmcs_read(VMX_INST_ERROR);
3517 		report(vmx_inst_err == xerror1 || vmx_inst_err == xerror2,
3518 		       "VMX inst error is %d or %d (actual %d)", xerror1,
3519 		       xerror2, vmx_inst_err);
3520 	}
3521 }
3522 
3523 static void test_vmx_invalid_controls(void)
3524 {
3525 	test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3526 }
3527 
3528 static void test_vmx_valid_controls(void)
3529 {
3530 	test_vmx_vmlaunch(0);
3531 }
3532 
3533 /*
3534  * Test a particular value of a VM-execution control bit, if the value
3535  * is required or if the value is zero.
3536  */
3537 static void test_rsvd_ctl_bit_value(const char *name, union vmx_ctrl_msr msr,
3538 				    enum Encoding encoding, unsigned bit,
3539 				    unsigned val)
3540 {
3541 	u32 mask = 1u << bit;
3542 	bool expected;
3543 	u32 controls;
3544 
3545 	if (msr.set & mask)
3546 		TEST_ASSERT(msr.clr & mask);
3547 
3548 	/*
3549 	 * We can't arbitrarily turn on a control bit, because it may
3550 	 * introduce dependencies on other VMCS fields. So, we only
3551 	 * test turning on bits that have a required setting.
3552 	 */
3553 	if (val && (msr.clr & mask) && !(msr.set & mask))
3554 		return;
3555 
3556 	report_prefix_pushf("%s %s bit %d",
3557 			    val ? "Set" : "Clear", name, bit);
3558 
3559 	controls = vmcs_read(encoding);
3560 	if (val) {
3561 		vmcs_write(encoding, msr.set | mask);
3562 		expected = (msr.clr & mask);
3563 	} else {
3564 		vmcs_write(encoding, msr.set & ~mask);
3565 		expected = !(msr.set & mask);
3566 	}
3567 	if (expected)
3568 		test_vmx_valid_controls();
3569 	else
3570 		test_vmx_invalid_controls();
3571 	vmcs_write(encoding, controls);
3572 	report_prefix_pop();
3573 }
3574 
3575 /*
3576  * Test reserved values of a VM-execution control bit, based on the
3577  * allowed bit settings from the corresponding VMX capability MSR.
3578  */
3579 static void test_rsvd_ctl_bit(const char *name, union vmx_ctrl_msr msr,
3580 			      enum Encoding encoding, unsigned bit)
3581 {
3582 	test_rsvd_ctl_bit_value(name, msr, encoding, bit, 0);
3583 	test_rsvd_ctl_bit_value(name, msr, encoding, bit, 1);
3584 }
3585 
3586 /*
3587  * Reserved bits in the pin-based VM-execution controls must be set
3588  * properly. Software may consult the VMX capability MSRs to determine
3589  * the proper settings.
3590  * [Intel SDM]
3591  */
3592 static void test_pin_based_ctls(void)
3593 {
3594 	unsigned bit;
3595 
3596 	printf("%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PIN" :
3597 	       "MSR_IA32_VMX_PINBASED_CTLS", ctrl_pin_rev.val);
3598 	for (bit = 0; bit < 32; bit++)
3599 		test_rsvd_ctl_bit("pin-based controls",
3600 				  ctrl_pin_rev, PIN_CONTROLS, bit);
3601 }
3602 
3603 /*
3604  * Reserved bits in the primary processor-based VM-execution controls
3605  * must be set properly. Software may consult the VMX capability MSRs
3606  * to determine the proper settings.
3607  * [Intel SDM]
3608  */
3609 static void test_primary_processor_based_ctls(void)
3610 {
3611 	unsigned bit;
3612 
3613 	printf("\n%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PROC" :
3614 	       "MSR_IA32_VMX_PROCBASED_CTLS", ctrl_cpu_rev[0].val);
3615 	for (bit = 0; bit < 32; bit++)
3616 		test_rsvd_ctl_bit("primary processor-based controls",
3617 				  ctrl_cpu_rev[0], CPU_EXEC_CTRL0, bit);
3618 }
3619 
3620 /*
3621  * If the "activate secondary controls" primary processor-based
3622  * VM-execution control is 1, reserved bits in the secondary
3623  * processor-based VM-execution controls must be cleared. Software may
3624  * consult the VMX capability MSRs to determine which bits are
3625  * reserved.
3626  * If the "activate secondary controls" primary processor-based
3627  * VM-execution control is 0 (or if the processor does not support the
3628  * 1-setting of that control), no checks are performed on the
3629  * secondary processor-based VM-execution controls.
3630  * [Intel SDM]
3631  */
3632 static void test_secondary_processor_based_ctls(void)
3633 {
3634 	u32 primary;
3635 	u32 secondary;
3636 	unsigned bit;
3637 
3638 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY))
3639 		return;
3640 
3641 	primary = vmcs_read(CPU_EXEC_CTRL0);
3642 	secondary = vmcs_read(CPU_EXEC_CTRL1);
3643 
3644 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3645 	printf("\nMSR_IA32_VMX_PROCBASED_CTLS2: %lx\n", ctrl_cpu_rev[1].val);
3646 	for (bit = 0; bit < 32; bit++)
3647 		test_rsvd_ctl_bit("secondary processor-based controls",
3648 				  ctrl_cpu_rev[1], CPU_EXEC_CTRL1, bit);
3649 
3650 	/*
3651 	 * When the "activate secondary controls" VM-execution control
3652 	 * is clear, there are no checks on the secondary controls.
3653 	 */
3654 	vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
3655 	vmcs_write(CPU_EXEC_CTRL1, ~0);
3656 	report(vmlaunch_succeeds(),
3657 	       "Secondary processor-based controls ignored");
3658 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3659 	vmcs_write(CPU_EXEC_CTRL0, primary);
3660 }
3661 
3662 static void try_cr3_target_count(unsigned i, unsigned max)
3663 {
3664 	report_prefix_pushf("CR3 target count 0x%x", i);
3665 	vmcs_write(CR3_TARGET_COUNT, i);
3666 	if (i <= max)
3667 		test_vmx_valid_controls();
3668 	else
3669 		test_vmx_invalid_controls();
3670 	report_prefix_pop();
3671 }
3672 
3673 /*
3674  * The CR3-target count must not be greater than 4. Future processors
3675  * may support a different number of CR3-target values. Software
3676  * should read the VMX capability MSR IA32_VMX_MISC to determine the
3677  * number of values supported.
3678  * [Intel SDM]
3679  */
3680 static void test_cr3_targets(void)
3681 {
3682 	unsigned supported_targets = (rdmsr(MSR_IA32_VMX_MISC) >> 16) & 0x1ff;
3683 	u32 cr3_targets = vmcs_read(CR3_TARGET_COUNT);
3684 	unsigned i;
3685 
3686 	printf("\nSupported CR3 targets: %d\n", supported_targets);
3687 	TEST_ASSERT(supported_targets <= 256);
3688 
3689 	try_cr3_target_count(-1u, supported_targets);
3690 	try_cr3_target_count(0x80000000, supported_targets);
3691 	try_cr3_target_count(0x7fffffff, supported_targets);
3692 	for (i = 0; i <= supported_targets + 1; i++)
3693 		try_cr3_target_count(i, supported_targets);
3694 	vmcs_write(CR3_TARGET_COUNT, cr3_targets);
3695 
3696 	/* VMWRITE to nonexistent target fields should fail. */
3697 	for (i = supported_targets; i < 256; i++)
3698 		TEST_ASSERT(vmcs_write(CR3_TARGET_0 + i*2, 0));
3699 }
3700 
3701 /*
3702  * Test a particular address setting in the VMCS
3703  */
3704 static void test_vmcs_addr(const char *name,
3705 			   enum Encoding encoding,
3706 			   u64 align,
3707 			   bool ignored,
3708 			   bool skip_beyond_mapped_ram,
3709 			   u64 addr)
3710 {
3711 	report_prefix_pushf("%s = %lx", name, addr);
3712 	vmcs_write(encoding, addr);
3713 	if (skip_beyond_mapped_ram &&
3714 	    addr > fwcfg_get_u64(FW_CFG_RAM_SIZE) - align &&
3715 	    addr < (1ul << cpuid_maxphyaddr()))
3716 		printf("Skipping physical address beyond mapped RAM\n");
3717 	else if (ignored || (IS_ALIGNED(addr, align) &&
3718 	    addr < (1ul << cpuid_maxphyaddr())))
3719 		test_vmx_valid_controls();
3720 	else
3721 		test_vmx_invalid_controls();
3722 	report_prefix_pop();
3723 }
3724 
3725 /*
3726  * Test interesting values for a VMCS address
3727  */
3728 static void test_vmcs_addr_values(const char *name,
3729 				  enum Encoding encoding,
3730 				  u64 align,
3731 				  bool ignored,
3732 				  bool skip_beyond_mapped_ram,
3733 				  u32 bit_start, u32 bit_end)
3734 {
3735 	unsigned i;
3736 	u64 orig_val = vmcs_read(encoding);
3737 
3738 	for (i = bit_start; i <= bit_end; i++)
3739 		test_vmcs_addr(name, encoding, align, ignored,
3740 			       skip_beyond_mapped_ram, 1ul << i);
3741 
3742 	test_vmcs_addr(name, encoding, align, ignored,
3743 		       skip_beyond_mapped_ram, PAGE_SIZE - 1);
3744 	test_vmcs_addr(name, encoding, align, ignored,
3745 		       skip_beyond_mapped_ram, PAGE_SIZE);
3746 	test_vmcs_addr(name, encoding, align, ignored,
3747 		       skip_beyond_mapped_ram,
3748 		      (1ul << cpuid_maxphyaddr()) - PAGE_SIZE);
3749 	test_vmcs_addr(name, encoding, align, ignored,
3750 		       skip_beyond_mapped_ram, -1ul);
3751 
3752 	vmcs_write(encoding, orig_val);
3753 }
3754 
3755 /*
3756  * Test a physical address reference in the VMCS, when the corresponding
3757  * feature is enabled and when the corresponding feature is disabled.
3758  */
3759 static void test_vmcs_addr_reference(u32 control_bit, enum Encoding field,
3760 				     const char *field_name,
3761 				     const char *control_name, u64 align,
3762 				     bool skip_beyond_mapped_ram,
3763 				     bool control_primary)
3764 {
3765 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
3766 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
3767 	u64 page_addr;
3768 
3769 	if (control_primary) {
3770 		if (!(ctrl_cpu_rev[0].clr & control_bit))
3771 			return;
3772 	} else {
3773 		if (!(ctrl_cpu_rev[1].clr & control_bit))
3774 			return;
3775 	}
3776 
3777 	page_addr = vmcs_read(field);
3778 
3779 	report_prefix_pushf("%s enabled", control_name);
3780 	if (control_primary) {
3781 		vmcs_write(CPU_EXEC_CTRL0, primary | control_bit);
3782 	} else {
3783 		vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3784 		vmcs_write(CPU_EXEC_CTRL1, secondary | control_bit);
3785 	}
3786 
3787 	test_vmcs_addr_values(field_name, field, align, false,
3788 			      skip_beyond_mapped_ram, 0, 63);
3789 	report_prefix_pop();
3790 
3791 	report_prefix_pushf("%s disabled", control_name);
3792 	if (control_primary) {
3793 		vmcs_write(CPU_EXEC_CTRL0, primary & ~control_bit);
3794 	} else {
3795 		vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
3796 		vmcs_write(CPU_EXEC_CTRL1, secondary & ~control_bit);
3797 	}
3798 
3799 	test_vmcs_addr_values(field_name, field, align, true, false, 0, 63);
3800 	report_prefix_pop();
3801 
3802 	vmcs_write(field, page_addr);
3803 	vmcs_write(CPU_EXEC_CTRL0, primary);
3804 	vmcs_write(CPU_EXEC_CTRL1, secondary);
3805 }
3806 
3807 /*
3808  * If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of
3809  * each I/O-bitmap address must be 0. Neither address should set any
3810  * bits beyond the processor's physical-address width.
3811  * [Intel SDM]
3812  */
3813 static void test_io_bitmaps(void)
3814 {
3815 	test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_A,
3816 				 "I/O bitmap A", "Use I/O bitmaps",
3817 				 PAGE_SIZE, false, true);
3818 	test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_B,
3819 				 "I/O bitmap B", "Use I/O bitmaps",
3820 				 PAGE_SIZE, false, true);
3821 }
3822 
3823 /*
3824  * If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of
3825  * the MSR-bitmap address must be 0. The address should not set any
3826  * bits beyond the processor's physical-address width.
3827  * [Intel SDM]
3828  */
3829 static void test_msr_bitmap(void)
3830 {
3831 	test_vmcs_addr_reference(CPU_MSR_BITMAP, MSR_BITMAP,
3832 				 "MSR bitmap", "Use MSR bitmaps",
3833 				 PAGE_SIZE, false, true);
3834 }
3835 
3836 /*
3837  * If the "use TPR shadow" VM-execution control is 1, the virtual-APIC
3838  * address must satisfy the following checks:
3839  * - Bits 11:0 of the address must be 0.
3840  * - The address should not set any bits beyond the processor's
3841  *   physical-address width.
3842  * [Intel SDM]
3843  */
3844 static void test_apic_virt_addr(void)
3845 {
3846 	/*
3847 	 * Ensure the processor will never use the virtual-APIC page, since
3848 	 * we will point it to invalid RAM.  Otherwise KVM is puzzled about
3849 	 * what we're trying to achieve and fails vmentry.
3850 	 */
3851 	u32 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0);
3852 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0 | CPU_CR8_LOAD | CPU_CR8_STORE);
3853 	test_vmcs_addr_reference(CPU_TPR_SHADOW, APIC_VIRT_ADDR,
3854 				 "virtual-APIC address", "Use TPR shadow",
3855 				 PAGE_SIZE, false, true);
3856 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0);
3857 }
3858 
3859 /*
3860  * If the "virtualize APIC-accesses" VM-execution control is 1, the
3861  * APIC-access address must satisfy the following checks:
3862  *  - Bits 11:0 of the address must be 0.
3863  *  - The address should not set any bits beyond the processor's
3864  *    physical-address width.
3865  * [Intel SDM]
3866  */
3867 static void test_apic_access_addr(void)
3868 {
3869 	void *apic_access_page = alloc_page();
3870 
3871 	vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_page));
3872 
3873 	test_vmcs_addr_reference(CPU_VIRT_APIC_ACCESSES, APIC_ACCS_ADDR,
3874 				 "APIC-access address",
3875 				 "virtualize APIC-accesses", PAGE_SIZE,
3876 				 true, false);
3877 }
3878 
3879 static bool set_bit_pattern(u8 mask, u32 *secondary)
3880 {
3881 	u8 i;
3882 	bool flag = false;
3883 	u32 test_bits[3] = {
3884 		CPU_VIRT_X2APIC,
3885 		CPU_APIC_REG_VIRT,
3886 		CPU_VINTD
3887 	};
3888 
3889         for (i = 0; i < ARRAY_SIZE(test_bits); i++) {
3890 		if ((mask & (1u << i)) &&
3891 		    (ctrl_cpu_rev[1].clr & test_bits[i])) {
3892 			*secondary |= test_bits[i];
3893 			flag = true;
3894 		}
3895 	}
3896 
3897 	return (flag);
3898 }
3899 
3900 /*
3901  * If the "use TPR shadow" VM-execution control is 0, the following
3902  * VM-execution controls must also be 0:
3903  * 	- virtualize x2APIC mode
3904  *	- APIC-register virtualization
3905  *	- virtual-interrupt delivery
3906  *    [Intel SDM]
3907  *
3908  * 2. If the "virtualize x2APIC mode" VM-execution control is 1, the
3909  *    "virtualize APIC accesses" VM-execution control must be 0.
3910  *    [Intel SDM]
3911  */
3912 static void test_apic_virtual_ctls(void)
3913 {
3914 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
3915 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
3916 	u32 primary = saved_primary;
3917 	u32 secondary = saved_secondary;
3918 	bool ctrl = false;
3919 	char str[10] = "disabled";
3920 	u8 i = 0, j;
3921 
3922 	/*
3923 	 * First test
3924 	 */
3925 	if (!((ctrl_cpu_rev[0].clr & (CPU_SECONDARY | CPU_TPR_SHADOW)) ==
3926 	    (CPU_SECONDARY | CPU_TPR_SHADOW)))
3927 		return;
3928 
3929 	primary |= CPU_SECONDARY;
3930 	primary &= ~CPU_TPR_SHADOW;
3931 	vmcs_write(CPU_EXEC_CTRL0, primary);
3932 
3933 	while (1) {
3934 		for (j = 1; j < 8; j++) {
3935 			secondary &= ~(CPU_VIRT_X2APIC | CPU_APIC_REG_VIRT | CPU_VINTD);
3936 			if (primary & CPU_TPR_SHADOW) {
3937 				ctrl = true;
3938 			} else {
3939 				if (! set_bit_pattern(j, &secondary))
3940 					ctrl = true;
3941 				else
3942 					ctrl = false;
3943 			}
3944 
3945 			vmcs_write(CPU_EXEC_CTRL1, secondary);
3946 			report_prefix_pushf("Use TPR shadow %s, virtualize x2APIC mode %s, APIC-register virtualization %s, virtual-interrupt delivery %s",
3947 				str, (secondary & CPU_VIRT_X2APIC) ? "enabled" : "disabled", (secondary & CPU_APIC_REG_VIRT) ? "enabled" : "disabled", (secondary & CPU_VINTD) ? "enabled" : "disabled");
3948 			if (ctrl)
3949 				test_vmx_valid_controls();
3950 			else
3951 				test_vmx_invalid_controls();
3952 			report_prefix_pop();
3953 		}
3954 
3955 		if (i == 1)
3956 			break;
3957 		i++;
3958 
3959 		primary |= CPU_TPR_SHADOW;
3960 		vmcs_write(CPU_EXEC_CTRL0, primary);
3961 		strcpy(str, "enabled");
3962 	}
3963 
3964 	/*
3965 	 * Second test
3966 	 */
3967 	u32 apic_virt_ctls = (CPU_VIRT_X2APIC | CPU_VIRT_APIC_ACCESSES);
3968 
3969 	primary = saved_primary;
3970 	secondary = saved_secondary;
3971 	if (!((ctrl_cpu_rev[1].clr & apic_virt_ctls) == apic_virt_ctls))
3972 		return;
3973 
3974 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
3975 	secondary &= ~CPU_VIRT_APIC_ACCESSES;
3976 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_X2APIC);
3977 	report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access disabled");
3978 	test_vmx_valid_controls();
3979 	report_prefix_pop();
3980 
3981 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_APIC_ACCESSES);
3982 	report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access enabled");
3983 	test_vmx_valid_controls();
3984 	report_prefix_pop();
3985 
3986 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_X2APIC);
3987 	report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access enabled");
3988 	test_vmx_invalid_controls();
3989 	report_prefix_pop();
3990 
3991 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_APIC_ACCESSES);
3992 	report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access disabled");
3993 	test_vmx_valid_controls();
3994 	report_prefix_pop();
3995 
3996 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
3997 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
3998 }
3999 
4000 /*
4001  * If the "virtual-interrupt delivery" VM-execution control is 1, the
4002  * "external-interrupt exiting" VM-execution control must be 1.
4003  * [Intel SDM]
4004  */
4005 static void test_virtual_intr_ctls(void)
4006 {
4007 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
4008 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
4009 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
4010 	u32 primary = saved_primary;
4011 	u32 secondary = saved_secondary;
4012 	u32 pin = saved_pin;
4013 
4014 	if (!((ctrl_cpu_rev[1].clr & CPU_VINTD) &&
4015 	    (ctrl_pin_rev.clr & PIN_EXTINT)))
4016 		return;
4017 
4018 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW);
4019 	vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VINTD);
4020 	vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT);
4021 	report_prefix_pushf("Virtualize interrupt-delivery disabled; external-interrupt exiting disabled");
4022 	test_vmx_valid_controls();
4023 	report_prefix_pop();
4024 
4025 	vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VINTD);
4026 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled");
4027 	test_vmx_invalid_controls();
4028 	report_prefix_pop();
4029 
4030 	vmcs_write(PIN_CONTROLS, pin | PIN_EXTINT);
4031 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting enabled");
4032 	test_vmx_valid_controls();
4033 	report_prefix_pop();
4034 
4035 	vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT);
4036 	report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled");
4037 	test_vmx_invalid_controls();
4038 	report_prefix_pop();
4039 
4040 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
4041 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
4042 	vmcs_write(PIN_CONTROLS, saved_pin);
4043 }
4044 
4045 static void test_pi_desc_addr(u64 addr, bool ctrl)
4046 {
4047 	vmcs_write(POSTED_INTR_DESC_ADDR, addr);
4048 	report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-descriptor-address 0x%lx", addr);
4049 	if (ctrl)
4050 		test_vmx_valid_controls();
4051 	else
4052 		test_vmx_invalid_controls();
4053 	report_prefix_pop();
4054 }
4055 
4056 /*
4057  * If the "process posted interrupts" VM-execution control is 1, the
4058  * following must be true:
4059  *
4060  *	- The "virtual-interrupt delivery" VM-execution control is 1.
4061  *	- The "acknowledge interrupt on exit" VM-exit control is 1.
4062  *	- The posted-interrupt notification vector has a value in the
4063  *	- range 0 - 255 (bits 15:8 are all 0).
4064  *	- Bits 5:0 of the posted-interrupt descriptor address are all 0.
4065  *	- The posted-interrupt descriptor address does not set any bits
4066  *	  beyond the processor's physical-address width.
4067  * [Intel SDM]
4068  */
4069 static void test_posted_intr(void)
4070 {
4071 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
4072 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
4073 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
4074 	u32 exit_ctl_saved = vmcs_read(EXI_CONTROLS);
4075 	u32 primary = saved_primary;
4076 	u32 secondary = saved_secondary;
4077 	u32 pin = saved_pin;
4078 	u32 exit_ctl = exit_ctl_saved;
4079 	u16 vec;
4080 	int i;
4081 
4082 	if (!((ctrl_pin_rev.clr & PIN_POST_INTR) &&
4083 	    (ctrl_cpu_rev[1].clr & CPU_VINTD) &&
4084 	    (ctrl_exit_rev.clr & EXI_INTA)))
4085 		return;
4086 
4087 	vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW);
4088 
4089 	/*
4090 	 * Test virtual-interrupt-delivery and acknowledge-interrupt-on-exit
4091 	 */
4092 	pin |= PIN_POST_INTR;
4093 	vmcs_write(PIN_CONTROLS, pin);
4094 	secondary &= ~CPU_VINTD;
4095 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4096 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled");
4097 	test_vmx_invalid_controls();
4098 	report_prefix_pop();
4099 
4100 	secondary |= CPU_VINTD;
4101 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4102 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled");
4103 	test_vmx_invalid_controls();
4104 	report_prefix_pop();
4105 
4106 	exit_ctl &= ~EXI_INTA;
4107 	vmcs_write(EXI_CONTROLS, exit_ctl);
4108 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit disabled");
4109 	test_vmx_invalid_controls();
4110 	report_prefix_pop();
4111 
4112 	exit_ctl |= EXI_INTA;
4113 	vmcs_write(EXI_CONTROLS, exit_ctl);
4114 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled");
4115 	test_vmx_valid_controls();
4116 	report_prefix_pop();
4117 
4118 	secondary &= ~CPU_VINTD;
4119 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4120 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled; acknowledge-interrupt-on-exit enabled");
4121 	test_vmx_invalid_controls();
4122 	report_prefix_pop();
4123 
4124 	secondary |= CPU_VINTD;
4125 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4126 	report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled");
4127 	test_vmx_valid_controls();
4128 	report_prefix_pop();
4129 
4130 	/*
4131 	 * Test posted-interrupt notification vector
4132 	 */
4133 	for (i = 0; i < 8; i++) {
4134 		vec = (1ul << i);
4135 		vmcs_write(PINV, vec);
4136 		report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
4137 		test_vmx_valid_controls();
4138 		report_prefix_pop();
4139 	}
4140 	for (i = 8; i < 16; i++) {
4141 		vec = (1ul << i);
4142 		vmcs_write(PINV, vec);
4143 		report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
4144 		test_vmx_invalid_controls();
4145 		report_prefix_pop();
4146 	}
4147 
4148 	vec &= ~(0xff << 8);
4149 	vmcs_write(PINV, vec);
4150 	report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
4151 	test_vmx_valid_controls();
4152 	report_prefix_pop();
4153 
4154 	/*
4155 	 * Test posted-interrupt descriptor addresss
4156 	 */
4157 	for (i = 0; i < 6; i++) {
4158 		test_pi_desc_addr(1ul << i, false);
4159 	}
4160 
4161 	test_pi_desc_addr(0xf0, false);
4162 	test_pi_desc_addr(0xff, false);
4163 	test_pi_desc_addr(0x0f, false);
4164 	test_pi_desc_addr(0x8000, true);
4165 	test_pi_desc_addr(0x00, true);
4166 	test_pi_desc_addr(0xc000, true);
4167 
4168 	test_vmcs_addr_values("process-posted interrupts",
4169 			       POSTED_INTR_DESC_ADDR, 64,
4170 			       false, false, 0, 63);
4171 
4172 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
4173 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
4174 	vmcs_write(PIN_CONTROLS, saved_pin);
4175 }
4176 
4177 static void test_apic_ctls(void)
4178 {
4179 	test_apic_virt_addr();
4180 	test_apic_access_addr();
4181 	test_apic_virtual_ctls();
4182 	test_virtual_intr_ctls();
4183 	test_posted_intr();
4184 }
4185 
4186 /*
4187  * If the "enable VPID" VM-execution control is 1, the value of the
4188  * of the VPID VM-execution control field must not be 0000H.
4189  * [Intel SDM]
4190  */
4191 static void test_vpid(void)
4192 {
4193 	u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
4194 	u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
4195 	u16 vpid = 0x0000;
4196 	int i;
4197 
4198 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4199 	    (ctrl_cpu_rev[1].clr & CPU_VPID))) {
4200 		printf("Secondary controls and/or VPID not supported\n");
4201 		return;
4202 	}
4203 
4204 	vmcs_write(CPU_EXEC_CTRL0, saved_primary | CPU_SECONDARY);
4205 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary & ~CPU_VPID);
4206 	vmcs_write(VPID, vpid);
4207 	report_prefix_pushf("VPID disabled; VPID value %x", vpid);
4208 	test_vmx_valid_controls();
4209 	report_prefix_pop();
4210 
4211 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary | CPU_VPID);
4212 	report_prefix_pushf("VPID enabled; VPID value %x", vpid);
4213 	test_vmx_invalid_controls();
4214 	report_prefix_pop();
4215 
4216 	for (i = 0; i < 16; i++) {
4217 		vpid = (short)1 << i;;
4218 		vmcs_write(VPID, vpid);
4219 		report_prefix_pushf("VPID enabled; VPID value %x", vpid);
4220 		test_vmx_valid_controls();
4221 		report_prefix_pop();
4222 	}
4223 
4224 	vmcs_write(CPU_EXEC_CTRL0, saved_primary);
4225 	vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
4226 }
4227 
4228 static void set_vtpr(unsigned vtpr)
4229 {
4230 	*(u32 *)phys_to_virt(vmcs_read(APIC_VIRT_ADDR) + APIC_TASKPRI) = vtpr;
4231 }
4232 
4233 static void try_tpr_threshold_and_vtpr(unsigned threshold, unsigned vtpr)
4234 {
4235 	bool valid = true;
4236 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4237 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4238 
4239 	if ((primary & CPU_TPR_SHADOW) &&
4240 	    (!(primary & CPU_SECONDARY) ||
4241 	     !(secondary & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES))))
4242 		valid = (threshold & 0xf) <= ((vtpr >> 4) & 0xf);
4243 
4244 	set_vtpr(vtpr);
4245 	report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0x%x",
4246 	    threshold, (vtpr >> 4) & 0xf);
4247 	if (valid)
4248 		test_vmx_valid_controls();
4249 	else
4250 		test_vmx_invalid_controls();
4251 	report_prefix_pop();
4252 }
4253 
4254 static void test_invalid_event_injection(void)
4255 {
4256 	u32 ent_intr_info_save = vmcs_read(ENT_INTR_INFO);
4257 	u32 ent_intr_error_save = vmcs_read(ENT_INTR_ERROR);
4258 	u32 ent_inst_len_save = vmcs_read(ENT_INST_LEN);
4259 	u32 primary_save = vmcs_read(CPU_EXEC_CTRL0);
4260 	u32 secondary_save = vmcs_read(CPU_EXEC_CTRL1);
4261 	u64 guest_cr0_save = vmcs_read(GUEST_CR0);
4262 	u32 ent_intr_info_base = INTR_INFO_VALID_MASK;
4263 	u32 ent_intr_info, ent_intr_err, ent_intr_len;
4264 	u32 cnt;
4265 
4266 	/* Setup */
4267 	report_prefix_push("invalid event injection");
4268 	vmcs_write(ENT_INTR_ERROR, 0x00000000);
4269 	vmcs_write(ENT_INST_LEN, 0x00000001);
4270 
4271 	/* The field's interruption type is not set to a reserved value. */
4272 	ent_intr_info = ent_intr_info_base | INTR_TYPE_RESERVED | DE_VECTOR;
4273 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4274 			    "RESERVED interruption type invalid [-]",
4275 			    ent_intr_info);
4276 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4277 	test_vmx_invalid_controls();
4278 	report_prefix_pop();
4279 
4280 	ent_intr_info = ent_intr_info_base | INTR_TYPE_EXT_INTR |
4281 			DE_VECTOR;
4282 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4283 			    "RESERVED interruption type invalid [+]",
4284 			    ent_intr_info);
4285 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4286 	test_vmx_valid_controls();
4287 	report_prefix_pop();
4288 
4289 	/* If the interruption type is other event, the vector is 0. */
4290 	ent_intr_info = ent_intr_info_base | INTR_TYPE_OTHER_EVENT | DB_VECTOR;
4291 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4292 			    "(OTHER EVENT && vector != 0) invalid [-]",
4293 			    ent_intr_info);
4294 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4295 	test_vmx_invalid_controls();
4296 	report_prefix_pop();
4297 
4298 	/* If the interruption type is NMI, the vector is 2 (negative case). */
4299 	ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | DE_VECTOR;
4300 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4301 			    "(NMI && vector != 2) invalid [-]", ent_intr_info);
4302 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4303 	test_vmx_invalid_controls();
4304 	report_prefix_pop();
4305 
4306 	/* If the interruption type is NMI, the vector is 2 (positive case). */
4307 	ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | NMI_VECTOR;
4308 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4309 			    "(NMI && vector == 2) valid [+]", ent_intr_info);
4310 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4311 	test_vmx_valid_controls();
4312 	report_prefix_pop();
4313 
4314 	/*
4315 	 * If the interruption type
4316 	 * is HW exception, the vector is at most 31.
4317 	 */
4318 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 0x20;
4319 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4320 			    "(HW exception && vector > 31) invalid [-]",
4321 			    ent_intr_info);
4322 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4323 	test_vmx_invalid_controls();
4324 	report_prefix_pop();
4325 
4326 	/*
4327 	 * deliver-error-code is 1 iff either
4328 	 * (a) the "unrestricted guest" VM-execution control is 0
4329 	 * (b) CR0.PE is set.
4330 	 */
4331 
4332 	/* Assert that unrestricted guest is disabled or unsupported */
4333 	assert(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
4334 	       !(secondary_save & CPU_URG));
4335 
4336 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION |
4337 			GP_VECTOR;
4338 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4339 			    "error code <-> (!URG || prot_mode) [-]",
4340 			    ent_intr_info);
4341 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4342 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4343 	test_vmx_invalid_controls();
4344 	report_prefix_pop();
4345 
4346 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4347 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4348 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4349 			    "error code <-> (!URG || prot_mode) [+]",
4350 			    ent_intr_info);
4351 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4352 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4353 	test_vmx_valid_controls();
4354 	report_prefix_pop();
4355 
4356 	if (enable_unrestricted_guest(false))
4357 		goto skip_unrestricted_guest;
4358 
4359 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4360 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4361 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4362 			    "error code <-> (!URG || prot_mode) [-]",
4363 			    ent_intr_info);
4364 	vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
4365 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4366 	test_vmx_invalid_controls();
4367 	report_prefix_pop();
4368 
4369 	ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION |
4370 			GP_VECTOR;
4371 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4372 			    "error code <-> (!URG || prot_mode) [-]",
4373 			    ent_intr_info);
4374 	vmcs_write(GUEST_CR0, guest_cr0_save | X86_CR0_PE);
4375 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4376 	test_vmx_invalid_controls();
4377 	report_prefix_pop();
4378 
4379 	vmcs_write(CPU_EXEC_CTRL1, secondary_save);
4380 	vmcs_write(CPU_EXEC_CTRL0, primary_save);
4381 
4382 skip_unrestricted_guest:
4383 	vmcs_write(GUEST_CR0, guest_cr0_save);
4384 
4385 	/* deliver-error-code is 1 iff the interruption type is HW exception */
4386 	report_prefix_push("error code <-> HW exception");
4387 	for (cnt = 0; cnt < 8; cnt++) {
4388 		u32 exception_type_mask = cnt << 8;
4389 		u32 deliver_error_code_mask =
4390 			exception_type_mask != INTR_TYPE_HARD_EXCEPTION ?
4391 			INTR_INFO_DELIVER_CODE_MASK : 0;
4392 
4393 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4394 				exception_type_mask | GP_VECTOR;
4395 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4396 				    ent_intr_info);
4397 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4398 		test_vmx_invalid_controls();
4399 		report_prefix_pop();
4400 	}
4401 	report_prefix_pop();
4402 
4403 	/*
4404 	 * deliver-error-code is 1 iff the the vector
4405 	 * indicates an exception that would normally deliver an error code
4406 	 */
4407 	report_prefix_push("error code <-> vector delivers error code");
4408 	for (cnt = 0; cnt < 32; cnt++) {
4409 		bool has_error_code = false;
4410 		u32 deliver_error_code_mask;
4411 
4412 		switch (cnt) {
4413 		case DF_VECTOR:
4414 		case TS_VECTOR:
4415 		case NP_VECTOR:
4416 		case SS_VECTOR:
4417 		case GP_VECTOR:
4418 		case PF_VECTOR:
4419 		case AC_VECTOR:
4420 			has_error_code = true;
4421 		case CP_VECTOR:
4422 			/* Some CPUs have error code and some do not, skip */
4423 			continue;
4424 		}
4425 
4426 		/* Negative case */
4427 		deliver_error_code_mask = has_error_code ?
4428 						0 :
4429 						INTR_INFO_DELIVER_CODE_MASK;
4430 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4431 				INTR_TYPE_HARD_EXCEPTION | cnt;
4432 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4433 				    ent_intr_info);
4434 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4435 		test_vmx_invalid_controls();
4436 		report_prefix_pop();
4437 
4438 		/* Positive case */
4439 		deliver_error_code_mask = has_error_code ?
4440 						INTR_INFO_DELIVER_CODE_MASK :
4441 						0;
4442 		ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
4443 				INTR_TYPE_HARD_EXCEPTION | cnt;
4444 		report_prefix_pushf("VM-entry intr info=0x%x [+]",
4445 				    ent_intr_info);
4446 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4447 		test_vmx_valid_controls();
4448 		report_prefix_pop();
4449 	}
4450 	report_prefix_pop();
4451 
4452 	/* Reserved bits in the field (30:12) are 0. */
4453 	report_prefix_push("reserved bits clear");
4454 	for (cnt = 12; cnt <= 30; cnt++) {
4455 		ent_intr_info = ent_intr_info_base |
4456 				INTR_INFO_DELIVER_CODE_MASK |
4457 				INTR_TYPE_HARD_EXCEPTION | GP_VECTOR |
4458 				(1U << cnt);
4459 		report_prefix_pushf("VM-entry intr info=0x%x [-]",
4460 				    ent_intr_info);
4461 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4462 		test_vmx_invalid_controls();
4463 		report_prefix_pop();
4464 	}
4465 	report_prefix_pop();
4466 
4467 	/*
4468 	 * If deliver-error-code is 1
4469 	 * bits 31:16 of the VM-entry exception error-code field are 0.
4470 	 */
4471 	ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
4472 			INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
4473 	report_prefix_pushf("%s, VM-entry intr info=0x%x",
4474 			    "VM-entry exception error code[31:16] clear",
4475 			    ent_intr_info);
4476 	vmcs_write(ENT_INTR_INFO, ent_intr_info);
4477 	for (cnt = 16; cnt <= 31; cnt++) {
4478 		ent_intr_err = 1U << cnt;
4479 		report_prefix_pushf("VM-entry intr error=0x%x [-]",
4480 				    ent_intr_err);
4481 		vmcs_write(ENT_INTR_ERROR, ent_intr_err);
4482 		test_vmx_invalid_controls();
4483 		report_prefix_pop();
4484 	}
4485 	vmcs_write(ENT_INTR_ERROR, 0x00000000);
4486 	report_prefix_pop();
4487 
4488 	/*
4489 	 * If the interruption type is software interrupt, software exception,
4490 	 * or privileged software exception, the VM-entry instruction-length
4491 	 * field is in the range 0 - 15.
4492 	 */
4493 
4494 	for (cnt = 0; cnt < 3; cnt++) {
4495 		switch (cnt) {
4496 		case 0:
4497 			ent_intr_info = ent_intr_info_base |
4498 					INTR_TYPE_SOFT_INTR;
4499 			break;
4500 		case 1:
4501 			ent_intr_info = ent_intr_info_base |
4502 					INTR_TYPE_SOFT_EXCEPTION;
4503 			break;
4504 		case 2:
4505 			ent_intr_info = ent_intr_info_base |
4506 					INTR_TYPE_PRIV_SW_EXCEPTION;
4507 			break;
4508 		}
4509 		report_prefix_pushf("%s, VM-entry intr info=0x%x",
4510 				    "VM-entry instruction-length check",
4511 				    ent_intr_info);
4512 		vmcs_write(ENT_INTR_INFO, ent_intr_info);
4513 
4514 		/* Instruction length set to -1 (0xFFFFFFFF) should fail */
4515 		ent_intr_len = -1;
4516 		report_prefix_pushf("VM-entry intr length = 0x%x [-]",
4517 				    ent_intr_len);
4518 		vmcs_write(ENT_INST_LEN, ent_intr_len);
4519 		test_vmx_invalid_controls();
4520 		report_prefix_pop();
4521 
4522 		/* Instruction length set to 16 should fail */
4523 		ent_intr_len = 0x00000010;
4524 		report_prefix_pushf("VM-entry intr length = 0x%x [-]",
4525 				    ent_intr_len);
4526 		vmcs_write(ENT_INST_LEN, 0x00000010);
4527 		test_vmx_invalid_controls();
4528 		report_prefix_pop();
4529 
4530 		report_prefix_pop();
4531 	}
4532 
4533 	/* Cleanup */
4534 	vmcs_write(ENT_INTR_INFO, ent_intr_info_save);
4535 	vmcs_write(ENT_INTR_ERROR, ent_intr_error_save);
4536 	vmcs_write(ENT_INST_LEN, ent_inst_len_save);
4537 	vmcs_write(CPU_EXEC_CTRL0, primary_save);
4538 	vmcs_write(CPU_EXEC_CTRL1, secondary_save);
4539 	vmcs_write(GUEST_CR0, guest_cr0_save);
4540 	report_prefix_pop();
4541 }
4542 
4543 /*
4544  * Test interesting vTPR values for a given TPR threshold.
4545  */
4546 static void test_vtpr_values(unsigned threshold)
4547 {
4548 	try_tpr_threshold_and_vtpr(threshold, (threshold - 1) << 4);
4549 	try_tpr_threshold_and_vtpr(threshold, threshold << 4);
4550 	try_tpr_threshold_and_vtpr(threshold, (threshold + 1) << 4);
4551 }
4552 
4553 static void try_tpr_threshold(unsigned threshold)
4554 {
4555 	bool valid = true;
4556 
4557 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4558 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4559 
4560 	if ((primary & CPU_TPR_SHADOW) && !((primary & CPU_SECONDARY) &&
4561 	    (secondary & CPU_VINTD)))
4562 		valid = !(threshold >> 4);
4563 
4564 	set_vtpr(-1);
4565 	vmcs_write(TPR_THRESHOLD, threshold);
4566 	report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0xf", threshold);
4567 	if (valid)
4568 		test_vmx_valid_controls();
4569 	else
4570 		test_vmx_invalid_controls();
4571 	report_prefix_pop();
4572 
4573 	if (valid)
4574 		test_vtpr_values(threshold);
4575 }
4576 
4577 /*
4578  * Test interesting TPR threshold values.
4579  */
4580 static void test_tpr_threshold_values(void)
4581 {
4582 	unsigned i;
4583 
4584 	for (i = 0; i < 0x10; i++)
4585 		try_tpr_threshold(i);
4586 	for (i = 4; i < 32; i++)
4587 		try_tpr_threshold(1u << i);
4588 	try_tpr_threshold(-1u);
4589 	try_tpr_threshold(0x7fffffff);
4590 }
4591 
4592 /*
4593  * This test covers the following two VM entry checks:
4594  *
4595  *      i) If the "use TPR shadow" VM-execution control is 1 and the
4596  *         "virtual-interrupt delivery" VM-execution control is 0, bits
4597  *         31:4 of the TPR threshold VM-execution control field must
4598 	   be 0.
4599  *         [Intel SDM]
4600  *
4601  *      ii) If the "use TPR shadow" VM-execution control is 1, the
4602  *          "virtual-interrupt delivery" VM-execution control is 0
4603  *          and the "virtualize APIC accesses" VM-execution control
4604  *          is 0, the value of bits 3:0 of the TPR threshold VM-execution
4605  *          control field must not be greater than the value of bits
4606  *          7:4 of VTPR.
4607  *          [Intel SDM]
4608  */
4609 static void test_tpr_threshold(void)
4610 {
4611 	u32 primary = vmcs_read(CPU_EXEC_CTRL0);
4612 	u64 apic_virt_addr = vmcs_read(APIC_VIRT_ADDR);
4613 	u64 threshold = vmcs_read(TPR_THRESHOLD);
4614 	void *virtual_apic_page;
4615 
4616 	if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW))
4617 		return;
4618 
4619 	virtual_apic_page = alloc_page();
4620 	memset(virtual_apic_page, 0xff, PAGE_SIZE);
4621 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
4622 
4623 	vmcs_write(CPU_EXEC_CTRL0, primary & ~(CPU_TPR_SHADOW | CPU_SECONDARY));
4624 	report_prefix_pushf("Use TPR shadow disabled, secondary controls disabled");
4625 	test_tpr_threshold_values();
4626 	report_prefix_pop();
4627 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_TPR_SHADOW);
4628 	report_prefix_pushf("Use TPR shadow enabled, secondary controls disabled");
4629 	test_tpr_threshold_values();
4630 	report_prefix_pop();
4631 
4632 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4633 	    (ctrl_cpu_rev[1].clr & (CPU_VINTD  | CPU_VIRT_APIC_ACCESSES))))
4634 		goto out;
4635 	u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
4636 
4637 	if (ctrl_cpu_rev[1].clr & CPU_VINTD) {
4638 		vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD);
4639 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled");
4640 		test_tpr_threshold_values();
4641 		report_prefix_pop();
4642 
4643 		vmcs_write(CPU_EXEC_CTRL0,
4644 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4645 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled");
4646 		test_tpr_threshold_values();
4647 		report_prefix_pop();
4648 	}
4649 
4650 	if (ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES) {
4651 		vmcs_write(CPU_EXEC_CTRL0,
4652 			   vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY);
4653 		vmcs_write(CPU_EXEC_CTRL1, CPU_VIRT_APIC_ACCESSES);
4654 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4655 		test_tpr_threshold_values();
4656 		report_prefix_pop();
4657 
4658 		vmcs_write(CPU_EXEC_CTRL0,
4659 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4660 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4661 		test_tpr_threshold_values();
4662 		report_prefix_pop();
4663 	}
4664 
4665 	if ((ctrl_cpu_rev[1].clr &
4666 	     (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) ==
4667 	    (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) {
4668 		vmcs_write(CPU_EXEC_CTRL0,
4669 			   vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY);
4670 		vmcs_write(CPU_EXEC_CTRL1,
4671 			   CPU_VINTD | CPU_VIRT_APIC_ACCESSES);
4672 		report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4673 		test_tpr_threshold_values();
4674 		report_prefix_pop();
4675 
4676 		vmcs_write(CPU_EXEC_CTRL0,
4677 			   vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
4678 		report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
4679 		test_tpr_threshold_values();
4680 		report_prefix_pop();
4681 	}
4682 
4683 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4684 out:
4685 	vmcs_write(TPR_THRESHOLD, threshold);
4686 	vmcs_write(APIC_VIRT_ADDR, apic_virt_addr);
4687 	vmcs_write(CPU_EXEC_CTRL0, primary);
4688 }
4689 
4690 /*
4691  * This test verifies the following two vmentry checks:
4692  *
4693  *  If the "NMI exiting" VM-execution control is 0, "Virtual NMIs"
4694  *  VM-execution control must be 0.
4695  *  [Intel SDM]
4696  *
4697  *  If the "virtual NMIs" VM-execution control is 0, the "NMI-window
4698  *  exiting" VM-execution control must be 0.
4699  *  [Intel SDM]
4700  */
4701 static void test_nmi_ctrls(void)
4702 {
4703 	u32 pin_ctrls, cpu_ctrls0, test_pin_ctrls, test_cpu_ctrls0;
4704 
4705 	if ((ctrl_pin_rev.clr & (PIN_NMI | PIN_VIRT_NMI)) !=
4706 	    (PIN_NMI | PIN_VIRT_NMI)) {
4707 		printf("NMI exiting and Virtual NMIs are not supported !\n");
4708 		return;
4709 	}
4710 
4711 	/* Save the controls so that we can restore them after our tests */
4712 	pin_ctrls = vmcs_read(PIN_CONTROLS);
4713 	cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0);
4714 
4715 	test_pin_ctrls = pin_ctrls & ~(PIN_NMI | PIN_VIRT_NMI);
4716 	test_cpu_ctrls0 = cpu_ctrls0 & ~CPU_NMI_WINDOW;
4717 
4718 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4719 	report_prefix_pushf("NMI-exiting disabled, virtual-NMIs disabled");
4720 	test_vmx_valid_controls();
4721 	report_prefix_pop();
4722 
4723 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_VIRT_NMI);
4724 	report_prefix_pushf("NMI-exiting disabled, virtual-NMIs enabled");
4725 	test_vmx_invalid_controls();
4726 	report_prefix_pop();
4727 
4728 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4729 	report_prefix_pushf("NMI-exiting enabled, virtual-NMIs enabled");
4730 	test_vmx_valid_controls();
4731 	report_prefix_pop();
4732 
4733 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_NMI);
4734 	report_prefix_pushf("NMI-exiting enabled, virtual-NMIs disabled");
4735 	test_vmx_valid_controls();
4736 	report_prefix_pop();
4737 
4738 	if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) {
4739 		report_info("NMI-window exiting is not supported, skipping...");
4740 		goto done;
4741 	}
4742 
4743 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4744 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW);
4745 	report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting enabled");
4746 	test_vmx_invalid_controls();
4747 	report_prefix_pop();
4748 
4749 	vmcs_write(PIN_CONTROLS, test_pin_ctrls);
4750 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0);
4751 	report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting disabled");
4752 	test_vmx_valid_controls();
4753 	report_prefix_pop();
4754 
4755 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4756 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW);
4757 	report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting enabled");
4758 	test_vmx_valid_controls();
4759 	report_prefix_pop();
4760 
4761 	vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
4762 	vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0);
4763 	report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting disabled");
4764 	test_vmx_valid_controls();
4765 	report_prefix_pop();
4766 
4767 	/* Restore the controls to their original values */
4768 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0);
4769 done:
4770 	vmcs_write(PIN_CONTROLS, pin_ctrls);
4771 }
4772 
4773 static void test_eptp_ad_bit(u64 eptp, bool ctrl)
4774 {
4775 	vmcs_write(EPTP, eptp);
4776 	report_prefix_pushf("Enable-EPT enabled; EPT accessed and dirty flag %s",
4777 	    (eptp & EPTP_AD_FLAG) ? "1": "0");
4778 	if (ctrl)
4779 		test_vmx_valid_controls();
4780 	else
4781 		test_vmx_invalid_controls();
4782 	report_prefix_pop();
4783 
4784 }
4785 
4786 /*
4787  * 1. If the "enable EPT" VM-execution control is 1, the "EPTP VM-execution"
4788  *    control field must satisfy the following checks:
4789  *
4790  *     - The EPT memory type (bits 2:0) must be a value supported by the
4791  *	 processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR.
4792  *     - Bits 5:3 (1 less than the EPT page-walk length) must indicate a
4793  *	 supported EPT page-walk length.
4794  *     - Bit 6 (enable bit for accessed and dirty flags for EPT) must be
4795  *	 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP MSR is read as 0,
4796  *	 indicating that the processor does not support accessed and dirty
4797  *	 dirty flags for EPT.
4798  *     - Reserved bits 11:7 and 63:N (where N is the processor's
4799  *	 physical-address width) must all be 0.
4800  *
4801  * 2. If the "unrestricted guest" VM-execution control is 1, the
4802  *    "enable EPT" VM-execution control must also be 1.
4803  */
4804 static void test_ept_eptp(void)
4805 {
4806 	u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0);
4807 	u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1);
4808 	u64 eptp_saved = vmcs_read(EPTP);
4809 	u32 primary = primary_saved;
4810 	u32 secondary = secondary_saved;
4811 	u64 msr, eptp = eptp_saved;
4812 	bool un_cache = false;
4813 	bool wr_bk = false;
4814 	bool ctrl;
4815 	u32 i, maxphysaddr;
4816 	u64 j, resv_bits_mask = 0;
4817 
4818 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
4819 	    (ctrl_cpu_rev[1].clr & CPU_EPT))) {
4820 		printf("\"CPU secondary\" and/or \"enable EPT\" execution controls are not supported !\n");
4821 		return;
4822 	}
4823 
4824 	/*
4825 	 * Memory type (bits 2:0)
4826 	 */
4827 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
4828 	if (msr & EPT_CAP_UC)
4829 		un_cache = true;
4830 	if (msr & EPT_CAP_WB)
4831 		wr_bk = true;
4832 
4833 	/* Support for 4-level EPT is mandatory. */
4834 	report(msr & EPT_CAP_PWL4, "4-level EPT support check");
4835 
4836 	primary |= CPU_SECONDARY;
4837 	vmcs_write(CPU_EXEC_CTRL0, primary);
4838 	secondary |= CPU_EPT;
4839 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4840 	eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4841 	    (3ul << EPTP_PG_WALK_LEN_SHIFT);
4842 	vmcs_write(EPTP, eptp);
4843 
4844 	for (i = 0; i < 8; i++) {
4845 		if (i == 0) {
4846 			if (un_cache) {
4847 				report_info("EPT paging structure memory-type is Un-cacheable\n");
4848 				ctrl = true;
4849 			} else {
4850 				ctrl = false;
4851 			}
4852 		} else if (i == 6) {
4853 			if (wr_bk) {
4854 				report_info("EPT paging structure memory-type is Write-back\n");
4855 				ctrl = true;
4856 			} else {
4857 				ctrl = false;
4858 			}
4859 		} else {
4860 			ctrl = false;
4861 		}
4862 
4863 		eptp = (eptp & ~EPT_MEM_TYPE_MASK) | i;
4864 		vmcs_write(EPTP, eptp);
4865 		report_prefix_pushf("Enable-EPT enabled; EPT memory type %lu",
4866 		    eptp & EPT_MEM_TYPE_MASK);
4867 		if (ctrl)
4868 			test_vmx_valid_controls();
4869 		else
4870 			test_vmx_invalid_controls();
4871 		report_prefix_pop();
4872 	}
4873 
4874 	eptp = (eptp & ~EPT_MEM_TYPE_MASK) | 6ul;
4875 
4876 	/*
4877 	 * Page walk length (bits 5:3).  Note, the value in VMCS.EPTP "is 1
4878 	 * less than the EPT page-walk length".
4879 	 */
4880 	for (i = 0; i < 8; i++) {
4881 		eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4882 		    (i << EPTP_PG_WALK_LEN_SHIFT);
4883 		if (i == 3 || (i == 4 && (msr & EPT_CAP_PWL5)))
4884 			ctrl = true;
4885 		else
4886 			ctrl = false;
4887 
4888 		vmcs_write(EPTP, eptp);
4889 		report_prefix_pushf("Enable-EPT enabled; EPT page walk length %lu",
4890 		    eptp & EPTP_PG_WALK_LEN_MASK);
4891 		if (ctrl)
4892 			test_vmx_valid_controls();
4893 		else
4894 			test_vmx_invalid_controls();
4895 		report_prefix_pop();
4896 	}
4897 
4898 	eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
4899 	    3ul << EPTP_PG_WALK_LEN_SHIFT;
4900 
4901 	/*
4902 	 * Accessed and dirty flag (bit 6)
4903 	 */
4904 	if (msr & EPT_CAP_AD_FLAG) {
4905 		report_info("Processor supports accessed and dirty flag");
4906 		eptp &= ~EPTP_AD_FLAG;
4907 		test_eptp_ad_bit(eptp, true);
4908 
4909 		eptp |= EPTP_AD_FLAG;
4910 		test_eptp_ad_bit(eptp, true);
4911 	} else {
4912 		report_info("Processor does not supports accessed and dirty flag");
4913 		eptp &= ~EPTP_AD_FLAG;
4914 		test_eptp_ad_bit(eptp, true);
4915 
4916 		eptp |= EPTP_AD_FLAG;
4917 		test_eptp_ad_bit(eptp, false);
4918 	}
4919 
4920 	/*
4921 	 * Reserved bits [11:7] and [63:N]
4922 	 */
4923 	for (i = 0; i < 32; i++) {
4924 		eptp = (eptp &
4925 		    ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)) |
4926 		    (i << EPTP_RESERV_BITS_SHIFT);
4927 		vmcs_write(EPTP, eptp);
4928 		report_prefix_pushf("Enable-EPT enabled; reserved bits [11:7] %lu",
4929 		    (eptp >> EPTP_RESERV_BITS_SHIFT) &
4930 		    EPTP_RESERV_BITS_MASK);
4931 		if (i == 0)
4932 			test_vmx_valid_controls();
4933 		else
4934 			test_vmx_invalid_controls();
4935 		report_prefix_pop();
4936 	}
4937 
4938 	eptp = (eptp & ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT));
4939 
4940 	maxphysaddr = cpuid_maxphyaddr();
4941 	for (i = 0; i < (63 - maxphysaddr + 1); i++) {
4942 		resv_bits_mask |= 1ul << i;
4943 	}
4944 
4945 	for (j = maxphysaddr - 1; j <= 63; j++) {
4946 		eptp = (eptp & ~(resv_bits_mask << maxphysaddr)) |
4947 		    (j < maxphysaddr ? 0 : 1ul << j);
4948 		vmcs_write(EPTP, eptp);
4949 		report_prefix_pushf("Enable-EPT enabled; reserved bits [63:N] %lu",
4950 		    (eptp >> maxphysaddr) & resv_bits_mask);
4951 		if (j < maxphysaddr)
4952 			test_vmx_valid_controls();
4953 		else
4954 			test_vmx_invalid_controls();
4955 		report_prefix_pop();
4956 	}
4957 
4958 	secondary &= ~(CPU_EPT | CPU_URG);
4959 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4960 	report_prefix_pushf("Enable-EPT disabled, unrestricted-guest disabled");
4961 	test_vmx_valid_controls();
4962 	report_prefix_pop();
4963 
4964 	if (!(ctrl_cpu_rev[1].clr & CPU_URG))
4965 		goto skip_unrestricted_guest;
4966 
4967 	secondary |= CPU_URG;
4968 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4969 	report_prefix_pushf("Enable-EPT disabled, unrestricted-guest enabled");
4970 	test_vmx_invalid_controls();
4971 	report_prefix_pop();
4972 
4973 	secondary |= CPU_EPT;
4974 	setup_dummy_ept();
4975 	report_prefix_pushf("Enable-EPT enabled, unrestricted-guest enabled");
4976 	test_vmx_valid_controls();
4977 	report_prefix_pop();
4978 
4979 skip_unrestricted_guest:
4980 	secondary &= ~CPU_URG;
4981 	vmcs_write(CPU_EXEC_CTRL1, secondary);
4982 	report_prefix_pushf("Enable-EPT enabled, unrestricted-guest disabled");
4983 	test_vmx_valid_controls();
4984 	report_prefix_pop();
4985 
4986 	vmcs_write(CPU_EXEC_CTRL0, primary_saved);
4987 	vmcs_write(CPU_EXEC_CTRL1, secondary_saved);
4988 	vmcs_write(EPTP, eptp_saved);
4989 }
4990 
4991 /*
4992  * If the 'enable PML' VM-execution control is 1, the 'enable EPT'
4993  * VM-execution control must also be 1. In addition, the PML address
4994  * must satisfy the following checks:
4995  *
4996  *    * Bits 11:0 of the address must be 0.
4997  *    * The address should not set any bits beyond the processor's
4998  *	physical-address width.
4999  *
5000  *  [Intel SDM]
5001  */
5002 static void test_pml(void)
5003 {
5004 	u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0);
5005 	u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1);
5006 	u32 primary = primary_saved;
5007 	u32 secondary = secondary_saved;
5008 
5009 	if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
5010 	    (ctrl_cpu_rev[1].clr & CPU_EPT) && (ctrl_cpu_rev[1].clr & CPU_PML))) {
5011 		printf("\"Secondary execution\" control or \"enable EPT\" control or \"enable PML\" control is not supported !\n");
5012 		return;
5013 	}
5014 
5015 	primary |= CPU_SECONDARY;
5016 	vmcs_write(CPU_EXEC_CTRL0, primary);
5017 	secondary &= ~(CPU_PML | CPU_EPT);
5018 	vmcs_write(CPU_EXEC_CTRL1, secondary);
5019 	report_prefix_pushf("enable-PML disabled, enable-EPT disabled");
5020 	test_vmx_valid_controls();
5021 	report_prefix_pop();
5022 
5023 	secondary |= CPU_PML;
5024 	vmcs_write(CPU_EXEC_CTRL1, secondary);
5025 	report_prefix_pushf("enable-PML enabled, enable-EPT disabled");
5026 	test_vmx_invalid_controls();
5027 	report_prefix_pop();
5028 
5029 	secondary |= CPU_EPT;
5030 	setup_dummy_ept();
5031 	report_prefix_pushf("enable-PML enabled, enable-EPT enabled");
5032 	test_vmx_valid_controls();
5033 	report_prefix_pop();
5034 
5035 	secondary &= ~CPU_PML;
5036 	vmcs_write(CPU_EXEC_CTRL1, secondary);
5037 	report_prefix_pushf("enable-PML disabled, enable EPT enabled");
5038 	test_vmx_valid_controls();
5039 	report_prefix_pop();
5040 
5041 	test_vmcs_addr_reference(CPU_PML, PMLADDR, "PML address", "PML",
5042 				 PAGE_SIZE, false, false);
5043 
5044 	vmcs_write(CPU_EXEC_CTRL0, primary_saved);
5045 	vmcs_write(CPU_EXEC_CTRL1, secondary_saved);
5046 }
5047 
5048  /*
5049  * If the "activate VMX-preemption timer" VM-execution control is 0, the
5050  * the "save VMX-preemption timer value" VM-exit control must also be 0.
5051  *
5052  *  [Intel SDM]
5053  */
5054 static void test_vmx_preemption_timer(void)
5055 {
5056 	u32 saved_pin = vmcs_read(PIN_CONTROLS);
5057 	u32 saved_exit = vmcs_read(EXI_CONTROLS);
5058 	u32 pin = saved_pin;
5059 	u32 exit = saved_exit;
5060 
5061 	if (!((ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) ||
5062 	    (ctrl_pin_rev.clr & PIN_PREEMPT))) {
5063 		printf("\"Save-VMX-preemption-timer\" control and/or \"Enable-VMX-preemption-timer\" control is not supported\n");
5064 		return;
5065 	}
5066 
5067 	pin |= PIN_PREEMPT;
5068 	vmcs_write(PIN_CONTROLS, pin);
5069 	exit &= ~EXI_SAVE_PREEMPT;
5070 	vmcs_write(EXI_CONTROLS, exit);
5071 	report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer disabled");
5072 	test_vmx_valid_controls();
5073 	report_prefix_pop();
5074 
5075 	exit |= EXI_SAVE_PREEMPT;
5076 	vmcs_write(EXI_CONTROLS, exit);
5077 	report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer enabled");
5078 	test_vmx_valid_controls();
5079 	report_prefix_pop();
5080 
5081 	pin &= ~PIN_PREEMPT;
5082 	vmcs_write(PIN_CONTROLS, pin);
5083 	report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer enabled");
5084 	test_vmx_invalid_controls();
5085 	report_prefix_pop();
5086 
5087 	exit &= ~EXI_SAVE_PREEMPT;
5088 	vmcs_write(EXI_CONTROLS, exit);
5089 	report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer disabled");
5090 	test_vmx_valid_controls();
5091 	report_prefix_pop();
5092 
5093 	vmcs_write(PIN_CONTROLS, saved_pin);
5094 	vmcs_write(EXI_CONTROLS, saved_exit);
5095 }
5096 
5097 extern unsigned char test_mtf1;
5098 extern unsigned char test_mtf2;
5099 extern unsigned char test_mtf3;
5100 extern unsigned char test_mtf4;
5101 
5102 static void test_mtf_guest(void)
5103 {
5104 	asm ("vmcall;\n\t"
5105 	     "out %al, $0x80;\n\t"
5106 	     "test_mtf1:\n\t"
5107 	     "vmcall;\n\t"
5108 	     "out %al, $0x80;\n\t"
5109 	     "test_mtf2:\n\t"
5110 	     /*
5111 	      * Prepare for the 'MOV CR3' test. Attempt to induce a
5112 	      * general-protection fault by moving a non-canonical address into
5113 	      * CR3. The 'MOV CR3' instruction does not take an imm64 operand,
5114 	      * so we must MOV the desired value into a register first.
5115 	      *
5116 	      * MOV RAX is done before the VMCALL such that MTF is only enabled
5117 	      * for the instruction under test.
5118 	      */
5119 	     "mov $0xaaaaaaaaaaaaaaaa, %rax;\n\t"
5120 	     "vmcall;\n\t"
5121 	     "mov %rax, %cr3;\n\t"
5122 	     "test_mtf3:\n\t"
5123 	     "vmcall;\n\t"
5124 	     /*
5125 	      * ICEBP/INT1 instruction. Though the instruction is now
5126 	      * documented, don't rely on assemblers enumerating the
5127 	      * instruction. Resort to hand assembly.
5128 	      */
5129 	     ".byte 0xf1;\n\t"
5130 	     "vmcall;\n\t"
5131 	     "test_mtf4:\n\t"
5132 	     "mov $0, %eax;\n\t");
5133 }
5134 
5135 static void test_mtf_gp_handler(struct ex_regs *regs)
5136 {
5137 	regs->rip = (unsigned long) &test_mtf3;
5138 }
5139 
5140 static void test_mtf_db_handler(struct ex_regs *regs)
5141 {
5142 }
5143 
5144 static void enable_mtf(void)
5145 {
5146 	u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
5147 
5148 	vmcs_write(CPU_EXEC_CTRL0, ctrl0 | CPU_MTF);
5149 }
5150 
5151 static void disable_mtf(void)
5152 {
5153 	u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
5154 
5155 	vmcs_write(CPU_EXEC_CTRL0, ctrl0 & ~CPU_MTF);
5156 }
5157 
5158 static void enable_tf(void)
5159 {
5160 	unsigned long rflags = vmcs_read(GUEST_RFLAGS);
5161 
5162 	vmcs_write(GUEST_RFLAGS, rflags | X86_EFLAGS_TF);
5163 }
5164 
5165 static void disable_tf(void)
5166 {
5167 	unsigned long rflags = vmcs_read(GUEST_RFLAGS);
5168 
5169 	vmcs_write(GUEST_RFLAGS, rflags & ~X86_EFLAGS_TF);
5170 }
5171 
5172 static void report_mtf(const char *insn_name, unsigned long exp_rip)
5173 {
5174 	unsigned long rip = vmcs_read(GUEST_RIP);
5175 
5176 	assert_exit_reason(VMX_MTF);
5177 	report(rip == exp_rip, "MTF VM-exit after %s. RIP: 0x%lx (expected 0x%lx)",
5178 	       insn_name, rip, exp_rip);
5179 }
5180 
5181 static void vmx_mtf_test(void)
5182 {
5183 	unsigned long pending_dbg;
5184 	handler old_gp, old_db;
5185 
5186 	if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) {
5187 		printf("CPU does not support the 'monitor trap flag' processor-based VM-execution control.\n");
5188 		return;
5189 	}
5190 
5191 	test_set_guest(test_mtf_guest);
5192 
5193 	/* Expect an MTF VM-exit after OUT instruction */
5194 	enter_guest();
5195 	skip_exit_vmcall();
5196 
5197 	enable_mtf();
5198 	enter_guest();
5199 	report_mtf("OUT", (unsigned long) &test_mtf1);
5200 	disable_mtf();
5201 
5202 	/*
5203 	 * Concurrent #DB trap and MTF on instruction boundary. Expect MTF
5204 	 * VM-exit with populated 'pending debug exceptions' VMCS field.
5205 	 */
5206 	enter_guest();
5207 	skip_exit_vmcall();
5208 
5209 	enable_mtf();
5210 	enable_tf();
5211 
5212 	enter_guest();
5213 	report_mtf("OUT", (unsigned long) &test_mtf2);
5214 	pending_dbg = vmcs_read(GUEST_PENDING_DEBUG);
5215 	report(pending_dbg & DR_STEP,
5216 	       "'pending debug exceptions' field after MTF VM-exit: 0x%lx (expected 0x%lx)",
5217 	       pending_dbg, (unsigned long) DR_STEP);
5218 
5219 	disable_mtf();
5220 	disable_tf();
5221 	vmcs_write(GUEST_PENDING_DEBUG, 0);
5222 
5223 	/*
5224 	 * #GP exception takes priority over MTF. Expect MTF VM-exit with RIP
5225 	 * advanced to first instruction of #GP handler.
5226 	 */
5227 	enter_guest();
5228 	skip_exit_vmcall();
5229 
5230 	old_gp = handle_exception(GP_VECTOR, test_mtf_gp_handler);
5231 
5232 	enable_mtf();
5233 	enter_guest();
5234 	report_mtf("MOV CR3", (unsigned long) get_idt_addr(&boot_idt[GP_VECTOR]));
5235 	disable_mtf();
5236 
5237 	/*
5238 	 * Concurrent MTF and privileged software exception (i.e. ICEBP/INT1).
5239 	 * MTF should follow the delivery of #DB trap, though the SDM doesn't
5240 	 * provide clear indication of the relative priority.
5241 	 */
5242 	enter_guest();
5243 	skip_exit_vmcall();
5244 
5245 	handle_exception(GP_VECTOR, old_gp);
5246 	old_db = handle_exception(DB_VECTOR, test_mtf_db_handler);
5247 
5248 	enable_mtf();
5249 	enter_guest();
5250 	report_mtf("INT1", (unsigned long) get_idt_addr(&boot_idt[DB_VECTOR]));
5251 	disable_mtf();
5252 
5253 	enter_guest();
5254 	skip_exit_vmcall();
5255 	handle_exception(DB_VECTOR, old_db);
5256 	vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | INTR_TYPE_OTHER_EVENT);
5257 	enter_guest();
5258 	report_mtf("injected MTF", (unsigned long) &test_mtf4);
5259 	enter_guest();
5260 }
5261 
5262 extern char vmx_mtf_pdpte_guest_begin;
5263 extern char vmx_mtf_pdpte_guest_end;
5264 
5265 asm("vmx_mtf_pdpte_guest_begin:\n\t"
5266     "mov %cr0, %rax\n\t"    /* save CR0 with PG=1                 */
5267     "vmcall\n\t"            /* on return from this CR0.PG=0       */
5268     "mov %rax, %cr0\n\t"    /* restore CR0.PG=1 to enter PAE mode */
5269     "vmcall\n\t"
5270     "retq\n\t"
5271     "vmx_mtf_pdpte_guest_end:");
5272 
5273 static void vmx_mtf_pdpte_test(void)
5274 {
5275 	void *test_mtf_pdpte_guest;
5276 	pteval_t *pdpt;
5277 	u32 guest_ar_cs;
5278 	u64 guest_efer;
5279 	pteval_t *pte;
5280 	u64 guest_cr0;
5281 	u64 guest_cr3;
5282 	u64 guest_cr4;
5283 	u64 ent_ctls;
5284 	int i;
5285 
5286 	if (setup_ept(false))
5287 		return;
5288 
5289 	if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) {
5290 		printf("CPU does not support 'monitor trap flag.'\n");
5291 		return;
5292 	}
5293 
5294 	if (!(ctrl_cpu_rev[1].clr & CPU_URG)) {
5295 		printf("CPU does not support 'unrestricted guest.'\n");
5296 		return;
5297 	}
5298 
5299 	vmcs_write(EXC_BITMAP, ~0);
5300 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG);
5301 
5302 	/*
5303 	 * Copy the guest code to an identity-mapped page.
5304 	 */
5305 	test_mtf_pdpte_guest = alloc_page();
5306 	memcpy(test_mtf_pdpte_guest, &vmx_mtf_pdpte_guest_begin,
5307 	       &vmx_mtf_pdpte_guest_end - &vmx_mtf_pdpte_guest_begin);
5308 
5309 	test_set_guest(test_mtf_pdpte_guest);
5310 
5311 	enter_guest();
5312 	skip_exit_vmcall();
5313 
5314 	/*
5315 	 * Put the guest in non-paged 32-bit protected mode, ready to enter
5316 	 * PAE mode when CR0.PG is set. CR4.PAE will already have been set
5317 	 * when the guest started out in long mode.
5318 	 */
5319 	ent_ctls = vmcs_read(ENT_CONTROLS);
5320 	vmcs_write(ENT_CONTROLS, ent_ctls & ~ENT_GUEST_64);
5321 
5322 	guest_efer = vmcs_read(GUEST_EFER);
5323 	vmcs_write(GUEST_EFER, guest_efer & ~(EFER_LMA | EFER_LME));
5324 
5325 	/*
5326 	 * Set CS access rights bits for 32-bit protected mode:
5327 	 * 3:0    B execute/read/accessed
5328 	 * 4      1 code or data
5329 	 * 6:5    0 descriptor privilege level
5330 	 * 7      1 present
5331 	 * 11:8   0 reserved
5332 	 * 12     0 available for use by system software
5333 	 * 13     0 64 bit mode not active
5334 	 * 14     1 default operation size 32-bit segment
5335 	 * 15     1 page granularity: segment limit in 4K units
5336 	 * 16     0 segment usable
5337 	 * 31:17  0 reserved
5338 	 */
5339 	guest_ar_cs = vmcs_read(GUEST_AR_CS);
5340 	vmcs_write(GUEST_AR_CS, 0xc09b);
5341 
5342 	guest_cr0 = vmcs_read(GUEST_CR0);
5343 	vmcs_write(GUEST_CR0, guest_cr0 & ~X86_CR0_PG);
5344 
5345 	guest_cr4 = vmcs_read(GUEST_CR4);
5346 	vmcs_write(GUEST_CR4, guest_cr4 & ~X86_CR4_PCIDE);
5347 
5348 	guest_cr3 = vmcs_read(GUEST_CR3);
5349 
5350 	/*
5351 	 * Turn the 4-level page table into a PAE page table by following the 0th
5352 	 * PML4 entry to a PDPT page, and grab the first four PDPTEs from that
5353 	 * page.
5354 	 *
5355 	 * Why does this work?
5356 	 *
5357 	 * PAE uses 32-bit addressing which implies:
5358 	 * Bits 11:0   page offset
5359 	 * Bits 20:12  entry into 512-entry page table
5360 	 * Bits 29:21  entry into a 512-entry directory table
5361 	 * Bits 31:30  entry into the page directory pointer table.
5362 	 * Bits 63:32  zero
5363 	 *
5364 	 * As only 2 bits are needed to select the PDPTEs for the entire
5365 	 * 32-bit address space, take the first 4 PDPTEs in the level 3 page
5366 	 * directory pointer table. It doesn't matter which of these PDPTEs
5367 	 * are present because they must cover the guest code given that it
5368 	 * has already run successfully.
5369 	 *
5370 	 * Get a pointer to PTE for GVA=0 in the page directory pointer table
5371 	 */
5372 	pte = get_pte_level(
5373             (pgd_t *)phys_to_virt(guest_cr3 & ~X86_CR3_PCID_MASK), 0,
5374             PDPT_LEVEL);
5375 
5376 	/*
5377 	 * Need some memory for the 4-entry PAE page directory pointer
5378 	 * table. Use the end of the identity-mapped page where the guest code
5379 	 * is stored. There is definitely space as the guest code is only a
5380 	 * few bytes.
5381 	 */
5382 	pdpt = test_mtf_pdpte_guest + PAGE_SIZE - 4 * sizeof(pteval_t);
5383 
5384 	/*
5385 	 * Copy the first four PDPTEs into the PAE page table with reserved
5386 	 * bits cleared. Note that permission bits from the PML4E and PDPTE
5387 	 * are not propagated.
5388 	 */
5389 	for (i = 0; i < 4; i++) {
5390 		TEST_ASSERT_EQ_MSG(0, (pte[i] & PDPTE64_RSVD_MASK),
5391 				   "PDPTE has invalid reserved bits");
5392 		TEST_ASSERT_EQ_MSG(0, (pte[i] & PDPTE64_PAGE_SIZE_MASK),
5393 				   "Cannot use 1GB super pages for PAE");
5394 		pdpt[i] = pte[i] & ~(PAE_PDPTE_RSVD_MASK);
5395 	}
5396 	vmcs_write(GUEST_CR3, virt_to_phys(pdpt));
5397 
5398 	enable_mtf();
5399 	enter_guest();
5400 	assert_exit_reason(VMX_MTF);
5401 	disable_mtf();
5402 
5403 	/*
5404 	 * The four PDPTEs should have been loaded into the VMCS when
5405 	 * the guest set CR0.PG to enter PAE mode.
5406 	 */
5407 	for (i = 0; i < 4; i++) {
5408 		u64 pdpte = vmcs_read(GUEST_PDPTE + 2 * i);
5409 
5410 		report(pdpte == pdpt[i], "PDPTE%d is 0x%lx (expected 0x%lx)",
5411 		       i, pdpte, pdpt[i]);
5412 	}
5413 
5414 	/*
5415 	 * Now, try to enter the guest in PAE mode. If the PDPTEs in the
5416 	 * vmcs are wrong, this will fail.
5417 	 */
5418 	enter_guest();
5419 	skip_exit_vmcall();
5420 
5421 	/*
5422 	 * Return guest to 64-bit mode and wrap up.
5423 	 */
5424 	vmcs_write(ENT_CONTROLS, ent_ctls);
5425 	vmcs_write(GUEST_EFER, guest_efer);
5426 	vmcs_write(GUEST_AR_CS, guest_ar_cs);
5427 	vmcs_write(GUEST_CR0, guest_cr0);
5428 	vmcs_write(GUEST_CR4, guest_cr4);
5429 	vmcs_write(GUEST_CR3, guest_cr3);
5430 
5431 	enter_guest();
5432 }
5433 
5434 /*
5435  * Tests for VM-execution control fields
5436  */
5437 static void test_vm_execution_ctls(void)
5438 {
5439 	test_pin_based_ctls();
5440 	test_primary_processor_based_ctls();
5441 	test_secondary_processor_based_ctls();
5442 	test_cr3_targets();
5443 	test_io_bitmaps();
5444 	test_msr_bitmap();
5445 	test_apic_ctls();
5446 	test_tpr_threshold();
5447 	test_nmi_ctrls();
5448 	test_pml();
5449 	test_vpid();
5450 	test_ept_eptp();
5451 	test_vmx_preemption_timer();
5452 }
5453 
5454  /*
5455   * The following checks are performed for the VM-entry MSR-load address if
5456   * the VM-entry MSR-load count field is non-zero:
5457   *
5458   *    - The lower 4 bits of the VM-entry MSR-load address must be 0.
5459   *      The address should not set any bits beyond the processor's
5460   *      physical-address width.
5461   *
5462   *    - The address of the last byte in the VM-entry MSR-load area
5463   *      should not set any bits beyond the processor's physical-address
5464   *      width. The address of this last byte is VM-entry MSR-load address
5465   *      + (MSR count * 16) - 1. (The arithmetic used for the computation
5466   *      uses more bits than the processor's physical-address width.)
5467   *
5468   *
5469   *  [Intel SDM]
5470   */
5471 static void test_entry_msr_load(void)
5472 {
5473 	entry_msr_load = alloc_page();
5474 	u64 tmp;
5475 	u32 entry_msr_ld_cnt = 1;
5476 	int i;
5477 	u32 addr_len = 64;
5478 
5479 	vmcs_write(ENT_MSR_LD_CNT, entry_msr_ld_cnt);
5480 
5481 	/* Check first 4 bits of VM-entry MSR-load address */
5482 	for (i = 0; i < 4; i++) {
5483 		tmp = (u64)entry_msr_load | 1ull << i;
5484 		vmcs_write(ENTER_MSR_LD_ADDR, tmp);
5485 		report_prefix_pushf("VM-entry MSR-load addr [4:0] %lx",
5486 				    tmp & 0xf);
5487 		test_vmx_invalid_controls();
5488 		report_prefix_pop();
5489 	}
5490 
5491 	if (basic.val & (1ul << 48))
5492 		addr_len = 32;
5493 
5494 	test_vmcs_addr_values("VM-entry-MSR-load address",
5495 				ENTER_MSR_LD_ADDR, 16, false, false,
5496 				4, addr_len - 1);
5497 
5498 	/*
5499 	 * Check last byte of VM-entry MSR-load address
5500 	 */
5501 	entry_msr_load = (struct vmx_msr_entry *)((u64)entry_msr_load & ~0xf);
5502 
5503 	for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len);
5504 							i < 64; i++) {
5505 		tmp = ((u64)entry_msr_load + entry_msr_ld_cnt * 16 - 1) |
5506 			1ul << i;
5507 		vmcs_write(ENTER_MSR_LD_ADDR,
5508 			   tmp - (entry_msr_ld_cnt * 16 - 1));
5509 		test_vmx_invalid_controls();
5510 	}
5511 
5512 	vmcs_write(ENT_MSR_LD_CNT, 2);
5513 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 16);
5514 	test_vmx_invalid_controls();
5515 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 32);
5516 	test_vmx_valid_controls();
5517 	vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 48);
5518 	test_vmx_valid_controls();
5519 }
5520 
5521 static struct vmx_state_area_test_data {
5522 	u32 msr;
5523 	u64 exp;
5524 	bool enabled;
5525 } vmx_state_area_test_data;
5526 
5527 static void guest_state_test_main(void)
5528 {
5529 	u64 obs;
5530 	struct vmx_state_area_test_data *data = &vmx_state_area_test_data;
5531 
5532 	while (1) {
5533 		if (vmx_get_test_stage() == 2)
5534 			break;
5535 
5536 		if (data->enabled) {
5537 			obs = rdmsr(data->msr);
5538 			report(data->exp == obs,
5539 			       "Guest state is 0x%lx (expected 0x%lx)",
5540 			       obs, data->exp);
5541 		}
5542 
5543 		vmcall();
5544 	}
5545 
5546 	asm volatile("fnop");
5547 }
5548 
5549 static void test_guest_state(const char *test, bool xfail, u64 field,
5550 			     const char * field_name)
5551 {
5552 	struct vmentry_result result;
5553 	u8 abort_flags;
5554 
5555 	abort_flags = ABORT_ON_EARLY_VMENTRY_FAIL;
5556 	if (!xfail)
5557 		abort_flags = ABORT_ON_INVALID_GUEST_STATE;
5558 
5559 	__enter_guest(abort_flags, &result);
5560 
5561 	report(result.exit_reason.failed_vmentry == xfail &&
5562 	       ((xfail && result.exit_reason.basic == VMX_FAIL_STATE) ||
5563 	        (!xfail && result.exit_reason.basic == VMX_VMCALL)) &&
5564 		(!xfail || vmcs_read(EXI_QUALIFICATION) == ENTRY_FAIL_DEFAULT),
5565 	        "%s, %s = %lx", test, field_name, field);
5566 
5567 	if (!result.exit_reason.failed_vmentry)
5568 		skip_exit_insn();
5569 }
5570 
5571 /*
5572  * Tests for VM-entry control fields
5573  */
5574 static void test_vm_entry_ctls(void)
5575 {
5576 	test_invalid_event_injection();
5577 	test_entry_msr_load();
5578 }
5579 
5580 /*
5581  * The following checks are performed for the VM-exit MSR-store address if
5582  * the VM-exit MSR-store count field is non-zero:
5583  *
5584  *    - The lower 4 bits of the VM-exit MSR-store address must be 0.
5585  *      The address should not set any bits beyond the processor's
5586  *      physical-address width.
5587  *
5588  *    - The address of the last byte in the VM-exit MSR-store area
5589  *      should not set any bits beyond the processor's physical-address
5590  *      width. The address of this last byte is VM-exit MSR-store address
5591  *      + (MSR count * 16) - 1. (The arithmetic used for the computation
5592  *      uses more bits than the processor's physical-address width.)
5593  *
5594  * If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits
5595  * in the range 63:32.
5596  *
5597  *  [Intel SDM]
5598  */
5599 static void test_exit_msr_store(void)
5600 {
5601 	exit_msr_store = alloc_page();
5602 	u64 tmp;
5603 	u32 exit_msr_st_cnt = 1;
5604 	int i;
5605 	u32 addr_len = 64;
5606 
5607 	vmcs_write(EXI_MSR_ST_CNT, exit_msr_st_cnt);
5608 
5609 	/* Check first 4 bits of VM-exit MSR-store address */
5610 	for (i = 0; i < 4; i++) {
5611 		tmp = (u64)exit_msr_store | 1ull << i;
5612 		vmcs_write(EXIT_MSR_ST_ADDR, tmp);
5613 		report_prefix_pushf("VM-exit MSR-store addr [4:0] %lx",
5614 				    tmp & 0xf);
5615 		test_vmx_invalid_controls();
5616 		report_prefix_pop();
5617 	}
5618 
5619 	if (basic.val & (1ul << 48))
5620 		addr_len = 32;
5621 
5622 	test_vmcs_addr_values("VM-exit-MSR-store address",
5623 				EXIT_MSR_ST_ADDR, 16, false, false,
5624 				4, addr_len - 1);
5625 
5626 	/*
5627 	 * Check last byte of VM-exit MSR-store address
5628 	 */
5629 	exit_msr_store = (struct vmx_msr_entry *)((u64)exit_msr_store & ~0xf);
5630 
5631 	for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len);
5632 							i < 64; i++) {
5633 		tmp = ((u64)exit_msr_store + exit_msr_st_cnt * 16 - 1) |
5634 			1ul << i;
5635 		vmcs_write(EXIT_MSR_ST_ADDR,
5636 			   tmp - (exit_msr_st_cnt * 16 - 1));
5637 		test_vmx_invalid_controls();
5638 	}
5639 
5640 	vmcs_write(EXI_MSR_ST_CNT, 2);
5641 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 16);
5642 	test_vmx_invalid_controls();
5643 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 32);
5644 	test_vmx_valid_controls();
5645 	vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 48);
5646 	test_vmx_valid_controls();
5647 }
5648 
5649 /*
5650  * Tests for VM-exit controls
5651  */
5652 static void test_vm_exit_ctls(void)
5653 {
5654 	test_exit_msr_store();
5655 }
5656 
5657 /*
5658  * Check that the virtual CPU checks all of the VMX controls as
5659  * documented in the Intel SDM.
5660  */
5661 static void vmx_controls_test(void)
5662 {
5663 	/*
5664 	 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will
5665 	 * fail due to invalid guest state, should we make it that
5666 	 * far.
5667 	 */
5668 	vmcs_write(GUEST_RFLAGS, 0);
5669 
5670 	test_vm_execution_ctls();
5671 	test_vm_exit_ctls();
5672 	test_vm_entry_ctls();
5673 }
5674 
5675 struct apic_reg_virt_config {
5676 	bool apic_register_virtualization;
5677 	bool use_tpr_shadow;
5678 	bool virtualize_apic_accesses;
5679 	bool virtualize_x2apic_mode;
5680 	bool activate_secondary_controls;
5681 };
5682 
5683 struct apic_reg_test {
5684 	const char *name;
5685 	struct apic_reg_virt_config apic_reg_virt_config;
5686 };
5687 
5688 struct apic_reg_virt_expectation {
5689 	enum Reason rd_exit_reason;
5690 	enum Reason wr_exit_reason;
5691 	u32 val;
5692 	u32 (*virt_fn)(u32);
5693 
5694 	/*
5695 	 * If false, accessing the APIC access address from L2 is treated as a
5696 	 * normal memory operation, rather than triggering virtualization.
5697 	 */
5698 	bool virtualize_apic_accesses;
5699 };
5700 
5701 static u32 apic_virt_identity(u32 val)
5702 {
5703 	return val;
5704 }
5705 
5706 static u32 apic_virt_nibble1(u32 val)
5707 {
5708 	return val & 0xf0;
5709 }
5710 
5711 static u32 apic_virt_byte3(u32 val)
5712 {
5713 	return val & (0xff << 24);
5714 }
5715 
5716 static bool apic_reg_virt_exit_expectation(
5717 	u32 reg, struct apic_reg_virt_config *config,
5718 	struct apic_reg_virt_expectation *expectation)
5719 {
5720 	/* Good configs, where some L2 APIC accesses are virtualized. */
5721 	bool virtualize_apic_accesses_only =
5722 		config->virtualize_apic_accesses &&
5723 		!config->use_tpr_shadow &&
5724 		!config->apic_register_virtualization &&
5725 		!config->virtualize_x2apic_mode &&
5726 		config->activate_secondary_controls;
5727 	bool virtualize_apic_accesses_and_use_tpr_shadow =
5728 		config->virtualize_apic_accesses &&
5729 		config->use_tpr_shadow &&
5730 		!config->apic_register_virtualization &&
5731 		!config->virtualize_x2apic_mode &&
5732 		config->activate_secondary_controls;
5733 	bool apic_register_virtualization =
5734 		config->virtualize_apic_accesses &&
5735 		config->use_tpr_shadow &&
5736 		config->apic_register_virtualization &&
5737 		!config->virtualize_x2apic_mode &&
5738 		config->activate_secondary_controls;
5739 
5740 	expectation->val = MAGIC_VAL_1;
5741 	expectation->virt_fn = apic_virt_identity;
5742 	expectation->virtualize_apic_accesses =
5743 		config->virtualize_apic_accesses &&
5744 		config->activate_secondary_controls;
5745 	if (virtualize_apic_accesses_only) {
5746 		expectation->rd_exit_reason = VMX_APIC_ACCESS;
5747 		expectation->wr_exit_reason = VMX_APIC_ACCESS;
5748 	} else if (virtualize_apic_accesses_and_use_tpr_shadow) {
5749 		switch (reg) {
5750 		case APIC_TASKPRI:
5751 			expectation->rd_exit_reason = VMX_VMCALL;
5752 			expectation->wr_exit_reason = VMX_VMCALL;
5753 			expectation->virt_fn = apic_virt_nibble1;
5754 			break;
5755 		default:
5756 			expectation->rd_exit_reason = VMX_APIC_ACCESS;
5757 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5758 		}
5759 	} else if (apic_register_virtualization) {
5760 		expectation->rd_exit_reason = VMX_VMCALL;
5761 
5762 		switch (reg) {
5763 		case APIC_ID:
5764 		case APIC_EOI:
5765 		case APIC_LDR:
5766 		case APIC_DFR:
5767 		case APIC_SPIV:
5768 		case APIC_ESR:
5769 		case APIC_ICR:
5770 		case APIC_LVTT:
5771 		case APIC_LVTTHMR:
5772 		case APIC_LVTPC:
5773 		case APIC_LVT0:
5774 		case APIC_LVT1:
5775 		case APIC_LVTERR:
5776 		case APIC_TMICT:
5777 		case APIC_TDCR:
5778 			expectation->wr_exit_reason = VMX_APIC_WRITE;
5779 			break;
5780 		case APIC_LVR:
5781 		case APIC_ISR ... APIC_ISR + 0x70:
5782 		case APIC_TMR ... APIC_TMR + 0x70:
5783 		case APIC_IRR ... APIC_IRR + 0x70:
5784 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5785 			break;
5786 		case APIC_TASKPRI:
5787 			expectation->wr_exit_reason = VMX_VMCALL;
5788 			expectation->virt_fn = apic_virt_nibble1;
5789 			break;
5790 		case APIC_ICR2:
5791 			expectation->wr_exit_reason = VMX_VMCALL;
5792 			expectation->virt_fn = apic_virt_byte3;
5793 			break;
5794 		default:
5795 			expectation->rd_exit_reason = VMX_APIC_ACCESS;
5796 			expectation->wr_exit_reason = VMX_APIC_ACCESS;
5797 		}
5798 	} else if (!expectation->virtualize_apic_accesses) {
5799 		/*
5800 		 * No APIC registers are directly virtualized. This includes
5801 		 * VTPR, which can be virtualized through MOV to/from CR8 via
5802 		 * the use TPR shadow control, but not through directly
5803 		 * accessing VTPR.
5804 		 */
5805 		expectation->rd_exit_reason = VMX_VMCALL;
5806 		expectation->wr_exit_reason = VMX_VMCALL;
5807 	} else {
5808 		printf("Cannot parse APIC register virtualization config:\n"
5809 		       "\tvirtualize_apic_accesses: %d\n"
5810 		       "\tuse_tpr_shadow: %d\n"
5811 		       "\tapic_register_virtualization: %d\n"
5812 		       "\tvirtualize_x2apic_mode: %d\n"
5813 		       "\tactivate_secondary_controls: %d\n",
5814 		       config->virtualize_apic_accesses,
5815 		       config->use_tpr_shadow,
5816 		       config->apic_register_virtualization,
5817 		       config->virtualize_x2apic_mode,
5818 		       config->activate_secondary_controls);
5819 
5820 		return false;
5821 	}
5822 
5823 	return true;
5824 }
5825 
5826 struct apic_reg_test apic_reg_tests[] = {
5827 	/* Good configs, where some L2 APIC accesses are virtualized. */
5828 	{
5829 		.name = "Virtualize APIC accesses",
5830 		.apic_reg_virt_config = {
5831 			.virtualize_apic_accesses = true,
5832 			.use_tpr_shadow = false,
5833 			.apic_register_virtualization = false,
5834 			.virtualize_x2apic_mode = false,
5835 			.activate_secondary_controls = true,
5836 		},
5837 	},
5838 	{
5839 		.name = "Virtualize APIC accesses + Use TPR shadow",
5840 		.apic_reg_virt_config = {
5841 			.virtualize_apic_accesses = true,
5842 			.use_tpr_shadow = true,
5843 			.apic_register_virtualization = false,
5844 			.virtualize_x2apic_mode = false,
5845 			.activate_secondary_controls = true,
5846 		},
5847 	},
5848 	{
5849 		.name = "APIC-register virtualization",
5850 		.apic_reg_virt_config = {
5851 			.virtualize_apic_accesses = true,
5852 			.use_tpr_shadow = true,
5853 			.apic_register_virtualization = true,
5854 			.virtualize_x2apic_mode = false,
5855 			.activate_secondary_controls = true,
5856 		},
5857 	},
5858 
5859 	/*
5860 	 * Test that the secondary processor-based VM-execution controls are
5861 	 * correctly ignored when "activate secondary controls" is disabled.
5862 	 */
5863 	{
5864 		.name = "Activate secondary controls off",
5865 		.apic_reg_virt_config = {
5866 			.virtualize_apic_accesses = true,
5867 			.use_tpr_shadow = false,
5868 			.apic_register_virtualization = true,
5869 			.virtualize_x2apic_mode = true,
5870 			.activate_secondary_controls = false,
5871 		},
5872 	},
5873 	{
5874 		.name = "Activate secondary controls off + Use TPR shadow",
5875 		.apic_reg_virt_config = {
5876 			.virtualize_apic_accesses = true,
5877 			.use_tpr_shadow = true,
5878 			.apic_register_virtualization = true,
5879 			.virtualize_x2apic_mode = true,
5880 			.activate_secondary_controls = false,
5881 		},
5882 	},
5883 
5884 	/*
5885 	 * Test that the APIC access address is treated like an arbitrary memory
5886 	 * address when "virtualize APIC accesses" is disabled.
5887 	 */
5888 	{
5889 		.name = "Virtualize APIC accesses off + Use TPR shadow",
5890 		.apic_reg_virt_config = {
5891 			.virtualize_apic_accesses = false,
5892 			.use_tpr_shadow = true,
5893 			.apic_register_virtualization = true,
5894 			.virtualize_x2apic_mode = true,
5895 			.activate_secondary_controls = true,
5896 		},
5897 	},
5898 
5899 	/*
5900 	 * Test that VM entry fails due to invalid controls when
5901 	 * "APIC-register virtualization" is enabled while "use TPR shadow" is
5902 	 * disabled.
5903 	 */
5904 	{
5905 		.name = "APIC-register virtualization + Use TPR shadow off",
5906 		.apic_reg_virt_config = {
5907 			.virtualize_apic_accesses = true,
5908 			.use_tpr_shadow = false,
5909 			.apic_register_virtualization = true,
5910 			.virtualize_x2apic_mode = false,
5911 			.activate_secondary_controls = true,
5912 		},
5913 	},
5914 
5915 	/*
5916 	 * Test that VM entry fails due to invalid controls when
5917 	 * "Virtualize x2APIC mode" is enabled while "use TPR shadow" is
5918 	 * disabled.
5919 	 */
5920 	{
5921 		.name = "Virtualize x2APIC mode + Use TPR shadow off",
5922 		.apic_reg_virt_config = {
5923 			.virtualize_apic_accesses = false,
5924 			.use_tpr_shadow = false,
5925 			.apic_register_virtualization = false,
5926 			.virtualize_x2apic_mode = true,
5927 			.activate_secondary_controls = true,
5928 		},
5929 	},
5930 	{
5931 		.name = "Virtualize x2APIC mode + Use TPR shadow off v2",
5932 		.apic_reg_virt_config = {
5933 			.virtualize_apic_accesses = false,
5934 			.use_tpr_shadow = false,
5935 			.apic_register_virtualization = true,
5936 			.virtualize_x2apic_mode = true,
5937 			.activate_secondary_controls = true,
5938 		},
5939 	},
5940 
5941 	/*
5942 	 * Test that VM entry fails due to invalid controls when
5943 	 * "virtualize x2APIC mode" is enabled while "virtualize APIC accesses"
5944 	 * is enabled.
5945 	 */
5946 	{
5947 		.name = "Virtualize x2APIC mode + Virtualize APIC accesses",
5948 		.apic_reg_virt_config = {
5949 			.virtualize_apic_accesses = true,
5950 			.use_tpr_shadow = true,
5951 			.apic_register_virtualization = false,
5952 			.virtualize_x2apic_mode = true,
5953 			.activate_secondary_controls = true,
5954 		},
5955 	},
5956 	{
5957 		.name = "Virtualize x2APIC mode + Virtualize APIC accesses v2",
5958 		.apic_reg_virt_config = {
5959 			.virtualize_apic_accesses = true,
5960 			.use_tpr_shadow = true,
5961 			.apic_register_virtualization = true,
5962 			.virtualize_x2apic_mode = true,
5963 			.activate_secondary_controls = true,
5964 		},
5965 	},
5966 };
5967 
5968 enum Apic_op {
5969 	APIC_OP_XAPIC_RD,
5970 	APIC_OP_XAPIC_WR,
5971 	TERMINATE,
5972 };
5973 
5974 static u32 vmx_xapic_read(u32 *apic_access_address, u32 reg)
5975 {
5976 	return *(volatile u32 *)((uintptr_t)apic_access_address + reg);
5977 }
5978 
5979 static void vmx_xapic_write(u32 *apic_access_address, u32 reg, u32 val)
5980 {
5981 	*(volatile u32 *)((uintptr_t)apic_access_address + reg) = val;
5982 }
5983 
5984 struct apic_reg_virt_guest_args {
5985 	enum Apic_op op;
5986 	u32 *apic_access_address;
5987 	u32 reg;
5988 	u32 val;
5989 	bool check_rd;
5990 	u32 (*virt_fn)(u32);
5991 } apic_reg_virt_guest_args;
5992 
5993 static void apic_reg_virt_guest(void)
5994 {
5995 	volatile struct apic_reg_virt_guest_args *args =
5996 		&apic_reg_virt_guest_args;
5997 
5998 	for (;;) {
5999 		enum Apic_op op = args->op;
6000 		u32 *apic_access_address = args->apic_access_address;
6001 		u32 reg = args->reg;
6002 		u32 val = args->val;
6003 		bool check_rd = args->check_rd;
6004 		u32 (*virt_fn)(u32) = args->virt_fn;
6005 
6006 		if (op == TERMINATE)
6007 			break;
6008 
6009 		if (op == APIC_OP_XAPIC_RD) {
6010 			u32 ret = vmx_xapic_read(apic_access_address, reg);
6011 
6012 			if (check_rd) {
6013 				u32 want = virt_fn(val);
6014 				u32 got = virt_fn(ret);
6015 
6016 				report(got == want,
6017 				       "read 0x%x, expected 0x%x.", got, want);
6018 			}
6019 		} else if (op == APIC_OP_XAPIC_WR) {
6020 			vmx_xapic_write(apic_access_address, reg, val);
6021 		}
6022 
6023 		/*
6024 		 * The L1 should always execute a vmcall after it's done testing
6025 		 * an individual APIC operation. This helps to validate that the
6026 		 * L1 and L2 are in sync with each other, as expected.
6027 		 */
6028 		vmcall();
6029 	}
6030 }
6031 
6032 static void test_xapic_rd(
6033 	u32 reg, struct apic_reg_virt_expectation *expectation,
6034 	u32 *apic_access_address, u32 *virtual_apic_page)
6035 {
6036 	u32 val = expectation->val;
6037 	u32 exit_reason_want = expectation->rd_exit_reason;
6038 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
6039 
6040 	report_prefix_pushf("xapic - reading 0x%03x", reg);
6041 
6042 	/* Configure guest to do an xapic read */
6043 	args->op = APIC_OP_XAPIC_RD;
6044 	args->apic_access_address = apic_access_address;
6045 	args->reg = reg;
6046 	args->val = val;
6047 	args->check_rd = exit_reason_want == VMX_VMCALL;
6048 	args->virt_fn = expectation->virt_fn;
6049 
6050 	/* Setup virtual APIC page */
6051 	if (!expectation->virtualize_apic_accesses) {
6052 		apic_access_address[apic_reg_index(reg)] = val;
6053 		virtual_apic_page[apic_reg_index(reg)] = 0;
6054 	} else if (exit_reason_want == VMX_VMCALL) {
6055 		apic_access_address[apic_reg_index(reg)] = 0;
6056 		virtual_apic_page[apic_reg_index(reg)] = val;
6057 	}
6058 
6059 	/* Enter guest */
6060 	enter_guest();
6061 
6062 	/*
6063 	 * Validate the behavior and
6064 	 * pass a magic value back to the guest.
6065 	 */
6066 	if (exit_reason_want == VMX_APIC_ACCESS) {
6067 		u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff;
6068 
6069 		assert_exit_reason(exit_reason_want);
6070 		report(apic_page_offset == reg,
6071 		       "got APIC access exit @ page offset 0x%03x, want 0x%03x",
6072 		       apic_page_offset, reg);
6073 		skip_exit_insn();
6074 
6075 		/* Reenter guest so it can consume/check rcx and exit again. */
6076 		enter_guest();
6077 	} else if (exit_reason_want != VMX_VMCALL) {
6078 		report_fail("Oops, bad exit expectation: %u.", exit_reason_want);
6079 	}
6080 
6081 	skip_exit_vmcall();
6082 	report_prefix_pop();
6083 }
6084 
6085 static void test_xapic_wr(
6086 	u32 reg, struct apic_reg_virt_expectation *expectation,
6087 	u32 *apic_access_address, u32 *virtual_apic_page)
6088 {
6089 	u32 val = expectation->val;
6090 	u32 exit_reason_want = expectation->wr_exit_reason;
6091 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
6092 	bool virtualized =
6093 		expectation->virtualize_apic_accesses &&
6094 		(exit_reason_want == VMX_APIC_WRITE ||
6095 		 exit_reason_want == VMX_VMCALL);
6096 	bool checked = false;
6097 
6098 	report_prefix_pushf("xapic - writing 0x%x to 0x%03x", val, reg);
6099 
6100 	/* Configure guest to do an xapic read */
6101 	args->op = APIC_OP_XAPIC_WR;
6102 	args->apic_access_address = apic_access_address;
6103 	args->reg = reg;
6104 	args->val = val;
6105 
6106 	/* Setup virtual APIC page */
6107 	if (virtualized || !expectation->virtualize_apic_accesses) {
6108 		apic_access_address[apic_reg_index(reg)] = 0;
6109 		virtual_apic_page[apic_reg_index(reg)] = 0;
6110 	}
6111 
6112 	/* Enter guest */
6113 	enter_guest();
6114 
6115 	/*
6116 	 * Validate the behavior and
6117 	 * pass a magic value back to the guest.
6118 	 */
6119 	if (exit_reason_want == VMX_APIC_ACCESS) {
6120 		u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff;
6121 
6122 		assert_exit_reason(exit_reason_want);
6123 		report(apic_page_offset == reg,
6124 		       "got APIC access exit @ page offset 0x%03x, want 0x%03x",
6125 		       apic_page_offset, reg);
6126 		skip_exit_insn();
6127 
6128 		/* Reenter guest so it can consume/check rcx and exit again. */
6129 		enter_guest();
6130 	} else if (exit_reason_want == VMX_APIC_WRITE) {
6131 		assert_exit_reason(exit_reason_want);
6132 		report(virtual_apic_page[apic_reg_index(reg)] == val,
6133 		       "got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%x",
6134 		       apic_reg_index(reg),
6135 		       virtual_apic_page[apic_reg_index(reg)], val);
6136 		checked = true;
6137 
6138 		/* Reenter guest so it can consume/check rcx and exit again. */
6139 		enter_guest();
6140 	} else if (exit_reason_want != VMX_VMCALL) {
6141 		report_fail("Oops, bad exit expectation: %u.", exit_reason_want);
6142 	}
6143 
6144 	assert_exit_reason(VMX_VMCALL);
6145 	if (virtualized && !checked) {
6146 		u32 want = expectation->virt_fn(val);
6147 		u32 got = virtual_apic_page[apic_reg_index(reg)];
6148 		got = expectation->virt_fn(got);
6149 
6150 		report(got == want, "exitless write; val is 0x%x, want 0x%x",
6151 		       got, want);
6152 	} else if (!expectation->virtualize_apic_accesses && !checked) {
6153 		u32 got = apic_access_address[apic_reg_index(reg)];
6154 
6155 		report(got == val,
6156 		       "non-virtualized write; val is 0x%x, want 0x%x", got,
6157 		       val);
6158 	} else if (!expectation->virtualize_apic_accesses && checked) {
6159 		report_fail("Non-virtualized write was prematurely checked!");
6160 	}
6161 
6162 	skip_exit_vmcall();
6163 	report_prefix_pop();
6164 }
6165 
6166 enum Config_type {
6167 	CONFIG_TYPE_GOOD,
6168 	CONFIG_TYPE_UNSUPPORTED,
6169 	CONFIG_TYPE_VMENTRY_FAILS_EARLY,
6170 };
6171 
6172 static enum Config_type configure_apic_reg_virt_test(
6173 	struct apic_reg_virt_config *apic_reg_virt_config)
6174 {
6175 	u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6176 	u32 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6177 	/* Configs where L2 entry fails early, due to invalid controls. */
6178 	bool use_tpr_shadow_incorrectly_off =
6179 		!apic_reg_virt_config->use_tpr_shadow &&
6180 		(apic_reg_virt_config->apic_register_virtualization ||
6181 		 apic_reg_virt_config->virtualize_x2apic_mode) &&
6182 		apic_reg_virt_config->activate_secondary_controls;
6183 	bool virtualize_apic_accesses_incorrectly_on =
6184 		apic_reg_virt_config->virtualize_apic_accesses &&
6185 		apic_reg_virt_config->virtualize_x2apic_mode &&
6186 		apic_reg_virt_config->activate_secondary_controls;
6187 	bool vmentry_fails_early =
6188 		use_tpr_shadow_incorrectly_off ||
6189 		virtualize_apic_accesses_incorrectly_on;
6190 
6191 	if (apic_reg_virt_config->activate_secondary_controls) {
6192 		if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) {
6193 			printf("VM-execution control \"activate secondary controls\" NOT supported.\n");
6194 			return CONFIG_TYPE_UNSUPPORTED;
6195 		}
6196 		cpu_exec_ctrl0 |= CPU_SECONDARY;
6197 	} else {
6198 		cpu_exec_ctrl0 &= ~CPU_SECONDARY;
6199 	}
6200 
6201 	if (apic_reg_virt_config->virtualize_apic_accesses) {
6202 		if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES)) {
6203 			printf("VM-execution control \"virtualize APIC accesses\" NOT supported.\n");
6204 			return CONFIG_TYPE_UNSUPPORTED;
6205 		}
6206 		cpu_exec_ctrl1 |= CPU_VIRT_APIC_ACCESSES;
6207 	} else {
6208 		cpu_exec_ctrl1 &= ~CPU_VIRT_APIC_ACCESSES;
6209 	}
6210 
6211 	if (apic_reg_virt_config->use_tpr_shadow) {
6212 		if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) {
6213 			printf("VM-execution control \"use TPR shadow\" NOT supported.\n");
6214 			return CONFIG_TYPE_UNSUPPORTED;
6215 		}
6216 		cpu_exec_ctrl0 |= CPU_TPR_SHADOW;
6217 	} else {
6218 		cpu_exec_ctrl0 &= ~CPU_TPR_SHADOW;
6219 	}
6220 
6221 	if (apic_reg_virt_config->apic_register_virtualization) {
6222 		if (!(ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT)) {
6223 			printf("VM-execution control \"APIC-register virtualization\" NOT supported.\n");
6224 			return CONFIG_TYPE_UNSUPPORTED;
6225 		}
6226 		cpu_exec_ctrl1 |= CPU_APIC_REG_VIRT;
6227 	} else {
6228 		cpu_exec_ctrl1 &= ~CPU_APIC_REG_VIRT;
6229 	}
6230 
6231 	if (apic_reg_virt_config->virtualize_x2apic_mode) {
6232 		if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_X2APIC)) {
6233 			printf("VM-execution control \"virtualize x2APIC mode\" NOT supported.\n");
6234 			return CONFIG_TYPE_UNSUPPORTED;
6235 		}
6236 		cpu_exec_ctrl1 |= CPU_VIRT_X2APIC;
6237 	} else {
6238 		cpu_exec_ctrl1 &= ~CPU_VIRT_X2APIC;
6239 	}
6240 
6241 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6242 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6243 
6244 	if (vmentry_fails_early)
6245 		return CONFIG_TYPE_VMENTRY_FAILS_EARLY;
6246 
6247 	return CONFIG_TYPE_GOOD;
6248 }
6249 
6250 static bool cpu_has_apicv(void)
6251 {
6252 	return ((ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT) &&
6253 		(ctrl_cpu_rev[1].clr & CPU_VINTD) &&
6254 		(ctrl_pin_rev.clr & PIN_POST_INTR));
6255 }
6256 
6257 /* Validates APIC register access across valid virtualization configurations. */
6258 static void apic_reg_virt_test(void)
6259 {
6260 	u32 *apic_access_address;
6261 	u32 *virtual_apic_page;
6262 	u64 control;
6263 	u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6264 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6265 	int i;
6266 	struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
6267 
6268 	if (!cpu_has_apicv()) {
6269 		report_skip(__func__);
6270 		return;
6271 	}
6272 
6273 	control = cpu_exec_ctrl1;
6274 	control &= ~CPU_VINTD;
6275 	vmcs_write(CPU_EXEC_CTRL1, control);
6276 
6277 	test_set_guest(apic_reg_virt_guest);
6278 
6279 	/*
6280 	 * From the SDM: The 1-setting of the "virtualize APIC accesses"
6281 	 * VM-execution is guaranteed to apply only if translations to the
6282 	 * APIC-access address use a 4-KByte page.
6283 	 */
6284 	apic_access_address = alloc_page();
6285 	force_4k_page(apic_access_address);
6286 	vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_address));
6287 
6288 	virtual_apic_page = alloc_page();
6289 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
6290 
6291 	for (i = 0; i < ARRAY_SIZE(apic_reg_tests); i++) {
6292 		struct apic_reg_test *apic_reg_test = &apic_reg_tests[i];
6293 		struct apic_reg_virt_config *apic_reg_virt_config =
6294 				&apic_reg_test->apic_reg_virt_config;
6295 		enum Config_type config_type;
6296 		u32 reg;
6297 
6298 		printf("--- %s test ---\n", apic_reg_test->name);
6299 		config_type =
6300 			configure_apic_reg_virt_test(apic_reg_virt_config);
6301 		if (config_type == CONFIG_TYPE_UNSUPPORTED) {
6302 			printf("Skip because of missing features.\n");
6303 			continue;
6304 		}
6305 
6306 		if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) {
6307 			enter_guest_with_bad_controls();
6308 			continue;
6309 		}
6310 
6311 		for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) {
6312 			struct apic_reg_virt_expectation expectation = {};
6313 			bool ok;
6314 
6315 			ok = apic_reg_virt_exit_expectation(
6316 				reg, apic_reg_virt_config, &expectation);
6317 			if (!ok) {
6318 				report_fail("Malformed test.");
6319 				break;
6320 			}
6321 
6322 			test_xapic_rd(reg, &expectation, apic_access_address,
6323 				      virtual_apic_page);
6324 			test_xapic_wr(reg, &expectation, apic_access_address,
6325 				      virtual_apic_page);
6326 		}
6327 	}
6328 
6329 	/* Terminate the guest */
6330 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
6331 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
6332 	args->op = TERMINATE;
6333 	enter_guest();
6334 	assert_exit_reason(VMX_VMCALL);
6335 }
6336 
6337 struct virt_x2apic_mode_config {
6338 	struct apic_reg_virt_config apic_reg_virt_config;
6339 	bool virtual_interrupt_delivery;
6340 	bool use_msr_bitmaps;
6341 	bool disable_x2apic_msr_intercepts;
6342 	bool disable_x2apic;
6343 };
6344 
6345 struct virt_x2apic_mode_test_case {
6346 	const char *name;
6347 	struct virt_x2apic_mode_config virt_x2apic_mode_config;
6348 };
6349 
6350 enum Virt_x2apic_mode_behavior_type {
6351 	X2APIC_ACCESS_VIRTUALIZED,
6352 	X2APIC_ACCESS_PASSED_THROUGH,
6353 	X2APIC_ACCESS_TRIGGERS_GP,
6354 };
6355 
6356 struct virt_x2apic_mode_expectation {
6357 	enum Reason rd_exit_reason;
6358 	enum Reason wr_exit_reason;
6359 
6360 	/*
6361 	 * RDMSR and WRMSR handle 64-bit values. However, except for ICR, all of
6362 	 * the x2APIC registers are 32 bits. Notice:
6363 	 *   1. vmx_x2apic_read() clears the upper 32 bits for 32-bit registers.
6364 	 *   2. vmx_x2apic_write() expects the val arg to be well-formed.
6365 	 */
6366 	u64 rd_val;
6367 	u64 wr_val;
6368 
6369 	/*
6370 	 * Compares input to virtualized output;
6371 	 * 1st arg is pointer to return expected virtualization output.
6372 	 */
6373 	u64 (*virt_fn)(u64);
6374 
6375 	enum Virt_x2apic_mode_behavior_type rd_behavior;
6376 	enum Virt_x2apic_mode_behavior_type wr_behavior;
6377 	bool wr_only;
6378 };
6379 
6380 static u64 virt_x2apic_mode_identity(u64 val)
6381 {
6382 	return val;
6383 }
6384 
6385 static u64 virt_x2apic_mode_nibble1(u64 val)
6386 {
6387 	return val & 0xf0;
6388 }
6389 
6390 static void virt_x2apic_mode_rd_expectation(
6391 	u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic,
6392 	bool apic_register_virtualization, bool virtual_interrupt_delivery,
6393 	struct virt_x2apic_mode_expectation *expectation)
6394 {
6395 	bool readable =
6396 		!x2apic_reg_reserved(reg) &&
6397 		reg != APIC_EOI;
6398 
6399 	expectation->rd_exit_reason = VMX_VMCALL;
6400 	expectation->virt_fn = virt_x2apic_mode_identity;
6401 	if (virt_x2apic_mode_on && apic_register_virtualization) {
6402 		expectation->rd_val = MAGIC_VAL_1;
6403 		if (reg == APIC_PROCPRI && virtual_interrupt_delivery)
6404 			expectation->virt_fn = virt_x2apic_mode_nibble1;
6405 		else if (reg == APIC_TASKPRI)
6406 			expectation->virt_fn = virt_x2apic_mode_nibble1;
6407 		expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED;
6408 	} else if (virt_x2apic_mode_on && !apic_register_virtualization &&
6409 		   reg == APIC_TASKPRI) {
6410 		expectation->rd_val = MAGIC_VAL_1;
6411 		expectation->virt_fn = virt_x2apic_mode_nibble1;
6412 		expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED;
6413 	} else if (!disable_x2apic && readable) {
6414 		expectation->rd_val = apic_read(reg);
6415 		expectation->rd_behavior = X2APIC_ACCESS_PASSED_THROUGH;
6416 	} else {
6417 		expectation->rd_behavior = X2APIC_ACCESS_TRIGGERS_GP;
6418 	}
6419 }
6420 
6421 /*
6422  * get_x2apic_wr_val() creates an innocuous write value for an x2APIC register.
6423  *
6424  * For writable registers, get_x2apic_wr_val() deposits the write value into the
6425  * val pointer arg and returns true. For non-writable registers, val is not
6426  * modified and get_x2apic_wr_val() returns false.
6427  */
6428 static bool get_x2apic_wr_val(u32 reg, u64 *val)
6429 {
6430 	switch (reg) {
6431 	case APIC_TASKPRI:
6432 		/* Bits 31:8 are reserved. */
6433 		*val &= 0xff;
6434 		break;
6435 	case APIC_EOI:
6436 	case APIC_ESR:
6437 	case APIC_TMICT:
6438 		/*
6439 		 * EOI, ESR: WRMSR of a non-zero value causes #GP(0).
6440 		 * TMICT: A write of 0 to the initial-count register effectively
6441 		 *        stops the local APIC timer, in both one-shot and
6442 		 *        periodic mode.
6443 		 */
6444 		*val = 0;
6445 		break;
6446 	case APIC_SPIV:
6447 	case APIC_LVTT:
6448 	case APIC_LVTTHMR:
6449 	case APIC_LVTPC:
6450 	case APIC_LVT0:
6451 	case APIC_LVT1:
6452 	case APIC_LVTERR:
6453 	case APIC_TDCR:
6454 		/*
6455 		 * To avoid writing a 1 to a reserved bit or causing some other
6456 		 * unintended side effect, read the current value and use it as
6457 		 * the write value.
6458 		 */
6459 		*val = apic_read(reg);
6460 		break;
6461 	case APIC_CMCI:
6462 		if (!apic_lvt_entry_supported(6))
6463 			return false;
6464 		*val = apic_read(reg);
6465 		break;
6466 	case APIC_ICR:
6467 		*val = 0x40000 | 0xf1;
6468 		break;
6469 	case APIC_SELF_IPI:
6470 		/*
6471 		 * With special processing (i.e., virtualize x2APIC mode +
6472 		 * virtual interrupt delivery), writing zero causes an
6473 		 * APIC-write VM exit. We plan to add a test for enabling
6474 		 * "virtual-interrupt delivery" in VMCS12, and that's where we
6475 		 * will test a self IPI with special processing.
6476 		 */
6477 		*val = 0x0;
6478 		break;
6479 	default:
6480 		return false;
6481 	}
6482 
6483 	return true;
6484 }
6485 
6486 static bool special_processing_applies(u32 reg, u64 *val,
6487 				       bool virt_int_delivery)
6488 {
6489 	bool special_processing =
6490 		(reg == APIC_TASKPRI) ||
6491 		(virt_int_delivery &&
6492 		 (reg == APIC_EOI || reg == APIC_SELF_IPI));
6493 
6494 	if (special_processing) {
6495 		TEST_ASSERT(get_x2apic_wr_val(reg, val));
6496 		return true;
6497 	}
6498 
6499 	return false;
6500 }
6501 
6502 static void virt_x2apic_mode_wr_expectation(
6503 	u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic,
6504 	bool virt_int_delivery,
6505 	struct virt_x2apic_mode_expectation *expectation)
6506 {
6507 	expectation->wr_exit_reason = VMX_VMCALL;
6508 	expectation->wr_val = MAGIC_VAL_1;
6509 	expectation->wr_only = false;
6510 
6511 	if (virt_x2apic_mode_on &&
6512 	    special_processing_applies(reg, &expectation->wr_val,
6513 				       virt_int_delivery)) {
6514 		expectation->wr_behavior = X2APIC_ACCESS_VIRTUALIZED;
6515 		if (reg == APIC_SELF_IPI)
6516 			expectation->wr_exit_reason = VMX_APIC_WRITE;
6517 	} else if (!disable_x2apic &&
6518 		   get_x2apic_wr_val(reg, &expectation->wr_val)) {
6519 		expectation->wr_behavior = X2APIC_ACCESS_PASSED_THROUGH;
6520 		if (reg == APIC_EOI || reg == APIC_SELF_IPI)
6521 			expectation->wr_only = true;
6522 		if (reg == APIC_ICR)
6523 			expectation->wr_exit_reason = VMX_EXTINT;
6524 	} else {
6525 		expectation->wr_behavior = X2APIC_ACCESS_TRIGGERS_GP;
6526 		/*
6527 		 * Writing 1 to a reserved bit triggers a #GP.
6528 		 * Thus, set the write value to 0, which seems
6529 		 * the most likely to detect a missed #GP.
6530 		 */
6531 		expectation->wr_val = 0;
6532 	}
6533 }
6534 
6535 static void virt_x2apic_mode_exit_expectation(
6536 	u32 reg, struct virt_x2apic_mode_config *config,
6537 	struct virt_x2apic_mode_expectation *expectation)
6538 {
6539 	struct apic_reg_virt_config *base_config =
6540 		&config->apic_reg_virt_config;
6541 	bool virt_x2apic_mode_on =
6542 		base_config->virtualize_x2apic_mode &&
6543 		config->use_msr_bitmaps &&
6544 		config->disable_x2apic_msr_intercepts &&
6545 		base_config->activate_secondary_controls;
6546 
6547 	virt_x2apic_mode_wr_expectation(
6548 		reg, virt_x2apic_mode_on, config->disable_x2apic,
6549 		config->virtual_interrupt_delivery, expectation);
6550 	virt_x2apic_mode_rd_expectation(
6551 		reg, virt_x2apic_mode_on, config->disable_x2apic,
6552 		base_config->apic_register_virtualization,
6553 		config->virtual_interrupt_delivery, expectation);
6554 }
6555 
6556 struct virt_x2apic_mode_test_case virt_x2apic_mode_tests[] = {
6557 	/*
6558 	 * Baseline "virtualize x2APIC mode" configuration:
6559 	 *   - virtualize x2APIC mode
6560 	 *   - virtual-interrupt delivery
6561 	 *   - APIC-register virtualization
6562 	 *   - x2APIC MSR intercepts disabled
6563 	 *
6564 	 * Reads come from virtual APIC page, special processing applies to
6565 	 * VTPR, EOI, and SELF IPI, and all other writes pass through to L1
6566 	 * APIC.
6567 	 */
6568 	{
6569 		.name = "Baseline",
6570 		.virt_x2apic_mode_config = {
6571 			.virtual_interrupt_delivery = true,
6572 			.use_msr_bitmaps = true,
6573 			.disable_x2apic_msr_intercepts = true,
6574 			.disable_x2apic = false,
6575 			.apic_reg_virt_config = {
6576 				.apic_register_virtualization = true,
6577 				.use_tpr_shadow = true,
6578 				.virtualize_apic_accesses = false,
6579 				.virtualize_x2apic_mode = true,
6580 				.activate_secondary_controls = true,
6581 			},
6582 		},
6583 	},
6584 	{
6585 		.name = "Baseline w/ x2apic disabled",
6586 		.virt_x2apic_mode_config = {
6587 			.virtual_interrupt_delivery = true,
6588 			.use_msr_bitmaps = true,
6589 			.disable_x2apic_msr_intercepts = true,
6590 			.disable_x2apic = true,
6591 			.apic_reg_virt_config = {
6592 				.apic_register_virtualization = true,
6593 				.use_tpr_shadow = true,
6594 				.virtualize_apic_accesses = false,
6595 				.virtualize_x2apic_mode = true,
6596 				.activate_secondary_controls = true,
6597 			},
6598 		},
6599 	},
6600 
6601 	/*
6602 	 * Baseline, minus virtual-interrupt delivery. Reads come from virtual
6603 	 * APIC page, special processing applies to VTPR, and all other writes
6604 	 * pass through to L1 APIC.
6605 	 */
6606 	{
6607 		.name = "Baseline - virtual interrupt delivery",
6608 		.virt_x2apic_mode_config = {
6609 			.virtual_interrupt_delivery = false,
6610 			.use_msr_bitmaps = true,
6611 			.disable_x2apic_msr_intercepts = true,
6612 			.disable_x2apic = false,
6613 			.apic_reg_virt_config = {
6614 				.apic_register_virtualization = true,
6615 				.use_tpr_shadow = true,
6616 				.virtualize_apic_accesses = false,
6617 				.virtualize_x2apic_mode = true,
6618 				.activate_secondary_controls = true,
6619 			},
6620 		},
6621 	},
6622 
6623 	/*
6624 	 * Baseline, minus APIC-register virtualization. x2APIC reads pass
6625 	 * through to L1's APIC, unless reading VTPR
6626 	 */
6627 	{
6628 		.name = "Virtualize x2APIC mode, no APIC reg virt",
6629 		.virt_x2apic_mode_config = {
6630 			.virtual_interrupt_delivery = true,
6631 			.use_msr_bitmaps = true,
6632 			.disable_x2apic_msr_intercepts = true,
6633 			.disable_x2apic = false,
6634 			.apic_reg_virt_config = {
6635 				.apic_register_virtualization = false,
6636 				.use_tpr_shadow = true,
6637 				.virtualize_apic_accesses = false,
6638 				.virtualize_x2apic_mode = true,
6639 				.activate_secondary_controls = true,
6640 			},
6641 		},
6642 	},
6643 	{
6644 		.name = "Virtualize x2APIC mode, no APIC reg virt, x2APIC off",
6645 		.virt_x2apic_mode_config = {
6646 			.virtual_interrupt_delivery = true,
6647 			.use_msr_bitmaps = true,
6648 			.disable_x2apic_msr_intercepts = true,
6649 			.disable_x2apic = true,
6650 			.apic_reg_virt_config = {
6651 				.apic_register_virtualization = false,
6652 				.use_tpr_shadow = true,
6653 				.virtualize_apic_accesses = false,
6654 				.virtualize_x2apic_mode = true,
6655 				.activate_secondary_controls = true,
6656 			},
6657 		},
6658 	},
6659 
6660 	/*
6661 	 * Enable "virtualize x2APIC mode" and "APIC-register virtualization",
6662 	 * and disable intercepts for the x2APIC MSRs, but fail to enable
6663 	 * "activate secondary controls" (i.e. L2 gets access to L1's x2APIC
6664 	 * MSRs).
6665 	 */
6666 	{
6667 		.name = "Fail to enable activate secondary controls",
6668 		.virt_x2apic_mode_config = {
6669 			.virtual_interrupt_delivery = true,
6670 			.use_msr_bitmaps = true,
6671 			.disable_x2apic_msr_intercepts = true,
6672 			.disable_x2apic = false,
6673 			.apic_reg_virt_config = {
6674 				.apic_register_virtualization = true,
6675 				.use_tpr_shadow = true,
6676 				.virtualize_apic_accesses = false,
6677 				.virtualize_x2apic_mode = true,
6678 				.activate_secondary_controls = false,
6679 			},
6680 		},
6681 	},
6682 
6683 	/*
6684 	 * Enable "APIC-register virtualization" and enable "activate secondary
6685 	 * controls" and disable intercepts for the x2APIC MSRs, but do not
6686 	 * enable the "virtualize x2APIC mode" VM-execution control (i.e. L2
6687 	 * gets access to L1's x2APIC MSRs).
6688 	 */
6689 	{
6690 		.name = "Fail to enable virtualize x2APIC mode",
6691 		.virt_x2apic_mode_config = {
6692 			.virtual_interrupt_delivery = true,
6693 			.use_msr_bitmaps = true,
6694 			.disable_x2apic_msr_intercepts = true,
6695 			.disable_x2apic = false,
6696 			.apic_reg_virt_config = {
6697 				.apic_register_virtualization = true,
6698 				.use_tpr_shadow = true,
6699 				.virtualize_apic_accesses = false,
6700 				.virtualize_x2apic_mode = false,
6701 				.activate_secondary_controls = true,
6702 			},
6703 		},
6704 	},
6705 
6706 	/*
6707 	 * Disable "Virtualize x2APIC mode", disable x2APIC MSR intercepts, and
6708 	 * enable "APIC-register virtualization" --> L2 gets L1's x2APIC MSRs.
6709 	 */
6710 	{
6711 		.name = "Baseline",
6712 		.virt_x2apic_mode_config = {
6713 			.virtual_interrupt_delivery = true,
6714 			.use_msr_bitmaps = true,
6715 			.disable_x2apic_msr_intercepts = true,
6716 			.disable_x2apic = false,
6717 			.apic_reg_virt_config = {
6718 				.apic_register_virtualization = true,
6719 				.use_tpr_shadow = true,
6720 				.virtualize_apic_accesses = false,
6721 				.virtualize_x2apic_mode = false,
6722 				.activate_secondary_controls = true,
6723 			},
6724 		},
6725 	},
6726 };
6727 
6728 enum X2apic_op {
6729 	X2APIC_OP_RD,
6730 	X2APIC_OP_WR,
6731 	X2APIC_TERMINATE,
6732 };
6733 
6734 static u64 vmx_x2apic_read(u32 reg)
6735 {
6736 	u32 msr_addr = x2apic_msr(reg);
6737 	u64 val;
6738 
6739 	val = rdmsr(msr_addr);
6740 
6741 	return val;
6742 }
6743 
6744 static void vmx_x2apic_write(u32 reg, u64 val)
6745 {
6746 	u32 msr_addr = x2apic_msr(reg);
6747 
6748 	wrmsr(msr_addr, val);
6749 }
6750 
6751 struct virt_x2apic_mode_guest_args {
6752 	enum X2apic_op op;
6753 	u32 reg;
6754 	u64 val;
6755 	bool should_gp;
6756 	u64 (*virt_fn)(u64);
6757 } virt_x2apic_mode_guest_args;
6758 
6759 static volatile bool handle_x2apic_gp_ran;
6760 static volatile u32 handle_x2apic_gp_insn_len;
6761 static void handle_x2apic_gp(struct ex_regs *regs)
6762 {
6763 	handle_x2apic_gp_ran = true;
6764 	regs->rip += handle_x2apic_gp_insn_len;
6765 }
6766 
6767 static handler setup_x2apic_gp_handler(void)
6768 {
6769 	handler old_handler;
6770 
6771 	old_handler = handle_exception(GP_VECTOR, handle_x2apic_gp);
6772 	/* RDMSR and WRMSR are both 2 bytes, assuming no prefixes. */
6773 	handle_x2apic_gp_insn_len = 2;
6774 
6775 	return old_handler;
6776 }
6777 
6778 static void teardown_x2apic_gp_handler(handler old_handler)
6779 {
6780 	handle_exception(GP_VECTOR, old_handler);
6781 
6782 	/*
6783 	 * Defensively reset instruction length, so that if the handler is
6784 	 * incorrectly used, it will loop infinitely, rather than run off into
6785 	 * la la land.
6786 	 */
6787 	handle_x2apic_gp_insn_len = 0;
6788 	handle_x2apic_gp_ran = false;
6789 }
6790 
6791 static void virt_x2apic_mode_guest(void)
6792 {
6793 	volatile struct virt_x2apic_mode_guest_args *args =
6794 		&virt_x2apic_mode_guest_args;
6795 
6796 	for (;;) {
6797 		enum X2apic_op op = args->op;
6798 		u32 reg = args->reg;
6799 		u64 val = args->val;
6800 		bool should_gp = args->should_gp;
6801 		u64 (*virt_fn)(u64) = args->virt_fn;
6802 		handler old_handler;
6803 
6804 		if (op == X2APIC_TERMINATE)
6805 			break;
6806 
6807 		if (should_gp) {
6808 			TEST_ASSERT(!handle_x2apic_gp_ran);
6809 			old_handler = setup_x2apic_gp_handler();
6810 		}
6811 
6812 		if (op == X2APIC_OP_RD) {
6813 			u64 ret = vmx_x2apic_read(reg);
6814 
6815 			if (!should_gp) {
6816 				u64 want = virt_fn(val);
6817 				u64 got = virt_fn(ret);
6818 
6819 				report(got == want,
6820 				       "APIC read; got 0x%lx, want 0x%lx.",
6821 				       got, want);
6822 			}
6823 		} else if (op == X2APIC_OP_WR) {
6824 			vmx_x2apic_write(reg, val);
6825 		}
6826 
6827 		if (should_gp) {
6828 			report(handle_x2apic_gp_ran,
6829 			       "x2APIC op triggered GP.");
6830 			teardown_x2apic_gp_handler(old_handler);
6831 		}
6832 
6833 		/*
6834 		 * The L1 should always execute a vmcall after it's done testing
6835 		 * an individual APIC operation. This helps to validate that the
6836 		 * L1 and L2 are in sync with each other, as expected.
6837 		 */
6838 		vmcall();
6839 	}
6840 }
6841 
6842 static void test_x2apic_rd(
6843 	u32 reg, struct virt_x2apic_mode_expectation *expectation,
6844 	u32 *virtual_apic_page)
6845 {
6846 	u64 val = expectation->rd_val;
6847 	u32 exit_reason_want = expectation->rd_exit_reason;
6848 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6849 
6850 	report_prefix_pushf("x2apic - reading 0x%03x", reg);
6851 
6852 	/* Configure guest to do an x2apic read */
6853 	args->op = X2APIC_OP_RD;
6854 	args->reg = reg;
6855 	args->val = val;
6856 	args->should_gp = expectation->rd_behavior == X2APIC_ACCESS_TRIGGERS_GP;
6857 	args->virt_fn = expectation->virt_fn;
6858 
6859 	/* Setup virtual APIC page */
6860 	if (expectation->rd_behavior == X2APIC_ACCESS_VIRTUALIZED)
6861 		virtual_apic_page[apic_reg_index(reg)] = (u32)val;
6862 
6863 	/* Enter guest */
6864 	enter_guest();
6865 
6866 	if (exit_reason_want != VMX_VMCALL) {
6867 		report_fail("Oops, bad exit expectation: %u.", exit_reason_want);
6868 	}
6869 
6870 	skip_exit_vmcall();
6871 	report_prefix_pop();
6872 }
6873 
6874 static volatile bool handle_x2apic_ipi_ran;
6875 static void handle_x2apic_ipi(isr_regs_t *regs)
6876 {
6877 	handle_x2apic_ipi_ran = true;
6878 	eoi();
6879 }
6880 
6881 static void test_x2apic_wr(
6882 	u32 reg, struct virt_x2apic_mode_expectation *expectation,
6883 	u32 *virtual_apic_page)
6884 {
6885 	u64 val = expectation->wr_val;
6886 	u32 exit_reason_want = expectation->wr_exit_reason;
6887 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
6888 	int ipi_vector = 0xf1;
6889 	u32 restore_val = 0;
6890 
6891 	report_prefix_pushf("x2apic - writing 0x%lx to 0x%03x", val, reg);
6892 
6893 	/* Configure guest to do an x2apic read */
6894 	args->op = X2APIC_OP_WR;
6895 	args->reg = reg;
6896 	args->val = val;
6897 	args->should_gp = expectation->wr_behavior == X2APIC_ACCESS_TRIGGERS_GP;
6898 
6899 	/* Setup virtual APIC page */
6900 	if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED)
6901 		virtual_apic_page[apic_reg_index(reg)] = 0;
6902 	if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH && !expectation->wr_only)
6903 		restore_val = apic_read(reg);
6904 
6905 	/* Setup IPI handler */
6906 	handle_x2apic_ipi_ran = false;
6907 	handle_irq(ipi_vector, handle_x2apic_ipi);
6908 
6909 	/* Enter guest */
6910 	enter_guest();
6911 
6912 	/*
6913 	 * Validate the behavior and
6914 	 * pass a magic value back to the guest.
6915 	 */
6916 	if (exit_reason_want == VMX_EXTINT) {
6917 		assert_exit_reason(exit_reason_want);
6918 
6919 		/* Clear the external interrupt. */
6920 		irq_enable();
6921 		asm volatile ("nop");
6922 		irq_disable();
6923 		report(handle_x2apic_ipi_ran,
6924 		       "Got pending interrupt after IRQ enabled.");
6925 
6926 		enter_guest();
6927 	} else if (exit_reason_want == VMX_APIC_WRITE) {
6928 		assert_exit_reason(exit_reason_want);
6929 		report(virtual_apic_page[apic_reg_index(reg)] == val,
6930 		       "got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%lx",
6931 		       apic_reg_index(reg),
6932 		       virtual_apic_page[apic_reg_index(reg)], val);
6933 
6934 		/* Reenter guest so it can consume/check rcx and exit again. */
6935 		enter_guest();
6936 	} else if (exit_reason_want != VMX_VMCALL) {
6937 		report_fail("Oops, bad exit expectation: %u.", exit_reason_want);
6938 	}
6939 
6940 	assert_exit_reason(VMX_VMCALL);
6941 	if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) {
6942 		u64 want = val;
6943 		u32 got = virtual_apic_page[apic_reg_index(reg)];
6944 
6945 		report(got == want, "x2APIC write; got 0x%x, want 0x%lx", got,
6946 		       want);
6947 	} else if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH) {
6948 		if (!expectation->wr_only) {
6949 			u32 got = apic_read(reg);
6950 			bool ok;
6951 
6952 			/*
6953 			 * When L1's TPR is passed through to L2, the lower
6954 			 * nibble can be lost. For example, if L2 executes
6955 			 * WRMSR(0x808, 0x78), then, L1 might read 0x70.
6956 			 *
6957 			 * Here's how the lower nibble can get lost:
6958 			 *   1. L2 executes WRMSR(0x808, 0x78).
6959 			 *   2. L2 exits to L0 with a WRMSR exit.
6960 			 *   3. L0 emulates WRMSR, by writing L1's TPR.
6961 			 *   4. L0 re-enters L2.
6962 			 *   5. L2 exits to L0 (reason doesn't matter).
6963 			 *   6. L0 reflects L2's exit to L1.
6964 			 *   7. Before entering L1, L0 exits to user-space
6965 			 *      (e.g., to satisfy TPR access reporting).
6966 			 *   8. User-space executes KVM_SET_REGS ioctl, which
6967 			 *      clears the lower nibble of L1's TPR.
6968 			 */
6969 			if (reg == APIC_TASKPRI) {
6970 				got = apic_virt_nibble1(got);
6971 				val = apic_virt_nibble1(val);
6972 			}
6973 
6974 			ok = got == val;
6975 			report(ok,
6976 			       "non-virtualized write; val is 0x%x, want 0x%lx",
6977 			       got, val);
6978 			apic_write(reg, restore_val);
6979 		} else {
6980 			report_pass("non-virtualized and write-only OK");
6981 		}
6982 	}
6983 	skip_exit_insn();
6984 
6985 	report_prefix_pop();
6986 }
6987 
6988 static enum Config_type configure_virt_x2apic_mode_test(
6989 	struct virt_x2apic_mode_config *virt_x2apic_mode_config,
6990 	u8 *msr_bitmap_page)
6991 {
6992 	int msr;
6993 	u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
6994 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
6995 
6996 	/* x2apic-specific VMCS config */
6997 	if (virt_x2apic_mode_config->use_msr_bitmaps) {
6998 		/* virt_x2apic_mode_test() checks for MSR bitmaps support */
6999 		cpu_exec_ctrl0 |= CPU_MSR_BITMAP;
7000 	} else {
7001 		cpu_exec_ctrl0 &= ~CPU_MSR_BITMAP;
7002 	}
7003 
7004 	if (virt_x2apic_mode_config->virtual_interrupt_delivery) {
7005 		if (!(ctrl_cpu_rev[1].clr & CPU_VINTD)) {
7006 			report_skip("VM-execution control \"virtual-interrupt delivery\" NOT supported.\n");
7007 			return CONFIG_TYPE_UNSUPPORTED;
7008 		}
7009 		cpu_exec_ctrl1 |= CPU_VINTD;
7010 	} else {
7011 		cpu_exec_ctrl1 &= ~CPU_VINTD;
7012 	}
7013 
7014 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
7015 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
7016 
7017 	/* x2APIC MSR intercepts are usually off for "Virtualize x2APIC mode" */
7018 	for (msr = 0x800; msr <= 0x8ff; msr++) {
7019 		if (virt_x2apic_mode_config->disable_x2apic_msr_intercepts) {
7020 			clear_bit(msr, msr_bitmap_page + 0x000);
7021 			clear_bit(msr, msr_bitmap_page + 0x800);
7022 		} else {
7023 			set_bit(msr, msr_bitmap_page + 0x000);
7024 			set_bit(msr, msr_bitmap_page + 0x800);
7025 		}
7026 	}
7027 
7028 	/* x2APIC mode can impact virtualization */
7029 	reset_apic();
7030 	if (!virt_x2apic_mode_config->disable_x2apic)
7031 		enable_x2apic();
7032 
7033 	return configure_apic_reg_virt_test(
7034 		&virt_x2apic_mode_config->apic_reg_virt_config);
7035 }
7036 
7037 static void virt_x2apic_mode_test(void)
7038 {
7039 	u32 *virtual_apic_page;
7040 	u8 *msr_bitmap_page;
7041 	u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
7042 	u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
7043 	int i;
7044 	struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
7045 
7046 	if (!cpu_has_apicv()) {
7047 		report_skip(__func__);
7048 		return;
7049 	}
7050 
7051 	/*
7052 	 * This is to exercise an issue in KVM's logic to merge L0's and L1's
7053 	 * MSR bitmaps. Previously, an L1 could get at L0's x2APIC MSRs by
7054 	 * writing the IA32_SPEC_CTRL MSR or the IA32_PRED_CMD MSRs. KVM would
7055 	 * then proceed to manipulate the MSR bitmaps, as if VMCS12 had the
7056 	 * "Virtualize x2APIC mod" control set, even when it didn't.
7057 	 */
7058 	if (has_spec_ctrl())
7059 		wrmsr(MSR_IA32_SPEC_CTRL, 1);
7060 
7061 	/*
7062 	 * Check that VMCS12 supports:
7063 	 *   - "Virtual-APIC address", indicated by "use TPR shadow"
7064 	 *   - "MSR-bitmap address", indicated by "use MSR bitmaps"
7065 	 */
7066 	if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) {
7067 		report_skip("VM-execution control \"use TPR shadow\" NOT supported.\n");
7068 		return;
7069 	} else if (!(ctrl_cpu_rev[0].clr & CPU_MSR_BITMAP)) {
7070 		report_skip("VM-execution control \"use MSR bitmaps\" NOT supported.\n");
7071 		return;
7072 	}
7073 
7074 	test_set_guest(virt_x2apic_mode_guest);
7075 
7076 	virtual_apic_page = alloc_page();
7077 	vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
7078 
7079 	msr_bitmap_page = alloc_page();
7080 	memset(msr_bitmap_page, 0xff, PAGE_SIZE);
7081 	vmcs_write(MSR_BITMAP, virt_to_phys(msr_bitmap_page));
7082 
7083 	for (i = 0; i < ARRAY_SIZE(virt_x2apic_mode_tests); i++) {
7084 		struct virt_x2apic_mode_test_case *virt_x2apic_mode_test_case =
7085 			&virt_x2apic_mode_tests[i];
7086 		struct virt_x2apic_mode_config *virt_x2apic_mode_config =
7087 			&virt_x2apic_mode_test_case->virt_x2apic_mode_config;
7088 		enum Config_type config_type;
7089 		u32 reg;
7090 
7091 		printf("--- %s test ---\n", virt_x2apic_mode_test_case->name);
7092 		config_type =
7093 			configure_virt_x2apic_mode_test(virt_x2apic_mode_config,
7094 							msr_bitmap_page);
7095 		if (config_type == CONFIG_TYPE_UNSUPPORTED) {
7096 			report_skip("Skip because of missing features.\n");
7097 			continue;
7098 		} else if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) {
7099 			enter_guest_with_bad_controls();
7100 			continue;
7101 		}
7102 
7103 		for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) {
7104 			struct virt_x2apic_mode_expectation expectation;
7105 
7106 			virt_x2apic_mode_exit_expectation(
7107 				reg, virt_x2apic_mode_config, &expectation);
7108 
7109 			test_x2apic_rd(reg, &expectation, virtual_apic_page);
7110 			test_x2apic_wr(reg, &expectation, virtual_apic_page);
7111 		}
7112 	}
7113 
7114 
7115 	/* Terminate the guest */
7116 	vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
7117 	vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
7118 	args->op = X2APIC_TERMINATE;
7119 	enter_guest();
7120 	assert_exit_reason(VMX_VMCALL);
7121 }
7122 
7123 static void test_ctl_reg(const char *cr_name, u64 cr, u64 fixed0, u64 fixed1)
7124 {
7125 	u64 val;
7126 	u64 cr_saved = vmcs_read(cr);
7127 	int i;
7128 
7129 	val = fixed0 & fixed1;
7130 	if (cr == HOST_CR4)
7131 		vmcs_write(cr, val | X86_CR4_PAE);
7132 	else
7133 		vmcs_write(cr, val);
7134 	report_prefix_pushf("%s %lx", cr_name, val);
7135 	if (val == fixed0)
7136 		test_vmx_vmlaunch(0);
7137 	else
7138 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7139 	report_prefix_pop();
7140 
7141 	for (i = 0; i < 64; i++) {
7142 
7143 		/* Set a bit when the corresponding bit in fixed1 is 0 */
7144 		if ((fixed1 & (1ull << i)) == 0) {
7145 			if (cr == HOST_CR4 && ((1ull << i) & X86_CR4_SMEP ||
7146 					       (1ull << i) & X86_CR4_SMAP))
7147 				continue;
7148 
7149 			vmcs_write(cr, cr_saved | (1ull << i));
7150 			report_prefix_pushf("%s %llx", cr_name,
7151 						cr_saved | (1ull << i));
7152 			test_vmx_vmlaunch(
7153 				VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7154 			report_prefix_pop();
7155 		}
7156 
7157 		/* Unset a bit when the corresponding bit in fixed0 is 1 */
7158 		if (fixed0 & (1ull << i)) {
7159 			vmcs_write(cr, cr_saved & ~(1ull << i));
7160 			report_prefix_pushf("%s %llx", cr_name,
7161 						cr_saved & ~(1ull << i));
7162 			test_vmx_vmlaunch(
7163 				VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7164 			report_prefix_pop();
7165 		}
7166 	}
7167 
7168 	vmcs_write(cr, cr_saved);
7169 }
7170 
7171 /*
7172  * 1. The CR0 field must not set any bit to a value not supported in VMX
7173  *    operation.
7174  * 2. The CR4 field must not set any bit to a value not supported in VMX
7175  *    operation.
7176  * 3. On processors that support Intel 64 architecture, the CR3 field must
7177  *    be such that bits 63:52 and bits in the range 51:32 beyond the
7178  *    processor's physical-address width must be 0.
7179  *
7180  *  [Intel SDM]
7181  */
7182 static void test_host_ctl_regs(void)
7183 {
7184 	u64 fixed0, fixed1, cr3, cr3_saved;
7185 	int i;
7186 
7187 	/* Test CR0 */
7188 	fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0);
7189 	fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1);
7190 	test_ctl_reg("HOST_CR0", HOST_CR0, fixed0, fixed1);
7191 
7192 	/* Test CR4 */
7193 	fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
7194 	fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1) &
7195 		 ~(X86_CR4_SMEP | X86_CR4_SMAP);
7196 	test_ctl_reg("HOST_CR4", HOST_CR4, fixed0, fixed1);
7197 
7198 	/* Test CR3 */
7199 	cr3_saved = vmcs_read(HOST_CR3);
7200 	for (i = cpuid_maxphyaddr(); i < 64; i++) {
7201 		cr3 = cr3_saved | (1ul << i);
7202 		vmcs_write(HOST_CR3, cr3);
7203 		report_prefix_pushf("HOST_CR3 %lx", cr3);
7204 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7205 		report_prefix_pop();
7206 	}
7207 
7208 	vmcs_write(HOST_CR3, cr3_saved);
7209 }
7210 
7211 static void test_efer_vmlaunch(u32 fld, bool ok)
7212 {
7213 	if (fld == HOST_EFER) {
7214 		if (ok)
7215 			test_vmx_vmlaunch(0);
7216 		else
7217 			test_vmx_vmlaunch2(VMXERR_ENTRY_INVALID_CONTROL_FIELD,
7218 					VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7219 	} else {
7220 		test_guest_state("EFER test", !ok, GUEST_EFER, "GUEST_EFER");
7221 	}
7222 }
7223 
7224 static void test_efer_one(u32 fld, const char * fld_name, u64 efer,
7225 			  u32 ctrl_fld, u64 ctrl,
7226 			  int i, const char *efer_bit_name)
7227 {
7228 	bool ok;
7229 
7230 	ok = true;
7231 	if (ctrl_fld == EXI_CONTROLS && (ctrl & EXI_LOAD_EFER)) {
7232 		if (!!(efer & EFER_LMA) != !!(ctrl & EXI_HOST_64))
7233 			ok = false;
7234 		if (!!(efer & EFER_LME) != !!(ctrl & EXI_HOST_64))
7235 			ok = false;
7236 	}
7237 	if (ctrl_fld == ENT_CONTROLS && (ctrl & ENT_LOAD_EFER)) {
7238 		/* Check LMA too since CR0.PG is set.  */
7239 		if (!!(efer & EFER_LMA) != !!(ctrl & ENT_GUEST_64))
7240 			ok = false;
7241 		if (!!(efer & EFER_LME) != !!(ctrl & ENT_GUEST_64))
7242 			ok = false;
7243 	}
7244 
7245 	/*
7246 	 * Skip the test if it would enter the guest in 32-bit mode.
7247 	 * Perhaps write the test in assembly and make sure it
7248 	 * can be run in either mode?
7249 	 */
7250 	if (fld == GUEST_EFER && ok && !(ctrl & ENT_GUEST_64))
7251 		return;
7252 
7253 	vmcs_write(ctrl_fld, ctrl);
7254 	vmcs_write(fld, efer);
7255 	report_prefix_pushf("%s %s bit turned %s, controls %s",
7256 			    fld_name, efer_bit_name,
7257 			    (i & 1) ? "on" : "off",
7258 			    (i & 2) ? "on" : "off");
7259 
7260 	test_efer_vmlaunch(fld, ok);
7261 	report_prefix_pop();
7262 }
7263 
7264 static void test_efer_bit(u32 fld, const char * fld_name,
7265 			  u32 ctrl_fld, u64 ctrl_bit, u64 efer_bit,
7266 			  const char *efer_bit_name)
7267 {
7268 	u64 efer_saved = vmcs_read(fld);
7269 	u32 ctrl_saved = vmcs_read(ctrl_fld);
7270 	int i;
7271 
7272 	for (i = 0; i < 4; i++) {
7273 		u64 efer = efer_saved & ~efer_bit;
7274 		u64 ctrl = ctrl_saved & ~ctrl_bit;
7275 
7276 		if (i & 1)
7277 			efer |= efer_bit;
7278 		if (i & 2)
7279 			ctrl |= ctrl_bit;
7280 
7281 		test_efer_one(fld, fld_name, efer, ctrl_fld, ctrl,
7282 			      i, efer_bit_name);
7283 	}
7284 
7285 	vmcs_write(ctrl_fld, ctrl_saved);
7286 	vmcs_write(fld, efer_saved);
7287 }
7288 
7289 static void test_efer(u32 fld, const char * fld_name, u32 ctrl_fld,
7290 		      u64 ctrl_bit1, u64 ctrl_bit2)
7291 {
7292 	u64 efer_saved = vmcs_read(fld);
7293 	u32 ctrl_saved = vmcs_read(ctrl_fld);
7294 	u64 efer_reserved_bits =  ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
7295 	u64 i;
7296 	u64 efer;
7297 
7298 	if (cpu_has_efer_nx())
7299 		efer_reserved_bits &= ~EFER_NX;
7300 
7301 	if (!ctrl_bit1) {
7302 		printf("\"Load-IA32-EFER\" exit control not supported\n");
7303 		goto test_entry_exit_mode;
7304 	}
7305 
7306 	report_prefix_pushf("%s %lx", fld_name, efer_saved);
7307 	test_efer_vmlaunch(fld, true);
7308 	report_prefix_pop();
7309 
7310 	/*
7311 	 * Check reserved bits
7312 	 */
7313 	vmcs_write(ctrl_fld, ctrl_saved & ~ctrl_bit1);
7314 	for (i = 0; i < 64; i++) {
7315 		if ((1ull << i) & efer_reserved_bits) {
7316 			efer = efer_saved | (1ull << i);
7317 			vmcs_write(fld, efer);
7318 			report_prefix_pushf("%s %lx", fld_name, efer);
7319 			test_efer_vmlaunch(fld, true);
7320 			report_prefix_pop();
7321 		}
7322 	}
7323 
7324 	vmcs_write(ctrl_fld, ctrl_saved | ctrl_bit1);
7325 	for (i = 0; i < 64; i++) {
7326 		if ((1ull << i) & efer_reserved_bits) {
7327 			efer = efer_saved | (1ull << i);
7328 			vmcs_write(fld, efer);
7329 			report_prefix_pushf("%s %lx", fld_name, efer);
7330 			test_efer_vmlaunch(fld, false);
7331 			report_prefix_pop();
7332 		}
7333 	}
7334 
7335 	vmcs_write(ctrl_fld, ctrl_saved);
7336 	vmcs_write(fld, efer_saved);
7337 
7338 	/*
7339 	 * Check LMA and LME bits
7340 	 */
7341 	test_efer_bit(fld, fld_name,
7342 		      ctrl_fld, ctrl_bit1,
7343 		      EFER_LMA,
7344 		      "EFER_LMA");
7345 	test_efer_bit(fld, fld_name,
7346 		      ctrl_fld, ctrl_bit1,
7347 		      EFER_LME,
7348 		      "EFER_LME");
7349 
7350 test_entry_exit_mode:
7351 	test_efer_bit(fld, fld_name,
7352 		      ctrl_fld, ctrl_bit2,
7353 		      EFER_LMA,
7354 		      "EFER_LMA");
7355 	test_efer_bit(fld, fld_name,
7356 		      ctrl_fld, ctrl_bit2,
7357 		      EFER_LME,
7358 		      "EFER_LME");
7359 }
7360 
7361 /*
7362  * If the 'load IA32_EFER' VM-exit control is 1, bits reserved in the
7363  * IA32_EFER MSR must be 0 in the field for that register. In addition,
7364  * the values of the LMA and LME bits in the field must each be that of
7365  * the 'host address-space size' VM-exit control.
7366  *
7367  *  [Intel SDM]
7368  */
7369 static void test_host_efer(void)
7370 {
7371 	test_efer(HOST_EFER, "HOST_EFER", EXI_CONTROLS,
7372 		  ctrl_exit_rev.clr & EXI_LOAD_EFER,
7373 		  EXI_HOST_64);
7374 }
7375 
7376 /*
7377  * If the 'load IA32_EFER' VM-enter control is 1, bits reserved in the
7378  * IA32_EFER MSR must be 0 in the field for that register. In addition,
7379  * the values of the LMA and LME bits in the field must each be that of
7380  * the 'IA32e-mode guest' VM-exit control.
7381  */
7382 static void test_guest_efer(void)
7383 {
7384 	if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) {
7385 		printf("\"Load-IA32-EFER\" entry control not supported\n");
7386 		return;
7387 	}
7388 
7389 	vmcs_write(GUEST_EFER, rdmsr(MSR_EFER));
7390 	test_efer(GUEST_EFER, "GUEST_EFER", ENT_CONTROLS,
7391 		  ctrl_enter_rev.clr & ENT_LOAD_EFER,
7392 		  ENT_GUEST_64);
7393 }
7394 
7395 /*
7396  * PAT values higher than 8 are uninteresting since they're likely lumped
7397  * in with "8". We only test values above 8 one bit at a time,
7398  * in order to reduce the number of VM-Entries and keep the runtime reasonable.
7399  */
7400 #define	PAT_VAL_LIMIT	8
7401 
7402 static void test_pat(u32 field, const char * field_name, u32 ctrl_field,
7403 		     u64 ctrl_bit)
7404 {
7405 	u32 ctrl_saved = vmcs_read(ctrl_field);
7406 	u64 pat_saved = vmcs_read(field);
7407 	u64 i, val;
7408 	u32 j;
7409 	int error;
7410 
7411 	vmcs_clear_bits(ctrl_field, ctrl_bit);
7412 
7413 	for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) {
7414 		/* Test PAT0..PAT7 fields */
7415 		for (j = 0; j < (i ? 8 : 1); j++) {
7416 			val = i << j * 8;
7417 			vmcs_write(field, val);
7418 			if (field == HOST_PAT) {
7419 				report_prefix_pushf("%s %lx", field_name, val);
7420 				test_vmx_vmlaunch(0);
7421 				report_prefix_pop();
7422 
7423 			} else {	// GUEST_PAT
7424 				test_guest_state("ENT_LOAD_PAT enabled", false,
7425 						 val, "GUEST_PAT");
7426 			}
7427 		}
7428 	}
7429 
7430 	vmcs_set_bits(ctrl_field, ctrl_bit);
7431 	for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) {
7432 		/* Test PAT0..PAT7 fields */
7433 		for (j = 0; j < (i ? 8 : 1); j++) {
7434 			val = i << j * 8;
7435 			vmcs_write(field, val);
7436 
7437 			if (field == HOST_PAT) {
7438 				report_prefix_pushf("%s %lx", field_name, val);
7439 				if (i == 0x2 || i == 0x3 || i >= 0x8)
7440 					error =
7441 					VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
7442 				else
7443 					error = 0;
7444 
7445 				test_vmx_vmlaunch(error);
7446 				report_prefix_pop();
7447 
7448 			} else {	// GUEST_PAT
7449 				error = (i == 0x2 || i == 0x3 || i >= 0x8);
7450 				test_guest_state("ENT_LOAD_PAT enabled", !!error,
7451 						 val, "GUEST_PAT");
7452 			}
7453 
7454 		}
7455 	}
7456 
7457 	vmcs_write(ctrl_field, ctrl_saved);
7458 	vmcs_write(field, pat_saved);
7459 }
7460 
7461 /*
7462  *  If the "load IA32_PAT" VM-exit control is 1, the value of the field
7463  *  for the IA32_PAT MSR must be one that could be written by WRMSR
7464  *  without fault at CPL 0. Specifically, each of the 8 bytes in the
7465  *  field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
7466  *  6 (WB), or 7 (UC-).
7467  *
7468  *  [Intel SDM]
7469  */
7470 static void test_load_host_pat(void)
7471 {
7472 	/*
7473 	 * "load IA32_PAT" VM-exit control
7474 	 */
7475 	if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) {
7476 		printf("\"Load-IA32-PAT\" exit control not supported\n");
7477 		return;
7478 	}
7479 
7480 	test_pat(HOST_PAT, "HOST_PAT", EXI_CONTROLS, EXI_LOAD_PAT);
7481 }
7482 
7483 union cpuidA_eax {
7484 	struct {
7485 		unsigned int version_id:8;
7486 		unsigned int num_counters_gp:8;
7487 		unsigned int bit_width:8;
7488 		unsigned int mask_length:8;
7489 	} split;
7490 	unsigned int full;
7491 };
7492 
7493 union cpuidA_edx {
7494 	struct {
7495 		unsigned int num_counters_fixed:5;
7496 		unsigned int bit_width_fixed:8;
7497 		unsigned int reserved:9;
7498 	} split;
7499 	unsigned int full;
7500 };
7501 
7502 static bool valid_pgc(u64 val)
7503 {
7504 	struct cpuid id;
7505 	union cpuidA_eax eax;
7506 	union cpuidA_edx edx;
7507 	u64 mask;
7508 
7509 	id = cpuid(0xA);
7510 	eax.full = id.a;
7511 	edx.full = id.d;
7512 	mask = ~(((1ull << eax.split.num_counters_gp) - 1) |
7513 		 (((1ull << edx.split.num_counters_fixed) - 1) << 32));
7514 
7515 	return !(val & mask);
7516 }
7517 
7518 static void test_pgc_vmlaunch(u32 xerror, u32 xreason, bool xfail, bool host)
7519 {
7520 	u32 inst_err;
7521 	u64 obs;
7522 	bool success;
7523 	struct vmx_state_area_test_data *data = &vmx_state_area_test_data;
7524 
7525 	if (host) {
7526 		success = vmlaunch_succeeds();
7527 		obs = rdmsr(data->msr);
7528 		if (!success) {
7529 			inst_err = vmcs_read(VMX_INST_ERROR);
7530 			report(xerror == inst_err, "vmlaunch failed, "
7531 			       "VMX Inst Error is %d (expected %d)",
7532 			       inst_err, xerror);
7533 		} else {
7534 			report(!data->enabled || data->exp == obs,
7535 			       "Host state is 0x%lx (expected 0x%lx)",
7536 			       obs, data->exp);
7537 			report(success != xfail, "vmlaunch succeeded");
7538 		}
7539 	} else {
7540 		test_guest_state("load GUEST_PERF_GLOBAL_CTRL", xfail,
7541 				 GUEST_PERF_GLOBAL_CTRL,
7542 				 "GUEST_PERF_GLOBAL_CTRL");
7543 	}
7544 }
7545 
7546 /*
7547  * test_load_perf_global_ctrl is a generic function for testing the
7548  * "load IA32_PERF_GLOBAL_CTRL" VM-{Entry,Exit} controls. This test function
7549  * tests the provided ctrl_val when disabled and enabled.
7550  *
7551  * @nr: VMCS field number corresponding to the host/guest state field
7552  * @name: Name of the above VMCS field for printing in test report
7553  * @ctrl_nr: VMCS field number corresponding to the VM-{Entry,Exit} control
7554  * @ctrl_val: Bit to set on the ctrl_field
7555  */
7556 static void test_perf_global_ctrl(u32 nr, const char *name, u32 ctrl_nr,
7557 				  const char *ctrl_name, u64 ctrl_val)
7558 {
7559 	u64 ctrl_saved = vmcs_read(ctrl_nr);
7560 	u64 pgc_saved = vmcs_read(nr);
7561 	u64 i, val;
7562 	bool host = nr == HOST_PERF_GLOBAL_CTRL;
7563 	struct vmx_state_area_test_data *data = &vmx_state_area_test_data;
7564 
7565 	data->msr = MSR_CORE_PERF_GLOBAL_CTRL;
7566 	msr_bmp_init();
7567 	vmcs_write(ctrl_nr, ctrl_saved & ~ctrl_val);
7568 	data->enabled = false;
7569 	report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=0 on %s",
7570 			    ctrl_name);
7571 
7572 	for (i = 0; i < 64; i++) {
7573 		val = 1ull << i;
7574 		vmcs_write(nr, val);
7575 		report_prefix_pushf("%s = 0x%lx", name, val);
7576 		test_pgc_vmlaunch(0, VMX_VMCALL, false, host);
7577 		report_prefix_pop();
7578 	}
7579 	report_prefix_pop();
7580 
7581 	vmcs_write(ctrl_nr, ctrl_saved | ctrl_val);
7582 	data->enabled = true;
7583 	report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=1 on %s",
7584 			    ctrl_name);
7585 	for (i = 0; i < 64; i++) {
7586 		val = 1ull << i;
7587 		data->exp = val;
7588 		vmcs_write(nr, val);
7589 		report_prefix_pushf("%s = 0x%lx", name, val);
7590 		if (valid_pgc(val)) {
7591 			test_pgc_vmlaunch(0, VMX_VMCALL, false, host);
7592 		} else {
7593 			if (host)
7594 				test_pgc_vmlaunch(
7595 					VMXERR_ENTRY_INVALID_HOST_STATE_FIELD,
7596 					0,
7597 					true,
7598 					host);
7599 			else
7600 				test_pgc_vmlaunch(
7601 					0,
7602 					VMX_ENTRY_FAILURE | VMX_FAIL_STATE,
7603 					true,
7604 					host);
7605 		}
7606 		report_prefix_pop();
7607 	}
7608 
7609 	data->enabled = false;
7610 	report_prefix_pop();
7611 	vmcs_write(ctrl_nr, ctrl_saved);
7612 	vmcs_write(nr, pgc_saved);
7613 }
7614 
7615 static void test_load_host_perf_global_ctrl(void)
7616 {
7617 	if (!(ctrl_exit_rev.clr & EXI_LOAD_PERF)) {
7618 		printf("\"load IA32_PERF_GLOBAL_CTRL\" exit control not supported\n");
7619 		return;
7620 	}
7621 
7622 	test_perf_global_ctrl(HOST_PERF_GLOBAL_CTRL, "HOST_PERF_GLOBAL_CTRL",
7623 				   EXI_CONTROLS, "EXI_CONTROLS", EXI_LOAD_PERF);
7624 }
7625 
7626 
7627 static void test_load_guest_perf_global_ctrl(void)
7628 {
7629 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PERF)) {
7630 		printf("\"load IA32_PERF_GLOBAL_CTRL\" entry control not supported\n");
7631 		return;
7632 	}
7633 
7634 	test_perf_global_ctrl(GUEST_PERF_GLOBAL_CTRL, "GUEST_PERF_GLOBAL_CTRL",
7635 				   ENT_CONTROLS, "ENT_CONTROLS", ENT_LOAD_PERF);
7636 }
7637 
7638 
7639 /*
7640  * test_vmcs_field - test a value for the given VMCS field
7641  * @field: VMCS field
7642  * @field_name: string name of VMCS field
7643  * @bit_start: starting bit
7644  * @bit_end: ending bit
7645  * @val: value that the bit range must or must not contain
7646  * @valid_val: whether value given in 'val' must be valid or not
7647  * @error: expected VMCS error when vmentry fails for an invalid value
7648  */
7649 static void test_vmcs_field(u64 field, const char *field_name, u32 bit_start,
7650 			    u32 bit_end, u64 val, bool valid_val, u32 error)
7651 {
7652 	u64 field_saved = vmcs_read(field);
7653 	u32 i;
7654 	u64 tmp;
7655 	u32 bit_on;
7656 	u64 mask = ~0ull;
7657 
7658 	mask = (mask >> bit_end) << bit_end;
7659 	mask = mask | ((1 << bit_start) - 1);
7660 	tmp = (field_saved & mask) | (val << bit_start);
7661 
7662 	vmcs_write(field, tmp);
7663 	report_prefix_pushf("%s %lx", field_name, tmp);
7664 	if (valid_val)
7665 		test_vmx_vmlaunch(0);
7666 	else
7667 		test_vmx_vmlaunch(error);
7668 	report_prefix_pop();
7669 
7670 	for (i = bit_start; i <= bit_end; i = i + 2) {
7671 		bit_on = ((1ull < i) & (val << bit_start)) ? 0 : 1;
7672 		if (bit_on)
7673 			tmp = field_saved | (1ull << i);
7674 		else
7675 			tmp = field_saved & ~(1ull << i);
7676 		vmcs_write(field, tmp);
7677 		report_prefix_pushf("%s %lx", field_name, tmp);
7678 		if (valid_val)
7679 			test_vmx_vmlaunch(error);
7680 		else
7681 			test_vmx_vmlaunch(0);
7682 		report_prefix_pop();
7683 	}
7684 
7685 	vmcs_write(field, field_saved);
7686 }
7687 
7688 static void test_canonical(u64 field, const char * field_name, bool host)
7689 {
7690 	u64 addr_saved = vmcs_read(field);
7691 
7692 	/*
7693 	 * Use the existing value if possible.  Writing a random canonical
7694 	 * value is not an option as doing so would corrupt the field being
7695 	 * tested and likely hose the test.
7696 	 */
7697 	if (is_canonical(addr_saved)) {
7698 		if (host) {
7699 			report_prefix_pushf("%s %lx", field_name, addr_saved);
7700 			test_vmx_vmlaunch(0);
7701 			report_prefix_pop();
7702 		} else {
7703 			test_guest_state("Test canonical address", false,
7704 					 addr_saved, field_name);
7705 		}
7706 	}
7707 
7708 	vmcs_write(field, NONCANONICAL);
7709 
7710 	if (host) {
7711 		report_prefix_pushf("%s %llx", field_name, NONCANONICAL);
7712 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7713 		report_prefix_pop();
7714 	} else {
7715 		test_guest_state("Test non-canonical address", true,
7716 				 NONCANONICAL, field_name);
7717 	}
7718 
7719 	vmcs_write(field, addr_saved);
7720 }
7721 
7722 #define TEST_RPL_TI_FLAGS(reg, name)				\
7723 	test_vmcs_field(reg, name, 0, 2, 0x0, true,		\
7724 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7725 
7726 #define TEST_CS_TR_FLAGS(reg, name)				\
7727 	test_vmcs_field(reg, name, 3, 15, 0x0000, false,	\
7728 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7729 
7730 /*
7731  * 1. In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the
7732  *    RPL (bits 1:0) and the TI flag (bit 2) must be 0.
7733  * 2. The selector fields for CS and TR cannot be 0000H.
7734  * 3. The selector field for SS cannot be 0000H if the "host address-space
7735  *    size" VM-exit control is 0.
7736  * 4. On processors that support Intel 64 architecture, the base-address
7737  *    fields for FS, GS and TR must contain canonical addresses.
7738  */
7739 static void test_host_segment_regs(void)
7740 {
7741 	u16 selector_saved;
7742 
7743 	/*
7744 	 * Test RPL and TI flags
7745 	 */
7746 	TEST_RPL_TI_FLAGS(HOST_SEL_CS, "HOST_SEL_CS");
7747 	TEST_RPL_TI_FLAGS(HOST_SEL_SS, "HOST_SEL_SS");
7748 	TEST_RPL_TI_FLAGS(HOST_SEL_DS, "HOST_SEL_DS");
7749 	TEST_RPL_TI_FLAGS(HOST_SEL_ES, "HOST_SEL_ES");
7750 	TEST_RPL_TI_FLAGS(HOST_SEL_FS, "HOST_SEL_FS");
7751 	TEST_RPL_TI_FLAGS(HOST_SEL_GS, "HOST_SEL_GS");
7752 	TEST_RPL_TI_FLAGS(HOST_SEL_TR, "HOST_SEL_TR");
7753 
7754 	/*
7755 	 * Test that CS and TR fields can not be 0x0000
7756 	 */
7757 	TEST_CS_TR_FLAGS(HOST_SEL_CS, "HOST_SEL_CS");
7758 	TEST_CS_TR_FLAGS(HOST_SEL_TR, "HOST_SEL_TR");
7759 
7760 	/*
7761 	 * SS field can not be 0x0000 if "host address-space size" VM-exit
7762 	 * control is 0
7763 	 */
7764 	selector_saved = vmcs_read(HOST_SEL_SS);
7765 	vmcs_write(HOST_SEL_SS, 0);
7766 	report_prefix_pushf("HOST_SEL_SS 0");
7767 	if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) {
7768 		test_vmx_vmlaunch(0);
7769 	} else {
7770 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7771 	}
7772 	report_prefix_pop();
7773 
7774 	vmcs_write(HOST_SEL_SS, selector_saved);
7775 
7776 	/*
7777 	 * Base address for FS, GS and TR must be canonical
7778 	 */
7779 	test_canonical(HOST_BASE_FS, "HOST_BASE_FS", true);
7780 	test_canonical(HOST_BASE_GS, "HOST_BASE_GS", true);
7781 	test_canonical(HOST_BASE_TR, "HOST_BASE_TR", true);
7782 }
7783 
7784 /*
7785  *  On processors that support Intel 64 architecture, the base-address
7786  *  fields for GDTR and IDTR must contain canonical addresses.
7787  */
7788 static void test_host_desc_tables(void)
7789 {
7790 	test_canonical(HOST_BASE_GDTR, "HOST_BASE_GDTR", true);
7791 	test_canonical(HOST_BASE_IDTR, "HOST_BASE_IDTR", true);
7792 }
7793 
7794 /*
7795  * If the "host address-space size" VM-exit control is 0, the following must
7796  * hold:
7797  *    - The "IA-32e mode guest" VM-entry control is 0.
7798  *    - Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.
7799  *    - Bits 63:32 in the RIP field are 0.
7800  *
7801  * If the "host address-space size" VM-exit control is 1, the following must
7802  * hold:
7803  *    - Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.
7804  *    - The RIP field contains a canonical address.
7805  *
7806  */
7807 static void test_host_addr_size(void)
7808 {
7809 	u64 cr4_saved = vmcs_read(HOST_CR4);
7810 	u64 rip_saved = vmcs_read(HOST_RIP);
7811 	u64 entry_ctrl_saved = vmcs_read(ENT_CONTROLS);
7812 	int i;
7813 	u64 tmp;
7814 
7815 	if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) {
7816 		vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64);
7817 		report_prefix_pushf("\"IA-32e mode guest\" enabled");
7818 		test_vmx_vmlaunch(0);
7819 		report_prefix_pop();
7820 
7821 		vmcs_write(HOST_CR4, cr4_saved | X86_CR4_PCIDE);
7822 		report_prefix_pushf("\"CR4.PCIDE\" set");
7823 		test_vmx_vmlaunch(0);
7824 		report_prefix_pop();
7825 
7826 		for (i = 32; i <= 63; i = i + 4) {
7827 			tmp = rip_saved | 1ull << i;
7828 			vmcs_write(HOST_RIP, tmp);
7829 			report_prefix_pushf("HOST_RIP %lx", tmp);
7830 			test_vmx_vmlaunch(0);
7831 			report_prefix_pop();
7832 		}
7833 
7834 		if (cr4_saved & X86_CR4_PAE) {
7835 			vmcs_write(HOST_CR4, cr4_saved  & ~X86_CR4_PAE);
7836 			report_prefix_pushf("\"CR4.PAE\" unset");
7837 			test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7838 		} else {
7839 			report_prefix_pushf("\"CR4.PAE\" set");
7840 			test_vmx_vmlaunch(0);
7841 		}
7842 		report_prefix_pop();
7843 
7844 		vmcs_write(HOST_RIP, NONCANONICAL);
7845 		report_prefix_pushf("HOST_RIP %llx", NONCANONICAL);
7846 		test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7847 		report_prefix_pop();
7848 
7849 		vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64);
7850 		vmcs_write(HOST_RIP, rip_saved);
7851 		vmcs_write(HOST_CR4, cr4_saved);
7852 
7853 		/* Restore host's active RIP and CR4 values. */
7854 		report_prefix_pushf("restore host state");
7855 		test_vmx_vmlaunch(0);
7856 		report_prefix_pop();
7857 	}
7858 }
7859 
7860 /*
7861  * Check that the virtual CPU checks the VMX Host State Area as
7862  * documented in the Intel SDM.
7863  */
7864 static void vmx_host_state_area_test(void)
7865 {
7866 	/*
7867 	 * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will
7868 	 * fail due to invalid guest state, should we make it that
7869 	 * far.
7870 	 */
7871 	vmcs_write(GUEST_RFLAGS, 0);
7872 
7873 	test_host_ctl_regs();
7874 
7875 	test_canonical(HOST_SYSENTER_ESP, "HOST_SYSENTER_ESP", true);
7876 	test_canonical(HOST_SYSENTER_EIP, "HOST_SYSENTER_EIP", true);
7877 
7878 	test_host_efer();
7879 	test_load_host_pat();
7880 	test_host_segment_regs();
7881 	test_host_desc_tables();
7882 	test_host_addr_size();
7883 	test_load_host_perf_global_ctrl();
7884 }
7885 
7886 /*
7887  * If the "load debug controls" VM-entry control is 1, bits 63:32 in
7888  * the DR7 field must be 0.
7889  *
7890  * [Intel SDM]
7891  */
7892 static void test_guest_dr7(void)
7893 {
7894 	u32 ent_saved = vmcs_read(ENT_CONTROLS);
7895 	u64 dr7_saved = vmcs_read(GUEST_DR7);
7896 	u64 val;
7897 	int i;
7898 
7899 	if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS) {
7900 		vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS);
7901 		for (i = 0; i < 64; i++) {
7902 			val = 1ull << i;
7903 			vmcs_write(GUEST_DR7, val);
7904 			test_guest_state("ENT_LOAD_DBGCTLS disabled", false,
7905 					 val, "GUEST_DR7");
7906 		}
7907 	}
7908 	if (ctrl_enter_rev.clr & ENT_LOAD_DBGCTLS) {
7909 		vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS);
7910 		for (i = 0; i < 64; i++) {
7911 			val = 1ull << i;
7912 			vmcs_write(GUEST_DR7, val);
7913 			test_guest_state("ENT_LOAD_DBGCTLS enabled", i >= 32,
7914 					 val, "GUEST_DR7");
7915 		}
7916 	}
7917 	vmcs_write(GUEST_DR7, dr7_saved);
7918 	vmcs_write(ENT_CONTROLS, ent_saved);
7919 }
7920 
7921 /*
7922  *  If the "load IA32_PAT" VM-entry control is 1, the value of the field
7923  *  for the IA32_PAT MSR must be one that could be written by WRMSR
7924  *  without fault at CPL 0. Specifically, each of the 8 bytes in the
7925  *  field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
7926  *  6 (WB), or 7 (UC-).
7927  *
7928  *  [Intel SDM]
7929  */
7930 static void test_load_guest_pat(void)
7931 {
7932 	/*
7933 	 * "load IA32_PAT" VM-entry control
7934 	 */
7935 	if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) {
7936 		printf("\"Load-IA32-PAT\" entry control not supported\n");
7937 		return;
7938 	}
7939 
7940 	test_pat(GUEST_PAT, "GUEST_PAT", ENT_CONTROLS, ENT_LOAD_PAT);
7941 }
7942 
7943 #define MSR_IA32_BNDCFGS_RSVD_MASK	0x00000ffc
7944 
7945 /*
7946  * If the "load IA32_BNDCFGS" VM-entry control is 1, the following
7947  * checks are performed on the field for the IA32_BNDCFGS MSR:
7948  *
7949  *   - Bits reserved in the IA32_BNDCFGS MSR must be 0.
7950  *   - The linear address in bits 63:12 must be canonical.
7951  *
7952  *  [Intel SDM]
7953  */
7954 static void test_load_guest_bndcfgs(void)
7955 {
7956 	u64 bndcfgs_saved = vmcs_read(GUEST_BNDCFGS);
7957 	u64 bndcfgs;
7958 
7959 	if (!(ctrl_enter_rev.clr & ENT_LOAD_BNDCFGS)) {
7960 		printf("\"Load-IA32-BNDCFGS\" entry control not supported\n");
7961 		return;
7962 	}
7963 
7964 	vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS);
7965 
7966 	vmcs_write(GUEST_BNDCFGS, NONCANONICAL);
7967 	test_guest_state("ENT_LOAD_BNDCFGS disabled", false,
7968 			 GUEST_BNDCFGS, "GUEST_BNDCFGS");
7969 	bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK;
7970 	vmcs_write(GUEST_BNDCFGS, bndcfgs);
7971 	test_guest_state("ENT_LOAD_BNDCFGS disabled", false,
7972 			 GUEST_BNDCFGS, "GUEST_BNDCFGS");
7973 
7974 	vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS);
7975 
7976 	vmcs_write(GUEST_BNDCFGS, NONCANONICAL);
7977 	test_guest_state("ENT_LOAD_BNDCFGS enabled", true,
7978 			 GUEST_BNDCFGS, "GUEST_BNDCFGS");
7979 	bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK;
7980 	vmcs_write(GUEST_BNDCFGS, bndcfgs);
7981 	test_guest_state("ENT_LOAD_BNDCFGS enabled", true,
7982 			 GUEST_BNDCFGS, "GUEST_BNDCFGS");
7983 
7984 	vmcs_write(GUEST_BNDCFGS, bndcfgs_saved);
7985 }
7986 
7987 #define	GUEST_SEG_UNUSABLE_MASK	(1u << 16)
7988 #define	GUEST_SEG_SEL_TI_MASK	(1u << 2)
7989 
7990 
7991 #define	TEST_SEGMENT_SEL(test, xfail, sel, val)				\
7992 do {									\
7993 	vmcs_write(sel, val);						\
7994 	test_guest_state(test " segment", xfail, val, xstr(sel));	\
7995 } while (0)
7996 
7997 #define	TEST_INVALID_SEG_SEL(sel, val) \
7998 	TEST_SEGMENT_SEL("Invalid: " xstr(val), true, sel, val);
7999 
8000 #define	TEST_VALID_SEG_SEL(sel, val) \
8001 	TEST_SEGMENT_SEL("Valid: " xstr(val), false, sel, val);
8002 
8003 /*
8004  * The following checks are done on the Selector field of the Guest Segment
8005  * Registers:
8006  *    - TR. The TI flag (bit 2) must be 0.
8007  *    - LDTR. If LDTR is usable, the TI flag (bit 2) must be 0.
8008  *    - SS. If the guest will not be virtual-8086 and the "unrestricted
8009  *	guest" VM-execution control is 0, the RPL (bits 1:0) must equal
8010  *	the RPL of the selector field for CS.
8011  *
8012  *  [Intel SDM]
8013  */
8014 static void test_guest_segment_sel_fields(void)
8015 {
8016 	u16 sel_saved;
8017 	u32 ar_saved;
8018 	u32 cpu_ctrl0_saved;
8019 	u32 cpu_ctrl1_saved;
8020 	u16 cs_rpl_bits;
8021 
8022 	/*
8023 	 * Test for GUEST_SEL_TR
8024 	 */
8025 	sel_saved = vmcs_read(GUEST_SEL_TR);
8026 	TEST_INVALID_SEG_SEL(GUEST_SEL_TR, sel_saved | GUEST_SEG_SEL_TI_MASK);
8027 	vmcs_write(GUEST_SEL_TR, sel_saved);
8028 
8029 	/*
8030 	 * Test for GUEST_SEL_LDTR
8031 	 */
8032 	sel_saved = vmcs_read(GUEST_SEL_LDTR);
8033 	ar_saved = vmcs_read(GUEST_AR_LDTR);
8034 	/* LDTR is set unusable */
8035 	vmcs_write(GUEST_AR_LDTR, ar_saved | GUEST_SEG_UNUSABLE_MASK);
8036 	TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved | GUEST_SEG_SEL_TI_MASK);
8037 	TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved & ~GUEST_SEG_SEL_TI_MASK);
8038 	/* LDTR is set usable */
8039 	vmcs_write(GUEST_AR_LDTR, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
8040 	TEST_INVALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved | GUEST_SEG_SEL_TI_MASK);
8041 
8042 	TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved & ~GUEST_SEG_SEL_TI_MASK);
8043 
8044 	vmcs_write(GUEST_AR_LDTR, ar_saved);
8045 	vmcs_write(GUEST_SEL_LDTR, sel_saved);
8046 
8047 	/*
8048 	 * Test for GUEST_SEL_SS
8049 	 */
8050 	cpu_ctrl0_saved = vmcs_read(CPU_EXEC_CTRL0);
8051 	cpu_ctrl1_saved = vmcs_read(CPU_EXEC_CTRL1);
8052 	ar_saved = vmcs_read(GUEST_AR_SS);
8053 	/* Turn off "unrestricted guest" vm-execution control */
8054 	vmcs_write(CPU_EXEC_CTRL1, cpu_ctrl1_saved & ~CPU_URG);
8055 	cs_rpl_bits = vmcs_read(GUEST_SEL_CS) & 0x3;
8056 	sel_saved = vmcs_read(GUEST_SEL_SS);
8057 	TEST_INVALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3)));
8058 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3)));
8059 	/* Make SS usable if it's unusable or vice-versa */
8060 	if (ar_saved & GUEST_SEG_UNUSABLE_MASK)
8061 		vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
8062 	else
8063 		vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK);
8064 	TEST_INVALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3)));
8065 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3)));
8066 
8067 	/* Need a valid EPTP as the passing case fully enters the guest. */
8068 	if (enable_unrestricted_guest(true))
8069 		goto skip_ss_tests;
8070 
8071 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3)));
8072 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3)));
8073 
8074 	/* Make SS usable if it's unusable or vice-versa */
8075 	if (vmcs_read(GUEST_AR_SS) & GUEST_SEG_UNUSABLE_MASK)
8076 		vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
8077 	else
8078 		vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK);
8079 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3)));
8080 	TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3)));
8081 skip_ss_tests:
8082 
8083 	vmcs_write(GUEST_AR_SS, ar_saved);
8084 	vmcs_write(GUEST_SEL_SS, sel_saved);
8085 	vmcs_write(CPU_EXEC_CTRL0, cpu_ctrl0_saved);
8086 	vmcs_write(CPU_EXEC_CTRL1, cpu_ctrl1_saved);
8087 }
8088 
8089 #define	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(xfail, seg_base)			\
8090 do {										\
8091 	addr_saved = vmcs_read(seg_base);					\
8092 	for (i = 32; i < 63; i = i + 4) {					\
8093 		addr = addr_saved | 1ull << i;					\
8094 		vmcs_write(seg_base, addr);					\
8095 		test_guest_state("seg.BASE[63:32] != 0, usable = " xstr(xfail),	\
8096 				 xfail, addr, xstr(seg_base));			\
8097 	}									\
8098 	vmcs_write(seg_base, addr_saved);					\
8099 } while (0)
8100 
8101 #define	TEST_SEGMENT_BASE_ADDR_CANONICAL(xfail, seg_base)		  \
8102 do {									  \
8103 	addr_saved = vmcs_read(seg_base);				  \
8104 	vmcs_write(seg_base, NONCANONICAL);				  \
8105 	test_guest_state("seg.BASE non-canonical, usable = " xstr(xfail), \
8106 			 xfail, NONCANONICAL, xstr(seg_base));		  \
8107 	vmcs_write(seg_base, addr_saved);				  \
8108 } while (0)
8109 
8110 /*
8111  * The following checks are done on the Base Address field of the Guest
8112  * Segment Registers on processors that support Intel 64 architecture:
8113  *    - TR, FS, GS : The address must be canonical.
8114  *    - LDTR : If LDTR is usable, the address must be canonical.
8115  *    - CS : Bits 63:32 of the address must be zero.
8116  *    - SS, DS, ES : If the register is usable, bits 63:32 of the address
8117  *	must be zero.
8118  *
8119  *  [Intel SDM]
8120  */
8121 static void test_guest_segment_base_addr_fields(void)
8122 {
8123 	u64 addr_saved;
8124 	u64 addr;
8125 	u32 ar_saved;
8126 	int i;
8127 
8128 	/*
8129 	 * The address of TR, FS, GS and LDTR must be canonical.
8130 	 */
8131 	TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_TR);
8132 	TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_FS);
8133 	TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_GS);
8134 	ar_saved = vmcs_read(GUEST_AR_LDTR);
8135 	/* Make LDTR unusable */
8136 	vmcs_write(GUEST_AR_LDTR, ar_saved | GUEST_SEG_UNUSABLE_MASK);
8137 	TEST_SEGMENT_BASE_ADDR_CANONICAL(false, GUEST_BASE_LDTR);
8138 	/* Make LDTR usable */
8139 	vmcs_write(GUEST_AR_LDTR, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
8140 	TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_LDTR);
8141 
8142 	vmcs_write(GUEST_AR_LDTR, ar_saved);
8143 
8144 	/*
8145 	 * Bits 63:32 in CS, SS, DS and ES base address must be zero
8146 	 */
8147 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_CS);
8148 	ar_saved = vmcs_read(GUEST_AR_SS);
8149 	/* Make SS unusable */
8150 	vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK);
8151 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_SS);
8152 	/* Make SS usable */
8153 	vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
8154 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_SS);
8155 	vmcs_write(GUEST_AR_SS, ar_saved);
8156 
8157 	ar_saved = vmcs_read(GUEST_AR_DS);
8158 	/* Make DS unusable */
8159 	vmcs_write(GUEST_AR_DS, ar_saved | GUEST_SEG_UNUSABLE_MASK);
8160 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_DS);
8161 	/* Make DS usable */
8162 	vmcs_write(GUEST_AR_DS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
8163 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_DS);
8164 	vmcs_write(GUEST_AR_DS, ar_saved);
8165 
8166 	ar_saved = vmcs_read(GUEST_AR_ES);
8167 	/* Make ES unusable */
8168 	vmcs_write(GUEST_AR_ES, ar_saved | GUEST_SEG_UNUSABLE_MASK);
8169 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_ES);
8170 	/* Make ES usable */
8171 	vmcs_write(GUEST_AR_ES, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
8172 	TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_ES);
8173 	vmcs_write(GUEST_AR_ES, ar_saved);
8174 }
8175 
8176 /*
8177  * Check that the virtual CPU checks the VMX Guest State Area as
8178  * documented in the Intel SDM.
8179  */
8180 static void vmx_guest_state_area_test(void)
8181 {
8182 	vmx_set_test_stage(1);
8183 	test_set_guest(guest_state_test_main);
8184 
8185 	/*
8186 	 * The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field
8187 	 * must each contain a canonical address.
8188 	 */
8189 	test_canonical(GUEST_SYSENTER_ESP, "GUEST_SYSENTER_ESP", false);
8190 	test_canonical(GUEST_SYSENTER_EIP, "GUEST_SYSENTER_EIP", false);
8191 
8192 	test_guest_dr7();
8193 	test_load_guest_pat();
8194 	test_guest_efer();
8195 	test_load_guest_perf_global_ctrl();
8196 	test_load_guest_bndcfgs();
8197 
8198 	test_guest_segment_sel_fields();
8199 	test_guest_segment_base_addr_fields();
8200 
8201 	test_canonical(GUEST_BASE_GDTR, "GUEST_BASE_GDTR", false);
8202 	test_canonical(GUEST_BASE_IDTR, "GUEST_BASE_IDTR", false);
8203 
8204 	u32 guest_desc_limit_saved = vmcs_read(GUEST_LIMIT_GDTR);
8205 	int i;
8206 	for (i = 16; i <= 31; i++) {
8207 		u32 tmp = guest_desc_limit_saved | (1ull << i);
8208 		vmcs_write(GUEST_LIMIT_GDTR, tmp);
8209 		test_guest_state("GDT.limit > 0xffff", true, tmp, "GUEST_LIMIT_GDTR");
8210 	}
8211 	vmcs_write(GUEST_LIMIT_GDTR, guest_desc_limit_saved);
8212 
8213 	guest_desc_limit_saved = vmcs_read(GUEST_LIMIT_IDTR);
8214 	for (i = 16; i <= 31; i++) {
8215 		u32 tmp = guest_desc_limit_saved | (1ull << i);
8216 		vmcs_write(GUEST_LIMIT_IDTR, tmp);
8217 		test_guest_state("IDT.limit > 0xffff", true, tmp, "GUEST_LIMIT_IDTR");
8218 	}
8219 	vmcs_write(GUEST_LIMIT_IDTR, guest_desc_limit_saved);
8220 
8221 	/*
8222 	 * Let the guest finish execution
8223 	 */
8224 	vmx_set_test_stage(2);
8225 	enter_guest();
8226 }
8227 
8228 extern void unrestricted_guest_main(void);
8229 asm (".code32\n"
8230 	"unrestricted_guest_main:\n"
8231 	"vmcall\n"
8232 	"nop\n"
8233 	"mov $1, %edi\n"
8234 	"call hypercall\n"
8235 	".code64\n");
8236 
8237 static void setup_unrestricted_guest(void)
8238 {
8239 	vmcs_write(GUEST_CR0, vmcs_read(GUEST_CR0) & ~(X86_CR0_PG));
8240 	vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) & ~ENT_GUEST_64);
8241 	vmcs_write(GUEST_EFER, vmcs_read(GUEST_EFER) & ~EFER_LMA);
8242 	vmcs_write(GUEST_RIP, virt_to_phys(unrestricted_guest_main));
8243 }
8244 
8245 static void unsetup_unrestricted_guest(void)
8246 {
8247 	vmcs_write(GUEST_CR0, vmcs_read(GUEST_CR0) | X86_CR0_PG);
8248 	vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_GUEST_64);
8249 	vmcs_write(GUEST_EFER, vmcs_read(GUEST_EFER) | EFER_LMA);
8250 	vmcs_write(GUEST_RIP, (u64) phys_to_virt(vmcs_read(GUEST_RIP)));
8251 	vmcs_write(GUEST_RSP, (u64) phys_to_virt(vmcs_read(GUEST_RSP)));
8252 }
8253 
8254 /*
8255  * If "unrestricted guest" secondary VM-execution control is set, guests
8256  * can run in unpaged protected mode.
8257  */
8258 static void vmentry_unrestricted_guest_test(void)
8259 {
8260 	if (enable_unrestricted_guest(true)) {
8261 		report_skip("Unrestricted guest not supported");
8262 		return;
8263 	}
8264 
8265 	test_set_guest(unrestricted_guest_main);
8266 	setup_unrestricted_guest();
8267 	test_guest_state("Unrestricted guest test", false, CPU_URG, "CPU_URG");
8268 
8269 	/*
8270 	 * Let the guest finish execution as a regular guest
8271 	 */
8272 	unsetup_unrestricted_guest();
8273 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) & ~CPU_URG);
8274 	enter_guest();
8275 }
8276 
8277 static bool valid_vmcs_for_vmentry(void)
8278 {
8279 	struct vmcs *current_vmcs = NULL;
8280 
8281 	if (vmcs_save(&current_vmcs))
8282 		return false;
8283 
8284 	return current_vmcs && !current_vmcs->hdr.shadow_vmcs;
8285 }
8286 
8287 static void try_vmentry_in_movss_shadow(void)
8288 {
8289 	u32 vm_inst_err;
8290 	u32 flags;
8291 	bool early_failure = false;
8292 	u32 expected_flags = X86_EFLAGS_FIXED;
8293 	bool valid_vmcs = valid_vmcs_for_vmentry();
8294 
8295 	expected_flags |= valid_vmcs ? X86_EFLAGS_ZF : X86_EFLAGS_CF;
8296 
8297 	/*
8298 	 * Indirectly set VM_INST_ERR to 12 ("VMREAD/VMWRITE from/to
8299 	 * unsupported VMCS component").
8300 	 */
8301 	vmcs_write(~0u, 0);
8302 
8303 	__asm__ __volatile__ ("mov %[host_rsp], %%edx;"
8304 			      "vmwrite %%rsp, %%rdx;"
8305 			      "mov 0f, %%rax;"
8306 			      "mov %[host_rip], %%edx;"
8307 			      "vmwrite %%rax, %%rdx;"
8308 			      "mov $-1, %%ah;"
8309 			      "sahf;"
8310 			      "mov %%ss, %%ax;"
8311 			      "mov %%ax, %%ss;"
8312 			      "vmlaunch;"
8313 			      "mov $1, %[early_failure];"
8314 			      "0: lahf;"
8315 			      "movzbl %%ah, %[flags]"
8316 			      : [early_failure] "+r" (early_failure),
8317 				[flags] "=&a" (flags)
8318 			      : [host_rsp] "i" (HOST_RSP),
8319 				[host_rip] "i" (HOST_RIP)
8320 			      : "rdx", "cc", "memory");
8321 	vm_inst_err = vmcs_read(VMX_INST_ERROR);
8322 
8323 	report(early_failure, "Early VM-entry failure");
8324 	report(flags == expected_flags, "RFLAGS[8:0] is %x (actual %x)",
8325 	       expected_flags, flags);
8326 	if (valid_vmcs)
8327 		report(vm_inst_err == VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS,
8328 		       "VM-instruction error is %d (actual %d)",
8329 		       VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, vm_inst_err);
8330 }
8331 
8332 static void vmentry_movss_shadow_test(void)
8333 {
8334 	struct vmcs *orig_vmcs;
8335 
8336 	TEST_ASSERT(!vmcs_save(&orig_vmcs));
8337 
8338 	/*
8339 	 * Set the launched flag on the current VMCS to verify the correct
8340 	 * error priority, below.
8341 	 */
8342 	test_set_guest(v2_null_test_guest);
8343 	enter_guest();
8344 
8345 	/*
8346 	 * With bit 1 of the guest's RFLAGS clear, VM-entry should
8347 	 * fail due to invalid guest state (if we make it that far).
8348 	 */
8349 	vmcs_write(GUEST_RFLAGS, 0);
8350 
8351 	/*
8352 	 * "VM entry with events blocked by MOV SS" takes precedence over
8353 	 * "VMLAUNCH with non-clear VMCS."
8354 	 */
8355 	report_prefix_push("valid current-VMCS");
8356 	try_vmentry_in_movss_shadow();
8357 	report_prefix_pop();
8358 
8359 	/*
8360 	 * VMfailInvalid takes precedence over "VM entry with events
8361 	 * blocked by MOV SS."
8362 	 */
8363 	TEST_ASSERT(!vmcs_clear(orig_vmcs));
8364 	report_prefix_push("no current-VMCS");
8365 	try_vmentry_in_movss_shadow();
8366 	report_prefix_pop();
8367 
8368 	TEST_ASSERT(!make_vmcs_current(orig_vmcs));
8369 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
8370 }
8371 
8372 static void vmx_ldtr_test_guest(void)
8373 {
8374 	u16 ldtr = sldt();
8375 
8376 	report(ldtr == NP_SEL, "Expected %x for L2 LDTR selector (got %x)",
8377 	       NP_SEL, ldtr);
8378 }
8379 
8380 /*
8381  * Ensure that the L1 LDTR is set to 0 on VM-exit.
8382  */
8383 static void vmx_ldtr_test(void)
8384 {
8385 	const u8 ldt_ar = 0x82; /* Present LDT */
8386 	u16 sel = FIRST_SPARE_SEL;
8387 
8388 	/* Set up a non-zero L1 LDTR prior to VM-entry. */
8389 	set_gdt_entry(sel, 0, 0, ldt_ar, 0);
8390 	lldt(sel);
8391 
8392 	test_set_guest(vmx_ldtr_test_guest);
8393 	/*
8394 	 * Set up a different LDTR for L2. The actual GDT contents are
8395 	 * irrelevant, since we stuff the hidden descriptor state
8396 	 * straight into the VMCS rather than reading it from the GDT.
8397 	 */
8398 	vmcs_write(GUEST_SEL_LDTR, NP_SEL);
8399 	vmcs_write(GUEST_AR_LDTR, ldt_ar);
8400 	enter_guest();
8401 
8402 	/*
8403 	 * VM-exit should clear LDTR (and make it unusable, but we
8404 	 * won't verify that here).
8405 	 */
8406 	sel = sldt();
8407 	report(!sel, "Expected 0 for L1 LDTR selector (got %x)", sel);
8408 }
8409 
8410 static void vmx_single_vmcall_guest(void)
8411 {
8412 	vmcall();
8413 }
8414 
8415 static void vmx_cr_load_test(void)
8416 {
8417 	unsigned long cr3, cr4, orig_cr3, orig_cr4;
8418 	u32 ctrls[2] = {0};
8419 	pgd_t *pml5;
8420 
8421 	orig_cr4 = read_cr4();
8422 	orig_cr3 = read_cr3();
8423 
8424 	if (!this_cpu_has(X86_FEATURE_PCID)) {
8425 		report_skip("PCID not detected");
8426 		return;
8427 	}
8428 	if (!this_cpu_has(X86_FEATURE_MCE)) {
8429 		report_skip("MCE not detected");
8430 		return;
8431 	}
8432 
8433 	TEST_ASSERT(!(orig_cr3 & X86_CR3_PCID_MASK));
8434 
8435 	/* Enable PCID for L1. */
8436 	cr4 = orig_cr4 | X86_CR4_PCIDE;
8437 	cr3 = orig_cr3 | 0x1;
8438 	TEST_ASSERT(!write_cr4_checking(cr4));
8439 	write_cr3(cr3);
8440 
8441 	test_set_guest(vmx_single_vmcall_guest);
8442 	vmcs_write(HOST_CR4, cr4);
8443 	vmcs_write(HOST_CR3, cr3);
8444 	enter_guest();
8445 
8446 	/*
8447 	 * No exception is expected.
8448 	 *
8449 	 * NB. KVM loads the last guest write to CR4 into CR4 read
8450 	 *     shadow. In order to trigger an exit to KVM, we can toggle a
8451 	 *     bit that is owned by KVM. We use CR4.MCE, which shall
8452 	 *     have no side effect because normally no guest MCE (e.g., as the
8453 	 *     result of bad memory) would happen during this test.
8454 	 */
8455 	TEST_ASSERT(!write_cr4_checking(cr4 ^ X86_CR4_MCE));
8456 
8457 	/* Cleanup L1 state. */
8458 	write_cr3(orig_cr3);
8459 	TEST_ASSERT(!write_cr4_checking(orig_cr4));
8460 
8461 	if (!this_cpu_has(X86_FEATURE_LA57))
8462 		goto done;
8463 
8464 	/*
8465 	 * Allocate a full page for PML5 to guarantee alignment, though only
8466 	 * the first entry needs to be filled (the test's virtual addresses
8467 	 * most definitely do not have any of bits 56:48 set).
8468 	 */
8469 	pml5 = alloc_page();
8470 	*pml5 = orig_cr3 | PT_PRESENT_MASK | PT_WRITABLE_MASK;
8471 
8472 	/*
8473 	 * Transition to/from 5-level paging in the host via VM-Exit.  CR4.LA57
8474 	 * can't be toggled while long is active via MOV CR4, but there are no
8475 	 * such restrictions on VM-Exit.
8476 	 */
8477 lol_5level:
8478 	vmcs_write(HOST_CR4, orig_cr4 | X86_CR4_LA57);
8479 	vmcs_write(HOST_CR3, virt_to_phys(pml5));
8480 	enter_guest();
8481 
8482 	/*
8483 	 * VMREAD with a memory operand to verify KVM detects the LA57 change,
8484 	 * e.g. uses the correct guest root level in gva_to_gpa().
8485 	 */
8486 	TEST_ASSERT(vmcs_readm(HOST_CR3) == virt_to_phys(pml5));
8487 	TEST_ASSERT(vmcs_readm(HOST_CR4) == (orig_cr4 | X86_CR4_LA57));
8488 
8489 	vmcs_write(HOST_CR4, orig_cr4);
8490 	vmcs_write(HOST_CR3, orig_cr3);
8491 	enter_guest();
8492 
8493 	TEST_ASSERT(vmcs_readm(HOST_CR3) == orig_cr3);
8494 	TEST_ASSERT(vmcs_readm(HOST_CR4) == orig_cr4);
8495 
8496 	/*
8497 	 * And now do the same LA57 shenanigans with EPT enabled.  KVM uses
8498 	 * two separate MMUs when L1 uses TDP, whereas the above shadow paging
8499 	 * version shares an MMU between L1 and L2.
8500 	 *
8501 	 * If the saved execution controls are non-zero then the EPT version
8502 	 * has already run.  In that case, restore the old controls.  If EPT
8503 	 * setup fails, e.g. EPT isn't supported, fall through and finish up.
8504 	 */
8505 	if (ctrls[0]) {
8506 		vmcs_write(CPU_EXEC_CTRL0, ctrls[0]);
8507 		vmcs_write(CPU_EXEC_CTRL1, ctrls[1]);
8508 	} else if (!setup_ept(false)) {
8509 		ctrls[0] = vmcs_read(CPU_EXEC_CTRL0);
8510 		ctrls[1]  = vmcs_read(CPU_EXEC_CTRL1);
8511 		goto lol_5level;
8512 	}
8513 
8514 	free_page(pml5);
8515 
8516 done:
8517 	skip_exit_vmcall();
8518 	enter_guest();
8519 }
8520 
8521 static void vmx_cr4_osxsave_test_guest(void)
8522 {
8523 	write_cr4(read_cr4() & ~X86_CR4_OSXSAVE);
8524 }
8525 
8526 /*
8527  * Ensure that kvm recalculates the L1 guest's CPUID.01H:ECX.OSXSAVE
8528  * after VM-exit from an L2 guest that sets CR4.OSXSAVE to a different
8529  * value than in L1.
8530  */
8531 static void vmx_cr4_osxsave_test(void)
8532 {
8533 	if (!this_cpu_has(X86_FEATURE_XSAVE)) {
8534 		report_skip("XSAVE not detected");
8535 		return;
8536 	}
8537 
8538 	if (!(read_cr4() & X86_CR4_OSXSAVE)) {
8539 		unsigned long cr4 = read_cr4() | X86_CR4_OSXSAVE;
8540 
8541 		write_cr4(cr4);
8542 		vmcs_write(GUEST_CR4, cr4);
8543 		vmcs_write(HOST_CR4, cr4);
8544 	}
8545 
8546 	TEST_ASSERT(cpuid_osxsave());
8547 
8548 	test_set_guest(vmx_cr4_osxsave_test_guest);
8549 	enter_guest();
8550 
8551 	TEST_ASSERT(cpuid_osxsave());
8552 }
8553 
8554 static void vmx_nm_test_guest(void)
8555 {
8556 	write_cr0(read_cr0() | X86_CR0_TS);
8557 	asm volatile("fnop");
8558 }
8559 
8560 static void check_nm_exit(const char *test)
8561 {
8562 	u32 reason = vmcs_read(EXI_REASON);
8563 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
8564 	const u32 expected = INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
8565 		NM_VECTOR;
8566 
8567 	report(reason == VMX_EXC_NMI && intr_info == expected, "%s", test);
8568 }
8569 
8570 /*
8571  * This test checks that:
8572  *
8573  * (a) If L2 launches with CR0.TS clear, but later sets CR0.TS, then
8574  *     a subsequent #NM VM-exit is reflected to L1.
8575  *
8576  * (b) If L2 launches with CR0.TS clear and CR0.EM set, then a
8577  *     subsequent #NM VM-exit is reflected to L1.
8578  */
8579 static void vmx_nm_test(void)
8580 {
8581 	unsigned long cr0 = read_cr0();
8582 
8583 	test_set_guest(vmx_nm_test_guest);
8584 
8585 	/*
8586 	 * L1 wants to intercept #NM exceptions encountered in L2.
8587 	 */
8588 	vmcs_write(EXC_BITMAP, 1 << NM_VECTOR);
8589 
8590 	/*
8591 	 * Launch L2 with CR0.TS clear, but don't claim host ownership of
8592 	 * any CR0 bits. L2 will set CR0.TS and then try to execute fnop,
8593 	 * which will raise #NM. L0 should reflect the #NM VM-exit to L1.
8594 	 */
8595 	vmcs_write(CR0_MASK, 0);
8596 	vmcs_write(GUEST_CR0, cr0 & ~X86_CR0_TS);
8597 	enter_guest();
8598 	check_nm_exit("fnop with CR0.TS set in L2 triggers #NM VM-exit to L1");
8599 
8600 	/*
8601 	 * Re-enter L2 at the fnop instruction, with CR0.TS clear but
8602 	 * CR0.EM set. The fnop will still raise #NM, and L0 should
8603 	 * reflect the #NM VM-exit to L1.
8604 	 */
8605 	vmcs_write(GUEST_CR0, (cr0 & ~X86_CR0_TS) | X86_CR0_EM);
8606 	enter_guest();
8607 	check_nm_exit("fnop with CR0.EM set in L2 triggers #NM VM-exit to L1");
8608 
8609 	/*
8610 	 * Re-enter L2 at the fnop instruction, with both CR0.TS and
8611 	 * CR0.EM clear. There will be no #NM, and the L2 guest should
8612 	 * exit normally.
8613 	 */
8614 	vmcs_write(GUEST_CR0, cr0 & ~(X86_CR0_TS | X86_CR0_EM));
8615 	enter_guest();
8616 }
8617 
8618 bool vmx_pending_event_ipi_fired;
8619 static void vmx_pending_event_ipi_isr(isr_regs_t *regs)
8620 {
8621 	vmx_pending_event_ipi_fired = true;
8622 	eoi();
8623 }
8624 
8625 bool vmx_pending_event_guest_run;
8626 static void vmx_pending_event_guest(void)
8627 {
8628 	vmcall();
8629 	vmx_pending_event_guest_run = true;
8630 }
8631 
8632 static void vmx_pending_event_test_core(bool guest_hlt)
8633 {
8634 	int ipi_vector = 0xf1;
8635 
8636 	vmx_pending_event_ipi_fired = false;
8637 	handle_irq(ipi_vector, vmx_pending_event_ipi_isr);
8638 
8639 	vmx_pending_event_guest_run = false;
8640 	test_set_guest(vmx_pending_event_guest);
8641 
8642 	vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT);
8643 
8644 	enter_guest();
8645 	skip_exit_vmcall();
8646 
8647 	if (guest_hlt)
8648 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8649 
8650 	irq_disable();
8651 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
8652 				   APIC_DM_FIXED | ipi_vector,
8653 				   0);
8654 
8655 	enter_guest();
8656 
8657 	assert_exit_reason(VMX_EXTINT);
8658 	report(!vmx_pending_event_guest_run,
8659 	       "Guest did not run before host received IPI");
8660 
8661 	irq_enable();
8662 	asm volatile ("nop");
8663 	irq_disable();
8664 	report(vmx_pending_event_ipi_fired,
8665 	       "Got pending interrupt after IRQ enabled");
8666 
8667 	if (guest_hlt)
8668 		vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
8669 
8670 	enter_guest();
8671 	report(vmx_pending_event_guest_run,
8672 	       "Guest finished running when no interrupt");
8673 }
8674 
8675 static void vmx_pending_event_test(void)
8676 {
8677 	vmx_pending_event_test_core(false);
8678 }
8679 
8680 static void vmx_pending_event_hlt_test(void)
8681 {
8682 	vmx_pending_event_test_core(true);
8683 }
8684 
8685 static int vmx_window_test_db_count;
8686 
8687 static void vmx_window_test_db_handler(struct ex_regs *regs)
8688 {
8689 	vmx_window_test_db_count++;
8690 }
8691 
8692 static void vmx_nmi_window_test_guest(void)
8693 {
8694 	handle_exception(DB_VECTOR, vmx_window_test_db_handler);
8695 
8696 	asm volatile("vmcall\n\t"
8697 		     "nop\n\t");
8698 
8699 	handle_exception(DB_VECTOR, NULL);
8700 }
8701 
8702 static void verify_nmi_window_exit(u64 rip)
8703 {
8704 	u32 exit_reason = vmcs_read(EXI_REASON);
8705 
8706 	report(exit_reason == VMX_NMI_WINDOW,
8707 	       "Exit reason (%d) is 'NMI window'", exit_reason);
8708 	report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx",
8709 	       vmcs_read(GUEST_RIP), rip);
8710 	vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
8711 }
8712 
8713 static void vmx_nmi_window_test(void)
8714 {
8715 	u64 nop_addr;
8716 	void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]);
8717 
8718 	if (!(ctrl_pin_rev.clr & PIN_VIRT_NMI)) {
8719 		report_skip("CPU does not support the \"Virtual NMIs\" VM-execution control.");
8720 		return;
8721 	}
8722 
8723 	if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) {
8724 		report_skip("CPU does not support the \"NMI-window exiting\" VM-execution control.");
8725 		return;
8726 	}
8727 
8728 	vmx_window_test_db_count = 0;
8729 
8730 	report_prefix_push("NMI-window");
8731 	test_set_guest(vmx_nmi_window_test_guest);
8732 	vmcs_set_bits(PIN_CONTROLS, PIN_VIRT_NMI);
8733 	enter_guest();
8734 	skip_exit_vmcall();
8735 	nop_addr = vmcs_read(GUEST_RIP);
8736 
8737 	/*
8738 	 * Ask for "NMI-window exiting," and expect an immediate VM-exit.
8739 	 * RIP will not advance.
8740 	 */
8741 	report_prefix_push("active, no blocking");
8742 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW);
8743 	enter_guest();
8744 	verify_nmi_window_exit(nop_addr);
8745 	report_prefix_pop();
8746 
8747 	/*
8748 	 * Ask for "NMI-window exiting" in a MOV-SS shadow, and expect
8749 	 * a VM-exit on the next instruction after the nop. (The nop
8750 	 * is one byte.)
8751 	 */
8752 	report_prefix_push("active, blocking by MOV-SS");
8753 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
8754 	enter_guest();
8755 	verify_nmi_window_exit(nop_addr + 1);
8756 	report_prefix_pop();
8757 
8758 	/*
8759 	 * Ask for "NMI-window exiting" (with event injection), and
8760 	 * expect a VM-exit after the event is injected. (RIP should
8761 	 * be at the address specified in the IDT entry for #DB.)
8762 	 */
8763 	report_prefix_push("active, no blocking, injecting #DB");
8764 	vmcs_write(ENT_INTR_INFO,
8765 		   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
8766 	enter_guest();
8767 	verify_nmi_window_exit((u64)db_fault_addr);
8768 	report_prefix_pop();
8769 
8770 	/*
8771 	 * Ask for "NMI-window exiting" with NMI blocking, and expect
8772 	 * a VM-exit after the next IRET (i.e. after the #DB handler
8773 	 * returns). So, RIP should be back at one byte past the nop.
8774 	 */
8775 	report_prefix_push("active, blocking by NMI");
8776 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_NMI);
8777 	enter_guest();
8778 	verify_nmi_window_exit(nop_addr + 1);
8779 	report(vmx_window_test_db_count == 1,
8780 	       "#DB handler executed once (actual %d times)",
8781 	       vmx_window_test_db_count);
8782 	report_prefix_pop();
8783 
8784 	if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) {
8785 		report_skip("CPU does not support activity state HLT.");
8786 	} else {
8787 		/*
8788 		 * Ask for "NMI-window exiting" when entering activity
8789 		 * state HLT, and expect an immediate VM-exit. RIP is
8790 		 * still one byte past the nop.
8791 		 */
8792 		report_prefix_push("halted, no blocking");
8793 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8794 		enter_guest();
8795 		verify_nmi_window_exit(nop_addr + 1);
8796 		report_prefix_pop();
8797 
8798 		/*
8799 		 * Ask for "NMI-window exiting" when entering activity
8800 		 * state HLT (with event injection), and expect a
8801 		 * VM-exit after the event is injected. (RIP should be
8802 		 * at the address specified in the IDT entry for #DB.)
8803 		 */
8804 		report_prefix_push("halted, no blocking, injecting #DB");
8805 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8806 		vmcs_write(ENT_INTR_INFO,
8807 			   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
8808 			   DB_VECTOR);
8809 		enter_guest();
8810 		verify_nmi_window_exit((u64)db_fault_addr);
8811 		report_prefix_pop();
8812 	}
8813 
8814 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW);
8815 	enter_guest();
8816 	report_prefix_pop();
8817 }
8818 
8819 static void vmx_intr_window_test_guest(void)
8820 {
8821 	handle_exception(DB_VECTOR, vmx_window_test_db_handler);
8822 
8823 	/*
8824 	 * The two consecutive STIs are to ensure that only the first
8825 	 * one has a shadow. Note that NOP and STI are one byte
8826 	 * instructions.
8827 	 */
8828 	asm volatile("vmcall\n\t"
8829 		     "nop\n\t"
8830 		     "sti\n\t"
8831 		     "sti\n\t");
8832 
8833 	handle_exception(DB_VECTOR, NULL);
8834 }
8835 
8836 static void verify_intr_window_exit(u64 rip)
8837 {
8838 	u32 exit_reason = vmcs_read(EXI_REASON);
8839 
8840 	report(exit_reason == VMX_INTR_WINDOW,
8841 	       "Exit reason (%d) is 'interrupt window'", exit_reason);
8842 	report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx",
8843 	       vmcs_read(GUEST_RIP), rip);
8844 	vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
8845 }
8846 
8847 static void vmx_intr_window_test(void)
8848 {
8849 	u64 vmcall_addr;
8850 	u64 nop_addr;
8851 	unsigned int orig_db_gate_type;
8852 	void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]);
8853 
8854 	if (!(ctrl_cpu_rev[0].clr & CPU_INTR_WINDOW)) {
8855 		report_skip("CPU does not support the \"interrupt-window exiting\" VM-execution control.");
8856 		return;
8857 	}
8858 
8859 	/*
8860 	 * Change the IDT entry for #DB from interrupt gate to trap gate,
8861 	 * so that it won't clear RFLAGS.IF. We don't want interrupts to
8862 	 * be disabled after vectoring a #DB.
8863 	 */
8864 	orig_db_gate_type = boot_idt[DB_VECTOR].type;
8865 	boot_idt[DB_VECTOR].type = 15;
8866 
8867 	report_prefix_push("interrupt-window");
8868 	test_set_guest(vmx_intr_window_test_guest);
8869 	enter_guest();
8870 	assert_exit_reason(VMX_VMCALL);
8871 	vmcall_addr = vmcs_read(GUEST_RIP);
8872 
8873 	/*
8874 	 * Ask for "interrupt-window exiting" with RFLAGS.IF set and
8875 	 * no blocking; expect an immediate VM-exit. Note that we have
8876 	 * not advanced past the vmcall instruction yet, so RIP should
8877 	 * point to the vmcall instruction.
8878 	 */
8879 	report_prefix_push("active, no blocking, RFLAGS.IF=1");
8880 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
8881 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_IF);
8882 	enter_guest();
8883 	verify_intr_window_exit(vmcall_addr);
8884 	report_prefix_pop();
8885 
8886 	/*
8887 	 * Ask for "interrupt-window exiting" (with event injection)
8888 	 * with RFLAGS.IF set and no blocking; expect a VM-exit after
8889 	 * the event is injected. That is, RIP should should be at the
8890 	 * address specified in the IDT entry for #DB.
8891 	 */
8892 	report_prefix_push("active, no blocking, RFLAGS.IF=1, injecting #DB");
8893 	vmcs_write(ENT_INTR_INFO,
8894 		   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
8895 	vmcall_addr = vmcs_read(GUEST_RIP);
8896 	enter_guest();
8897 	verify_intr_window_exit((u64)db_fault_addr);
8898 	report_prefix_pop();
8899 
8900 	/*
8901 	 * Let the L2 guest run through the IRET, back to the VMCALL.
8902 	 * We have to clear the "interrupt-window exiting"
8903 	 * VM-execution control, or it would just keep causing
8904 	 * VM-exits. Then, advance past the VMCALL and set the
8905 	 * "interrupt-window exiting" VM-execution control again.
8906 	 */
8907 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
8908 	enter_guest();
8909 	skip_exit_vmcall();
8910 	nop_addr = vmcs_read(GUEST_RIP);
8911 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
8912 
8913 	/*
8914 	 * Ask for "interrupt-window exiting" in a MOV-SS shadow with
8915 	 * RFLAGS.IF set, and expect a VM-exit on the next
8916 	 * instruction. (NOP is one byte.)
8917 	 */
8918 	report_prefix_push("active, blocking by MOV-SS, RFLAGS.IF=1");
8919 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
8920 	enter_guest();
8921 	verify_intr_window_exit(nop_addr + 1);
8922 	report_prefix_pop();
8923 
8924 	/*
8925 	 * Back up to the NOP and ask for "interrupt-window exiting"
8926 	 * in an STI shadow with RFLAGS.IF set, and expect a VM-exit
8927 	 * on the next instruction. (NOP is one byte.)
8928 	 */
8929 	report_prefix_push("active, blocking by STI, RFLAGS.IF=1");
8930 	vmcs_write(GUEST_RIP, nop_addr);
8931 	vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_STI);
8932 	enter_guest();
8933 	verify_intr_window_exit(nop_addr + 1);
8934 	report_prefix_pop();
8935 
8936 	/*
8937 	 * Ask for "interrupt-window exiting" with RFLAGS.IF clear,
8938 	 * and expect a VM-exit on the instruction following the STI
8939 	 * shadow. Only the first STI (which is one byte past the NOP)
8940 	 * should have a shadow. The second STI (which is two bytes
8941 	 * past the NOP) has no shadow. Therefore, the interrupt
8942 	 * window opens at three bytes past the NOP.
8943 	 */
8944 	report_prefix_push("active, RFLAGS.IF = 0");
8945 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
8946 	enter_guest();
8947 	verify_intr_window_exit(nop_addr + 3);
8948 	report_prefix_pop();
8949 
8950 	if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) {
8951 		report_skip("CPU does not support activity state HLT.");
8952 	} else {
8953 		/*
8954 		 * Ask for "interrupt-window exiting" when entering
8955 		 * activity state HLT, and expect an immediate
8956 		 * VM-exit. RIP is still three bytes past the nop.
8957 		 */
8958 		report_prefix_push("halted, no blocking");
8959 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8960 		enter_guest();
8961 		verify_intr_window_exit(nop_addr + 3);
8962 		report_prefix_pop();
8963 
8964 		/*
8965 		 * Ask for "interrupt-window exiting" when entering
8966 		 * activity state HLT (with event injection), and
8967 		 * expect a VM-exit after the event is injected. That
8968 		 * is, RIP should should be at the address specified
8969 		 * in the IDT entry for #DB.
8970 		 */
8971 		report_prefix_push("halted, no blocking, injecting #DB");
8972 		vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
8973 		vmcs_write(ENT_INTR_INFO,
8974 			   INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
8975 			   DB_VECTOR);
8976 		enter_guest();
8977 		verify_intr_window_exit((u64)db_fault_addr);
8978 		report_prefix_pop();
8979 	}
8980 
8981 	boot_idt[DB_VECTOR].type = orig_db_gate_type;
8982 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
8983 	enter_guest();
8984 	report_prefix_pop();
8985 }
8986 
8987 #define GUEST_TSC_OFFSET (1u << 30)
8988 
8989 static u64 guest_tsc;
8990 
8991 static void vmx_store_tsc_test_guest(void)
8992 {
8993 	guest_tsc = rdtsc();
8994 }
8995 
8996 /*
8997  * This test ensures that when IA32_TSC is in the VM-exit MSR-store
8998  * list, the value saved is not subject to the TSC offset that is
8999  * applied to RDTSC/RDTSCP/RDMSR(IA32_TSC) in guest execution.
9000  */
9001 static void vmx_store_tsc_test(void)
9002 {
9003 	struct vmx_msr_entry msr_entry = { .index = MSR_IA32_TSC };
9004 	u64 low, high;
9005 
9006 	if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) {
9007 		report_skip("'Use TSC offsetting' not supported");
9008 		return;
9009 	}
9010 
9011 	test_set_guest(vmx_store_tsc_test_guest);
9012 
9013 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET);
9014 	vmcs_write(EXI_MSR_ST_CNT, 1);
9015 	vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(&msr_entry));
9016 	vmcs_write(TSC_OFFSET, GUEST_TSC_OFFSET);
9017 
9018 	low = rdtsc();
9019 	enter_guest();
9020 	high = rdtsc();
9021 
9022 	report(low + GUEST_TSC_OFFSET <= guest_tsc &&
9023 	       guest_tsc <= high + GUEST_TSC_OFFSET,
9024 	       "RDTSC value in the guest (%lu) is in range [%lu, %lu]",
9025 	       guest_tsc, low + GUEST_TSC_OFFSET, high + GUEST_TSC_OFFSET);
9026 	report(low <= msr_entry.value && msr_entry.value <= high,
9027 	       "IA32_TSC value saved in the VM-exit MSR-store list (%lu) is in range [%lu, %lu]",
9028 	       msr_entry.value, low, high);
9029 }
9030 
9031 static void vmx_preemption_timer_zero_test_db_handler(struct ex_regs *regs)
9032 {
9033 }
9034 
9035 static void vmx_preemption_timer_zero_test_guest(void)
9036 {
9037 	while (vmx_get_test_stage() < 3)
9038 		vmcall();
9039 }
9040 
9041 static void vmx_preemption_timer_zero_activate_preemption_timer(void)
9042 {
9043 	vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT);
9044 	vmcs_write(PREEMPT_TIMER_VALUE, 0);
9045 }
9046 
9047 static void vmx_preemption_timer_zero_advance_past_vmcall(void)
9048 {
9049 	vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
9050 	enter_guest();
9051 	skip_exit_vmcall();
9052 }
9053 
9054 static void vmx_preemption_timer_zero_inject_db(bool intercept_db)
9055 {
9056 	vmx_preemption_timer_zero_activate_preemption_timer();
9057 	vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK |
9058 		   INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
9059 	vmcs_write(EXC_BITMAP, intercept_db ? 1 << DB_VECTOR : 0);
9060 	enter_guest();
9061 }
9062 
9063 static void vmx_preemption_timer_zero_set_pending_dbg(u32 exception_bitmap)
9064 {
9065 	vmx_preemption_timer_zero_activate_preemption_timer();
9066 	vmcs_write(GUEST_PENDING_DEBUG, BIT(12) | DR_TRAP1);
9067 	vmcs_write(EXC_BITMAP, exception_bitmap);
9068 	enter_guest();
9069 }
9070 
9071 static void vmx_preemption_timer_zero_expect_preempt_at_rip(u64 expected_rip)
9072 {
9073 	u32 reason = (u32)vmcs_read(EXI_REASON);
9074 	u64 guest_rip = vmcs_read(GUEST_RIP);
9075 
9076 	report(reason == VMX_PREEMPT && guest_rip == expected_rip,
9077 	       "Exit reason is 0x%x (expected 0x%x) and guest RIP is %lx (0x%lx expected).",
9078 	       reason, VMX_PREEMPT, guest_rip, expected_rip);
9079 }
9080 
9081 /*
9082  * This test ensures that when the VMX preemption timer is zero at
9083  * VM-entry, a VM-exit occurs after any event injection and after any
9084  * pending debug exceptions are raised, but before execution of any
9085  * guest instructions.
9086  */
9087 static void vmx_preemption_timer_zero_test(void)
9088 {
9089 	u64 db_fault_address = (u64)get_idt_addr(&boot_idt[DB_VECTOR]);
9090 	handler old_db;
9091 	u32 reason;
9092 
9093 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
9094 		report_skip("'Activate VMX-preemption timer' not supported");
9095 		return;
9096 	}
9097 
9098 	/*
9099 	 * Install a custom #DB handler that doesn't abort.
9100 	 */
9101 	old_db = handle_exception(DB_VECTOR,
9102 				  vmx_preemption_timer_zero_test_db_handler);
9103 
9104 	test_set_guest(vmx_preemption_timer_zero_test_guest);
9105 
9106 	/*
9107 	 * VMX-preemption timer should fire after event injection.
9108 	 */
9109 	vmx_set_test_stage(0);
9110 	vmx_preemption_timer_zero_inject_db(0);
9111 	vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address);
9112 	vmx_preemption_timer_zero_advance_past_vmcall();
9113 
9114 	/*
9115 	 * VMX-preemption timer should fire after event injection.
9116 	 * Exception bitmap is irrelevant, since you can't intercept
9117 	 * an event that you injected.
9118 	 */
9119 	vmx_set_test_stage(1);
9120 	vmx_preemption_timer_zero_inject_db(true);
9121 	vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address);
9122 	vmx_preemption_timer_zero_advance_past_vmcall();
9123 
9124 	/*
9125 	 * VMX-preemption timer should fire after pending debug exceptions
9126 	 * have delivered a #DB trap.
9127 	 */
9128 	vmx_set_test_stage(2);
9129 	vmx_preemption_timer_zero_set_pending_dbg(0);
9130 	vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address);
9131 	vmx_preemption_timer_zero_advance_past_vmcall();
9132 
9133 	/*
9134 	 * VMX-preemption timer would fire after pending debug exceptions
9135 	 * have delivered a #DB trap, but in this case, the #DB trap is
9136 	 * intercepted.
9137 	 */
9138 	vmx_set_test_stage(3);
9139 	vmx_preemption_timer_zero_set_pending_dbg(1 << DB_VECTOR);
9140 	reason = (u32)vmcs_read(EXI_REASON);
9141 	report(reason == VMX_EXC_NMI, "Exit reason is 0x%x (expected 0x%x)",
9142 	       reason, VMX_EXC_NMI);
9143 
9144 	vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
9145 	enter_guest();
9146 
9147 	handle_exception(DB_VECTOR, old_db);
9148 }
9149 
9150 static u64 vmx_preemption_timer_tf_test_prev_rip;
9151 
9152 static void vmx_preemption_timer_tf_test_db_handler(struct ex_regs *regs)
9153 {
9154 	extern char vmx_preemption_timer_tf_test_endloop;
9155 
9156 	if (vmx_get_test_stage() == 2) {
9157 		/*
9158 		 * Stage 2 means that we're done, one way or another.
9159 		 * Arrange for the iret to drop us out of the wbinvd
9160 		 * loop and stop single-stepping.
9161 		 */
9162 		regs->rip = (u64)&vmx_preemption_timer_tf_test_endloop;
9163 		regs->rflags &= ~X86_EFLAGS_TF;
9164 	} else if (regs->rip == vmx_preemption_timer_tf_test_prev_rip) {
9165 		/*
9166 		 * The RIP should alternate between the wbinvd and the
9167 		 * jmp instruction in the code below. If we ever see
9168 		 * the same instruction twice in a row, that means a
9169 		 * single-step trap has been dropped. Let the
9170 		 * hypervisor know about the failure by executing a
9171 		 * VMCALL.
9172 		 */
9173 		vmcall();
9174 	}
9175 	vmx_preemption_timer_tf_test_prev_rip = regs->rip;
9176 }
9177 
9178 static void vmx_preemption_timer_tf_test_guest(void)
9179 {
9180 	/*
9181 	 * The hypervisor doesn't intercept WBINVD, so the loop below
9182 	 * shouldn't be a problem--it's just two instructions
9183 	 * executing in VMX non-root mode. However, when the
9184 	 * hypervisor is running in a virtual environment, the parent
9185 	 * hypervisor might intercept WBINVD and emulate it. If the
9186 	 * parent hypervisor is broken, the single-step trap after the
9187 	 * WBINVD might be lost.
9188 	 */
9189 	asm volatile("vmcall\n\t"
9190 		     "0: wbinvd\n\t"
9191 		     "1: jmp 0b\n\t"
9192 		     "vmx_preemption_timer_tf_test_endloop:");
9193 }
9194 
9195 /*
9196  * Ensure that the delivery of a "VMX-preemption timer expired"
9197  * VM-exit doesn't disrupt single-stepping in the guest. Note that
9198  * passing this test doesn't ensure correctness, because the test will
9199  * only fail if the VMX-preemtion timer fires at the right time (or
9200  * the wrong time, as it were).
9201  */
9202 static void vmx_preemption_timer_tf_test(void)
9203 {
9204 	handler old_db;
9205 	u32 reason;
9206 	int i;
9207 
9208 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
9209 		report_skip("'Activate VMX-preemption timer' not supported");
9210 		return;
9211 	}
9212 
9213 	old_db = handle_exception(DB_VECTOR,
9214 				  vmx_preemption_timer_tf_test_db_handler);
9215 
9216 	test_set_guest(vmx_preemption_timer_tf_test_guest);
9217 
9218 	enter_guest();
9219 	skip_exit_vmcall();
9220 
9221 	vmx_set_test_stage(1);
9222 	vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT);
9223 	vmcs_write(PREEMPT_TIMER_VALUE, 50000);
9224 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF);
9225 
9226 	/*
9227 	 * The only exit we should see is "VMX-preemption timer
9228 	 * expired."  If we get a VMCALL exit, that means the #DB
9229 	 * handler has detected a missing single-step trap. It doesn't
9230 	 * matter where the guest RIP is when the VMX-preemption timer
9231 	 * expires (whether it's in the WBINVD loop or in the #DB
9232 	 * handler)--a single-step trap should never be discarded.
9233 	 */
9234 	for (i = 0; i < 10000; i++) {
9235 		enter_guest();
9236 		reason = (u32)vmcs_read(EXI_REASON);
9237 		if (reason == VMX_PREEMPT)
9238 			continue;
9239 		TEST_ASSERT(reason == VMX_VMCALL);
9240 		skip_exit_insn();
9241 		break;
9242 	}
9243 
9244 	report(reason == VMX_PREEMPT, "No single-step traps skipped");
9245 
9246 	vmx_set_test_stage(2);
9247 	vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
9248 	enter_guest();
9249 
9250 	handle_exception(DB_VECTOR, old_db);
9251 }
9252 
9253 #define VMX_PREEMPTION_TIMER_EXPIRY_CYCLES 1000000
9254 
9255 static u64 vmx_preemption_timer_expiry_start;
9256 static u64 vmx_preemption_timer_expiry_finish;
9257 
9258 static void vmx_preemption_timer_expiry_test_guest(void)
9259 {
9260 	vmcall();
9261 	vmx_preemption_timer_expiry_start = fenced_rdtsc();
9262 
9263 	while (vmx_get_test_stage() == 0)
9264 		vmx_preemption_timer_expiry_finish = fenced_rdtsc();
9265 }
9266 
9267 /*
9268  * Test that the VMX-preemption timer is not excessively delayed.
9269  *
9270  * Per the SDM, volume 3, VM-entry starts the VMX-preemption timer
9271  * with the unsigned value in the VMX-preemption timer-value field,
9272  * and the VMX-preemption timer counts down by 1 every time bit X in
9273  * the TSC changes due to a TSC increment (where X is
9274  * IA32_VMX_MISC[4:0]). If the timer counts down to zero in any state
9275  * other than the wait-for-SIPI state, the logical processor
9276  * transitions to the C0 C-state and causes a VM-exit.
9277  *
9278  * The guest code above reads the starting TSC after VM-entry. At this
9279  * point, the VMX-preemption timer has already been activated. Next,
9280  * the guest code reads the current TSC in a loop, storing the value
9281  * read to memory.
9282  *
9283  * If the RDTSC in the loop reads a value past the VMX-preemption
9284  * timer deadline, then the VMX-preemption timer VM-exit must be
9285  * delivered before the next instruction retires. Even if a higher
9286  * priority SMI is delivered first, the VMX-preemption timer VM-exit
9287  * must be delivered before the next instruction retires. Hence, a TSC
9288  * value past the VMX-preemption timer deadline might be read, but it
9289  * cannot be stored. If a TSC value past the deadline *is* stored,
9290  * then the architectural specification has been violated.
9291  */
9292 static void vmx_preemption_timer_expiry_test(void)
9293 {
9294 	u32 preemption_timer_value;
9295 	union vmx_misc misc;
9296 	u64 tsc_deadline;
9297 	u32 reason;
9298 
9299 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
9300 		report_skip("'Activate VMX-preemption timer' not supported");
9301 		return;
9302 	}
9303 
9304 	test_set_guest(vmx_preemption_timer_expiry_test_guest);
9305 
9306 	enter_guest();
9307 	skip_exit_vmcall();
9308 
9309 	misc.val = rdmsr(MSR_IA32_VMX_MISC);
9310 	preemption_timer_value =
9311 		VMX_PREEMPTION_TIMER_EXPIRY_CYCLES >> misc.pt_bit;
9312 
9313 	vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT);
9314 	vmcs_write(PREEMPT_TIMER_VALUE, preemption_timer_value);
9315 	vmx_set_test_stage(0);
9316 
9317 	enter_guest();
9318 	reason = (u32)vmcs_read(EXI_REASON);
9319 	TEST_ASSERT(reason == VMX_PREEMPT);
9320 
9321 	vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
9322 	vmx_set_test_stage(1);
9323 	enter_guest();
9324 
9325 	tsc_deadline = ((vmx_preemption_timer_expiry_start >> misc.pt_bit) <<
9326 			misc.pt_bit) + (preemption_timer_value << misc.pt_bit);
9327 
9328 	report(vmx_preemption_timer_expiry_finish < tsc_deadline,
9329 	       "Last stored guest TSC (%lu) < TSC deadline (%lu)",
9330 	       vmx_preemption_timer_expiry_finish, tsc_deadline);
9331 }
9332 
9333 static void vmx_db_test_guest(void)
9334 {
9335 	/*
9336 	 * For a hardware generated single-step #DB.
9337 	 */
9338 	asm volatile("vmcall;"
9339 		     "nop;"
9340 		     ".Lpost_nop:");
9341 	/*
9342 	 * ...in a MOVSS shadow, with pending debug exceptions.
9343 	 */
9344 	asm volatile("vmcall;"
9345 		     "nop;"
9346 		     ".Lpost_movss_nop:");
9347 	/*
9348 	 * For an L0 synthesized single-step #DB. (L0 intercepts WBINVD and
9349 	 * emulates it in software.)
9350 	 */
9351 	asm volatile("vmcall;"
9352 		     "wbinvd;"
9353 		     ".Lpost_wbinvd:");
9354 	/*
9355 	 * ...in a MOVSS shadow, with pending debug exceptions.
9356 	 */
9357 	asm volatile("vmcall;"
9358 		     "wbinvd;"
9359 		     ".Lpost_movss_wbinvd:");
9360 	/*
9361 	 * For a hardware generated single-step #DB in a transactional region.
9362 	 */
9363 	asm volatile("vmcall;"
9364 		     ".Lxbegin: xbegin .Lskip_rtm;"
9365 		     "xend;"
9366 		     ".Lskip_rtm:");
9367 }
9368 
9369 /*
9370  * Clear the pending debug exceptions and RFLAGS.TF and re-enter
9371  * L2. No #DB is delivered and L2 continues to the next point of
9372  * interest.
9373  */
9374 static void dismiss_db(void)
9375 {
9376 	vmcs_write(GUEST_PENDING_DEBUG, 0);
9377 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
9378 	enter_guest();
9379 }
9380 
9381 /*
9382  * Check a variety of VMCS fields relevant to an intercepted #DB exception.
9383  * Then throw away the #DB exception and resume L2.
9384  */
9385 static void check_db_exit(bool xfail_qual, bool xfail_dr6, bool xfail_pdbg,
9386 			  void *expected_rip, u64 expected_exit_qual,
9387 			  u64 expected_dr6)
9388 {
9389 	u32 reason = vmcs_read(EXI_REASON);
9390 	u32 intr_info = vmcs_read(EXI_INTR_INFO);
9391 	u64 exit_qual = vmcs_read(EXI_QUALIFICATION);
9392 	u64 guest_rip = vmcs_read(GUEST_RIP);
9393 	u64 guest_pending_dbg = vmcs_read(GUEST_PENDING_DEBUG);
9394 	u64 dr6 = read_dr6();
9395 	const u32 expected_intr_info = INTR_INFO_VALID_MASK |
9396 		INTR_TYPE_HARD_EXCEPTION | DB_VECTOR;
9397 
9398 	report(reason == VMX_EXC_NMI && intr_info == expected_intr_info,
9399 	       "Expected #DB VM-exit");
9400 	report((u64)expected_rip == guest_rip, "Expected RIP %p (actual %lx)",
9401 	       expected_rip, guest_rip);
9402 	report_xfail(xfail_pdbg, 0 == guest_pending_dbg,
9403 		     "Expected pending debug exceptions 0 (actual %lx)",
9404 		     guest_pending_dbg);
9405 	report_xfail(xfail_qual, expected_exit_qual == exit_qual,
9406 		     "Expected exit qualification %lx (actual %lx)",
9407 		     expected_exit_qual, exit_qual);
9408 	report_xfail(xfail_dr6, expected_dr6 == dr6,
9409 		     "Expected DR6 %lx (actual %lx)", expected_dr6, dr6);
9410 	dismiss_db();
9411 }
9412 
9413 /*
9414  * Assuming the guest has just exited on a VMCALL instruction, skip
9415  * over the vmcall, and set the guest's RFLAGS.TF in the VMCS. If
9416  * pending debug exceptions are non-zero, set the VMCS up as if the
9417  * previous instruction was a MOVSS that generated the indicated
9418  * pending debug exceptions. Then enter L2.
9419  */
9420 static void single_step_guest(const char *test_name, u64 starting_dr6,
9421 			      u64 pending_debug_exceptions)
9422 {
9423 	printf("\n%s\n", test_name);
9424 	skip_exit_vmcall();
9425 	write_dr6(starting_dr6);
9426 	vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF);
9427 	if (pending_debug_exceptions) {
9428 		vmcs_write(GUEST_PENDING_DEBUG, pending_debug_exceptions);
9429 		vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
9430 	}
9431 	enter_guest();
9432 }
9433 
9434 /*
9435  * When L1 intercepts #DB, verify that a single-step trap clears
9436  * pending debug exceptions, populates the exit qualification field
9437  * properly, and that DR6 is not prematurely clobbered. In a
9438  * (simulated) MOVSS shadow, make sure that the pending debug
9439  * exception bits are properly accumulated into the exit qualification
9440  * field.
9441  */
9442 static void vmx_db_test(void)
9443 {
9444 	/*
9445 	 * We are going to set a few arbitrary bits in DR6 to verify that
9446 	 * (a) DR6 is not modified by an intercepted #DB, and
9447 	 * (b) stale bits in DR6 (DR6.BD, in particular) don't leak into
9448          *     the exit qualification field for a subsequent #DB exception.
9449 	 */
9450 	const u64 starting_dr6 = DR6_RESERVED | BIT(13) | DR_TRAP3 | DR_TRAP1;
9451 	extern char post_nop asm(".Lpost_nop");
9452 	extern char post_movss_nop asm(".Lpost_movss_nop");
9453 	extern char post_wbinvd asm(".Lpost_wbinvd");
9454 	extern char post_movss_wbinvd asm(".Lpost_movss_wbinvd");
9455 	extern char xbegin asm(".Lxbegin");
9456 	extern char skip_rtm asm(".Lskip_rtm");
9457 
9458 	/*
9459 	 * L1 wants to intercept #DB exceptions encountered in L2.
9460 	 */
9461 	vmcs_write(EXC_BITMAP, BIT(DB_VECTOR));
9462 
9463 	/*
9464 	 * Start L2 and run it up to the first point of interest.
9465 	 */
9466 	test_set_guest(vmx_db_test_guest);
9467 	enter_guest();
9468 
9469 	/*
9470 	 * Hardware-delivered #DB trap for single-step sets the
9471 	 * standard that L0 has to follow for emulated instructions.
9472 	 */
9473 	single_step_guest("Hardware delivered single-step", starting_dr6, 0);
9474 	check_db_exit(false, false, false, &post_nop, DR_STEP, starting_dr6);
9475 
9476 	/*
9477 	 * Hardware-delivered #DB trap for single-step in MOVSS shadow
9478 	 * also sets the standard that L0 has to follow for emulated
9479 	 * instructions. Here, we establish the VMCS pending debug
9480 	 * exceptions to indicate that the simulated MOVSS triggered a
9481 	 * data breakpoint as well as the single-step trap.
9482 	 */
9483 	single_step_guest("Hardware delivered single-step in MOVSS shadow",
9484 			  starting_dr6, BIT(12) | DR_STEP | DR_TRAP0 );
9485 	check_db_exit(false, false, false, &post_movss_nop, DR_STEP | DR_TRAP0,
9486 		      starting_dr6);
9487 
9488 	/*
9489 	 * L0 synthesized #DB trap for single-step is buggy, because
9490 	 * kvm (a) clobbers DR6 too early, and (b) tries its best to
9491 	 * reconstitute the exit qualification from the prematurely
9492 	 * modified DR6, but fails miserably.
9493 	 */
9494 	single_step_guest("Software synthesized single-step", starting_dr6, 0);
9495 	check_db_exit(false, false, false, &post_wbinvd, DR_STEP, starting_dr6);
9496 
9497 	/*
9498 	 * L0 synthesized #DB trap for single-step in MOVSS shadow is
9499 	 * even worse, because L0 also leaves the pending debug
9500 	 * exceptions in the VMCS instead of accumulating them into
9501 	 * the exit qualification field for the #DB exception.
9502 	 */
9503 	single_step_guest("Software synthesized single-step in MOVSS shadow",
9504 			  starting_dr6, BIT(12) | DR_STEP | DR_TRAP0);
9505 	check_db_exit(true, false, true, &post_movss_wbinvd, DR_STEP | DR_TRAP0,
9506 		      starting_dr6);
9507 
9508 	/*
9509 	 * Optional RTM test for hardware that supports RTM, to
9510 	 * demonstrate that the current volume 3 of the SDM
9511 	 * (325384-067US), table 27-1 is incorrect. Bit 16 of the exit
9512 	 * qualification for debug exceptions is not reserved. It is
9513 	 * set to 1 if a debug exception (#DB) or a breakpoint
9514 	 * exception (#BP) occurs inside an RTM region while advanced
9515 	 * debugging of RTM transactional regions is enabled.
9516 	 */
9517 	if (this_cpu_has(X86_FEATURE_RTM)) {
9518 		vmcs_write(ENT_CONTROLS,
9519 			   vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
9520 		/*
9521 		 * Set DR7.RTM[bit 11] and IA32_DEBUGCTL.RTM[bit 15]
9522 		 * in the guest to enable advanced debugging of RTM
9523 		 * transactional regions.
9524 		 */
9525 		vmcs_write(GUEST_DR7, BIT(11));
9526 		vmcs_write(GUEST_DEBUGCTL, BIT(15));
9527 		single_step_guest("Hardware delivered single-step in "
9528 				  "transactional region", starting_dr6, 0);
9529 		check_db_exit(false, false, false, &xbegin, BIT(16),
9530 			      starting_dr6);
9531 	} else {
9532 		vmcs_write(GUEST_RIP, (u64)&skip_rtm);
9533 		enter_guest();
9534 	}
9535 }
9536 
9537 static void enable_vid(void)
9538 {
9539 	void *virtual_apic_page;
9540 
9541 	assert(cpu_has_apicv());
9542 
9543 	disable_intercept_for_x2apic_msrs();
9544 
9545 	virtual_apic_page = alloc_page();
9546 	vmcs_write(APIC_VIRT_ADDR, (u64)virtual_apic_page);
9547 
9548 	vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT);
9549 
9550 	vmcs_write(EOI_EXIT_BITMAP0, 0x0);
9551 	vmcs_write(EOI_EXIT_BITMAP1, 0x0);
9552 	vmcs_write(EOI_EXIT_BITMAP2, 0x0);
9553 	vmcs_write(EOI_EXIT_BITMAP3, 0x0);
9554 
9555 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY | CPU_TPR_SHADOW);
9556 	vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VINTD | CPU_VIRT_X2APIC);
9557 }
9558 
9559 static void trigger_ioapic_scan_thread(void *data)
9560 {
9561 	/* Wait until other CPU entered L2 */
9562 	while (vmx_get_test_stage() != 1)
9563 		;
9564 
9565 	/* Trigger ioapic scan */
9566 	ioapic_set_redir(0xf, 0x79, TRIGGER_LEVEL);
9567 	vmx_set_test_stage(2);
9568 }
9569 
9570 static void irq_79_handler_guest(isr_regs_t *regs)
9571 {
9572 	eoi();
9573 
9574 	/* L1 expects vmexit on VMX_VMCALL and not VMX_EOI_INDUCED */
9575 	vmcall();
9576 }
9577 
9578 /*
9579  * Constant for num of busy-loop iterations after which
9580  * a timer interrupt should have happened in host
9581  */
9582 #define TIMER_INTERRUPT_DELAY 100000000
9583 
9584 static void vmx_eoi_bitmap_ioapic_scan_test_guest(void)
9585 {
9586 	handle_irq(0x79, irq_79_handler_guest);
9587 	irq_enable();
9588 
9589 	/* Signal to L1 CPU to trigger ioapic scan */
9590 	vmx_set_test_stage(1);
9591 	/* Wait until L1 CPU to trigger ioapic scan */
9592 	while (vmx_get_test_stage() != 2)
9593 		;
9594 
9595 	/*
9596 	 * Wait for L0 timer interrupt to be raised while we run in L2
9597 	 * such that L0 will process the IOAPIC scan request before
9598 	 * resuming L2
9599 	 */
9600 	delay(TIMER_INTERRUPT_DELAY);
9601 
9602 	asm volatile ("int $0x79");
9603 }
9604 
9605 static void vmx_eoi_bitmap_ioapic_scan_test(void)
9606 {
9607 	if (!cpu_has_apicv() || (cpu_count() < 2)) {
9608 		report_skip(__func__);
9609 		return;
9610 	}
9611 
9612 	enable_vid();
9613 
9614 	on_cpu_async(1, trigger_ioapic_scan_thread, NULL);
9615 	test_set_guest(vmx_eoi_bitmap_ioapic_scan_test_guest);
9616 
9617 	/*
9618 	 * Launch L2.
9619 	 * We expect the exit reason to be VMX_VMCALL (and not EOI INDUCED).
9620 	 * In case the reason isn't VMX_VMCALL, the asserion inside
9621 	 * skip_exit_vmcall() will fail.
9622 	 */
9623 	enter_guest();
9624 	skip_exit_vmcall();
9625 
9626 	/* Let L2 finish */
9627 	enter_guest();
9628 	report_pass(__func__);
9629 }
9630 
9631 #define HLT_WITH_RVI_VECTOR		(0xf1)
9632 
9633 bool vmx_hlt_with_rvi_guest_isr_fired;
9634 static void vmx_hlt_with_rvi_guest_isr(isr_regs_t *regs)
9635 {
9636 	vmx_hlt_with_rvi_guest_isr_fired = true;
9637 	eoi();
9638 }
9639 
9640 static void vmx_hlt_with_rvi_guest(void)
9641 {
9642 	handle_irq(HLT_WITH_RVI_VECTOR, vmx_hlt_with_rvi_guest_isr);
9643 
9644 	irq_enable();
9645 	asm volatile ("nop");
9646 
9647 	vmcall();
9648 }
9649 
9650 static void vmx_hlt_with_rvi_test(void)
9651 {
9652 	if (!cpu_has_apicv()) {
9653 		report_skip(__func__);
9654 		return;
9655 	}
9656 
9657 	enable_vid();
9658 
9659 	vmx_hlt_with_rvi_guest_isr_fired = false;
9660 	test_set_guest(vmx_hlt_with_rvi_guest);
9661 
9662 	enter_guest();
9663 	skip_exit_vmcall();
9664 
9665 	vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
9666 	vmcs_write(GUEST_INT_STATUS, HLT_WITH_RVI_VECTOR);
9667 	enter_guest();
9668 
9669 	report(vmx_hlt_with_rvi_guest_isr_fired, "Interrupt raised in guest");
9670 }
9671 
9672 static void set_irq_line_thread(void *data)
9673 {
9674 	/* Wait until other CPU entered L2 */
9675 	while (vmx_get_test_stage() != 1)
9676 		;
9677 
9678 	/* Set irq-line 0xf to raise vector 0x78 for vCPU 0 */
9679 	ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL);
9680 	vmx_set_test_stage(2);
9681 }
9682 
9683 static bool irq_78_handler_vmcall_before_eoi;
9684 static void irq_78_handler_guest(isr_regs_t *regs)
9685 {
9686 	set_irq_line(0xf, 0);
9687 	if (irq_78_handler_vmcall_before_eoi)
9688 		vmcall();
9689 	eoi();
9690 	vmcall();
9691 }
9692 
9693 static void vmx_apic_passthrough_guest(void)
9694 {
9695 	handle_irq(0x78, irq_78_handler_guest);
9696 	irq_enable();
9697 
9698 	/* If requested, wait for other CPU to trigger ioapic scan */
9699 	if (vmx_get_test_stage() < 1) {
9700 		vmx_set_test_stage(1);
9701 		while (vmx_get_test_stage() != 2)
9702 			;
9703 	}
9704 
9705 	set_irq_line(0xf, 1);
9706 }
9707 
9708 static void vmx_apic_passthrough(bool set_irq_line_from_thread)
9709 {
9710 	if (set_irq_line_from_thread && (cpu_count() < 2)) {
9711 		report_skip(__func__);
9712 		return;
9713 	}
9714 
9715 	/* Test device is required for generating IRQs */
9716 	if (!test_device_enabled()) {
9717 		report_skip(__func__);
9718 		return;
9719 	}
9720 	u64 cpu_ctrl_0 = CPU_SECONDARY;
9721 	u64 cpu_ctrl_1 = 0;
9722 
9723 	disable_intercept_for_x2apic_msrs();
9724 
9725 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
9726 
9727 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0);
9728 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1);
9729 
9730 	if (set_irq_line_from_thread) {
9731 		irq_78_handler_vmcall_before_eoi = false;
9732 		on_cpu_async(1, set_irq_line_thread, NULL);
9733 	} else {
9734 		irq_78_handler_vmcall_before_eoi = true;
9735 		ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL);
9736 		vmx_set_test_stage(2);
9737 	}
9738 	test_set_guest(vmx_apic_passthrough_guest);
9739 
9740 	if (irq_78_handler_vmcall_before_eoi) {
9741 		/* Before EOI remote_irr should still be set */
9742 		enter_guest();
9743 		skip_exit_vmcall();
9744 		TEST_ASSERT_EQ_MSG(1, (int)ioapic_read_redir(0xf).remote_irr,
9745 			"IOAPIC pass-through: remote_irr=1 before EOI");
9746 	}
9747 
9748 	/* After EOI remote_irr should be cleared */
9749 	enter_guest();
9750 	skip_exit_vmcall();
9751 	TEST_ASSERT_EQ_MSG(0, (int)ioapic_read_redir(0xf).remote_irr,
9752 		"IOAPIC pass-through: remote_irr=0 after EOI");
9753 
9754 	/* Let L2 finish */
9755 	enter_guest();
9756 	report_pass(__func__);
9757 }
9758 
9759 static void vmx_apic_passthrough_test(void)
9760 {
9761 	vmx_apic_passthrough(false);
9762 }
9763 
9764 static void vmx_apic_passthrough_thread_test(void)
9765 {
9766 	vmx_apic_passthrough(true);
9767 }
9768 
9769 static void vmx_apic_passthrough_tpr_threshold_guest(void)
9770 {
9771 	cli();
9772 	apic_set_tpr(0);
9773 }
9774 
9775 static bool vmx_apic_passthrough_tpr_threshold_ipi_isr_fired;
9776 static void vmx_apic_passthrough_tpr_threshold_ipi_isr(isr_regs_t *regs)
9777 {
9778 	vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = true;
9779 	eoi();
9780 }
9781 
9782 static void vmx_apic_passthrough_tpr_threshold_test(void)
9783 {
9784 	int ipi_vector = 0xe1;
9785 
9786 	disable_intercept_for_x2apic_msrs();
9787 	vmcs_clear_bits(PIN_CONTROLS, PIN_EXTINT);
9788 
9789 	/* Raise L0 TPR-threshold by queueing vector in LAPIC IRR */
9790 	cli();
9791 	apic_set_tpr((ipi_vector >> 4) + 1);
9792 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
9793 			APIC_DM_FIXED | ipi_vector,
9794 			0);
9795 
9796 	test_set_guest(vmx_apic_passthrough_tpr_threshold_guest);
9797 	enter_guest();
9798 
9799 	report(apic_get_tpr() == 0, "TPR was zero by guest");
9800 
9801 	/* Clean pending self-IPI */
9802 	vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = false;
9803 	handle_irq(ipi_vector, vmx_apic_passthrough_tpr_threshold_ipi_isr);
9804 	sti();
9805 	asm volatile ("nop");
9806 	report(vmx_apic_passthrough_tpr_threshold_ipi_isr_fired, "self-IPI fired");
9807 
9808 	report_pass(__func__);
9809 }
9810 
9811 static u64 init_signal_test_exit_reason;
9812 static bool init_signal_test_thread_continued;
9813 
9814 static void init_signal_test_thread(void *data)
9815 {
9816 	struct vmcs *test_vmcs = data;
9817 
9818 	/* Enter VMX operation (i.e. exec VMXON) */
9819 	u64 *ap_vmxon_region = alloc_page();
9820 	enable_vmx();
9821 	init_vmx(ap_vmxon_region);
9822 	_vmx_on(ap_vmxon_region);
9823 
9824 	/* Signal CPU have entered VMX operation */
9825 	vmx_set_test_stage(1);
9826 
9827 	/* Wait for BSP CPU to send INIT signal */
9828 	while (vmx_get_test_stage() != 2)
9829 		;
9830 
9831 	/*
9832 	 * Signal that we continue as usual as INIT signal
9833 	 * should be blocked while CPU is in VMX operation
9834 	 */
9835 	vmx_set_test_stage(3);
9836 
9837 	/* Wait for signal to enter VMX non-root mode */
9838 	while (vmx_get_test_stage() != 4)
9839 		;
9840 
9841 	/* Enter VMX non-root mode */
9842 	test_set_guest(v2_null_test_guest);
9843 	make_vmcs_current(test_vmcs);
9844 	enter_guest();
9845 	/* Save exit reason for BSP CPU to compare to expected result */
9846 	init_signal_test_exit_reason = vmcs_read(EXI_REASON);
9847 	/* VMCLEAR test-vmcs so it could be loaded by BSP CPU */
9848 	vmcs_clear(test_vmcs);
9849 	launched = false;
9850 	/* Signal that CPU exited to VMX root mode */
9851 	vmx_set_test_stage(5);
9852 
9853 	/* Wait for BSP CPU to signal to exit VMX operation */
9854 	while (vmx_get_test_stage() != 6)
9855 		;
9856 
9857 	/* Exit VMX operation (i.e. exec VMXOFF) */
9858 	vmx_off();
9859 
9860 	/*
9861 	 * Signal to BSP CPU that we continue as usual as INIT signal
9862 	 * should have been consumed by VMX_INIT exit from guest
9863 	 */
9864 	vmx_set_test_stage(7);
9865 
9866 	/* Wait for BSP CPU to signal to enter VMX operation */
9867 	while (vmx_get_test_stage() != 8)
9868 		;
9869 	/* Enter VMX operation (i.e. exec VMXON) */
9870 	_vmx_on(ap_vmxon_region);
9871 	/* Signal to BSP we are in VMX operation */
9872 	vmx_set_test_stage(9);
9873 
9874 	/* Wait for BSP CPU to send INIT signal */
9875 	while (vmx_get_test_stage() != 10)
9876 		;
9877 
9878 	/* Exit VMX operation (i.e. exec VMXOFF) */
9879 	vmx_off();
9880 
9881 	/*
9882 	 * Exiting VMX operation should result in latched
9883 	 * INIT signal being processed. Therefore, we should
9884 	 * never reach the below code. Thus, signal to BSP
9885 	 * CPU if we have reached here so it is able to
9886 	 * report an issue if it happens.
9887 	 */
9888 	init_signal_test_thread_continued = true;
9889 }
9890 
9891 #define INIT_SIGNAL_TEST_DELAY	100000000ULL
9892 
9893 static void vmx_init_signal_test(void)
9894 {
9895 	struct vmcs *test_vmcs;
9896 
9897 	if (cpu_count() < 2) {
9898 		report_skip(__func__);
9899 		return;
9900 	}
9901 
9902 	/* VMCLEAR test-vmcs so it could be loaded by other CPU */
9903 	vmcs_save(&test_vmcs);
9904 	vmcs_clear(test_vmcs);
9905 
9906 	vmx_set_test_stage(0);
9907 	on_cpu_async(1, init_signal_test_thread, test_vmcs);
9908 
9909 	/* Wait for other CPU to enter VMX operation */
9910 	while (vmx_get_test_stage() != 1)
9911 		;
9912 
9913 	/* Send INIT signal to other CPU */
9914 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT,
9915 				   id_map[1]);
9916 	/* Signal other CPU we have sent INIT signal */
9917 	vmx_set_test_stage(2);
9918 
9919 	/*
9920 	 * Wait reasonable amount of time for INIT signal to
9921 	 * be received on other CPU and verify that other CPU
9922 	 * have proceed as usual to next test stage as INIT
9923 	 * signal should be blocked while other CPU in
9924 	 * VMX operation
9925 	 */
9926 	delay(INIT_SIGNAL_TEST_DELAY);
9927 	report(vmx_get_test_stage() == 3,
9928 	       "INIT signal blocked when CPU in VMX operation");
9929 	/* No point to continue if we failed at this point */
9930 	if (vmx_get_test_stage() != 3)
9931 		return;
9932 
9933 	/* Signal other CPU to enter VMX non-root mode */
9934 	init_signal_test_exit_reason = -1ull;
9935 	vmx_set_test_stage(4);
9936 	/*
9937 	 * Wait reasonable amont of time for other CPU
9938 	 * to exit to VMX root mode
9939 	 */
9940 	delay(INIT_SIGNAL_TEST_DELAY);
9941 	if (vmx_get_test_stage() != 5) {
9942 		report_fail("Pending INIT signal didn't result in VMX exit");
9943 		return;
9944 	}
9945 	report(init_signal_test_exit_reason == VMX_INIT,
9946 			"INIT signal during VMX non-root mode result in exit-reason %s (%lu)",
9947 			exit_reason_description(init_signal_test_exit_reason),
9948 			init_signal_test_exit_reason);
9949 
9950 	/* Run guest to completion */
9951 	make_vmcs_current(test_vmcs);
9952 	enter_guest();
9953 
9954 	/* Signal other CPU to exit VMX operation */
9955 	init_signal_test_thread_continued = false;
9956 	vmx_set_test_stage(6);
9957 
9958 	/* Wait reasonable amount of time for other CPU to exit VMX operation */
9959 	delay(INIT_SIGNAL_TEST_DELAY);
9960 	report(vmx_get_test_stage() == 7,
9961 	       "INIT signal consumed on VMX_INIT exit");
9962 	/* No point to continue if we failed at this point */
9963 	if (vmx_get_test_stage() != 7)
9964 		return;
9965 
9966 	/* Signal other CPU to enter VMX operation */
9967 	vmx_set_test_stage(8);
9968 	/* Wait for other CPU to enter VMX operation */
9969 	while (vmx_get_test_stage() != 9)
9970 		;
9971 
9972 	/* Send INIT signal to other CPU */
9973 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT,
9974 				   id_map[1]);
9975 	/* Signal other CPU we have sent INIT signal */
9976 	vmx_set_test_stage(10);
9977 
9978 	/*
9979 	 * Wait reasonable amount of time for other CPU
9980 	 * to exit VMX operation and process INIT signal
9981 	 */
9982 	delay(INIT_SIGNAL_TEST_DELAY);
9983 	report(!init_signal_test_thread_continued,
9984 	       "INIT signal processed after exit VMX operation");
9985 
9986 	/*
9987 	 * TODO: Send SIPI to other CPU to sipi_entry (See x86/cstart64.S)
9988 	 * to re-init it to kvm-unit-tests standard environment.
9989 	 * Somehow (?) verify that SIPI was indeed received.
9990 	 */
9991 }
9992 
9993 #define SIPI_SIGNAL_TEST_DELAY	100000000ULL
9994 
9995 static void vmx_sipi_test_guest(void)
9996 {
9997 	if (apic_id() == 0) {
9998 		/* wait AP enter guest with activity=WAIT_SIPI */
9999 		while (vmx_get_test_stage() != 1)
10000 			;
10001 		delay(SIPI_SIGNAL_TEST_DELAY);
10002 
10003 		/* First SIPI signal */
10004 		apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP | APIC_INT_ASSERT, id_map[1]);
10005 		report_pass("BSP(L2): Send first SIPI to cpu[%d]", id_map[1]);
10006 
10007 		/* wait AP enter guest */
10008 		while (vmx_get_test_stage() != 2)
10009 			;
10010 		delay(SIPI_SIGNAL_TEST_DELAY);
10011 
10012 		/* Second SIPI signal should be ignored since AP is not in WAIT_SIPI state */
10013 		apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP | APIC_INT_ASSERT, id_map[1]);
10014 		report_pass("BSP(L2): Send second SIPI to cpu[%d]", id_map[1]);
10015 
10016 		/* Delay a while to check whether second SIPI would cause VMExit */
10017 		delay(SIPI_SIGNAL_TEST_DELAY);
10018 
10019 		/* Test is done, notify AP to exit test */
10020 		vmx_set_test_stage(3);
10021 
10022 		/* wait AP exit non-root mode */
10023 		while (vmx_get_test_stage() != 5)
10024 			;
10025 	} else {
10026 		/* wait BSP notify test is done */
10027 		while (vmx_get_test_stage() != 3)
10028 			;
10029 
10030 		/* AP exit guest */
10031 		vmx_set_test_stage(4);
10032 	}
10033 }
10034 
10035 static void sipi_test_ap_thread(void *data)
10036 {
10037 	struct vmcs *ap_vmcs;
10038 	u64 *ap_vmxon_region;
10039 	void *ap_stack, *ap_syscall_stack;
10040 	u64 cpu_ctrl_0 = CPU_SECONDARY;
10041 	u64 cpu_ctrl_1 = 0;
10042 
10043 	/* Enter VMX operation (i.e. exec VMXON) */
10044 	ap_vmxon_region = alloc_page();
10045 	enable_vmx();
10046 	init_vmx(ap_vmxon_region);
10047 	_vmx_on(ap_vmxon_region);
10048 	init_vmcs(&ap_vmcs);
10049 	make_vmcs_current(ap_vmcs);
10050 
10051 	/* Set stack for AP */
10052 	ap_stack = alloc_page();
10053 	ap_syscall_stack = alloc_page();
10054 	vmcs_write(GUEST_RSP, (u64)(ap_stack + PAGE_SIZE - 1));
10055 	vmcs_write(GUEST_SYSENTER_ESP, (u64)(ap_syscall_stack + PAGE_SIZE - 1));
10056 
10057 	/* passthrough lapic to L2 */
10058 	disable_intercept_for_x2apic_msrs();
10059 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
10060 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0);
10061 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1);
10062 
10063 	/* Set guest activity state to wait-for-SIPI state */
10064 	vmcs_write(GUEST_ACTV_STATE, ACTV_WAIT_SIPI);
10065 
10066 	vmx_set_test_stage(1);
10067 
10068 	/* AP enter guest */
10069 	enter_guest();
10070 
10071 	if (vmcs_read(EXI_REASON) == VMX_SIPI) {
10072 		report_pass("AP: Handle SIPI VMExit");
10073 		vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
10074 		vmx_set_test_stage(2);
10075 	} else {
10076 		report_fail("AP: Unexpected VMExit, reason=%ld", vmcs_read(EXI_REASON));
10077 		vmx_off();
10078 		return;
10079 	}
10080 
10081 	/* AP enter guest */
10082 	enter_guest();
10083 
10084 	report(vmcs_read(EXI_REASON) != VMX_SIPI,
10085 		"AP: should no SIPI VMExit since activity is not in WAIT_SIPI state");
10086 
10087 	/* notify BSP that AP is already exit from non-root mode */
10088 	vmx_set_test_stage(5);
10089 
10090 	/* Leave VMX operation */
10091 	vmx_off();
10092 }
10093 
10094 static void vmx_sipi_signal_test(void)
10095 {
10096 	if (!(rdmsr(MSR_IA32_VMX_MISC) & MSR_IA32_VMX_MISC_ACTIVITY_WAIT_SIPI)) {
10097 		printf("\tACTIVITY_WAIT_SIPI state is not supported.\n");
10098 		return;
10099 	}
10100 
10101 	if (cpu_count() < 2) {
10102 		report_skip(__func__);
10103 		return;
10104 	}
10105 
10106 	u64 cpu_ctrl_0 = CPU_SECONDARY;
10107 	u64 cpu_ctrl_1 = 0;
10108 
10109 	/* passthrough lapic to L2 */
10110 	disable_intercept_for_x2apic_msrs();
10111 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
10112 	vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0);
10113 	vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1);
10114 
10115 	test_set_guest(vmx_sipi_test_guest);
10116 
10117 	/* update CR3 on AP */
10118 	on_cpu(1, update_cr3, (void *)read_cr3());
10119 
10120 	/* start AP */
10121 	on_cpu_async(1, sipi_test_ap_thread, NULL);
10122 
10123 	vmx_set_test_stage(0);
10124 
10125 	/* BSP enter guest */
10126 	enter_guest();
10127 }
10128 
10129 
10130 enum vmcs_access {
10131 	ACCESS_VMREAD,
10132 	ACCESS_VMWRITE,
10133 	ACCESS_NONE,
10134 };
10135 
10136 struct vmcs_shadow_test_common {
10137 	enum vmcs_access op;
10138 	enum Reason reason;
10139 	u64 field;
10140 	u64 value;
10141 	u64 flags;
10142 	u64 time;
10143 } l1_l2_common;
10144 
10145 static inline u64 vmread_flags(u64 field, u64 *val)
10146 {
10147 	u64 flags;
10148 
10149 	asm volatile ("vmread %2, %1; pushf; pop %0"
10150 		      : "=r" (flags), "=rm" (*val) : "r" (field) : "cc");
10151 	return flags & X86_EFLAGS_ALU;
10152 }
10153 
10154 static inline u64 vmwrite_flags(u64 field, u64 val)
10155 {
10156 	u64 flags;
10157 
10158 	asm volatile ("vmwrite %1, %2; pushf; pop %0"
10159 		      : "=r"(flags) : "rm" (val), "r" (field) : "cc");
10160 	return flags & X86_EFLAGS_ALU;
10161 }
10162 
10163 static void vmx_vmcs_shadow_test_guest(void)
10164 {
10165 	struct vmcs_shadow_test_common *c = &l1_l2_common;
10166 	u64 start;
10167 
10168 	while (c->op != ACCESS_NONE) {
10169 		start = rdtsc();
10170 		switch (c->op) {
10171 		default:
10172 			c->flags = -1ull;
10173 			break;
10174 		case ACCESS_VMREAD:
10175 			c->flags = vmread_flags(c->field, &c->value);
10176 			break;
10177 		case ACCESS_VMWRITE:
10178 			c->flags = vmwrite_flags(c->field, 0);
10179 			break;
10180 		}
10181 		c->time = rdtsc() - start;
10182 		vmcall();
10183 	}
10184 }
10185 
10186 static u64 vmread_from_shadow(u64 field)
10187 {
10188 	struct vmcs *primary;
10189 	struct vmcs *shadow;
10190 	u64 value;
10191 
10192 	TEST_ASSERT(!vmcs_save(&primary));
10193 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
10194 	TEST_ASSERT(!make_vmcs_current(shadow));
10195 	value = vmcs_read(field);
10196 	TEST_ASSERT(!make_vmcs_current(primary));
10197 	return value;
10198 }
10199 
10200 static u64 vmwrite_to_shadow(u64 field, u64 value)
10201 {
10202 	struct vmcs *primary;
10203 	struct vmcs *shadow;
10204 
10205 	TEST_ASSERT(!vmcs_save(&primary));
10206 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
10207 	TEST_ASSERT(!make_vmcs_current(shadow));
10208 	vmcs_write(field, value);
10209 	value = vmcs_read(field);
10210 	TEST_ASSERT(!make_vmcs_current(primary));
10211 	return value;
10212 }
10213 
10214 static void vmcs_shadow_test_access(u8 *bitmap[2], enum vmcs_access access)
10215 {
10216 	struct vmcs_shadow_test_common *c = &l1_l2_common;
10217 
10218 	c->op = access;
10219 	vmcs_write(VMX_INST_ERROR, 0);
10220 	enter_guest();
10221 	c->reason = vmcs_read(EXI_REASON) & 0xffff;
10222 	if (c->reason != VMX_VMCALL) {
10223 		skip_exit_insn();
10224 		enter_guest();
10225 	}
10226 	skip_exit_vmcall();
10227 }
10228 
10229 static void vmcs_shadow_test_field(u8 *bitmap[2], u64 field)
10230 {
10231 	struct vmcs_shadow_test_common *c = &l1_l2_common;
10232 	struct vmcs *shadow;
10233 	u64 value;
10234 	uintptr_t flags[2];
10235 	bool good_shadow;
10236 	u32 vmx_inst_error;
10237 
10238 	report_prefix_pushf("field %lx", field);
10239 	c->field = field;
10240 
10241 	shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
10242 	if (shadow != (struct vmcs *)-1ull) {
10243 		flags[ACCESS_VMREAD] = vmread_flags(field, &value);
10244 		flags[ACCESS_VMWRITE] = vmwrite_flags(field, value);
10245 		good_shadow = !flags[ACCESS_VMREAD] && !flags[ACCESS_VMWRITE];
10246 	} else {
10247 		/*
10248 		 * When VMCS link pointer is -1ull, VMWRITE/VMREAD on
10249 		 * shadowed-fields should fail with setting RFLAGS.CF.
10250 		 */
10251 		flags[ACCESS_VMREAD] = X86_EFLAGS_CF;
10252 		flags[ACCESS_VMWRITE] = X86_EFLAGS_CF;
10253 		good_shadow = false;
10254 	}
10255 
10256 	/* Intercept both VMREAD and VMWRITE. */
10257 	report_prefix_push("no VMREAD/VMWRITE permission");
10258 	/* VMWRITE/VMREAD done on reserved-bit should always intercept */
10259 	if (!(field >> VMCS_FIELD_RESERVED_SHIFT)) {
10260 		set_bit(field, bitmap[ACCESS_VMREAD]);
10261 		set_bit(field, bitmap[ACCESS_VMWRITE]);
10262 	}
10263 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
10264 	report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE");
10265 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
10266 	report(c->reason == VMX_VMREAD, "not shadowed for VMREAD");
10267 	report_prefix_pop();
10268 
10269 	if (field >> VMCS_FIELD_RESERVED_SHIFT)
10270 		goto out;
10271 
10272 	/* Permit shadowed VMREAD. */
10273 	report_prefix_push("VMREAD permission only");
10274 	clear_bit(field, bitmap[ACCESS_VMREAD]);
10275 	set_bit(field, bitmap[ACCESS_VMWRITE]);
10276 	if (good_shadow)
10277 		value = vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
10278 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
10279 	report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE");
10280 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
10281 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
10282 	report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)",
10283 	       c->time);
10284 	report(c->flags == flags[ACCESS_VMREAD],
10285 	       "ALU flags after VMREAD (%lx) are as expected (%lx)",
10286 	       c->flags, flags[ACCESS_VMREAD]);
10287 	if (good_shadow)
10288 		report(c->value == value,
10289 		       "value read from shadow (%lx) is as expected (%lx)",
10290 		       c->value, value);
10291 	else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD])
10292 		report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
10293 		       "VMX_INST_ERROR (%d) is as expected (%d)",
10294 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
10295 	report_prefix_pop();
10296 
10297 	/* Permit shadowed VMWRITE. */
10298 	report_prefix_push("VMWRITE permission only");
10299 	set_bit(field, bitmap[ACCESS_VMREAD]);
10300 	clear_bit(field, bitmap[ACCESS_VMWRITE]);
10301 	if (good_shadow)
10302 		vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
10303 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
10304 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
10305 	report(c->reason == VMX_VMCALL,
10306 		"shadowed for VMWRITE (in %ld cycles)",
10307 		c->time);
10308 	report(c->flags == flags[ACCESS_VMREAD],
10309 	       "ALU flags after VMWRITE (%lx) are as expected (%lx)",
10310 	       c->flags, flags[ACCESS_VMREAD]);
10311 	if (good_shadow) {
10312 		value = vmread_from_shadow(field);
10313 		report(value == 0,
10314 		       "shadow VMCS value (%lx) is as expected (%lx)", value,
10315 		       0ul);
10316 	} else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) {
10317 		report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
10318 		       "VMX_INST_ERROR (%d) is as expected (%d)",
10319 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
10320 	}
10321 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
10322 	report(c->reason == VMX_VMREAD, "not shadowed for VMREAD");
10323 	report_prefix_pop();
10324 
10325 	/* Permit shadowed VMREAD and VMWRITE. */
10326 	report_prefix_push("VMREAD and VMWRITE permission");
10327 	clear_bit(field, bitmap[ACCESS_VMREAD]);
10328 	clear_bit(field, bitmap[ACCESS_VMWRITE]);
10329 	if (good_shadow)
10330 		vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
10331 	vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
10332 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
10333 	report(c->reason == VMX_VMCALL,
10334 		"shadowed for VMWRITE (in %ld cycles)",
10335 		c->time);
10336 	report(c->flags == flags[ACCESS_VMREAD],
10337 	       "ALU flags after VMWRITE (%lx) are as expected (%lx)",
10338 	       c->flags, flags[ACCESS_VMREAD]);
10339 	if (good_shadow) {
10340 		value = vmread_from_shadow(field);
10341 		report(value == 0,
10342 		       "shadow VMCS value (%lx) is as expected (%lx)", value,
10343 		       0ul);
10344 	} else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) {
10345 		report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
10346 		       "VMX_INST_ERROR (%d) is as expected (%d)",
10347 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
10348 	}
10349 	vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
10350 	vmx_inst_error = vmcs_read(VMX_INST_ERROR);
10351 	report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)",
10352 	       c->time);
10353 	report(c->flags == flags[ACCESS_VMREAD],
10354 	       "ALU flags after VMREAD (%lx) are as expected (%lx)",
10355 	       c->flags, flags[ACCESS_VMREAD]);
10356 	if (good_shadow)
10357 		report(c->value == 0,
10358 		       "value read from shadow (%lx) is as expected (%lx)",
10359 		       c->value, 0ul);
10360 	else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD])
10361 		report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
10362 		       "VMX_INST_ERROR (%d) is as expected (%d)",
10363 		       vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
10364 	report_prefix_pop();
10365 
10366 out:
10367 	report_prefix_pop();
10368 }
10369 
10370 static void vmx_vmcs_shadow_test_body(u8 *bitmap[2])
10371 {
10372 	unsigned base;
10373 	unsigned index;
10374 	unsigned bit;
10375 	unsigned highest_index = rdmsr(MSR_IA32_VMX_VMCS_ENUM);
10376 
10377 	/* Run test on all possible valid VMCS fields */
10378 	for (base = 0;
10379 	     base < (1 << VMCS_FIELD_RESERVED_SHIFT);
10380 	     base += (1 << VMCS_FIELD_TYPE_SHIFT))
10381 		for (index = 0; index <= highest_index; index++)
10382 			vmcs_shadow_test_field(bitmap, base + index);
10383 
10384 	/*
10385 	 * Run tests on some invalid VMCS fields
10386 	 * (Have reserved bit set).
10387 	 */
10388 	for (bit = VMCS_FIELD_RESERVED_SHIFT; bit < VMCS_FIELD_BIT_SIZE; bit++)
10389 		vmcs_shadow_test_field(bitmap, (1ull << bit));
10390 }
10391 
10392 static void vmx_vmcs_shadow_test(void)
10393 {
10394 	u8 *bitmap[2];
10395 	struct vmcs *shadow;
10396 
10397 	if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) {
10398 		printf("\t'Activate secondary controls' not supported.\n");
10399 		return;
10400 	}
10401 
10402 	if (!(ctrl_cpu_rev[1].clr & CPU_SHADOW_VMCS)) {
10403 		printf("\t'VMCS shadowing' not supported.\n");
10404 		return;
10405 	}
10406 
10407 	if (!(rdmsr(MSR_IA32_VMX_MISC) &
10408 	      MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) {
10409 		printf("\tVMWRITE can't modify VM-exit information fields.\n");
10410 		return;
10411 	}
10412 
10413 	test_set_guest(vmx_vmcs_shadow_test_guest);
10414 
10415 	bitmap[ACCESS_VMREAD] = alloc_page();
10416 	bitmap[ACCESS_VMWRITE] = alloc_page();
10417 
10418 	vmcs_write(VMREAD_BITMAP, virt_to_phys(bitmap[ACCESS_VMREAD]));
10419 	vmcs_write(VMWRITE_BITMAP, virt_to_phys(bitmap[ACCESS_VMWRITE]));
10420 
10421 	shadow = alloc_page();
10422 	shadow->hdr.revision_id = basic.revision;
10423 	shadow->hdr.shadow_vmcs = 1;
10424 	TEST_ASSERT(!vmcs_clear(shadow));
10425 
10426 	vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_RDTSC);
10427 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY);
10428 	vmcs_set_bits(CPU_EXEC_CTRL1, CPU_SHADOW_VMCS);
10429 
10430 	vmcs_write(VMCS_LINK_PTR, virt_to_phys(shadow));
10431 	report_prefix_push("valid link pointer");
10432 	vmx_vmcs_shadow_test_body(bitmap);
10433 	report_prefix_pop();
10434 
10435 	vmcs_write(VMCS_LINK_PTR, -1ull);
10436 	report_prefix_push("invalid link pointer");
10437 	vmx_vmcs_shadow_test_body(bitmap);
10438 	report_prefix_pop();
10439 
10440 	l1_l2_common.op = ACCESS_NONE;
10441 	enter_guest();
10442 }
10443 
10444 /*
10445  * This test monitors the difference between a guest RDTSC instruction
10446  * and the IA32_TIME_STAMP_COUNTER MSR value stored in the VMCS12
10447  * VM-exit MSR-store list when taking a VM-exit on the instruction
10448  * following RDTSC.
10449  */
10450 #define RDTSC_DIFF_ITERS 100000
10451 #define RDTSC_DIFF_FAILS 100
10452 #define HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD 750
10453 
10454 /*
10455  * Set 'use TSC offsetting' and set the guest offset to the
10456  * inverse of the host's current TSC value, so that the guest starts running
10457  * with an effective TSC value of 0.
10458  */
10459 static void reset_guest_tsc_to_zero(void)
10460 {
10461 	vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET);
10462 	vmcs_write(TSC_OFFSET, -rdtsc());
10463 }
10464 
10465 static void rdtsc_vmexit_diff_test_guest(void)
10466 {
10467 	int i;
10468 
10469 	for (i = 0; i < RDTSC_DIFF_ITERS; i++)
10470 		/* Ensure rdtsc is the last instruction before the vmcall. */
10471 		asm volatile("rdtsc; vmcall" : : : "eax", "edx");
10472 }
10473 
10474 /*
10475  * This function only considers the "use TSC offsetting" VM-execution
10476  * control.  It does not handle "use TSC scaling" (because the latter
10477  * isn't available to the host today.)
10478  */
10479 static unsigned long long host_time_to_guest_time(unsigned long long t)
10480 {
10481 	TEST_ASSERT(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
10482 		    !(vmcs_read(CPU_EXEC_CTRL1) & CPU_USE_TSC_SCALING));
10483 
10484 	if (vmcs_read(CPU_EXEC_CTRL0) & CPU_USE_TSC_OFFSET)
10485 		t += vmcs_read(TSC_OFFSET);
10486 
10487 	return t;
10488 }
10489 
10490 static unsigned long long rdtsc_vmexit_diff_test_iteration(void)
10491 {
10492 	unsigned long long guest_tsc, host_to_guest_tsc;
10493 
10494 	enter_guest();
10495 	skip_exit_vmcall();
10496 	guest_tsc = (u32) regs.rax + (regs.rdx << 32);
10497 	host_to_guest_tsc = host_time_to_guest_time(exit_msr_store[0].value);
10498 
10499 	return host_to_guest_tsc - guest_tsc;
10500 }
10501 
10502 static void rdtsc_vmexit_diff_test(void)
10503 {
10504 	unsigned long long delta;
10505 	int fail = 0;
10506 	int i;
10507 
10508 	if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET))
10509 		test_skip("CPU doesn't support the 'use TSC offsetting' processor-based VM-execution control.\n");
10510 
10511 	test_set_guest(rdtsc_vmexit_diff_test_guest);
10512 
10513 	reset_guest_tsc_to_zero();
10514 
10515 	/*
10516 	 * Set up the VMCS12 VM-exit MSR-store list to store just one
10517 	 * MSR: IA32_TIME_STAMP_COUNTER. Note that the value stored is
10518 	 * in the host time domain (i.e., it is not adjusted according
10519 	 * to the TSC multiplier and TSC offset fields in the VMCS12,
10520 	 * as a guest RDTSC would be.)
10521 	 */
10522 	exit_msr_store = alloc_page();
10523 	exit_msr_store[0].index = MSR_IA32_TSC;
10524 	vmcs_write(EXI_MSR_ST_CNT, 1);
10525 	vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(exit_msr_store));
10526 
10527 	for (i = 0; i < RDTSC_DIFF_ITERS && fail < RDTSC_DIFF_FAILS; i++) {
10528 		delta = rdtsc_vmexit_diff_test_iteration();
10529 		if (delta >= HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD)
10530 			fail++;
10531 	}
10532 
10533 	enter_guest();
10534 
10535 	report(fail < RDTSC_DIFF_FAILS,
10536 	       "RDTSC to VM-exit delta too high in %d of %d iterations, last = %llu",
10537 	       fail, i, delta);
10538 }
10539 
10540 static int invalid_msr_init(struct vmcs *vmcs)
10541 {
10542 	if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
10543 		printf("\tPreemption timer is not supported\n");
10544 		return VMX_TEST_EXIT;
10545 	}
10546 	vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
10547 	preempt_val = 10000000;
10548 	vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
10549 	preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
10550 
10551 	if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
10552 		printf("\tSave preemption value is not supported\n");
10553 
10554 	vmcs_write(ENT_MSR_LD_CNT, 1);
10555 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)0x13370000);
10556 
10557 	return VMX_TEST_START;
10558 }
10559 
10560 
10561 static void invalid_msr_main(void)
10562 {
10563 	report_fail("Invalid MSR load");
10564 }
10565 
10566 static int invalid_msr_exit_handler(union exit_reason exit_reason)
10567 {
10568 	report_fail("Invalid MSR load");
10569 	print_vmexit_info(exit_reason);
10570 	return VMX_TEST_EXIT;
10571 }
10572 
10573 static int invalid_msr_entry_failure(struct vmentry_result *result)
10574 {
10575 	report(result->exit_reason.failed_vmentry &&
10576 	       result->exit_reason.basic == VMX_FAIL_MSR, "Invalid MSR load");
10577 	return VMX_TEST_VMEXIT;
10578 }
10579 
10580 /*
10581  * The max number of MSRs in an atomic switch MSR list is:
10582  * (111B + 1) * 512 = 4096
10583  *
10584  * Each list entry consumes:
10585  * 4-byte MSR index + 4 bytes reserved + 8-byte data = 16 bytes
10586  *
10587  * Allocate 128 kB to cover max_msr_list_size (i.e., 64 kB) and then some.
10588  */
10589 static const u32 msr_list_page_order = 5;
10590 
10591 static void atomic_switch_msr_limit_test_guest(void)
10592 {
10593 	vmcall();
10594 }
10595 
10596 static void populate_msr_list(struct vmx_msr_entry *msr_list,
10597 			      size_t byte_capacity, int count)
10598 {
10599 	int i;
10600 
10601 	for (i = 0; i < count; i++) {
10602 		msr_list[i].index = MSR_IA32_TSC;
10603 		msr_list[i].reserved = 0;
10604 		msr_list[i].value = 0x1234567890abcdef;
10605 	}
10606 
10607 	memset(msr_list + count, 0xff,
10608 	       byte_capacity - count * sizeof(*msr_list));
10609 }
10610 
10611 static int max_msr_list_size(void)
10612 {
10613 	u32 vmx_misc = rdmsr(MSR_IA32_VMX_MISC);
10614 	u32 factor = ((vmx_misc & GENMASK(27, 25)) >> 25) + 1;
10615 
10616 	return factor * 512;
10617 }
10618 
10619 static void atomic_switch_msrs_test(int count)
10620 {
10621 	struct vmx_msr_entry *vm_enter_load;
10622         struct vmx_msr_entry *vm_exit_load;
10623         struct vmx_msr_entry *vm_exit_store;
10624 	int max_allowed = max_msr_list_size();
10625 	int byte_capacity = 1ul << (msr_list_page_order + PAGE_SHIFT);
10626 	/* Exceeding the max MSR list size at exit trigers KVM to abort. */
10627 	int exit_count = count > max_allowed ? max_allowed : count;
10628 	int cleanup_count = count > max_allowed ? 2 : 1;
10629 	int i;
10630 
10631 	/*
10632 	 * Check for the IA32_TSC MSR,
10633 	 * available with the "TSC flag" and used to populate the MSR lists.
10634 	 */
10635 	if (!(cpuid(1).d & (1 << 4))) {
10636 		report_skip(__func__);
10637 		return;
10638 	}
10639 
10640 	/* Set L2 guest. */
10641 	test_set_guest(atomic_switch_msr_limit_test_guest);
10642 
10643 	/* Setup atomic MSR switch lists. */
10644 	vm_enter_load = alloc_pages(msr_list_page_order);
10645 	vm_exit_load = alloc_pages(msr_list_page_order);
10646 	vm_exit_store = alloc_pages(msr_list_page_order);
10647 
10648 	vmcs_write(ENTER_MSR_LD_ADDR, (u64)vm_enter_load);
10649 	vmcs_write(EXIT_MSR_LD_ADDR, (u64)vm_exit_load);
10650 	vmcs_write(EXIT_MSR_ST_ADDR, (u64)vm_exit_store);
10651 
10652 	/*
10653 	 * VM-Enter should succeed up to the max number of MSRs per list, and
10654 	 * should not consume junk beyond the last entry.
10655 	 */
10656 	populate_msr_list(vm_enter_load, byte_capacity, count);
10657 	populate_msr_list(vm_exit_load, byte_capacity, exit_count);
10658 	populate_msr_list(vm_exit_store, byte_capacity, exit_count);
10659 
10660 	vmcs_write(ENT_MSR_LD_CNT, count);
10661 	vmcs_write(EXI_MSR_LD_CNT, exit_count);
10662 	vmcs_write(EXI_MSR_ST_CNT, exit_count);
10663 
10664 	if (count <= max_allowed) {
10665 		enter_guest();
10666 		assert_exit_reason(VMX_VMCALL);
10667 		skip_exit_vmcall();
10668 	} else {
10669 		u32 exit_qual;
10670 
10671 		test_guest_state("Invalid MSR Load Count", true, count,
10672 				 "ENT_MSR_LD_CNT");
10673 
10674 		exit_qual = vmcs_read(EXI_QUALIFICATION);
10675 		report(exit_qual == max_allowed + 1, "exit_qual, %u, is %u.",
10676 		       exit_qual, max_allowed + 1);
10677 	}
10678 
10679 	/* Cleanup. */
10680 	vmcs_write(ENT_MSR_LD_CNT, 0);
10681 	vmcs_write(EXI_MSR_LD_CNT, 0);
10682 	vmcs_write(EXI_MSR_ST_CNT, 0);
10683 	for (i = 0; i < cleanup_count; i++) {
10684 		enter_guest();
10685 		skip_exit_vmcall();
10686 	}
10687 	free_pages_by_order(vm_enter_load, msr_list_page_order);
10688 	free_pages_by_order(vm_exit_load, msr_list_page_order);
10689 	free_pages_by_order(vm_exit_store, msr_list_page_order);
10690 }
10691 
10692 static void atomic_switch_max_msrs_test(void)
10693 {
10694 	atomic_switch_msrs_test(max_msr_list_size());
10695 }
10696 
10697 static void atomic_switch_overflow_msrs_test(void)
10698 {
10699 	if (test_device_enabled())
10700 		atomic_switch_msrs_test(max_msr_list_size() + 1);
10701 	else
10702 		test_skip("Test is only supported on KVM");
10703 }
10704 
10705 static void vmx_pf_exception_test_guest(void)
10706 {
10707 	ac_test_run(PT_LEVEL_PML4);
10708 }
10709 
10710 static void vmx_pf_exception_test(void)
10711 {
10712 	u64 efer;
10713 	struct cpuid cpuid;
10714 
10715 	test_set_guest(vmx_pf_exception_test_guest);
10716 
10717 	enter_guest();
10718 
10719 	while (vmcs_read(EXI_REASON) != VMX_VMCALL) {
10720 		switch (vmcs_read(EXI_REASON)) {
10721 		case VMX_RDMSR:
10722 			assert(regs.rcx == MSR_EFER);
10723 			efer = vmcs_read(GUEST_EFER);
10724 			regs.rdx = efer >> 32;
10725 			regs.rax = efer & 0xffffffff;
10726 			break;
10727 		case VMX_WRMSR:
10728 			assert(regs.rcx == MSR_EFER);
10729 			efer = regs.rdx << 32 | (regs.rax & 0xffffffff);
10730 			vmcs_write(GUEST_EFER, efer);
10731 			break;
10732 		case VMX_CPUID:
10733 			cpuid = (struct cpuid) {0, 0, 0, 0};
10734 			cpuid = raw_cpuid(regs.rax, regs.rcx);
10735 			regs.rax = cpuid.a;
10736 			regs.rbx = cpuid.b;
10737 			regs.rcx = cpuid.c;
10738 			regs.rdx = cpuid.d;
10739 			break;
10740 		default:
10741 			assert_msg(false,
10742 				"Unexpected exit to L1, exit_reason: %s (0x%lx)",
10743 				exit_reason_description(vmcs_read(EXI_REASON)),
10744 				vmcs_read(EXI_REASON));
10745 		}
10746 		skip_exit_insn();
10747 		enter_guest();
10748 	}
10749 
10750 	assert_exit_reason(VMX_VMCALL);
10751 }
10752 #define TEST(name) { #name, .v2 = name }
10753 
10754 /* name/init/guest_main/exit_handler/syscall_handler/guest_regs */
10755 struct vmx_test vmx_tests[] = {
10756 	{ "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} },
10757 	{ "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} },
10758 	{ "preemption timer", preemption_timer_init, preemption_timer_main,
10759 		preemption_timer_exit_handler, NULL, {0} },
10760 	{ "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main,
10761 		test_ctrl_pat_exit_handler, NULL, {0} },
10762 	{ "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main,
10763 		test_ctrl_efer_exit_handler, NULL, {0} },
10764 	{ "CR shadowing", NULL, cr_shadowing_main,
10765 		cr_shadowing_exit_handler, NULL, {0} },
10766 	{ "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler,
10767 		NULL, {0} },
10768 	{ "instruction intercept", insn_intercept_init, insn_intercept_main,
10769 		insn_intercept_exit_handler, NULL, {0} },
10770 	{ "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} },
10771 	{ "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} },
10772 	{ "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} },
10773 	{ "VPID", vpid_init, vpid_main, vpid_exit_handler, NULL, {0} },
10774 	{ "interrupt", interrupt_init, interrupt_main,
10775 		interrupt_exit_handler, NULL, {0} },
10776 	{ "nmi_hlt", nmi_hlt_init, nmi_hlt_main,
10777 		nmi_hlt_exit_handler, NULL, {0} },
10778 	{ "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler,
10779 		NULL, {0} },
10780 	{ "MSR switch", msr_switch_init, msr_switch_main,
10781 		msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure },
10782 	{ "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} },
10783 	{ "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main,
10784 		disable_rdtscp_exit_handler, NULL, {0} },
10785 	{ "int3", int3_init, int3_guest_main, int3_exit_handler, NULL, {0} },
10786 	{ "into", into_init, into_guest_main, into_exit_handler, NULL, {0} },
10787 	{ "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main,
10788 		exit_monitor_from_l2_handler, NULL, {0} },
10789 	{ "invalid_msr", invalid_msr_init, invalid_msr_main,
10790 		invalid_msr_exit_handler, NULL, {0}, invalid_msr_entry_failure},
10791 	/* Basic V2 tests. */
10792 	TEST(v2_null_test),
10793 	TEST(v2_multiple_entries_test),
10794 	TEST(fixture_test_case1),
10795 	TEST(fixture_test_case2),
10796 	/* Opcode tests. */
10797 	TEST(invvpid_test_v2),
10798 	/* VM-entry tests */
10799 	TEST(vmx_controls_test),
10800 	TEST(vmx_host_state_area_test),
10801 	TEST(vmx_guest_state_area_test),
10802 	TEST(vmentry_movss_shadow_test),
10803 	TEST(vmentry_unrestricted_guest_test),
10804 	/* APICv tests */
10805 	TEST(vmx_eoi_bitmap_ioapic_scan_test),
10806 	TEST(vmx_hlt_with_rvi_test),
10807 	TEST(apic_reg_virt_test),
10808 	TEST(virt_x2apic_mode_test),
10809 	/* APIC pass-through tests */
10810 	TEST(vmx_apic_passthrough_test),
10811 	TEST(vmx_apic_passthrough_thread_test),
10812 	TEST(vmx_apic_passthrough_tpr_threshold_test),
10813 	TEST(vmx_init_signal_test),
10814 	TEST(vmx_sipi_signal_test),
10815 	/* VMCS Shadowing tests */
10816 	TEST(vmx_vmcs_shadow_test),
10817 	/* Regression tests */
10818 	TEST(vmx_ldtr_test),
10819 	TEST(vmx_cr_load_test),
10820 	TEST(vmx_cr4_osxsave_test),
10821 	TEST(vmx_nm_test),
10822 	TEST(vmx_db_test),
10823 	TEST(vmx_nmi_window_test),
10824 	TEST(vmx_intr_window_test),
10825 	TEST(vmx_pending_event_test),
10826 	TEST(vmx_pending_event_hlt_test),
10827 	TEST(vmx_store_tsc_test),
10828 	TEST(vmx_preemption_timer_zero_test),
10829 	TEST(vmx_preemption_timer_tf_test),
10830 	TEST(vmx_preemption_timer_expiry_test),
10831 	/* EPT access tests. */
10832 	TEST(ept_access_test_not_present),
10833 	TEST(ept_access_test_read_only),
10834 	TEST(ept_access_test_write_only),
10835 	TEST(ept_access_test_read_write),
10836 	TEST(ept_access_test_execute_only),
10837 	TEST(ept_access_test_read_execute),
10838 	TEST(ept_access_test_write_execute),
10839 	TEST(ept_access_test_read_write_execute),
10840 	TEST(ept_access_test_reserved_bits),
10841 	TEST(ept_access_test_ignored_bits),
10842 	TEST(ept_access_test_paddr_not_present_ad_disabled),
10843 	TEST(ept_access_test_paddr_not_present_ad_enabled),
10844 	TEST(ept_access_test_paddr_read_only_ad_disabled),
10845 	TEST(ept_access_test_paddr_read_only_ad_enabled),
10846 	TEST(ept_access_test_paddr_read_write),
10847 	TEST(ept_access_test_paddr_read_write_execute),
10848 	TEST(ept_access_test_paddr_read_execute_ad_disabled),
10849 	TEST(ept_access_test_paddr_read_execute_ad_enabled),
10850 	TEST(ept_access_test_paddr_not_present_page_fault),
10851 	TEST(ept_access_test_force_2m_page),
10852 	/* Atomic MSR switch tests. */
10853 	TEST(atomic_switch_max_msrs_test),
10854 	TEST(atomic_switch_overflow_msrs_test),
10855 	TEST(rdtsc_vmexit_diff_test),
10856 	TEST(vmx_mtf_test),
10857 	TEST(vmx_mtf_pdpte_test),
10858 	TEST(vmx_pf_exception_test),
10859 	{ NULL, NULL, NULL, NULL, NULL, {0} },
10860 };
10861