xref: /kvm-unit-tests/x86/vmx.c (revision a322d4c597bb7a4de7985e7b51b80504f7e4fdda)
1 /*
2  * x86/vmx.c : Framework for testing nested virtualization
3  *	This is a framework to test nested VMX for KVM, which
4  * 	started as a project of GSoC 2013. All test cases should
5  *	be located in x86/vmx_tests.c and framework related
6  *	functions should be in this file.
7  *
8  * How to write test cases?
9  *	Add callbacks of test suite in variant "vmx_tests". You can
10  *	write:
11  *		1. init function used for initializing test suite
12  *		2. main function for codes running in L2 guest,
13  *		3. exit_handler to handle vmexit of L2 to L1
14  *		4. syscall handler to handle L2 syscall vmexit
15  *		5. vmenter fail handler to handle direct failure of vmenter
16  *		6. guest_regs is loaded when vmenter and saved when
17  *			vmexit, you can read and set it in exit_handler
18  *	If no special function is needed for a test suite, use
19  *	coressponding basic_* functions as callback. More handlers
20  *	can be added to "vmx_tests", see details of "struct vmx_test"
21  *	and function test_run().
22  *
23  * Currently, vmx test framework only set up one VCPU and one
24  * concurrent guest test environment with same paging for L2 and
25  * L1. For usage of EPT, only 1:1 mapped paging is used from VFN
26  * to PFN.
27  *
28  * Author : Arthur Chunqi Li <yzt356@gmail.com>
29  */
30 
31 #include "libcflat.h"
32 #include "processor.h"
33 #include "vm.h"
34 #include "desc.h"
35 #include "vmx.h"
36 #include "msr.h"
37 #include "smp.h"
38 #include "io.h"
39 
40 u64 *vmxon_region;
41 struct vmcs *vmcs_root;
42 u32 vpid_cnt;
43 void *guest_stack, *guest_syscall_stack;
44 u32 ctrl_pin, ctrl_enter, ctrl_exit, ctrl_cpu[2];
45 struct regs regs;
46 struct vmx_test *current;
47 u64 hypercall_field;
48 bool launched;
49 u64 host_rflags;
50 
51 union vmx_basic basic;
52 union vmx_ctrl_msr ctrl_pin_rev;
53 union vmx_ctrl_msr ctrl_cpu_rev[2];
54 union vmx_ctrl_msr ctrl_exit_rev;
55 union vmx_ctrl_msr ctrl_enter_rev;
56 union vmx_ept_vpid  ept_vpid;
57 
58 extern struct descriptor_table_ptr gdt64_desc;
59 extern struct descriptor_table_ptr idt_descr;
60 extern struct descriptor_table_ptr tss_descr;
61 extern void *vmx_return;
62 extern void *entry_sysenter;
63 extern void *guest_entry;
64 
65 static volatile u32 stage;
66 
67 void vmx_set_test_stage(u32 s)
68 {
69 	barrier();
70 	stage = s;
71 	barrier();
72 }
73 
74 u32 vmx_get_test_stage(void)
75 {
76 	u32 s;
77 
78 	barrier();
79 	s = stage;
80 	barrier();
81 	return s;
82 }
83 
84 void vmx_inc_test_stage(void)
85 {
86 	barrier();
87 	stage++;
88 	barrier();
89 }
90 
91 static int make_vmcs_current(struct vmcs *vmcs)
92 {
93 	bool ret;
94 	u64 rflags = read_rflags() | X86_EFLAGS_CF | X86_EFLAGS_ZF;
95 
96 	asm volatile ("push %1; popf; vmptrld %2; setbe %0"
97 		      : "=q" (ret) : "q" (rflags), "m" (vmcs) : "cc");
98 	return ret;
99 }
100 
101 /* entry_sysenter */
102 asm(
103 	".align	4, 0x90\n\t"
104 	".globl	entry_sysenter\n\t"
105 	"entry_sysenter:\n\t"
106 	SAVE_GPR
107 	"	and	$0xf, %rax\n\t"
108 	"	mov	%rax, %rdi\n\t"
109 	"	call	syscall_handler\n\t"
110 	LOAD_GPR
111 	"	vmresume\n\t"
112 );
113 
114 static void __attribute__((__used__)) syscall_handler(u64 syscall_no)
115 {
116 	if (current->syscall_handler)
117 		current->syscall_handler(syscall_no);
118 }
119 
120 static inline int vmx_on()
121 {
122 	bool ret;
123 	u64 rflags = read_rflags() | X86_EFLAGS_CF | X86_EFLAGS_ZF;
124 	asm volatile ("push %1; popf; vmxon %2; setbe %0\n\t"
125 		      : "=q" (ret) : "q" (rflags), "m" (vmxon_region) : "cc");
126 	return ret;
127 }
128 
129 static inline int vmx_off()
130 {
131 	bool ret;
132 	u64 rflags = read_rflags() | X86_EFLAGS_CF | X86_EFLAGS_ZF;
133 
134 	asm volatile("push %1; popf; vmxoff; setbe %0\n\t"
135 		     : "=q"(ret) : "q" (rflags) : "cc");
136 	return ret;
137 }
138 
139 void print_vmexit_info()
140 {
141 	u64 guest_rip, guest_rsp;
142 	ulong reason = vmcs_read(EXI_REASON) & 0xff;
143 	ulong exit_qual = vmcs_read(EXI_QUALIFICATION);
144 	guest_rip = vmcs_read(GUEST_RIP);
145 	guest_rsp = vmcs_read(GUEST_RSP);
146 	printf("VMEXIT info:\n");
147 	printf("\tvmexit reason = %d\n", reason);
148 	printf("\texit qualification = 0x%x\n", exit_qual);
149 	printf("\tBit 31 of reason = %x\n", (vmcs_read(EXI_REASON) >> 31) & 1);
150 	printf("\tguest_rip = 0x%llx\n", guest_rip);
151 	printf("\tRAX=0x%llx    RBX=0x%llx    RCX=0x%llx    RDX=0x%llx\n",
152 		regs.rax, regs.rbx, regs.rcx, regs.rdx);
153 	printf("\tRSP=0x%llx    RBP=0x%llx    RSI=0x%llx    RDI=0x%llx\n",
154 		guest_rsp, regs.rbp, regs.rsi, regs.rdi);
155 	printf("\tR8 =0x%llx    R9 =0x%llx    R10=0x%llx    R11=0x%llx\n",
156 		regs.r8, regs.r9, regs.r10, regs.r11);
157 	printf("\tR12=0x%llx    R13=0x%llx    R14=0x%llx    R15=0x%llx\n",
158 		regs.r12, regs.r13, regs.r14, regs.r15);
159 }
160 
161 static void test_vmclear(void)
162 {
163 	struct vmcs *tmp_root;
164 	int width = cpuid(0x80000008).a & 0xff;
165 
166 	/*
167 	 * Note- The tests below do not necessarily have a
168 	 * valid VMCS, but that's ok since the invalid vmcs
169 	 * is only used for a specific test and is discarded
170 	 * without touching its contents
171 	 */
172 
173 	/* Unaligned page access */
174 	tmp_root = (struct vmcs *)((intptr_t)vmcs_root + 1);
175 	report("test vmclear with unaligned vmcs",
176 	       vmcs_clear(tmp_root) == 1);
177 
178 	/* gpa bits beyond physical address width are set*/
179 	tmp_root = (struct vmcs *)((intptr_t)vmcs_root |
180 				   ((u64)1 << (width+1)));
181 	report("test vmclear with vmcs address bits set beyond physical address width",
182 	       vmcs_clear(tmp_root) == 1);
183 
184 	/* Pass VMXON region */
185 	tmp_root = (struct vmcs *)vmxon_region;
186 	report("test vmclear with vmxon region",
187 	       vmcs_clear(tmp_root) == 1);
188 
189 	/* Valid VMCS */
190 	report("test vmclear with valid vmcs region", vmcs_clear(vmcs_root) == 0);
191 
192 }
193 
194 static void test_vmxoff(void)
195 {
196 	int ret;
197 
198 	ret = vmx_off();
199 	report("test vmxoff", !ret);
200 }
201 
202 static void __attribute__((__used__)) guest_main(void)
203 {
204 	current->guest_main();
205 }
206 
207 /* guest_entry */
208 asm(
209 	".align	4, 0x90\n\t"
210 	".globl	entry_guest\n\t"
211 	"guest_entry:\n\t"
212 	"	call guest_main\n\t"
213 	"	mov $1, %edi\n\t"
214 	"	call hypercall\n\t"
215 );
216 
217 /* EPT paging structure related functions */
218 /* install_ept_entry : Install a page to a given level in EPT
219 		@pml4 : addr of pml4 table
220 		@pte_level : level of PTE to set
221 		@guest_addr : physical address of guest
222 		@pte : pte value to set
223 		@pt_page : address of page table, NULL for a new page
224  */
225 void install_ept_entry(unsigned long *pml4,
226 		int pte_level,
227 		unsigned long guest_addr,
228 		unsigned long pte,
229 		unsigned long *pt_page)
230 {
231 	int level;
232 	unsigned long *pt = pml4;
233 	unsigned offset;
234 
235 	for (level = EPT_PAGE_LEVEL; level > pte_level; --level) {
236 		offset = (guest_addr >> ((level-1) * EPT_PGDIR_WIDTH + 12))
237 				& EPT_PGDIR_MASK;
238 		if (!(pt[offset] & (EPT_PRESENT))) {
239 			unsigned long *new_pt = pt_page;
240 			if (!new_pt)
241 				new_pt = alloc_page();
242 			else
243 				pt_page = 0;
244 			memset(new_pt, 0, PAGE_SIZE);
245 			pt[offset] = virt_to_phys(new_pt)
246 					| EPT_RA | EPT_WA | EPT_EA;
247 		} else
248 			pt[offset] &= ~EPT_LARGE_PAGE;
249 		pt = phys_to_virt(pt[offset] & 0xffffffffff000ull);
250 	}
251 	offset = ((unsigned long)guest_addr >> ((level-1) *
252 			EPT_PGDIR_WIDTH + 12)) & EPT_PGDIR_MASK;
253 	pt[offset] = pte;
254 }
255 
256 /* Map a page, @perm is the permission of the page */
257 void install_ept(unsigned long *pml4,
258 		unsigned long phys,
259 		unsigned long guest_addr,
260 		u64 perm)
261 {
262 	install_ept_entry(pml4, 1, guest_addr, (phys & PAGE_MASK) | perm, 0);
263 }
264 
265 /* Map a 1G-size page */
266 void install_1g_ept(unsigned long *pml4,
267 		unsigned long phys,
268 		unsigned long guest_addr,
269 		u64 perm)
270 {
271 	install_ept_entry(pml4, 3, guest_addr,
272 			(phys & PAGE_MASK) | perm | EPT_LARGE_PAGE, 0);
273 }
274 
275 /* Map a 2M-size page */
276 void install_2m_ept(unsigned long *pml4,
277 		unsigned long phys,
278 		unsigned long guest_addr,
279 		u64 perm)
280 {
281 	install_ept_entry(pml4, 2, guest_addr,
282 			(phys & PAGE_MASK) | perm | EPT_LARGE_PAGE, 0);
283 }
284 
285 /* setup_ept_range : Setup a range of 1:1 mapped page to EPT paging structure.
286 		@start : start address of guest page
287 		@len : length of address to be mapped
288 		@map_1g : whether 1G page map is used
289 		@map_2m : whether 2M page map is used
290 		@perm : permission for every page
291  */
292 void setup_ept_range(unsigned long *pml4, unsigned long start,
293 		     unsigned long len, int map_1g, int map_2m, u64 perm)
294 {
295 	u64 phys = start;
296 	u64 max = (u64)len + (u64)start;
297 
298 	if (map_1g) {
299 		while (phys + PAGE_SIZE_1G <= max) {
300 			install_1g_ept(pml4, phys, phys, perm);
301 			phys += PAGE_SIZE_1G;
302 		}
303 	}
304 	if (map_2m) {
305 		while (phys + PAGE_SIZE_2M <= max) {
306 			install_2m_ept(pml4, phys, phys, perm);
307 			phys += PAGE_SIZE_2M;
308 		}
309 	}
310 	while (phys + PAGE_SIZE <= max) {
311 		install_ept(pml4, phys, phys, perm);
312 		phys += PAGE_SIZE;
313 	}
314 }
315 
316 /* get_ept_pte : Get the PTE of a given level in EPT,
317     @level == 1 means get the latest level*/
318 unsigned long get_ept_pte(unsigned long *pml4,
319 		unsigned long guest_addr, int level)
320 {
321 	int l;
322 	unsigned long *pt = pml4, pte;
323 	unsigned offset;
324 
325 	for (l = EPT_PAGE_LEVEL; l > 1; --l) {
326 		offset = (guest_addr >> (((l-1) * EPT_PGDIR_WIDTH) + 12))
327 				& EPT_PGDIR_MASK;
328 		pte = pt[offset];
329 		if (!(pte & (EPT_PRESENT)))
330 			return 0;
331 		if (l == level)
332 			return pte;
333 		if (l < 4 && (pte & EPT_LARGE_PAGE))
334 			return pte;
335 		pt = (unsigned long *)(pte & 0xffffffffff000ull);
336 	}
337 	offset = (guest_addr >> (((l-1) * EPT_PGDIR_WIDTH) + 12))
338 			& EPT_PGDIR_MASK;
339 	pte = pt[offset];
340 	return pte;
341 }
342 
343 void ept_sync(int type, u64 eptp)
344 {
345 	switch (type) {
346 	case INVEPT_SINGLE:
347 		if (ept_vpid.val & EPT_CAP_INVEPT_SINGLE) {
348 			invept(INVEPT_SINGLE, eptp);
349 			break;
350 		}
351 		/* else fall through */
352 	case INVEPT_GLOBAL:
353 		if (ept_vpid.val & EPT_CAP_INVEPT_ALL) {
354 			invept(INVEPT_GLOBAL, eptp);
355 			break;
356 		}
357 		/* else fall through */
358 	default:
359 		printf("WARNING: invept is not supported!\n");
360 	}
361 }
362 
363 int set_ept_pte(unsigned long *pml4, unsigned long guest_addr,
364 		int level, u64 pte_val)
365 {
366 	int l;
367 	unsigned long *pt = pml4;
368 	unsigned offset;
369 
370 	if (level < 1 || level > 3)
371 		return -1;
372 	for (l = EPT_PAGE_LEVEL; l > 1; --l) {
373 		offset = (guest_addr >> (((l-1) * EPT_PGDIR_WIDTH) + 12))
374 				& EPT_PGDIR_MASK;
375 		if (l == level) {
376 			pt[offset] = pte_val;
377 			return 0;
378 		}
379 		if (!(pt[offset] & (EPT_PRESENT)))
380 			return -1;
381 		pt = (unsigned long *)(pt[offset] & 0xffffffffff000ull);
382 	}
383 	offset = (guest_addr >> (((l-1) * EPT_PGDIR_WIDTH) + 12))
384 			& EPT_PGDIR_MASK;
385 	pt[offset] = pte_val;
386 	return 0;
387 }
388 
389 
390 static void init_vmcs_ctrl(void)
391 {
392 	/* 26.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA */
393 	/* 26.2.1.1 */
394 	vmcs_write(PIN_CONTROLS, ctrl_pin);
395 	/* Disable VMEXIT of IO instruction */
396 	vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu[0]);
397 	if (ctrl_cpu_rev[0].set & CPU_SECONDARY) {
398 		ctrl_cpu[1] = (ctrl_cpu[1] | ctrl_cpu_rev[1].set) &
399 			ctrl_cpu_rev[1].clr;
400 		vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu[1]);
401 	}
402 	vmcs_write(CR3_TARGET_COUNT, 0);
403 	vmcs_write(VPID, ++vpid_cnt);
404 }
405 
406 static void init_vmcs_host(void)
407 {
408 	/* 26.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA */
409 	/* 26.2.1.2 */
410 	vmcs_write(HOST_EFER, rdmsr(MSR_EFER));
411 
412 	/* 26.2.1.3 */
413 	vmcs_write(ENT_CONTROLS, ctrl_enter);
414 	vmcs_write(EXI_CONTROLS, ctrl_exit);
415 
416 	/* 26.2.2 */
417 	vmcs_write(HOST_CR0, read_cr0());
418 	vmcs_write(HOST_CR3, read_cr3());
419 	vmcs_write(HOST_CR4, read_cr4());
420 	vmcs_write(HOST_SYSENTER_EIP, (u64)(&entry_sysenter));
421 	vmcs_write(HOST_SYSENTER_CS,  KERNEL_CS);
422 
423 	/* 26.2.3 */
424 	vmcs_write(HOST_SEL_CS, KERNEL_CS);
425 	vmcs_write(HOST_SEL_SS, KERNEL_DS);
426 	vmcs_write(HOST_SEL_DS, KERNEL_DS);
427 	vmcs_write(HOST_SEL_ES, KERNEL_DS);
428 	vmcs_write(HOST_SEL_FS, KERNEL_DS);
429 	vmcs_write(HOST_SEL_GS, KERNEL_DS);
430 	vmcs_write(HOST_SEL_TR, TSS_MAIN);
431 	vmcs_write(HOST_BASE_TR, tss_descr.base);
432 	vmcs_write(HOST_BASE_GDTR, gdt64_desc.base);
433 	vmcs_write(HOST_BASE_IDTR, idt_descr.base);
434 	vmcs_write(HOST_BASE_FS, 0);
435 	vmcs_write(HOST_BASE_GS, 0);
436 
437 	/* Set other vmcs area */
438 	vmcs_write(PF_ERROR_MASK, 0);
439 	vmcs_write(PF_ERROR_MATCH, 0);
440 	vmcs_write(VMCS_LINK_PTR, ~0ul);
441 	vmcs_write(VMCS_LINK_PTR_HI, ~0ul);
442 	vmcs_write(HOST_RIP, (u64)(&vmx_return));
443 }
444 
445 static void init_vmcs_guest(void)
446 {
447 	/* 26.3 CHECKING AND LOADING GUEST STATE */
448 	ulong guest_cr0, guest_cr4, guest_cr3;
449 	/* 26.3.1.1 */
450 	guest_cr0 = read_cr0();
451 	guest_cr4 = read_cr4();
452 	guest_cr3 = read_cr3();
453 	if (ctrl_enter & ENT_GUEST_64) {
454 		guest_cr0 |= X86_CR0_PG;
455 		guest_cr4 |= X86_CR4_PAE;
456 	}
457 	if ((ctrl_enter & ENT_GUEST_64) == 0)
458 		guest_cr4 &= (~X86_CR4_PCIDE);
459 	if (guest_cr0 & X86_CR0_PG)
460 		guest_cr0 |= X86_CR0_PE;
461 	vmcs_write(GUEST_CR0, guest_cr0);
462 	vmcs_write(GUEST_CR3, guest_cr3);
463 	vmcs_write(GUEST_CR4, guest_cr4);
464 	vmcs_write(GUEST_SYSENTER_CS,  KERNEL_CS);
465 	vmcs_write(GUEST_SYSENTER_ESP,
466 		(u64)(guest_syscall_stack + PAGE_SIZE - 1));
467 	vmcs_write(GUEST_SYSENTER_EIP, (u64)(&entry_sysenter));
468 	vmcs_write(GUEST_DR7, 0);
469 	vmcs_write(GUEST_EFER, rdmsr(MSR_EFER));
470 
471 	/* 26.3.1.2 */
472 	vmcs_write(GUEST_SEL_CS, KERNEL_CS);
473 	vmcs_write(GUEST_SEL_SS, KERNEL_DS);
474 	vmcs_write(GUEST_SEL_DS, KERNEL_DS);
475 	vmcs_write(GUEST_SEL_ES, KERNEL_DS);
476 	vmcs_write(GUEST_SEL_FS, KERNEL_DS);
477 	vmcs_write(GUEST_SEL_GS, KERNEL_DS);
478 	vmcs_write(GUEST_SEL_TR, TSS_MAIN);
479 	vmcs_write(GUEST_SEL_LDTR, 0);
480 
481 	vmcs_write(GUEST_BASE_CS, 0);
482 	vmcs_write(GUEST_BASE_ES, 0);
483 	vmcs_write(GUEST_BASE_SS, 0);
484 	vmcs_write(GUEST_BASE_DS, 0);
485 	vmcs_write(GUEST_BASE_FS, 0);
486 	vmcs_write(GUEST_BASE_GS, 0);
487 	vmcs_write(GUEST_BASE_TR, tss_descr.base);
488 	vmcs_write(GUEST_BASE_LDTR, 0);
489 
490 	vmcs_write(GUEST_LIMIT_CS, 0xFFFFFFFF);
491 	vmcs_write(GUEST_LIMIT_DS, 0xFFFFFFFF);
492 	vmcs_write(GUEST_LIMIT_ES, 0xFFFFFFFF);
493 	vmcs_write(GUEST_LIMIT_SS, 0xFFFFFFFF);
494 	vmcs_write(GUEST_LIMIT_FS, 0xFFFFFFFF);
495 	vmcs_write(GUEST_LIMIT_GS, 0xFFFFFFFF);
496 	vmcs_write(GUEST_LIMIT_LDTR, 0xffff);
497 	vmcs_write(GUEST_LIMIT_TR, tss_descr.limit);
498 
499 	vmcs_write(GUEST_AR_CS, 0xa09b);
500 	vmcs_write(GUEST_AR_DS, 0xc093);
501 	vmcs_write(GUEST_AR_ES, 0xc093);
502 	vmcs_write(GUEST_AR_FS, 0xc093);
503 	vmcs_write(GUEST_AR_GS, 0xc093);
504 	vmcs_write(GUEST_AR_SS, 0xc093);
505 	vmcs_write(GUEST_AR_LDTR, 0x82);
506 	vmcs_write(GUEST_AR_TR, 0x8b);
507 
508 	/* 26.3.1.3 */
509 	vmcs_write(GUEST_BASE_GDTR, gdt64_desc.base);
510 	vmcs_write(GUEST_BASE_IDTR, idt_descr.base);
511 	vmcs_write(GUEST_LIMIT_GDTR, gdt64_desc.limit);
512 	vmcs_write(GUEST_LIMIT_IDTR, idt_descr.limit);
513 
514 	/* 26.3.1.4 */
515 	vmcs_write(GUEST_RIP, (u64)(&guest_entry));
516 	vmcs_write(GUEST_RSP, (u64)(guest_stack + PAGE_SIZE - 1));
517 	vmcs_write(GUEST_RFLAGS, 0x2);
518 
519 	/* 26.3.1.5 */
520 	vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
521 	vmcs_write(GUEST_INTR_STATE, 0);
522 }
523 
524 static int init_vmcs(struct vmcs **vmcs)
525 {
526 	*vmcs = alloc_page();
527 	memset(*vmcs, 0, PAGE_SIZE);
528 	(*vmcs)->revision_id = basic.revision;
529 	/* vmclear first to init vmcs */
530 	if (vmcs_clear(*vmcs)) {
531 		printf("%s : vmcs_clear error\n", __func__);
532 		return 1;
533 	}
534 
535 	if (make_vmcs_current(*vmcs)) {
536 		printf("%s : make_vmcs_current error\n", __func__);
537 		return 1;
538 	}
539 
540 	/* All settings to pin/exit/enter/cpu
541 	   control fields should be placed here */
542 	ctrl_pin |= PIN_EXTINT | PIN_NMI | PIN_VIRT_NMI;
543 	ctrl_exit = EXI_LOAD_EFER | EXI_HOST_64;
544 	ctrl_enter = (ENT_LOAD_EFER | ENT_GUEST_64);
545 	/* DIsable IO instruction VMEXIT now */
546 	ctrl_cpu[0] &= (~(CPU_IO | CPU_IO_BITMAP));
547 	ctrl_cpu[1] = 0;
548 
549 	ctrl_pin = (ctrl_pin | ctrl_pin_rev.set) & ctrl_pin_rev.clr;
550 	ctrl_enter = (ctrl_enter | ctrl_enter_rev.set) & ctrl_enter_rev.clr;
551 	ctrl_exit = (ctrl_exit | ctrl_exit_rev.set) & ctrl_exit_rev.clr;
552 	ctrl_cpu[0] = (ctrl_cpu[0] | ctrl_cpu_rev[0].set) & ctrl_cpu_rev[0].clr;
553 
554 	init_vmcs_ctrl();
555 	init_vmcs_host();
556 	init_vmcs_guest();
557 	return 0;
558 }
559 
560 static void init_vmx(void)
561 {
562 	ulong fix_cr0_set, fix_cr0_clr;
563 	ulong fix_cr4_set, fix_cr4_clr;
564 
565 	vmxon_region = alloc_page();
566 	memset(vmxon_region, 0, PAGE_SIZE);
567 
568 	fix_cr0_set =  rdmsr(MSR_IA32_VMX_CR0_FIXED0);
569 	fix_cr0_clr =  rdmsr(MSR_IA32_VMX_CR0_FIXED1);
570 	fix_cr4_set =  rdmsr(MSR_IA32_VMX_CR4_FIXED0);
571 	fix_cr4_clr = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
572 	basic.val = rdmsr(MSR_IA32_VMX_BASIC);
573 	ctrl_pin_rev.val = rdmsr(basic.ctrl ? MSR_IA32_VMX_TRUE_PIN
574 			: MSR_IA32_VMX_PINBASED_CTLS);
575 	ctrl_exit_rev.val = rdmsr(basic.ctrl ? MSR_IA32_VMX_TRUE_EXIT
576 			: MSR_IA32_VMX_EXIT_CTLS);
577 	ctrl_enter_rev.val = rdmsr(basic.ctrl ? MSR_IA32_VMX_TRUE_ENTRY
578 			: MSR_IA32_VMX_ENTRY_CTLS);
579 	ctrl_cpu_rev[0].val = rdmsr(basic.ctrl ? MSR_IA32_VMX_TRUE_PROC
580 			: MSR_IA32_VMX_PROCBASED_CTLS);
581 	if ((ctrl_cpu_rev[0].clr & CPU_SECONDARY) != 0)
582 		ctrl_cpu_rev[1].val = rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2);
583 	else
584 		ctrl_cpu_rev[1].val = 0;
585 	if ((ctrl_cpu_rev[1].clr & (CPU_EPT | CPU_VPID)) != 0)
586 		ept_vpid.val = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
587 	else
588 		ept_vpid.val = 0;
589 
590 	write_cr0((read_cr0() & fix_cr0_clr) | fix_cr0_set);
591 	write_cr4((read_cr4() & fix_cr4_clr) | fix_cr4_set | X86_CR4_VMXE);
592 
593 	*vmxon_region = basic.revision;
594 
595 	guest_stack = alloc_page();
596 	memset(guest_stack, 0, PAGE_SIZE);
597 	guest_syscall_stack = alloc_page();
598 	memset(guest_syscall_stack, 0, PAGE_SIZE);
599 }
600 
601 static void do_vmxon_off(void *data)
602 {
603 	set_exception_return(&&resume);
604 	vmx_on();
605 	vmx_off();
606 resume:
607 	barrier();
608 }
609 
610 static void do_write_feature_control(void *data)
611 {
612 	set_exception_return(&&resume);
613 	wrmsr(MSR_IA32_FEATURE_CONTROL, 0);
614 resume:
615 	barrier();
616 }
617 
618 static int test_vmx_feature_control(void)
619 {
620 	u64 ia32_feature_control;
621 	bool vmx_enabled;
622 
623 	ia32_feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
624 	vmx_enabled = ((ia32_feature_control & 0x5) == 0x5);
625 	if ((ia32_feature_control & 0x5) == 0x5) {
626 		printf("VMX enabled and locked by BIOS\n");
627 		return 0;
628 	} else if (ia32_feature_control & 0x1) {
629 		printf("ERROR: VMX locked out by BIOS!?\n");
630 		return 1;
631 	}
632 
633 	wrmsr(MSR_IA32_FEATURE_CONTROL, 0);
634 	report("test vmxon with FEATURE_CONTROL cleared",
635 	       test_for_exception(GP_VECTOR, &do_vmxon_off, NULL));
636 
637 	wrmsr(MSR_IA32_FEATURE_CONTROL, 0x4);
638 	report("test vmxon without FEATURE_CONTROL lock",
639 	       test_for_exception(GP_VECTOR, &do_vmxon_off, NULL));
640 
641 	wrmsr(MSR_IA32_FEATURE_CONTROL, 0x5);
642 	vmx_enabled = ((rdmsr(MSR_IA32_FEATURE_CONTROL) & 0x5) == 0x5);
643 	report("test enable VMX in FEATURE_CONTROL", vmx_enabled);
644 
645 	report("test FEATURE_CONTROL lock bit",
646 	       test_for_exception(GP_VECTOR, &do_write_feature_control, NULL));
647 
648 	return !vmx_enabled;
649 }
650 
651 static int test_vmxon(void)
652 {
653 	int ret, ret1;
654 	u64 *tmp_region = vmxon_region;
655 	int width = cpuid(0x80000008).a & 0xff;
656 
657 	/* Unaligned page access */
658 	vmxon_region = (u64 *)((intptr_t)vmxon_region + 1);
659 	ret1 = vmx_on();
660 	report("test vmxon with unaligned vmxon region", ret1);
661 	if (!ret1) {
662 		ret = 1;
663 		goto out;
664 	}
665 
666 	/* gpa bits beyond physical address width are set*/
667 	vmxon_region = (u64 *)((intptr_t)tmp_region | ((u64)1 << (width+1)));
668 	ret1 = vmx_on();
669 	report("test vmxon with bits set beyond physical address width", ret1);
670 	if (!ret1) {
671 		ret = 1;
672 		goto out;
673 	}
674 
675 	/* invalid revision indentifier */
676 	vmxon_region = tmp_region;
677 	*vmxon_region = 0xba9da9;
678 	ret1 = vmx_on();
679 	report("test vmxon with invalid revision identifier", ret1);
680 	if (!ret1) {
681 		ret = 1;
682 		goto out;
683 	}
684 
685 	/* and finally a valid region */
686 	*vmxon_region = basic.revision;
687 	ret = vmx_on();
688 	report("test vmxon with valid vmxon region", !ret);
689 
690 out:
691 	return ret;
692 }
693 
694 static void test_vmptrld(void)
695 {
696 	struct vmcs *vmcs, *tmp_root;
697 	int width = cpuid(0x80000008).a & 0xff;
698 
699 	vmcs = alloc_page();
700 	vmcs->revision_id = basic.revision;
701 
702 	/* Unaligned page access */
703 	tmp_root = (struct vmcs *)((intptr_t)vmcs + 1);
704 	report("test vmptrld with unaligned vmcs",
705 	       make_vmcs_current(tmp_root) == 1);
706 
707 	/* gpa bits beyond physical address width are set*/
708 	tmp_root = (struct vmcs *)((intptr_t)vmcs |
709 				   ((u64)1 << (width+1)));
710 	report("test vmptrld with vmcs address bits set beyond physical address width",
711 	       make_vmcs_current(tmp_root) == 1);
712 
713 	/* Pass VMXON region */
714 	tmp_root = (struct vmcs *)vmxon_region;
715 	report("test vmptrld with vmxon region",
716 	       make_vmcs_current(tmp_root) == 1);
717 
718 	report("test vmptrld with valid vmcs region", make_vmcs_current(vmcs) == 0);
719 }
720 
721 static void test_vmptrst(void)
722 {
723 	int ret;
724 	struct vmcs *vmcs1, *vmcs2;
725 
726 	vmcs1 = alloc_page();
727 	memset(vmcs1, 0, PAGE_SIZE);
728 	init_vmcs(&vmcs1);
729 	ret = vmcs_save(&vmcs2);
730 	report("test vmptrst", (!ret) && (vmcs1 == vmcs2));
731 }
732 
733 struct vmx_ctl_msr {
734 	const char *name;
735 	u32 index, true_index;
736 	u32 default1;
737 } vmx_ctl_msr[] = {
738 	{ "MSR_IA32_VMX_PINBASED_CTLS", MSR_IA32_VMX_PINBASED_CTLS,
739 	  MSR_IA32_VMX_TRUE_PIN, 0x16 },
740 	{ "MSR_IA32_VMX_PROCBASED_CTLS", MSR_IA32_VMX_PROCBASED_CTLS,
741 	  MSR_IA32_VMX_TRUE_PROC, 0x401e172 },
742 	{ "MSR_IA32_VMX_PROCBASED_CTLS2", MSR_IA32_VMX_PROCBASED_CTLS2,
743 	  MSR_IA32_VMX_PROCBASED_CTLS2, 0 },
744 	{ "MSR_IA32_VMX_EXIT_CTLS", MSR_IA32_VMX_EXIT_CTLS,
745 	  MSR_IA32_VMX_TRUE_EXIT, 0x36dff },
746 	{ "MSR_IA32_VMX_ENTRY_CTLS", MSR_IA32_VMX_ENTRY_CTLS,
747 	  MSR_IA32_VMX_TRUE_ENTRY, 0x11ff },
748 };
749 
750 static void test_vmx_caps(void)
751 {
752 	u64 val, default1, fixed0, fixed1;
753 	union vmx_ctrl_msr ctrl, true_ctrl;
754 	unsigned int n;
755 	bool ok;
756 
757 	printf("\nTest suite: VMX capability reporting\n");
758 
759 	report("MSR_IA32_VMX_BASIC",
760 	       (basic.revision & (1ul << 31)) == 0 &&
761 	       basic.size > 0 && basic.size <= 4096 &&
762 	       (basic.type == 0 || basic.type == 6) &&
763 	       basic.reserved1 == 0 && basic.reserved2 == 0);
764 
765 	val = rdmsr(MSR_IA32_VMX_MISC);
766 	report("MSR_IA32_VMX_MISC",
767 	       (!(ctrl_cpu_rev[1].clr & CPU_URG) || val & (1ul << 5)) &&
768 	       ((val >> 16) & 0x1ff) <= 256 &&
769 	       (val & 0xc0007e00) == 0);
770 
771 	for (n = 0; n < ARRAY_SIZE(vmx_ctl_msr); n++) {
772 		ctrl.val = rdmsr(vmx_ctl_msr[n].index);
773 		default1 = vmx_ctl_msr[n].default1;
774 		ok = (ctrl.set & default1) == default1;
775 		ok = ok && (ctrl.set & ~ctrl.clr) == 0;
776 		if (ok && basic.ctrl) {
777 			true_ctrl.val = rdmsr(vmx_ctl_msr[n].true_index);
778 			ok = ctrl.clr == true_ctrl.clr;
779 			ok = ok && ctrl.set == (true_ctrl.set | default1);
780 		}
781 		report(vmx_ctl_msr[n].name, ok);
782 	}
783 
784 	fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0);
785 	fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1);
786 	report("MSR_IA32_VMX_IA32_VMX_CR0_FIXED0/1",
787 	       ((fixed0 ^ fixed1) & ~fixed1) == 0);
788 
789 	fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
790 	fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
791 	report("MSR_IA32_VMX_IA32_VMX_CR4_FIXED0/1",
792 	       ((fixed0 ^ fixed1) & ~fixed1) == 0);
793 
794 	val = rdmsr(MSR_IA32_VMX_VMCS_ENUM);
795 	report("MSR_IA32_VMX_VMCS_ENUM",
796 	       (val & 0x3e) >= 0x2a &&
797 	       (val & 0xfffffffffffffc01Ull) == 0);
798 
799 	val = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
800 	report("MSR_IA32_VMX_EPT_VPID_CAP",
801 	       (val & 0xfffff07ef9eebebeUll) == 0);
802 }
803 
804 /* This function can only be called in guest */
805 static void __attribute__((__used__)) hypercall(u32 hypercall_no)
806 {
807 	u64 val = 0;
808 	val = (hypercall_no & HYPERCALL_MASK) | HYPERCALL_BIT;
809 	hypercall_field = val;
810 	asm volatile("vmcall\n\t");
811 }
812 
813 static bool is_hypercall()
814 {
815 	ulong reason, hyper_bit;
816 
817 	reason = vmcs_read(EXI_REASON) & 0xff;
818 	hyper_bit = hypercall_field & HYPERCALL_BIT;
819 	if (reason == VMX_VMCALL && hyper_bit)
820 		return true;
821 	return false;
822 }
823 
824 static int handle_hypercall()
825 {
826 	ulong hypercall_no;
827 
828 	hypercall_no = hypercall_field & HYPERCALL_MASK;
829 	hypercall_field = 0;
830 	switch (hypercall_no) {
831 	case HYPERCALL_VMEXIT:
832 		return VMX_TEST_VMEXIT;
833 	default:
834 		printf("ERROR : Invalid hypercall number : %d\n", hypercall_no);
835 	}
836 	return VMX_TEST_EXIT;
837 }
838 
839 static int exit_handler()
840 {
841 	int ret;
842 
843 	current->exits++;
844 	regs.rflags = vmcs_read(GUEST_RFLAGS);
845 	if (is_hypercall())
846 		ret = handle_hypercall();
847 	else
848 		ret = current->exit_handler();
849 	vmcs_write(GUEST_RFLAGS, regs.rflags);
850 	switch (ret) {
851 	case VMX_TEST_VMEXIT:
852 	case VMX_TEST_RESUME:
853 		return ret;
854 	case VMX_TEST_EXIT:
855 		break;
856 	default:
857 		printf("ERROR : Invalid exit_handler return val %d.\n"
858 			, ret);
859 	}
860 	print_vmexit_info();
861 	exit(-1);
862 	return 0;
863 }
864 
865 static int vmx_run()
866 {
867 	u32 ret = 0, fail = 0;
868 
869 	while (1) {
870 		asm volatile (
871 			"mov %%rsp, %%rsi\n\t"
872 			"mov %2, %%rdi\n\t"
873 			"vmwrite %%rsi, %%rdi\n\t"
874 
875 			LOAD_GPR_C
876 			"cmpl $0, %1\n\t"
877 			"jne 1f\n\t"
878 			LOAD_RFLAGS
879 			"vmlaunch\n\t"
880 			"jmp 2f\n\t"
881 			"1: "
882 			"vmresume\n\t"
883 			"2: "
884 			"setbe %0\n\t"
885 			"vmx_return:\n\t"
886 			SAVE_GPR_C
887 			SAVE_RFLAGS
888 			: "=m"(fail)
889 			: "m"(launched), "i"(HOST_RSP)
890 			: "rdi", "rsi", "memory", "cc"
891 
892 		);
893 		if (fail)
894 			ret = launched ? VMX_TEST_RESUME_ERR :
895 				VMX_TEST_LAUNCH_ERR;
896 		else {
897 			launched = 1;
898 			ret = exit_handler();
899 		}
900 		if (ret != VMX_TEST_RESUME)
901 			break;
902 	}
903 	launched = 0;
904 	switch (ret) {
905 	case VMX_TEST_VMEXIT:
906 		return 0;
907 	case VMX_TEST_LAUNCH_ERR:
908 		printf("%s : vmlaunch failed.\n", __func__);
909 		if ((!(host_rflags & X86_EFLAGS_CF) && !(host_rflags & X86_EFLAGS_ZF))
910 			|| ((host_rflags & X86_EFLAGS_CF) && (host_rflags & X86_EFLAGS_ZF)))
911 			printf("\tvmlaunch set wrong flags\n");
912 		report("test vmlaunch", 0);
913 		break;
914 	case VMX_TEST_RESUME_ERR:
915 		printf("%s : vmresume failed.\n", __func__);
916 		if ((!(host_rflags & X86_EFLAGS_CF) && !(host_rflags & X86_EFLAGS_ZF))
917 			|| ((host_rflags & X86_EFLAGS_CF) && (host_rflags & X86_EFLAGS_ZF)))
918 			printf("\tvmresume set wrong flags\n");
919 		report("test vmresume", 0);
920 		break;
921 	default:
922 		printf("%s : unhandled ret from exit_handler, ret=%d.\n", __func__, ret);
923 		break;
924 	}
925 	return 1;
926 }
927 
928 static int test_run(struct vmx_test *test)
929 {
930 	if (test->name == NULL)
931 		test->name = "(no name)";
932 	if (vmx_on()) {
933 		printf("%s : vmxon failed.\n", __func__);
934 		return 1;
935 	}
936 	init_vmcs(&(test->vmcs));
937 	/* Directly call test->init is ok here, init_vmcs has done
938 	   vmcs init, vmclear and vmptrld*/
939 	if (test->init && test->init(test->vmcs) != VMX_TEST_START)
940 		goto out;
941 	test->exits = 0;
942 	current = test;
943 	regs = test->guest_regs;
944 	vmcs_write(GUEST_RFLAGS, regs.rflags | 0x2);
945 	launched = 0;
946 	printf("\nTest suite: %s\n", test->name);
947 	vmx_run();
948 out:
949 	if (vmx_off()) {
950 		printf("%s : vmxoff failed.\n", __func__);
951 		return 1;
952 	}
953 	return 0;
954 }
955 
956 extern struct vmx_test vmx_tests[];
957 
958 int main(void)
959 {
960 	int i = 0;
961 
962 	setup_vm();
963 	setup_idt();
964 	hypercall_field = 0;
965 
966 	if (!(cpuid(1).c & (1 << 5))) {
967 		printf("WARNING: vmx not supported, add '-cpu host'\n");
968 		goto exit;
969 	}
970 	init_vmx();
971 	if (test_vmx_feature_control() != 0)
972 		goto exit;
973 	/* Set basic test ctxt the same as "null" */
974 	current = &vmx_tests[0];
975 	if (test_vmxon() != 0)
976 		goto exit;
977 	test_vmptrld();
978 	test_vmclear();
979 	test_vmptrst();
980 	init_vmcs(&vmcs_root);
981 	if (vmx_run()) {
982 		report("test vmlaunch", 0);
983 		goto exit;
984 	}
985 	test_vmxoff();
986 	test_vmx_caps();
987 
988 	while (vmx_tests[++i].name != NULL)
989 		if (test_run(&vmx_tests[i]))
990 			goto exit;
991 
992 exit:
993 	return report_summary();
994 }
995