1 /* 2 * x86/vmx.c : Framework for testing nested virtualization 3 * This is a framework to test nested VMX for KVM, which 4 * started as a project of GSoC 2013. All test cases should 5 * be located in x86/vmx_tests.c and framework related 6 * functions should be in this file. 7 * 8 * How to write test cases? 9 * Add callbacks of test suite in variant "vmx_tests". You can 10 * write: 11 * 1. init function used for initializing test suite 12 * 2. main function for codes running in L2 guest, 13 * 3. exit_handler to handle vmexit of L2 to L1 14 * 4. syscall handler to handle L2 syscall vmexit 15 * 5. vmenter fail handler to handle direct failure of vmenter 16 * 6. guest_regs is loaded when vmenter and saved when 17 * vmexit, you can read and set it in exit_handler 18 * If no special function is needed for a test suite, use 19 * coressponding basic_* functions as callback. More handlers 20 * can be added to "vmx_tests", see details of "struct vmx_test" 21 * and function test_run(). 22 * 23 * Currently, vmx test framework only set up one VCPU and one 24 * concurrent guest test environment with same paging for L2 and 25 * L1. For usage of EPT, only 1:1 mapped paging is used from VFN 26 * to PFN. 27 * 28 * Author : Arthur Chunqi Li <yzt356@gmail.com> 29 */ 30 31 #include "libcflat.h" 32 #include "processor.h" 33 #include "vm.h" 34 #include "desc.h" 35 #include "vmx.h" 36 #include "msr.h" 37 #include "smp.h" 38 #include "io.h" 39 40 u64 *vmxon_region; 41 struct vmcs *vmcs_root; 42 u32 vpid_cnt; 43 void *guest_stack, *guest_syscall_stack; 44 u32 ctrl_pin, ctrl_enter, ctrl_exit, ctrl_cpu[2]; 45 struct regs regs; 46 struct vmx_test *current; 47 u64 hypercall_field; 48 bool launched; 49 u64 host_rflags; 50 51 union vmx_basic basic; 52 union vmx_ctrl_msr ctrl_pin_rev; 53 union vmx_ctrl_msr ctrl_cpu_rev[2]; 54 union vmx_ctrl_msr ctrl_exit_rev; 55 union vmx_ctrl_msr ctrl_enter_rev; 56 union vmx_ept_vpid ept_vpid; 57 58 extern struct descriptor_table_ptr gdt64_desc; 59 extern struct descriptor_table_ptr idt_descr; 60 extern struct descriptor_table_ptr tss_descr; 61 extern void *vmx_return; 62 extern void *entry_sysenter; 63 extern void *guest_entry; 64 65 static volatile u32 stage; 66 67 void vmx_set_test_stage(u32 s) 68 { 69 barrier(); 70 stage = s; 71 barrier(); 72 } 73 74 u32 vmx_get_test_stage(void) 75 { 76 u32 s; 77 78 barrier(); 79 s = stage; 80 barrier(); 81 return s; 82 } 83 84 void vmx_inc_test_stage(void) 85 { 86 barrier(); 87 stage++; 88 barrier(); 89 } 90 91 static int make_vmcs_current(struct vmcs *vmcs) 92 { 93 bool ret; 94 u64 rflags = read_rflags() | X86_EFLAGS_CF | X86_EFLAGS_ZF; 95 96 asm volatile ("push %1; popf; vmptrld %2; setbe %0" 97 : "=q" (ret) : "q" (rflags), "m" (vmcs) : "cc"); 98 return ret; 99 } 100 101 /* entry_sysenter */ 102 asm( 103 ".align 4, 0x90\n\t" 104 ".globl entry_sysenter\n\t" 105 "entry_sysenter:\n\t" 106 SAVE_GPR 107 " and $0xf, %rax\n\t" 108 " mov %rax, %rdi\n\t" 109 " call syscall_handler\n\t" 110 LOAD_GPR 111 " vmresume\n\t" 112 ); 113 114 static void __attribute__((__used__)) syscall_handler(u64 syscall_no) 115 { 116 if (current->syscall_handler) 117 current->syscall_handler(syscall_no); 118 } 119 120 static inline int vmx_on() 121 { 122 bool ret; 123 u64 rflags = read_rflags() | X86_EFLAGS_CF | X86_EFLAGS_ZF; 124 asm volatile ("push %1; popf; vmxon %2; setbe %0\n\t" 125 : "=q" (ret) : "q" (rflags), "m" (vmxon_region) : "cc"); 126 return ret; 127 } 128 129 static inline int vmx_off() 130 { 131 bool ret; 132 u64 rflags = read_rflags() | X86_EFLAGS_CF | X86_EFLAGS_ZF; 133 134 asm volatile("push %1; popf; vmxoff; setbe %0\n\t" 135 : "=q"(ret) : "q" (rflags) : "cc"); 136 return ret; 137 } 138 139 void print_vmexit_info() 140 { 141 u64 guest_rip, guest_rsp; 142 ulong reason = vmcs_read(EXI_REASON) & 0xff; 143 ulong exit_qual = vmcs_read(EXI_QUALIFICATION); 144 guest_rip = vmcs_read(GUEST_RIP); 145 guest_rsp = vmcs_read(GUEST_RSP); 146 printf("VMEXIT info:\n"); 147 printf("\tvmexit reason = %d\n", reason); 148 printf("\texit qualification = 0x%x\n", exit_qual); 149 printf("\tBit 31 of reason = %x\n", (vmcs_read(EXI_REASON) >> 31) & 1); 150 printf("\tguest_rip = 0x%llx\n", guest_rip); 151 printf("\tRAX=0x%llx RBX=0x%llx RCX=0x%llx RDX=0x%llx\n", 152 regs.rax, regs.rbx, regs.rcx, regs.rdx); 153 printf("\tRSP=0x%llx RBP=0x%llx RSI=0x%llx RDI=0x%llx\n", 154 guest_rsp, regs.rbp, regs.rsi, regs.rdi); 155 printf("\tR8 =0x%llx R9 =0x%llx R10=0x%llx R11=0x%llx\n", 156 regs.r8, regs.r9, regs.r10, regs.r11); 157 printf("\tR12=0x%llx R13=0x%llx R14=0x%llx R15=0x%llx\n", 158 regs.r12, regs.r13, regs.r14, regs.r15); 159 } 160 161 static void test_vmclear(void) 162 { 163 struct vmcs *tmp_root; 164 int width = cpuid_maxphyaddr(); 165 166 /* 167 * Note- The tests below do not necessarily have a 168 * valid VMCS, but that's ok since the invalid vmcs 169 * is only used for a specific test and is discarded 170 * without touching its contents 171 */ 172 173 /* Unaligned page access */ 174 tmp_root = (struct vmcs *)((intptr_t)vmcs_root + 1); 175 report("test vmclear with unaligned vmcs", 176 vmcs_clear(tmp_root) == 1); 177 178 /* gpa bits beyond physical address width are set*/ 179 tmp_root = (struct vmcs *)((intptr_t)vmcs_root | 180 ((u64)1 << (width+1))); 181 report("test vmclear with vmcs address bits set beyond physical address width", 182 vmcs_clear(tmp_root) == 1); 183 184 /* Pass VMXON region */ 185 tmp_root = (struct vmcs *)vmxon_region; 186 report("test vmclear with vmxon region", 187 vmcs_clear(tmp_root) == 1); 188 189 /* Valid VMCS */ 190 report("test vmclear with valid vmcs region", vmcs_clear(vmcs_root) == 0); 191 192 } 193 194 static void test_vmxoff(void) 195 { 196 int ret; 197 198 ret = vmx_off(); 199 report("test vmxoff", !ret); 200 } 201 202 static void __attribute__((__used__)) guest_main(void) 203 { 204 current->guest_main(); 205 } 206 207 /* guest_entry */ 208 asm( 209 ".align 4, 0x90\n\t" 210 ".globl entry_guest\n\t" 211 "guest_entry:\n\t" 212 " call guest_main\n\t" 213 " mov $1, %edi\n\t" 214 " call hypercall\n\t" 215 ); 216 217 /* EPT paging structure related functions */ 218 /* install_ept_entry : Install a page to a given level in EPT 219 @pml4 : addr of pml4 table 220 @pte_level : level of PTE to set 221 @guest_addr : physical address of guest 222 @pte : pte value to set 223 @pt_page : address of page table, NULL for a new page 224 */ 225 void install_ept_entry(unsigned long *pml4, 226 int pte_level, 227 unsigned long guest_addr, 228 unsigned long pte, 229 unsigned long *pt_page) 230 { 231 int level; 232 unsigned long *pt = pml4; 233 unsigned offset; 234 235 for (level = EPT_PAGE_LEVEL; level > pte_level; --level) { 236 offset = (guest_addr >> ((level-1) * EPT_PGDIR_WIDTH + 12)) 237 & EPT_PGDIR_MASK; 238 if (!(pt[offset] & (EPT_PRESENT))) { 239 unsigned long *new_pt = pt_page; 240 if (!new_pt) 241 new_pt = alloc_page(); 242 else 243 pt_page = 0; 244 memset(new_pt, 0, PAGE_SIZE); 245 pt[offset] = virt_to_phys(new_pt) 246 | EPT_RA | EPT_WA | EPT_EA; 247 } else 248 pt[offset] &= ~EPT_LARGE_PAGE; 249 pt = phys_to_virt(pt[offset] & 0xffffffffff000ull); 250 } 251 offset = ((unsigned long)guest_addr >> ((level-1) * 252 EPT_PGDIR_WIDTH + 12)) & EPT_PGDIR_MASK; 253 pt[offset] = pte; 254 } 255 256 /* Map a page, @perm is the permission of the page */ 257 void install_ept(unsigned long *pml4, 258 unsigned long phys, 259 unsigned long guest_addr, 260 u64 perm) 261 { 262 install_ept_entry(pml4, 1, guest_addr, (phys & PAGE_MASK) | perm, 0); 263 } 264 265 /* Map a 1G-size page */ 266 void install_1g_ept(unsigned long *pml4, 267 unsigned long phys, 268 unsigned long guest_addr, 269 u64 perm) 270 { 271 install_ept_entry(pml4, 3, guest_addr, 272 (phys & PAGE_MASK) | perm | EPT_LARGE_PAGE, 0); 273 } 274 275 /* Map a 2M-size page */ 276 void install_2m_ept(unsigned long *pml4, 277 unsigned long phys, 278 unsigned long guest_addr, 279 u64 perm) 280 { 281 install_ept_entry(pml4, 2, guest_addr, 282 (phys & PAGE_MASK) | perm | EPT_LARGE_PAGE, 0); 283 } 284 285 /* setup_ept_range : Setup a range of 1:1 mapped page to EPT paging structure. 286 @start : start address of guest page 287 @len : length of address to be mapped 288 @map_1g : whether 1G page map is used 289 @map_2m : whether 2M page map is used 290 @perm : permission for every page 291 */ 292 void setup_ept_range(unsigned long *pml4, unsigned long start, 293 unsigned long len, int map_1g, int map_2m, u64 perm) 294 { 295 u64 phys = start; 296 u64 max = (u64)len + (u64)start; 297 298 if (map_1g) { 299 while (phys + PAGE_SIZE_1G <= max) { 300 install_1g_ept(pml4, phys, phys, perm); 301 phys += PAGE_SIZE_1G; 302 } 303 } 304 if (map_2m) { 305 while (phys + PAGE_SIZE_2M <= max) { 306 install_2m_ept(pml4, phys, phys, perm); 307 phys += PAGE_SIZE_2M; 308 } 309 } 310 while (phys + PAGE_SIZE <= max) { 311 install_ept(pml4, phys, phys, perm); 312 phys += PAGE_SIZE; 313 } 314 } 315 316 /* get_ept_pte : Get the PTE of a given level in EPT, 317 @level == 1 means get the latest level*/ 318 unsigned long get_ept_pte(unsigned long *pml4, 319 unsigned long guest_addr, int level) 320 { 321 int l; 322 unsigned long *pt = pml4, pte; 323 unsigned offset; 324 325 if (level < 1 || level > 3) 326 return -1; 327 for (l = EPT_PAGE_LEVEL; ; --l) { 328 offset = (guest_addr >> (((l-1) * EPT_PGDIR_WIDTH) + 12)) 329 & EPT_PGDIR_MASK; 330 pte = pt[offset]; 331 if (!(pte & (EPT_PRESENT))) 332 return 0; 333 if (l == level) 334 break; 335 if (l < 4 && (pte & EPT_LARGE_PAGE)) 336 return pte; 337 pt = (unsigned long *)(pte & 0xffffffffff000ull); 338 } 339 offset = (guest_addr >> (((l-1) * EPT_PGDIR_WIDTH) + 12)) 340 & EPT_PGDIR_MASK; 341 pte = pt[offset]; 342 return pte; 343 } 344 345 void ept_sync(int type, u64 eptp) 346 { 347 switch (type) { 348 case INVEPT_SINGLE: 349 if (ept_vpid.val & EPT_CAP_INVEPT_SINGLE) { 350 invept(INVEPT_SINGLE, eptp); 351 break; 352 } 353 /* else fall through */ 354 case INVEPT_GLOBAL: 355 if (ept_vpid.val & EPT_CAP_INVEPT_ALL) { 356 invept(INVEPT_GLOBAL, eptp); 357 break; 358 } 359 /* else fall through */ 360 default: 361 printf("WARNING: invept is not supported!\n"); 362 } 363 } 364 365 int set_ept_pte(unsigned long *pml4, unsigned long guest_addr, 366 int level, u64 pte_val) 367 { 368 int l; 369 unsigned long *pt = pml4; 370 unsigned offset; 371 372 if (level < 1 || level > 3) 373 return -1; 374 for (l = EPT_PAGE_LEVEL; ; --l) { 375 offset = (guest_addr >> (((l-1) * EPT_PGDIR_WIDTH) + 12)) 376 & EPT_PGDIR_MASK; 377 if (l == level) 378 break; 379 if (!(pt[offset] & (EPT_PRESENT))) 380 return -1; 381 pt = (unsigned long *)(pt[offset] & 0xffffffffff000ull); 382 } 383 offset = (guest_addr >> (((l-1) * EPT_PGDIR_WIDTH) + 12)) 384 & EPT_PGDIR_MASK; 385 pt[offset] = pte_val; 386 return 0; 387 } 388 389 void vpid_sync(int type, u16 vpid) 390 { 391 switch(type) { 392 case INVVPID_SINGLE: 393 if (ept_vpid.val & VPID_CAP_INVVPID_SINGLE) { 394 invvpid(INVVPID_SINGLE, vpid, 0); 395 break; 396 } 397 case INVVPID_ALL: 398 if (ept_vpid.val & VPID_CAP_INVVPID_ALL) { 399 invvpid(INVVPID_ALL, vpid, 0); 400 break; 401 } 402 default: 403 printf("WARNING: invvpid is not supported\n"); 404 } 405 } 406 407 static void init_vmcs_ctrl(void) 408 { 409 /* 26.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA */ 410 /* 26.2.1.1 */ 411 vmcs_write(PIN_CONTROLS, ctrl_pin); 412 /* Disable VMEXIT of IO instruction */ 413 vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu[0]); 414 if (ctrl_cpu_rev[0].set & CPU_SECONDARY) { 415 ctrl_cpu[1] = (ctrl_cpu[1] | ctrl_cpu_rev[1].set) & 416 ctrl_cpu_rev[1].clr; 417 vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu[1]); 418 } 419 vmcs_write(CR3_TARGET_COUNT, 0); 420 vmcs_write(VPID, ++vpid_cnt); 421 } 422 423 static void init_vmcs_host(void) 424 { 425 /* 26.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA */ 426 /* 26.2.1.2 */ 427 vmcs_write(HOST_EFER, rdmsr(MSR_EFER)); 428 429 /* 26.2.1.3 */ 430 vmcs_write(ENT_CONTROLS, ctrl_enter); 431 vmcs_write(EXI_CONTROLS, ctrl_exit); 432 433 /* 26.2.2 */ 434 vmcs_write(HOST_CR0, read_cr0()); 435 vmcs_write(HOST_CR3, read_cr3()); 436 vmcs_write(HOST_CR4, read_cr4()); 437 vmcs_write(HOST_SYSENTER_EIP, (u64)(&entry_sysenter)); 438 vmcs_write(HOST_SYSENTER_CS, KERNEL_CS); 439 440 /* 26.2.3 */ 441 vmcs_write(HOST_SEL_CS, KERNEL_CS); 442 vmcs_write(HOST_SEL_SS, KERNEL_DS); 443 vmcs_write(HOST_SEL_DS, KERNEL_DS); 444 vmcs_write(HOST_SEL_ES, KERNEL_DS); 445 vmcs_write(HOST_SEL_FS, KERNEL_DS); 446 vmcs_write(HOST_SEL_GS, KERNEL_DS); 447 vmcs_write(HOST_SEL_TR, TSS_MAIN); 448 vmcs_write(HOST_BASE_TR, tss_descr.base); 449 vmcs_write(HOST_BASE_GDTR, gdt64_desc.base); 450 vmcs_write(HOST_BASE_IDTR, idt_descr.base); 451 vmcs_write(HOST_BASE_FS, 0); 452 vmcs_write(HOST_BASE_GS, 0); 453 454 /* Set other vmcs area */ 455 vmcs_write(PF_ERROR_MASK, 0); 456 vmcs_write(PF_ERROR_MATCH, 0); 457 vmcs_write(VMCS_LINK_PTR, ~0ul); 458 vmcs_write(VMCS_LINK_PTR_HI, ~0ul); 459 vmcs_write(HOST_RIP, (u64)(&vmx_return)); 460 } 461 462 static void init_vmcs_guest(void) 463 { 464 /* 26.3 CHECKING AND LOADING GUEST STATE */ 465 ulong guest_cr0, guest_cr4, guest_cr3; 466 /* 26.3.1.1 */ 467 guest_cr0 = read_cr0(); 468 guest_cr4 = read_cr4(); 469 guest_cr3 = read_cr3(); 470 if (ctrl_enter & ENT_GUEST_64) { 471 guest_cr0 |= X86_CR0_PG; 472 guest_cr4 |= X86_CR4_PAE; 473 } 474 if ((ctrl_enter & ENT_GUEST_64) == 0) 475 guest_cr4 &= (~X86_CR4_PCIDE); 476 if (guest_cr0 & X86_CR0_PG) 477 guest_cr0 |= X86_CR0_PE; 478 vmcs_write(GUEST_CR0, guest_cr0); 479 vmcs_write(GUEST_CR3, guest_cr3); 480 vmcs_write(GUEST_CR4, guest_cr4); 481 vmcs_write(GUEST_SYSENTER_CS, KERNEL_CS); 482 vmcs_write(GUEST_SYSENTER_ESP, 483 (u64)(guest_syscall_stack + PAGE_SIZE - 1)); 484 vmcs_write(GUEST_SYSENTER_EIP, (u64)(&entry_sysenter)); 485 vmcs_write(GUEST_DR7, 0); 486 vmcs_write(GUEST_EFER, rdmsr(MSR_EFER)); 487 488 /* 26.3.1.2 */ 489 vmcs_write(GUEST_SEL_CS, KERNEL_CS); 490 vmcs_write(GUEST_SEL_SS, KERNEL_DS); 491 vmcs_write(GUEST_SEL_DS, KERNEL_DS); 492 vmcs_write(GUEST_SEL_ES, KERNEL_DS); 493 vmcs_write(GUEST_SEL_FS, KERNEL_DS); 494 vmcs_write(GUEST_SEL_GS, KERNEL_DS); 495 vmcs_write(GUEST_SEL_TR, TSS_MAIN); 496 vmcs_write(GUEST_SEL_LDTR, 0); 497 498 vmcs_write(GUEST_BASE_CS, 0); 499 vmcs_write(GUEST_BASE_ES, 0); 500 vmcs_write(GUEST_BASE_SS, 0); 501 vmcs_write(GUEST_BASE_DS, 0); 502 vmcs_write(GUEST_BASE_FS, 0); 503 vmcs_write(GUEST_BASE_GS, 0); 504 vmcs_write(GUEST_BASE_TR, tss_descr.base); 505 vmcs_write(GUEST_BASE_LDTR, 0); 506 507 vmcs_write(GUEST_LIMIT_CS, 0xFFFFFFFF); 508 vmcs_write(GUEST_LIMIT_DS, 0xFFFFFFFF); 509 vmcs_write(GUEST_LIMIT_ES, 0xFFFFFFFF); 510 vmcs_write(GUEST_LIMIT_SS, 0xFFFFFFFF); 511 vmcs_write(GUEST_LIMIT_FS, 0xFFFFFFFF); 512 vmcs_write(GUEST_LIMIT_GS, 0xFFFFFFFF); 513 vmcs_write(GUEST_LIMIT_LDTR, 0xffff); 514 vmcs_write(GUEST_LIMIT_TR, tss_descr.limit); 515 516 vmcs_write(GUEST_AR_CS, 0xa09b); 517 vmcs_write(GUEST_AR_DS, 0xc093); 518 vmcs_write(GUEST_AR_ES, 0xc093); 519 vmcs_write(GUEST_AR_FS, 0xc093); 520 vmcs_write(GUEST_AR_GS, 0xc093); 521 vmcs_write(GUEST_AR_SS, 0xc093); 522 vmcs_write(GUEST_AR_LDTR, 0x82); 523 vmcs_write(GUEST_AR_TR, 0x8b); 524 525 /* 26.3.1.3 */ 526 vmcs_write(GUEST_BASE_GDTR, gdt64_desc.base); 527 vmcs_write(GUEST_BASE_IDTR, idt_descr.base); 528 vmcs_write(GUEST_LIMIT_GDTR, gdt64_desc.limit); 529 vmcs_write(GUEST_LIMIT_IDTR, idt_descr.limit); 530 531 /* 26.3.1.4 */ 532 vmcs_write(GUEST_RIP, (u64)(&guest_entry)); 533 vmcs_write(GUEST_RSP, (u64)(guest_stack + PAGE_SIZE - 1)); 534 vmcs_write(GUEST_RFLAGS, 0x2); 535 536 /* 26.3.1.5 */ 537 vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); 538 vmcs_write(GUEST_INTR_STATE, 0); 539 } 540 541 static int init_vmcs(struct vmcs **vmcs) 542 { 543 *vmcs = alloc_page(); 544 memset(*vmcs, 0, PAGE_SIZE); 545 (*vmcs)->revision_id = basic.revision; 546 /* vmclear first to init vmcs */ 547 if (vmcs_clear(*vmcs)) { 548 printf("%s : vmcs_clear error\n", __func__); 549 return 1; 550 } 551 552 if (make_vmcs_current(*vmcs)) { 553 printf("%s : make_vmcs_current error\n", __func__); 554 return 1; 555 } 556 557 /* All settings to pin/exit/enter/cpu 558 control fields should be placed here */ 559 ctrl_pin |= PIN_EXTINT | PIN_NMI | PIN_VIRT_NMI; 560 ctrl_exit = EXI_LOAD_EFER | EXI_HOST_64; 561 ctrl_enter = (ENT_LOAD_EFER | ENT_GUEST_64); 562 /* DIsable IO instruction VMEXIT now */ 563 ctrl_cpu[0] &= (~(CPU_IO | CPU_IO_BITMAP)); 564 ctrl_cpu[1] = 0; 565 566 ctrl_pin = (ctrl_pin | ctrl_pin_rev.set) & ctrl_pin_rev.clr; 567 ctrl_enter = (ctrl_enter | ctrl_enter_rev.set) & ctrl_enter_rev.clr; 568 ctrl_exit = (ctrl_exit | ctrl_exit_rev.set) & ctrl_exit_rev.clr; 569 ctrl_cpu[0] = (ctrl_cpu[0] | ctrl_cpu_rev[0].set) & ctrl_cpu_rev[0].clr; 570 571 init_vmcs_ctrl(); 572 init_vmcs_host(); 573 init_vmcs_guest(); 574 return 0; 575 } 576 577 static void init_vmx(void) 578 { 579 ulong fix_cr0_set, fix_cr0_clr; 580 ulong fix_cr4_set, fix_cr4_clr; 581 582 vmxon_region = alloc_page(); 583 memset(vmxon_region, 0, PAGE_SIZE); 584 585 fix_cr0_set = rdmsr(MSR_IA32_VMX_CR0_FIXED0); 586 fix_cr0_clr = rdmsr(MSR_IA32_VMX_CR0_FIXED1); 587 fix_cr4_set = rdmsr(MSR_IA32_VMX_CR4_FIXED0); 588 fix_cr4_clr = rdmsr(MSR_IA32_VMX_CR4_FIXED1); 589 basic.val = rdmsr(MSR_IA32_VMX_BASIC); 590 ctrl_pin_rev.val = rdmsr(basic.ctrl ? MSR_IA32_VMX_TRUE_PIN 591 : MSR_IA32_VMX_PINBASED_CTLS); 592 ctrl_exit_rev.val = rdmsr(basic.ctrl ? MSR_IA32_VMX_TRUE_EXIT 593 : MSR_IA32_VMX_EXIT_CTLS); 594 ctrl_enter_rev.val = rdmsr(basic.ctrl ? MSR_IA32_VMX_TRUE_ENTRY 595 : MSR_IA32_VMX_ENTRY_CTLS); 596 ctrl_cpu_rev[0].val = rdmsr(basic.ctrl ? MSR_IA32_VMX_TRUE_PROC 597 : MSR_IA32_VMX_PROCBASED_CTLS); 598 if ((ctrl_cpu_rev[0].clr & CPU_SECONDARY) != 0) 599 ctrl_cpu_rev[1].val = rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2); 600 else 601 ctrl_cpu_rev[1].val = 0; 602 if ((ctrl_cpu_rev[1].clr & (CPU_EPT | CPU_VPID)) != 0) 603 ept_vpid.val = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); 604 else 605 ept_vpid.val = 0; 606 607 write_cr0((read_cr0() & fix_cr0_clr) | fix_cr0_set); 608 write_cr4((read_cr4() & fix_cr4_clr) | fix_cr4_set | X86_CR4_VMXE); 609 610 *vmxon_region = basic.revision; 611 612 guest_stack = alloc_page(); 613 memset(guest_stack, 0, PAGE_SIZE); 614 guest_syscall_stack = alloc_page(); 615 memset(guest_syscall_stack, 0, PAGE_SIZE); 616 } 617 618 static void do_vmxon_off(void *data) 619 { 620 vmx_on(); 621 vmx_off(); 622 } 623 624 static void do_write_feature_control(void *data) 625 { 626 wrmsr(MSR_IA32_FEATURE_CONTROL, 0); 627 } 628 629 static int test_vmx_feature_control(void) 630 { 631 u64 ia32_feature_control; 632 bool vmx_enabled; 633 634 ia32_feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); 635 vmx_enabled = ((ia32_feature_control & 0x5) == 0x5); 636 if ((ia32_feature_control & 0x5) == 0x5) { 637 printf("VMX enabled and locked by BIOS\n"); 638 return 0; 639 } else if (ia32_feature_control & 0x1) { 640 printf("ERROR: VMX locked out by BIOS!?\n"); 641 return 1; 642 } 643 644 wrmsr(MSR_IA32_FEATURE_CONTROL, 0); 645 report("test vmxon with FEATURE_CONTROL cleared", 646 test_for_exception(GP_VECTOR, &do_vmxon_off, NULL)); 647 648 wrmsr(MSR_IA32_FEATURE_CONTROL, 0x4); 649 report("test vmxon without FEATURE_CONTROL lock", 650 test_for_exception(GP_VECTOR, &do_vmxon_off, NULL)); 651 652 wrmsr(MSR_IA32_FEATURE_CONTROL, 0x5); 653 vmx_enabled = ((rdmsr(MSR_IA32_FEATURE_CONTROL) & 0x5) == 0x5); 654 report("test enable VMX in FEATURE_CONTROL", vmx_enabled); 655 656 report("test FEATURE_CONTROL lock bit", 657 test_for_exception(GP_VECTOR, &do_write_feature_control, NULL)); 658 659 return !vmx_enabled; 660 } 661 662 static int test_vmxon(void) 663 { 664 int ret, ret1; 665 u64 *tmp_region = vmxon_region; 666 int width = cpuid_maxphyaddr(); 667 668 /* Unaligned page access */ 669 vmxon_region = (u64 *)((intptr_t)vmxon_region + 1); 670 ret1 = vmx_on(); 671 report("test vmxon with unaligned vmxon region", ret1); 672 if (!ret1) { 673 ret = 1; 674 goto out; 675 } 676 677 /* gpa bits beyond physical address width are set*/ 678 vmxon_region = (u64 *)((intptr_t)tmp_region | ((u64)1 << (width+1))); 679 ret1 = vmx_on(); 680 report("test vmxon with bits set beyond physical address width", ret1); 681 if (!ret1) { 682 ret = 1; 683 goto out; 684 } 685 686 /* invalid revision indentifier */ 687 vmxon_region = tmp_region; 688 *vmxon_region = 0xba9da9; 689 ret1 = vmx_on(); 690 report("test vmxon with invalid revision identifier", ret1); 691 if (!ret1) { 692 ret = 1; 693 goto out; 694 } 695 696 /* and finally a valid region */ 697 *vmxon_region = basic.revision; 698 ret = vmx_on(); 699 report("test vmxon with valid vmxon region", !ret); 700 701 out: 702 return ret; 703 } 704 705 static void test_vmptrld(void) 706 { 707 struct vmcs *vmcs, *tmp_root; 708 int width = cpuid_maxphyaddr(); 709 710 vmcs = alloc_page(); 711 vmcs->revision_id = basic.revision; 712 713 /* Unaligned page access */ 714 tmp_root = (struct vmcs *)((intptr_t)vmcs + 1); 715 report("test vmptrld with unaligned vmcs", 716 make_vmcs_current(tmp_root) == 1); 717 718 /* gpa bits beyond physical address width are set*/ 719 tmp_root = (struct vmcs *)((intptr_t)vmcs | 720 ((u64)1 << (width+1))); 721 report("test vmptrld with vmcs address bits set beyond physical address width", 722 make_vmcs_current(tmp_root) == 1); 723 724 /* Pass VMXON region */ 725 tmp_root = (struct vmcs *)vmxon_region; 726 report("test vmptrld with vmxon region", 727 make_vmcs_current(tmp_root) == 1); 728 729 report("test vmptrld with valid vmcs region", make_vmcs_current(vmcs) == 0); 730 } 731 732 static void test_vmptrst(void) 733 { 734 int ret; 735 struct vmcs *vmcs1, *vmcs2; 736 737 vmcs1 = alloc_page(); 738 memset(vmcs1, 0, PAGE_SIZE); 739 init_vmcs(&vmcs1); 740 ret = vmcs_save(&vmcs2); 741 report("test vmptrst", (!ret) && (vmcs1 == vmcs2)); 742 } 743 744 struct vmx_ctl_msr { 745 const char *name; 746 u32 index, true_index; 747 u32 default1; 748 } vmx_ctl_msr[] = { 749 { "MSR_IA32_VMX_PINBASED_CTLS", MSR_IA32_VMX_PINBASED_CTLS, 750 MSR_IA32_VMX_TRUE_PIN, 0x16 }, 751 { "MSR_IA32_VMX_PROCBASED_CTLS", MSR_IA32_VMX_PROCBASED_CTLS, 752 MSR_IA32_VMX_TRUE_PROC, 0x401e172 }, 753 { "MSR_IA32_VMX_PROCBASED_CTLS2", MSR_IA32_VMX_PROCBASED_CTLS2, 754 MSR_IA32_VMX_PROCBASED_CTLS2, 0 }, 755 { "MSR_IA32_VMX_EXIT_CTLS", MSR_IA32_VMX_EXIT_CTLS, 756 MSR_IA32_VMX_TRUE_EXIT, 0x36dff }, 757 { "MSR_IA32_VMX_ENTRY_CTLS", MSR_IA32_VMX_ENTRY_CTLS, 758 MSR_IA32_VMX_TRUE_ENTRY, 0x11ff }, 759 }; 760 761 static void test_vmx_caps(void) 762 { 763 u64 val, default1, fixed0, fixed1; 764 union vmx_ctrl_msr ctrl, true_ctrl; 765 unsigned int n; 766 bool ok; 767 768 printf("\nTest suite: VMX capability reporting\n"); 769 770 report("MSR_IA32_VMX_BASIC", 771 (basic.revision & (1ul << 31)) == 0 && 772 basic.size > 0 && basic.size <= 4096 && 773 (basic.type == 0 || basic.type == 6) && 774 basic.reserved1 == 0 && basic.reserved2 == 0); 775 776 val = rdmsr(MSR_IA32_VMX_MISC); 777 report("MSR_IA32_VMX_MISC", 778 (!(ctrl_cpu_rev[1].clr & CPU_URG) || val & (1ul << 5)) && 779 ((val >> 16) & 0x1ff) <= 256 && 780 (val & 0xc0007e00) == 0); 781 782 for (n = 0; n < ARRAY_SIZE(vmx_ctl_msr); n++) { 783 ctrl.val = rdmsr(vmx_ctl_msr[n].index); 784 default1 = vmx_ctl_msr[n].default1; 785 ok = (ctrl.set & default1) == default1; 786 ok = ok && (ctrl.set & ~ctrl.clr) == 0; 787 if (ok && basic.ctrl) { 788 true_ctrl.val = rdmsr(vmx_ctl_msr[n].true_index); 789 ok = ctrl.clr == true_ctrl.clr; 790 ok = ok && ctrl.set == (true_ctrl.set | default1); 791 } 792 report(vmx_ctl_msr[n].name, ok); 793 } 794 795 fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0); 796 fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1); 797 report("MSR_IA32_VMX_IA32_VMX_CR0_FIXED0/1", 798 ((fixed0 ^ fixed1) & ~fixed1) == 0); 799 800 fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0); 801 fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1); 802 report("MSR_IA32_VMX_IA32_VMX_CR4_FIXED0/1", 803 ((fixed0 ^ fixed1) & ~fixed1) == 0); 804 805 val = rdmsr(MSR_IA32_VMX_VMCS_ENUM); 806 report("MSR_IA32_VMX_VMCS_ENUM", 807 (val & 0x3e) >= 0x2a && 808 (val & 0xfffffffffffffc01Ull) == 0); 809 810 val = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); 811 report("MSR_IA32_VMX_EPT_VPID_CAP", 812 (val & 0xfffff07ef9eebebeUll) == 0); 813 } 814 815 /* This function can only be called in guest */ 816 static void __attribute__((__used__)) hypercall(u32 hypercall_no) 817 { 818 u64 val = 0; 819 val = (hypercall_no & HYPERCALL_MASK) | HYPERCALL_BIT; 820 hypercall_field = val; 821 asm volatile("vmcall\n\t"); 822 } 823 824 static bool is_hypercall() 825 { 826 ulong reason, hyper_bit; 827 828 reason = vmcs_read(EXI_REASON) & 0xff; 829 hyper_bit = hypercall_field & HYPERCALL_BIT; 830 if (reason == VMX_VMCALL && hyper_bit) 831 return true; 832 return false; 833 } 834 835 static int handle_hypercall() 836 { 837 ulong hypercall_no; 838 839 hypercall_no = hypercall_field & HYPERCALL_MASK; 840 hypercall_field = 0; 841 switch (hypercall_no) { 842 case HYPERCALL_VMEXIT: 843 return VMX_TEST_VMEXIT; 844 default: 845 printf("ERROR : Invalid hypercall number : %d\n", hypercall_no); 846 } 847 return VMX_TEST_EXIT; 848 } 849 850 static int exit_handler() 851 { 852 int ret; 853 854 current->exits++; 855 regs.rflags = vmcs_read(GUEST_RFLAGS); 856 if (is_hypercall()) 857 ret = handle_hypercall(); 858 else 859 ret = current->exit_handler(); 860 vmcs_write(GUEST_RFLAGS, regs.rflags); 861 switch (ret) { 862 case VMX_TEST_VMEXIT: 863 case VMX_TEST_RESUME: 864 return ret; 865 case VMX_TEST_EXIT: 866 break; 867 default: 868 printf("ERROR : Invalid exit_handler return val %d.\n" 869 , ret); 870 } 871 print_vmexit_info(); 872 exit(-1); 873 return 0; 874 } 875 876 static int vmx_run() 877 { 878 u32 ret = 0, fail = 0; 879 880 while (1) { 881 asm volatile ( 882 "mov %%rsp, %%rsi\n\t" 883 "mov %2, %%rdi\n\t" 884 "vmwrite %%rsi, %%rdi\n\t" 885 886 LOAD_GPR_C 887 "cmpl $0, %1\n\t" 888 "jne 1f\n\t" 889 LOAD_RFLAGS 890 "vmlaunch\n\t" 891 "jmp 2f\n\t" 892 "1: " 893 "vmresume\n\t" 894 "2: " 895 "setbe %0\n\t" 896 "vmx_return:\n\t" 897 SAVE_GPR_C 898 SAVE_RFLAGS 899 : "=m"(fail) 900 : "m"(launched), "i"(HOST_RSP) 901 : "rdi", "rsi", "memory", "cc" 902 903 ); 904 if (fail) 905 ret = launched ? VMX_TEST_RESUME_ERR : 906 VMX_TEST_LAUNCH_ERR; 907 else { 908 launched = 1; 909 ret = exit_handler(); 910 } 911 if (ret != VMX_TEST_RESUME) 912 break; 913 } 914 launched = 0; 915 switch (ret) { 916 case VMX_TEST_VMEXIT: 917 return 0; 918 case VMX_TEST_LAUNCH_ERR: 919 printf("%s : vmlaunch failed.\n", __func__); 920 if ((!(host_rflags & X86_EFLAGS_CF) && !(host_rflags & X86_EFLAGS_ZF)) 921 || ((host_rflags & X86_EFLAGS_CF) && (host_rflags & X86_EFLAGS_ZF))) 922 printf("\tvmlaunch set wrong flags\n"); 923 report("test vmlaunch", 0); 924 break; 925 case VMX_TEST_RESUME_ERR: 926 printf("%s : vmresume failed.\n", __func__); 927 if ((!(host_rflags & X86_EFLAGS_CF) && !(host_rflags & X86_EFLAGS_ZF)) 928 || ((host_rflags & X86_EFLAGS_CF) && (host_rflags & X86_EFLAGS_ZF))) 929 printf("\tvmresume set wrong flags\n"); 930 report("test vmresume", 0); 931 break; 932 default: 933 printf("%s : unhandled ret from exit_handler, ret=%d.\n", __func__, ret); 934 break; 935 } 936 return 1; 937 } 938 939 static int test_run(struct vmx_test *test) 940 { 941 if (test->name == NULL) 942 test->name = "(no name)"; 943 if (vmx_on()) { 944 printf("%s : vmxon failed.\n", __func__); 945 return 1; 946 } 947 init_vmcs(&(test->vmcs)); 948 /* Directly call test->init is ok here, init_vmcs has done 949 vmcs init, vmclear and vmptrld*/ 950 if (test->init && test->init(test->vmcs) != VMX_TEST_START) 951 goto out; 952 test->exits = 0; 953 current = test; 954 regs = test->guest_regs; 955 vmcs_write(GUEST_RFLAGS, regs.rflags | 0x2); 956 launched = 0; 957 printf("\nTest suite: %s\n", test->name); 958 vmx_run(); 959 out: 960 if (vmx_off()) { 961 printf("%s : vmxoff failed.\n", __func__); 962 return 1; 963 } 964 return 0; 965 } 966 967 extern struct vmx_test vmx_tests[]; 968 969 int main(void) 970 { 971 int i = 0; 972 973 setup_vm(); 974 setup_idt(); 975 hypercall_field = 0; 976 977 if (!(cpuid(1).c & (1 << 5))) { 978 printf("WARNING: vmx not supported, add '-cpu host'\n"); 979 goto exit; 980 } 981 init_vmx(); 982 if (test_vmx_feature_control() != 0) 983 goto exit; 984 /* Set basic test ctxt the same as "null" */ 985 current = &vmx_tests[0]; 986 if (test_vmxon() != 0) 987 goto exit; 988 test_vmptrld(); 989 test_vmclear(); 990 test_vmptrst(); 991 init_vmcs(&vmcs_root); 992 if (vmx_run()) { 993 report("test vmlaunch", 0); 994 goto exit; 995 } 996 test_vmxoff(); 997 test_vmx_caps(); 998 999 while (vmx_tests[++i].name != NULL) 1000 if (test_run(&vmx_tests[i])) 1001 goto exit; 1002 1003 exit: 1004 return report_summary(); 1005 } 1006