xref: /kvm-unit-tests/x86/svm_tests.c (revision d4ae0a719d12f3927aa831b0c2c534a854a44845)
1 #include "svm.h"
2 #include "libcflat.h"
3 #include "processor.h"
4 #include "desc.h"
5 #include "msr.h"
6 #include "vm.h"
7 #include "smp.h"
8 #include "alloc_page.h"
9 #include "isr.h"
10 #include "apic.h"
11 #include "delay.h"
12 #include "util.h"
13 #include "x86/usermode.h"
14 #include "vmalloc.h"
15 
16 #define SVM_EXIT_MAX_DR_INTERCEPT 0x3f
17 
18 #define LATENCY_RUNS 1000000
19 
20 u64 tsc_start;
21 u64 tsc_end;
22 
23 u64 vmrun_sum, vmexit_sum;
24 u64 vmsave_sum, vmload_sum;
25 u64 stgi_sum, clgi_sum;
26 u64 latvmrun_max;
27 u64 latvmrun_min;
28 u64 latvmexit_max;
29 u64 latvmexit_min;
30 u64 latvmload_max;
31 u64 latvmload_min;
32 u64 latvmsave_max;
33 u64 latvmsave_min;
34 u64 latstgi_max;
35 u64 latstgi_min;
36 u64 latclgi_max;
37 u64 latclgi_min;
38 u64 runs;
39 
40 static void null_test(struct svm_test *test)
41 {
42 }
43 
44 static bool null_check(struct svm_test *test)
45 {
46 	return vmcb->control.exit_code == SVM_EXIT_VMMCALL;
47 }
48 
49 static void prepare_no_vmrun_int(struct svm_test *test)
50 {
51 	vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMRUN);
52 }
53 
54 static bool check_no_vmrun_int(struct svm_test *test)
55 {
56 	return vmcb->control.exit_code == SVM_EXIT_ERR;
57 }
58 
59 static void test_vmrun(struct svm_test *test)
60 {
61 	asm volatile ("vmrun %0" : : "a"(virt_to_phys(vmcb)));
62 }
63 
64 static bool check_vmrun(struct svm_test *test)
65 {
66 	return vmcb->control.exit_code == SVM_EXIT_VMRUN;
67 }
68 
69 static void prepare_rsm_intercept(struct svm_test *test)
70 {
71 	default_prepare(test);
72 	vmcb->control.intercept |= 1 << INTERCEPT_RSM;
73 	vmcb->control.intercept_exceptions |= (1ULL << UD_VECTOR);
74 }
75 
76 static void test_rsm_intercept(struct svm_test *test)
77 {
78 	asm volatile ("rsm" : : : "memory");
79 }
80 
81 static bool check_rsm_intercept(struct svm_test *test)
82 {
83 	return get_test_stage(test) == 2;
84 }
85 
86 static bool finished_rsm_intercept(struct svm_test *test)
87 {
88 	switch (get_test_stage(test)) {
89 	case 0:
90 		if (vmcb->control.exit_code != SVM_EXIT_RSM) {
91 			report_fail("VMEXIT not due to rsm. Exit reason 0x%x",
92 				    vmcb->control.exit_code);
93 			return true;
94 		}
95 		vmcb->control.intercept &= ~(1 << INTERCEPT_RSM);
96 		inc_test_stage(test);
97 		break;
98 
99 	case 1:
100 		if (vmcb->control.exit_code != SVM_EXIT_EXCP_BASE + UD_VECTOR) {
101 			report_fail("VMEXIT not due to #UD. Exit reason 0x%x",
102 				    vmcb->control.exit_code);
103 			return true;
104 		}
105 		vmcb->save.rip += 2;
106 		inc_test_stage(test);
107 		break;
108 
109 	default:
110 		return true;
111 	}
112 	return get_test_stage(test) == 2;
113 }
114 
115 static void prepare_cr3_intercept(struct svm_test *test)
116 {
117 	default_prepare(test);
118 	vmcb->control.intercept_cr_read |= 1 << 3;
119 }
120 
121 static void test_cr3_intercept(struct svm_test *test)
122 {
123 	asm volatile ("mov %%cr3, %0" : "=r"(test->scratch) : : "memory");
124 }
125 
126 static bool check_cr3_intercept(struct svm_test *test)
127 {
128 	return vmcb->control.exit_code == SVM_EXIT_READ_CR3;
129 }
130 
131 static bool check_cr3_nointercept(struct svm_test *test)
132 {
133 	return null_check(test) && test->scratch == read_cr3();
134 }
135 
136 static void corrupt_cr3_intercept_bypass(void *_test)
137 {
138 	struct svm_test *test = _test;
139 	extern volatile u32 mmio_insn;
140 
141 	while (!__sync_bool_compare_and_swap(&test->scratch, 1, 2))
142 		pause();
143 	pause();
144 	pause();
145 	pause();
146 	mmio_insn = 0x90d8200f;  // mov %cr3, %rax; nop
147 }
148 
149 static void prepare_cr3_intercept_bypass(struct svm_test *test)
150 {
151 	default_prepare(test);
152 	vmcb->control.intercept_cr_read |= 1 << 3;
153 	on_cpu_async(1, corrupt_cr3_intercept_bypass, test);
154 }
155 
156 static void test_cr3_intercept_bypass(struct svm_test *test)
157 {
158 	ulong a = 0xa0000;
159 
160 	test->scratch = 1;
161 	while (test->scratch != 2)
162 		barrier();
163 
164 	asm volatile ("mmio_insn: mov %0, (%0); nop"
165 		      : "+a"(a) : : "memory");
166 	test->scratch = a;
167 }
168 
169 static void prepare_dr_intercept(struct svm_test *test)
170 {
171 	default_prepare(test);
172 	vmcb->control.intercept_dr_read = 0xff;
173 	vmcb->control.intercept_dr_write = 0xff;
174 }
175 
176 static void test_dr_intercept(struct svm_test *test)
177 {
178 	unsigned int i, failcnt = 0;
179 
180 	/* Loop testing debug register reads */
181 	for (i = 0; i < 8; i++) {
182 
183 		switch (i) {
184 		case 0:
185 			asm volatile ("mov %%dr0, %0" : "=r"(test->scratch) : : "memory");
186 			break;
187 		case 1:
188 			asm volatile ("mov %%dr1, %0" : "=r"(test->scratch) : : "memory");
189 			break;
190 		case 2:
191 			asm volatile ("mov %%dr2, %0" : "=r"(test->scratch) : : "memory");
192 			break;
193 		case 3:
194 			asm volatile ("mov %%dr3, %0" : "=r"(test->scratch) : : "memory");
195 			break;
196 		case 4:
197 			asm volatile ("mov %%dr4, %0" : "=r"(test->scratch) : : "memory");
198 			break;
199 		case 5:
200 			asm volatile ("mov %%dr5, %0" : "=r"(test->scratch) : : "memory");
201 			break;
202 		case 6:
203 			asm volatile ("mov %%dr6, %0" : "=r"(test->scratch) : : "memory");
204 			break;
205 		case 7:
206 			asm volatile ("mov %%dr7, %0" : "=r"(test->scratch) : : "memory");
207 			break;
208 		}
209 
210 		if (test->scratch != i) {
211 			report_fail("dr%u read intercept", i);
212 			failcnt++;
213 		}
214 	}
215 
216 	/* Loop testing debug register writes */
217 	for (i = 0; i < 8; i++) {
218 
219 		switch (i) {
220 		case 0:
221 			asm volatile ("mov %0, %%dr0" : : "r"(test->scratch) : "memory");
222 			break;
223 		case 1:
224 			asm volatile ("mov %0, %%dr1" : : "r"(test->scratch) : "memory");
225 			break;
226 		case 2:
227 			asm volatile ("mov %0, %%dr2" : : "r"(test->scratch) : "memory");
228 			break;
229 		case 3:
230 			asm volatile ("mov %0, %%dr3" : : "r"(test->scratch) : "memory");
231 			break;
232 		case 4:
233 			asm volatile ("mov %0, %%dr4" : : "r"(test->scratch) : "memory");
234 			break;
235 		case 5:
236 			asm volatile ("mov %0, %%dr5" : : "r"(test->scratch) : "memory");
237 			break;
238 		case 6:
239 			asm volatile ("mov %0, %%dr6" : : "r"(test->scratch) : "memory");
240 			break;
241 		case 7:
242 			asm volatile ("mov %0, %%dr7" : : "r"(test->scratch) : "memory");
243 			break;
244 		}
245 
246 		if (test->scratch != i) {
247 			report_fail("dr%u write intercept", i);
248 			failcnt++;
249 		}
250 	}
251 
252 	test->scratch = failcnt;
253 }
254 
255 static bool dr_intercept_finished(struct svm_test *test)
256 {
257 	ulong n = (vmcb->control.exit_code - SVM_EXIT_READ_DR0);
258 
259 	/* Only expect DR intercepts */
260 	if (n > (SVM_EXIT_MAX_DR_INTERCEPT - SVM_EXIT_READ_DR0))
261 		return true;
262 
263 	/*
264 	 * Compute debug register number.
265 	 * Per Appendix C "SVM Intercept Exit Codes" of AMD64 Architecture
266 	 * Programmer's Manual Volume 2 - System Programming:
267 	 * http://support.amd.com/TechDocs/24593.pdf
268 	 * there are 16 VMEXIT codes each for DR read and write.
269 	 */
270 	test->scratch = (n % 16);
271 
272 	/* Jump over MOV instruction */
273 	vmcb->save.rip += 3;
274 
275 	return false;
276 }
277 
278 static bool check_dr_intercept(struct svm_test *test)
279 {
280 	return !test->scratch;
281 }
282 
283 static bool next_rip_supported(void)
284 {
285 	return this_cpu_has(X86_FEATURE_NRIPS);
286 }
287 
288 static void prepare_next_rip(struct svm_test *test)
289 {
290 	vmcb->control.intercept |= (1ULL << INTERCEPT_RDTSC);
291 }
292 
293 
294 static void test_next_rip(struct svm_test *test)
295 {
296 	asm volatile ("rdtsc\n\t"
297 		      ".globl exp_next_rip\n\t"
298 		      "exp_next_rip:\n\t" ::: "eax", "edx");
299 }
300 
301 static bool check_next_rip(struct svm_test *test)
302 {
303 	extern char exp_next_rip;
304 	unsigned long address = (unsigned long)&exp_next_rip;
305 
306 	return address == vmcb->control.next_rip;
307 }
308 
309 extern u8 *msr_bitmap;
310 
311 static void prepare_msr_intercept(struct svm_test *test)
312 {
313 	default_prepare(test);
314 	vmcb->control.intercept |= (1ULL << INTERCEPT_MSR_PROT);
315 	vmcb->control.intercept_exceptions |= (1ULL << GP_VECTOR);
316 	memset(msr_bitmap, 0xff, MSR_BITMAP_SIZE);
317 }
318 
319 static void test_msr_intercept(struct svm_test *test)
320 {
321 	unsigned long msr_value = 0xef8056791234abcd; /* Arbitrary value */
322 	unsigned long msr_index;
323 
324 	for (msr_index = 0; msr_index <= 0xc0011fff; msr_index++) {
325 		if (msr_index == 0xC0010131 /* MSR_SEV_STATUS */) {
326 			/*
327 			 * Per section 15.34.10 "SEV_STATUS MSR" of AMD64 Architecture
328 			 * Programmer's Manual volume 2 - System Programming:
329 			 * http://support.amd.com/TechDocs/24593.pdf
330 			 * SEV_STATUS MSR (C001_0131) is a non-interceptable MSR.
331 			 */
332 			continue;
333 		}
334 
335 		/* Skips gaps between supported MSR ranges */
336 		if (msr_index == 0x2000)
337 			msr_index = 0xc0000000;
338 		else if (msr_index == 0xc0002000)
339 			msr_index = 0xc0010000;
340 
341 		test->scratch = -1;
342 
343 		rdmsr(msr_index);
344 
345 		/* Check that a read intercept occurred for MSR at msr_index */
346 		if (test->scratch != msr_index)
347 			report_fail("MSR 0x%lx read intercept", msr_index);
348 
349 		/*
350 		 * Poor man approach to generate a value that
351 		 * seems arbitrary each time around the loop.
352 		 */
353 		msr_value += (msr_value << 1);
354 
355 		wrmsr(msr_index, msr_value);
356 
357 		/* Check that a write intercept occurred for MSR with msr_value */
358 		if (test->scratch != msr_value)
359 			report_fail("MSR 0x%lx write intercept", msr_index);
360 	}
361 
362 	test->scratch = -2;
363 }
364 
365 static bool msr_intercept_finished(struct svm_test *test)
366 {
367 	u32 exit_code = vmcb->control.exit_code;
368 	u64 exit_info_1;
369 	u8 *opcode;
370 
371 	if (exit_code == SVM_EXIT_MSR) {
372 		exit_info_1 = vmcb->control.exit_info_1;
373 	} else {
374 		/*
375 		 * If #GP exception occurs instead, check that it was
376 		 * for RDMSR/WRMSR and set exit_info_1 accordingly.
377 		 */
378 
379 		if (exit_code != (SVM_EXIT_EXCP_BASE + GP_VECTOR))
380 			return true;
381 
382 		opcode = (u8 *)vmcb->save.rip;
383 		if (opcode[0] != 0x0f)
384 			return true;
385 
386 		switch (opcode[1]) {
387 		case 0x30: /* WRMSR */
388 			exit_info_1 = 1;
389 			break;
390 		case 0x32: /* RDMSR */
391 			exit_info_1 = 0;
392 			break;
393 		default:
394 			return true;
395 		}
396 
397 		/*
398 		 * Warn that #GP exception occurred instead.
399 		 * RCX holds the MSR index.
400 		 */
401 		printf("%s 0x%lx #GP exception\n",
402 		       exit_info_1 ? "WRMSR" : "RDMSR", get_regs().rcx);
403 	}
404 
405 	/* Jump over RDMSR/WRMSR instruction */
406 	vmcb->save.rip += 2;
407 
408 	/*
409 	 * Test whether the intercept was for RDMSR/WRMSR.
410 	 * For RDMSR, test->scratch is set to the MSR index;
411 	 *      RCX holds the MSR index.
412 	 * For WRMSR, test->scratch is set to the MSR value;
413 	 *      RDX holds the upper 32 bits of the MSR value,
414 	 *      while RAX hold its lower 32 bits.
415 	 */
416 	if (exit_info_1)
417 		test->scratch =
418 			((get_regs().rdx << 32) | (vmcb->save.rax & 0xffffffff));
419 	else
420 		test->scratch = get_regs().rcx;
421 
422 	return false;
423 }
424 
425 static bool check_msr_intercept(struct svm_test *test)
426 {
427 	memset(msr_bitmap, 0, MSR_BITMAP_SIZE);
428 	return (test->scratch == -2);
429 }
430 
431 static void prepare_mode_switch(struct svm_test *test)
432 {
433 	vmcb->control.intercept_exceptions |= (1ULL << GP_VECTOR)
434 		|  (1ULL << UD_VECTOR)
435 		|  (1ULL << DF_VECTOR)
436 		|  (1ULL << PF_VECTOR);
437 	test->scratch = 0;
438 }
439 
440 static void test_mode_switch(struct svm_test *test)
441 {
442 	asm volatile("	cli\n"
443 		     "	ljmp *1f\n" /* jump to 32-bit code segment */
444 		     "1:\n"
445 		     "	.long 2f\n"
446 		     "	.long " xstr(KERNEL_CS32) "\n"
447 		     ".code32\n"
448 		     "2:\n"
449 		     "	movl %%cr0, %%eax\n"
450 		     "	btcl  $31, %%eax\n" /* clear PG */
451 		     "	movl %%eax, %%cr0\n"
452 		     "	movl $0xc0000080, %%ecx\n" /* EFER */
453 		     "	rdmsr\n"
454 		     "	btcl $8, %%eax\n" /* clear LME */
455 		     "	wrmsr\n"
456 		     "	movl %%cr4, %%eax\n"
457 		     "	btcl $5, %%eax\n" /* clear PAE */
458 		     "	movl %%eax, %%cr4\n"
459 		     "	movw %[ds16], %%ax\n"
460 		     "	movw %%ax, %%ds\n"
461 		     "	ljmpl %[cs16], $3f\n" /* jump to 16 bit protected-mode */
462 		     ".code16\n"
463 		     "3:\n"
464 		     "	movl %%cr0, %%eax\n"
465 		     "	btcl $0, %%eax\n" /* clear PE  */
466 		     "	movl %%eax, %%cr0\n"
467 		     "	ljmpl $0, $4f\n"   /* jump to real-mode */
468 		     "4:\n"
469 		     "	vmmcall\n"
470 		     "	movl %%cr0, %%eax\n"
471 		     "	btsl $0, %%eax\n" /* set PE  */
472 		     "	movl %%eax, %%cr0\n"
473 		     "	ljmpl %[cs32], $5f\n" /* back to protected mode */
474 		     ".code32\n"
475 		     "5:\n"
476 		     "	movl %%cr4, %%eax\n"
477 		     "	btsl $5, %%eax\n" /* set PAE */
478 		     "	movl %%eax, %%cr4\n"
479 		     "	movl $0xc0000080, %%ecx\n" /* EFER */
480 		     "	rdmsr\n"
481 		     "	btsl $8, %%eax\n" /* set LME */
482 		     "	wrmsr\n"
483 		     "	movl %%cr0, %%eax\n"
484 		     "	btsl  $31, %%eax\n" /* set PG */
485 		     "	movl %%eax, %%cr0\n"
486 		     "	ljmpl %[cs64], $6f\n"    /* back to long mode */
487 		     ".code64\n\t"
488 		     "6:\n"
489 		     "	vmmcall\n"
490 		     :: [cs16] "i"(KERNEL_CS16), [ds16] "i"(KERNEL_DS16),
491 		      [cs32] "i"(KERNEL_CS32), [cs64] "i"(KERNEL_CS64)
492 		     : "rax", "rbx", "rcx", "rdx", "memory");
493 }
494 
495 static bool mode_switch_finished(struct svm_test *test)
496 {
497 	u64 cr0, cr4, efer;
498 
499 	cr0  = vmcb->save.cr0;
500 	cr4  = vmcb->save.cr4;
501 	efer = vmcb->save.efer;
502 
503 	/* Only expect VMMCALL intercepts */
504 	if (vmcb->control.exit_code != SVM_EXIT_VMMCALL)
505 		return true;
506 
507 	/* Jump over VMMCALL instruction */
508 	vmcb->save.rip += 3;
509 
510 	/* Do sanity checks */
511 	switch (test->scratch) {
512 	case 0:
513 		/* Test should be in real mode now - check for this */
514 		if ((cr0  & 0x80000001) || /* CR0.PG, CR0.PE */
515 		    (cr4  & 0x00000020) || /* CR4.PAE */
516 		    (efer & 0x00000500))   /* EFER.LMA, EFER.LME */
517 			return true;
518 		break;
519 	case 2:
520 		/* Test should be back in long-mode now - check for this */
521 		if (((cr0  & 0x80000001) != 0x80000001) || /* CR0.PG, CR0.PE */
522 		    ((cr4  & 0x00000020) != 0x00000020) || /* CR4.PAE */
523 		    ((efer & 0x00000500) != 0x00000500))   /* EFER.LMA, EFER.LME */
524 			return true;
525 		break;
526 	}
527 
528 	/* one step forward */
529 	test->scratch += 1;
530 
531 	return test->scratch == 2;
532 }
533 
534 static bool check_mode_switch(struct svm_test *test)
535 {
536 	return test->scratch == 2;
537 }
538 
539 extern u8 *io_bitmap;
540 
541 static void prepare_ioio(struct svm_test *test)
542 {
543 	vmcb->control.intercept |= (1ULL << INTERCEPT_IOIO_PROT);
544 	test->scratch = 0;
545 	memset(io_bitmap, 0, 8192);
546 	io_bitmap[8192] = 0xFF;
547 }
548 
549 static void test_ioio(struct svm_test *test)
550 {
551 	// stage 0, test IO pass
552 	inb(0x5000);
553 	outb(0x0, 0x5000);
554 	if (get_test_stage(test) != 0)
555 		goto fail;
556 
557 	// test IO width, in/out
558 	io_bitmap[0] = 0xFF;
559 	inc_test_stage(test);
560 	inb(0x0);
561 	if (get_test_stage(test) != 2)
562 		goto fail;
563 
564 	outw(0x0, 0x0);
565 	if (get_test_stage(test) != 3)
566 		goto fail;
567 
568 	inl(0x0);
569 	if (get_test_stage(test) != 4)
570 		goto fail;
571 
572 	// test low/high IO port
573 	io_bitmap[0x5000 / 8] = (1 << (0x5000 % 8));
574 	inb(0x5000);
575 	if (get_test_stage(test) != 5)
576 		goto fail;
577 
578 	io_bitmap[0x9000 / 8] = (1 << (0x9000 % 8));
579 	inw(0x9000);
580 	if (get_test_stage(test) != 6)
581 		goto fail;
582 
583 	// test partial pass
584 	io_bitmap[0x5000 / 8] = (1 << (0x5000 % 8));
585 	inl(0x4FFF);
586 	if (get_test_stage(test) != 7)
587 		goto fail;
588 
589 	// test across pages
590 	inc_test_stage(test);
591 	inl(0x7FFF);
592 	if (get_test_stage(test) != 8)
593 		goto fail;
594 
595 	inc_test_stage(test);
596 	io_bitmap[0x8000 / 8] = 1 << (0x8000 % 8);
597 	inl(0x7FFF);
598 	if (get_test_stage(test) != 10)
599 		goto fail;
600 
601 	io_bitmap[0] = 0;
602 	inl(0xFFFF);
603 	if (get_test_stage(test) != 11)
604 		goto fail;
605 
606 	io_bitmap[0] = 0xFF;
607 	io_bitmap[8192] = 0;
608 	inl(0xFFFF);
609 	inc_test_stage(test);
610 	if (get_test_stage(test) != 12)
611 		goto fail;
612 
613 	return;
614 
615 fail:
616 	report_fail("stage %d", get_test_stage(test));
617 	test->scratch = -1;
618 }
619 
620 static bool ioio_finished(struct svm_test *test)
621 {
622 	unsigned port, size;
623 
624 	/* Only expect IOIO intercepts */
625 	if (vmcb->control.exit_code == SVM_EXIT_VMMCALL)
626 		return true;
627 
628 	if (vmcb->control.exit_code != SVM_EXIT_IOIO)
629 		return true;
630 
631 	/* one step forward */
632 	test->scratch += 1;
633 
634 	port = vmcb->control.exit_info_1 >> 16;
635 	size = (vmcb->control.exit_info_1 >> SVM_IOIO_SIZE_SHIFT) & 7;
636 
637 	while (size--) {
638 		io_bitmap[port / 8] &= ~(1 << (port & 7));
639 		port++;
640 	}
641 
642 	return false;
643 }
644 
645 static bool check_ioio(struct svm_test *test)
646 {
647 	memset(io_bitmap, 0, 8193);
648 	return test->scratch != -1;
649 }
650 
651 static void prepare_asid_zero(struct svm_test *test)
652 {
653 	vmcb->control.asid = 0;
654 }
655 
656 static void test_asid_zero(struct svm_test *test)
657 {
658 	asm volatile ("vmmcall\n\t");
659 }
660 
661 static bool check_asid_zero(struct svm_test *test)
662 {
663 	return vmcb->control.exit_code == SVM_EXIT_ERR;
664 }
665 
666 static void sel_cr0_bug_prepare(struct svm_test *test)
667 {
668 	vmcb->control.intercept |= (1ULL << INTERCEPT_SELECTIVE_CR0);
669 }
670 
671 static bool sel_cr0_bug_finished(struct svm_test *test)
672 {
673 	return true;
674 }
675 
676 static void sel_cr0_bug_test(struct svm_test *test)
677 {
678 	unsigned long cr0;
679 
680 	/* read cr0, clear CD, and write back */
681 	cr0  = read_cr0();
682 	cr0 |= (1UL << 30);
683 	write_cr0(cr0);
684 
685 	/*
686 	 * If we are here the test failed, not sure what to do now because we
687 	 * are not in guest-mode anymore so we can't trigger an intercept.
688 	 * Trigger a tripple-fault for now.
689 	 */
690 	report_fail("sel_cr0 test. Can not recover from this - exiting");
691 	exit(report_summary());
692 }
693 
694 static bool sel_cr0_bug_check(struct svm_test *test)
695 {
696 	return vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE;
697 }
698 
699 #define TSC_ADJUST_VALUE    (1ll << 32)
700 #define TSC_OFFSET_VALUE    (~0ull << 48)
701 static bool ok;
702 
703 static bool tsc_adjust_supported(void)
704 {
705 	return this_cpu_has(X86_FEATURE_TSC_ADJUST);
706 }
707 
708 static void tsc_adjust_prepare(struct svm_test *test)
709 {
710 	default_prepare(test);
711 	vmcb->control.tsc_offset = TSC_OFFSET_VALUE;
712 
713 	wrmsr(MSR_IA32_TSC_ADJUST, -TSC_ADJUST_VALUE);
714 	int64_t adjust = rdmsr(MSR_IA32_TSC_ADJUST);
715 	ok = adjust == -TSC_ADJUST_VALUE;
716 }
717 
718 static void tsc_adjust_test(struct svm_test *test)
719 {
720 	int64_t adjust = rdmsr(MSR_IA32_TSC_ADJUST);
721 	ok &= adjust == -TSC_ADJUST_VALUE;
722 
723 	uint64_t l1_tsc = rdtsc() - TSC_OFFSET_VALUE;
724 	wrmsr(MSR_IA32_TSC, l1_tsc - TSC_ADJUST_VALUE);
725 
726 	adjust = rdmsr(MSR_IA32_TSC_ADJUST);
727 	ok &= adjust <= -2 * TSC_ADJUST_VALUE;
728 
729 	uint64_t l1_tsc_end = rdtsc() - TSC_OFFSET_VALUE;
730 	ok &= (l1_tsc_end + TSC_ADJUST_VALUE - l1_tsc) < TSC_ADJUST_VALUE;
731 
732 	uint64_t l1_tsc_msr = rdmsr(MSR_IA32_TSC) - TSC_OFFSET_VALUE;
733 	ok &= (l1_tsc_msr + TSC_ADJUST_VALUE - l1_tsc) < TSC_ADJUST_VALUE;
734 }
735 
736 static bool tsc_adjust_check(struct svm_test *test)
737 {
738 	int64_t adjust = rdmsr(MSR_IA32_TSC_ADJUST);
739 
740 	wrmsr(MSR_IA32_TSC_ADJUST, 0);
741 	return ok && adjust <= -2 * TSC_ADJUST_VALUE;
742 }
743 
744 
745 static u64 guest_tsc_delay_value;
746 /* number of bits to shift tsc right for stable result */
747 #define TSC_SHIFT 24
748 #define TSC_SCALE_ITERATIONS 10
749 
750 static void svm_tsc_scale_guest(struct svm_test *test)
751 {
752 	u64 start_tsc = rdtsc();
753 
754 	while (rdtsc() - start_tsc < guest_tsc_delay_value)
755 		cpu_relax();
756 }
757 
758 static void svm_tsc_scale_run_testcase(u64 duration,
759 				       double tsc_scale, u64 tsc_offset)
760 {
761 	u64 start_tsc, actual_duration;
762 
763 	guest_tsc_delay_value = (duration << TSC_SHIFT) * tsc_scale;
764 
765 	test_set_guest(svm_tsc_scale_guest);
766 	vmcb->control.tsc_offset = tsc_offset;
767 	wrmsr(MSR_AMD64_TSC_RATIO, (u64)(tsc_scale * (1ULL << 32)));
768 
769 	start_tsc = rdtsc();
770 
771 	if (svm_vmrun() != SVM_EXIT_VMMCALL)
772 		report_fail("unexpected vm exit code 0x%x", vmcb->control.exit_code);
773 
774 	actual_duration = (rdtsc() - start_tsc) >> TSC_SHIFT;
775 
776 	report(duration == actual_duration, "tsc delay (expected: %lu, actual: %lu)",
777 	       duration, actual_duration);
778 }
779 
780 static void svm_tsc_scale_test(void)
781 {
782 	int i;
783 
784 	if (!tsc_scale_supported()) {
785 		report_skip("TSC scale not supported in the guest");
786 		return;
787 	}
788 
789 	report(rdmsr(MSR_AMD64_TSC_RATIO) == TSC_RATIO_DEFAULT,
790 	       "initial TSC scale ratio");
791 
792 	for (i = 0 ; i < TSC_SCALE_ITERATIONS; i++) {
793 
794 		double tsc_scale = (double)(rdrand() % 100 + 1) / 10;
795 		int duration = rdrand() % 50 + 1;
796 		u64 tsc_offset = rdrand();
797 
798 		report_info("duration=%d, tsc_scale=%d, tsc_offset=%ld",
799 			    duration, (int)(tsc_scale * 100), tsc_offset);
800 
801 		svm_tsc_scale_run_testcase(duration, tsc_scale, tsc_offset);
802 	}
803 
804 	svm_tsc_scale_run_testcase(50, 255, rdrand());
805 	svm_tsc_scale_run_testcase(50, 0.0001, rdrand());
806 }
807 
808 static void latency_prepare(struct svm_test *test)
809 {
810 	default_prepare(test);
811 	runs = LATENCY_RUNS;
812 	latvmrun_min = latvmexit_min = -1ULL;
813 	latvmrun_max = latvmexit_max = 0;
814 	vmrun_sum = vmexit_sum = 0;
815 	tsc_start = rdtsc();
816 }
817 
818 static void latency_test(struct svm_test *test)
819 {
820 	u64 cycles;
821 
822 start:
823 	tsc_end = rdtsc();
824 
825 	cycles = tsc_end - tsc_start;
826 
827 	if (cycles > latvmrun_max)
828 		latvmrun_max = cycles;
829 
830 	if (cycles < latvmrun_min)
831 		latvmrun_min = cycles;
832 
833 	vmrun_sum += cycles;
834 
835 	tsc_start = rdtsc();
836 
837 	asm volatile ("vmmcall" : : : "memory");
838 	goto start;
839 }
840 
841 static bool latency_finished(struct svm_test *test)
842 {
843 	u64 cycles;
844 
845 	tsc_end = rdtsc();
846 
847 	cycles = tsc_end - tsc_start;
848 
849 	if (cycles > latvmexit_max)
850 		latvmexit_max = cycles;
851 
852 	if (cycles < latvmexit_min)
853 		latvmexit_min = cycles;
854 
855 	vmexit_sum += cycles;
856 
857 	vmcb->save.rip += 3;
858 
859 	runs -= 1;
860 
861 	tsc_end = rdtsc();
862 
863 	return runs == 0;
864 }
865 
866 static bool latency_finished_clean(struct svm_test *test)
867 {
868 	vmcb->control.clean = VMCB_CLEAN_ALL;
869 	return latency_finished(test);
870 }
871 
872 static bool latency_check(struct svm_test *test)
873 {
874 	printf("    Latency VMRUN : max: %ld min: %ld avg: %ld\n", latvmrun_max,
875 	       latvmrun_min, vmrun_sum / LATENCY_RUNS);
876 	printf("    Latency VMEXIT: max: %ld min: %ld avg: %ld\n", latvmexit_max,
877 	       latvmexit_min, vmexit_sum / LATENCY_RUNS);
878 	return true;
879 }
880 
881 static void lat_svm_insn_prepare(struct svm_test *test)
882 {
883 	default_prepare(test);
884 	runs = LATENCY_RUNS;
885 	latvmload_min = latvmsave_min = latstgi_min = latclgi_min = -1ULL;
886 	latvmload_max = latvmsave_max = latstgi_max = latclgi_max = 0;
887 	vmload_sum = vmsave_sum = stgi_sum = clgi_sum;
888 }
889 
890 static bool lat_svm_insn_finished(struct svm_test *test)
891 {
892 	u64 vmcb_phys = virt_to_phys(vmcb);
893 	u64 cycles;
894 
895 	for ( ; runs != 0; runs--) {
896 		tsc_start = rdtsc();
897 		asm volatile("vmload %0\n\t" : : "a"(vmcb_phys) : "memory");
898 		cycles = rdtsc() - tsc_start;
899 		if (cycles > latvmload_max)
900 			latvmload_max = cycles;
901 		if (cycles < latvmload_min)
902 			latvmload_min = cycles;
903 		vmload_sum += cycles;
904 
905 		tsc_start = rdtsc();
906 		asm volatile("vmsave %0\n\t" : : "a"(vmcb_phys) : "memory");
907 		cycles = rdtsc() - tsc_start;
908 		if (cycles > latvmsave_max)
909 			latvmsave_max = cycles;
910 		if (cycles < latvmsave_min)
911 			latvmsave_min = cycles;
912 		vmsave_sum += cycles;
913 
914 		tsc_start = rdtsc();
915 		asm volatile("stgi\n\t");
916 		cycles = rdtsc() - tsc_start;
917 		if (cycles > latstgi_max)
918 			latstgi_max = cycles;
919 		if (cycles < latstgi_min)
920 			latstgi_min = cycles;
921 		stgi_sum += cycles;
922 
923 		tsc_start = rdtsc();
924 		asm volatile("clgi\n\t");
925 		cycles = rdtsc() - tsc_start;
926 		if (cycles > latclgi_max)
927 			latclgi_max = cycles;
928 		if (cycles < latclgi_min)
929 			latclgi_min = cycles;
930 		clgi_sum += cycles;
931 	}
932 
933 	tsc_end = rdtsc();
934 
935 	return true;
936 }
937 
938 static bool lat_svm_insn_check(struct svm_test *test)
939 {
940 	printf("    Latency VMLOAD: max: %ld min: %ld avg: %ld\n", latvmload_max,
941 	       latvmload_min, vmload_sum / LATENCY_RUNS);
942 	printf("    Latency VMSAVE: max: %ld min: %ld avg: %ld\n", latvmsave_max,
943 	       latvmsave_min, vmsave_sum / LATENCY_RUNS);
944 	printf("    Latency STGI:   max: %ld min: %ld avg: %ld\n", latstgi_max,
945 	       latstgi_min, stgi_sum / LATENCY_RUNS);
946 	printf("    Latency CLGI:   max: %ld min: %ld avg: %ld\n", latclgi_max,
947 	       latclgi_min, clgi_sum / LATENCY_RUNS);
948 	return true;
949 }
950 
951 /*
952  * Report failures from SVM guest code, and on failure, set the stage to -1 and
953  * do VMMCALL to terminate the test (host side must treat -1 as "finished").
954  * TODO: fix the tests that don't play nice with a straight report, e.g. the
955  * V_TPR test fails if report() is invoked.
956  */
957 #define report_svm_guest(cond, test, fmt, args...)	\
958 do {							\
959 	if (!(cond)) {					\
960 		report_fail(fmt, ##args);		\
961 		set_test_stage(test, -1);		\
962 		vmmcall();				\
963 	}						\
964 } while (0)
965 
966 bool pending_event_ipi_fired;
967 bool pending_event_guest_run;
968 
969 static void pending_event_ipi_isr(isr_regs_t *regs)
970 {
971 	pending_event_ipi_fired = true;
972 	eoi();
973 }
974 
975 static void pending_event_prepare(struct svm_test *test)
976 {
977 	int ipi_vector = 0xf1;
978 
979 	default_prepare(test);
980 
981 	pending_event_ipi_fired = false;
982 
983 	handle_irq(ipi_vector, pending_event_ipi_isr);
984 
985 	pending_event_guest_run = false;
986 
987 	vmcb->control.intercept |= (1ULL << INTERCEPT_INTR);
988 	vmcb->control.int_ctl |= V_INTR_MASKING_MASK;
989 
990 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
991 		       APIC_DM_FIXED | ipi_vector, 0);
992 
993 	set_test_stage(test, 0);
994 }
995 
996 static void pending_event_test(struct svm_test *test)
997 {
998 	pending_event_guest_run = true;
999 }
1000 
1001 static bool pending_event_finished(struct svm_test *test)
1002 {
1003 	switch (get_test_stage(test)) {
1004 	case 0:
1005 		if (vmcb->control.exit_code != SVM_EXIT_INTR) {
1006 			report_fail("VMEXIT not due to pending interrupt. Exit reason 0x%x",
1007 				    vmcb->control.exit_code);
1008 			return true;
1009 		}
1010 
1011 		vmcb->control.intercept &= ~(1ULL << INTERCEPT_INTR);
1012 		vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1013 
1014 		if (pending_event_guest_run) {
1015 			report_fail("Guest ran before host received IPI\n");
1016 			return true;
1017 		}
1018 
1019 		sti_nop_cli();
1020 
1021 		if (!pending_event_ipi_fired) {
1022 			report_fail("Pending interrupt not dispatched after IRQ enabled\n");
1023 			return true;
1024 		}
1025 		break;
1026 
1027 	case 1:
1028 		if (!pending_event_guest_run) {
1029 			report_fail("Guest did not resume when no interrupt\n");
1030 			return true;
1031 		}
1032 		break;
1033 	}
1034 
1035 	inc_test_stage(test);
1036 
1037 	return get_test_stage(test) == 2;
1038 }
1039 
1040 static bool pending_event_check(struct svm_test *test)
1041 {
1042 	return get_test_stage(test) == 2;
1043 }
1044 
1045 static void pending_event_cli_prepare(struct svm_test *test)
1046 {
1047 	default_prepare(test);
1048 
1049 	pending_event_ipi_fired = false;
1050 
1051 	handle_irq(0xf1, pending_event_ipi_isr);
1052 
1053 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
1054 		       APIC_DM_FIXED | 0xf1, 0);
1055 
1056 	set_test_stage(test, 0);
1057 }
1058 
1059 static void pending_event_cli_prepare_gif_clear(struct svm_test *test)
1060 {
1061 	asm("cli");
1062 }
1063 
1064 static void pending_event_cli_test(struct svm_test *test)
1065 {
1066 	report_svm_guest(!pending_event_ipi_fired, test,
1067 			 "IRQ should NOT be delivered while IRQs disabled");
1068 
1069 	/* VINTR_MASKING is zero.  This should cause the IPI to fire.  */
1070 	sti_nop_cli();
1071 
1072 	report_svm_guest(pending_event_ipi_fired, test,
1073 			 "IRQ should be delivered after enabling IRQs");
1074 	vmmcall();
1075 
1076 	/*
1077 	 * Now VINTR_MASKING=1, but no interrupt is pending so
1078 	 * the VINTR interception should be clear in VMCB02.  Check
1079 	 * that L0 did not leave a stale VINTR in the VMCB.
1080 	 */
1081 	sti_nop_cli();
1082 }
1083 
1084 static bool pending_event_cli_finished(struct svm_test *test)
1085 {
1086 	report_svm_guest(vmcb->control.exit_code == SVM_EXIT_VMMCALL, test,
1087 			 "Wanted VMMCALL VM-Exit, got exit reason 0x%x",
1088 			 vmcb->control.exit_code);
1089 
1090 	switch (get_test_stage(test)) {
1091 	case 0:
1092 		vmcb->save.rip += 3;
1093 
1094 		pending_event_ipi_fired = false;
1095 
1096 		vmcb->control.int_ctl |= V_INTR_MASKING_MASK;
1097 
1098 		/* Now entering again with VINTR_MASKING=1.  */
1099 		apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
1100 			       APIC_DM_FIXED | 0xf1, 0);
1101 
1102 		break;
1103 
1104 	case 1:
1105 		if (pending_event_ipi_fired == true) {
1106 			report_fail("Interrupt triggered by guest");
1107 			return true;
1108 		}
1109 
1110 		sti_nop_cli();
1111 
1112 		if (pending_event_ipi_fired != true) {
1113 			report_fail("Interrupt not triggered by host");
1114 			return true;
1115 		}
1116 
1117 		break;
1118 
1119 	default:
1120 		return true;
1121 	}
1122 
1123 	inc_test_stage(test);
1124 
1125 	return get_test_stage(test) == 2;
1126 }
1127 
1128 static bool pending_event_cli_check(struct svm_test *test)
1129 {
1130 	return get_test_stage(test) == 2;
1131 }
1132 
1133 #define TIMER_VECTOR    222
1134 
1135 static volatile bool timer_fired;
1136 
1137 static void timer_isr(isr_regs_t *regs)
1138 {
1139 	timer_fired = true;
1140 	apic_write(APIC_EOI, 0);
1141 }
1142 
1143 static void interrupt_prepare(struct svm_test *test)
1144 {
1145 	default_prepare(test);
1146 	handle_irq(TIMER_VECTOR, timer_isr);
1147 	timer_fired = false;
1148 	set_test_stage(test, 0);
1149 }
1150 
1151 static void interrupt_test(struct svm_test *test)
1152 {
1153 	long long start, loops;
1154 
1155 	apic_setup_timer(TIMER_VECTOR, APIC_LVT_TIMER_PERIODIC);
1156 	sti();
1157 	apic_start_timer(1);
1158 
1159 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1160 		asm volatile ("nop");
1161 
1162 	report_svm_guest(timer_fired, test,
1163 			 "direct interrupt while running guest");
1164 
1165 	apic_stop_timer();
1166 	cli();
1167 	vmmcall();
1168 
1169 	timer_fired = false;
1170 	apic_start_timer(1);
1171 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1172 		asm volatile ("nop");
1173 
1174 	report_svm_guest(timer_fired, test,
1175 			 "intercepted interrupt while running guest");
1176 
1177 	sti();
1178 	apic_stop_timer();
1179 	cli();
1180 
1181 	timer_fired = false;
1182 	start = rdtsc();
1183 	apic_start_timer(1000000);
1184 	safe_halt();
1185 
1186 	report_svm_guest(timer_fired, test, "direct interrupt + hlt");
1187 	report(rdtsc() - start > 10000, "IRQ arrived after expected delay");
1188 
1189 	apic_stop_timer();
1190 	cli();
1191 	vmmcall();
1192 
1193 	timer_fired = false;
1194 	start = rdtsc();
1195 	apic_start_timer(1000000);
1196 	asm volatile ("hlt");
1197 
1198 	report_svm_guest(timer_fired, test, "intercepted interrupt + hlt");
1199 	report(rdtsc() - start > 10000, "IRQ arrived after expected delay");
1200 
1201 	apic_cleanup_timer();
1202 }
1203 
1204 static bool interrupt_finished(struct svm_test *test)
1205 {
1206 	switch (get_test_stage(test)) {
1207 	case 0:
1208 	case 2:
1209 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1210 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1211 				    vmcb->control.exit_code);
1212 			return true;
1213 		}
1214 		vmcb->save.rip += 3;
1215 
1216 		vmcb->control.intercept |= (1ULL << INTERCEPT_INTR);
1217 		vmcb->control.int_ctl |= V_INTR_MASKING_MASK;
1218 		break;
1219 
1220 	case 1:
1221 	case 3:
1222 		if (vmcb->control.exit_code != SVM_EXIT_INTR) {
1223 			report_fail("VMEXIT not due to intr intercept. Exit reason 0x%x",
1224 				    vmcb->control.exit_code);
1225 			return true;
1226 		}
1227 
1228 		sti_nop_cli();
1229 
1230 		vmcb->control.intercept &= ~(1ULL << INTERCEPT_INTR);
1231 		vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1232 		break;
1233 
1234 	case 4:
1235 		break;
1236 
1237 	default:
1238 		return true;
1239 	}
1240 
1241 	inc_test_stage(test);
1242 
1243 	return get_test_stage(test) == 5;
1244 }
1245 
1246 static bool interrupt_check(struct svm_test *test)
1247 {
1248 	return get_test_stage(test) == 5;
1249 }
1250 
1251 static volatile bool nmi_fired;
1252 
1253 static void nmi_handler(struct ex_regs *regs)
1254 {
1255 	nmi_fired = true;
1256 }
1257 
1258 static void nmi_prepare(struct svm_test *test)
1259 {
1260 	default_prepare(test);
1261 	nmi_fired = false;
1262 	handle_exception(NMI_VECTOR, nmi_handler);
1263 	set_test_stage(test, 0);
1264 }
1265 
1266 static void nmi_test(struct svm_test *test)
1267 {
1268 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, 0);
1269 
1270 	report_svm_guest(nmi_fired, test, "direct NMI while running guest");
1271 
1272 	vmmcall();
1273 
1274 	nmi_fired = false;
1275 
1276 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, 0);
1277 
1278 	report_svm_guest(nmi_fired, test, "intercepted pending NMI delivered to guest");
1279 }
1280 
1281 static bool nmi_finished(struct svm_test *test)
1282 {
1283 	switch (get_test_stage(test)) {
1284 	case 0:
1285 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1286 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1287 				    vmcb->control.exit_code);
1288 			return true;
1289 		}
1290 		vmcb->save.rip += 3;
1291 
1292 		vmcb->control.intercept |= (1ULL << INTERCEPT_NMI);
1293 		break;
1294 
1295 	case 1:
1296 		if (vmcb->control.exit_code != SVM_EXIT_NMI) {
1297 			report_fail("VMEXIT not due to NMI intercept. Exit reason 0x%x",
1298 				    vmcb->control.exit_code);
1299 			return true;
1300 		}
1301 
1302 		report_pass("NMI intercept while running guest");
1303 		break;
1304 
1305 	case 2:
1306 		break;
1307 
1308 	default:
1309 		return true;
1310 	}
1311 
1312 	inc_test_stage(test);
1313 
1314 	return get_test_stage(test) == 3;
1315 }
1316 
1317 static bool nmi_check(struct svm_test *test)
1318 {
1319 	return get_test_stage(test) == 3;
1320 }
1321 
1322 #define NMI_DELAY 100000000ULL
1323 
1324 static void nmi_message_thread(void *_test)
1325 {
1326 	struct svm_test *test = _test;
1327 
1328 	while (get_test_stage(test) != 1)
1329 		pause();
1330 
1331 	delay(NMI_DELAY);
1332 
1333 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]);
1334 
1335 	while (get_test_stage(test) != 2)
1336 		pause();
1337 
1338 	delay(NMI_DELAY);
1339 
1340 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]);
1341 }
1342 
1343 static void nmi_hlt_test(struct svm_test *test)
1344 {
1345 	long long start;
1346 
1347 	on_cpu_async(1, nmi_message_thread, test);
1348 
1349 	start = rdtsc();
1350 
1351 	set_test_stage(test, 1);
1352 
1353 	asm volatile ("hlt");
1354 
1355 	report_svm_guest(nmi_fired, test, "direct NMI + hlt");
1356 	report(rdtsc() - start > NMI_DELAY, "direct NMI after expected delay");
1357 
1358 	nmi_fired = false;
1359 
1360 	vmmcall();
1361 
1362 	start = rdtsc();
1363 
1364 	set_test_stage(test, 2);
1365 
1366 	asm volatile ("hlt");
1367 
1368 	report_svm_guest(nmi_fired, test, "intercepted NMI + hlt");
1369 	report(rdtsc() - start > NMI_DELAY, "intercepted NMI after expected delay");
1370 
1371 	set_test_stage(test, 3);
1372 }
1373 
1374 static bool nmi_hlt_finished(struct svm_test *test)
1375 {
1376 	switch (get_test_stage(test)) {
1377 	case 1:
1378 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1379 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1380 				    vmcb->control.exit_code);
1381 			return true;
1382 		}
1383 		vmcb->save.rip += 3;
1384 
1385 		vmcb->control.intercept |= (1ULL << INTERCEPT_NMI);
1386 		break;
1387 
1388 	case 2:
1389 		if (vmcb->control.exit_code != SVM_EXIT_NMI) {
1390 			report_fail("VMEXIT not due to NMI intercept. Exit reason 0x%x",
1391 				    vmcb->control.exit_code);
1392 			return true;
1393 		}
1394 
1395 		report_pass("NMI intercept while running guest");
1396 		break;
1397 
1398 	case 3:
1399 		break;
1400 
1401 	default:
1402 		return true;
1403 	}
1404 
1405 	return get_test_stage(test) == 3;
1406 }
1407 
1408 static bool nmi_hlt_check(struct svm_test *test)
1409 {
1410 	return get_test_stage(test) == 3;
1411 }
1412 
1413 static void vnmi_prepare(struct svm_test *test)
1414 {
1415 	nmi_prepare(test);
1416 
1417 	/*
1418 	 * Disable NMI interception to start.  Enabling vNMI without
1419 	 * intercepting "real" NMIs should result in an ERR VM-Exit.
1420 	 */
1421 	vmcb->control.intercept &= ~(1ULL << INTERCEPT_NMI);
1422 	vmcb->control.int_ctl = V_NMI_ENABLE_MASK;
1423 	vmcb->control.int_vector = NMI_VECTOR;
1424 }
1425 
1426 static void vnmi_test(struct svm_test *test)
1427 {
1428 	report_svm_guest(!nmi_fired, test, "No vNMI before injection");
1429 	vmmcall();
1430 
1431 	report_svm_guest(nmi_fired, test, "vNMI delivered after injection");
1432 	vmmcall();
1433 }
1434 
1435 static bool vnmi_finished(struct svm_test *test)
1436 {
1437 	switch (get_test_stage(test)) {
1438 	case 0:
1439 		if (vmcb->control.exit_code != SVM_EXIT_ERR) {
1440 			report_fail("Wanted ERR VM-Exit, got 0x%x",
1441 				    vmcb->control.exit_code);
1442 			return true;
1443 		}
1444 		report(!nmi_fired, "vNMI enabled but NMI_INTERCEPT unset!");
1445 		vmcb->control.intercept |= (1ULL << INTERCEPT_NMI);
1446 		vmcb->save.rip += 3;
1447 		break;
1448 
1449 	case 1:
1450 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1451 			report_fail("Wanted VMMCALL VM-Exit, got 0x%x",
1452 				    vmcb->control.exit_code);
1453 			return true;
1454 		}
1455 		report(!nmi_fired, "vNMI with vector 2 not injected");
1456 		vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
1457 		vmcb->save.rip += 3;
1458 		break;
1459 
1460 	case 2:
1461 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1462 			report_fail("Wanted VMMCALL VM-Exit, got 0x%x",
1463 				    vmcb->control.exit_code);
1464 			return true;
1465 		}
1466 		if (vmcb->control.int_ctl & V_NMI_BLOCKING_MASK) {
1467 			report_fail("V_NMI_BLOCKING_MASK not cleared on VMEXIT");
1468 			return true;
1469 		}
1470 		report_pass("VNMI serviced");
1471 		vmcb->save.rip += 3;
1472 		break;
1473 
1474 	default:
1475 		return true;
1476 	}
1477 
1478 	inc_test_stage(test);
1479 
1480 	return get_test_stage(test) == 3;
1481 }
1482 
1483 static bool vnmi_check(struct svm_test *test)
1484 {
1485 	return get_test_stage(test) == 3;
1486 }
1487 
1488 static volatile int count_exc = 0;
1489 
1490 static void my_isr(struct ex_regs *r)
1491 {
1492 	count_exc++;
1493 }
1494 
1495 static void exc_inject_prepare(struct svm_test *test)
1496 {
1497 	default_prepare(test);
1498 	handle_exception(DE_VECTOR, my_isr);
1499 	handle_exception(NMI_VECTOR, my_isr);
1500 }
1501 
1502 
1503 static void exc_inject_test(struct svm_test *test)
1504 {
1505 	asm volatile ("vmmcall\n\tvmmcall\n\t");
1506 }
1507 
1508 static bool exc_inject_finished(struct svm_test *test)
1509 {
1510 	switch (get_test_stage(test)) {
1511 	case 0:
1512 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1513 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1514 				    vmcb->control.exit_code);
1515 			return true;
1516 		}
1517 		vmcb->save.rip += 3;
1518 		vmcb->control.event_inj = NMI_VECTOR | SVM_EVTINJ_TYPE_EXEPT | SVM_EVTINJ_VALID;
1519 		break;
1520 
1521 	case 1:
1522 		if (vmcb->control.exit_code != SVM_EXIT_ERR) {
1523 			report_fail("VMEXIT not due to error. Exit reason 0x%x",
1524 				    vmcb->control.exit_code);
1525 			return true;
1526 		}
1527 		report(count_exc == 0, "exception with vector 2 not injected");
1528 		vmcb->control.event_inj = DE_VECTOR | SVM_EVTINJ_TYPE_EXEPT | SVM_EVTINJ_VALID;
1529 		break;
1530 
1531 	case 2:
1532 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1533 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1534 				    vmcb->control.exit_code);
1535 			return true;
1536 		}
1537 		vmcb->save.rip += 3;
1538 		report(count_exc == 1, "divide overflow exception injected");
1539 		report(!(vmcb->control.event_inj & SVM_EVTINJ_VALID), "eventinj.VALID cleared");
1540 		break;
1541 
1542 	default:
1543 		return true;
1544 	}
1545 
1546 	inc_test_stage(test);
1547 
1548 	return get_test_stage(test) == 3;
1549 }
1550 
1551 static bool exc_inject_check(struct svm_test *test)
1552 {
1553 	return count_exc == 1 && get_test_stage(test) == 3;
1554 }
1555 
1556 static volatile bool virq_fired;
1557 
1558 static void virq_isr(isr_regs_t *regs)
1559 {
1560 	virq_fired = true;
1561 }
1562 
1563 static void virq_inject_prepare(struct svm_test *test)
1564 {
1565 	handle_irq(0xf1, virq_isr);
1566 	default_prepare(test);
1567 	vmcb->control.int_ctl = V_INTR_MASKING_MASK | V_IRQ_MASK |
1568 		(0x0f << V_INTR_PRIO_SHIFT); // Set to the highest priority
1569 	vmcb->control.int_vector = 0xf1;
1570 	virq_fired = false;
1571 	set_test_stage(test, 0);
1572 }
1573 
1574 static void virq_inject_test(struct svm_test *test)
1575 {
1576 	report_svm_guest(!virq_fired, test, "virtual IRQ blocked after L2 cli");
1577 
1578 	sti_nop_cli();
1579 
1580 	report_svm_guest(virq_fired, test, "virtual IRQ fired after L2 sti");
1581 
1582 	vmmcall();
1583 
1584 	report_svm_guest(!virq_fired, test, "intercepted VINTR blocked after L2 cli");
1585 
1586 	sti_nop_cli();
1587 
1588 	report_svm_guest(virq_fired, test, "intercepted VINTR fired after L2 sti");
1589 
1590 	vmmcall();
1591 
1592 	sti_nop_cli();
1593 
1594 	report_svm_guest(!virq_fired, test,
1595 			  "virtual IRQ blocked V_IRQ_PRIO less than V_TPR");
1596 
1597 	vmmcall();
1598 	vmmcall();
1599 }
1600 
1601 static bool virq_inject_finished(struct svm_test *test)
1602 {
1603 	vmcb->save.rip += 3;
1604 
1605 	switch (get_test_stage(test)) {
1606 	case 0:
1607 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1608 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1609 				    vmcb->control.exit_code);
1610 			return true;
1611 		}
1612 		if (vmcb->control.int_ctl & V_IRQ_MASK) {
1613 			report_fail("V_IRQ not cleared on VMEXIT after firing");
1614 			return true;
1615 		}
1616 		virq_fired = false;
1617 		vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1618 		vmcb->control.int_ctl = V_INTR_MASKING_MASK | V_IRQ_MASK |
1619 			(0x0f << V_INTR_PRIO_SHIFT);
1620 		break;
1621 
1622 	case 1:
1623 		if (vmcb->control.exit_code != SVM_EXIT_VINTR) {
1624 			report_fail("VMEXIT not due to vintr. Exit reason 0x%x",
1625 				    vmcb->control.exit_code);
1626 			return true;
1627 		}
1628 		if (virq_fired) {
1629 			report_fail("V_IRQ fired before SVM_EXIT_VINTR");
1630 			return true;
1631 		}
1632 		vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1633 		break;
1634 
1635 	case 2:
1636 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1637 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1638 				    vmcb->control.exit_code);
1639 			return true;
1640 		}
1641 		virq_fired = false;
1642 		// Set irq to lower priority
1643 		vmcb->control.int_ctl = V_INTR_MASKING_MASK | V_IRQ_MASK |
1644 			(0x08 << V_INTR_PRIO_SHIFT);
1645 		// Raise guest TPR
1646 		vmcb->control.int_ctl |= 0x0a & V_TPR_MASK;
1647 		break;
1648 
1649 	case 3:
1650 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1651 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1652 				    vmcb->control.exit_code);
1653 			return true;
1654 		}
1655 		vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1656 		break;
1657 
1658 	case 4:
1659 		// INTERCEPT_VINTR should be ignored because V_INTR_PRIO < V_TPR
1660 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1661 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1662 				    vmcb->control.exit_code);
1663 			return true;
1664 		}
1665 		break;
1666 
1667 	default:
1668 		return true;
1669 	}
1670 
1671 	inc_test_stage(test);
1672 
1673 	return get_test_stage(test) == 5;
1674 }
1675 
1676 static bool virq_inject_check(struct svm_test *test)
1677 {
1678 	return get_test_stage(test) == 5;
1679 }
1680 
1681 /*
1682  * Detect nested guest RIP corruption as explained in kernel commit
1683  * b6162e82aef19fee9c32cb3fe9ac30d9116a8c73
1684  *
1685  * In the assembly loop below 'ins' is executed while IO instructions
1686  * are not intercepted; the instruction is emulated by L0.
1687  *
1688  * At the same time we are getting interrupts from the local APIC timer,
1689  * and we do intercept them in L1
1690  *
1691  * If the interrupt happens on the insb instruction, L0 will VMexit, emulate
1692  * the insb instruction and then it will inject the interrupt to L1 through
1693  * a nested VMexit.  Due to a bug, it would leave pre-emulation values of RIP,
1694  * RAX and RSP in the VMCB.
1695  *
1696  * In our intercept handler we detect the bug by checking that RIP is that of
1697  * the insb instruction, but its memory operand has already been written.
1698  * This means that insb was already executed.
1699  */
1700 
1701 static volatile int isr_cnt = 0;
1702 static volatile uint8_t io_port_var = 0xAA;
1703 extern const char insb_instruction_label[];
1704 
1705 static void reg_corruption_isr(isr_regs_t *regs)
1706 {
1707 	isr_cnt++;
1708 	apic_write(APIC_EOI, 0);
1709 }
1710 
1711 static void reg_corruption_prepare(struct svm_test *test)
1712 {
1713 	default_prepare(test);
1714 	set_test_stage(test, 0);
1715 
1716 	vmcb->control.int_ctl = V_INTR_MASKING_MASK;
1717 	vmcb->control.intercept |= (1ULL << INTERCEPT_INTR);
1718 
1719 	handle_irq(TIMER_VECTOR, reg_corruption_isr);
1720 
1721 	/* set local APIC to inject external interrupts */
1722 	apic_setup_timer(TIMER_VECTOR, APIC_LVT_TIMER_PERIODIC);
1723 	apic_start_timer(1000);
1724 }
1725 
1726 static void reg_corruption_test(struct svm_test *test)
1727 {
1728 	/* this is endless loop, which is interrupted by the timer interrupt */
1729 	asm volatile (
1730 		      "1:\n\t"
1731 		      "movw $0x4d0, %%dx\n\t" // IO port
1732 		      "lea %[io_port_var], %%rdi\n\t"
1733 		      "movb $0xAA, %[io_port_var]\n\t"
1734 		      "insb_instruction_label:\n\t"
1735 		      "insb\n\t"
1736 		      "jmp 1b\n\t"
1737 
1738 		      : [io_port_var] "=m" (io_port_var)
1739 		      : /* no inputs*/
1740 		      : "rdx", "rdi"
1741 		      );
1742 }
1743 
1744 static bool reg_corruption_finished(struct svm_test *test)
1745 {
1746 	if (isr_cnt == 10000) {
1747 		report_pass("No RIP corruption detected after %d timer interrupts",
1748 			    isr_cnt);
1749 		set_test_stage(test, 1);
1750 		goto cleanup;
1751 	}
1752 
1753 	if (vmcb->control.exit_code == SVM_EXIT_INTR) {
1754 
1755 		void* guest_rip = (void*)vmcb->save.rip;
1756 
1757 		sti_nop_cli();
1758 
1759 		if (guest_rip == insb_instruction_label && io_port_var != 0xAA) {
1760 			report_fail("RIP corruption detected after %d timer interrupts",
1761 				    isr_cnt);
1762 			goto cleanup;
1763 		}
1764 
1765 	}
1766 	return false;
1767 cleanup:
1768 	apic_cleanup_timer();
1769 	return true;
1770 
1771 }
1772 
1773 static bool reg_corruption_check(struct svm_test *test)
1774 {
1775 	return get_test_stage(test) == 1;
1776 }
1777 
1778 static void get_tss_entry(void *data)
1779 {
1780 	*((gdt_entry_t **)data) = get_tss_descr();
1781 }
1782 
1783 static int orig_cpu_count;
1784 
1785 static void init_startup_prepare(struct svm_test *test)
1786 {
1787 	gdt_entry_t *tss_entry;
1788 	int i;
1789 
1790 	on_cpu(1, get_tss_entry, &tss_entry);
1791 
1792 	orig_cpu_count = atomic_read(&cpu_online_count);
1793 
1794 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT,
1795 		       id_map[1]);
1796 
1797 	delay(100000000ULL);
1798 
1799 	atomic_dec(&cpu_online_count);
1800 
1801 	tss_entry->type &= ~DESC_BUSY;
1802 
1803 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP, id_map[1]);
1804 
1805 	for (i = 0; i < 5 && atomic_read(&cpu_online_count) < orig_cpu_count; i++)
1806 		delay(100000000ULL);
1807 }
1808 
1809 static bool init_startup_finished(struct svm_test *test)
1810 {
1811 	return true;
1812 }
1813 
1814 static bool init_startup_check(struct svm_test *test)
1815 {
1816 	return atomic_read(&cpu_online_count) == orig_cpu_count;
1817 }
1818 
1819 static volatile bool init_intercept;
1820 
1821 static void init_intercept_prepare(struct svm_test *test)
1822 {
1823 	init_intercept = false;
1824 	vmcb->control.intercept |= (1ULL << INTERCEPT_INIT);
1825 }
1826 
1827 static void init_intercept_test(struct svm_test *test)
1828 {
1829 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT, 0);
1830 }
1831 
1832 static bool init_intercept_finished(struct svm_test *test)
1833 {
1834 	vmcb->save.rip += 3;
1835 
1836 	if (vmcb->control.exit_code != SVM_EXIT_INIT) {
1837 		report_fail("VMEXIT not due to init intercept. Exit reason 0x%x",
1838 			    vmcb->control.exit_code);
1839 
1840 		return true;
1841 	}
1842 
1843 	init_intercept = true;
1844 
1845 	report_pass("INIT to vcpu intercepted");
1846 
1847 	return true;
1848 }
1849 
1850 static bool init_intercept_check(struct svm_test *test)
1851 {
1852 	return init_intercept;
1853 }
1854 
1855 /*
1856  * Setting host EFLAGS.TF causes a #DB trap after the VMRUN completes on the
1857  * host side (i.e., after the #VMEXIT from the guest).
1858  *
1859  * Setting host EFLAGS.RF suppresses any potential instruction breakpoint
1860  * match on the VMRUN and completion of the VMRUN instruction clears the
1861  * host EFLAGS.RF bit.
1862  *
1863  * [AMD APM]
1864  */
1865 static volatile u8 host_rflags_guest_main_flag = 0;
1866 static volatile u8 host_rflags_db_handler_flag = 0;
1867 static volatile bool host_rflags_ss_on_vmrun = false;
1868 static volatile bool host_rflags_vmrun_reached = false;
1869 static volatile bool host_rflags_set_tf = false;
1870 static volatile bool host_rflags_set_rf = false;
1871 static u64 rip_detected;
1872 
1873 extern u64 *vmrun_rip;
1874 
1875 static void host_rflags_db_handler(struct ex_regs *r)
1876 {
1877 	if (host_rflags_ss_on_vmrun) {
1878 		if (host_rflags_vmrun_reached) {
1879 			if (!host_rflags_set_rf) {
1880 				r->rflags &= ~X86_EFLAGS_TF;
1881 				rip_detected = r->rip;
1882 			} else {
1883 				r->rflags |= X86_EFLAGS_RF;
1884 				++host_rflags_db_handler_flag;
1885 			}
1886 		} else {
1887 			if (r->rip == (u64)&vmrun_rip) {
1888 				host_rflags_vmrun_reached = true;
1889 
1890 				if (host_rflags_set_rf) {
1891 					host_rflags_guest_main_flag = 0;
1892 					rip_detected = r->rip;
1893 					r->rflags &= ~X86_EFLAGS_TF;
1894 
1895 					/* Trigger #DB via debug registers */
1896 					write_dr0((void *)&vmrun_rip);
1897 					write_dr7(0x403);
1898 				}
1899 			}
1900 		}
1901 	} else {
1902 		r->rflags &= ~X86_EFLAGS_TF;
1903 	}
1904 }
1905 
1906 static void host_rflags_prepare(struct svm_test *test)
1907 {
1908 	default_prepare(test);
1909 	handle_exception(DB_VECTOR, host_rflags_db_handler);
1910 	set_test_stage(test, 0);
1911 }
1912 
1913 static void host_rflags_prepare_gif_clear(struct svm_test *test)
1914 {
1915 	if (host_rflags_set_tf)
1916 		write_rflags(read_rflags() | X86_EFLAGS_TF);
1917 }
1918 
1919 static void host_rflags_test(struct svm_test *test)
1920 {
1921 	while (1) {
1922 		if (get_test_stage(test) > 0) {
1923 			if ((host_rflags_set_tf && !host_rflags_ss_on_vmrun && !host_rflags_db_handler_flag) ||
1924 			    (host_rflags_set_rf && host_rflags_db_handler_flag == 1))
1925 				host_rflags_guest_main_flag = 1;
1926 		}
1927 
1928 		if (get_test_stage(test) == 4)
1929 			break;
1930 		vmmcall();
1931 	}
1932 }
1933 
1934 static bool host_rflags_finished(struct svm_test *test)
1935 {
1936 	switch (get_test_stage(test)) {
1937 	case 0:
1938 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1939 			report_fail("Unexpected VMEXIT. Exit reason 0x%x",
1940 				    vmcb->control.exit_code);
1941 			return true;
1942 		}
1943 		vmcb->save.rip += 3;
1944 		/*
1945 		 * Setting host EFLAGS.TF not immediately before VMRUN, causes
1946 		 * #DB trap before first guest instruction is executed
1947 		 */
1948 		host_rflags_set_tf = true;
1949 		break;
1950 	case 1:
1951 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL ||
1952 		    host_rflags_guest_main_flag != 1) {
1953 			report_fail("Unexpected VMEXIT or #DB handler"
1954 				    " invoked before guest main. Exit reason 0x%x",
1955 				    vmcb->control.exit_code);
1956 			return true;
1957 		}
1958 		vmcb->save.rip += 3;
1959 		/*
1960 		 * Setting host EFLAGS.TF immediately before VMRUN, causes #DB
1961 		 * trap after VMRUN completes on the host side (i.e., after
1962 		 * VMEXIT from guest).
1963 		 */
1964 		host_rflags_ss_on_vmrun = true;
1965 		break;
1966 	case 2:
1967 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL ||
1968 		    rip_detected != (u64)&vmrun_rip + 3) {
1969 			report_fail("Unexpected VMEXIT or RIP mismatch."
1970 				    " Exit reason 0x%x, RIP actual: %lx, RIP expected: "
1971 				    "%lx", vmcb->control.exit_code,
1972 				    (u64)&vmrun_rip + 3, rip_detected);
1973 			return true;
1974 		}
1975 		host_rflags_set_rf = true;
1976 		host_rflags_guest_main_flag = 0;
1977 		host_rflags_vmrun_reached = false;
1978 		vmcb->save.rip += 3;
1979 		break;
1980 	case 3:
1981 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL ||
1982 		    rip_detected != (u64)&vmrun_rip ||
1983 		    host_rflags_guest_main_flag != 1 ||
1984 		    host_rflags_db_handler_flag > 1 ||
1985 		    read_rflags() & X86_EFLAGS_RF) {
1986 			report_fail("Unexpected VMEXIT or RIP mismatch or "
1987 				    "EFLAGS.RF not cleared."
1988 				    " Exit reason 0x%x, RIP actual: %lx, RIP expected: "
1989 				    "%lx", vmcb->control.exit_code,
1990 				    (u64)&vmrun_rip, rip_detected);
1991 			return true;
1992 		}
1993 		host_rflags_set_tf = false;
1994 		host_rflags_set_rf = false;
1995 		vmcb->save.rip += 3;
1996 		break;
1997 	default:
1998 		return true;
1999 	}
2000 	inc_test_stage(test);
2001 	return get_test_stage(test) == 5;
2002 }
2003 
2004 static bool host_rflags_check(struct svm_test *test)
2005 {
2006 	return get_test_stage(test) == 4;
2007 }
2008 
2009 #define TEST(name) { #name, .v2 = name }
2010 
2011 /*
2012  * v2 tests
2013  */
2014 
2015 /*
2016  * Ensure that kvm recalculates the L1 guest's CPUID.01H:ECX.OSXSAVE
2017  * after VM-exit from an L2 guest that sets CR4.OSXSAVE to a different
2018  * value than in L1.
2019  */
2020 
2021 static void svm_cr4_osxsave_test_guest(struct svm_test *test)
2022 {
2023 	write_cr4(read_cr4() & ~X86_CR4_OSXSAVE);
2024 }
2025 
2026 static void svm_cr4_osxsave_test(void)
2027 {
2028 	if (!this_cpu_has(X86_FEATURE_XSAVE)) {
2029 		report_skip("XSAVE not detected");
2030 		return;
2031 	}
2032 
2033 	if (!(read_cr4() & X86_CR4_OSXSAVE)) {
2034 		unsigned long cr4 = read_cr4() | X86_CR4_OSXSAVE;
2035 
2036 		write_cr4(cr4);
2037 		vmcb->save.cr4 = cr4;
2038 	}
2039 
2040 	report(this_cpu_has(X86_FEATURE_OSXSAVE), "CPUID.01H:ECX.XSAVE set before VMRUN");
2041 
2042 	test_set_guest(svm_cr4_osxsave_test_guest);
2043 	report(svm_vmrun() == SVM_EXIT_VMMCALL,
2044 	       "svm_cr4_osxsave_test_guest finished with VMMCALL");
2045 
2046 	report(this_cpu_has(X86_FEATURE_OSXSAVE), "CPUID.01H:ECX.XSAVE set after VMRUN");
2047 }
2048 
2049 static void basic_guest_main(struct svm_test *test)
2050 {
2051 }
2052 
2053 
2054 #define SVM_TEST_REG_RESERVED_BITS(start, end, inc, str_name, reg, val,	\
2055 				   resv_mask)				\
2056 {									\
2057 	u64 tmp, mask;							\
2058 	int i;								\
2059 									\
2060 	for (i = start; i <= end; i = i + inc) {			\
2061 		mask = 1ull << i;					\
2062 		if (!(mask & resv_mask))				\
2063 			continue;					\
2064 		tmp = val | mask;					\
2065 		reg = tmp;						\
2066 		report(svm_vmrun() == SVM_EXIT_ERR, "Test %s %d:%d: %lx", \
2067 		       str_name, end, start, tmp);			\
2068 	}								\
2069 }
2070 
2071 #define SVM_TEST_CR_RESERVED_BITS(start, end, inc, cr, val, resv_mask,	\
2072 				  exit_code, test_name)			\
2073 {									\
2074 	u64 tmp, mask;							\
2075 	u32 r;								\
2076 	int i;								\
2077 									\
2078 	for (i = start; i <= end; i = i + inc) {			\
2079 		mask = 1ull << i;					\
2080 		if (!(mask & resv_mask))				\
2081 			continue;					\
2082 		tmp = val | mask;					\
2083 		switch (cr) {						\
2084 		case 0:							\
2085 			vmcb->save.cr0 = tmp;				\
2086 			break;						\
2087 		case 3:							\
2088 			vmcb->save.cr3 = tmp;				\
2089 			break;						\
2090 		case 4:							\
2091 			vmcb->save.cr4 = tmp;				\
2092 		}							\
2093 		r = svm_vmrun();					\
2094 		report(r == exit_code, "Test CR%d %s%d:%d: %lx, wanted exit 0x%x, got 0x%x", \
2095 		       cr, test_name, end, start, tmp, exit_code, r);	\
2096 	}								\
2097 }
2098 
2099 static void test_efer(void)
2100 {
2101 	/*
2102 	 * Un-setting EFER.SVME is illegal
2103 	 */
2104 	u64 efer_saved = vmcb->save.efer;
2105 	u64 efer = efer_saved;
2106 
2107 	report (svm_vmrun() == SVM_EXIT_VMMCALL, "EFER.SVME: %lx", efer);
2108 	efer &= ~EFER_SVME;
2109 	vmcb->save.efer = efer;
2110 	report (svm_vmrun() == SVM_EXIT_ERR, "EFER.SVME: %lx", efer);
2111 	vmcb->save.efer = efer_saved;
2112 
2113 	/*
2114 	 * EFER MBZ bits: 63:16, 9
2115 	 */
2116 	efer_saved = vmcb->save.efer;
2117 
2118 	SVM_TEST_REG_RESERVED_BITS(8, 9, 1, "EFER", vmcb->save.efer,
2119 				   efer_saved, SVM_EFER_RESERVED_MASK);
2120 	SVM_TEST_REG_RESERVED_BITS(16, 63, 4, "EFER", vmcb->save.efer,
2121 				   efer_saved, SVM_EFER_RESERVED_MASK);
2122 
2123 	/*
2124 	 * EFER.LME and CR0.PG are both set and CR4.PAE is zero.
2125 	 */
2126 	u64 cr0_saved = vmcb->save.cr0;
2127 	u64 cr0;
2128 	u64 cr4_saved = vmcb->save.cr4;
2129 	u64 cr4;
2130 
2131 	efer = efer_saved | EFER_LME;
2132 	vmcb->save.efer = efer;
2133 	cr0 = cr0_saved | X86_CR0_PG | X86_CR0_PE;
2134 	vmcb->save.cr0 = cr0;
2135 	cr4 = cr4_saved & ~X86_CR4_PAE;
2136 	vmcb->save.cr4 = cr4;
2137 	report(svm_vmrun() == SVM_EXIT_ERR, "EFER.LME=1 (%lx), "
2138 	       "CR0.PG=1 (%lx) and CR4.PAE=0 (%lx)", efer, cr0, cr4);
2139 
2140 	/*
2141 	 * EFER.LME and CR0.PG are both set and CR0.PE is zero.
2142 	 * CR4.PAE needs to be set as we otherwise cannot
2143 	 * determine if CR4.PAE=0 or CR0.PE=0 triggered the
2144 	 * SVM_EXIT_ERR.
2145 	 */
2146 	cr4 = cr4_saved | X86_CR4_PAE;
2147 	vmcb->save.cr4 = cr4;
2148 	cr0 &= ~X86_CR0_PE;
2149 	vmcb->save.cr0 = cr0;
2150 	report(svm_vmrun() == SVM_EXIT_ERR, "EFER.LME=1 (%lx), "
2151 	       "CR0.PG=1 and CR0.PE=0 (%lx)", efer, cr0);
2152 
2153 	/*
2154 	 * EFER.LME, CR0.PG, CR4.PAE, CS.L, and CS.D are all non-zero.
2155 	 */
2156 	u32 cs_attrib_saved = vmcb->save.cs.attrib;
2157 	u32 cs_attrib;
2158 
2159 	cr0 |= X86_CR0_PE;
2160 	vmcb->save.cr0 = cr0;
2161 	cs_attrib = cs_attrib_saved | SVM_SELECTOR_L_MASK |
2162 		SVM_SELECTOR_DB_MASK;
2163 	vmcb->save.cs.attrib = cs_attrib;
2164 	report(svm_vmrun() == SVM_EXIT_ERR, "EFER.LME=1 (%lx), "
2165 	       "CR0.PG=1 (%lx), CR4.PAE=1 (%lx), CS.L=1 and CS.D=1 (%x)",
2166 	       efer, cr0, cr4, cs_attrib);
2167 
2168 	vmcb->save.cr0 = cr0_saved;
2169 	vmcb->save.cr4 = cr4_saved;
2170 	vmcb->save.efer = efer_saved;
2171 	vmcb->save.cs.attrib = cs_attrib_saved;
2172 }
2173 
2174 static void test_cr0(void)
2175 {
2176 	/*
2177 	 * Un-setting CR0.CD and setting CR0.NW is illegal combination
2178 	 */
2179 	u64 cr0_saved = vmcb->save.cr0;
2180 	u64 cr0 = cr0_saved;
2181 
2182 	cr0 |= X86_CR0_CD;
2183 	cr0 &= ~X86_CR0_NW;
2184 	vmcb->save.cr0 = cr0;
2185 	report (svm_vmrun() == SVM_EXIT_VMMCALL, "Test CR0 CD=1,NW=0: %lx",
2186 		cr0);
2187 	cr0 |= X86_CR0_NW;
2188 	vmcb->save.cr0 = cr0;
2189 	report (svm_vmrun() == SVM_EXIT_VMMCALL, "Test CR0 CD=1,NW=1: %lx",
2190 		cr0);
2191 	cr0 &= ~X86_CR0_NW;
2192 	cr0 &= ~X86_CR0_CD;
2193 	vmcb->save.cr0 = cr0;
2194 	report (svm_vmrun() == SVM_EXIT_VMMCALL, "Test CR0 CD=0,NW=0: %lx",
2195 		cr0);
2196 	cr0 |= X86_CR0_NW;
2197 	vmcb->save.cr0 = cr0;
2198 	report (svm_vmrun() == SVM_EXIT_ERR, "Test CR0 CD=0,NW=1: %lx",
2199 		cr0);
2200 	vmcb->save.cr0 = cr0_saved;
2201 
2202 	/*
2203 	 * CR0[63:32] are not zero
2204 	 */
2205 	cr0 = cr0_saved;
2206 
2207 	SVM_TEST_REG_RESERVED_BITS(32, 63, 4, "CR0", vmcb->save.cr0, cr0_saved,
2208 				   SVM_CR0_RESERVED_MASK);
2209 	vmcb->save.cr0 = cr0_saved;
2210 }
2211 
2212 static void test_cr3(void)
2213 {
2214 	/*
2215 	 * CR3 MBZ bits based on different modes:
2216 	 *   [63:52] - long mode
2217 	 */
2218 	u64 cr3_saved = vmcb->save.cr3;
2219 
2220 	SVM_TEST_CR_RESERVED_BITS(0, 63, 1, 3, cr3_saved,
2221 				  SVM_CR3_LONG_MBZ_MASK, SVM_EXIT_ERR, "");
2222 
2223 	vmcb->save.cr3 = cr3_saved & ~SVM_CR3_LONG_MBZ_MASK;
2224 	report(svm_vmrun() == SVM_EXIT_VMMCALL, "Test CR3 63:0: %lx",
2225 	       vmcb->save.cr3);
2226 
2227 	/*
2228 	 * CR3 non-MBZ reserved bits based on different modes:
2229 	 *   [11:5] [2:0] - long mode (PCIDE=0)
2230 	 *          [2:0] - PAE legacy mode
2231 	 */
2232 	u64 cr4_saved = vmcb->save.cr4;
2233 	u64 *pdpe = npt_get_pml4e();
2234 
2235 	/*
2236 	 * Long mode
2237 	 */
2238 	if (this_cpu_has(X86_FEATURE_PCID)) {
2239 		vmcb->save.cr4 = cr4_saved | X86_CR4_PCIDE;
2240 		SVM_TEST_CR_RESERVED_BITS(0, 11, 1, 3, cr3_saved,
2241 					  SVM_CR3_LONG_RESERVED_MASK, SVM_EXIT_VMMCALL, "(PCIDE=1) ");
2242 
2243 		vmcb->save.cr3 = cr3_saved & ~SVM_CR3_LONG_RESERVED_MASK;
2244 		report(svm_vmrun() == SVM_EXIT_VMMCALL, "Test CR3 63:0: %lx",
2245 		       vmcb->save.cr3);
2246 	}
2247 
2248 	vmcb->save.cr4 = cr4_saved & ~X86_CR4_PCIDE;
2249 
2250 	if (!npt_supported())
2251 		goto skip_npt_only;
2252 
2253 	/* Clear P (Present) bit in NPT in order to trigger #NPF */
2254 	pdpe[0] &= ~1ULL;
2255 
2256 	SVM_TEST_CR_RESERVED_BITS(0, 11, 1, 3, cr3_saved,
2257 				  SVM_CR3_LONG_RESERVED_MASK, SVM_EXIT_NPF, "(PCIDE=0) ");
2258 
2259 	pdpe[0] |= 1ULL;
2260 	vmcb->save.cr3 = cr3_saved;
2261 
2262 	/*
2263 	 * PAE legacy
2264 	 */
2265 	pdpe[0] &= ~1ULL;
2266 	vmcb->save.cr4 = cr4_saved | X86_CR4_PAE;
2267 	SVM_TEST_CR_RESERVED_BITS(0, 2, 1, 3, cr3_saved,
2268 				  SVM_CR3_PAE_LEGACY_RESERVED_MASK, SVM_EXIT_NPF, "(PAE) ");
2269 
2270 	pdpe[0] |= 1ULL;
2271 
2272 skip_npt_only:
2273 	vmcb->save.cr3 = cr3_saved;
2274 	vmcb->save.cr4 = cr4_saved;
2275 }
2276 
2277 /* Test CR4 MBZ bits based on legacy or long modes */
2278 static void test_cr4(void)
2279 {
2280 	u64 cr4_saved = vmcb->save.cr4;
2281 	u64 efer_saved = vmcb->save.efer;
2282 	u64 efer = efer_saved;
2283 
2284 	efer &= ~EFER_LME;
2285 	vmcb->save.efer = efer;
2286 	SVM_TEST_CR_RESERVED_BITS(12, 31, 1, 4, cr4_saved,
2287 				  SVM_CR4_LEGACY_RESERVED_MASK, SVM_EXIT_ERR, "");
2288 
2289 	efer |= EFER_LME;
2290 	vmcb->save.efer = efer;
2291 	SVM_TEST_CR_RESERVED_BITS(12, 31, 1, 4, cr4_saved,
2292 				  SVM_CR4_RESERVED_MASK, SVM_EXIT_ERR, "");
2293 	SVM_TEST_CR_RESERVED_BITS(32, 63, 4, 4, cr4_saved,
2294 				  SVM_CR4_RESERVED_MASK, SVM_EXIT_ERR, "");
2295 
2296 	vmcb->save.cr4 = cr4_saved;
2297 	vmcb->save.efer = efer_saved;
2298 }
2299 
2300 static void test_dr(void)
2301 {
2302 	/*
2303 	 * DR6[63:32] and DR7[63:32] are MBZ
2304 	 */
2305 	u64 dr_saved = vmcb->save.dr6;
2306 
2307 	SVM_TEST_REG_RESERVED_BITS(32, 63, 4, "DR6", vmcb->save.dr6, dr_saved,
2308 				   SVM_DR6_RESERVED_MASK);
2309 	vmcb->save.dr6 = dr_saved;
2310 
2311 	dr_saved = vmcb->save.dr7;
2312 	SVM_TEST_REG_RESERVED_BITS(32, 63, 4, "DR7", vmcb->save.dr7, dr_saved,
2313 				   SVM_DR7_RESERVED_MASK);
2314 
2315 	vmcb->save.dr7 = dr_saved;
2316 }
2317 
2318 /* TODO: verify if high 32-bits are sign- or zero-extended on bare metal */
2319 #define	TEST_BITMAP_ADDR(save_intercept, type, addr, exit_code,		\
2320 			 msg) {						\
2321 		vmcb->control.intercept = saved_intercept | 1ULL << type; \
2322 		if (type == INTERCEPT_MSR_PROT)				\
2323 			vmcb->control.msrpm_base_pa = addr;		\
2324 		else							\
2325 			vmcb->control.iopm_base_pa = addr;		\
2326 		report(svm_vmrun() == exit_code,			\
2327 		       "Test %s address: %lx", msg, addr);		\
2328 	}
2329 
2330 /*
2331  * If the MSR or IOIO intercept table extends to a physical address that
2332  * is greater than or equal to the maximum supported physical address, the
2333  * guest state is illegal.
2334  *
2335  * The VMRUN instruction ignores the lower 12 bits of the address specified
2336  * in the VMCB.
2337  *
2338  * MSRPM spans 2 contiguous 4KB pages while IOPM spans 2 contiguous 4KB
2339  * pages + 1 byte.
2340  *
2341  * [APM vol 2]
2342  *
2343  * Note: Unallocated MSRPM addresses conforming to consistency checks, generate
2344  * #NPF.
2345  */
2346 static void test_msrpm_iopm_bitmap_addrs(void)
2347 {
2348 	u64 saved_intercept = vmcb->control.intercept;
2349 	u64 addr_beyond_limit = 1ull << cpuid_maxphyaddr();
2350 	u64 addr = virt_to_phys(msr_bitmap) & (~((1ull << 12) - 1));
2351 
2352 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_MSR_PROT,
2353 			 addr_beyond_limit - 2 * PAGE_SIZE, SVM_EXIT_ERR,
2354 			 "MSRPM");
2355 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_MSR_PROT,
2356 			 addr_beyond_limit - 2 * PAGE_SIZE + 1, SVM_EXIT_ERR,
2357 			 "MSRPM");
2358 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_MSR_PROT,
2359 			 addr_beyond_limit - PAGE_SIZE, SVM_EXIT_ERR,
2360 			 "MSRPM");
2361 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_MSR_PROT, addr,
2362 			 SVM_EXIT_VMMCALL, "MSRPM");
2363 	addr |= (1ull << 12) - 1;
2364 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_MSR_PROT, addr,
2365 			 SVM_EXIT_VMMCALL, "MSRPM");
2366 
2367 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_IOIO_PROT,
2368 			 addr_beyond_limit - 4 * PAGE_SIZE, SVM_EXIT_VMMCALL,
2369 			 "IOPM");
2370 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_IOIO_PROT,
2371 			 addr_beyond_limit - 3 * PAGE_SIZE, SVM_EXIT_VMMCALL,
2372 			 "IOPM");
2373 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_IOIO_PROT,
2374 			 addr_beyond_limit - 2 * PAGE_SIZE - 2, SVM_EXIT_VMMCALL,
2375 			 "IOPM");
2376 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_IOIO_PROT,
2377 			 addr_beyond_limit - 2 * PAGE_SIZE, SVM_EXIT_ERR,
2378 			 "IOPM");
2379 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_IOIO_PROT,
2380 			 addr_beyond_limit - PAGE_SIZE, SVM_EXIT_ERR,
2381 			 "IOPM");
2382 	addr = virt_to_phys(io_bitmap) & (~((1ull << 11) - 1));
2383 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_IOIO_PROT, addr,
2384 			 SVM_EXIT_VMMCALL, "IOPM");
2385 	addr |= (1ull << 12) - 1;
2386 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_IOIO_PROT, addr,
2387 			 SVM_EXIT_VMMCALL, "IOPM");
2388 
2389 	vmcb->control.intercept = saved_intercept;
2390 }
2391 
2392 /*
2393  * Unlike VMSAVE, VMRUN seems not to update the value of noncanonical
2394  * segment bases in the VMCB.  However, VMENTRY succeeds as documented.
2395  */
2396 #define TEST_CANONICAL_VMRUN(seg_base, msg)				\
2397 	saved_addr = seg_base;						\
2398 	seg_base = (seg_base & ((1ul << addr_limit) - 1)) | noncanonical_mask; \
2399 	return_value = svm_vmrun();					\
2400 	report(return_value == SVM_EXIT_VMMCALL,			\
2401 	       "Successful VMRUN with noncanonical %s.base", msg);	\
2402 	seg_base = saved_addr;
2403 
2404 
2405 #define TEST_CANONICAL_VMLOAD(seg_base, msg)				\
2406 	saved_addr = seg_base;						\
2407 	seg_base = (seg_base & ((1ul << addr_limit) - 1)) | noncanonical_mask; \
2408 	asm volatile ("vmload %0" : : "a"(vmcb_phys) : "memory");	\
2409 	asm volatile ("vmsave %0" : : "a"(vmcb_phys) : "memory");	\
2410 	report(is_canonical(seg_base),					\
2411 	       "Test %s.base for canonical form: %lx", msg, seg_base);	\
2412 	seg_base = saved_addr;
2413 
2414 static void test_canonicalization(void)
2415 {
2416 	u64 saved_addr;
2417 	u64 return_value;
2418 	u64 addr_limit;
2419 	u64 vmcb_phys = virt_to_phys(vmcb);
2420 
2421 	addr_limit = (this_cpu_has(X86_FEATURE_LA57)) ? 57 : 48;
2422 	u64 noncanonical_mask = NONCANONICAL & ~((1ul << addr_limit) - 1);
2423 
2424 	TEST_CANONICAL_VMLOAD(vmcb->save.fs.base, "FS");
2425 	TEST_CANONICAL_VMLOAD(vmcb->save.gs.base, "GS");
2426 	TEST_CANONICAL_VMLOAD(vmcb->save.ldtr.base, "LDTR");
2427 	TEST_CANONICAL_VMLOAD(vmcb->save.tr.base, "TR");
2428 	TEST_CANONICAL_VMLOAD(vmcb->save.kernel_gs_base, "KERNEL GS");
2429 	TEST_CANONICAL_VMRUN(vmcb->save.es.base, "ES");
2430 	TEST_CANONICAL_VMRUN(vmcb->save.cs.base, "CS");
2431 	TEST_CANONICAL_VMRUN(vmcb->save.ss.base, "SS");
2432 	TEST_CANONICAL_VMRUN(vmcb->save.ds.base, "DS");
2433 	TEST_CANONICAL_VMRUN(vmcb->save.gdtr.base, "GDTR");
2434 	TEST_CANONICAL_VMRUN(vmcb->save.idtr.base, "IDTR");
2435 }
2436 
2437 /*
2438  * When VMRUN loads a guest value of 1 in EFLAGS.TF, that value does not
2439  * cause a trace trap between the VMRUN and the first guest instruction, but
2440  * rather after completion of the first guest instruction.
2441  *
2442  * [APM vol 2]
2443  */
2444 u64 guest_rflags_test_trap_rip;
2445 
2446 static void guest_rflags_test_db_handler(struct ex_regs *r)
2447 {
2448 	guest_rflags_test_trap_rip = r->rip;
2449 	r->rflags &= ~X86_EFLAGS_TF;
2450 }
2451 
2452 static void svm_guest_state_test(void)
2453 {
2454 	test_set_guest(basic_guest_main);
2455 	test_efer();
2456 	test_cr0();
2457 	test_cr3();
2458 	test_cr4();
2459 	test_dr();
2460 	test_msrpm_iopm_bitmap_addrs();
2461 	test_canonicalization();
2462 }
2463 
2464 extern void guest_rflags_test_guest(struct svm_test *test);
2465 extern u64 *insn2;
2466 extern u64 *guest_end;
2467 
2468 asm("guest_rflags_test_guest:\n\t"
2469     "push %rbp\n\t"
2470     ".global insn2\n\t"
2471     "insn2:\n\t"
2472     "mov %rsp,%rbp\n\t"
2473     "vmmcall\n\t"
2474     "vmmcall\n\t"
2475     ".global guest_end\n\t"
2476     "guest_end:\n\t"
2477     "vmmcall\n\t"
2478     "pop %rbp\n\t"
2479     "ret");
2480 
2481 static void svm_test_singlestep(void)
2482 {
2483 	handle_exception(DB_VECTOR, guest_rflags_test_db_handler);
2484 
2485 	/*
2486 	 * Trap expected after completion of first guest instruction
2487 	 */
2488 	vmcb->save.rflags |= X86_EFLAGS_TF;
2489 	report (__svm_vmrun((u64)guest_rflags_test_guest) == SVM_EXIT_VMMCALL &&
2490 		guest_rflags_test_trap_rip == (u64)&insn2,
2491 		"Test EFLAGS.TF on VMRUN: trap expected  after completion of first guest instruction");
2492 	/*
2493 	 * No trap expected
2494 	 */
2495 	guest_rflags_test_trap_rip = 0;
2496 	vmcb->save.rip += 3;
2497 	vmcb->save.rflags |= X86_EFLAGS_TF;
2498 	report (__svm_vmrun(vmcb->save.rip) == SVM_EXIT_VMMCALL &&
2499 		guest_rflags_test_trap_rip == 0, "Test EFLAGS.TF on VMRUN: trap not expected");
2500 
2501 	/*
2502 	 * Let guest finish execution
2503 	 */
2504 	vmcb->save.rip += 3;
2505 	report (__svm_vmrun(vmcb->save.rip) == SVM_EXIT_VMMCALL &&
2506 		vmcb->save.rip == (u64)&guest_end, "Test EFLAGS.TF on VMRUN: guest execution completion");
2507 }
2508 
2509 static bool volatile svm_errata_reproduced = false;
2510 static unsigned long volatile physical = 0;
2511 
2512 
2513 /*
2514  *
2515  * Test the following errata:
2516  * If the VMRUN/VMSAVE/VMLOAD are attempted by the nested guest,
2517  * the CPU would first check the EAX against host reserved memory
2518  * regions (so far only SMM_ADDR/SMM_MASK are known to cause it),
2519  * and only then signal #VMexit
2520  *
2521  * Try to reproduce this by trying vmsave on each possible 4K aligned memory
2522  * address in the low 4G where the SMM area has to reside.
2523  */
2524 
2525 static void gp_isr(struct ex_regs *r)
2526 {
2527 	svm_errata_reproduced = true;
2528 	/* skip over the vmsave instruction*/
2529 	r->rip += 3;
2530 }
2531 
2532 static void svm_vmrun_errata_test(void)
2533 {
2534 	unsigned long *last_page = NULL;
2535 
2536 	handle_exception(GP_VECTOR, gp_isr);
2537 
2538 	while (!svm_errata_reproduced) {
2539 
2540 		unsigned long *page = alloc_pages(1);
2541 
2542 		if (!page) {
2543 			report_pass("All guest memory tested, no bug found");
2544 			break;
2545 		}
2546 
2547 		physical = virt_to_phys(page);
2548 
2549 		asm volatile (
2550 			      "mov %[_physical], %%rax\n\t"
2551 			      "vmsave %%rax\n\t"
2552 
2553 			      : [_physical] "=m" (physical)
2554 			      : /* no inputs*/
2555 			      : "rax" /*clobbers*/
2556 			      );
2557 
2558 		if (svm_errata_reproduced) {
2559 			report_fail("Got #GP exception - svm errata reproduced at 0x%lx",
2560 				    physical);
2561 			break;
2562 		}
2563 
2564 		*page = (unsigned long)last_page;
2565 		last_page = page;
2566 	}
2567 
2568 	while (last_page) {
2569 		unsigned long *page = last_page;
2570 		last_page = (unsigned long *)*last_page;
2571 		free_pages_by_order(page, 1);
2572 	}
2573 }
2574 
2575 static void vmload_vmsave_guest_main(struct svm_test *test)
2576 {
2577 	u64 vmcb_phys = virt_to_phys(vmcb);
2578 
2579 	asm volatile ("vmload %0" : : "a"(vmcb_phys));
2580 	asm volatile ("vmsave %0" : : "a"(vmcb_phys));
2581 }
2582 
2583 static void svm_vmload_vmsave(void)
2584 {
2585 	u32 intercept_saved = vmcb->control.intercept;
2586 
2587 	test_set_guest(vmload_vmsave_guest_main);
2588 
2589 	/*
2590 	 * Disabling intercept for VMLOAD and VMSAVE doesn't cause
2591 	 * respective #VMEXIT to host
2592 	 */
2593 	vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMLOAD);
2594 	vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMSAVE);
2595 	svm_vmrun();
2596 	report(vmcb->control.exit_code == SVM_EXIT_VMMCALL, "Test "
2597 	       "VMLOAD/VMSAVE intercept: Expected VMMCALL #VMEXIT");
2598 
2599 	/*
2600 	 * Enabling intercept for VMLOAD and VMSAVE causes respective
2601 	 * #VMEXIT to host
2602 	 */
2603 	vmcb->control.intercept |= (1ULL << INTERCEPT_VMLOAD);
2604 	svm_vmrun();
2605 	report(vmcb->control.exit_code == SVM_EXIT_VMLOAD, "Test "
2606 	       "VMLOAD/VMSAVE intercept: Expected VMLOAD #VMEXIT");
2607 	vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMLOAD);
2608 	vmcb->control.intercept |= (1ULL << INTERCEPT_VMSAVE);
2609 	svm_vmrun();
2610 	report(vmcb->control.exit_code == SVM_EXIT_VMSAVE, "Test "
2611 	       "VMLOAD/VMSAVE intercept: Expected VMSAVE #VMEXIT");
2612 	vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMSAVE);
2613 	svm_vmrun();
2614 	report(vmcb->control.exit_code == SVM_EXIT_VMMCALL, "Test "
2615 	       "VMLOAD/VMSAVE intercept: Expected VMMCALL #VMEXIT");
2616 
2617 	vmcb->control.intercept |= (1ULL << INTERCEPT_VMLOAD);
2618 	svm_vmrun();
2619 	report(vmcb->control.exit_code == SVM_EXIT_VMLOAD, "Test "
2620 	       "VMLOAD/VMSAVE intercept: Expected VMLOAD #VMEXIT");
2621 	vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMLOAD);
2622 	svm_vmrun();
2623 	report(vmcb->control.exit_code == SVM_EXIT_VMMCALL, "Test "
2624 	       "VMLOAD/VMSAVE intercept: Expected VMMCALL #VMEXIT");
2625 
2626 	vmcb->control.intercept |= (1ULL << INTERCEPT_VMSAVE);
2627 	svm_vmrun();
2628 	report(vmcb->control.exit_code == SVM_EXIT_VMSAVE, "Test "
2629 	       "VMLOAD/VMSAVE intercept: Expected VMSAVE #VMEXIT");
2630 	vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMSAVE);
2631 	svm_vmrun();
2632 	report(vmcb->control.exit_code == SVM_EXIT_VMMCALL, "Test "
2633 	       "VMLOAD/VMSAVE intercept: Expected VMMCALL #VMEXIT");
2634 
2635 	vmcb->control.intercept = intercept_saved;
2636 }
2637 
2638 static void prepare_vgif_enabled(struct svm_test *test)
2639 {
2640 	default_prepare(test);
2641 }
2642 
2643 static void test_vgif(struct svm_test *test)
2644 {
2645 	asm volatile ("vmmcall\n\tstgi\n\tvmmcall\n\tclgi\n\tvmmcall\n\t");
2646 }
2647 
2648 static bool vgif_finished(struct svm_test *test)
2649 {
2650 	switch (get_test_stage(test))
2651 		{
2652 		case 0:
2653 			if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
2654 				report_fail("VMEXIT not due to vmmcall.");
2655 				return true;
2656 			}
2657 			vmcb->control.int_ctl |= V_GIF_ENABLED_MASK;
2658 			vmcb->save.rip += 3;
2659 			inc_test_stage(test);
2660 			break;
2661 		case 1:
2662 			if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
2663 				report_fail("VMEXIT not due to vmmcall.");
2664 				return true;
2665 			}
2666 			if (!(vmcb->control.int_ctl & V_GIF_MASK)) {
2667 				report_fail("Failed to set VGIF when executing STGI.");
2668 				vmcb->control.int_ctl &= ~V_GIF_ENABLED_MASK;
2669 				return true;
2670 			}
2671 			report_pass("STGI set VGIF bit.");
2672 			vmcb->save.rip += 3;
2673 			inc_test_stage(test);
2674 			break;
2675 		case 2:
2676 			if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
2677 				report_fail("VMEXIT not due to vmmcall.");
2678 				return true;
2679 			}
2680 			if (vmcb->control.int_ctl & V_GIF_MASK) {
2681 				report_fail("Failed to clear VGIF when executing CLGI.");
2682 				vmcb->control.int_ctl &= ~V_GIF_ENABLED_MASK;
2683 				return true;
2684 			}
2685 			report_pass("CLGI cleared VGIF bit.");
2686 			vmcb->save.rip += 3;
2687 			inc_test_stage(test);
2688 			vmcb->control.int_ctl &= ~V_GIF_ENABLED_MASK;
2689 			break;
2690 		default:
2691 			return true;
2692 			break;
2693 		}
2694 
2695 	return get_test_stage(test) == 3;
2696 }
2697 
2698 static bool vgif_check(struct svm_test *test)
2699 {
2700 	return get_test_stage(test) == 3;
2701 }
2702 
2703 
2704 static int pause_test_counter;
2705 static int wait_counter;
2706 
2707 static void pause_filter_test_guest_main(struct svm_test *test)
2708 {
2709 	int i;
2710 	for (i = 0 ; i < pause_test_counter ; i++)
2711 		pause();
2712 
2713 	if (!wait_counter)
2714 		return;
2715 
2716 	for (i = 0; i < wait_counter; i++)
2717 		;
2718 
2719 	for (i = 0 ; i < pause_test_counter ; i++)
2720 		pause();
2721 
2722 }
2723 
2724 static void pause_filter_run_test(int pause_iterations, int filter_value, int wait_iterations, int threshold)
2725 {
2726 	test_set_guest(pause_filter_test_guest_main);
2727 
2728 	pause_test_counter = pause_iterations;
2729 	wait_counter = wait_iterations;
2730 
2731 	vmcb->control.pause_filter_count = filter_value;
2732 	vmcb->control.pause_filter_thresh = threshold;
2733 	svm_vmrun();
2734 
2735 	if (filter_value <= pause_iterations || wait_iterations < threshold)
2736 		report(vmcb->control.exit_code == SVM_EXIT_PAUSE, "expected PAUSE vmexit");
2737 	else
2738 		report(vmcb->control.exit_code == SVM_EXIT_VMMCALL, "no expected PAUSE vmexit");
2739 }
2740 
2741 static void pause_filter_test(void)
2742 {
2743 	if (!pause_filter_supported()) {
2744 		report_skip("PAUSE filter not supported in the guest");
2745 		return;
2746 	}
2747 
2748 	vmcb->control.intercept |= (1 << INTERCEPT_PAUSE);
2749 
2750 	// filter count more that pause count - no VMexit
2751 	pause_filter_run_test(10, 9, 0, 0);
2752 
2753 	// filter count smaller pause count - no VMexit
2754 	pause_filter_run_test(20, 21, 0, 0);
2755 
2756 
2757 	if (pause_threshold_supported()) {
2758 		// filter count smaller pause count - no VMexit +  large enough threshold
2759 		// so that filter counter resets
2760 		pause_filter_run_test(20, 21, 1000, 10);
2761 
2762 		// filter count smaller pause count - no VMexit +  small threshold
2763 		// so that filter doesn't reset
2764 		pause_filter_run_test(20, 21, 10, 1000);
2765 	} else {
2766 		report_skip("PAUSE threshold not supported in the guest");
2767 		return;
2768 	}
2769 }
2770 
2771 /* If CR0.TS and CR0.EM are cleared in L2, no #NM is generated. */
2772 static void svm_no_nm_test(void)
2773 {
2774 	write_cr0(read_cr0() & ~X86_CR0_TS);
2775 	test_set_guest((test_guest_func)fnop);
2776 
2777 	vmcb->save.cr0 = vmcb->save.cr0 & ~(X86_CR0_TS | X86_CR0_EM);
2778 	report(svm_vmrun() == SVM_EXIT_VMMCALL,
2779 	       "fnop with CR0.TS and CR0.EM unset no #NM exception");
2780 }
2781 
2782 static u64 amd_get_lbr_rip(u32 msr)
2783 {
2784 	return rdmsr(msr) & ~AMD_LBR_RECORD_MISPREDICT;
2785 }
2786 
2787 #define HOST_CHECK_LBR(from_expected, to_expected)					\
2788 do {											\
2789 	TEST_EXPECT_EQ((u64)from_expected, amd_get_lbr_rip(MSR_IA32_LASTBRANCHFROMIP));	\
2790 	TEST_EXPECT_EQ((u64)to_expected, amd_get_lbr_rip(MSR_IA32_LASTBRANCHTOIP));	\
2791 } while (0)
2792 
2793 /*
2794  * FIXME: Do something other than generate an exception to communicate failure.
2795  * Debugging without expected vs. actual is an absolute nightmare.
2796  */
2797 #define GUEST_CHECK_LBR(from_expected, to_expected)				\
2798 do {										\
2799 	if ((u64)(from_expected) != amd_get_lbr_rip(MSR_IA32_LASTBRANCHFROMIP))	\
2800 		asm volatile("ud2");						\
2801 	if ((u64)(to_expected) != amd_get_lbr_rip(MSR_IA32_LASTBRANCHTOIP))	\
2802 		asm volatile("ud2");						\
2803 } while (0)
2804 
2805 #define REPORT_GUEST_LBR_ERROR(vmcb)						\
2806 	report(false, "LBR guest test failed.  Exit reason 0x%x, RIP = %lx, from = %lx, to = %lx, ex from = %lx, ex to = %lx", \
2807 		       vmcb->control.exit_code, vmcb->save.rip,			\
2808 		       vmcb->save.br_from, vmcb->save.br_to,			\
2809 		       vmcb->save.last_excp_from, vmcb->save.last_excp_to)
2810 
2811 #define DO_BRANCH(branch_name)				\
2812 	asm volatile (					\
2813 		      # branch_name "_from:"		\
2814 		      "jmp " # branch_name  "_to\n"	\
2815 		      "nop\n"				\
2816 		      "nop\n"				\
2817 		      # branch_name  "_to:"		\
2818 		      "nop\n"				\
2819 		       )
2820 
2821 
2822 extern u64 guest_branch0_from, guest_branch0_to;
2823 extern u64 guest_branch2_from, guest_branch2_to;
2824 
2825 extern u64 host_branch0_from, host_branch0_to;
2826 extern u64 host_branch2_from, host_branch2_to;
2827 extern u64 host_branch3_from, host_branch3_to;
2828 extern u64 host_branch4_from, host_branch4_to;
2829 
2830 u64 dbgctl;
2831 
2832 static void svm_lbrv_test_guest1(void)
2833 {
2834 	/*
2835 	 * This guest expects the LBR to be already enabled when it starts,
2836 	 * it does a branch, and then disables the LBR and then checks.
2837 	 */
2838 
2839 	DO_BRANCH(guest_branch0);
2840 
2841 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2842 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0);
2843 
2844 	if (dbgctl != DEBUGCTLMSR_LBR)
2845 		asm volatile("ud2\n");
2846 	if (rdmsr(MSR_IA32_DEBUGCTLMSR) != 0)
2847 		asm volatile("ud2\n");
2848 
2849 	GUEST_CHECK_LBR(&guest_branch0_from, &guest_branch0_to);
2850 	asm volatile ("vmmcall\n");
2851 }
2852 
2853 static void svm_lbrv_test_guest2(void)
2854 {
2855 	/*
2856 	 * This guest expects the LBR to be disabled when it starts,
2857 	 * enables it, does a branch, disables it and then checks.
2858 	 */
2859 
2860 	DO_BRANCH(guest_branch1);
2861 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2862 
2863 	if (dbgctl != 0)
2864 		asm volatile("ud2\n");
2865 
2866 	GUEST_CHECK_LBR(&host_branch2_from, &host_branch2_to);
2867 
2868 	wrmsr(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR);
2869 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2870 	DO_BRANCH(guest_branch2);
2871 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0);
2872 
2873 	if (dbgctl != DEBUGCTLMSR_LBR)
2874 		asm volatile("ud2\n");
2875 	GUEST_CHECK_LBR(&guest_branch2_from, &guest_branch2_to);
2876 
2877 	asm volatile ("vmmcall\n");
2878 }
2879 
2880 static void svm_lbrv_test0(void)
2881 {
2882 	report(true, "Basic LBR test");
2883 	wrmsr(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR);
2884 	DO_BRANCH(host_branch0);
2885 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2886 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0);
2887 
2888 	TEST_EXPECT_EQ(dbgctl, DEBUGCTLMSR_LBR);
2889 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2890 	TEST_EXPECT_EQ(dbgctl, 0);
2891 
2892 	HOST_CHECK_LBR(&host_branch0_from, &host_branch0_to);
2893 }
2894 
2895 static void svm_lbrv_test1(void)
2896 {
2897 	report(true, "Test that without LBRV enabled, guest LBR state does 'leak' to the host(1)");
2898 
2899 	svm_setup_vmrun((u64)svm_lbrv_test_guest1);
2900 	vmcb->control.virt_ext = 0;
2901 
2902 	wrmsr(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR);
2903 	DO_BRANCH(host_branch1);
2904 	SVM_BARE_VMRUN;
2905 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2906 
2907 	if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
2908 		REPORT_GUEST_LBR_ERROR(vmcb);
2909 		return;
2910 	}
2911 
2912 	TEST_EXPECT_EQ(dbgctl, 0);
2913 	HOST_CHECK_LBR(&guest_branch0_from, &guest_branch0_to);
2914 }
2915 
2916 static void svm_lbrv_test2(void)
2917 {
2918 	report(true, "Test that without LBRV enabled, guest LBR state does 'leak' to the host(2)");
2919 
2920 	svm_setup_vmrun((u64)svm_lbrv_test_guest2);
2921 	vmcb->control.virt_ext = 0;
2922 
2923 	wrmsr(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR);
2924 	DO_BRANCH(host_branch2);
2925 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0);
2926 	SVM_BARE_VMRUN;
2927 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2928 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0);
2929 
2930 	if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
2931 		REPORT_GUEST_LBR_ERROR(vmcb);
2932 		return;
2933 	}
2934 
2935 	TEST_EXPECT_EQ(dbgctl, 0);
2936 	HOST_CHECK_LBR(&guest_branch2_from, &guest_branch2_to);
2937 }
2938 
2939 static void svm_lbrv_nested_test1(void)
2940 {
2941 	if (!lbrv_supported()) {
2942 		report_skip("LBRV not supported in the guest");
2943 		return;
2944 	}
2945 
2946 	report(true, "Test that with LBRV enabled, guest LBR state doesn't leak (1)");
2947 	svm_setup_vmrun((u64)svm_lbrv_test_guest1);
2948 	vmcb->control.virt_ext = LBR_CTL_ENABLE_MASK;
2949 	vmcb->save.dbgctl = DEBUGCTLMSR_LBR;
2950 
2951 	wrmsr(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR);
2952 	DO_BRANCH(host_branch3);
2953 	SVM_BARE_VMRUN;
2954 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2955 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0);
2956 
2957 	if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
2958 		REPORT_GUEST_LBR_ERROR(vmcb);
2959 		return;
2960 	}
2961 
2962 	if (vmcb->save.dbgctl != 0) {
2963 		report(false, "unexpected virtual guest MSR_IA32_DEBUGCTLMSR value 0x%lx", vmcb->save.dbgctl);
2964 		return;
2965 	}
2966 
2967 	TEST_EXPECT_EQ(dbgctl, DEBUGCTLMSR_LBR);
2968 	HOST_CHECK_LBR(&host_branch3_from, &host_branch3_to);
2969 }
2970 
2971 static void svm_lbrv_nested_test2(void)
2972 {
2973 	if (!lbrv_supported()) {
2974 		report_skip("LBRV not supported in the guest");
2975 		return;
2976 	}
2977 
2978 	report(true, "Test that with LBRV enabled, guest LBR state doesn't leak (2)");
2979 	svm_setup_vmrun((u64)svm_lbrv_test_guest2);
2980 	vmcb->control.virt_ext = LBR_CTL_ENABLE_MASK;
2981 
2982 	vmcb->save.dbgctl = 0;
2983 	vmcb->save.br_from = (u64)&host_branch2_from;
2984 	vmcb->save.br_to = (u64)&host_branch2_to;
2985 
2986 	wrmsr(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR);
2987 	DO_BRANCH(host_branch4);
2988 	SVM_BARE_VMRUN;
2989 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2990 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0);
2991 
2992 	if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
2993 		REPORT_GUEST_LBR_ERROR(vmcb);
2994 		return;
2995 	}
2996 
2997 	TEST_EXPECT_EQ(dbgctl, DEBUGCTLMSR_LBR);
2998 	HOST_CHECK_LBR(&host_branch4_from, &host_branch4_to);
2999 }
3000 
3001 
3002 // test that a nested guest which does enable INTR interception
3003 // but doesn't enable virtual interrupt masking works
3004 
3005 static volatile int dummy_isr_recevied;
3006 static void dummy_isr(isr_regs_t *regs)
3007 {
3008 	dummy_isr_recevied++;
3009 	eoi();
3010 }
3011 
3012 
3013 static volatile int nmi_recevied;
3014 static void dummy_nmi_handler(struct ex_regs *regs)
3015 {
3016 	nmi_recevied++;
3017 }
3018 
3019 
3020 static void svm_intr_intercept_mix_run_guest(volatile int *counter, int expected_vmexit)
3021 {
3022 	if (counter)
3023 		*counter = 0;
3024 
3025 	sti();  // host IF value should not matter
3026 	clgi(); // vmrun will set back GI to 1
3027 
3028 	svm_vmrun();
3029 
3030 	if (counter)
3031 		report(!*counter, "No interrupt expected");
3032 
3033 	stgi();
3034 
3035 	if (counter)
3036 		report(*counter == 1, "Interrupt is expected");
3037 
3038 	report (vmcb->control.exit_code == expected_vmexit, "Test expected VM exit");
3039 	report(vmcb->save.rflags & X86_EFLAGS_IF, "Guest should have EFLAGS.IF set now");
3040 	cli();
3041 }
3042 
3043 
3044 // subtest: test that enabling EFLAGS.IF is enough to trigger an interrupt
3045 static void svm_intr_intercept_mix_if_guest(struct svm_test *test)
3046 {
3047 	asm volatile("nop;nop;nop;nop");
3048 	report(!dummy_isr_recevied, "No interrupt expected");
3049 	sti_nop();
3050 	report(0, "must not reach here");
3051 }
3052 
3053 static void svm_intr_intercept_mix_if(void)
3054 {
3055 	// make a physical interrupt to be pending
3056 	handle_irq(0x55, dummy_isr);
3057 
3058 	vmcb->control.intercept |= (1 << INTERCEPT_INTR);
3059 	vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3060 	vmcb->save.rflags &= ~X86_EFLAGS_IF;
3061 
3062 	test_set_guest(svm_intr_intercept_mix_if_guest);
3063 	cli();
3064 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_FIXED | 0x55, 0);
3065 	svm_intr_intercept_mix_run_guest(&dummy_isr_recevied, SVM_EXIT_INTR);
3066 }
3067 
3068 
3069 // subtest: test that a clever guest can trigger an interrupt by setting GIF
3070 // if GIF is not intercepted
3071 static void svm_intr_intercept_mix_gif_guest(struct svm_test *test)
3072 {
3073 
3074 	asm volatile("nop;nop;nop;nop");
3075 	report(!dummy_isr_recevied, "No interrupt expected");
3076 
3077 	// clear GIF and enable IF
3078 	// that should still not cause VM exit
3079 	clgi();
3080 	sti_nop();
3081 	report(!dummy_isr_recevied, "No interrupt expected");
3082 
3083 	stgi();
3084 	report(0, "must not reach here");
3085 }
3086 
3087 static void svm_intr_intercept_mix_gif(void)
3088 {
3089 	handle_irq(0x55, dummy_isr);
3090 
3091 	vmcb->control.intercept |= (1 << INTERCEPT_INTR);
3092 	vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3093 	vmcb->save.rflags &= ~X86_EFLAGS_IF;
3094 
3095 	test_set_guest(svm_intr_intercept_mix_gif_guest);
3096 	cli();
3097 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_FIXED | 0x55, 0);
3098 	svm_intr_intercept_mix_run_guest(&dummy_isr_recevied, SVM_EXIT_INTR);
3099 }
3100 
3101 // subtest: test that a clever guest can trigger an interrupt by setting GIF
3102 // if GIF is not intercepted and interrupt comes after guest
3103 // started running
3104 static void svm_intr_intercept_mix_gif_guest2(struct svm_test *test)
3105 {
3106 	asm volatile("nop;nop;nop;nop");
3107 	report(!dummy_isr_recevied, "No interrupt expected");
3108 
3109 	clgi();
3110 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_FIXED | 0x55, 0);
3111 	report(!dummy_isr_recevied, "No interrupt expected");
3112 
3113 	stgi();
3114 	report(0, "must not reach here");
3115 }
3116 
3117 static void svm_intr_intercept_mix_gif2(void)
3118 {
3119 	handle_irq(0x55, dummy_isr);
3120 
3121 	vmcb->control.intercept |= (1 << INTERCEPT_INTR);
3122 	vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3123 	vmcb->save.rflags |= X86_EFLAGS_IF;
3124 
3125 	test_set_guest(svm_intr_intercept_mix_gif_guest2);
3126 	svm_intr_intercept_mix_run_guest(&dummy_isr_recevied, SVM_EXIT_INTR);
3127 }
3128 
3129 
3130 // subtest: test that pending NMI will be handled when guest enables GIF
3131 static void svm_intr_intercept_mix_nmi_guest(struct svm_test *test)
3132 {
3133 	asm volatile("nop;nop;nop;nop");
3134 	report(!nmi_recevied, "No NMI expected");
3135 	cli(); // should have no effect
3136 
3137 	clgi();
3138 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_NMI, 0);
3139 	sti_nop(); // should have no effect
3140 	report(!nmi_recevied, "No NMI expected");
3141 
3142 	stgi();
3143 	report(0, "must not reach here");
3144 }
3145 
3146 static void svm_intr_intercept_mix_nmi(void)
3147 {
3148 	handle_exception(2, dummy_nmi_handler);
3149 
3150 	vmcb->control.intercept |= (1 << INTERCEPT_NMI);
3151 	vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3152 	vmcb->save.rflags |= X86_EFLAGS_IF;
3153 
3154 	test_set_guest(svm_intr_intercept_mix_nmi_guest);
3155 	svm_intr_intercept_mix_run_guest(&nmi_recevied, SVM_EXIT_NMI);
3156 }
3157 
3158 // test that pending SMI will be handled when guest enables GIF
3159 // TODO: can't really count #SMIs so just test that guest doesn't hang
3160 // and VMexits on SMI
3161 static void svm_intr_intercept_mix_smi_guest(struct svm_test *test)
3162 {
3163 	asm volatile("nop;nop;nop;nop");
3164 
3165 	clgi();
3166 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_SMI, 0);
3167 	sti_nop(); // should have no effect
3168 	stgi();
3169 	report(0, "must not reach here");
3170 }
3171 
3172 static void svm_intr_intercept_mix_smi(void)
3173 {
3174 	vmcb->control.intercept |= (1 << INTERCEPT_SMI);
3175 	vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3176 	test_set_guest(svm_intr_intercept_mix_smi_guest);
3177 	svm_intr_intercept_mix_run_guest(NULL, SVM_EXIT_SMI);
3178 }
3179 
3180 static void svm_l2_ac_test(void)
3181 {
3182 	bool hit_ac = false;
3183 
3184 	write_cr0(read_cr0() | X86_CR0_AM);
3185 	write_rflags(read_rflags() | X86_EFLAGS_AC);
3186 
3187 	run_in_user(generate_usermode_ac, AC_VECTOR, 0, 0, 0, 0, &hit_ac);
3188 	report(hit_ac, "Usermode #AC handled in L2");
3189 	vmmcall();
3190 }
3191 
3192 struct svm_exception_test {
3193 	u8 vector;
3194 	void (*guest_code)(void);
3195 };
3196 
3197 struct svm_exception_test svm_exception_tests[] = {
3198 	{ GP_VECTOR, generate_non_canonical_gp },
3199 	{ UD_VECTOR, generate_ud },
3200 	{ DE_VECTOR, generate_de },
3201 	{ DB_VECTOR, generate_single_step_db },
3202 	{ BP_VECTOR, generate_bp },
3203 	{ AC_VECTOR, svm_l2_ac_test },
3204 	{ OF_VECTOR, generate_of },
3205 	{ NM_VECTOR, generate_cr0_ts_nm },
3206 	{ NM_VECTOR, generate_cr0_em_nm },
3207 };
3208 
3209 static u8 svm_exception_test_vector;
3210 
3211 static void svm_exception_handler(struct ex_regs *regs)
3212 {
3213 	report(regs->vector == svm_exception_test_vector,
3214 		"Handling %s in L2's exception handler",
3215 		exception_mnemonic(svm_exception_test_vector));
3216 	vmmcall();
3217 }
3218 
3219 static void handle_exception_in_l2(u8 vector)
3220 {
3221 	handler old_handler = handle_exception(vector, svm_exception_handler);
3222 	svm_exception_test_vector = vector;
3223 
3224 	report(svm_vmrun() == SVM_EXIT_VMMCALL,
3225 		"%s handled by L2", exception_mnemonic(vector));
3226 
3227 	handle_exception(vector, old_handler);
3228 }
3229 
3230 static void handle_exception_in_l1(u32 vector)
3231 {
3232 	u32 old_ie = vmcb->control.intercept_exceptions;
3233 
3234 	vmcb->control.intercept_exceptions |= (1ULL << vector);
3235 
3236 	report(svm_vmrun() == (SVM_EXIT_EXCP_BASE + vector),
3237 		"%s handled by L1",  exception_mnemonic(vector));
3238 
3239 	vmcb->control.intercept_exceptions = old_ie;
3240 }
3241 
3242 static void svm_exception_test(void)
3243 {
3244 	struct svm_exception_test *t;
3245 	int i;
3246 
3247 	for (i = 0; i < ARRAY_SIZE(svm_exception_tests); i++) {
3248 		t = &svm_exception_tests[i];
3249 		test_set_guest((test_guest_func)t->guest_code);
3250 
3251 		handle_exception_in_l2(t->vector);
3252 		vmcb_ident(vmcb);
3253 
3254 		handle_exception_in_l1(t->vector);
3255 		vmcb_ident(vmcb);
3256 	}
3257 }
3258 
3259 static void shutdown_intercept_test_guest(struct svm_test *test)
3260 {
3261 	asm volatile ("ud2");
3262 	report_fail("should not reach here\n");
3263 
3264 }
3265 
3266 static void svm_shutdown_intercept_test(void)
3267 {
3268 	test_set_guest(shutdown_intercept_test_guest);
3269 	vmcb->save.idtr.base = (u64)alloc_vpage();
3270 	vmcb->control.intercept |= (1ULL << INTERCEPT_SHUTDOWN);
3271 	svm_vmrun();
3272 	report(vmcb->control.exit_code == SVM_EXIT_SHUTDOWN, "shutdown test passed");
3273 }
3274 
3275 struct svm_test svm_tests[] = {
3276 	{ "null", default_supported, default_prepare,
3277 	  default_prepare_gif_clear, null_test,
3278 	  default_finished, null_check },
3279 	{ "vmrun", default_supported, default_prepare,
3280 	  default_prepare_gif_clear, test_vmrun,
3281 	  default_finished, check_vmrun },
3282 	{ "ioio", default_supported, prepare_ioio,
3283 	  default_prepare_gif_clear, test_ioio,
3284 	  ioio_finished, check_ioio },
3285 	{ "vmrun intercept check", default_supported, prepare_no_vmrun_int,
3286 	  default_prepare_gif_clear, null_test, default_finished,
3287 	  check_no_vmrun_int },
3288 	{ "rsm", default_supported,
3289 	  prepare_rsm_intercept, default_prepare_gif_clear,
3290 	  test_rsm_intercept, finished_rsm_intercept, check_rsm_intercept },
3291 	{ "cr3 read intercept", default_supported,
3292 	  prepare_cr3_intercept, default_prepare_gif_clear,
3293 	  test_cr3_intercept, default_finished, check_cr3_intercept },
3294 	{ "cr3 read nointercept", default_supported, default_prepare,
3295 	  default_prepare_gif_clear, test_cr3_intercept, default_finished,
3296 	  check_cr3_nointercept },
3297 	{ "cr3 read intercept emulate", smp_supported,
3298 	  prepare_cr3_intercept_bypass, default_prepare_gif_clear,
3299 	  test_cr3_intercept_bypass, default_finished, check_cr3_intercept },
3300 	{ "dr intercept check", default_supported, prepare_dr_intercept,
3301 	  default_prepare_gif_clear, test_dr_intercept, dr_intercept_finished,
3302 	  check_dr_intercept },
3303 	{ "next_rip", next_rip_supported, prepare_next_rip,
3304 	  default_prepare_gif_clear, test_next_rip,
3305 	  default_finished, check_next_rip },
3306 	{ "msr intercept check", default_supported, prepare_msr_intercept,
3307 	  default_prepare_gif_clear, test_msr_intercept,
3308 	  msr_intercept_finished, check_msr_intercept },
3309 	{ "mode_switch", default_supported, prepare_mode_switch,
3310 	  default_prepare_gif_clear, test_mode_switch,
3311 	  mode_switch_finished, check_mode_switch },
3312 	{ "asid_zero", default_supported, prepare_asid_zero,
3313 	  default_prepare_gif_clear, test_asid_zero,
3314 	  default_finished, check_asid_zero },
3315 	{ "sel_cr0_bug", default_supported, sel_cr0_bug_prepare,
3316 	  default_prepare_gif_clear, sel_cr0_bug_test,
3317 	  sel_cr0_bug_finished, sel_cr0_bug_check },
3318 	{ "tsc_adjust", tsc_adjust_supported, tsc_adjust_prepare,
3319 	  default_prepare_gif_clear, tsc_adjust_test,
3320 	  default_finished, tsc_adjust_check },
3321 	{ "latency_run_exit", default_supported, latency_prepare,
3322 	  default_prepare_gif_clear, latency_test,
3323 	  latency_finished, latency_check },
3324 	{ "latency_run_exit_clean", default_supported, latency_prepare,
3325 	  default_prepare_gif_clear, latency_test,
3326 	  latency_finished_clean, latency_check },
3327 	{ "latency_svm_insn", default_supported, lat_svm_insn_prepare,
3328 	  default_prepare_gif_clear, null_test,
3329 	  lat_svm_insn_finished, lat_svm_insn_check },
3330 	{ "exc_inject", default_supported, exc_inject_prepare,
3331 	  default_prepare_gif_clear, exc_inject_test,
3332 	  exc_inject_finished, exc_inject_check },
3333 	{ "pending_event", default_supported, pending_event_prepare,
3334 	  default_prepare_gif_clear,
3335 	  pending_event_test, pending_event_finished, pending_event_check },
3336 	{ "pending_event_cli", default_supported, pending_event_cli_prepare,
3337 	  pending_event_cli_prepare_gif_clear,
3338 	  pending_event_cli_test, pending_event_cli_finished,
3339 	  pending_event_cli_check },
3340 	{ "interrupt", default_supported, interrupt_prepare,
3341 	  default_prepare_gif_clear, interrupt_test,
3342 	  interrupt_finished, interrupt_check },
3343 	{ "nmi", default_supported, nmi_prepare,
3344 	  default_prepare_gif_clear, nmi_test,
3345 	  nmi_finished, nmi_check },
3346 	{ "nmi_hlt", smp_supported, nmi_prepare,
3347 	  default_prepare_gif_clear, nmi_hlt_test,
3348 	  nmi_hlt_finished, nmi_hlt_check },
3349         { "vnmi", vnmi_supported, vnmi_prepare,
3350           default_prepare_gif_clear, vnmi_test,
3351           vnmi_finished, vnmi_check },
3352 	{ "virq_inject", default_supported, virq_inject_prepare,
3353 	  default_prepare_gif_clear, virq_inject_test,
3354 	  virq_inject_finished, virq_inject_check },
3355 	{ "reg_corruption", default_supported, reg_corruption_prepare,
3356 	  default_prepare_gif_clear, reg_corruption_test,
3357 	  reg_corruption_finished, reg_corruption_check },
3358 	{ "svm_init_startup_test", smp_supported, init_startup_prepare,
3359 	  default_prepare_gif_clear, null_test,
3360 	  init_startup_finished, init_startup_check },
3361 	{ "svm_init_intercept_test", smp_supported, init_intercept_prepare,
3362 	  default_prepare_gif_clear, init_intercept_test,
3363 	  init_intercept_finished, init_intercept_check, .on_vcpu = 2 },
3364 	{ "host_rflags", default_supported, host_rflags_prepare,
3365 	  host_rflags_prepare_gif_clear, host_rflags_test,
3366 	  host_rflags_finished, host_rflags_check },
3367 	{ "vgif", vgif_supported, prepare_vgif_enabled,
3368 	  default_prepare_gif_clear, test_vgif, vgif_finished,
3369 	  vgif_check },
3370 	TEST(svm_cr4_osxsave_test),
3371 	TEST(svm_guest_state_test),
3372 	TEST(svm_vmrun_errata_test),
3373 	TEST(svm_vmload_vmsave),
3374 	TEST(svm_test_singlestep),
3375 	TEST(svm_no_nm_test),
3376 	TEST(svm_exception_test),
3377 	TEST(svm_lbrv_test0),
3378 	TEST(svm_lbrv_test1),
3379 	TEST(svm_lbrv_test2),
3380 	TEST(svm_lbrv_nested_test1),
3381 	TEST(svm_lbrv_nested_test2),
3382 	TEST(svm_intr_intercept_mix_if),
3383 	TEST(svm_intr_intercept_mix_gif),
3384 	TEST(svm_intr_intercept_mix_gif2),
3385 	TEST(svm_intr_intercept_mix_nmi),
3386 	TEST(svm_intr_intercept_mix_smi),
3387 	TEST(svm_tsc_scale_test),
3388 	TEST(pause_filter_test),
3389 	TEST(svm_shutdown_intercept_test),
3390 	{ NULL, NULL, NULL, NULL, NULL, NULL, NULL }
3391 };
3392 
3393 int main(int ac, char **av)
3394 {
3395 	setup_vm();
3396 	return run_svm_tests(ac, av, svm_tests);
3397 }
3398