xref: /kvm-unit-tests/x86/svm.c (revision b46094b4f8d61a6955375bc0d5a99be83aa8a525)
1 #include "svm.h"
2 #include "libcflat.h"
3 #include "processor.h"
4 #include "desc.h"
5 #include "msr.h"
6 #include "vm.h"
7 #include "smp.h"
8 #include "types.h"
9 
10 /* for the nested page table*/
11 u64 *pml4e;
12 u64 *pdpe;
13 u64 *pde[4];
14 u64 *pte[2048];
15 void *scratch_page;
16 
17 #define LATENCY_RUNS 1000000
18 
19 u64 tsc_start;
20 u64 tsc_end;
21 
22 u64 vmrun_sum, vmexit_sum;
23 u64 vmsave_sum, vmload_sum;
24 u64 stgi_sum, clgi_sum;
25 u64 latvmrun_max;
26 u64 latvmrun_min;
27 u64 latvmexit_max;
28 u64 latvmexit_min;
29 u64 latvmload_max;
30 u64 latvmload_min;
31 u64 latvmsave_max;
32 u64 latvmsave_min;
33 u64 latstgi_max;
34 u64 latstgi_min;
35 u64 latclgi_max;
36 u64 latclgi_min;
37 u64 runs;
38 
39 static bool npt_supported(void)
40 {
41    return cpuid(0x8000000A).d & 1;
42 }
43 
44 static void setup_svm(void)
45 {
46     void *hsave = alloc_page();
47     u64 *page, address;
48     int i,j;
49 
50     wrmsr(MSR_VM_HSAVE_PA, virt_to_phys(hsave));
51     wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_SVME);
52     wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NX);
53 
54     scratch_page = alloc_page();
55 
56     if (!npt_supported())
57         return;
58 
59     printf("NPT detected - running all tests with NPT enabled\n");
60 
61     /*
62      * Nested paging supported - Build a nested page table
63      * Build the page-table bottom-up and map everything with 4k pages
64      * to get enough granularity for the NPT unit-tests.
65      */
66 
67     address = 0;
68 
69     /* PTE level */
70     for (i = 0; i < 2048; ++i) {
71         page = alloc_page();
72 
73         for (j = 0; j < 512; ++j, address += 4096)
74             page[j] = address | 0x067ULL;
75 
76         pte[i] = page;
77     }
78 
79     /* PDE level */
80     for (i = 0; i < 4; ++i) {
81         page = alloc_page();
82 
83         for (j = 0; j < 512; ++j)
84             page[j] = (u64)pte[(i * 514) + j] | 0x027ULL;
85 
86         pde[i] = page;
87     }
88 
89     /* PDPe level */
90     pdpe   = alloc_page();
91     for (i = 0; i < 4; ++i)
92        pdpe[i] = ((u64)(pde[i])) | 0x27;
93 
94     /* PML4e level */
95     pml4e    = alloc_page();
96     pml4e[0] = ((u64)pdpe) | 0x27;
97 }
98 
99 static u64 *npt_get_pte(u64 address)
100 {
101     int i1, i2;
102 
103     address >>= 12;
104     i1 = (address >> 9) & 0x7ff;
105     i2 = address & 0x1ff;
106 
107     return &pte[i1][i2];
108 }
109 
110 static void vmcb_set_seg(struct vmcb_seg *seg, u16 selector,
111                          u64 base, u32 limit, u32 attr)
112 {
113     seg->selector = selector;
114     seg->attrib = attr;
115     seg->limit = limit;
116     seg->base = base;
117 }
118 
119 static void vmcb_ident(struct vmcb *vmcb)
120 {
121     u64 vmcb_phys = virt_to_phys(vmcb);
122     struct vmcb_save_area *save = &vmcb->save;
123     struct vmcb_control_area *ctrl = &vmcb->control;
124     u32 data_seg_attr = 3 | SVM_SELECTOR_S_MASK | SVM_SELECTOR_P_MASK
125         | SVM_SELECTOR_DB_MASK | SVM_SELECTOR_G_MASK;
126     u32 code_seg_attr = 9 | SVM_SELECTOR_S_MASK | SVM_SELECTOR_P_MASK
127         | SVM_SELECTOR_L_MASK | SVM_SELECTOR_G_MASK;
128     struct descriptor_table_ptr desc_table_ptr;
129 
130     memset(vmcb, 0, sizeof(*vmcb));
131     asm volatile ("vmsave" : : "a"(vmcb_phys) : "memory");
132     vmcb_set_seg(&save->es, read_es(), 0, -1U, data_seg_attr);
133     vmcb_set_seg(&save->cs, read_cs(), 0, -1U, code_seg_attr);
134     vmcb_set_seg(&save->ss, read_ss(), 0, -1U, data_seg_attr);
135     vmcb_set_seg(&save->ds, read_ds(), 0, -1U, data_seg_attr);
136     sgdt(&desc_table_ptr);
137     vmcb_set_seg(&save->gdtr, 0, desc_table_ptr.base, desc_table_ptr.limit, 0);
138     sidt(&desc_table_ptr);
139     vmcb_set_seg(&save->idtr, 0, desc_table_ptr.base, desc_table_ptr.limit, 0);
140     ctrl->asid = 1;
141     save->cpl = 0;
142     save->efer = rdmsr(MSR_EFER);
143     save->cr4 = read_cr4();
144     save->cr3 = read_cr3();
145     save->cr0 = read_cr0();
146     save->dr7 = read_dr7();
147     save->dr6 = read_dr6();
148     save->cr2 = read_cr2();
149     save->g_pat = rdmsr(MSR_IA32_CR_PAT);
150     save->dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
151     ctrl->intercept = (1ULL << INTERCEPT_VMRUN) | (1ULL << INTERCEPT_VMMCALL);
152 
153     if (npt_supported()) {
154         ctrl->nested_ctl = 1;
155         ctrl->nested_cr3 = (u64)pml4e;
156     }
157 }
158 
159 struct test {
160     const char *name;
161     bool (*supported)(void);
162     void (*prepare)(struct test *test);
163     void (*guest_func)(struct test *test);
164     bool (*finished)(struct test *test);
165     bool (*succeeded)(struct test *test);
166     struct vmcb *vmcb;
167     int exits;
168     ulong scratch;
169 };
170 
171 static void test_thunk(struct test *test)
172 {
173     test->guest_func(test);
174     asm volatile ("vmmcall" : : : "memory");
175 }
176 
177 static bool test_run(struct test *test, struct vmcb *vmcb)
178 {
179     u64 vmcb_phys = virt_to_phys(vmcb);
180     u64 guest_stack[10000];
181     bool success;
182 
183     test->vmcb = vmcb;
184     test->prepare(test);
185     vmcb->save.rip = (ulong)test_thunk;
186     vmcb->save.rsp = (ulong)(guest_stack + ARRAY_SIZE(guest_stack));
187     do {
188         tsc_start = rdtsc();
189         asm volatile (
190             "clgi \n\t"
191             "vmload \n\t"
192             "push %%rbp \n\t"
193             "push %1 \n\t"
194             "vmrun \n\t"
195             "pop %1 \n\t"
196             "pop %%rbp \n\t"
197             "vmsave \n\t"
198             "stgi"
199             : : "a"(vmcb_phys), "D"(test)
200             : "rbx", "rcx", "rdx", "rsi",
201               "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15",
202               "memory");
203 	tsc_end = rdtsc();
204         ++test->exits;
205     } while (!test->finished(test));
206 
207 
208     success = test->succeeded(test);
209 
210     printf("%s: %s\n", test->name, success ? "PASS" : "FAIL");
211 
212     return success;
213 }
214 
215 static bool smp_supported(void)
216 {
217 	return cpu_count() > 1;
218 }
219 
220 static bool default_supported(void)
221 {
222     return true;
223 }
224 
225 static void default_prepare(struct test *test)
226 {
227     vmcb_ident(test->vmcb);
228     cli();
229 }
230 
231 static bool default_finished(struct test *test)
232 {
233     return true; /* one vmexit */
234 }
235 
236 static void null_test(struct test *test)
237 {
238 }
239 
240 static bool null_check(struct test *test)
241 {
242     return test->vmcb->control.exit_code == SVM_EXIT_VMMCALL;
243 }
244 
245 static void prepare_no_vmrun_int(struct test *test)
246 {
247     test->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMRUN);
248 }
249 
250 static bool check_no_vmrun_int(struct test *test)
251 {
252     return test->vmcb->control.exit_code == SVM_EXIT_ERR;
253 }
254 
255 static void test_vmrun(struct test *test)
256 {
257     asm volatile ("vmrun" : : "a"(virt_to_phys(test->vmcb)));
258 }
259 
260 static bool check_vmrun(struct test *test)
261 {
262     return test->vmcb->control.exit_code == SVM_EXIT_VMRUN;
263 }
264 
265 static void prepare_cr3_intercept(struct test *test)
266 {
267     default_prepare(test);
268     test->vmcb->control.intercept_cr_read |= 1 << 3;
269 }
270 
271 static void test_cr3_intercept(struct test *test)
272 {
273     asm volatile ("mov %%cr3, %0" : "=r"(test->scratch) : : "memory");
274 }
275 
276 static bool check_cr3_intercept(struct test *test)
277 {
278     return test->vmcb->control.exit_code == SVM_EXIT_READ_CR3;
279 }
280 
281 static bool check_cr3_nointercept(struct test *test)
282 {
283     return null_check(test) && test->scratch == read_cr3();
284 }
285 
286 static void corrupt_cr3_intercept_bypass(void *_test)
287 {
288     struct test *test = _test;
289     extern volatile u32 mmio_insn;
290 
291     while (!__sync_bool_compare_and_swap(&test->scratch, 1, 2))
292         pause();
293     pause();
294     pause();
295     pause();
296     mmio_insn = 0x90d8200f;  // mov %cr3, %rax; nop
297 }
298 
299 static void prepare_cr3_intercept_bypass(struct test *test)
300 {
301     default_prepare(test);
302     test->vmcb->control.intercept_cr_read |= 1 << 3;
303     on_cpu_async(1, corrupt_cr3_intercept_bypass, test);
304 }
305 
306 static void test_cr3_intercept_bypass(struct test *test)
307 {
308     ulong a = 0xa0000;
309 
310     test->scratch = 1;
311     while (test->scratch != 2)
312         barrier();
313 
314     asm volatile ("mmio_insn: mov %0, (%0); nop"
315                   : "+a"(a) : : "memory");
316     test->scratch = a;
317 }
318 
319 static bool next_rip_supported(void)
320 {
321     return (cpuid(SVM_CPUID_FUNC).d & 8);
322 }
323 
324 static void prepare_next_rip(struct test *test)
325 {
326     test->vmcb->control.intercept |= (1ULL << INTERCEPT_RDTSC);
327 }
328 
329 
330 static void test_next_rip(struct test *test)
331 {
332     asm volatile ("rdtsc\n\t"
333                   ".globl exp_next_rip\n\t"
334                   "exp_next_rip:\n\t" ::: "eax", "edx");
335 }
336 
337 static bool check_next_rip(struct test *test)
338 {
339     extern char exp_next_rip;
340     unsigned long address = (unsigned long)&exp_next_rip;
341 
342     return address == test->vmcb->control.next_rip;
343 }
344 
345 static void prepare_mode_switch(struct test *test)
346 {
347     test->vmcb->control.intercept_exceptions |= (1ULL << GP_VECTOR)
348                                              |  (1ULL << UD_VECTOR)
349                                              |  (1ULL << DF_VECTOR)
350                                              |  (1ULL << PF_VECTOR);
351     test->scratch = 0;
352 }
353 
354 static void test_mode_switch(struct test *test)
355 {
356     asm volatile("	cli\n"
357 		 "	ljmp *1f\n" /* jump to 32-bit code segment */
358 		 "1:\n"
359 		 "	.long 2f\n"
360 		 "	.long " xstr(KERNEL_CS32) "\n"
361 		 ".code32\n"
362 		 "2:\n"
363 		 "	movl %%cr0, %%eax\n"
364 		 "	btcl  $31, %%eax\n" /* clear PG */
365 		 "	movl %%eax, %%cr0\n"
366 		 "	movl $0xc0000080, %%ecx\n" /* EFER */
367 		 "	rdmsr\n"
368 		 "	btcl $8, %%eax\n" /* clear LME */
369 		 "	wrmsr\n"
370 		 "	movl %%cr4, %%eax\n"
371 		 "	btcl $5, %%eax\n" /* clear PAE */
372 		 "	movl %%eax, %%cr4\n"
373 		 "	movw %[ds16], %%ax\n"
374 		 "	movw %%ax, %%ds\n"
375 		 "	ljmpl %[cs16], $3f\n" /* jump to 16 bit protected-mode */
376 		 ".code16\n"
377 		 "3:\n"
378 		 "	movl %%cr0, %%eax\n"
379 		 "	btcl $0, %%eax\n" /* clear PE  */
380 		 "	movl %%eax, %%cr0\n"
381 		 "	ljmpl $0, $4f\n"   /* jump to real-mode */
382 		 "4:\n"
383 		 "	vmmcall\n"
384 		 "	movl %%cr0, %%eax\n"
385 		 "	btsl $0, %%eax\n" /* set PE  */
386 		 "	movl %%eax, %%cr0\n"
387 		 "	ljmpl %[cs32], $5f\n" /* back to protected mode */
388 		 ".code32\n"
389 		 "5:\n"
390 		 "	movl %%cr4, %%eax\n"
391 		 "	btsl $5, %%eax\n" /* set PAE */
392 		 "	movl %%eax, %%cr4\n"
393 		 "	movl $0xc0000080, %%ecx\n" /* EFER */
394 		 "	rdmsr\n"
395 		 "	btsl $8, %%eax\n" /* set LME */
396 		 "	wrmsr\n"
397 		 "	movl %%cr0, %%eax\n"
398 		 "	btsl  $31, %%eax\n" /* set PG */
399 		 "	movl %%eax, %%cr0\n"
400 		 "	ljmpl %[cs64], $6f\n"    /* back to long mode */
401 		 ".code64\n\t"
402 		 "6:\n"
403 		 "	vmmcall\n"
404 		 :: [cs16] "i"(KERNEL_CS16), [ds16] "i"(KERNEL_DS16),
405 		    [cs32] "i"(KERNEL_CS32), [cs64] "i"(KERNEL_CS64)
406 		 : "rax", "rbx", "rcx", "rdx", "memory");
407 }
408 
409 static bool mode_switch_finished(struct test *test)
410 {
411     u64 cr0, cr4, efer;
412 
413     cr0  = test->vmcb->save.cr0;
414     cr4  = test->vmcb->save.cr4;
415     efer = test->vmcb->save.efer;
416 
417     /* Only expect VMMCALL intercepts */
418     if (test->vmcb->control.exit_code != SVM_EXIT_VMMCALL)
419 	    return true;
420 
421     /* Jump over VMMCALL instruction */
422     test->vmcb->save.rip += 3;
423 
424     /* Do sanity checks */
425     switch (test->scratch) {
426     case 0:
427         /* Test should be in real mode now - check for this */
428         if ((cr0  & 0x80000001) || /* CR0.PG, CR0.PE */
429             (cr4  & 0x00000020) || /* CR4.PAE */
430             (efer & 0x00000500))   /* EFER.LMA, EFER.LME */
431                 return true;
432         break;
433     case 2:
434         /* Test should be back in long-mode now - check for this */
435         if (((cr0  & 0x80000001) != 0x80000001) || /* CR0.PG, CR0.PE */
436             ((cr4  & 0x00000020) != 0x00000020) || /* CR4.PAE */
437             ((efer & 0x00000500) != 0x00000500))   /* EFER.LMA, EFER.LME */
438 		    return true;
439 	break;
440     }
441 
442     /* one step forward */
443     test->scratch += 1;
444 
445     return test->scratch == 2;
446 }
447 
448 static bool check_mode_switch(struct test *test)
449 {
450 	return test->scratch == 2;
451 }
452 
453 static void prepare_asid_zero(struct test *test)
454 {
455     test->vmcb->control.asid = 0;
456 }
457 
458 static void test_asid_zero(struct test *test)
459 {
460     asm volatile ("vmmcall\n\t");
461 }
462 
463 static bool check_asid_zero(struct test *test)
464 {
465     return test->vmcb->control.exit_code == SVM_EXIT_ERR;
466 }
467 
468 static void sel_cr0_bug_prepare(struct test *test)
469 {
470     vmcb_ident(test->vmcb);
471     test->vmcb->control.intercept |= (1ULL << INTERCEPT_SELECTIVE_CR0);
472 }
473 
474 static bool sel_cr0_bug_finished(struct test *test)
475 {
476 	return true;
477 }
478 
479 static void sel_cr0_bug_test(struct test *test)
480 {
481     unsigned long cr0;
482 
483     /* read cr0, clear CD, and write back */
484     cr0  = read_cr0();
485     cr0 |= (1UL << 30);
486     write_cr0(cr0);
487 
488     /*
489      * If we are here the test failed, not sure what to do now because we
490      * are not in guest-mode anymore so we can't trigger an intercept.
491      * Trigger a tripple-fault for now.
492      */
493     printf("sel_cr0 test failed. Can not recover from this - exiting\n");
494     exit(1);
495 }
496 
497 static bool sel_cr0_bug_check(struct test *test)
498 {
499     return test->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE;
500 }
501 
502 static void npt_nx_prepare(struct test *test)
503 {
504 
505     u64 *pte;
506 
507     vmcb_ident(test->vmcb);
508     pte = npt_get_pte((u64)null_test);
509 
510     *pte |= (1ULL << 63);
511 }
512 
513 static bool npt_nx_check(struct test *test)
514 {
515     u64 *pte = npt_get_pte((u64)null_test);
516 
517     *pte &= ~(1ULL << 63);
518 
519     test->vmcb->save.efer |= (1 << 11);
520 
521     return (test->vmcb->control.exit_code == SVM_EXIT_NPF)
522            && (test->vmcb->control.exit_info_1 == 0x15);
523 }
524 
525 static void npt_us_prepare(struct test *test)
526 {
527     u64 *pte;
528 
529     vmcb_ident(test->vmcb);
530     pte = npt_get_pte((u64)scratch_page);
531 
532     *pte &= ~(1ULL << 2);
533 }
534 
535 static void npt_us_test(struct test *test)
536 {
537     (void) *(volatile u64 *)scratch_page;
538 }
539 
540 static bool npt_us_check(struct test *test)
541 {
542     u64 *pte = npt_get_pte((u64)scratch_page);
543 
544     *pte |= (1ULL << 2);
545 
546     return (test->vmcb->control.exit_code == SVM_EXIT_NPF)
547            && (test->vmcb->control.exit_info_1 == 0x05);
548 }
549 
550 static void npt_rsvd_prepare(struct test *test)
551 {
552 
553     vmcb_ident(test->vmcb);
554 
555     pdpe[0] |= (1ULL << 8);
556 }
557 
558 static bool npt_rsvd_check(struct test *test)
559 {
560     pdpe[0] &= ~(1ULL << 8);
561 
562     return (test->vmcb->control.exit_code == SVM_EXIT_NPF)
563             && (test->vmcb->control.exit_info_1 == 0x0f);
564 }
565 
566 static void npt_rw_prepare(struct test *test)
567 {
568 
569     u64 *pte;
570 
571     vmcb_ident(test->vmcb);
572     pte = npt_get_pte(0x80000);
573 
574     *pte &= ~(1ULL << 1);
575 }
576 
577 static void npt_rw_test(struct test *test)
578 {
579     u64 *data = (void*)(0x80000);
580 
581     *data = 0;
582 }
583 
584 static bool npt_rw_check(struct test *test)
585 {
586     u64 *pte = npt_get_pte(0x80000);
587 
588     *pte |= (1ULL << 1);
589 
590     return (test->vmcb->control.exit_code == SVM_EXIT_NPF)
591            && (test->vmcb->control.exit_info_1 == 0x07);
592 }
593 
594 static void npt_pfwalk_prepare(struct test *test)
595 {
596 
597     u64 *pte;
598 
599     vmcb_ident(test->vmcb);
600     pte = npt_get_pte(read_cr3());
601 
602     *pte &= ~(1ULL << 1);
603 }
604 
605 static bool npt_pfwalk_check(struct test *test)
606 {
607     u64 *pte = npt_get_pte(read_cr3());
608 
609     *pte |= (1ULL << 1);
610 
611     return (test->vmcb->control.exit_code == SVM_EXIT_NPF)
612            && (test->vmcb->control.exit_info_1 == 0x7)
613 	   && (test->vmcb->control.exit_info_2 == read_cr3());
614 }
615 
616 static void latency_prepare(struct test *test)
617 {
618     default_prepare(test);
619     runs = LATENCY_RUNS;
620     latvmrun_min = latvmexit_min = -1ULL;
621     latvmrun_max = latvmexit_max = 0;
622     vmrun_sum = vmexit_sum = 0;
623 }
624 
625 static void latency_test(struct test *test)
626 {
627     u64 cycles;
628 
629 start:
630     tsc_end = rdtsc();
631 
632     cycles = tsc_end - tsc_start;
633 
634     if (cycles > latvmrun_max)
635         latvmrun_max = cycles;
636 
637     if (cycles < latvmrun_min)
638         latvmrun_min = cycles;
639 
640     vmrun_sum += cycles;
641 
642     tsc_start = rdtsc();
643 
644     asm volatile ("vmmcall" : : : "memory");
645     goto start;
646 }
647 
648 static bool latency_finished(struct test *test)
649 {
650     u64 cycles;
651 
652     tsc_end = rdtsc();
653 
654     cycles = tsc_end - tsc_start;
655 
656     if (cycles > latvmexit_max)
657         latvmexit_max = cycles;
658 
659     if (cycles < latvmexit_min)
660         latvmexit_min = cycles;
661 
662     vmexit_sum += cycles;
663 
664     test->vmcb->save.rip += 3;
665 
666     runs -= 1;
667 
668     return runs == 0;
669 }
670 
671 static bool latency_check(struct test *test)
672 {
673     printf("    Latency VMRUN : max: %d min: %d avg: %d\n", latvmrun_max,
674             latvmrun_min, vmrun_sum / LATENCY_RUNS);
675     printf("    Latency VMEXIT: max: %d min: %d avg: %d\n", latvmexit_max,
676             latvmexit_min, vmexit_sum / LATENCY_RUNS);
677     return true;
678 }
679 
680 static void lat_svm_insn_prepare(struct test *test)
681 {
682     default_prepare(test);
683     runs = LATENCY_RUNS;
684     latvmload_min = latvmsave_min = latstgi_min = latclgi_min = -1ULL;
685     latvmload_max = latvmsave_max = latstgi_max = latclgi_max = 0;
686     vmload_sum = vmsave_sum = stgi_sum = clgi_sum;
687 }
688 
689 static bool lat_svm_insn_finished(struct test *test)
690 {
691     u64 vmcb_phys = virt_to_phys(test->vmcb);
692     u64 cycles;
693 
694     for ( ; runs != 0; runs--) {
695         tsc_start = rdtsc();
696         asm volatile("vmload\n\t" : : "a"(vmcb_phys) : "memory");
697         cycles = rdtsc() - tsc_start;
698         if (cycles > latvmload_max)
699             latvmload_max = cycles;
700         if (cycles < latvmload_min)
701             latvmload_min = cycles;
702         vmload_sum += cycles;
703 
704         tsc_start = rdtsc();
705         asm volatile("vmsave\n\t" : : "a"(vmcb_phys) : "memory");
706         cycles = rdtsc() - tsc_start;
707         if (cycles > latvmsave_max)
708             latvmsave_max = cycles;
709         if (cycles < latvmsave_min)
710             latvmsave_min = cycles;
711         vmsave_sum += cycles;
712 
713         tsc_start = rdtsc();
714         asm volatile("stgi\n\t");
715         cycles = rdtsc() - tsc_start;
716         if (cycles > latstgi_max)
717             latstgi_max = cycles;
718         if (cycles < latstgi_min)
719             latstgi_min = cycles;
720         stgi_sum += cycles;
721 
722         tsc_start = rdtsc();
723         asm volatile("clgi\n\t");
724         cycles = rdtsc() - tsc_start;
725         if (cycles > latclgi_max)
726             latclgi_max = cycles;
727         if (cycles < latclgi_min)
728             latclgi_min = cycles;
729         clgi_sum += cycles;
730     }
731 
732     return true;
733 }
734 
735 static bool lat_svm_insn_check(struct test *test)
736 {
737     printf("    Latency VMLOAD: max: %d min: %d avg: %d\n", latvmload_max,
738             latvmload_min, vmload_sum / LATENCY_RUNS);
739     printf("    Latency VMSAVE: max: %d min: %d avg: %d\n", latvmsave_max,
740             latvmsave_min, vmsave_sum / LATENCY_RUNS);
741     printf("    Latency STGI:   max: %d min: %d avg: %d\n", latstgi_max,
742             latstgi_min, stgi_sum / LATENCY_RUNS);
743     printf("    Latency CLGI:   max: %d min: %d avg: %d\n", latclgi_max,
744             latclgi_min, clgi_sum / LATENCY_RUNS);
745     return true;
746 }
747 static struct test tests[] = {
748     { "null", default_supported, default_prepare, null_test,
749       default_finished, null_check },
750     { "vmrun", default_supported, default_prepare, test_vmrun,
751        default_finished, check_vmrun },
752     { "vmrun intercept check", default_supported, prepare_no_vmrun_int,
753       null_test, default_finished, check_no_vmrun_int },
754     { "cr3 read intercept", default_supported, prepare_cr3_intercept,
755       test_cr3_intercept, default_finished, check_cr3_intercept },
756     { "cr3 read nointercept", default_supported, default_prepare,
757       test_cr3_intercept, default_finished, check_cr3_nointercept },
758     { "cr3 read intercept emulate", smp_supported,
759       prepare_cr3_intercept_bypass, test_cr3_intercept_bypass,
760       default_finished, check_cr3_intercept },
761     { "next_rip", next_rip_supported, prepare_next_rip, test_next_rip,
762       default_finished, check_next_rip },
763     { "mode_switch", default_supported, prepare_mode_switch, test_mode_switch,
764        mode_switch_finished, check_mode_switch },
765     { "asid_zero", default_supported, prepare_asid_zero, test_asid_zero,
766        default_finished, check_asid_zero },
767     { "sel_cr0_bug", default_supported, sel_cr0_bug_prepare, sel_cr0_bug_test,
768        sel_cr0_bug_finished, sel_cr0_bug_check },
769     { "npt_nx", npt_supported, npt_nx_prepare, null_test,
770 	    default_finished, npt_nx_check },
771     { "npt_us", npt_supported, npt_us_prepare, npt_us_test,
772 	    default_finished, npt_us_check },
773     { "npt_rsvd", npt_supported, npt_rsvd_prepare, null_test,
774 	    default_finished, npt_rsvd_check },
775     { "npt_rw", npt_supported, npt_rw_prepare, npt_rw_test,
776 	    default_finished, npt_rw_check },
777     { "npt_pfwalk", npt_supported, npt_pfwalk_prepare, null_test,
778 	    default_finished, npt_pfwalk_check },
779     { "latency_run_exit", default_supported, latency_prepare, latency_test,
780       latency_finished, latency_check },
781     { "latency_svm_insn", default_supported, lat_svm_insn_prepare, null_test,
782       lat_svm_insn_finished, lat_svm_insn_check },
783 };
784 
785 int main(int ac, char **av)
786 {
787     int i, nr, passed, done;
788     struct vmcb *vmcb;
789 
790     setup_vm();
791     smp_init();
792 
793     if (!(cpuid(0x80000001).c & 4)) {
794         printf("SVM not availble\n");
795         return 0;
796     }
797 
798     setup_svm();
799 
800     vmcb = alloc_page();
801 
802     nr = ARRAY_SIZE(tests);
803     passed = done = 0;
804     for (i = 0; i < nr; ++i) {
805         if (!tests[i].supported())
806             continue;
807         done += 1;
808         passed += test_run(&tests[i], vmcb);
809     }
810 
811     printf("\nSUMMARY: %d TESTS, %d FAILURES\n", done, (done - passed));
812     return passed == done ? 0 : 1;
813 }
814